Science.gov

Sample records for acp porous nanospheres

  1. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    PubMed Central

    2011-01-01

    Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP) porous nanospheres is achieved (126.7 m2/g). PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t)). The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated. PMID:21711603

  2. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Zhu, Ying-Jie; Zhang, Kui-Hua; Wu, Jin; Wang, Ke-Wei; Tang, Qi-Li; Mo, Xiu-Mei

    2011-12-01

    Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP) porous nanospheres is achieved (126.7 m2/g). PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time ( ln( t)). The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated.

  3. From porous gold nanocups to porous nanospheres and solid particles--a new synthetic approach.

    PubMed

    Ihsan, Ayesha; Katsiev, Habib; Alyami, Noktan; Anjum, Dalaver H; Khan, Waheed S; Hussain, Irshad

    2015-05-15

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4⋅3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  4. Facile synthesis of porous TiO2 nanospheres and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Huang, Jiarui; Ren, Haibo; Liu, Xiaosi; Li, Xuexue; Shim, Jae-Jin

    2015-05-01

    Uniform and monodisperse porous TiO2 nanospheres were synthesized by a hydrothermal method. Techniques of X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption, UV-vis absorption spectroscopy, and transmission electron microscopy were used to characterize the structure and morphology of the products. The BET surface area of the porous TiO2 nanospheres was calculated to be 26.1 cm2 g-1. In addition, the obtained porous TiO2 nanospheres were used as catalyst to photodegrade methylene blue, Rhodamine B, methyl orange, p-nitrophenol, and eosin B. Compared to commercial TiO2 powder, the as-prepared porous TiO2 nanospheres exhibited higher catalytic activities due to their large surface areas and porous nanostructures. The photocatalytic reaction rate constant of the porous TiO2 nanospheres in photocatalytic decomposition of methylene blue and Rhodamine B under simulated solar light were calculated as 0.0545 min-1 and 0.0579 min-1, respectively. Moreover, the catalyst was demonstrated to have good stability and reusability.

  5. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis.

    PubMed

    Wang, Chengwei; Wang, Yuan; Graser, Jake; Zhao, Ran; Gao, Fei; O'Connell, Michael J

    2013-12-23

    A facile and scalable solution-based, spray pyrolysis synthesis technique was used to synthesize individual carbon nanospheres with specific surface area (SSA) up to 1106 m(2)/g using a novel metal-salt catalyzed reaction. The carbon nanosphere diameters were tunable from 10 nm to several micrometers by varying the precursor concentrations. Solid, hollow, and porous carbon nanospheres were achieved by simply varying the ratio of catalyst and carbon source without using any templates. These hollow carbon nanospheres showed adsorption of to 300 mg of dye per gram of carbon, which is more than 15 times higher than that observed for conventional carbon black particles. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed, with no capacitance loss after 20,000 cycles.

  6. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  7. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  8. Large-deformation and high-strength amorphous porous carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  9. Large-deformation and high-strength amorphous porous carbon nanospheres.

    PubMed

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R; Yue, Zhufeng; Dillon, Shen J; Xu, Hangxun; Xu, Baoxing

    2016-01-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  10. Large-deformation and high-strength amorphous porous carbon nanospheres.

    PubMed

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R; Yue, Zhufeng; Dillon, Shen J; Xu, Hangxun; Xu, Baoxing

    2016-01-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation. PMID:27072412

  11. Large-deformation and high-strength amorphous porous carbon nanospheres

    PubMed Central

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-01-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation. PMID:27072412

  12. Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells.

    PubMed

    Wu, Mao-Sung; Wu, Jia-Fang

    2013-12-01

    A Ni2P nanolayer with porous nanospheres was directly coated on fluorine-doped tin oxide glass by pulse-reverse deposition as a low-cost counter electrode catalyst for dye-sensitized solar cells, and the photoelectron conversion efficiency of the cell was increased to 7.32% by using a porous nanosphere catalyst due to the significantly improved ion transport.

  13. Facile synthesis of fluorescent porous zinc sulfide nanospheres and their application for potential drug delivery and live cell imaging

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Liu, Shanhu

    2012-05-01

    Fabrication of intrinsically fluorescent porous nanocarriers that are simultaneously stable in aqueous solutions and photostable is critical for their application in drug delivery and optical imaging but remains a challenge. In this study, fluorescent porous zinc sulfide nanospheres were synthesized by a facile gum arabic-assisted hydrothermal procedure. The morphology, composition and properties of the nanospheres have been characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, N2 adsorption-desorption analysis, thermal gravimetric analysis, fourier transform infrared spectrograph, optical measurement, dynamic light scattering, and cytotoxicity assay. They exhibit larger surface area, excellent colloidal stability, photostable fluorescent signals, and good biocompatibility, which makes them promising hosts for drug delivery and cellular imaging. The fluorescent dye safranine-T was employed as a drug model and loaded into the porous nanospheres, which were delivered to human cervical cancer HeLa cells in vitro for live cell imaging.Fabrication of intrinsically fluorescent porous nanocarriers that are simultaneously stable in aqueous solutions and photostable is critical for their application in drug delivery and optical imaging but remains a challenge. In this study, fluorescent porous zinc sulfide nanospheres were synthesized by a facile gum arabic-assisted hydrothermal procedure. The morphology, composition and properties of the nanospheres have been characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, N2 adsorption-desorption analysis, thermal gravimetric analysis, fourier transform infrared spectrograph, optical measurement, dynamic light scattering, and cytotoxicity assay. They exhibit larger surface area, excellent colloidal stability, photostable fluorescent signals, and good biocompatibility, which makes them promising

  14. Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries.

    PubMed

    Yao, Xiayin; Zhao, Chenyang; Kong, Junhua; Wu, Huiqing; Zhou, Dan; Lu, Xuehong

    2014-12-01

    Polydopamine-derived carbon (C-PDA) nanospheres embedded with zinc ferrite (ZnFe2O4) are synthesized by in situ polymerization of dopamine with zinc and iron species followed by carbonization. The composite nanospheres contain ZnFe2O4 nanoparticles ∼8 nm in size well dispersed in porous C-PDA. The unique structure and morphology endow the nanospheres with excellent rate capability and cycling stability for use as anodes in lithium-ion batteries.

  15. A facile and green approach for the controlled synthesis of porous SnO₂ nanospheres: application as an efficient photocatalyst and an excellent gas sensing material.

    PubMed

    Manjula, P; Boppella, Ramireddy; Manorama, Sunkara V

    2012-11-01

    A facile and elegant methodology invoking the principles of Green Chemistry for the synthesis of porous tin dioxide nanospheres has been described. The low-temperature (∼50 °C) synthesis of SnO₂ nanoparticles and their self-assembly into organized, uniform, and monodispersed porous nanospheres with high surface area is facilitated by controlling the concentration of glucose, which acts as a stabilizing as well as structure-directing agent. A systematic control on the stannate to glucose molar concentration ratio determines the exact conditions to obtain monodispersed nanospheres, preferentially over random aggregation. Detailed characterization of the structure, morphology, and chemical composition reveals that the synthesized material, 50 nm SnO₂ porous nanospheres possess BET surface area of about 160 m²/g. Each porous nanosphere consists of a few hundred nanoparticles ∼2-3 nm in diameter with tetragonal cassiterite crystal structure. The SnO₂ nanospheres exhibit elevated photocatalytic activity toward methyl orange with good recyclability. Because of the high activity and stability of this photocatalyst, the material is ideal for applications in environmental remediation. Moreover, SnO₂ nanospheres display excellent gas sensing capabilities toward hydrogen. Surface modification of the nanospheres with Pd transforms this sensing material into a highly sensitive and selective room-temperature hydrogen sensor.

  16. Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells.

    PubMed

    Wu, Mao-Sung; Wu, Jia-Fang

    2013-12-01

    A Ni2P nanolayer with porous nanospheres was directly coated on fluorine-doped tin oxide glass by pulse-reverse deposition as a low-cost counter electrode catalyst for dye-sensitized solar cells, and the photoelectron conversion efficiency of the cell was increased to 7.32% by using a porous nanosphere catalyst due to the significantly improved ion transport. PMID:24132176

  17. Template-engaged synthesis of hollow porous platinum-palladium alloy nanospheres for efficient methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoyu; Dai, Yuxuan; Zhu, Xiaoshu; Zhang, Hanyue; Wu, Ping; Tang, Yawen; Wei, Shaohua

    2016-01-01

    Hollow porous structures of Pt-Pd bimetallic alloy possess unique compositional and structural superiorities for catalytic and electrocatalytic applications, and are thus anticipated to manifest novel properties and/or enhanced performance compared with their monometallic counterparts. Herein, a general electrostatic-attraction-directed layer-by-layer assembly approach has been developed for the construction of a novel type of hollow porous Pt-Pd alloy nanospheres (Pt-Pd HPNSs) using SiO2 nanospheres as templates. Moreover, the Pt-Pd HPNSs with controllable shell thickness are prepared and their comparative electrocatalytic performances toward methanol oxidation reaction (MOR) are investigated. It's found that optimized Pt-Pd HPNSs manifests markedly enhanced catalytic activity and durability in comparison with both commercial Pt black and Pd black catalysts.

  18. Co-transport of gold nanospheres with single-walled carbon nanotubes in saturated porous media.

    PubMed

    Afrooz, A R M Nabiul; Das, Dipesh; Murphy, Catherine J; Vikesland, Peter; Saleh, Navid B

    2016-08-01

    Porous media transport of engineered nanomaterials (ENMs) is typically assessed in a controlled single-particulate environment. Presence of a secondary particle (either natural or engineered) in the natural environment though likely, is rarely taken into consideration in assessing ENMs' transport behavior. This study systematically assesses the effect of a secondary ENM (i.e., pluronic acid modified single-walled carbon nanotubes, PA-SWNTs) on a primary particle (i.e., gold nanospheres, AuNSs) transport through saturated porous media under a wide range of aquatic conditions (1-100 mM NaCl). AuNS hetero-dispersions (i.e., with PA-SWNTs) are transported through saturated sand columns, and the transport behavior is compared to AuNS-only homo-dispersion cases, which display classical ionic strength-dependent behavior. AuNS hetero-dispersion, however, is highly mobile with little to no ionic strength-dependent effects. This study also assesses the role of pre-coating of the collectors with PA-SWNTs on AuNSs' mobility, thereby elucidating the role played by the order of introduction of the secondary particles. Pre-existence of the secondary particles in the porous media shows enhanced filtration of primary AuNSs. However, the presence of natural organic matter (NOM) slightly increases AuNS mobility through PA-SWNT coated sand at 10 mM ionic strength. The study results demonstrate that the presence and order of addition of the secondary particles strongly influence primary particles' mobility. Thus ENMs can demonstrate facilitated transport or enhanced removal, depending on the presence of the secondary particulate matter and background solution chemistry. PMID:27130967

  19. Co-transport of gold nanospheres with single-walled carbon nanotubes in saturated porous media.

    PubMed

    Afrooz, A R M Nabiul; Das, Dipesh; Murphy, Catherine J; Vikesland, Peter; Saleh, Navid B

    2016-08-01

    Porous media transport of engineered nanomaterials (ENMs) is typically assessed in a controlled single-particulate environment. Presence of a secondary particle (either natural or engineered) in the natural environment though likely, is rarely taken into consideration in assessing ENMs' transport behavior. This study systematically assesses the effect of a secondary ENM (i.e., pluronic acid modified single-walled carbon nanotubes, PA-SWNTs) on a primary particle (i.e., gold nanospheres, AuNSs) transport through saturated porous media under a wide range of aquatic conditions (1-100 mM NaCl). AuNS hetero-dispersions (i.e., with PA-SWNTs) are transported through saturated sand columns, and the transport behavior is compared to AuNS-only homo-dispersion cases, which display classical ionic strength-dependent behavior. AuNS hetero-dispersion, however, is highly mobile with little to no ionic strength-dependent effects. This study also assesses the role of pre-coating of the collectors with PA-SWNTs on AuNSs' mobility, thereby elucidating the role played by the order of introduction of the secondary particles. Pre-existence of the secondary particles in the porous media shows enhanced filtration of primary AuNSs. However, the presence of natural organic matter (NOM) slightly increases AuNS mobility through PA-SWNT coated sand at 10 mM ionic strength. The study results demonstrate that the presence and order of addition of the secondary particles strongly influence primary particles' mobility. Thus ENMs can demonstrate facilitated transport or enhanced removal, depending on the presence of the secondary particulate matter and background solution chemistry.

  20. Porous ZnMn2O4 nanospheres: Facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoqiao; Zhang, Yuanming; Lin, Haibin; Xia, Pan; Cai, Xia; Li, Xiaogang; Li, Xiaoping; Li, Weishan

    2016-04-01

    Porous ZnMn2O4 nanospheres are synthesized through a facile microemulsion method. Crystal structure, morphology and electrochemical performance of the product as anode of lithium ion battery were investigated with FESEM, TEM, HRTEM, BET, XPS, XRD, CV, EIS, and charge/discharge test, with a comparison of ZnMn2O4 microparticle synthesized by sol-gel method. It is found that the microemulsion can effectively control particle size and morphology of the precursor and thus porous ZnMn2O4 nanospheres consisting of smaller primary nanoparticles can be successfully obtained, which exhibit far better rate capability and cyclic stability than ZnMn2O4 microparticles. The porous ZnMn2O4 nanospheres deliver a reversible capacity of 300 mAh g-1 at 6000 mA g-1 and yield a capacity retention of 91% after 120 cycles at 200 mA g-1, compared to the 20 mAh g-1 and 0% of ZnMn2O4 microparticles, respectively. The space in the porous structure of ZnMn2O4 nanospheres buffers the mechanical strain induced by the volume change during cycling, which causes destruction of ZnMn2O4 microparticle, resulting in the excellent cyclic stability. Moreover, the primary nanoparticles in ZnMn2O4 nanospheres reduce the path of lithium ion transportation and increase reaction sites for lithium intercalation/deintercalation, leading to the better rate capability of porous ZnMn2O4 nanospheres than ZnMn2O4 microparticles.

  1. A folic acid conjugated silica-titania porous hollow nanosphere for improved topical photodynamic therapy.

    PubMed

    Jang, Yoonsun; Kim, Sojin; Oh, Wan-Kyu; Kim, Chanhoi; Lee, Inkyu; Jang, Jyongsik

    2014-12-18

    The folic acid conjugated hollow nanosphere is used to encapsulate protoporphyrin IX and is utilized for photodynamic therapy. This system represents a 3.33 times higher photodynamic efficiency than previous protoporphyrin IX-based systems. The result proposes a new opportunity for effective photodynamic therapy of folate receptor positive tumor cells.

  2. Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaochang; Peng, Hongliang; You, Chenghang; Liu, Fangfang; Zheng, Ruiping; Xu, Dongwei; Li, Xiuhua; Liao, Shijun

    2015-08-01

    Nitrogen, phosphorus and Fe doped carbon nanospheres have been synthesized by a facile method in which polyacrylonitrile nanospheres are pyrolyzed in the presence of diammonium phosphate and iron trichloride hexahydrate. The specific surface area of the catalyst is high up to 771.3 m2 g-1, and it has a hierarchical micro-meso-macroporous structure. In an alkaline medium, the catalyst exhibits high electrocatalytic activity towards the oxygen reduction reaction (ORR) as well as excellent stability and methanol tolerance-superior in each case to commercial Pt/C catalyst. The effects that adding Fe salt and phosphorus on the structure and performance of the catalyst are also investigated. We suggest that the catalyst's excellent electrocatalytic performance may be attributed to: (1) the synergistic effect, which provides more catalytic sites for the ORR, due to the nitrogen and phosphorus co-doping; (2) the strong promotion by trace Fe residues; and (3) the high surface area and excellent mass transport rate arising from the hierarchical porous structure.

  3. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Chen, Xi'an; Chen, Xiaohua; Xu, Xin; Yang, Zhi; Liu, Zheng; Zhang, Lijie; Xu, Xiangju; Chen, Ying; Huang, Shaoming

    2014-10-01

    Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g-1, good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and

  4. Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis.

    PubMed

    Liu, Kai; Bai, Yaocai; Zhang, Lei; Yang, Zhongbo; Fan, Qikui; Zheng, Haoquan; Yin, Yadong; Gao, Chuanbo

    2016-06-01

    Colloidal plasmonic metal nanoparticles have enabled surface-enhanced Raman scattering (SERS) for a variety of analytical applications. While great efforts have been made to create hotspots for amplifying Raman signals, it remains a great challenge to ensure their high density and accessibility for improved sensitivity of the analysis. Here we report a dealloying process for the fabrication of porous Au-Ag alloy nanoparticles containing abundant inherent hotspots, which were encased in ultrathin hollow silica shells so that the need of conventional organic capping ligands for stabilization is eliminated, producing colloidal plasmonic nanoparticles with clean surface and thus high accessibility of the hotspots. As a result, these novel nanostructures show excellent SERS activity with an enhancement factor of ∼1.3 × 10(7) on a single particle basis (off-resonant condition), promising high applicability in many SERS-based analytical and biomedical applications. PMID:27192436

  5. Stable 4 V-class bicontinuous cathodes by hierarchically porous carbon coating on Li3V2(PO4)3 nanospheres

    NASA Astrophysics Data System (ADS)

    Fei, Linfeng; Sun, Li; Lu, Wei; Guo, Min; Huang, Haitao; Wang, Jiaping; Chan, Helen L. W.; Fan, Shoushan; Wang, Yu

    2014-10-01

    A high performance, durable cathode material for lithium ion batteries is achieved by incorporating ~50 nm Li3V2(PO4)3/C core-shell nanospheres into a porous carbon framework. The Li3V2(PO4)3/C nanocomposite delivers an initial discharge capacity of 130 mA h g-1, approaching its theoretical limit (133 mA h g-1). At a high current rate (10 C), the nanocomposite displays an impressive long cycle life and remarkable capacity retention (90% after 1200 cycles). Notably, the Coulombic efficiency is above 99% during the course of cycling. The remarkable power capability and cycle stability derived from our simple and scalable synthesis suggests that this 4 V-class material could be one of the most promising candidates for future batteries.A high performance, durable cathode material for lithium ion batteries is achieved by incorporating ~50 nm Li3V2(PO4)3/C core-shell nanospheres into a porous carbon framework. The Li3V2(PO4)3/C nanocomposite delivers an initial discharge capacity of 130 mA h g-1, approaching its theoretical limit (133 mA h g-1). At a high current rate (10 C), the nanocomposite displays an impressive long cycle life and remarkable capacity retention (90% after 1200 cycles). Notably, the Coulombic efficiency is above 99% during the course of cycling. The remarkable power capability and cycle stability derived from our simple and scalable synthesis suggests that this 4 V-class material could be one of the most promising candidates for future batteries. Electronic supplementary information (ESI) available: Comparison of current cathode materials, comparison of the electrochemical performance among Li3V2(PO4)3-based cathode materials, supplementary figures. See DOI: 10.1039/c4nr04488f

  6. Novel microwave synthesis of amorphous calcium phosphate nanospheres.

    PubMed

    Zhou, Huan; Bhaduri, Sarit

    2012-05-01

    Amorphous calcium phosphate (ACP) is an important precursor phase in tissue mineralization. It shows high solubility and excellent remineralization ability. Commercially viable techniques for producing ACP are high-cost/low-efficiency process. This article describes a novel microwave (MW)-assisted ACP synthesis route as an alternative to current ACP synthesis methods. An important feature of the process is the use of supersaturated biomimetic fluids (SBFs), which are based on Kokubo-like simulated body fluids. However, our present compositions are substantially different in that they no longer simulate the body fluid compositions. The effects of solution composition and processing parameters were studied. The mechanism of ACP synthesis under MW irradiation process is also discussed. The as-synthesized ACP nanospheres were characterized and showed good reactivity and biocompatibility. These as-synthesized nanoparticles can be potential candidates for biomedical applications and remineralization mechanism study. PMID:22331618

  7. Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium-ion batteries and oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Mengmeng; Li, Rong; Chang, Xiaoxuan; Xue, Chao; Gou, Xinglong

    2015-09-01

    A new single-source precursor has been developed from the hydrothermal reaction of graphite oxide (GO), melamine resin (MR) monomers, and CoCl2 to prepare a sandwich-like hybrid of ultrathin nitrogen-doped graphene (NG) sheets and porous Co3O4 nanospheres (Co3O4/NG). This unique structure endows the Co3O4/NG hybrid with large surface area and enhanced electrochemical performances as both anode material for Li-ion batteries and electrocatalyst for oxygen reduction reaction (ORR). As an anode material, it exhibits high reversible capacity, excellent cycling stability and rate performance (1236 and 489 mAh g-1 over 200 cycles at 0.1C and 2C, respectively; 371 mAh g-1 at 5C). As an ORR electrocatalyst, it shows superior catalytic activity and high selectivity for the four-electron reduction pathway compared to the bare Co3O4 and NG alone. Moreover, the Co3O4/NG hybrid is insensitive to methanol, and is much more stable than Pt/C catalyst over long term operation.

  8. Development of an ACP facility

    SciTech Connect

    Gil-Sung You; Won-Myung Choung; Jeong-Hoe Ku; il-Je Cho; Dong-Hak Kook; Kie-Chan Kwon; Eun-Pyo Lee; Ji-Sup Yoon; Seong-Won Park; Won-Kyung Lee

    2007-07-01

    KAERI has been developing an advanced spent fuel conditioning process (ACP). The ACP facility for a process demonstration consists of two air-sealed type hot cells. The safety analysis results showed that the facility was designed safely. The relevant integrated performance tests were also carried out successfully. (authors)

  9. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter

    1998-01-06

    Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  10. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  11. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.

  12. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  13. Fabrication of hollow and porous structured GdVO4:Dy3+ nanospheres as anticancer drug carrier and MRI contrast agent.

    PubMed

    Kang, Xiaojiao; Yang, Dongmei; Ma, Ping'an; Dai, Yunlu; Shang, Mengmeng; Geng, Dongling; Cheng, Ziyong; Lin, Jun

    2013-01-29

    Hollow and porous structured GdVO(4):Dy(3+) spheres were fabricated via a facile self-sacrificing templated method. The large cavity allows them to be used as potential hosts for therapeutic drugs, and the porous feature of the shell allows guest molecules to easily pass through the void space and surrounding environment. The samples show strong yellow-green emission of Dy(3+) (485 nm, (4)F(9/2) → (6)H(15/2); 575 nm, (4)F(9/2) → (6)H(13/2)) under UV excitation. The emission intensity of GdVO(4):Dy(3+) was weakened after encapsulation of anticancer drug (doxorubicin hydrochloride, DOX) and gradually restored with the cumulative released time of DOX. These hollow spheres were nontoxic to HeLa cells, while DOX-loaded samples led to apparent cytotoxicity as a result of the sustained release of DOX. ICP measurement indicates that free toxic Gd ions can hardly dissolate from the matrix. The endocytosis process of DOX-loaded hollow spheres is observed using confocal laser scanning microscopy (CLSM). Furthermore, GdVO(4):Dy(3+) hollow spheres can be used for T(1)-weighted magnetic resonance (MR) imaging. These results implicate that the luminescent GdVO(4):Dy(3+) spheres with hollow and porous structure are promising platforms for drug storage/release and MR imaging.

  14. Hierarchical Sandwich-Like Structure of Ultrafine N-Rich Porous Carbon Nanospheres Grown on Graphene Sheets as Superior Lithium-Ion Battery Anodes.

    PubMed

    Xie, Zhiqiang; He, Ziyang; Feng, Xuhui; Xu, Wangwang; Cui, Xiaodan; Zhang, Jiuhong; Yan, Cheng; Carreon, Moises A; Liu, Zheng; Wang, Ying

    2016-04-27

    A sandwich-like, graphene-based porous nitrogen-doped carbon (PNCs@Gr) has been prepared through facile pyrolysis of zeolitic imidazolate framework nanoparticles in situ grown on graphene oxide (GO) (ZIF-8@GO). Such sandwich-like nanostructure can be used as anode material in lithium ion batteries, exhibiting remarkable capacities, outstanding rate capability, and cycling performances that are some of the best results among carbonaceous electrode materials and exceed most metal oxide-based anode materials derived from metal orgainc frameworks (MOFs). Apart from a high initial capacity of 1378 mAh g(-1) at 100 mA g(-1), this PNCs@Gr electrode can be cycled at high specific currents of 500 and 1000 mA g(-1) with very stable reversible capacities of 1070 and 948 mAh g(-1) to 100 and 200 cycles, respectively. At a higher specific current of 5000 mA g(-1), the electrode still delivers a reversible capacity of over 530 mAh g(-1) after 400 cycles, showing a capacity retention of as high as 84.4%. Such an impressive electrochemical performance is ascribed to the ideal combination of hierarchically porous structure, a highly conductive graphene platform, and high-level nitrogen doping in the sandwich-like PNCs@Gr electrode obtained via in situ synthesis.

  15. Highly Monodisperse Microporous Polymeric and Carbonaceous Nanospheres with Multifunctional Properties

    PubMed Central

    Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai

    2013-01-01

    Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487

  16. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM... General § 701.44 Agricultural Conservation Program (ACP) contracts. Contracts for ACP that are, or...

  17. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM... General § 701.44 Agricultural Conservation Program (ACP) contracts. Contracts for ACP that are, or...

  18. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM... General § 701.44 Agricultural Conservation Program (ACP) contracts. Contracts for ACP that are, or...

  19. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM... General § 701.44 Agricultural Conservation Program (ACP) contracts. Contracts for ACP that are, or...

  20. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... regulations for ACP contracts and the ACP program that were contained in the 7 CFR, parts 700 to 899, edition... 7 Agriculture 7 2010-01-01 2010-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM...

  1. Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojian; Li, Wei

    2016-06-01

    Bioactive inorganic materials are attractive for hard tissue regeneration, and they are used as delivery vehicles for pharmaceutical molecules, scaffolds and components for bio-composites. We demonstrated mesoporous bioactive glass (BG) nanospheres that exhibited the capacity to deliver pharmaceutical molecules. Mesoporous BG nanospheres with variable Ca to Si ratios were synthesized using sol-gel chemistry. By controlling the hydrolysis and condensation conditions, the diameter of the mesoporous BG nanospheres was changed from 300 nm to 1500 nm. The porous structure and surface area of the BG nanospheres were shown to be dependent on their composition. The surface area of the BG nanospheres decreased from 400 ± 2 m2 g-1 to 56 ± 0.1 m2 g-1 when the Ca/Si ratio increased from 5 to 50 at.%. When the mesoporous BG nanospheres were loaded with ibuprofen (IBU), they exhibited a sustained release profile in simulated body fluid (SBF). In the meantime, the IBU-loaded BG nanospheres degraded in SBF, and induced apatite layer formation on the surface as a result of their good bioactivity. When the BG nanospheres were used as a composite filler to poly (ɛ-caprolactone) (PCL), they were shown to be effective at improving the in vitro bioactivity of PCL microspheres.

  2. Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojian; Li, Wei

    2016-06-01

    Bioactive inorganic materials are attractive for hard tissue regeneration, and they are used as delivery vehicles for pharmaceutical molecules, scaffolds and components for bio-composites. We demonstrated mesoporous bioactive glass (BG) nanospheres that exhibited the capacity to deliver pharmaceutical molecules. Mesoporous BG nanospheres with variable Ca to Si ratios were synthesized using sol–gel chemistry. By controlling the hydrolysis and condensation conditions, the diameter of the mesoporous BG nanospheres was changed from 300 nm to 1500 nm. The porous structure and surface area of the BG nanospheres were shown to be dependent on their composition. The surface area of the BG nanospheres decreased from 400 ± 2 m2 g‑1 to 56 ± 0.1 m2 g‑1 when the Ca/Si ratio increased from 5 to 50 at.%. When the mesoporous BG nanospheres were loaded with ibuprofen (IBU), they exhibited a sustained release profile in simulated body fluid (SBF). In the meantime, the IBU-loaded BG nanospheres degraded in SBF, and induced apatite layer formation on the surface as a result of their good bioactivity. When the BG nanospheres were used as a composite filler to poly (ε-caprolactone) (PCL), they were shown to be effective at improving the in vitro bioactivity of PCL microspheres.

  3. Software for the ACP (Advanced Computer Program) multiprocessor system

    SciTech Connect

    Biel, J.; Areti, H.; Atac, R.; Cook, A.; Fischler, M.; Gaines, I.; Kaliher, C.; Hance, R.; Husby, D.; Nash, T.

    1987-02-02

    Software has been developed for use with the Fermilab Advanced Computer Program (ACP) multiprocessor system. The software was designed to make a system of a hundred independent node processors as easy to use as a single, powerful CPU. Subroutines have been developed by which a user's host program can send data to and get results from the program running in each of his ACP node processors. Utility programs make it easy to compile and link host and node programs, to debug a node program on an ACP development system, and to submit a debugged program to an ACP production system.

  4. Shewanella oneidensis FabB: A β-ketoacyl-ACP Synthase That Works with C16:1-ACP

    PubMed Central

    Luo, Qixia; Li, Meng; Fu, Huihui; Meng, Qiu; Gao, Haichun

    2016-01-01

    It is established that Escherichia coli β-ketoacyl-ACP synthase (KAS) I (encoded by EcfabB) is the primary, if not exclusive, factor for elongation of the cis-3-decenoyl-ACP (C10:1-ACP) but not effective with C16:1- or longer-chain-ACPs. To test the extent to which these features apply to KAS I proteins in other species, in this study, we examined the physiological role of FabB in Shewanella oneidensis, an excellent model for researching type II fatty acid synthetic (FAS) system and its regulation. We showed that the loss of either FabA (the enzyme that introduces double bond) or FabB, in the absence of DesA which desaturizes C16 and C18 to generate respective C16:1 and C18:1, leads to a UFA auxotroph. However, fatty acid profiles of membrane phospholipid of the fabA and fabB mutants are significantly different, suggesting that FabB participates in steps beyond elongation of C10:1-ACP. Further analyses demonstrated that S. oneidensis FabB differs from EcFabB in that (i) it is not the only enzyme capable of catalyzing elongation of the cis-3-decenoyl-ACP produced by FabA, (ii) it plays a critical role in elongation of C16:1- and longer-chain-ACPs, and (iii) its overproduction is detrimental. PMID:27014246

  5. The ACP (Advanced Computer Program) Branch bus and real-time applications of the ACP multiprocessor system

    SciTech Connect

    Hance, R.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Fischler, M.; Gaines, I.; Husby, D.; Nash, T.; Zmuda, T.

    1987-05-08

    The ACP Branchbus, a high speed differential bus for data movement in multiprocessing and data acquisition environments, is described. This bus was designed as the central bus in the ACP multiprocessing system. In its full implementation with 16 branches and a bus switch, it will handle data rates of 160 MByte/sec and allow reliable data transmission over inter rack distances. We also summarize applications of the ACP system in experimental data acquisition, triggering and monitoring, with special attention paid to FASTBUS environments.

  6. The Interactions of CPP–ACP with Saliva

    PubMed Central

    Huq, Noorjahan Laila; Myroforidis, Helen; Cross, Keith J.; Stanton, David P.; Veith, Paul D.; Ward, Brent R.; Reynolds, Eric C.

    2016-01-01

    The repair of early dental caries lesions has been demonstrated by the application of the remineralisation technology based on casein phosphopeptide-stabilised amorphous calcium phosphate complexes (CPP–ACP). These complexes consist of an amorphous calcium phosphate mineral phase stabilised and encapsulated by the self-assembly of milk-derived phosphopeptides. During topical application of CPP–ACP complexes in the oral cavity, the CPP encounters the enamel pellicle consisting of salivary proteins and peptides. However the interactions of the CPP with the enamel salivary pellicle are not known. The studies presented here reveal that the predominant peptides of CPP–ACP complexes do interact with specific salivary proteins and peptides of the enamel pellicle, and provide a mechanism by which the CPP–ACP complexes are localised at the tooth surface to promote remineralisation. PMID:27294918

  7. Association between ACP(1) genetic polymorphism and favism.

    PubMed

    Polzonetti, V; Passini, V; Lucarini, N

    2011-01-01

    An association between favism (a hemolytic reaction to consumption of fava beans), glucose-6-phosphate dehydrogenase deficiency (G6PD(-)) and acid phosphatase locus 1 (ACP(1)) phenotypes has been reported; the frequency of carriers of the p(a) and p(c) ACP(1) alleles was found to be significantly higher in G6PD(-) individuals showing favism than in the general population. Here, we investigated the hypothesis that favism is caused by toxic Vicia faba substances, which in some ACP(1) phenotypes cause increased phosphorylation and consequently increased glycolysis, with strong reduction in reduced glutathione production, resulting in hemolysis. It has been demonstrated that ACP(1) f isoforms have physiological functions different from those of s isoforms and are responsible for most of the phosphatase activity, in addition to being less stable in the presence of oxidizing molecules. Thus, the C, CA and A phenotypes, characterized by lower concentrations of f isoforms, could be more susceptible to damage by oxidative events compared to the other phenotypes. To test this hypothesis, the (f+s) enzymatic activity of different ACP(1) phenotypes with and without added V. faba extract was analyzed. Enzymatic activities of ACP(1) A, -CA, -C groups (low activity) and -B, -BA, -CB groups (high activity) were significantly different after addition of V. faba extract. Phenotypes A, CA and C had extremely low enzymatic activity levels, which would lead to low levels of reduced glutathione and bring about erythrocyte lysis. PMID:21644204

  8. Substrate recognition by β-ketoacyl-ACP synthases.

    PubMed

    Borgaro, Janine G; Chang, Andrew; Machutta, Carl A; Zhang, Xujie; Tonge, Peter J

    2011-12-13

    β-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a β-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII enzyme in Escherichia coli (ecFabH) is essential, the corresponding enzyme in Mycobacterium tuberculosis (mtFabH) is not, suggesting that the KASI or II enzyme in M. tuberculosis (KasA or KasB, respectively) must be able to accept a CoA donor substrate. Since KasA is essential, the substrate specificity of this KASI enzyme has been explored using substrates based on phosphopantetheine, CoA, ACP, and AcpM peptide mimics. This analysis has been extended to the KASI and KASII enzymes from E. coli (ecFabB and ecFabF) where we show that a 14-residue malonyl-phosphopantetheine peptide can efficiently replace malonyl-ecACP as the acceptor substrate in the ecFabF reaction. While ecFabF is able to catalyze the condensation reaction when CoA is the carrier for both substrates, the KASI enzymes ecFabB and KasA have an absolute requirement for an ACP substrate as the acyl donor. Provided that this requirement is met, variation in the acceptor carrier substrate has little impact on the k(cat)/K(m) for the KASI reaction. For the KASI enzymes we propose that the binding of ecACP (AcpM) results in a conformational change that leads to an open form of the enzyme to which the malonyl acceptor substrate binds. Finally, the substrate inhibition observed when palmitoyl-CoA is the donor substrate for the KasA reaction has implications for the importance of mtFabH in the mycobacterial FASII pathway. PMID:22017312

  9. A facile hydrothermal synthesis, characterization and magnetic properties of mesoporous CoFe2O4 nanospheres

    NASA Astrophysics Data System (ADS)

    Reddy, M. Penchal; Mohamed, A. M. A.; Zhou, X. B.; Du, S.; Huang, Q.

    2015-08-01

    Mesoporous CoFe2O4 nanospheres with an average size of 180 nm were fabricated via a facile hydrothermal process using ethylene glycol as solvent and sodium acetate (NaAc) as electrostatic stabilizer. In this method, ethylene glycol plays a vital role in the formation of cobalt nanoospheres as a solvent and reducing agent. The structure and morphology of the prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nanospheres exhibited ferromagnetic properties with high saturation magnetization value of about 60.19 emu/g at room temperature. The BET surface area of the nanospheres was determined using the nitrogen absorption method. The porous CoFe2O4 nanospheres displayed good magnetic properties, which may provide a very promising candidate for their applications in target drug delivery.

  10. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  11. Mode of action of anticancer peptides (ACPs) from amphibian origin.

    PubMed

    Oelkrug, Christopher; Hartke, Martin; Schubert, Andreas

    2015-02-01

    Although cancer belongs to one of the leading causes of death around the world, fortunately studies have shown that tumor cells have various targets that are susceptible to attack. Interestingly, tumor cells are comprised of cellular membranes, which are altered in chemical composition relative to non-neoplastic cells, giving them an increased net negative charge. These altered membranes are ideal targets for antimicrobial peptides (AMPs) shown to have additional tumoricidal properties and, hence, named anticancer peptides (ACPs). Several hundred ACPs have been explored in vitro and in vivo on various types of cancer. Novel anticancer agents are supposed not to cause serious side effects and the formation of multidrug-resistant tumor cells. During the quest for potent ACPs, promising candidates were isolated from skin secretions of amphibians, such as the granular glands of the Chinese brown frog, Rana chensinensis. ACPs have to be selective to cancer cells and should not induce strong immune responses or be cleared from the body rapidly. Several modifications can improve ACPs either by optimizing the primary structure rationally or randomly or even by introducing other chemical modifications. PMID:25667440

  12. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed Central

    Jones, A; Davies, H M; Voelker, T A

    1995-01-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase. PMID:7734968

  13. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed

    Jones, A; Davies, H M; Voelker, T A

    1995-03-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase.

  14. A Community-oriented CEOS Atmospheric Composition Portal (ACP)

    NASA Astrophysics Data System (ADS)

    Bernonville, S.; Goussev, O.; Falke, S.; Lindsay, F.; Lynnes, C. S.; Yang, W.; Zhao, P.; Johnson, J.

    2012-04-01

    The Atmospheric Composition Constellation (ACC) and the Workgroup for Information Systems and Services (WGISS) within the Committee on Earth Observation Satellites (CEOS) is developing a portal to support interoperability among the atmospheric composition research and applications communities. The CEOS Atmospheric Composition Portal (ACP) is defining approaches for providing data access, tools and contextual guidance for an international suite of remote sensing datasets. An initial prototype provides access to data services and analysis tools hosted by the World Data Center for Remote Sensing of the Atmosphere (WDC-RSAT), NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC) and DataFed. Distributed access to data is implemented via interoperability standards, including the Open Geospatial Consortium's (OGC) Web Map Service (WMS) and Web Coverage Service (WCS). A fundamental aspect to the design, implementation and evolution of the ACP is community collaboration. The portal is intended as a community resource that is created through collaboration across remotely sensed atmospheric composition data organizations and used by a variety of groups across the climate, air quality, and stratospheric ozone domains. The implementation of interoperability standards in the ACP has involved coordination on identifying the most applicable standards and the definition of community-specific conventions to ensure consistent adoption of standards. This presentation includes an overview of the ACP, its community oriented approach, and use of community-conventions in achieving standards-based interoperability.

  15. Thermal induced intramolecular [2 + 2] cycloaddition of allene-ACPs.

    PubMed

    Chen, Kai; Sun, Run; Xu, Qin; Wei, Yin; Shi, Min

    2013-06-28

    A facile synthetic method for preparation of bicyclo[4.2.0] nitrogen heterocycles has been developed via a thermal induced intramolecular [2 + 2] cycloaddition reaction of allene-ACPs. The DFT calculations indicate that this intramolecular cycloaddition proceeds in a concerted manner and a strained small ring is essential.

  16. 3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus).

    PubMed

    Sheldon, P S; Kekwick, R G; Smith, C G; Sidebottom, C; Slabas, A R

    1992-04-01

    3-Oxoacyl-[ACP] reductase (E.C. 1.1.1.100, alternatively known as beta-ketoacyl-[ACP] reductase), a component of fatty acid synthetase has been purified from seeds of rape by ammonium sulphate fractionation, Procion Red H-E3B chromatography, FPLC gel filtration and high performance hydroxyapatite chromatography. The purified enzyme appears on SDS-PAGE as a number of 20-30 kDa components and has a strong tendency to exist in a dimeric form, particularly when dithiothreitol is not present to reduce disulphide bonds. Cleveland mapping and cross-reactivity with antiserum raised against avocado 3-oxoacyl-[ACP] reductase both indicate that the multiple components have similar primary structures. On gel filtration the enzyme appears to have a molecular mass of 120 kDa suggesting that the native structure is tetrameric. The enzyme has a strong preference for the acetoacetyl ester of acyl carrier protein (Km = 3 microM) over the corresponding esters of the model substrates N-acetyl cysteamine (Km = 35 mM) and CoA (Km = 261 microM). It is inactivated by dilution but this can be partly prevented by the inclusion of NADPH. Using an antiserum prepared against avocado 3-oxoacyl-[ACP] reductase, the enzyme has been visualised inside the plastids of rape embryo and leaf tissues by immunoelectron microscopy. Amino acid sequencing of two peptides prepared by digestion of the purified enzyme with trypsin showed strong similarities with 3-oxoacyl-[ACP] reductase from avocado pear and the Nod G gene product from Rhizobium meliloti.

  17. Specificities of the Acyl-Acyl Carrier Protein (ACP) Thioesterase and Glycerol-3-Phosphate Acyltransferase for Octadecenoyl-ACP Isomers (Identification of a Petroselinoyl-ACP Thioesterase in Umbelliferae).

    PubMed Central

    Dormann, P.; Frentzen, M.; Ohlrogge, J. B.

    1994-01-01

    This study was designed to address the question: How specific for double bond position and conformation are plant enzymes that act on oleoyl-acyl carrier protein (ACP)? Octadecenoyl-ACPs with cis double bonds at positions [delta]6, [delta]7, [delta]8, [delta]9, [delta]10, [delta]11, or [delta]12 and elaidyl (18:1[delta]9trans)-ACP were synthesized and used to characterize the substrate specificity of the acyl-ACP thioesterase and acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The two enzymes were found to be specific for the [delta]9 position of the double bond. The thioesterase was highly specific for the [delta]9 cis conformation, but the transferase was almost equally active with the cis and the trans isomer of 18:1[delta]9-ACP. In plants such as the Umbelliferae species coriander (Coriandrum sativum L.) that accumulate petroselinic acid (18:1[delta]6cis) in their seed triacylglycerols, a high petroselinoyl-ACP thioesterase activity was found in addition to the oleoyl-ACP thioesterase. The two activities could be separated by anion-exchange chromatography, indicating that the petroselinoyl-ACP thioesterase is represented by a distinct polypeptide. PMID:12232130

  18. Porous microspheres of amorphous calcium phosphate: block copolymer templated microwave-assisted hydrothermal synthesis and application in drug delivery.

    PubMed

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Lu, Bing-Qiang; Wu, Jin; Chen, Feng

    2015-04-01

    Amorphous calcium phosphate (ACP) microspheres with a porous and hollow structure have been prepared using an aqueous solution containing CaCl2 as a calcium source, adenosine triphosphate disodium salt (Na2ATP) as a phosphorus source in the presence of a block copolymer methoxyl poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PLA) by the microwave-assisted hydrothermal method. The effects of microwave hydrothermal temperature and the concentrations of CaCl2 and Na2ATP on the crystal phase and morphology of the product are investigated. The as-prepared ACP porous hollow microspheres have a relatively high specific surface area of 232.9 m(2) g(-1) and an average pore size of 9.9 nm. A typical anticancer drug, docetaxel, is used to evaluate the drug loading ability and drug release behavior of ACP porous hollow microspheres in phosphate buffered saline (PBS) with different pH values of 4.5 and 7.4. The experiments reveal that the ACP porous hollow microspheres have a high drug loading capacity and favorable pH-responsive drug release property, and the ACP porous hollow microsphere drug delivery system shows a high ability to damage tumor cells. It is expected that the as-prepared ACP porous hollow microspheres are promising for the applications in various biomedical fields such as drug delivery.

  19. Porous microspheres of amorphous calcium phosphate: block copolymer templated microwave-assisted hydrothermal synthesis and application in drug delivery.

    PubMed

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Lu, Bing-Qiang; Wu, Jin; Chen, Feng

    2015-04-01

    Amorphous calcium phosphate (ACP) microspheres with a porous and hollow structure have been prepared using an aqueous solution containing CaCl2 as a calcium source, adenosine triphosphate disodium salt (Na2ATP) as a phosphorus source in the presence of a block copolymer methoxyl poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PLA) by the microwave-assisted hydrothermal method. The effects of microwave hydrothermal temperature and the concentrations of CaCl2 and Na2ATP on the crystal phase and morphology of the product are investigated. The as-prepared ACP porous hollow microspheres have a relatively high specific surface area of 232.9 m(2) g(-1) and an average pore size of 9.9 nm. A typical anticancer drug, docetaxel, is used to evaluate the drug loading ability and drug release behavior of ACP porous hollow microspheres in phosphate buffered saline (PBS) with different pH values of 4.5 and 7.4. The experiments reveal that the ACP porous hollow microspheres have a high drug loading capacity and favorable pH-responsive drug release property, and the ACP porous hollow microsphere drug delivery system shows a high ability to damage tumor cells. It is expected that the as-prepared ACP porous hollow microspheres are promising for the applications in various biomedical fields such as drug delivery. PMID:25535849

  20. Porous TiO2 Assembled from Monodispersed Nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-03-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending on the further treating temperature. Porous TiO2 nanospheres exhibited enhanced photocatalysis activity compared to the nanoparticles.

  1. Superior Electrochemical Properties of Nanofibers Composed of Hollow CoFe2 O4 Nanospheres Covered with Onion-Like Graphitic Carbon.

    PubMed

    Hong, Young Jun; Cho, Jung Sang; Kang, Yun Chan

    2015-12-01

    Nanofibers composed of hollow CoFe2 O4 nanospheres covered with onion-like carbon are prepared by applying nanoscale Kirkendall diffusion to the electrospinning process. Amorphous carbon nanofibers embedded with CoFe2 @onion-like carbon nanospheres are prepared by reduction of the electrospun nanofibers. Oxidation of the CoFe2 -C nanofibers at 300 °C under a normal atmosphere produces porous nanofibers composed of hollow CoFe2 O4 nanospheres covered with onion-like carbon. CoFe2 nanocrystals are transformed into the hollow CoFe2 O4 nanospheres during oxidation through a well-known nanoscale Kirkendall diffusion process. The discharge capacities of the carbon-free CoFe2 O4 nanofibers composed of hollow nanospheres and the nanofibers composed of hollow CoFe2 O4 nanospheres covered with onion-like carbon are 340 and 930 mA h g(-1) , respectively, for the 1000th cycle at a current density of 1 A g(-1) . The nanofibers composed of hollow CoFe2 O4 nanospheres covered with onion-like carbon exhibit an excellent rate performance even in the absence of conductive materials.

  2. 26 CFR 1.401(m)-2 - ACP test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... determined under § 1.401(m)-2(b)(2)(iv) (as it appeared in the April 1, 2007, edition of 26 CFR part 1). (E... determined under § 1.401(m)-2(b)(2)(vi) (as it appeared in the April 1, 2007, edition of 26 CFR Part 1). If... 26 Internal Revenue 5 2010-04-01 2010-04-01 false ACP test. 1.401(m)-2 Section 1.401(m)-2...

  3. Preliminary calibration of the ACP safeguards neutron counter

    NASA Astrophysics Data System (ADS)

    Lee, T. H.; Kim, H. D.; Yoon, J. S.; Lee, S. Y.; Swinhoe, M.; Menlove, H. O.

    2007-10-01

    The Advanced Spent Fuel Conditioning Process (ACP), a kind of pyroprocess, has been developed at the Korea Atomic Energy Research Institute (KAERI). Since there is no IAEA safeguards criteria for this process, KAERI has developed a neutron coincidence counter to make it possible to perform a material control and accounting (MC&A) for its ACP materials for the purpose of a transparency in the peaceful uses of nuclear materials at KAERI. The test results of the ACP Safeguards Neutron Counter (ASNC) show a satisfactory performance for the Doubles count measurement with a low measurement error for its cylindrical sample cavity. The neutron detection efficiency is about 21% with an error of ±1.32% along the axial direction of the cavity. Using two 252Cf neutron sources, we obtained various parameters for the Singles and Doubles rates for the ASNC. The Singles, Doubles, and Triples rates for a 252Cf point source were obtained by using the MCNPX code and the results for the ft8 cap multiplicity tally option with the values of ɛ, fd, and ft measured with a strong source most closely match the measurement results to within a 1% error. A preliminary calibration curve for the ASNC was generated by using the point model equation relationship between 244Cm and 252Cf and the calibration coefficient for the non-multiplying sample is 2.78×10 5 (Doubles counts/s/g 244Cm). The preliminary calibration curves for the ACP samples were also obtained by using an MCNPX simulation. A neutron multiplication influence on an increase of the Doubles rate for a metal ingot and UO2 powder is clearly observed. These calibration curves will be modified and complemented, when hot calibration samples become available. To verify the validity of this calibration curve, a measurement of spent fuel standards for a known 244Cm mass will be performed in the near future.

  4. Auto-fluorescent mesoporous ZnO nanospheres for drug delivery carrier application.

    PubMed

    Bakrudeen, Haja Bava; Sugunalakshmi, Madurai; Reddy, Boreddy S R

    2015-11-01

    The zinc oxide (ZnO) nanostructures are very interesting materials because of their practical bio-applications in various areas such as drug delivery, construction of biomaterial, optical and acoustic devices as well as their bactericidal properties. Herein, we have prepared spheroidal mesoporous auto-fluorescent ZnO nanospheres by modified continuous distillation method, showed a blue emission in the concentration of 2mg/ml at 444nm. The auto-fluorescent property of ZnO nanospheres can be used in biomaterials for target sites of tissues/cells, thereby enabling site drug delivery especially in cancer therapy. Initially, the auto-fluorescent property of the ZnO material was characterized by different techniques like PXRD, FESEM with EDAX graph, TEM, ICP-OES, particle sizes, zeta potentials and BET analysis. The mesoporous ZnO nanospheres has attracted well for their crystalline, functionalized and intensified fluorescent properties. The surface of the ZnO nanospheres was porous, spherical and nanometric in size. The synthesized material has enormous potential as a nano-drug-carrier. Preliminary studies indicated that the material prepared has an excellent scope for detection and delivery at the site of therapeutic action.

  5. Magnetic polymer nanospheres for anticancer drug targeting

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Koneracká, M.; Závišová, V.; Múčková, M.; Tomašovičová, N.; Lancz, G.; Kopčanský, P.; Timko, M.; Miškuf, J.

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  6. Synthesis of tin oxide nanospheres under ambient conditions and their strong adsorption of As(III) from water.

    PubMed

    Zhang, Ge; Sun, Wuzhu; Liu, Lingmei; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2015-11-01

    The development of highly efficient As(iii) adsorbents is critical to largely simplify the arsenic treatment process and lower its cost. For the first time, SnO2 nanospheres were demonstrated to possess a highly efficient As(iii) adsorption capability from water in a near neutral pH environment as predicted by the material criterion we recently developed for the selection of highly efficient arsenic adsorbents. These SnO2 nanospheres were synthesized by a simple and cost-effective hydrolysis process with the assistance of ethyl acetate under ambient conditions, which had a good dispersity, a narrow size distribution, a relatively large specific surface area, and a porous structure. A fast As(iii) adsorption was observed in the kinetics study on these SnO2 nanospheres, and their Langmuir adsorption capacity was determined to be ∼112.7 mg g(-1) at pH ∼7. The As(iii) adsorption mechanism on SnO2 nanospheres was examined by both macroscopic and microscopic techniques, which demonstrated that it followed the inner-sphere complex model. These SnO2 nanospheres demonstrated effective As(iii) adsorption even with exceptionally high concentrations of co-existing ions, and a good regeneration capability by washing with NaOH solution.

  7. ACP5 (Uteroferrin): phylogeny of an ancient and conserved gene expressed in the endometrium of mammals.

    PubMed

    Padua, Maria B; Lynch, Vincent J; Alvarez, Natalia V; Garthwaite, Mark A; Golos, Thaddeus G; Bazer, Fuller W; Kalkunte, Satyan; Sharma, Surendra; Wagner, Gunter P; Hansen, Peter J

    2012-04-01

    Type 5 acid phosphatase (ACP5; also known as tartrate-resistant acid phosphatase or uteroferrin) is a metalloprotein secreted by the endometrial glandular epithelium of pigs, mares, sheep, and water buffalo. In this paper, we describe the phylogenetic distribution of endometrial expression of ACP5 and demonstrate that endometrial expression arose early in evolution (i.e., before divergence of prototherian and therian mammals ~166 million years ago). To determine expression of ACP5 in the pregnant endometrium, RNA was isolated from rhesus, mouse, rat, dog, sheep, cow, horse, armadillo, opossum, and duck-billed platypus. Results from RT-PCR and RNA-Seq experiments confirmed that ACP5 is expressed in all species examined. ACP5 was also demonstrated immunochemically in endometrium of rhesus, marmoset, sheep, cow, goat, and opossum. Alignment of inferred amino acid sequences shows a high conservation of ACP5 throughout speciation, with species-specific differences most extensive in the N-terminal and C-terminal regions of the protein. Analysis by Selecton indicated that most of the sites in ACP5 are undergoing purifying selection, and no sites undergoing positive selection were found. In conclusion, endometrial expression of ACP5 is a common feature in all orders of mammals and has been subjected to purifying selection. Expression of ACP5 in the uterus predates the divergence of therians and prototherians. ACP5 is an evolutionary conserved gene that likely exerts a common function important for pregnancy in mammals using a wide range of reproductive strategies. PMID:22278982

  8. ACP5 (Uteroferrin): phylogeny of an ancient and conserved gene expressed in the endometrium of mammals.

    PubMed

    Padua, Maria B; Lynch, Vincent J; Alvarez, Natalia V; Garthwaite, Mark A; Golos, Thaddeus G; Bazer, Fuller W; Kalkunte, Satyan; Sharma, Surendra; Wagner, Gunter P; Hansen, Peter J

    2012-04-01

    Type 5 acid phosphatase (ACP5; also known as tartrate-resistant acid phosphatase or uteroferrin) is a metalloprotein secreted by the endometrial glandular epithelium of pigs, mares, sheep, and water buffalo. In this paper, we describe the phylogenetic distribution of endometrial expression of ACP5 and demonstrate that endometrial expression arose early in evolution (i.e., before divergence of prototherian and therian mammals ~166 million years ago). To determine expression of ACP5 in the pregnant endometrium, RNA was isolated from rhesus, mouse, rat, dog, sheep, cow, horse, armadillo, opossum, and duck-billed platypus. Results from RT-PCR and RNA-Seq experiments confirmed that ACP5 is expressed in all species examined. ACP5 was also demonstrated immunochemically in endometrium of rhesus, marmoset, sheep, cow, goat, and opossum. Alignment of inferred amino acid sequences shows a high conservation of ACP5 throughout speciation, with species-specific differences most extensive in the N-terminal and C-terminal regions of the protein. Analysis by Selecton indicated that most of the sites in ACP5 are undergoing purifying selection, and no sites undergoing positive selection were found. In conclusion, endometrial expression of ACP5 is a common feature in all orders of mammals and has been subjected to purifying selection. Expression of ACP5 in the uterus predates the divergence of therians and prototherians. ACP5 is an evolutionary conserved gene that likely exerts a common function important for pregnancy in mammals using a wide range of reproductive strategies.

  9. Nonlinear scattering in gold nanospheres

    NASA Astrophysics Data System (ADS)

    Shen, Po-Ting; Lin, Cheng-Wei; Liu, Hsiang-Lin; Chu, Shi-Wei

    2016-03-01

    Nonlinearity enhanced by noble metallic nanoparticles provide novel light manipulation capabilities and innovative applications. Recently, we discovered a new nonlinear phenomenon on the scattering of metallic nanoparticles by continuous-wave (CW) lasers at the intensity around MW/cm2 and applied to super-resolution microscopy that allowed spatial resolution of plasmonic nanostructures down to λ/8. However, its mechanism is still unknown. In this work, we elaborate the mechanism behind the nonlinear scattering of gold nanospheres. There are four possible candidates: intraband transition, interband transition, hot electron, and hot lattice. Each of them has a corresponding nonlinear refractive index (n2), which is related to temporal dependence of its light-matter interaction. We first measure the intensity dependence of nonlinear scattering to extract the effective n2 value. We find out it has the closest n2 value to hot lattice, which causes either the shift or weakening of the surface plasmon resonance (SPR). To further verify the mechanism, the nanospheres are heated up with both a hot plate and a CW laser, and the variation of single-particle SPR scattering spectra are measured. In both cases, more than 50% reduction of scattering is observed, when temperature rises a few tens of degrees or when illumination intensity reaches the order of 1MW/cm2. Thus, we conclude the spectra variation by the two different heating source, as well as the nonlinear scattering are all due to hot lattice, and subsequent permittivity change with temperature. The innovative concept of hot lattice plasmonics not only opens up a new dimension for nonlinear plasmonics, but also predicts the potential of similar nonlinearity in other materials as long as their permittivity changes with temperature.

  10. Morphological Evolution of Single-Crystal Ag Nanospheres during the Galvanic Replacement Reaction with HAuCl(4).

    PubMed

    Kim, Mun Ho; Lu, Xianmao; Wiley, Benjamin; Lee, Eric P; Xia, Younan

    2008-01-01

    This paper presents a systematic study of the galvanic replacement reaction between 23.5 nm single-crystal Ag nanospheres and HAuCl(4) in an aqueous medium. We have monitored both morphological and spectral changes as the molar ratio of HAuCl(4) to Ag is increased. The replacement reaction on single-crystal Ag nanospheres results in the formation of a series of hollow and porous nanostructures composed of Au-Ag alloys. By varying the molar ratio of HAuCl(4) to Ag, we are able to control the size and density of the pores. In addition, the localized surface plasmon resonance peaks of these nanostructures can be readily tuned from 408 to 791 nm as the product becomes increasingly more hollow and porous.

  11. Ultrasmall Carbide Nanospheres - Formation and Electronic Properties

    NASA Astrophysics Data System (ADS)

    Reinke, Petra; Monazami, Ehsan; McClimon, John

    2015-03-01

    Metallic nanoparticles are highly coveted but are subject to rapid Ostwald ripening even at moderate temperatures limiting study of their properties. Ultrasmall transition metal carbide ``nanospheres'' are synthesized by a solid-state reaction between fullerene as carbon scaffold, and a W surface. This produces nanospheres with a narrow size distribution below 2.5 nm diameter. The nanosphere shape is defined by the scaffold and densely packed arrays can be achieved. The metal-fullerene reaction is temperature driven and progresses through an intermediate semiconducting phase until the fully metallic nanospheres are created at about 350 C. The reaction sequence is observed with STM, and STS maps yield the local density of states. The reaction presumably progresses by stepwise introduction of W-atoms in the carbon scaffold. The results of high resolution STM/STS in combination with DFT calculations are used to unravel the reaction mechanism. We will discuss the transfer of this specific reaction mechanism to other transition metal carbides. The nanospheres are an excellent testbed for the physics and chemistry of highly curved surfaces.

  12. Core-shell nanospheres for oligonucleotide delivery. V: adsorption/release behavior of 'stealth' nanospheres.

    PubMed

    Tondelli, Luisa; Ballestri, Marco; Magnani, Laura; Vivarelli, Daniela; Fini, Adamo; Cerasi, Aurora; Chiarantini, Laura; Sparnacci, Katia; Laus, Michele

    2003-01-01

    The adsorption/release behavior of oligodeoxynucleotides (ODNs) on new PEGylated core-shell polymethylmethacrylate nanospheres is described. The outer shell consists of alkyl chains containing quaternary ammonium groups and of poly(ethylene glycol) chains, both covalently bound to the inner core. Ion pair formation between negatively charged ODN phosphate groups and positively charged groups on the nanosphere surface is the main interaction mechanism. No cellular toxicity in HL60 cells is observed at nanosphere concentrations required for biologically active ODN delivery. These results indicate that these novel cationic polymeric nanoparticles are safe and represent promising vectors for oligonucleotide delivery.

  13. Synthesis and characterization of radioisotope nanospheres containing two gamma emitters.

    PubMed

    Jung, Jin-Hyuck; Jung, Sung-Hee; Kim, Sang-Ho; Choi, Seong-Ho

    2012-12-01

    Silica-coated gold-silver alloy nanospheres prepared by Stöber's method were irradiated in a nuclear reactor to prepare radioisotope nanospheres for use as radiotracers. The radioisotope nanospheres included two gamma nuclides: (i) Au-198, emitting major photons with 0.412 MeV and (ii) Ag-108, emitting photons with 0.434 and 0.633 MeV. The nanospheres shell and core diameters were 100-112 nm and 20-50 nm, respectively, depending on their preparation. The gamma-emitting nanospheres could be used as tracers in high-temperature petrochemical and refinery processes in which conventional organic radioactive labels will decompose.

  14. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis

    PubMed Central

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4’-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. DOI: http://dx.doi.org/10.7554/eLife.17828.001 PMID:27540631

  15. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis.

    PubMed

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4'-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. PMID:27540631

  16. Biodegradable Long-Circulating Polymeric Nanospheres

    NASA Astrophysics Data System (ADS)

    Gref, Ruxandra; Minamitake, Yoshiharu; Peracchia, Maria Teresa; Trubetskoy, Vladimir; Torchilin, Vladimir; Langer, Robert

    1994-03-01

    Injectable nanoparticulate carriers have important potential applications such as site-specific drug delivery or medical imaging. Conventional carriers, however, cannot generally be used because they are eliminated by the reticulo-endothelial system within seconds or minutes after intravenous injection. To address these limitations, monodisperse biodegradable nanospheres were developed from amphiphilic copolymers composed of two biocompatible blocks. The nanospheres exhibited dramatically increased blood circulation times and reduced liver accumulation in mice. Furthermore, they entrapped up to 45 percent by weight of the drug in the dense core in a one-step procedure and could be freeze-dried and easily redispersed without additives in aqueous solutions.

  17. Biodegradable long-circulating polymeric nanospheres.

    PubMed

    Gref, R; Minamitake, Y; Peracchia, M T; Trubetskoy, V; Torchilin, V; Langer, R

    1994-03-18

    Injectable nanoparticulate carriers have important potential applications such as site-specific drug delivery or medical imaging. Conventional carriers, however, cannot generally be used because they are eliminated by the reticulo-endothelial system within seconds or minutes after intravenous injection. To address these limitations, monodisperse biodegradable nanospheres were developed from amphiphilic copolymers composed of two biocompatible blocks. The nanospheres exhibited dramatically increased blood circulation times and reduced liver accumulation in mice. Furthermore, they entrapped up to 45 percent by weight of the drug in the dense core in a one-step procedure and could be freeze-dried and easily redispersed without additives in aqueous solutions.

  18. Possibility for the development of cosmetics with PLGA nanospheres.

    PubMed

    Ito, Fuminori; Takahashi, Tadahito; Kanamura, Kiyoshi; Kawakami, Hiroyoshi

    2013-05-01

    The optimized preparation of Poly-(lactide-co-glycolic acid) (PLGA) nanospheres containing ubiquinone (UQ) for cosmetic products was pursued. By investigating various conditions for the preparation of UQ/PLGA nanospheres such as the molecular weight of PLGA, PLGA concentration, and UQ concentration, UQ/PLGA nanospheres with increased stability and slower drug release at a higher drug loading efficiency were prepared. Permeation tests on the prepared nanospheres using iontophoresis via electric dermal administration on membrane filters (200 nm pore size) and hairless mouse skin samples were also carried out. After iontophoresis, the nanospheres choked the membrane filter and remained on the horny layer of the hairless mouse skin, even after washing. Therefore, the prepared UQ/PLGA nanospheres and the established iontophoresis technique with the PLGA nanospheres in the present study can be applied to the future development of cosmetics. PMID:22725249

  19. Facile fabrication of single-phase multifunctional BaGdF5 nanospheres as drug carriers.

    PubMed

    Zhao, Qi; Lei, Zhen; Huang, Sa; Han, Xueli; Shao, Baiqi; Lü, Wei; Jia, Yongchao; Lv, Wenzhen; Jiao, Mengmeng; Wang, Zhenxin; You, Hongpeng

    2014-08-13

    Multifunctional BaGdF5 nanospheres with mesoporous, luminescent, and magnetic properties have been successfully synthesized with the assistance of trisodium citrate by a hydrothermal method. The mesoporous structure is revealed by scanning electron microscope and transmission electron microscope images as well as N2 adsorption-desorption isotherm. The as-synthesized BaGdF5 nanospheres exhibit an intense broad bluish emission (centered at 450 nm) under the excitation of 390 nm, which might originate from the CO2·(-) radical-related defect produced by Cit(3-) groups. It is also shown that these BaGdF5 nanospheres brightened the T1-weighted images, suggesting that they could act as T1 contrast agents for magnetic resonance imaging. Using metformin hydrochloride as the model drug, the luminescent porous spheres show good drug storage/release capability. Furthermore, the emission intensity varies as a function of the cumulative drug release, making the drug-carrying system easily trackable and monitorable by detecting the luminescence intensity. Additionally, the paramagnetic property, originating from the unpaired electrons of Gd(3+) ions, opens the possibility of directing the magnetic targeted carrier to the pathological site by magnetic field gradient.

  20. All-in-One Beaker Method for Large-Scale Production of Metal Oxide Hollow Nanospheres Using Nanoscale Kirkendall Diffusion.

    PubMed

    Cho, Jung Sang; Kang, Yun Chan

    2016-02-17

    A simple and easily scalable process for the formation of metal oxide hollow nanospheres using nanoscale Kirkendall diffusion called the "all-in-one beaker method" is introduced. The Fe2O3, SnO2, NiO, and Co3O4 hollow nanospheres are successfully prepared by the all-in-one beaker method. The detailed formation mechanism of aggregate-free hematite hollow nanospheres is studied. Dimethylformamide solution containing Fe acetate, polyacrylonitrile (PAN), and polystyrene (PS) transforms into aggregate-free Fe2O3 hollow nanospheres. The porous structure formed by the combustion of PS provides a good pathway for the reducing gas. The carbon matrix formed from PAN acts as a barrier, which can prevent the aggregation of metallic Fe nanopowders by surrounding each particle. The Fe-C bulk material formed as an intermediate product transforms into aggregate-free Fe2O3 hollow nanospheres by the nanoscale Kirkendall diffusion process. The mean size and shell thickness of the hollow Fe2O3 nanospheres measured from the TEM images are 52 and 9 nm, respectively. The discharge capacities of the Fe2O3 nanopowders with hollow and dense structures and the bulk material for the 200th cycle at a current density of 0.5 A g(-1) are 1012, 498, and 637 mA h g(-1), respectively, and their capacity retentions calculated compared to those in the second cycles are 92, 45, and 59%, respectively. Additionally, Fe2O3 hollow nanospheres cycled at 1 A g(-1) after 1000 cycles showed a high discharge capacity of 871 mA h g(-1) (capacity retention was 80% from the second cycle). The Fe2O3, SnO2, NiO, and Co3O4 hollow nanospheres show excellent cycling performances for lithium-ion storage because they have a high contact area with the liquid electrolyte and space for accommodating a huge volume change during cycling.

  1. Integrating nanosphere lithography in device fabrication

    NASA Astrophysics Data System (ADS)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  2. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane.

    PubMed

    Yao, Qilu; Lu, Zhang-Hui; Zhang, Zhujun; Chen, Xiangshu; Lan, Yaqian

    2014-01-01

    Ultrafine copper nanoparticles (Cu NPs) within porous silica nanospheres (Cu@SiO2) were prepared via a simple one-pot synthetic route in a reverse micelle system and characterized by SEM, TEM, EDX, XRD, N2 adsorption-desorption, CO-TPD, XPS, and ICP methods. The characterized results show that ultrafine Cu NPs with diameter of around 2 nm are effectively embedded in the center of well-proportioned spherical SiO2 NPs of about 25 nm in diameter. Compared to commercial SiO2 supported Cu NPs, SiO2 nanospheres supported Cu NPs, and free Cu NPs, the synthesized core-shell nanospheres Cu@SiO2 exhibit a superior catalytic activity for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) and hydrazine borane (HB, N2H4BH3) under ambient atmosphere at room temperature. The turnover frequencies (TOF) for the hydrolysis of AB and HB in the presence of Cu@SiO2 nanospheres were measured to be 3.24 and 7.58 mol H2 (mol Cu min)(-1), respectively, relatively high values for Cu nanocatalysts in the same reaction. In addition, the recycle tests show that the Cu@SiO2 nanospheres are still highly active in the hydrolysis of AB and HB, preserving 90 and 85% of their initial catalytic activity even after ten recycles, respectively. PMID:25534772

  3. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    NASA Astrophysics Data System (ADS)

    Yao, Qilu; Lu, Zhang-Hui; Zhang, Zhujun; Chen, Xiangshu; Lan, Yaqian

    2014-12-01

    Ultrafine copper nanoparticles (Cu NPs) within porous silica nanospheres (Cu@SiO2) were prepared via a simple one-pot synthetic route in a reverse micelle system and characterized by SEM, TEM, EDX, XRD, N2 adsorption-desorption, CO-TPD, XPS, and ICP methods. The characterized results show that ultrafine Cu NPs with diameter of around 2 nm are effectively embedded in the center of well-proportioned spherical SiO2 NPs of about 25 nm in diameter. Compared to commercial SiO2 supported Cu NPs, SiO2 nanospheres supported Cu NPs, and free Cu NPs, the synthesized core-shell nanospheres Cu@SiO2 exhibit a superior catalytic activity for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) and hydrazine borane (HB, N2H4BH3) under ambient atmosphere at room temperature. The turnover frequencies (TOF) for the hydrolysis of AB and HB in the presence of Cu@SiO2 nanospheres were measured to be 3.24 and 7.58 mol H2 (mol Cu min)-1, respectively, relatively high values for Cu nanocatalysts in the same reaction. In addition, the recycle tests show that the Cu@SiO2 nanospheres are still highly active in the hydrolysis of AB and HB, preserving 90 and 85% of their initial catalytic activity even after ten recycles, respectively.

  4. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    PubMed Central

    Yao, Qilu; Lu, Zhang-Hui; Zhang, Zhujun; Chen, Xiangshu; Lan, Yaqian

    2014-01-01

    Ultrafine copper nanoparticles (Cu NPs) within porous silica nanospheres (Cu@SiO2) were prepared via a simple one-pot synthetic route in a reverse micelle system and characterized by SEM, TEM, EDX, XRD, N2 adsorption-desorption, CO-TPD, XPS, and ICP methods. The characterized results show that ultrafine Cu NPs with diameter of around 2 nm are effectively embedded in the center of well-proportioned spherical SiO2 NPs of about 25 nm in diameter. Compared to commercial SiO2 supported Cu NPs, SiO2 nanospheres supported Cu NPs, and free Cu NPs, the synthesized core-shell nanospheres Cu@SiO2 exhibit a superior catalytic activity for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) and hydrazine borane (HB, N2H4BH3) under ambient atmosphere at room temperature. The turnover frequencies (TOF) for the hydrolysis of AB and HB in the presence of Cu@SiO2 nanospheres were measured to be 3.24 and 7.58 mol H2 (mol Cu min)−1, respectively, relatively high values for Cu nanocatalysts in the same reaction. In addition, the recycle tests show that the Cu@SiO2 nanospheres are still highly active in the hydrolysis of AB and HB, preserving 90 and 85% of their initial catalytic activity even after ten recycles, respectively. PMID:25534772

  5. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes.

    PubMed

    He, Guang; Evers, Scott; Liang, Xiao; Cuisinier, Marine; Garsuch, Arnd; Nazar, Linda F

    2013-12-23

    Porous hollow carbon spheres with different tailored pore structures have been designed as conducting frameworks for lithium-sulfur battery cathode materials that exhibit stable cycling capacity. By deliberately creating shell porosity and utilizing the interior void volume of the carbon spheres, sufficient space for sulfur storage as well as electrolyte pathways is guaranteed. The effect of different approaches to develop shell porosity is examined and compared in this study. The most highly optimized sulfur-porous carbon nanosphere composite, created using pore-formers to tailor shell porosity, exhibits excellent cycling performance and rate capability. Sulfur is primarily confined in 4-5 nm mesopores in the carbon shell and inner lining of the shells, which is beneficial for enhancing charge transfer and accommodating volume expansion of sulfur during redox cycling. Little capacity degradation (∼0.1% /cycle) is observed over 100 cycles for the optimized material.

  6. Biofunctionalized magnetic hydrogel nanospheres of magnetite and κ-carrageenan

    NASA Astrophysics Data System (ADS)

    Daniel-da-Silva, Ana L.; Fateixa, Sara; Guiomar, António J.; Costa, Benilde F. O.; Silva, Nuno J. O.; Trindade, Tito; Goodfellow, Brian J.; Gil, Ana M.

    2009-09-01

    Magnetic hydrogel κ-carrageenan nanospheres were successfully prepared via water-in-oil (w/o) microemulsions combined with thermally induced gelation of the polysaccharide. The size of the nanospheres (an average diameter (∅) of about 50 and 75 nm) was modulated by varying the concentration of surfactant. The nanospheres contained superparamagnetic magnetite nanoparticles (∅8 nm), previously prepared by co-precipitation within the biopolymer. Carboxyl groups, at a concentration of about 4 mmol g-1, were successfully grafted at the surface of these magnetic nanospheres via carboxymethylation of the κ-carrageenan. The carboxylated nanospheres were shown to be thermo-sensitive in the 37-45 °C temperature range, indicating their potential as thermally controlled delivery systems for drugs and/or magnetic particles at physiological temperatures. Finally, preliminary results have been obtained for IgG antibody conjugation of the carboxylated nanospheres and the potential of these systems for bio-applications is discussed.

  7. Solar detoxification of wastewater in a novel aerated cascade photoreactor (ACP).

    PubMed

    Xi, W; Geissen, S U; Vogelpohl, A

    2001-01-01

    A newly developed aerated cascade photoreactor (ACP), based on a non-concentrating suspension photoreactor, combines the advantages of a cascade with the increased mass-transfer and the use of oxygen from air as an oxidizing agent in a bubble column. Systematic studies of the limiting hydrodynamic conditions in the ACP and the solid/liquid-separation of the photocatalyst from the treated wastewater have shown that the ACP is technically and commercially attractive. The ACP outperforms the thin-film fixed-bed reactor (TFFBR) with respect to a 3-13 times higher degradation efficiency for the model compound dichloroacetic acid (DCA). The treatment of two biologically pretreated real wastewaters, one from a textile factory and one from car-washing, have been successfully carried out under artificial light and sunlight.

  8. Expression and specificity profile of the major acetate transporter AcpA in Aspergillus nidulans.

    PubMed

    Sá-Pessoa, Joana; Amillis, Sotiris; Casal, Margarida; Diallinas, George

    2015-03-01

    AcpA has been previously characterized as a high-affinity transporter essential for the uptake and use of acetate as sole carbon source in Aspergillus nidulans. Here, we follow the expression profile of AcpA and define its substrate specificity. AcpA-mediated acetate transport is detected from the onset of conidiospore germination, peaks at the time of germ tube emergence, and drops to low basal levels in germlings and young mycelia, where a second acetate transporter is also becoming apparent. AcpA activity also responds to acetate presence in the growth medium, but is not subject to either carbon or nitrogen catabolite repression. Short-chain monocarboxylates (benzoate, formate, butyrate and propionate) inhibit AcpA-mediated acetate transport with apparent inhibition constants (Ki) of 16.89±2.12, 9.25±1.01, 12.06±3.29 and 1.44±0.13mM, respectively. AcpA is also shown not to be directly involved in ammonia export, as proposed for its Saccharomyces cerevisiae homologue Ady2p. In the second part of this work, we search for the unknown acetate transporter expressed in mycelia, and for other transporters that might contribute to acetate uptake. In silico analysis, genetic construction of relevant null mutants, and uptake assays, reveal that the closest AcpA homologue (AN1839), named AcpB, is the 'missing' secondary acetate transporter in mycelia. We also identify two major short-chain carboxylate (lactate, succinate, pyruvate and malate) transporters, named JenA (AN6095) and JenB (AN6703), which however are not involved in acetate uptake. This work establishes a framework for further exploiting acetate and carboxylate transport in filamentous ascomycetes. PMID:25708319

  9. Dimethylformamide as a cryoprotectant for canine semen diluted and frozen in ACP-106C.

    PubMed

    Mota Filho, A C; Teles, C H A; Jucá, R P; Cardoso, J F S; Uchoa, D C; Campello, C C; Silva, A R; Silva, L D M

    2011-10-15

    The objective was to assess the effect of adding various concentrations of dimethylformamide on characteristics of canine semen diluted in powdered coconut water (ACP-106C; ACP Biotecnologia, Fortaleza, CE, Brazil) and frozen at -196°C. Fifteen ejaculates were collected by manual stimulation from five adult Boxer dogs. The sperm-rich fraction was diluted in ACP-106C (ACP Biotecnologia) containing 10% egg yolk and divided into four aliquots. The cryoprotectants used for each aliquot were 6% glycerol (control group; CG) or 2%, 4%, or 6% dimethylformamide (DF2, DF4, and DF6, respectively). After thawing, total motility (mean ± SEM) for CG (58.4 ± 24.6) was higher (P < 0.05) than that of the other groups (2% dimethylformamide, 24.4 ± 12.3; 4% dimethylformamide, 26.5 ± 16.1; and 6% dimethylformamide, 21.7 ± 17.9). Furthermore, there was a greater percentage of fast, average, and slow moving sperm (assessed with computer-aided semen analysis; CASA) in CG in comparison with the other three groups. Therefore, based on concentrations tested in this study, dimethylformamide, together with ACP-106C (ACP Biotecnologia) and 10% egg yolk as a diluent, yielded unsatisfactory in vitro results for freezing canine semen.

  10. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia

    PubMed Central

    Byrd, John C; Harrington, Bonnie; O’Brien, Susan; Jones, Jeffrey A; Schuh, Anna; Devereux, Steve; Chaves, Jorge; Wierda, William G; Awan, Farrukh T; Brown, Jennifer R; Hillmen, Peter; Stephens, Deborah M; Ghia, Paolo; Barrientos, Jacqueline C; Pagel, John M; Woyach, Jennifer; Johnson, Dave; Huang, Jane; Wang, Xiaolin; Lannutti, Brian J; Covey, Todd; Fardis, Maria; McGreivy, Jesse; Hamdy, Ahmed; Rothbaum, Wayne; Izumi, Raquel; Diacovo, Thomas G; Johnson, Amy J; Furman, Richard R

    2016-01-01

    Background Irreversible inhibition of Bruton tyrosine kinase (Btk) by ibrutinib represents a significant therapeutic advance for chronic lymphocytic leukemia (CLL). However, ibrutinib also irreversibly inhibits alternative kinase targets, which potentially compromise its therapeutic index. Acalabrutinib (ACP-196) is a more selective irreversible Btk inhibitor specifically designed to improve upon the safety and efficacy of first generation Btk inhibitors. Methods Sixty-one patients with relapsed CLL were treated in a phase 1–2 multicenter study designed to assess the safety, efficacy, pharmacokinetics and pharmacodynamics of oral acalabrutinib. Patients were continuously treated with acalabrutinib 100 to 400 mg once daily in the dose-escalation portion of the study, and 100 mg twice daily in the expansion portion. Results Patient demographics include a median age of 62 years; median of 3 prior therapies; 31% del(17)(p13.1) and 75% unmutated immunoglobulin heavy chain variable genes. No dose-limiting toxicities occurred. The most common adverse events observed were headache (43%), diarrhea (39%) and increased weight (26%). Most adverse events were Grade 1–2. At a median follow-up of 14.3 months, the best overall response rate was 95%, including 85% partial response, 10% partial response with lymphocytosis and 5% stable disease. In patients with del(17)(p13.1), the best overall response was 100%. No cases of Richter’s transformation and only 1 CLL progression have occurred. Conclusions Acalabrutinib is a highly selective Btk inhibitor that provides effective and well tolerated treatment for patients with relapsed CLL, including those with del(17)(p13.1). PMID:26641137

  11. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Jianhua; Zhang, Jinshui; Zhang, Mingwen; Antonietti, Markus; Fu, Xianzhi; Wang, Xinchen

    2012-10-01

    Natural photosynthesis occurs in the thylakoid membrane where functional proteins and electron carriers are precisely arranged to efficiently convert sunlight into a chemical potential between the two membrane sides, via charge separation and electron transport chains, for use in oxygen generation and CO2 fixation. These light-harvesting complexes and cofactors have been actively mimicked using dyes, semiconductors and catalytic nanoparticles. However, the photosynthetic scaffold that optimizes both the capture and distribution of light and separates both the oxidative and reductive species has been mimicked much less often, especially using polymer substances. Here we report the synthesis of hollow nanospheres sized in the optical range and made of a robust semiconductor, melon or carbon-nitride polymer. These hollow nanospheres are shown to function as both light-harvesting antennae and nanostructured scaffolds that improve photoredox catalysis, which was determined to have a 7.5% apparent quantum yield via a hydrogen-generation assay.

  12. Sympathetic cooling of nanospheres with cold atoms

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  13. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.

    PubMed

    Maloney, Finn P; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2016-09-13

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA.

  14. Recovery and cryopreservation of epididymal sperm from agouti (Dasiprocta aguti) using powdered coconut water (ACP-109c) and Tris extenders.

    PubMed

    Silva, M A; Peixoto, G C X; Santos, E A A; Castelo, T S; Oliveira, M F; Silva, A R

    2011-10-01

    The objective was to compare the use of powdered coconut water (ACP-109c; ACP Biotecnologia, Fortaleza, CE, Brazil) and Tris extenders for recovery and cryopreservation of epididymal sperm from agouti. The caudae epididymus and proximal ductus deferens from 10 sexually mature agoutis were subjected to retrograde washing using ACP-109c (ACP Biotecnologia) or Tris. Epididymal sperm were evaluated for motility, vigor, sperm viability, membrane integrity, and morphology. Samples were centrifuged, and extended in the same diluents plus egg yolk (20%) and glycerol (6%), frozen in liquid nitrogen, and subsequently thawed at 37°C for 1 min, followed by re-evaluation of sperm characteristics. The two extenders were similarly efficient for epididymal recovery, with regard to the number and quality of sperm recovered. However, for both extenders, sperm quality decreased (P < 0.05) after centrifugation and dilution. After sperm cryopreservation and thawing, there were (mean ± SEM) 26.5 ± 2.6% motile sperm with 2.6 ± 0.2 vigor in the ACP-109c (ACP Biotecnologia) group, which was significantly better than 9.7 ± 2.6% motile sperm with 1.2 ± 0.3 vigor in Tris. In conclusion, agouti epididymal sperm were successfully recovered using either ACP-109c (ACP Biotecnologia) or Tris extenders; however, ACP-109c (ACP Biotecnologia) was a significantly better extender for processing and cryopreserving these sperm.

  15. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.

    PubMed

    Maloney, Finn P; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2016-09-13

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA. PMID:27573844

  16. The Drosophila melanogaster seminal fluid protein Acp62F is a protease inhibitor that is toxic upon ectopic expression.

    PubMed

    Lung, Oliver; Tram, Uyen; Finnerty, Casey M; Eipper-Mains, Marcie A; Kalb, John M; Wolfner, Mariana F

    2002-01-01

    Drosophila melanogaster seminal fluid proteins stimulate sperm storage and egg laying in the mated female but also cause a reduction in her life span. We report here that of eight Drosophila seminal fluid proteins (Acps) and one non-Acp tested, only Acp62F is toxic when ectopically expressed. Toxicity to preadult male or female Drosophila occurs upon one exposure, whereas multiple exposures are needed for toxicity to adult female flies. Of the Acp62F received by females during mating, approximately 10% enters the circulatory system while approximately 90% remains in the reproductive tract. We show that in the reproductive tract, Acp62F localizes to the lumen of the uterus and the female's sperm storage organs. Analysis of Acp62F's sequence, and biochemical assays, reveals that it encodes a trypsin inhibitor with sequence and structural similarities to extracellular serine protease inhibitors from the nematode Ascaris. In light of previous results demonstrating entry of Acp62F into the mated female's hemolymph, we propose that Acp62F is a candidate for a molecule to contribute to the Acp-dependent decrease in female life span. We propose that Acp62F's protease inhibitor activity exerts positive protective functions in the mated female's reproductive tract but that entry of a small amount of this protein into the female's hemolymph could contribute to the cost of mating. PMID:11805057

  17. Interaction between infectious diseases and personality traits: ACP1*C as a potential mediator.

    PubMed

    Napolioni, Valerio; Murray, Damian R; Comings, David E; Peters, Warren R; Gade-Andavolu, Radhika; MacMurray, James

    2014-08-01

    In geographical regions characterized by high pathogen prevalence, it has been shown that human populations tend to be characterized by lower levels of extraversion (E) and openness to experience (OtE). According to the "behavioral immune system" hypothesis, the reduction of extraversion and openness levels represents a behavioral defense against infections. Like the 'classical' immune system, the "behavioral immune system" could also be shaped by its underlying genetic background. Previous studies have shown that the *C allele of the ACP1 gene confers increased susceptibility to infectious/parasitic diseases. We hypothesized that carriers of the ACP1*C allele should likewise be associated with reduced E and OtE. We tested this hypothesis using two samples comprised of 153 students from Southern California (Group 1), and 162 female subjects recruited from an executive health program (Group 2), genotyped for ACP1 polymorphism and evaluated by the NEO Five-Factor Inventory (NEO-FFI). ACP1 was significantly associated with E: we found that carriers of ACP1*C showed reduced scores for E (Group 1: β=-4.263, P=0.027; Group 2: β=-8.315, P=0.003; Group 1+Group 2: β=-5.366, P=0.001). Across groups, ACP1 was only marginally associated with OtE. In conclusion, the present study found that the ACP1*C allele, previously associated with an increased vulnerability to infectious/parasitic diseases may also be able to shape behavioral immune defenses by interaction with the level of E. PMID:24933463

  18. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core-shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase.

  19. Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoming; Zhang, Xiaoting; Yang, Lin; Wang, Ge; Jiang, Kai; Wu, Geoffrey; Cui, Weigang; Wei, Zipeng

    2016-04-01

    The development of multi-shelled hollow carbonate nanospheres (MHCN) for biomedical applications is challenging, and has not been reported. In this study, a facile approach is firstly reported to synthesize hierarchically porous MHCN with controllable shell numbers using a novel strategy called layer-by-layer thermal decomposition of organic acid salts and templates. The choice of organic acid salts as the reactants is innovative and crucial. The shell numbers of porous MHCN can be easily controlled and tuned through adjusting the adsorption temperature of organic acid salts and/or the adsorption ability of the template. The synthetic method can not only open a window to prepare the multi-shelled carbonates but also provide a new strategy to synthesise other multi-shelled inorganic salts. Notably, the hierarchically porous multi-shelled hollow structures empower the carbonates with not only a large specific surface area but also good porosity and permeability, showing great potential for future applications. Herein, our in vitro/vivo evaluations show that CaCO3 MHCN possess a high drug loading capacity and a sustained-release drug profile. It is highly expected that this novel synthetic strategy for MHCN and novel MHCN platform have the potential for biomedical applications in the near future.The development of multi-shelled hollow carbonate nanospheres (MHCN) for biomedical applications is challenging, and has not been reported. In this study, a facile approach is firstly reported to synthesize hierarchically porous MHCN with controllable shell numbers using a novel strategy called layer-by-layer thermal decomposition of organic acid salts and templates. The choice of organic acid salts as the reactants is innovative and crucial. The shell numbers of porous MHCN can be easily controlled and tuned through adjusting the adsorption temperature of organic acid salts and/or the adsorption ability of the template. The synthetic method can not only open a window to

  20. Fabricating superamphiphobic surface with fluorosilane glued carbon nanospheres films.

    PubMed

    He, Jinmei; Li, Hui; Liu, Xiangrong; Qu, Mengnan

    2013-03-01

    A stable superamphiphobic surface was successfully prepared with the carbon nanospheres film by means of a two steps method. Carbon nanosphere film was deposited by soot of burning cooking oil followed by fluorosilane modification. The results showed that the fluorosilane adopted for the surface modification can glue the loose carbon nanospheres, and make the surface energy decreased. The method reported here is suitable for the large-scale preparation of superamphiphobic surface. The scanning electron microscopy confirmed the synergistic binary geometric structures at micro- and nanometer scale. Transmission electron microscope examination demonstrated that all the carbon nanospheres have uniform diameter of about 50 nm. This method is cheap, time-saving and easy to control. This result will open a new avenue in the superamphiphobic coating research with utilizing carbon nanospheres in the near future.

  1. Characterization of bismuth nanospheres deposited by plasma focus device

    SciTech Connect

    Ahmad, M.; Al-Hawat, Sh.; Akel, M.; Mrad, O.

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  2. [Constructing an ACP Simulation-Situation Communication Training Program for Patients With Chronic Kidney Disease].

    PubMed

    Chen, Jui-O; Lin, Chiu-Chu

    2016-06-01

    The aging population and changing lifestyles have lead to the increased general risk of chronic kidney disease. Taiwan currently has the highest incidence and prevalence of end-stage renal disease (ESRD) of any country or region in the world. Hemodialysis patients must endure comorbidities and face the uncertainties of death. The best way to achieve a good death is for patients to sign advance care planning (ACP). However, the key factors contributing to low ACP signature rates have been the lack of communication skills and related training among medical staffs. This article explores the dilemma of ACP using an example of chronic kidney disease (CKD) and proposes a theory-based approach to develop a theoretical framework for an ACP simulation-situation communication training program that integrates the simulation situation model, PREPARED model, and scaffolding theory. Readers may use this framework to design ACP simulation-situation communication training programs that conform to their own conditions and then test the effectiveness and feasibility of these programs in clinical settings.

  3. [Constructing an ACP Simulation-Situation Communication Training Program for Patients With Chronic Kidney Disease].

    PubMed

    Chen, Jui-O; Lin, Chiu-Chu

    2016-06-01

    The aging population and changing lifestyles have lead to the increased general risk of chronic kidney disease. Taiwan currently has the highest incidence and prevalence of end-stage renal disease (ESRD) of any country or region in the world. Hemodialysis patients must endure comorbidities and face the uncertainties of death. The best way to achieve a good death is for patients to sign advance care planning (ACP). However, the key factors contributing to low ACP signature rates have been the lack of communication skills and related training among medical staffs. This article explores the dilemma of ACP using an example of chronic kidney disease (CKD) and proposes a theory-based approach to develop a theoretical framework for an ACP simulation-situation communication training program that integrates the simulation situation model, PREPARED model, and scaffolding theory. Readers may use this framework to design ACP simulation-situation communication training programs that conform to their own conditions and then test the effectiveness and feasibility of these programs in clinical settings. PMID:27250964

  4. Effect of CPP/ACP on Initial Bioadhesion to Enamel and Dentin In Situ

    PubMed Central

    2014-01-01

    The present in situ study investigated the influence of a preparation containing CPP/ACP (caseinphosphopeptide-amorphous calcium phosphate) (GC Tooth mousse) on initial bacterial colonization of enamel and dentin. Therefore, pellicle formation was performed in situ on bovine enamel and dentin specimens fixed to individual upper jaw splints worn by 8 subjects. After 1 min of pellicle formation GC Tooth mousse was used according to manufacturer's recommendations. Rinses with chlorhexidine served as positive controls. Specimens carried without any rinse served as negative controls. After 8 h overnight exposure of the splints, bacterial colonization was quantified by fluorescence microscopy (DAPI and BacLight live/dead staining). Additionally, the colony forming units (CFU) were determined after desorption. Furthermore, the effects on Streptococcus mutans bacteria were tested in vitro (BacLight). There was no significant impact of CPP/ACP on initial bacterial colonization proved with DAPI and BacLight. Determination of CFU showed statistical significance for CPP/ACP to reduce bacterial adherence on enamel. The in vitro investigation indicated no antimicrobial effects for CPP/ACP on Streptococcus mutans suspension. Under the chosen conditions, CPP/ACP (GC Tooth mousse) had no significant impact on initial biofilm formation on dental hard tissues. The tested preparation cannot be recommended for biofilm management. PMID:25386603

  5. iACP: a sequence-based tool for identifying anticancer peptides

    PubMed Central

    Chen, Wei; Ding, Hui; Feng, Pengmian; Lin, Hao; Chou, Kuo-Chen

    2016-01-01

    Cancer remains a major killer worldwide. Traditional methods of cancer treatment are expensive and have some deleterious side effects on normal cells. Fortunately, the discovery of anticancer peptides (ACPs) has paved a new way for cancer treatment. With the explosive growth of peptide sequences generated in the post genomic age, it is highly desired to develop computational methods for rapidly and effectively identifying ACPs, so as to speed up their application in treating cancer. Here we report a sequence-based predictor called iACP developed by the approach of optimizing the g-gap dipeptide components. It was demonstrated by rigorous cross-validations that the new predictor remarkably outperformed the existing predictors for the same purpose in both overall accuracy and stability. For the convenience of most experimental scientists, a publicly accessible web-server for iACP has been established at http://lin.uestc.edu.cn/server/iACP, by which users can easily obtain their desired results. PMID:26942877

  6. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries.

    PubMed

    Ge, Danhua; Geng, Hongbo; Wang, Jiaqing; Zheng, Junwei; Pan, Yue; Cao, Xueqin; Gu, Hongwei

    2014-08-21

    A simple and scalable coordination-derived method for the synthesis of porous Co3O4 hollow nanospheres is described here. The initially formed coordination-driven self-assembled aggregates (CDSAAs) could act as the precursor followed by calcination treatment. Then the porous hollow Co3O4 nanospheres are obtained, in which the primary Co3O4 nanoparticles are inter-dispersed. When the nanospheres are used as anode materials for lithium storage, they show excellent coulombic efficiency, high lithium storage capacity and superior cycling performance. In view of the facile synthesis and excellent electrochemical performance obtained, this protocol to fabricate special porous hollow frameworks could be further extended to other metal oxides and is expected to improve the practicality of superior cycle life anode materials with large volume excursions for the development of the next generation of LIBs.

  7. Advanced spent fuel conditioning process (ACP) progress with respect to remote operation and maintenance

    SciTech Connect

    Lee, Hyo Jik; Lee, Jong Kwang; Park, Byung Suk; Yoon, Ji Sup

    2007-07-01

    Korea Atomic Energy Research Institute (KAERI) has been developing an Advanced Spent Fuel Conditioning Process (ACP) to reduce the volume of spent fuel, and the construction of the ACP facility (ACPF) for a demonstration of its technical feasibility has been completed. In 2006 two inactive demonstrations were performed with simulated fuels in the ACPF. Accompanied by process equipment performance tests, its remote operability and maintainability were also tested during that time. Procedures for remote operation tasks are well addressed in this study and evaluated thoroughly. Also, remote maintenance and repair tasks are addressed regarding some important modules with a high priority order. The above remote handling test's results provided a lot of information such as items to be revised to improve the efficiency of the remote handling tasks. This paper deals with the current status of ACP and the progress of remote handling of ACPF. (authors)

  8. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  9. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2013-09-10

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  10. Association of the acid phosphatase (ACP1) gene with triglyceride levels in obese women.

    PubMed

    Bottini, Nunzio; MacMurray, James; Peters, Warren; Rostamkhani, Masoud; Comings, David E

    2002-11-01

    The acid phosphatase (ACP1) locus codes for a low molecular weight protein tyrosine phosphatase (LMPTP) that is found ubiquitously in human tissues. The *A allele of the ACP1 gene is associated with lower total enzymatic activity than the *B and *C alleles. An association between the *A allele and extreme values of body-mass-index (BMI) and dyslipidemia has previously been described in several samples of obese subjects from the Italian population. In the present study, we investigated the relationship between ACP1 *A allele genotypes (*A/*A, *A/*B, and *A/*C) and non-*A allele genotypes (*B/*B, *B/*C, and *C/*C) and metabolic variables in 277 Caucasian post-menopausal subjects consisting of 82 non-obese subjects (BMI/=35) subjects. ACP1 genotypes were found to be significantly associated with total cholesterol (pACP1 *A allele may be partially protected against developing the metabolic syndrome. The confirmation of ACP1 as a modifier gene of the metabolic complications could open the door to the prevention of the lethal complications of obesity. PMID:12409270

  11. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres.

    PubMed

    Liang, Bo; Fang, Lu; Hu, Yichuan; Yang, Guang; Zhu, Qin; Ye, Xuesong

    2014-04-21

    A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m(-1). During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □(-1) with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H₂O₂ electrode with a sensitivity of 0.56 mA mM(-1) cm(-2), a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM(-1) cm(-2) and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices.

  12. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage

    PubMed Central

    Xu, Fei; Tang, Zhiwei; Huang, Siqi; Chen, Luyi; Liang, Yeru; Mai, Weicong; Zhong, Hui; Fu, Ruowen; Wu, Dingcai

    2015-01-01

    Exceptionally large surface area and well-defined nanostructure are both critical in the field of nanoporous carbons for challenging energy and environmental issues. The pursuit of ultrahigh surface area while maintaining definite nanostructure remains a formidable challenge because extensive creation of pores will undoubtedly give rise to the damage of nanostructures, especially below 100 nm. Here we report that high surface area of up to 3,022 m2 g−1 can be achieved for hollow carbon nanospheres with an outer diameter of 69 nm by a simple carbonization procedure with carefully selected carbon precursors and carbonization conditions. The tailor-made pore structure of hollow carbon nanospheres enables target-oriented applications, as exemplified by their enhanced adsorption capability towards organic vapours, and electrochemical performances as electrodes for supercapacitors and sulphur host materials for lithium–sulphur batteries. The facile approach may open the doors for preparation of highly porous carbons with desired nanostructure for numerous applications. PMID:26072734

  13. Stacking of a stearoyl-ACP thioesterase with a dual-silenced palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase in transgenic soybean.

    PubMed

    Park, Hyunwoo; Graef, George; Xu, Yixiang; Tenopir, Patrick; Clemente, Tom E

    2014-10-01

    Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end-use applications. However, the hydrogenation process leads to the formation of trans-fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl-ACP thioesterase into soybean and the subsequent stacking with an event that is dual-silenced in palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase expression in a seed-specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl-ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%-19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%-40%, while the stearic level remained elevated.

  14. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    PubMed

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  15. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    SciTech Connect

    Zhong, B.; Tang, X.H.; Huang, X.X.; Xia, L.; Zhang, X.D.; Wang, C.J.; Wen, G.W.

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  16. Design of Ag@C@SnO2@TiO2 yolk-shell nanospheres with enhanced photoelectric properties for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Peilu; Li, Dan; Yao, Shiting; Zhang, Yiqun; Liu, Fengmin; Sun, Peng; Chuai, Xiaohong; Gao, Yuan; Lu, Geyu

    2016-06-01

    The hierarchical Ag@C@SnO2@TiO2 nanospheres (ACSTS) have been successfully synthesized by deposition of SnO2 and TiO2 on the Ag@C templates layer by layer. The size of ACSTS is ca. 360 nm while the Ag@C cores have an average diameter of about 300 nm. The rough and porous shell structure consisting of SnO2 and TiO2 ensures a large specific surface area (115.5 m2 g-1). To demonstrate how such a unique structure might lead to more excellent photovoltaic property, several kinds of dye-sensitized solar cells (DSSCs) are also fabricated using different nanospheres based photoanodes. It is found that the ACSTS based DSSC exhibits an obvious improvement in cell performance. According to various technical characterization, the ACSTS can provide dual-functions of light absorption and charge transfer, hence resulting in an enhanced short-circuit photocurrent density of 18.68 mA cm-2 and a higher FF of 63% compared with other DSSCs. The ACSTS cell finally obtains a PCE of up to 8.62%, increasing by 70.4% and 10.2% than hollow TiO2 nanospheres and Ag@C@TiO2 nanospheres based cells, respectively. The improved photovoltaic properties of ACSTS cell can be mainly ascribed to the unique microstructure and the synergistic effect of the encapsulated Ag@C cores.

  17. USGS tethered ACP platforms: New design means more safety and accuracy

    USGS Publications Warehouse

    Morlock, S.E.; Stewart, J.A.; Rehmel, M.S.

    2004-01-01

    The US Geological Survey has developed an innovative tethered platform that supports an Acoustic Current Profiler (ACP) in making stream-flow measurements (use of the term ACP in this article refers to a class of instruments and not a specific brand name or model). The tethered platform reduces the hazards involved in conventional methods of stream-flow measurement. The use of the platform reduces or eliminates time spent by personnel in streams and boats or on bridges and cableway and stream-flow measurement accuracy is increased.

  18. Acyl-ACP Substrate Recognition in Burkholderia mallei BmaI1 Acyl-Homoserine Lactone Synthase

    PubMed Central

    2015-01-01

    The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recognize and react with the native acyl-ACP with high catalytic efficiency while keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP substrate recognition in these enzymes, however, remains elusive. In this study, we investigated differences in catalytic efficiencies for shorter and longer chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP, the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA reacting with BmaI1 decreased by greater than 20-fold compared to the native octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest that non-native acyl-ACP substrates are unable to form a stable and productive BmaI1·acyl-ACP·SAM ternary complex and are thus effectively discriminated by the enzyme. These results offer insights into the molecular basis of substrate recognition for the BmaI1 enzyme. PMID:25215658

  19. Polyketide β-Branching in Bryostatin Biosynthesis: Identification of Surrogate Acetyl-ACP Donors for BryR, an HMG-ACP Synthase

    PubMed Central

    Buchholz, Tonia J.; Rath, Christopher M.; Lopanik, Nicole B.; Gardner, Noah P.; Håkansson, Kristina; Sherman, David H.

    2010-01-01

    Summary In vitro analysis of natural product biosynthetic gene products isolated from unculturable symbiotic bacteria is necessary to probe the functionalities of these enzymes. Herein, we report the biochemical characterization of BryR, the 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase (HMGS) homolog implicated in β-branching at C13 and C21 of the core ring system from the bryostatin metabolic pathway (Bry). We confirmed the activity of BryR using two complementary methods, radio-SDS PAGE and Fourier Transform Ion Cyclotron Resonance-Mass Spectrometry (FTICR-MS). The activity of BryR depended on pairing of the native acetoacetyl-BryM3 acceptor acyl carrier protein (ACP) with an appropriate donor acetyl-ACP from a heterologous HMGS cassette. Additionally, the ability of BryR to discriminate between various ACPs was assessed using a surface plasmon resonance (SPR)-based protein-protein binding assay. Our data suggest that specificity for a protein-bound acyl group is a distinguishing feature between HMGS homologs found in PKS or PKS/NRPS biosynthetic pathways and those of primary metabolism. These findings reveal an important example of molecular recognition between protein components that are essential for biosynthetic fidelity in natural product assembly and modification. PMID:21035732

  20. Metallic lead nanospheres discovered in ancient zircons.

    PubMed

    Kusiak, Monika A; Dunkley, Daniel J; Wirth, Richard; Whitehouse, Martin J; Wilde, Simon A; Marquardt, Katharina

    2015-04-21

    Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U-Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (>4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5-30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U-Pb ages obtained by high spatial resolution methods.

  1. Metallic lead nanospheres discovered in ancient zircons.

    PubMed

    Kusiak, Monika A; Dunkley, Daniel J; Wirth, Richard; Whitehouse, Martin J; Wilde, Simon A; Marquardt, Katharina

    2015-04-21

    Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U-Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (>4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5-30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U-Pb ages obtained by high spatial resolution methods. PMID:25848043

  2. Metallic lead nanospheres discovered in ancient zircons

    PubMed Central

    Kusiak, Monika A.; Dunkley, Daniel J.; Wirth, Richard; Whitehouse, Martin J.; Wilde, Simon A.; Marquardt, Katharina

    2015-01-01

    Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U–Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (>4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5–30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U–Pb ages obtained by high spatial resolution methods. PMID:25848043

  3. Anion-exchange nanospheres as titration reagents for anionic analytes.

    PubMed

    Zhai, Jingying; Xie, Xiaojiang; Bakker, Eric

    2015-08-18

    We present here anion-exchange nanospheres as novel titration reagents for anions. The nanospheres contain a lipophilic cation for which the counterion is initially Cl(-). Ion exchange takes place between Cl(-) in the nanospheres and a more lipophilic anion in the sample, such as ClO4(-) and NO3(-). Consecutive titration in the same sample solution for ClO4(-) and NO3(-) were demonstrated. As an application, the concentration of NO3(-) in spinach was successfully determined using this method.

  4. A novel and facile synthesis of porous SiO2-coated ultrasmall Se particles as a drug delivery nanoplatform for efficient synergistic treatment of cancer cells

    NASA Astrophysics Data System (ADS)

    Liu, Xijian; Deng, Guoying; Wang, Yeying; Wang, Qian; Gao, Zhifang; Sun, Yangang; Zhang, Wenlong; Lu, Jie; Hu, Junqing

    2016-04-01

    A novel and facile synthetic route has been developed to fabricate porous SiO2-coated ultrasmall Se particles (Se@SiO2 nanospheres) as a drug delivery nanoplatform which combines Se quantum dots and doxorubicin (DOX) for efficient synergistic treatment of cancer cells.A novel and facile synthetic route has been developed to fabricate porous SiO2-coated ultrasmall Se particles (Se@SiO2 nanospheres) as a drug delivery nanoplatform which combines Se quantum dots and doxorubicin (DOX) for efficient synergistic treatment of cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02298g

  5. Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications.

    PubMed

    Ma, Xiaoming; Zhang, Xiaoting; Yang, Lin; Wang, Ge; Jiang, Kai; Wu, Geoffrey; Cui, Weigang; Wei, Zipeng

    2016-04-28

    The development of multi-shelled hollow carbonate nanospheres (MHCN) for biomedical applications is challenging, and has not been reported. In this study, a facile approach is firstly reported to synthesize hierarchically porous MHCN with controllable shell numbers using a novel strategy called layer-by-layer thermal decomposition of organic acid salts and templates. The choice of organic acid salts as the reactants is innovative and crucial. The shell numbers of porous MHCN can be easily controlled and tuned through adjusting the adsorption temperature of organic acid salts and/or the adsorption ability of the template. The synthetic method can not only open a window to prepare the multi-shelled carbonates but also provide a new strategy to synthesise other multi-shelled inorganic salts. Notably, the hierarchically porous multi-shelled hollow structures empower the carbonates with not only a large specific surface area but also good porosity and permeability, showing great potential for future applications. Herein, our in vitro/vivo evaluations show that CaCO3 MHCN possess a high drug loading capacity and a sustained-release drug profile. It is highly expected that this novel synthetic strategy for MHCN and novel MHCN platform have the potential for biomedical applications in the near future. PMID:27049523

  6. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    SciTech Connect

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  7. Polymeric nanospheres as a displacement fluid in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Zhang, Julien

    2015-11-01

    This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.

  8. SiO{sub 2} nanospheres with tailorable interiors by directly controlling Zn{sup 2+} and NH{sub 3}.H{sub 2}O species in an emulsion process

    SciTech Connect

    Liao Yuchao; Wu Xiaofeng; Wang Zhen; Chen Yunfa

    2011-07-15

    SiO{sub 2} nanospheres with tailorable interiors were synthesized by a facile one-spot microemulsion process using TEOS as silica source, wherein cyclohexane including triton X-100 and n-octanol as oil phase and Zn{sup 2+} or NH{sub 3}.H{sub 2}O aqueous solution as dispersive phase, respectively. The products were characterized by Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray Powder Diffraction. It was suggested that the as-synthesized silica nanospheres possessed grape-stone-like porous or single hollow interior, and also found that the ammonia dosage and aging time played key roles in controlling the size and structure of silica nanospheres. Furthermore, the comparative results confirmed that in-situ zinc species [ZnO/Zn(OH){sub 2}] acted as the temporary templates to construct grape-stone-like interior, and a simultaneously competing etching process occurred owing to the soluble Zn(NH{sub 3}){sub 4}{sup 2+} complex formation while the additional excessive ammonia was introduced. With the aging time being extended, the in-situ nanocrystals tended to grow into bigger ones by Ostwald Ripening, producing single hollow interior. - Graphical Abstract: Formation process of SiO{sub 2} nanospheres with porous and single hollow interior. Highlights: > ZnO/Zn(OH){sub 2} nanocrystals as the temporary templates shape the interior structures of SiO{sub 2} nanospheres. > Fabrication of porous and single hollow interiors needs no additional processes such as roasting or dissolving. > Tailorable interiors can be easily obtained through adjusting the aging time of temporary templates.

  9. Synthesis of ZrC hollow nanospheres at low temperature

    NASA Astrophysics Data System (ADS)

    Shen, Guozhen; Chen, Di; Liu, Yuanfang; Tang, Kaibin; Qian, Yitai

    2004-02-01

    A novel chemical synthetic route has been developed to prepare ZrC hollow nanospheres at 600°C, using ZrCl 4 and C 6Cl 6 as source materials, and metallic Na as the reductant. The samples were characterized by X-ray powder diffraction and transmission electron microscopy. And an in situ template reduction-carbonization mechanism for ZrC hollow nanospheres was proposed.

  10. Sensing with magnetic dipolar resonances in semiconductor nanospheres.

    PubMed

    García-Cámara, Braulio; Gómez-Medina, Raquel; Sáenz, Juan José; Sepúlveda, Borja

    2013-10-01

    In this work we propose two novel sensing principles of detection that exploit the magnetic dipolar Mie resonance in high-refractive-index dielectric nanospheres. In particular, we theoretically investigate the spectral evolution of the extinction and scattering cross sections of these nanospheres as a function of the refractive index of the external medium (next). Unlike resonances in plasmonic nanospheres, the spectral position of magnetic resonances in high-refractive-index nanospheres barely shifts as next changes. Nevertheless, there is a drastic reduction in the extinction cross section of the nanospheres when next increases, especially in the magnetic dipolar spectral region, which is accompanied with remarkable variations in the radiation patterns. Thanks to these changes, we propose two new sensing parameters, which are based on the detection of: i) the intensity variations in the transmitted or backscattered radiation by the dielectric nanospheres at the magnetic dipole resonant frequency, and ii) the changes in the radiation pattern at the frequency that satisfies Kerker's condition of near-zero forward radiation. To optimize the sensitivity, we consider several semiconductor materials and particles sizes.

  11. Transparent metal electrodes from ordered nanosphere arrays

    NASA Astrophysics Data System (ADS)

    Morfa, Anthony J.; Akinoglu, Eser M.; Subbiah, Jegadesan; Giersig, Michael; Mulvaney, Paul

    2013-08-01

    We show that perforated metal electrode arrays, fabricated using nanosphere lithography, provide a viable alternative to conductive metal oxides as transparent electrode materials. The inter-aperture spacing is tuned by varying etching times in an oxygen plasma, and the effect of inter-aperture "wire" thickness on the optical and electronic properties of perforated silver films is shown. Optical transmission is limited by reflection and surface plasmons, and for these results do not exceed 73%. Electrical sheet resistance is shown to be as low as 3 Ω ◻-1 for thermally evaporated silver films. The performance of organic photovoltaic devices comprised of a P3HT:PCBM bulk heterojunction deposited onto perforated metal arrays is shown to be limited by optical transmission, and a simple model is presented to overcome these limitations.

  12. Optical diode based on plasmonic nanosphere chains

    NASA Astrophysics Data System (ADS)

    Aroua, W.; AbdelMalek, F.; Kamli, Ali A.

    2014-12-01

    The merging of electronics and photonics at the nanoscales overcomes the limitation in integrating photonic components into electronic chips, in which surface plasmon may play a central role in future hybrid nanocircuit integration. We report in this paper a surface plasmon optical diode based on the nonreciprocal light propagation. We show that by using a chain of plasmonic nanospheres embedded in a spatial-temporal modulated medium in silicon on insulator (SOI) waveguide the light propagates only in forward direction for metallic nanoparticles (MNPs). In this paper, the isolation of light is performed by calculating the optical intensity and propagation distance in both directions obtained by a finite difference time domain (FDTD) method. Our optical diode exhibits a large bandwidth and a competitive optical isolation region. Our design presents a fundamental feature in optical signal processing, and leverages the complementary metal-oxide semiconductor (CMOS) compatibility necessary for microelectronic industry.

  13. Microscopic versus macroscopic calculation of dielectric nanospheres

    NASA Astrophysics Data System (ADS)

    Kühn, M.; Kliem, H.

    2008-12-01

    The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.

  14. Cavity cooling a single charged levitated nanosphere.

    PubMed

    Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F

    2015-03-27

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres. PMID:25860743

  15. Silica Nanospheres: Hollow Structure Improved Anti-Cancer Immunity of Mesoporous Silica Nanospheres In Vivo (Small 26/2016).

    PubMed

    Wang, Xiupeng; Li, Xia; Ito, Atsuo; Yoshiyuki, Kazuko; Sogo, Yu; Watanabe, Yohei; Yamazaki, Atsushi; Ohno, Tadao; Tsuji, Noriko M

    2016-07-01

    Hollow and non-hollow mesoporous silica nanospheres are synthesized and used for cancer vaccine adjuvants by X. Wang, A. Ito, N. M. Tsuji, and co-workers on page 3510. The hollow structure of mesoporous silica nanospheres significantly promotes cellular uptake of a model cancer antigen by macrophage-like cells in vitro, improves anti-cancer immunity, and increases CD4+ and CD8+ T cell populations in splenocytes of mice in vivo. PMID:27383037

  16. Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres.

    PubMed

    Lin, Jin-Han; Patil, Ranjit A; Devan, Rupesh S; Liu, Zhe-An; Wang, Yi-Ping; Ho, Ching-Hwa; Liou, Yung; Ma, Yuan-Ron

    2014-11-10

    We utilized a thermal radiation method to synthesize semiconducting hollow ZnO nanoballoons and metal-semiconductor concentric solid Zn/ZnO nanospheres from metallic solid Zn nanospheres. The chemical properties, crystalline structures, and photoluminescence mechanisms for the metallic solid Zn nanospheres, semiconducting hollow ZnO nanoballoons, and metal-semiconductor concentric solid Zn/ZnO nanospheres are presented. The PL emissions of the metallic Zn solid nanospheres are mainly dependent on the electron transitions between the Fermi level (E(F)) and the 3d band, while those of the semiconducting hollow ZnO nanoballoons are ascribed to the near band edge (NBE) and deep level electron transitions. The PL emissions of the metal-semiconductor concentric solid Zn/ZnO nanospheres are attributed to the electron transitions across the metal-semiconductor junction, from the E(F) to the valence and 3d bands, and from the interface states to the valence band. All three nanostructures are excellent room-temperature light emitters.

  17. Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis.

    PubMed

    Kremer, Laurent; Dover, Lynn G; Carrère, Séverine; Nampoothiri, K Madhavan; Lesjean, Sarah; Brown, Alistair K; Brennan, Patrick J; Minnikin, David E; Locht, Camille; Besra, Gurdyal S

    2002-06-01

    Mycolic acids consist of long-chain alpha-alkyl-beta-hydroxy fatty acids that are produced by successive rounds of elongation catalysed by a type II fatty acid synthase (FAS-II). A key feature in the elongation process is the condensation of a two-carbon unit from malonyl-acyl-carrier protein (ACP) to a growing acyl-ACP chain catalysed by a beta-ketoacyl-ACP synthase (Kas). In the present study, we provide evidence that kasA from Mycobacterium tuberculosis encodes an enzyme that elongates in vivo the meromycolate chain, in both Mycobacterium smegmatis and Mycobacterium chelonae. We demonstrate that KasA belongs to the FAS-II system, which utilizes primarily palmitoyl-ACP rather than short-chain acyl-ACP primers. Furthermore, in an in vitro condensing assay using purified recombinant KasA, palmitoyl-AcpM and malonyl-AcpM, KasA was found to express Kas activity. Also, mutated KasA proteins, with mutation of Cys(171), His(311), Lys(340) and His(345) to Ala abrogated the condensation activity of KasA in vitro completely. Finally, purified KasA was highly sensitive to cerulenin, a well-known inhibitor of Kas, which may lead to the development of novel anti-mycobacterial drugs targeting KasA. PMID:12023885

  18. Robust polymer grafted Fe3O4 nanospheres for benign removal of oil from water

    NASA Astrophysics Data System (ADS)

    Madhusudhana Reddy, P.; Chang, Chi-Jung; Chen, Jem-Kun; Wu, Meng-Ting; Wang, Chih-Feng

    2016-04-01

    Removal of oil from the oil-water mixture (O-W mixture) or oil-in-water emulsions (O/W emulsion) is highly imperative. We have fabricated two series of polymer grafted iron oxide (Fe3O4) nanospheres. The oil removal efficiency of the nanospheres was found to be dependent on the grafted amount of polymers. The polystyrene grafted Fe3O4 nanospheres have shown better oil removal efficiency than the corresponding poly(butyl acrylate) grafted Fe3O4 nanospheres. The higher amount of grafted polystyrene can provide more hydrophobic character to FS series nanospheres. The FS series nanospheres exhibited higher oil-absorption capability than FB series nanospheres. Both the series of nanospheres can be recycled by simple washing method. The present results can pave the way to fabricate the robust materials for efficient absorption of various oils or organic solvents from both the oil-water mixture and oil-water emulsion.

  19. Solution Structure of 4'-Phosphopantetheine - GmACP3 from Geobacter Metallireducens: A Specialized Acyl Carrier Protein with Atypical Structural Features and a Putative Role in Lipopolysaccharide Biosyntheses

    SciTech Connect

    Ramelot, Theresa A.; Smola, Matthew J.; Lee, Hsiau-Wei; Ciccosanti, Colleen; Hamilton, Keith; Acton, Thomas; Xiao, Rong; Everett, John K.; Prestegard, James H.; Montelione, Gaetano; Kennedy, Michael A.

    2011-03-08

    GmACP3 from Geobacter metallireducens is a specialized acyl carrier protein (ACP) whose gene, gmet_2339, is located near genes encoding many proteins involved in lipopolysaccharide (LPS) biosynthesis, indicating a likely function for GmACP3 in LPS production. By overexpression in Escherichia coli, about 50% holo-GmACP3 and 50% apo-GmACP3 were obtained. Apo-GmACP3 exhibited slow precipitation and non-monomeric behavior by 15NNMRrelaxation measurements. Addition of 4'-phosphopantetheine (4'-PP) via enzymatic conversion by E. coli holo-ACP synthase resulted in stable >95% holo-GmACP3 that was characterized as monomeric by 15N relaxation measurements and had no indication of conformational exchange. We have determined a high-resolution solution structure of holo-GmACP3 by standard NMR methods, including refinement with two sets of NH residual dipolar couplings, allowing for a detailed structural analysis of the interactions between 4'-PP and GmACP3. Whereas the overall four helix bundle topology is similar to previously solved ACP structures, this structure has unique characteristics, including an ordered 4'-PP conformation that places the thiol at the entrance to a central hydrophobic cavity near a conserved hydrogen-bonded Trp-His pair. These residues are part of a conservedWDSLxH/N motif found in GmACP3 and its orthologs. The helix locations and the large hydrophobic cavity are more similar tomediumand long-chain acyl-ACPs than to other apo- and holo-ACP structures. Taken together, structural characterization along with bioinformatic analysis of nearby genes suggests that GmACP3 is involved in lipid A acylation, possibly by atypical long-chain hydroxy fatty acids, and potentially is involved in synthesis of secondary metabolites.

  20. Results of First Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect

    Reda, I.; Grobner, J.; Wacker, S.; Stoffel, T.

    2013-03-01

    The ACP and IRIS are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are unwindowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The first outdoor comparison between the two designs was held from January 28 to February 8, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of IRIS was within 1 W/m2. A difference of 5 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG).

  1. Second harmonic generation from an individual amorphous selenium nanosphere

    NASA Astrophysics Data System (ADS)

    Ma, C. R.; Yan, J. H.; Wei, Y. M.; Yang, G. W.

    2016-10-01

    Among the numerous nonlinear optics effects, second harmonic generation (SHG) is always a hotspot and it is extensively used for optical frequency conversion, biomedical imaging, etc. However, SHG is forbidden in a medium with inversion symmetry under the electric-dipole approximation. Here, we demonstrated SHG from a single amorphous selenium (a-Se) nanosphere under near-infrared femtosecond pulse excitation. It was found that SH spectra are tunable with the size of a-Se nanospheres and the SHG efficiency of a single a-Se sphere with a diameter over 300 nm is estimated at 10-8. We also established two physical mechanisms of SHG from the amorphous nanospheres. There is an electric-dipole contribution to the second-order nonlinearity in view of the inevitable structural discontinuity at the surface. The discontinuity of the normal component of the electric field strength leads to the quadrupole-type contributions arising from the large electric field gradient. The SHG process can be enhanced by resonance near the fundamental wavelength, giving rise to the detectable second harmonic (SH) spectra of a single a-Se nanosphere (d > 300 nm) or two small a-Se nanospheres (d = 200 nm) aggregated into a dimer, while the single nanosphere with smaller size (d > 300 nm) is undetectable. As an essential trace element for animals, a-Se features unique biological compatibility and has specific properties of optical nonlinearity within the optical window in biological tissue. This discovery makes a-Se nanospheres promising both in nonlinear optics and biomedicine.

  2. Second harmonic generation from an individual amorphous selenium nanosphere.

    PubMed

    Ma, C R; Yan, J H; Wei, Y M; Yang, G W

    2016-10-21

    Among the numerous nonlinear optics effects, second harmonic generation (SHG) is always a hotspot and it is extensively used for optical frequency conversion, biomedical imaging, etc. However, SHG is forbidden in a medium with inversion symmetry under the electric-dipole approximation. Here, we demonstrated SHG from a single amorphous selenium (a-Se) nanosphere under near-infrared femtosecond pulse excitation. It was found that SH spectra are tunable with the size of a-Se nanospheres and the SHG efficiency of a single a-Se sphere with a diameter over 300 nm is estimated at 10(-8). We also established two physical mechanisms of SHG from the amorphous nanospheres. There is an electric-dipole contribution to the second-order nonlinearity in view of the inevitable structural discontinuity at the surface. The discontinuity of the normal component of the electric field strength leads to the quadrupole-type contributions arising from the large electric field gradient. The SHG process can be enhanced by resonance near the fundamental wavelength, giving rise to the detectable second harmonic (SH) spectra of a single a-Se nanosphere (d > 300 nm) or two small a-Se nanospheres (d = 200 nm) aggregated into a dimer, while the single nanosphere with smaller size (d > 300 nm) is undetectable. As an essential trace element for animals, a-Se features unique biological compatibility and has specific properties of optical nonlinearity within the optical window in biological tissue. This discovery makes a-Se nanospheres promising both in nonlinear optics and biomedicine. PMID:27632529

  3. Second harmonic generation from an individual amorphous selenium nanosphere.

    PubMed

    Ma, C R; Yan, J H; Wei, Y M; Yang, G W

    2016-10-21

    Among the numerous nonlinear optics effects, second harmonic generation (SHG) is always a hotspot and it is extensively used for optical frequency conversion, biomedical imaging, etc. However, SHG is forbidden in a medium with inversion symmetry under the electric-dipole approximation. Here, we demonstrated SHG from a single amorphous selenium (a-Se) nanosphere under near-infrared femtosecond pulse excitation. It was found that SH spectra are tunable with the size of a-Se nanospheres and the SHG efficiency of a single a-Se sphere with a diameter over 300 nm is estimated at 10(-8). We also established two physical mechanisms of SHG from the amorphous nanospheres. There is an electric-dipole contribution to the second-order nonlinearity in view of the inevitable structural discontinuity at the surface. The discontinuity of the normal component of the electric field strength leads to the quadrupole-type contributions arising from the large electric field gradient. The SHG process can be enhanced by resonance near the fundamental wavelength, giving rise to the detectable second harmonic (SH) spectra of a single a-Se nanosphere (d > 300 nm) or two small a-Se nanospheres (d = 200 nm) aggregated into a dimer, while the single nanosphere with smaller size (d > 300 nm) is undetectable. As an essential trace element for animals, a-Se features unique biological compatibility and has specific properties of optical nonlinearity within the optical window in biological tissue. This discovery makes a-Se nanospheres promising both in nonlinear optics and biomedicine.

  4. Transition metal HE`s - VII ACP. Progress report, August 1971--October 1971

    SciTech Connect

    Clink, G.L.

    1998-12-31

    Physical and physicochemical properties of hexaamminechromium III perchlorate (ACP) were investigated to determine its potentiality for HE and/or HE component application. Physicochemical properties obtained through investigation of isothermally aged ACP under conditions of various system and boundary restrictions (open and closed; 50 and 80 C; 0.65 and 0.85 g/cc) show the material to be substantially stable under these simulated isothermal storage conditions from a standpoint of infrared and DTA thermal pattern behavior and chemical analysis of aged residues. Spark sensitivity was 0.25 joules at 5 kv (by LASL type test) and impact sensitivity was about 23 and 14 cm on sandpaper (12A) and steel (12B), respectively.

  5. Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid.

    PubMed

    Mdluli, K; Slayden, R A; Zhu, Y; Ramaswamy, S; Pan, X; Mead, D; Crane, D D; Musser, J M; Barry, C E

    1998-06-01

    Although isoniazid (isonicotinic acid hydrazide, INH) is widely used for the treatment of tuberculosis, its molecular target has remained elusive. In response to INH treatment, saturated hexacosanoic acid (C26:0) accumulated on a 12-kilodalton acyl carrier protein (AcpM) that normally carried mycolic acid precursors as long as C50. A protein species purified from INH-treated Mycobacterium tuberculosis was shown to consist of a covalent complex of INH, AcpM, and a beta-ketoacyl acyl carrier protein synthase, KasA. Amino acid-altering mutations in the KasA protein were identified in INH-resistant patient isolates that lacked other mutations associated with resistance to this drug. PMID:9616124

  6. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  7. Hyaluronic acid auto-crosslinked polymer (ACP): Reaction monitoring, process investigation and hyaluronidase stability.

    PubMed

    Pluda, Stefano; Pavan, Mauro; Galesso, Devis; Guarise, Cristian

    2016-10-01

    Hyaluronic Acid (HA) is a non-sulphated glycosaminoglycan that, despite its high molecular weight, is soluble in water and is not resistant to enzymatic degradation, the latter of which hinders its wider application as a biomedical material. Auto-crosslinked polymer (ACP) gels of HA are fully biocompatible hydrogels that exhibit improved viscoelastic properties and prolonged in vivo residence times compared to the native polymer. Crosslinking is achieved through a base-catalysed reaction consisting of the activation of HA carboxyl groups by 2-chloro-1-methylpyridinium iodide (CMPI) and subsequent nucleophilic acyl substitution by the hydroxyl groups of HA in organic solvent. In this study, a number of ACP hydrogels have been obtained via reactions using varying ratios of CMPI to HA. The crosslinking reaction was monitored by rheological measurements in organic solvents during CMPI addition to the reaction mixture. The ACP intermediates, powders and hydrogels were characterized, helping to elucidate the crosslinking process. A two-step mechanism was proposed to explain the observed trends in viscosity and particle size. Syntheses were carried out by varying the reaction temperature, respectively at 0 °C, 25 °C and 45 °C in N-Methyl-2-Pyrrolidone (NMP), as well as the solvent respectively in NMP, DMSO and DMF at 25 °C. Interestingly, varying these parameters did not substantially affect the degree of crosslinking but likely did influence the intra/inter-molecular crosslinking ratio and, therefore, the viscoelastic properties. A wide range of crosslinking densities was confirmed through ESEM analysis. Finally, a comparative hyaluronidase degradation assay revealed that the ACPs exhibited a higher resistance toward enzymatic cleavage at low elastic modulus compared to other more chemically resistant, crosslinked HAs. These observations demonstrated the importance of crosslinking density of matrix structures on substrate availability. PMID:27442913

  8. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    SciTech Connect

    Schindel, Daniel G.; Singh, Mahi R.

    2014-03-31

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  9. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    NASA Astrophysics Data System (ADS)

    Schindel, Daniel G.; Singh, Mahi R.

    2014-03-01

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  10. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres

    NASA Astrophysics Data System (ADS)

    Liang, Bo; Fang, Lu; Hu, Yichuan; Yang, Guang; Zhu, Qin; Ye, Xuesong

    2014-03-01

    A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a sensitivity of 0.56 mA mM-1 cm-2, a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM-1 cm-2 and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices.A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a

  11. Nanoparticle fabrication by geometrically confined nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Denomme, Ryan C.; Iyer, Krishna; Kreder, Michael; Smith, Brendan; Nieva, Patricia M.

    2013-07-01

    Arrays of metal nanoparticles, typically gold or silver, exhibit localized surface plasmon resonance, a phenomenon that has many applications, such as chemical and biological sensing. However, fabrication of metal nanoparticle arrays with high uniformity and repeatability, at a reasonable cost, is difficult. Nanosphere lithography (NSL) has been used before to produce inexpensive nanoparticle arrays through the use of monolayers of self-assembled microspheres as a deposition mask. However, control over the size and location of the arrays, as well as uniformity over large areas is poor, thus limiting its use to research purposes. In this paper, a new NSL method, called here geometrically confined NSL (GCNSL), is presented. In GCNSL, microsphere assembly is confined to geometric patterns defined in photoresist, allowing high-precision and large-scale nanoparticle patterning while still remaining low cost. Using this new method, it is demonstrated that 400 nm polystyrene microspheres can be assembled inside of large arrays of photoresist patterns. Results show that optimal microsphere assembly is achieved with long and narrow rectangular photoresist patterns. The combination of microsphere monolayers and photoresist patterns is then used as a deposition mask to produce silver nanoparticles at precise locations on the substrate with high uniformity, repeatability, and quality.

  12. Functionalized CdS nanospheres and nanorods

    NASA Astrophysics Data System (ADS)

    Lee, Hyeokjin; Yang, Heesun; Holloway, Paul H.

    2009-12-01

    Functionalized nanoparticles are discussed. Surfaces of CdS:Mn/ZnS core/shell nanospheres (Qdots) were converted from hydrophobic to hydrophilic by growth of a SiO 2 shell. The colloidal dispersion was stabilize by adding a surfactant with a negative surface charge, and a cell-penetrating-peptide, TAT, was attached through a primary amine group. The TAT functionalized Qdots were shown to pass the blood-brain-barrier and luminescence in the infused half of the brain. In addition, nanorods of S 2- rich CdS were synthesized by reaction of excess S with Cd precursors in the presence of ethylene diamine. The photoluminescence (PL) peak from the S 2- rich CdS nanorods was broad with a maximum at ∼710 nm, which was 40 nm longer in wavelength than the PL peak from Cd 2+ rich CdS (∼670 nm) nanorods. The influence of surface electron or hole trap states on the luminescent pathway of CdS nanorods were used to explain these shifts in wavelength. Nanocrystals of Au with ∼2 nm diameters were grown on S 2- rich surfaces of CdS nanorods. Significant quenching of photoluminescence was observed from Au nanocrystals on CdS nanorods due to interfacial charge separation. Charge separation by Au nanocrystals on CdS resulted in enhanced UV photocatalytic degradation of Procion red mix-5B (PRB) dye in aqueous solution.

  13. Imaging of DNA/Nanosphere Condensates

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    DNA forms condensates in a variety of environments. In chromatin, DNA is condensed around 10-nm-diameter, positively-charged histone complexes. To model chromatin formation in cells, lambda-phage (16 microns long) and herring sperm (0.03 to1 micron) DNAs were mixed with polystyrene nanospheres of diameter 40nm and 930nm containing 1.8x10^4 and 2.6x10^8 positive surface charges, respectively, to form condensates. Sphere concentrations were 1-2 times the isoelectric concentration. Condensation vs time was imaged at various concentrations, pH's, viscosities, and ionic strengths. Bright-field and fluorescence (YOYO-1 dye bound to DNA) images were recorded. In general HS DNA aggregate size increased with time. Except in 0.5-0.8 M KCl, herring sperm DNA formed one huge aggregate (100's of microns) and depleted other areas, both in 10% and 20% glycerol. Phage DNA samples rapidly formed longer, fiber-like aggregates. Within 2 hours it formed ordered structures and in most samples, empty, apparently depleted regions were found in the viewing area. Shapes of the phage-DNA aggregates in 20% glycerol, in contrast, formed small clumps like HS DNA.

  14. Intravaginal artificial insemination in bitches using frozen/thawed semen after dilution in powdered coconut water (ACP-106c).

    PubMed

    Uchoa, D C; Silva, T F P; Mota Filho, A C; Silva, L D M

    2012-12-01

    The aim of this study was to evaluate powdered coconut water extender (ACP-106c; ACP Serviços Tecnológicos Ltda, ACP Biotecnologia, Fortaleza, Ceará, Brazil) as a diluent for freezing dog semen and the fertility after vaginal insemination of semen frozen therein. Ten ejaculates were collected from five dogs, evaluated fresh, diluted in ACP-106c, 10% egg yolk and 6% glycerol, cooled and frozen. In the first phase of the study, straws with frozen semen were thawed and immediately subjected to the same analysis as the fresh semen and, in addition, to Computer-Assisted Semen Analysis (CASA). In phase 2, 10 bitches that had been subjected to natural breeding during a preceding oestrous cycle were vaginally inseminated with thawed semen that had been re-diluted in ACP-106c. After thawing, a mean of 77% sperm motility was obtained through subjective analysis and 77.3% through CASA. Following artificial insemination, a 60% pregnancy rate was observed, resulting in a 50% parturition rate and a mean litter size of 3.4 (SEM 0.6), with 47.1% males and 52.9% females. ACP-106c can be successfully used for freezing canine semen, and vaginal deposition of such semen yields similar pregnancy rates to those reported in other studies.

  15. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition.

    PubMed

    Moreno-Pérez, Antonio J; Sánchez-García, Alicia; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2011-01-01

    The mechanisms by which macadamia nuts accumulate the unusual palmitoleic and asclepic acyl moieties, which constitute up to 20% of the fatty acids in some varieties, are still unknown. Acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) are intraplastidial enzymes that terminate the synthesis of fatty acids in plants and that facilitate the export of the acyl moieties to the endoplasmic reticulum where they can be used in the production of glycerolipids. Here, we have investigated the possible role of acyl-ACP thioesterase activity in the composition of macadamia kernel oil. Accordingly, two acyl-ACP thioesterases were cloned from developing macadamia kernels, one of the FatA type and the other of the FatB type. These enzymes were heterologously expressed in Escherichia coli, and the recombinant thioesterases were purified, characterized kinetically and assayed with a variety of substrates, demonstrating the high specificity of macadamia FatA towards 16:1-ACP. Acyl-ACP thioesterase activity was also characterized in crude extracts from two different varieties of macadamia, Cate and Beaumont, which accumulate different amounts of n-7 fatty acids. The impact of acyl-ACP thioesterase activities on the oil composition of these kernels is discussed in the light of these results.

  16. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition.

    PubMed

    Moreno-Pérez, Antonio J; Sánchez-García, Alicia; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2011-01-01

    The mechanisms by which macadamia nuts accumulate the unusual palmitoleic and asclepic acyl moieties, which constitute up to 20% of the fatty acids in some varieties, are still unknown. Acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) are intraplastidial enzymes that terminate the synthesis of fatty acids in plants and that facilitate the export of the acyl moieties to the endoplasmic reticulum where they can be used in the production of glycerolipids. Here, we have investigated the possible role of acyl-ACP thioesterase activity in the composition of macadamia kernel oil. Accordingly, two acyl-ACP thioesterases were cloned from developing macadamia kernels, one of the FatA type and the other of the FatB type. These enzymes were heterologously expressed in Escherichia coli, and the recombinant thioesterases were purified, characterized kinetically and assayed with a variety of substrates, demonstrating the high specificity of macadamia FatA towards 16:1-ACP. Acyl-ACP thioesterase activity was also characterized in crude extracts from two different varieties of macadamia, Cate and Beaumont, which accumulate different amounts of n-7 fatty acids. The impact of acyl-ACP thioesterase activities on the oil composition of these kernels is discussed in the light of these results. PMID:21071236

  17. Controlled Fabrication of Si Nanowires with Nanodots Using Nanosphere Lithography.

    PubMed

    Li, Wei; Wang, Shaolei; He, Sufeng; Hu, Mingyue; Ge, Pengpeng; Wang, Jing; Guo, YanYan

    2016-02-01

    In this paper, we introduce an easy method for fabricating Si nanowires with nanodots using nanosphere lithography. First, a self-assembly ordered single layer of polystyrene nanospheres with a diameter of 220 nm was prepared on Si substrate. Secondly, the polystyrene spheres monolayer was etched by 02 with different time from 10 s to 35 s. After this etching process, the polystyrene nanowires between polystyrene spheres were fabrication. If the etching time was longer than 35 s, there were no polystyrene nanowires. Thereafter, the following etching process with carbon fluoride was performanced. The polystyrene nanowires and nanosphers were worked as masks. Finally, the Si nanowires with nanodots were formed. The size and morphology can be controlled by etching process. This technique for forming nanostructure arrays using nanosphere lithography can be applied in many areas of science and technology.

  18. Controlling internal pore sizes in bicontinuous polymeric nanospheres.

    PubMed

    McKenzie, Beulah E; Friedrich, Heiner; Wirix, Maarten J M; de Visser, Joël F; Monaghan, Olivia R; Bomans, Paul H H; Nudelman, Fabio; Holder, Simon J; Sommerdijk, Nico A J M

    2015-02-16

    Complex polymeric nanospheres were formed in water from comb-like amphiphilic block copolymers. Their internal morphology was determined by three-dimensional cryo-electron tomographic analysis. Varying the polymer molecular weight (MW) and the hydrophilic block weight content allowed for fine control over the internal structure. Construction of a partial phase diagram allowed us to determine the criteria for the formation of bicontinuous polymer nanosphere (BPN), namely for copolymers with MW of up to 17 kDa and hydrophilic weight fractions of ≤0.25; and varying the organic solvent to water ratio used in their preparation allowed for control over nanosphere diameters from 70 to 460 nm. Significantly, altering the block copolymer hydrophilic-hydrophobic balance enabled control of the internal pore diameter of the BPNs from 10 to 19 nm. PMID:25640026

  19. Microwave assisted synthesis of amorphous magnesium phosphate nanospheres.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2012-12-01

    Magnesium phosphate (MgP) materials have been investigated in recent years for tissue engineering applications, attributed to their biocompatibility and biodegradability. This paper describes a novel microwave assisted approach to produce amorphous magnesium phosphate (AMP) in a nanospherical form from an aqueous solution containing Mg(2+) and HPO(4) (2-)/PO(4) (3-). Some synthesis parameters such as pH, Mg/P ratio, solution composition were studied and the mechanism of AMP precursors was also demonstrated. The as-produced AMP nanospheres were characterized and tested in vitro. The results proved these AMP nanospheres can self-assemble into mature MgP materials and support cell proliferation. It is expected such AMP has potential in biomedical applications. PMID:22890518

  20. Casimir interaction between a dielectric nanosphere and a metallic plane

    SciTech Connect

    Canaguier-Durand, Antoine; Gerardin, Antoine; Guerout, Romain; Lambrecht, Astrid; Reynaud, Serge; Maia Neto, Paulo A.; Nesvizhevsky, Valery V.; Voronin, Alexei Yu.

    2011-03-15

    We study the Casimir interaction between a dielectric nanosphere and a metallic plane, using the multiple scattering theory. Exact results are obtained with the dielectric described by a Sellmeier model and the metal by a Drude model. Asymptotic forms are discussed for small spheres and large or small distances. The well-known Casimir-Polder formula is recovered at the limit of vanishingly small spheres, while an expression that behaves better at small distances is found for any finite value of the radius. The exact results are of particular interest for the study of quantum states of nanospheres in the vicinity of surfaces.

  1. Polarization Bremsstrahlung radiation on a nanosphere in a dielectric

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.

    2011-11-01

    Within the limits of a new approach based on the Mie scattering theory, polarization bremsstrahlung radiation (PBR), arising during electron scattering on a metallic nanosphere with radius from 10 to 100 nm placed in a dielectric medium is theoretically investigated. The spectral range close to the plasmon resonance is considered, where the contribution of the polarized channel to bremsstrahlung radiation dominates. Spectral, velocity, and angular PBR characteristics are calculated. The sensitivity of the PBR spectrum to the dielectric permittivity of the medium surrounding the nanosphere is demonstrated.

  2. Ultra-sensitive force sensing with optically levitated nanospheres

    NASA Astrophysics Data System (ADS)

    Casey, Kirsten; Ranjit, Gambhir; Cunningham, Mark; Geraci, Andrew

    2016-05-01

    According to many theories beyond the Standard Model, Yukawa-type corrections to Newtonian gravity may be present at short length scales. I will discuss our experiment dedicated to searching for these forces at the micron length scale using laser-cooled silica nanospheres in an optical standing-wave trap. The nanospheres have achieved sub-attonewton force sensitivity in high vacuum, and can act as a sensor for short-range Yukawa-forces when levitated near a microfabricated source mass. This work is funded by NSF Grant Nos. PHY-1205994, PHY-1506431.

  3. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders

    NASA Astrophysics Data System (ADS)

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J.; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-08-01

    A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields.A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then

  4. The effect of CPP-ACP and Nd:YAG laser on the bond strength of softened dentin.

    PubMed

    Kamozaki, Maria Beatriz Beber; Prakki, Anuradha; Perote, Letícia Carvalho Coutinho Costa; Gutierrez, Natalia Cortez; Pagani, Clovis

    2015-01-01

    The purpose of this study was to investigate the effect of CPP-ACP treatment and Nd:YAG laser on microtensile bond strength (µTBS) of softened dentin. Sixty samples were obtained from thirty sound third molars. All samples were submitted to dentin softening procedure, by the immersion of the specimens in 30 mL of Sprite Zero for 30 min. Afterwards, the samples were randomly divided according to the CPP-ACP treatment: CG-Control group; MP-treated with CPP-ACP paste (MI Paste); MPP-treated with CPP-ACP+900 ppm NaF paste (MI Paste Plus). Each group was further divided according to bonding procedure: NL-No laser; L-Laser irradiation after adhesive application and before polymerization. The laser parameters used were 1.4 W, 10 Hz, 140 mJ/pulse, with an optic fiber of 320 µm, generating energy of 174 J/cm(2) per pulse. All samples were restored with Clearfil SE Bond/Filtek Z350 XT. After 24 h, the restored samples were cut into beams (± 1 mm(2) adhesive interface area) and subjected to a µTBS test. Data were analyzed by two-way ANOVA test and Holm-Sidak post-hoc method (α = 0.05). The treatment with CPP-ACP pastes did not significantly affect softened dentin µTBS (p = 0.070). Statistic revealed significant reduction on µTBS values for CG/L, leading to the rejection of the second null hypothesis (p < 0.001). Both CPP-ACP based pastes did not affect µTBS of softened dentin for the adhesive system utilized. The Nd:YAG laser irradiation after application of adhesive system did affect µTBS values of softened dentin samples untreated with CPP-ACP based pastes. PMID:26083086

  5. Identification of Genes Required for Secretion of the Francisella Oxidative Burst-Inhibiting Acid Phosphatase AcpA.

    PubMed

    Hoang, Ky Van; Chen, Carolyn G; Koopman, Jacob; Moshiri, Jasmine; Adcox, Haley E; Gunn, John S

    2016-01-01

    Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI)-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant) AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease) and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses. PMID:27199935

  6. Identification of Genes Required for Secretion of the Francisella Oxidative Burst-Inhibiting Acid Phosphatase AcpA

    PubMed Central

    Hoang, Ky Van; Chen, Carolyn G.; Koopman, Jacob; Moshiri, Jasmine; Adcox, Haley E.; Gunn, John S.

    2016-01-01

    Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI)-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant) AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease) and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses. PMID:27199935

  7. Inhibition and covalent modification of rape seed (Brassica napus) enoyl ACP reductase by phenylglyoxal.

    PubMed

    Cottingham, I R; Austin, A J; Slabas, A R

    1989-05-01

    The NADH-dependent enoyl-ACP reductase from oil seed rape (Brassica napus) was inactivated by treatment with phenylglyoxal, a reagent which specifically modifies arginine residues. The inhibition at various phenylglyoxal concentrations shows pseudo-first-order kinetics, with an apparent second-order rate constant of 14.2 M-1.min-1 for inactivation. The protective ability of several substrates and substrate analogues was investigated in order to ascertain if the inhibition was directed towards the active site of the enzyme. NADH and NAD+ did not protect but acyl carrier protein (ACP) and reduced coenzyme A, along with various derivatives, did protect. 9 microM ACP gave 35% protection from inactivation and 10 mM reduced coenzyme A gave 98% protection. The effectiveness of various subfragments of coenzyme A in protecting against inhibition indicates that the phosphate group is essential for preventing the binding of phenylglyoxal. The idea that phenylglyoxal is inhibiting by binding at the active site is further supported by the observation that the incorporation of 14C-labelled phenylglyoxal is directly related to the loss of activity. Extrapolation of the amount of label incorporated to give total inhibition shows that 4 mol of phenylglyoxal would be incorporated per mol of enzyme. This corresponds to the modification of two arginine side-chains with equal reactiveness towards the reagent. These results are consistent with there being two arginine residues either at the active site of the enzyme or in an environment which is protected from phenylglyoxal by a conformational change induced by coenzyme A binding.

  8. Protective effect of calcium nanophosphate and CPP-ACP agents on enamel erosion.

    PubMed

    Carvalho, Fabíola Galbiatti de; Brasil, Veruska Lima Moura; Silva Filho, Tiago João da; Carlo, Hugo Lemes; Santos, Rogério Lacerda dos; Lima, Bruno Alessandro Silva Guedes de

    2013-01-01

    The aim of this study was to assess the effect of different remineralizing agents on enamel microhardness (KHN) and surface topography after an erosive challenge. Forty-eight human enamel specimens (4 × 4 mm) were randomly assigned to 4 groups: control (no treatment), fluoride varnish, calcium nanophosphate paste and casein phosphopeptide-amorphous calcium phosphate paste (CPP-ACP). Both pastes were applied for 5 minutes, and fluoride varnish, for 24 h. Four daily erosive cycles of 5 minutes of immersion in a cola drink and 2 h in artificial saliva were conducted for 5 days. KHN readings were performed at baseline and after 5 days. The percentage of enamel hardness change (%KHN) was obtained after erosion. The surface topography was evaluated by atomic force microscopy (AFM). The data were tested using ANOVA, Tukey's and paired-T tests (p < 0.05). After an erosive challenge, there was no statistically significant difference between the control (96.8 ± 11.4 KHN / 72.4 ± 3.0%KHN) and the varnish (91.7 ± 14.1 KHN / 73.4 ± 5.5%KHN) groups. The nanophosphate group showed lower enamel hardness loss (187.2 ± 27.9 / 49.0 ± 7.9%KHN), compared with the CPP-ACP group (141.8 ± 16.5 / 60.6 ± 4.0%KHN), and both were statistically different from the varnish and the control groups. AFM images showed a rough surface for the control and the varnish groups, a non-homogeneous layer with globular irregularities for CPP-ACP, and a thick homogeneous layer for the nanophosphate group. None of the agents provided protection against the development of erosion; however, nanophosphate paste was able to reduce enamel surface softening after the erosive challenge.

  9. Combining CPP-ACP with fluoride: a synergistic remineralization potential of artificially demineralized enamel or not?

    NASA Astrophysics Data System (ADS)

    El-Sayad, I. I.; Sakr, A. K.; Badr, Y. A.

    2008-08-01

    Background and objective: Minimal intervention dentistry (MID) calls for early detection and remineralization of initial demineralization. Laser fluorescence is efficient in detecting changes in mineral tooth content. Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP- ACP) which delivers calcium and phosphate ions to enamel. A new product which also contains fluoride is launched in United States. The remineralizing potential of CPP- ACP per se, or when combined with 0.22% Fl supplied in an oral care gel on artificially demineralised enamel using laser fluorescence was investigated. Methods: Fifteen sound human molars were selected. Mesial surfaces were tested using He-Cd laser beam at 441.5nm with 18mW power as excitation source on a suitable set-up based on Spex 750 M monochromator provided with PMT for detection of collected auto-fluorescence from sound enamel. Mesial surfaces were subjected to demineralization for ten days. The spectra from demineralized enamel were measured. Teeth were then divided according to the remineralizing regimen into three groups: group I recaldent per se, group II recaldent combined with fluoride gel and group III artificial saliva as a positive control. After following these protocols for three weeks, the spectra from remineralized enamel from the three groups were measured. The spectra of enamel auto-fluorescence were recorded and normalized to peak intensity at about 540 nm to compare between spectra from sound, demineralized and remineralized enamel surfaces. Results: A slight red shift was noticed in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group II showed the highest remineralizing potential. Conclusions: Combining fluoride with CPP-ACP had a synergistic effect on enamel remineralization. In addition, laser auto-fluorescence is an accurate technique for assessment of changes in tooth enamel minerals.

  10. Development of the ACP safeguards neutron counter for PWR spent fuel rods

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hoon; Menlove, Howard O.; Lee, Sang-Yoon; Kim, Ho-Dong

    2008-04-01

    An advanced neutron multiplicity counter has been developed for measuring spent fuel in the Advanced spent fuel Conditioning Process (ACP) at the Korea Atomic Energy Research Institute (KAERI). The counter uses passive neutron multiplicity counting to measure the 244Cm content in spent fuel. The input to the ACP process is spent fuel from pressurized water reactors (PWRs), and the high intensity of the gamma-ray exposure from spent fuel requires a careful design of the counter to measure the neutrons without gamma-ray interference. The nuclear safeguards for the ACP facility requires the measurement of the spent fuel input to the process and the Cm/Pu ratio for the plutonium mass accounting. This paper describes the first neutron counter that has been used to measure the neutron multiplicity distribution from spent fuel rods. Using multiple samples of PWR spent fuel rod-cuts, the singles (S), doubles (D), and triples (T) rates of the neutron distribution for the 244Cm nuclide were measured and calibration curves were produced. MCNPX code simulations were also performed to obtain the three counting rates and to compare them with the measurement results. The neutron source term was evaluated by using the ORIGEN-ARP code. The results showed systematic difference of 21-24% in the calibration graphs between the measured and simulation results. A possible source of the difference is that the burnup codes have a 244Cm uncertainty greater than ±15% and it would be systematic for all of the calibration samples. The S/D and D/T ratios are almost constant with an increment of the 244Cm mass, and this indicates that the bias is in the 244Cm neutron source calculation using the ORIGEN-ARP source code. The graphs of S/D and D/T ratios show excellent agreement between measurement and MCNPX simulation results.

  11. Templated Control of Au nanospheres in Silica Nanowires

    SciTech Connect

    Tringe, J W; Vanamu, G; Zaidi, S H

    2007-03-15

    The formation of regularly-spaced metal nanostructures in selectively-placed insulating nanowires is an important step toward realization of a wide range of nano-scale electronic and opto-electronic devices. Here we report templated synthesis of Au nanospheres embedded in silica nanowires, with nanospheres consistently spaced with a period equal to three times their diameter. Under appropriate conditions, nanowires form exclusively on Si nanostructures because of enhanced local oxidation and reduced melting temperatures relative to templates with larger dimensions. We explain the spacing of the nanospheres with a general model based on a vapor-liquid-solid mechanism, in which an Au/Si alloy dendrite remains liquid in the nanotube until a critical Si concentration is achieved locally by silicon oxide-generated nanowire growth. Additional Si oxidation then locally reduces the surface energy of the Au-rich alloy by creating a new surface with minimum area inside of the nanotube. The isolated liquid domain subsequently evolves to become an Au nanosphere, and the process is repeated.

  12. Ultrasmall fluorescent ion-exchanging nanospheres containing selective ionophores.

    PubMed

    Xie, Xiaojiang; Mistlberger, Günter; Bakker, Eric

    2013-10-15

    We present a convenient precipitation procedure to fabricate ultrasmall fluorescent ion-selective nanosensors that operate on the basis of bulk ion-exchange sensing principles. The nanosphere matrix is composed of bis(2-ethylhexyl) sebacate (DOS) and a triblock copolymer Pluronic(®) F-127, which also functions as a surfactant to stabilize the nanoparticle. The particles can be prepared easily in large quantity without resorting to further complicated purification. Dynamic light scattering shows that these particles have a monodisperse size distribution with an average diameter of ∼40 nm, suggesting that the nanoparticles are among the smallest ionophore-based ion-selective nanosensors reported to date. A newly reported oxazinoindoline (Ox) as well as a Nile blue derivative (chromoionophore I) was used as a chromoionophore. Na(+)- and H(+)-selective nanospheres were characterized by absorbance and fluorescence spectroscopy. Owing to the very small size of the nanospheres, the suspension containing the particles is transparent. In the additional presence of the pH indicator HPTS, spectroscopic interrogation of pH and Na(+) in the same sample was demonstrated. As an example, the nanospheres were used to measure the Na(+) level in commercial mineral waters, and the results showed good agreement with atomic absorption spectroscopy (AAS).

  13. Templated control of Au nanospheres in silica nanowires

    SciTech Connect

    Tringe, Joseph W.; Vanamu, Ganesh; Zaidi, Saleem H.

    2008-11-01

    The formation of regularly spaced metal nanostructures in selectively placed insulating nanowires is an important step toward realization of a wide range of nanoscale electronic and optoelectronic devices. Here we report templated synthesis of Au nanospheres embedded in silica nanowires, with nanospheres consistently spaced with a period equal to three times their diameter. Under appropriate conditions, nanowires form exclusively on Si nanostructures because of enhanced local oxidation and reduced melting temperatures relative to templates with larger dimensions. We explain the spacing of the nanospheres with a general model based on a vapor-liquid-solid mechanism, in which an Au/Si alloy dendrite remains liquid in the nanotube until a critical Si concentration is achieved locally by silicon oxide-generated nanowire growth. Additional Si oxidation then locally reduces the surface energy of the Au-rich alloy by creating a new surface with smaller area inside of the nanotube. The isolated liquid domain subsequently evolves to become an Au nanosphere, and the process is repeated.

  14. Initial Development and Characterization of PLGA Nanospheres Containing Ropivacaine

    PubMed Central

    Moraes, Carolina Morales; de Matos, Angélica Prado; de Lima, Renata; Rosa, André Henrique; de Paula, Eneida

    2008-01-01

    Local anesthetics are able to induce pain relief by binding to the sodium channels of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Ropivacaine (RVC) is an amino amide, enantiomerically pure, local anesthetic largely used in surgical procedures, which present physico-chemical and therapeutic properties similar to those of bupivacaine but decreased toxicity and motor blockade. The present work focuses on the preparation and characterization of nanospheres containing RVC; 0.25% and 0.50% RVC were incorporated in poly(d,l-lactide-co-glycolide (PLGA) 50:50) nanospheres (PLGA-NS), prepared by the nanoprecipitation method. Characterization of the nanospheres was conducted through the measurement of pH, particle size, and zeta potential. The pH of the nanoparticle system with RVC was 6.58. The average diameters of the RVC-containing nanospheres was 162.7 ± 1.5 nm, and their zeta potentials were negative, with values of about −10.81 ± 1.16 mV, which promoted good stabilization of the particles in solution. The cytotoxicity experiments show that RVC-loaded PLGA-NS generate a less toxic formulation as compared with plain RVC. Since this polymer drug-delivery system can effectively generate an even less toxic RVC formulation, this study is fundamental due to its characterization of a potentially novel pharmaceutical form for the treatment of pain with RVC. PMID:19669531

  15. Low solvothermal synthesis and characterization of hollow nanospheres molybdenum sulfide.

    PubMed

    Akram, H; Mateos-Pedrero, C; Gallegos-Suárez, E; Allali, N; Chafik, T; Rodriguez-Ramos, I; Guerrero Ruiz, A

    2012-08-01

    Hollow nanospheres of molybdenum disulfide have been synthesized by a novel solvothermal method under low temperature (180 degrees C). These nanomaterials were characterized by X-ray diffraction (XRD), Fourier transformation infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM, HRTEM) and X-ray Photoelectron Spectroscopy (XPS). A mechanism for the synthesis reaction is tentatively proposed and discussed.

  16. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  17. Nitrogen-doped carbon nanospheres derived from cocoon silk as metal-free electrocatalyst for glucose sensing.

    PubMed

    Li, Tongtong; Li, Yahang; Wang, Chunyu; Gao, Zhi-Da; Song, Yan-Yan

    2015-11-01

    Nitrogen-doped carbon materials have attracted tremendous attention because of their high activity in electrocatalysis. In the present work, cocoon silk -- a biomass material is used to prepare porous carbon fibers due to its abundant nitrogen content. The as-prepared carbon microfibers have been activated and disintegrated into carbon nanospheres (CNS) with a diameter of 20--60 nm by a simple nitric acid refluxing process. Considering their excellent electrocatalytic activity towards the reduction of oxygen, the CNS modified electrodes are further applied in the construction of glucose amperometric biosensor using glucose oxidase as a model. The proposed biosensor exhibits fast response, high sensitivity, good stability and selectivity for glucose detection with a wide linear range from 79.7 to 2038.9 μM, and a detection limit of 39.1 μM. The performance is comparable to leading literature results indicating a great potential for electrochemical sensing application. PMID:26452954

  18. Nitrogen-doped carbon nanospheres derived from cocoon silk as metal-free electrocatalyst for glucose sensing.

    PubMed

    Li, Tongtong; Li, Yahang; Wang, Chunyu; Gao, Zhi-Da; Song, Yan-Yan

    2015-11-01

    Nitrogen-doped carbon materials have attracted tremendous attention because of their high activity in electrocatalysis. In the present work, cocoon silk -- a biomass material is used to prepare porous carbon fibers due to its abundant nitrogen content. The as-prepared carbon microfibers have been activated and disintegrated into carbon nanospheres (CNS) with a diameter of 20--60 nm by a simple nitric acid refluxing process. Considering their excellent electrocatalytic activity towards the reduction of oxygen, the CNS modified electrodes are further applied in the construction of glucose amperometric biosensor using glucose oxidase as a model. The proposed biosensor exhibits fast response, high sensitivity, good stability and selectivity for glucose detection with a wide linear range from 79.7 to 2038.9 μM, and a detection limit of 39.1 μM. The performance is comparable to leading literature results indicating a great potential for electrochemical sensing application.

  19. Functionalized Silicone Nanospheres: Synthesis, Transition Metal Immobilization, and Catalytic Applications

    SciTech Connect

    Bradley, Christopher A.; Yuhas, Benjamin D.; McMurdo, Meredith J.; Tilley, T. D.

    2008-12-11

    Silicone nanospheres containing a variety of functional groups (pyridines, phosphines, thiols, amines, etc.) have been prepared by emulsion copolymerization of methyltrimethoxysilane, MeSi(OMe)3, and the functionalized monomer of interest, RSi(OMe)3. This procedure provides a reproducible synthesis of spherical particles in the 12-28 nm size regime as determined by transmission electronSilicone nanospheres containing a variety of functional groups (pyridines, phosphines, thiols, amines, etc.) have been prepared by emulsion copolymerization of methyltrimethoxysilane, MeSi(OMe)₃, and the functionalized monomer of interest, RSi(OMe)₃. This procedure provides a reproducible synthesis of spherical particles in the 12-28 nm size regime as determined by transmission electron microscopy (TEM). The presence of the functional groups is supported by a combination of spectroscopic methods including DRUV-vis, DRIFTS, and NMR spectroscopy. Comonomer dispersity within the nanospheres was probed using elemental mapping techniques, and these support a homogeneous distribution of functional groups within the particles. Palladium(0) immobilization on phosphine-substituted nanospheres also results in a random distribution of the transition metal throughout the particles. Nanospheres containing multiple acid/base functionalities were also prepared, and these demonstrate functional group cooperativity based on enhanced conversions in the base-catalyzed Henry reaction, relative to nanosphere catalysts containing only basic groups. The diversity of functional groups that may be incorporated into the spheres suggests that these materials hold considerable promise as ligand supports and catalysts.Graphene nanoribbons (GNRs) have been suggested as a promising material for its use as nanoelectromechanical reasonators for highly sensitive force, mass, and charge detection. Therefore the accurate determination of the size-dependent elastic properties of GNRs is desirable for the design of

  20. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.

    PubMed

    Rodríguez-Rodríguez, Manuel Fernando; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2014-11-01

    Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results.

  1. Short-term storage of canine preantral ovarian follicles using a powdered coconut water (ACP)-based medium.

    PubMed

    Lima, G L; Costa, L L M; Cavalcanti, D M L P; Rodrigues, C M F; Freire, F A M; Fontenele-Neto, J D; Silva, A R

    2010-07-01

    The objective was to investigate the use of powdered coconut water (ACP)-based medium for short-term preservation of canine preantral follicles. Pairs of ovaries from mongrel bitches (n=9) were divided into fragments. One ovarian fragment, treated as a fresh control, was immediately fixed for histological analysis, whereas the other six ovarian fragments were stored either in phosphate-buffered saline (PBS; control group) or ACP medium in isothermal Styrofoam boxes containing biological ice packs. The boxes were sealed and opened only after 12, 24, or 36h. After opening each box, the ovarian fragments were submitted to histological analysis. In total, 12,302 preantral follicles were evaluated, with 64.5% primordial, 33.3% primary, and 2.3% secondary follicles. There were multiple oocytes in 1.3% of the follicles analyzed. At 24h, ACP was more efficient in preserving follicular morphology than PBS (P<0.05). Compared with the fresh control group, a significant reduction in the percentage of morphologically normal ovarian follicles was observed for PBS, starting at 24h; however, the decline started only at 36h for the ACP medium. During the experiment, the temperature inside the isothermal boxes increased from 3 to 9 degrees C (P<0.05), despite a constant room temperature. In conclusion, powdered coconut water (ACP) was an appropriate medium for short-term storage of canine preantral ovarian follicles.

  2. Short-term storage of canine preantral ovarian follicles using a powdered coconut water (ACP)-based medium.

    PubMed

    Lima, G L; Costa, L L M; Cavalcanti, D M L P; Rodrigues, C M F; Freire, F A M; Fontenele-Neto, J D; Silva, A R

    2010-07-01

    The objective was to investigate the use of powdered coconut water (ACP)-based medium for short-term preservation of canine preantral follicles. Pairs of ovaries from mongrel bitches (n=9) were divided into fragments. One ovarian fragment, treated as a fresh control, was immediately fixed for histological analysis, whereas the other six ovarian fragments were stored either in phosphate-buffered saline (PBS; control group) or ACP medium in isothermal Styrofoam boxes containing biological ice packs. The boxes were sealed and opened only after 12, 24, or 36h. After opening each box, the ovarian fragments were submitted to histological analysis. In total, 12,302 preantral follicles were evaluated, with 64.5% primordial, 33.3% primary, and 2.3% secondary follicles. There were multiple oocytes in 1.3% of the follicles analyzed. At 24h, ACP was more efficient in preserving follicular morphology than PBS (P<0.05). Compared with the fresh control group, a significant reduction in the percentage of morphologically normal ovarian follicles was observed for PBS, starting at 24h; however, the decline started only at 36h for the ACP medium. During the experiment, the temperature inside the isothermal boxes increased from 3 to 9 degrees C (P<0.05), despite a constant room temperature. In conclusion, powdered coconut water (ACP) was an appropriate medium for short-term storage of canine preantral ovarian follicles. PMID:20207405

  3. Isolation and characterization of a cDNA from Cuphea lanceolata encoding a beta-ketoacyl-ACP reductase.

    PubMed

    Klein, B; Pawlowski, K; Höricke-Grandpierre, C; Schell, J; Töpfer, R

    1992-05-01

    A cDNA encoding beta-ketoacyl-ACP reductase (EC 1.1.1.100), an integral part of the fatty acid synthase type II, was cloned from Cuphea lanceolata. This cDNA of 1276 bp codes for a polypeptide of 320 amino acids with 63 N-terminal residues presumably representing a transit peptide and 257 residues corresponding to the mature protein of 27 kDa. The encoded protein shows strong homology with the amino-terminal sequence and two tryptic peptides from avocado mesocarp beta-ketoacyl-ACP reductase, and its total amino acid composition is highly similar to those of the beta-ketoacyl-ACP reductases of avocado and spinach. Amino acid sequence homologies to polyketide synthase, beta-ketoreductases and short-chain alcohol dehydrogenases are discussed. An engineered fusion protein lacking most of the transit peptide, which was produced in Escherichia coli, was isolated and proved to possess beta-ketoacyl-ACP reductase activity. Hybridization studies revealed that in C. lanceolata beta-ketoacyl-ACP reductase is encoded by a small family of at least two genes and that members of this family are expressed in roots, leaves, flowers and seeds.

  4. WE-G-BRE-08: Radiosensitization by Olaparib Eluting Nanospheres

    SciTech Connect

    Tangutoori, S; Kumar, R; Sridhar, S; Korideck, H; Makrigiorgos, G; Cormack, R

    2014-06-15

    Purpose: Permanent prostate brachytherapy often uses inert bio-absorbable spacers to achieve the desired geometric distribution of sources within the prostate. Transforming these spacers into implantable nanoplatforms for chemo-radiation therapy (INCeRT) provides a means of providing sustained in-situ release of radiosensitizers in the prostate to enhance the therapeutic ratio of the procedure. Olaparib, a PARP inhibitor, suppresses DNA repair processes present during low dose rate continuous irradiation. This work investigates the radiosensitizing/DNA damage repair inhibition by NanoOlaparib eluting nanospheres. Methods: Human cell line PC3 (from ATCC), was maintained in F12-k medium supplemented with fetal bovine serum. Clonogenic assay kit (from Fischer Scientific) was used to fix and stain the cells to determine the long term effects of irradiation. Nanoparticle size and zeta potential of nanospheres were determined using a Zeta particle size analyzer. The incorporation of Olaparib in nanospheres was evaluated by HPLC. Irradiation was performed in a small animal irradiator operating at 220 KeV.The long term effects of radio-sensitization with olaparib and nanoolaparib was determined using the clonogenic assay at 2 Gy and 4 Gy doses. The cells were allowed to grow for around 10 doubling cycles, The colonies were fixed and stained using clonogenic assay kit. The excess stain was washed off using DI water and the images were taken using a digital camera. Results: Radiosensitization studies were carried out in prostate cancer cell line, PC3 radiation at 0, 2 and 4Gy doses. Strongest dose response was observed with nanoolaparib treated cells compared to untreated cells. Conclusion: A two stage drug release of drug eluting nanospheres from a biodegradable spacer has been suggested for sustained in-situ release of Olaparib to suppress DNA repair processes during prostate brachytherapy. The Olaparib eluting nanospheres had the same in-vitro radiosensitizing effect as

  5. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders.

    PubMed

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-09-21

    A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields. PMID:26287395

  6. The β-ketoacyl-ACP synthase from Mycobacterium tuberculosis as potential drug targets.

    PubMed

    Singh, V; Mani, I; Chaudhary, D K; Somvanshi, P

    2011-01-01

    The continuous preventive measures and control of tuberculosis are often hampered by re-emergence of multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis. A novel drug approach is desperately needed to combat the global threat posed by MDR strains. In spite of current advancement in biological techniques viz. microarray and proteomics data for tuberculosis, no such potent drug has been developed in the past decades yet. Therefore, mycolic acid is an essential constituent which is involved in the formation of cell wall of Mycobacterium species. The biosynthesis of mycolic acid is involved in two fatty acid synthase systems, the multifunctional polypeptide fatty acid synthase I (FASI) which performs de novo fatty acid synthesis and dissociate FASII system. FASII system consists of monofunctional enzymes and acyl carrier protein (ACP), elongating FASI products to long chain mycolic acid precursor. In this review, the β-ketoacyl-ACP synthases (fadH, kasA and kasB) are distinct and play a vital role in mycolic acid synthesis, cell wall synthesis, biofilm formation and also pathogenesis. On the basis of substantial observation we suggest that these enzymes may be used as promising and attractive targets for novel anti-TB drugs designing and discovery. PMID:21370994

  7. Variably porous structures

    SciTech Connect

    Braun, Paul V.; Yu, Xindi

    2011-01-18

    A method of making a monolithic porous structure, comprises electrodepositing a material on a template; removing the template from the material to form a monolithic porous structure comprising the material; and electropolishing the monolithic porous structure.

  8. Ultra-small and anionic starch nanospheres: formation and vitro thrombolytic behavior study.

    PubMed

    Huang, Yinjuan; Ding, Shenglong; Liu, Mingzhu; Gao, Chunmei; Yang, Jinlong; Zhang, Xinjie; Ding, Bin

    2013-07-25

    This paper is considered as the first report on the investigation of nattokinase (NK) release from anionic starch nanospheres. The ultra-small and anionic starch nanospheres were prepared by the method of reverse micro-emulsion crosslinking in this work. Starch nanospheres were characterized through Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). Effects of preparation conditions on particle size were studied. The cytotoxicity, biodegradable and vitro thrombolytic behaviors of nattokinase (NK) loaded anionic starch nanospheres were also studied. The results showed that the anionic starch nanospheres are non-toxic, biocompatible and biodegradable. Moreover, the anionic starch nanospheres can protect NK from fast biodegradation hence prolongs the circulation in vivo and can reduce the risk of acute hemorrhage complication by decreasing the thrombolysis rate.

  9. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    SciTech Connect

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Liu, Gao; Zhao, Peng; Zhang, Sulin; Wang, Chong M.; Lu, Yunfeng; Cai, Mei

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-level outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. We find the low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.

  10. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    DOE PAGES

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; et al

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-levelmore » outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. We find the low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.« less

  11. A Novel Technique for Visualizing the Intralymphatic Primo Vascular System by Using Hollow Gold Nanospheres.

    PubMed

    Carlson, Eric; Perez-Abadia, Gustavo; Adams, Staci; Zhang, Jin Z; Kang, Kyung A; Maldonado, Claudio

    2015-12-01

    Until recently, the primo vascular system (PVS) has been unnoticed by most anatomists due to the small diameter and translucent features of the threadlike network. These properties make primo vessels (PVs) difficult to visualize for harvest and for further characterization. One particular PVS subtype that is located within the lymphatic vessels (LVs) is of strong interest because with a proper contrast, these long PVs can be visualized through the transparent LV wall and can be harvested to provide sufficient sample material for analysis. The most common method to visualize this PVS subtype utilizes Alcian blue as the contrast agent. This technique is effective, but tedious, and has relatively low repeatability. The purpose of this study was to develop a new technique that allows reliable visualization of the intralymphatic PVS (IL-PVS) in a user-friendly manner. The method was designed to provide optical contrast to the PVS by taking advantage of the porous nature of the PV's external wall and interstitial matrix. Turquoise-green-colored hollow gold nanospheres (HGNs) in the size range of 50-125 nm were found to provide excellent optical contrast for the IL-PVS in rats. The PVS was visualized within 10 minutes after HGN administration at a 95% success rate.

  12. Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries

    PubMed Central

    Wang, Yun-Xiao; Yang, Jianping; Chou, Shu-Lei; Liu, Hua Kun; Zhang, Wei-xian; Zhao, Dongyuan; Dou, Shi Xue

    2015-01-01

    Sodium–metal sulfide battery holds great promise for sustainable and cost-effective applications. Nevertheless, achieving high capacity and cycling stability remains a great challenge. Here, uniform yolk-shell iron sulfide–carbon nanospheres have been synthesized as cathode materials for the emerging sodium sulfide battery to achieve remarkable capacity of ∼545 mA h g−1 over 100 cycles at 0.2 C (100 mA g−1), delivering ultrahigh energy density of ∼438 Wh kg−1. The proven conversion reaction between sodium and iron sulfide results in high capacity but severe volume changes. Nanostructural design, including of nanosized iron sulfide yolks (∼170 nm) with porous carbon shells (∼30 nm) and extra void space (∼20 nm) in between, has been used to achieve excellent cycling performance without sacrificing capacity. This sustainable sodium–iron sulfide battery is a promising candidate for stationary energy storage. Furthermore, this spatially confined sulfuration strategy offers a general method for other yolk-shell metal sulfide–carbon composites. PMID:26507613

  13. A Novel Technique for Visualizing the Intralymphatic Primo Vascular System by Using Hollow Gold Nanospheres.

    PubMed

    Carlson, Eric; Perez-Abadia, Gustavo; Adams, Staci; Zhang, Jin Z; Kang, Kyung A; Maldonado, Claudio

    2015-12-01

    Until recently, the primo vascular system (PVS) has been unnoticed by most anatomists due to the small diameter and translucent features of the threadlike network. These properties make primo vessels (PVs) difficult to visualize for harvest and for further characterization. One particular PVS subtype that is located within the lymphatic vessels (LVs) is of strong interest because with a proper contrast, these long PVs can be visualized through the transparent LV wall and can be harvested to provide sufficient sample material for analysis. The most common method to visualize this PVS subtype utilizes Alcian blue as the contrast agent. This technique is effective, but tedious, and has relatively low repeatability. The purpose of this study was to develop a new technique that allows reliable visualization of the intralymphatic PVS (IL-PVS) in a user-friendly manner. The method was designed to provide optical contrast to the PVS by taking advantage of the porous nature of the PV's external wall and interstitial matrix. Turquoise-green-colored hollow gold nanospheres (HGNs) in the size range of 50-125 nm were found to provide excellent optical contrast for the IL-PVS in rats. The PVS was visualized within 10 minutes after HGN administration at a 95% success rate. PMID:26742913

  14. Hybrid polymer-metal nanospheres based on highly branched gold nanoparticles for potential medical applications.

    PubMed

    Li, S Y; Wang, M

    2012-12-01

    Hybrid polymer-metal nanospheres are potential nano-sized medical devices that can provide multi-functions such as medical imaging and drug/biomolecule delivery. Gold nanoparticle-based hybrid nanospheres are particularly attractive owing to the unique optical and electronic properties that they possess. The polymer in hybrid nanospheres can be tasked for cancer cell targeting, DNA delivering etc. In the current investigation, a simple one-pot synthesis method was developed for producing folic acid-chitosan-capped gold (Au@CS-FA) nanospheres. These nanospheres consisted of a flower-like gold nanoparticle core and a cross-linked folic acid (FA)-conjugated chitosan shell. During the synthesis of Au@CS-FA nanospheres, FA-conjugated chitosan molecules acted as a reductant for gold and also as a structure-directing agent for the formation of highly branched gold nanoparticles. The evolution of Au@CS-FA nanospheres during their manufacture was studied using various analytical techniques and the mechanism of formation and growth was proposed. The Au@CS-FA nanospheres exhibited high-surface-enhanced Raman scattering which could be utilised for imaging at the single molecule level. The biopolymer shell was functionalised with -NH(2) and -COOH groups, which could be readily conjugated with macromolecules, peptides, nucleotides etc. for potentially wide applications of Au@CS-FA nanospheres in the medical field.

  15. Simulated Investigation of Optical Properties in Noble Metallic Alloy Nanosphere

    NASA Astrophysics Data System (ADS)

    Luo, D.; Liu, J.; Feng, H.

    2016-01-01

    Extinction efficiencies of Ag-Cu and Ag-Au alloy nanospheres are studied based on the Mie theory. The effect of the radius size and the alloy composition on the extinction efficiency has been considered. In alloy nanoparticles such as Ag x Au 1-x nanospheres, the extinction efficiencies vary with the Ag component x. The full width half maxima of the extinction efficiency band becomes broad with decrease in x, however the extinction peak value decreases at the same time. The optimal radius was investigated when double equal extinction peaks arise and the modulation effect of the extinction efficiencies was found. While the Ag component x increases, the extinction peak value becomes greater, but the separation distance between the peaks decreases.

  16. Zeptonewton force sensing with nanospheres in an optical lattice

    NASA Astrophysics Data System (ADS)

    Ranjit, Gambhir; Cunningham, Mark; Casey, Kirsten; Geraci, Andrew A.

    2016-05-01

    Optically trapped nanospheres in high vacuum experience little friction and hence are promising for ultrasensitive force detection. Here we demonstrate measurement times exceeding 105 s and zeptonewton force sensitivity with laser-cooled silica nanospheres trapped in an optical lattice. The sensitivity achieved exceeds that of conventional room-temperature solid-state force sensors by over an order of magnitude, and enables a variety of applications including electric-field sensing, inertial sensing, and gravimetry. The particle is confined at the antinodes of the optical standing wave, and by studying the motion of a particle which has been moved to an adjacent trapping site, the known spacing of the antinodes can be used to calibrate the displacement spectrum of the particle. Finally, we study the dependence of the trap stability and lifetime on the laser intensity and gas pressure, and examine the heating rate of the particle in vacuum without feedback cooling.

  17. Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia.

    SciTech Connect

    Liu, X.; Novosad, V.; Rozhkova, E. A.; Chen, H.; Yefremenko, V.; Pearson, J.; Torno, M.; Bader, S. D.; Rosengart, A. J.; Univ. Chicago Pritzker School of Medicine

    2007-06-01

    We report a simplified single emulsion (oil-in-water) solvent evaporation protocol to synthesize surface functionalized biocompatible magnetic nanospheres by using highly concentrated hydrophobic magnetite (gel) and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol-maleimide) (PLA-PEG-maleimide) (10:1 by mass) polymers. The as-synthesized particles are approximately spherical with an average diameter of 360-370 nm with polydispersity index of 0.12-0.18, are surface-functionalized with maleimide groups, and have saturation magnetization values of 25-40 emu/g. The efficiency of the heating induced by 400-kHz oscillating magnetic fields is compared for two samples with different magnetite loadings. Results show that these nanospheres have the potential to provide an efficient cancer-targeted hyperthermia.

  18. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

    PubMed Central

    Holban, Alina Maria; Grumezescu, Valentina; Vasile, Bogdan Ştefan; Truşcă, Roxana; Cristescu, Rodica; Socol, Gabriel; Iordache, Florin

    2014-01-01

    Summary We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections. PMID:24991524

  19. Water-dispersible nanospheres of hydrogen-bonded supramolecular polymers and their application for mimicking light-harvesting systems.

    PubMed

    Peng, Hui-Qing; Xu, Jiang-Fei; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2014-02-01

    Water-dispersible nanospheres of hydrogen-bonded supramolecular polymers have been prepared for the first time by using the miniemulsion method. Nanospheres containing chromophores with high fluorescence quantum yields were fabricated to mimic the natural light-harvesting system.

  20. Chaplain Documentation and the Electronic Medical Record: A Survey of ACPE Residency Programs.

    PubMed

    Tartaglia, Alexander; Dodd-McCue, Diane; Ford, Timothy; Demm, Charles; Hassell, Alma

    2016-01-01

    This study explores the extent to which chaplaincy departments at ACPE-accredited residency programs make use of the electronic medical record (EMR) for documentation and training. Survey data solicited from 219 programs with a 45% response rate and interview findings from 11 centers demonstrate a high level of usage of the EMR as well as an expectation that CPE residents document each patient/family encounter. Centers provided considerable initial training, but less ongoing monitoring of chaplain documentation. Centers used multiple sources to develop documentation tools for the EMR. One center was verified as having created the spiritual assessment component of the documentation tool from a peer reviewed published model. Interviews found intermittent use of the student chart notes for educational purposes. One center verified a structured manner of monitoring chart notes as a performance improvement activity. Findings suggested potential for the development of a standard documentation tool for chaplain charting and training.

  1. A Project Management Approach to an ACPE Accreditation Self-study

    PubMed Central

    Iwanowicz, Susan L.; Bailie, George R.; Clarke, David W.; McGraw, Patrick S.

    2007-01-01

    In preparation for an on-site evaluation and accreditation by the American Council on Pharmaceutical Education (ACPE), the Albany College of Pharmacy employed project management techniques to complete a comprehensive self-study. A project lifecycle approach, including planning, production, and turnover phases, was used by the project's Self-Study Steering Committee. This approach, with minimal disruption to college operations, resulted in the completion of the self-study process on schedule. Throughout the project, the Steering Committee maintained a log of functions that either were executed successfully or in hindsight, could have been improved. To assess the effectiveness of the project management approach to the the self-study process, feedback was obtained from the College community through a poststudy survey. This feedback, coupled with the Steering Committee's data on possible improvements, form the basis for the lessons learned during this self-study process. PMID:17533432

  2. Chaplain Documentation and the Electronic Medical Record: A Survey of ACPE Residency Programs.

    PubMed

    Tartaglia, Alexander; Dodd-McCue, Diane; Ford, Timothy; Demm, Charles; Hassell, Alma

    2016-01-01

    This study explores the extent to which chaplaincy departments at ACPE-accredited residency programs make use of the electronic medical record (EMR) for documentation and training. Survey data solicited from 219 programs with a 45% response rate and interview findings from 11 centers demonstrate a high level of usage of the EMR as well as an expectation that CPE residents document each patient/family encounter. Centers provided considerable initial training, but less ongoing monitoring of chaplain documentation. Centers used multiple sources to develop documentation tools for the EMR. One center was verified as having created the spiritual assessment component of the documentation tool from a peer reviewed published model. Interviews found intermittent use of the student chart notes for educational purposes. One center verified a structured manner of monitoring chart notes as a performance improvement activity. Findings suggested potential for the development of a standard documentation tool for chaplain charting and training. PMID:26168408

  3. Single-walled hollow nanospheres assembled from the aluminogermanate precursors.

    PubMed

    Bac, Bui Hoang; Song, Yungoo; Kim, Myung Hun; Lee, Young-Boo; Kang, Il Mo

    2009-10-14

    Ordered single-walled hollow aluminogermanate (ALGE) nanospheres (NSs) with average monodisperse diameters of 5 nm have been synthesized for the first time using simple pH control. This involved basification of the ALGE precursors (having an Al/Ge ratio of 1.33) to a pH value of 13, followed by immediate acidification to a pH value of 9.

  4. Evaluation of the remineralization capacity of CPP-ACP containing fluoride varnish by different quantitative methods

    PubMed Central

    SAVAS, Selcuk; KAVRÌK, Fevzi; KUCUKYÌLMAZ, Ebru

    2016-01-01

    ABSTRACT Objective The aim of this study was to evaluate the efficacy of CPP-ACP containing fluoride varnish for remineralizing white spot lesions (WSLs) with four different quantitative methods. Material and Methods Four windows (3x3 mm) were created on the enamel surfaces of bovine incisor teeth. A control window was covered with nail varnish, and WSLs were created on the other windows (after demineralization, first week and fourth week) in acidified gel system. The test material (MI Varnish) was applied on the demineralized areas, and the treated enamel samples were stored in artificial saliva. At the fourth week, the enamel surfaces were tested by surface microhardness (SMH), quantitative light-induced fluorescence-digital (QLF-D), energy-dispersive spectroscopy (EDS) and laser fluorescence (LF pen). The data were statistically analyzed (α=0.05). Results While the LF pen measurements showed significant differences at baseline, after demineralization, and after the one-week remineralization period (p<0.05), the difference between the 1- and 4-week was not significant (p>0.05). With regards to the SMH and QLF-D analyses, statistically significant differences were found among all the phases (p<0.05). After the 1- and 4-week treatment periods, the calcium (Ca) and phosphate (P) concentrations and Ca/P ratio were higher compared to those of the demineralization surfaces (p<0.05). Conclusion CPP-ACP containing fluoride varnish provides remineralization of WSLs after a single application and seems suitable for clinical use. PMID:27383699

  5. Physical and Chemical Changes of Polystyrene Nanospheres Irradiated with Laser

    SciTech Connect

    Mustafa, Mohd Ubaidillah; Juremi, Nor Rashidah Md.; Mohamad, Farizan; Wibawa, Pratama Jujur; Agam, Mohd Arif; Ali, Ahmad Hadi

    2011-05-25

    It has been reported that polymer resist such as PMMA (Poly(methyl methacrylate) which is a well known and commonly used polymer resist for fabrication of electronic devices can show zwitter characteristic due to over exposure to electron beam radiation. Overexposed PMMA tend to changes their molecular structure to either become negative or positive resist corresponded to electron beam irradiation doses. These characteristic was due to crosslinking and scissors of the PMMA molecular structures, but till now the understanding of crosslinking and scissors of the polymer resist molecular structure due to electron beam exposure were still unknown to researchers. Previously we have over exposed polystyrene nanospheres to various radiation sources, such as electron beam, solar radiation and laser, which is another compound that can act as polymer resist. We investigated the physical and chemical structures of the irradiated polystyrene nanospheres with FTIR analysis. It is found that the physical and chemical changes of the irradiated polystyrene were found to be corresponded with the radiation dosages. Later, combining Laser irradiation and Reactive Ion Etching manipulation, created a facile technique that we called as LARIEA NSL (Laser and Reactive Ion Etching Assisted Nanosphere Lithography) which can be a facile technique to fabricate controllable carbonaceous nanoparticles for applications such as lithographic mask, catalysts and heavy metal absorbers.

  6. The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes

    PubMed Central

    Nakamura, Ryusuke; Bittencourt, Carla

    2015-01-01

    Summary Hollow nanostructures are ranked among the top materials for applications in various modern technological areas including energy storage devices, catalyst, optics and sensors. The last years have witnessed increasing interest in the Kirkendall effect as a versatile route to fabricate hollow nanostructures with different shapes, compositions and functionalities. Although the conversion chemistry of nanostructures from solid to hollow has reached a very advanced maturity, there is still much to be discovered and learned on this effect. Here, the recent progress on the use of the Kirkendall effect to synthesize hollow nanospheres and nanotubes is reviewed with a special emphasis on the fundamental mechanisms occurring during such a conversion process. The discussion includes the oxidation of metal nanostructures (i.e., nanospheres and nanowires), which is an important process involving the Kirkendall effect. For nanospheres, the symmetrical and the asymmetrical mechanisms are both reviewed and compared on the basis of recent reports in the literature. For nanotubes, in addition to a summary of the conversion processes, the unusual effects observed in some particular cases (e.g., formation of segmented or bamboo-like nanotubes) are summarized and discussed. Finally, we conclude with a summary, where the prospective future direction of this research field is discussed. PMID:26199838

  7. Protein nanospheres: synergistic nanoplatform-based probes for multimodality imaging

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Wang, Paul C.; Siegel, Eliot L.

    2011-03-01

    No single clinical imaging modality has the ability to provide both high resolution and high sensitivity at the anatomical, functional and molecular level. Synergistically integrated detection techniques overcome these barriers by combining the advantages of different imaging modalities while reducing their disadvantages. We report the development of protein nanospheres optimized for enhancing MRI, CT and US contrast while also providing high sensitivity optical detection. Transferrin protein nanospheres (TfpNS), silicon coated, doped rare earth oxide and rhodamine B isothiocyanate nanoparticles, Si⊂Gd2O3:Eu,RBITC, (NP) and transferrin protein nanospheres encapsulating Si⊂Gd2O3:Eu,RBITC nanoparticles (TfpNS-NP) were prepared in tissue-mimicking phantoms and imaged utilizing multiple cross-sectional imaging modalities. Preliminary results indicate a 1:1 NP to TfpNS ratio in TfpNS-NP and improved sensitivity of detection for MRI, CT, US and fluorescence imaging relative to its component parts and/or many commercially available contrast agents.

  8. Recent Advances on Carbon Nanospheres. Synthetic Routes and Applications

    DOE PAGES

    Zhang, Pengfei; Qiao, Zhenan; Dai, Sheng

    2015-04-02

    Carbon-based materials are the most popular material types in both fundamental research and industrial applications, partly because of their well-controlled nano-morphologies. In the past two decades, we have witnessed a number of breakthroughs in carbon research: fullerenes, carbon nanotubes, and more recently graphene. Nowadays, carbon nanospheres are attracting more and more attention worldwide due to their excellent performance in various fields: drug delivery, heterogeneous catalysis, encapsulation of support and electrode materials. Actually, spherical carbon is an old material, whereas controlling carbon spheres in the nanometer range is a recent story. In the past 5 years, it has become possible tomore » precisely control the particle size, surface area, pore size, chemical composition, and dispersity of carbon nanospheres. Toward this end, a number of synthetic strategies are emerging, such as hydrothermal carbonization of biomass-based resources, extended Stöber synthesis, and organic–organic self-assembly via different binding methods. In this feature article, we summarize recent routes for carbon nanospheres and briefly touch on their applications to shed light on the potential of this field. Throughout this article, a special emphasis is placed on the possible modulation of spherical structures at the nanoscale, and we wish to inspire many more designs and applications of carbon nanostructures in the near future.« less

  9. Nanospheres, nanotubes, toroids, and gels with controlled macroscopic chirality.

    PubMed

    Arias, Sandra; Freire, Félix; Quiñoá, Emilio; Riguera, Ricardo

    2014-12-01

    The interaction of a highly dynamic poly(aryl acetylene) (poly-1) with Li(+), Na(+), and Ag(+) leads to macroscopically chiral supramolecular nanospheres, nanotubes, toroids, and gels. With Ag(+), nanospheres with M helicity and tunable sizes are generated, which complement those obtained from the same polymer with divalent cations. With Li(+) or Na(+), poly-1 yields chiral nanotubes, gels, or toroids with encapsulating properties and M helicity. Right-handed supramolecular structures can be obtained by using the enantiomeric polymer. The interaction of poly-1 with Na(+) produces nanostructures whose helicity is highly dependent on the solvation state of the cation. Therefore, structures with either of the two helicities can be prepared from the same polymer by manipulation of the cosolvent. Such chiral nanotubes, toroids, and gels have previously not been obtained from helical polymer-metal complexes. Chiral nanospheres made of poly(aryl acetylene) that were previously assembled with metal(II) species can now be obtained with metal(I) species. PMID:25209219

  10. Recent Advances on Carbon Nanospheres. Synthetic Routes and Applications

    SciTech Connect

    Zhang, Pengfei; Qiao, Zhenan; Dai, Sheng

    2015-04-02

    Carbon-based materials are the most popular material types in both fundamental research and industrial applications, partly because of their well-controlled nano-morphologies. In the past two decades, we have witnessed a number of breakthroughs in carbon research: fullerenes, carbon nanotubes, and more recently graphene. Nowadays, carbon nanospheres are attracting more and more attention worldwide due to their excellent performance in various fields: drug delivery, heterogeneous catalysis, encapsulation of support and electrode materials. Actually, spherical carbon is an old material, whereas controlling carbon spheres in the nanometer range is a recent story. In the past 5 years, it has become possible to precisely control the particle size, surface area, pore size, chemical composition, and dispersity of carbon nanospheres. Toward this end, a number of synthetic strategies are emerging, such as hydrothermal carbonization of biomass-based resources, extended Stöber synthesis, and organic–organic self-assembly via different binding methods. In this feature article, we summarize recent routes for carbon nanospheres and briefly touch on their applications to shed light on the potential of this field. Throughout this article, a special emphasis is placed on the possible modulation of spherical structures at the nanoscale, and we wish to inspire many more designs and applications of carbon nanostructures in the near future.

  11. New chitosan nanospheres for the delivery of 5-fluorouracil: preparation, characterization and in vitro studies.

    PubMed

    Cavalli, Roberta; Leone, Federica; Minelli, Rosalba; Fantozzi, Roberto; Dianzani, Chiara

    2014-01-01

    The aim of this work was to develop new chitosan nanospheres for the delivery of 5-fluorouracil (5-FU). Drug loaded nanospheres were prepared using a technique derived from a combination of coacervation and emulsion droplet coalescence methods. The size and morphology of nanospheres were characterized by laser light scattering and transmission electron microscopy. The 5-FU interaction with chitosan nanospheres was investigated by DSC analysis and FT-IR spectroscopy. The in vitro release was studied by dialysis bag technique. Cytotoxicity of 5-FU loaded chitosan nanospheres was evaluated in vitro on HT29 and PC-3 cell lines. The effects of 5-FU loaded chitosan nanospheres on adhesion of tumor cells to human umbilical vein endothelial cells (HUVEC) were also investigated. 5-FU loaded chitosan nanospheres appeared with a spherical shape, with a mean diameter of about 200 nm and a negative zeta potential of about - 6.0 mV. The successful interaction between drug and chitosan nanosphere matrix was demonstrated by both DSC and FT-IR analyses. The quantitative determination of 5-FU was assayed by UV-Vis analysis. The encapsulation efficiency of 5-FU content was about 70%. A kinetic study of in vitro release demonstrated that the percentages of 5-FU delivered from nanospheres was approx. 10% after 3 hours. The in vitro studies showed that 5-FU loaded nanospheres were effective in reducing tumor cell proliferation in a time- and concentration-dependent manner. 5-FU nanospheres were also able to inhibit both HT29 and PC-3 adhesion to HUVEC after 48 hours of treatment. PMID:24499357

  12. Microleakage of Three Types of Glass Ionomer Cement Restorations: Effect of CPP-ACP Paste Tooth Pretreatment

    PubMed Central

    Doozandeh, Maryam; Shafiei, Fereshteh; Alavi, Mostafa

    2015-01-01

    Statement of the Problem Casein phosphopeptide–amorphous calcium phosphate (CPP-ACP) increases the mineral content of tooth structure. This may enhance the chemical bonding of glass ionomer cements (GIC) and marginal sealing of their restorations. Purpose The aim of this study was to evaluate the effect of CPP-ACP paste pretreatment on the microleakage of three types of GIC. Materials and Method In this study, 72 Class V cavities were prepared on the buccal and lingual surfaces of molars with occlusal margins in enamel and gingival margins in root. The cavities were divided into 6 groups. Cavities in group 1 and 2 were restored with Fuji II, group 3 and 4 with Fuji II LC, and group 5 and 6 with Ketac N100 with respect to the manufacturers’ instructions. In groups 2, 4 and 6, CPP-ACP containing paste (MI paste) was placed into the cavities for 3 minutes before being filled with GIC. The teeth were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. Kruskall-Wallis and Chi-Square tests were used to analyze the data. Result There were no statistically significant differences between the control and the CPP-ACP pretreatment groups in enamel and dentin margins. In pairwise comparisons, there were no significant differences between the control and the experimental groups in enamel margin, and in dentin margins of G1 and 2, G5 and 6; however, a significant differences was detected in dentin margins between G3 and 4 (p= 0.041). Conclusion CPP-ACP paste pretreatment did not affect the microleakage of Fuji II and Ketac N100 in enamel or dentin, but decreased the microleakage in dentine margins of Fuji II LC when cavity conditioner was applied before surface treatment. PMID:26331147

  13. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    PubMed

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo.

  14. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    PubMed

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo. PMID:25293870

  15. Plasmon-coupled gold nanospheres for two-photon imaging and photoantibacterial activity.

    PubMed

    Yuan, Peiyan; Ding, Xin; Guan, Zhenping; Gao, Nengyue; Ma, Rizhao; Jiang, Xiao-Fang; Yang, Yi Yan; Xu, Qing-Hua

    2015-04-01

    Positively charged Au nanospheres are found to form aggregates on the bacterial surface, resulting in significantly enhanced two-photon photoluminescence (TPPL). The enhanced TPPL is successfully utilized to image bacterial cells in the NIR region. In addition, these Au nanospheres effectively eradicate the bacterial cells by laser pulses in the same NIR region due to the photothermal effect.

  16. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    EPA Science Inventory

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  17. La2O3 hollow nanospheres for high performance lithium-ion rechargeable batteries.

    PubMed

    Sasidharan, Manickam; Gunawardhana, Nanda; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Nakashima, Kenichi

    2012-03-28

    An efficient and simple protocol for synthesis of novel La(2)O(3) hollow nanospheres of size about 30 ± 2 nm using polymeric micelles is reported. The La(2)O(3) hollow nanospheres exhibit high charge capacity and cycling performance in lithium-ion rechargeable batteries (LIBs), which was scrutinized for the first time among the rare-earth oxides.

  18. One-pot synthesis, optical property and self-assembly of monodisperse silver nanospheres

    SciTech Connect

    Tang Aiwei; Qu Shengchun; Hou Yanbing; Teng Feng; Wang Yongsheng; Wang Zhanguo

    2011-08-15

    High-quality spherical silver (Ag) nanocrystals have been synthesized by using a one-pot approach, in which pre-synthesis of organometallic precursors is not required. This reaction involves the thermolysis of a mixed solution of silver acetate and n-dodecanethiol in a non-coordinating organic solvent. The size of the as-obtained Ag nanospheres can be controlled by adjusting the reaction time, reaction temperature and the amount of silver acetate added. The growth and nucleation process of the resultant Ag nanospheres have been studied by employing UV-vis absorption spectra and transmission electron microscopy (TEM) images. Furthermore, these Ag nanospheres have good self-assembly behaviors, and they are easily self-assembled into two- or three-dimensional superlattice structures due to the bundling and interdigitation of thiolate molecules adsorbed on Ag nanospheres. This one-pot synthetic procedure is simple and highly reproducible, which may be extended to prepare other noble-metal nanocrystals. - Graphical abstract: Different sized and monodisperse silver nanospheres were prepared using a one-pot approach with no pre-synthesis of organometallic precursors, and the silver nanospheres can self-assemble into highly ordered superlattices. Highlights: > Monodisperse silver nanospheres have been synthesized by a one-pot approach. > The synthetic method does not need pre-synthesis of organometallic precursors. > The silver nanospheres can self-assemble into highly ordered superlattices. > This synthetic method can be extended to prepare other metal nanocrystals.

  19. Inward lithium-ion breathing of hierarchically porous silicon anodes.

    PubMed

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Liu, Gao; Zhao, Peng; Zhang, Sulin; Wang, Chongmin; Lu, Yunfeng; Cai, Mei

    2015-11-05

    Silicon has been identified as a highly promising anode for next-generation lithium-ion batteries (LIBs). The key challenge for Si anodes is large volume change during the lithiation/delithiation cycle that results in chemomechanical degradation and subsequent rapid capacity fading. Here we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. On charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward Li breathing with negligible particle-level outward expansion. Our mechanics analysis revealed that such inward expansion is enabled by the much stiffer lithiated layer than the unlithiated porous layer. LIBs assembled with the hp-SiNSs exhibit high capacity, high power and long cycle life, which is superior to the current commercial Si-based anode materials. The low-cost synthesis approach provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.

  20. Inward lithium-ion breathing of hierarchically porous silicon anodes

    PubMed Central

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Liu, Gao; Zhao, Peng; Zhang, Sulin; Wang, Chongmin; Lu, Yunfeng; Cai, Mei

    2015-01-01

    Silicon has been identified as a highly promising anode for next-generation lithium-ion batteries (LIBs). The key challenge for Si anodes is large volume change during the lithiation/delithiation cycle that results in chemomechanical degradation and subsequent rapid capacity fading. Here we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. On charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward Li breathing with negligible particle-level outward expansion. Our mechanics analysis revealed that such inward expansion is enabled by the much stiffer lithiated layer than the unlithiated porous layer. LIBs assembled with the hp-SiNSs exhibit high capacity, high power and long cycle life, which is superior to the current commercial Si-based anode materials. The low-cost synthesis approach provides a new avenue for the rational design of hierarchically porous structures with unique materials properties. PMID:26538181

  1. A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system.

    PubMed

    Schindel, Daniel; Singh, Mahi R

    2015-09-01

    We have studied energy absorption rate in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. We applied a control field to induce dipole moments in the quantum dot and the metal nanosphere, and monitored the energy absorption using a probe field. These external fields induce dipole moments in the metal nanosphere and the quantum dot, and these two structures interact with one another via the dipole-dipole interaction. The density matrix method was used to evaluate the absorption, indicating that it can be shifted by moving the metal nanosphere close to the quantum dot. Also, absorption efficiency can either be quenched or enhanced by the addition of a metal nanosphere. This hybrid system can be used to create ultrafast switching and sensing nanodevices.

  2. A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system

    NASA Astrophysics Data System (ADS)

    Schindel, Daniel; Singh, Mahi R.

    2015-09-01

    We have studied energy absorption rate in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. We applied a control field to induce dipole moments in the quantum dot and the metal nanosphere, and monitored the energy absorption using a probe field. These external fields induce dipole moments in the metal nanosphere and the quantum dot, and these two structures interact with one another via the dipole-dipole interaction. The density matrix method was used to evaluate the absorption, indicating that it can be shifted by moving the metal nanosphere close to the quantum dot. Also, absorption efficiency can either be quenched or enhanced by the addition of a metal nanosphere. This hybrid system can be used to create ultrafast switching and sensing nanodevices.

  3. Particle size control of poly(dl-lactide-co-glycolide) nanospheres for sterile applications.

    PubMed

    Tsukada, Yusuke; Hara, Kaori; Bando, Yohei; Huang, C C; Kousaka, Yasuo; Kawashima, Yoshiaki; Morishita, Ryuichi; Tsujimoto, Hiroyuki

    2009-03-31

    Parameters affecting the particle sizes of poly(DL-lactide-co-glycolide) (PLGA) nanospheres produced by the Emulsion Solvent Diffusion (ESD) method were evaluated in this study, so that suitable PLGA nanospheres could be prepared to pass through a membrane filter with 0.2 microm pore size and used as a sterile product. Experimental results demonstrated that the particle sizes of PLGA nanospheres could be reduced by the following efforts. (1) Increase stirring rate of poor solvent. (2) Decrease feed rate of good solvent. (3) Increase poor solvent ratio. (4) Increase the temperature of poor solvent. (5) Decrease polyvinyl alcohol concentration in poor solvent. (6) Increase ethanol concentration in good solvent. (7) Decrease PLGA concentration in good solvent. After optimization, PLGA nanospheres with a mean particle size of 102-163 nm and the 100-98% of filtration fraction could be produced and passed the bacteria challenge tests. This study found PLGA nanospheres can be efficiently prepared as a sterile product.

  4. Enhanced Hot-Carrier Luminescence in Multilayer Reduced Graphene Oxide Nanospheres

    PubMed Central

    Chen, Qi; Zhang, Chunfeng; Xue, Fei; Zhou, Yong; Li, Wei; Wang, Ye; Tu, Wenguang; Zou, Zhigang; Wang, Xiaoyong; Xiao, Min

    2013-01-01

    We report a method to promote photoluminescence emission in graphene materials by enhancing carrier scattering instead of directly modifying band structure in multilayer reduced graphene oxide (rGO) nanospheres. We intentionally curl graphene layers to form nanospheres by reducing graphene oxide with spherical polymer templates to manipulate the carrier scattering. These nanospheres produce hot-carrier luminescence with more than ten-fold improvement of emission efficiency as compared to planar nanosheets. With increasing excitation power, hot-carrier luminescence from nanospheres exhibits abnormal spectral redshift with dynamic feature associated to the strengthened electron-phonon coupling. These experimental results can be well understood by considering the screened Coulomb interactions. With increasing carrier density, the reduced screening effect promotes carrier scattering which enhances hot-carrier emission from such multilayer rGO nanospheres. This carrier-scattering scenario is further confirmed by pump-probe measurements. PMID:23897010

  5. Mesoporous titanium zirconium oxide nanospheres with potential for drug delivery applications.

    PubMed

    Wang, Xiaojian; Chen, Dehong; Cao, Lu; Li, Yuncang; Boyd, Ben J; Caruso, Rachel A

    2013-11-13

    Mesoporous titanium zirconium (TiZr) oxide nanospheres with variable Ti to Zr ratios were synthesized using sol-gel chemistry followed by solvothermal treatment. These oxide nanospheres exhibited similar diameters (~360 nm), high surface areas (from 237 ± 2 to 419 ± 4 m(2) g(-1)), and uniform pore diameters (~3.7 nm). Three drugs, ibuprofen, dexamethasone, and erythromycin, were loaded into the TiZr oxide nanospheres. The TiZr oxide nanospheres exhibited a high loading capacity, up to 719 mg g(-1), and sustained release profiles in phosphate buffered saline (PBS) at pH 7.4. The mesoporous TiZr oxide nanospheres also exhibited hydrolytic stability, as evidenced by the retention of the integrity of the mesostructures after drug release in PBS for 21 days.

  6. Laser-Modified Black Titanium Oxide Nanospheres and Their Photocatalytic Activities under Visible Light.

    PubMed

    Chen, Xing; Zhao, Dongxu; Liu, Kewei; Wang, Chunrui; Liu, Lei; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2015-07-29

    A facile pulse laser ablation approach for preparing black titanium oxide nanospheres, which could be used as photocatalysts under visible light, is proposed. The black titanium oxide nanospheres are prepared by pulsed-laser irradiation of pure titanium oxide in suspended aqueous solution. The crystalline phases, morphology, and optical properties of the obtained nanospheres are characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and UV-vis-NIR diffuse reflectance spectroscopy. It is shown that high-energy laser ablation of titanium oxide suspended solution benefited the formation of Ti(3+) species and surface disorder on the surface of the titanium oxide nanospheres. The laser-modified black titanium oxide nanospheres could absorb the full spectrum of visible light, thus exhibiting good photocatalytic performance under visible light.

  7. Dye-attached magnetic poly(hydroxyethyl methacrylate) nanospheres for albumin depletion from human plasma.

    PubMed

    Gökay, Öznur; Karakoç, Veyis; Andaç, Müge; Türkmen, Deniz; Denizli, Adil

    2015-02-01

    The selective binding of albumin on dye-affinity nanospheres was combined with magnetic properties as an alternative approach for albumin depletion from human plasma. Magnetic poly(hydroxyethyl methacrylate) (mPHEMA) nanospheres were synthesized using mini-emulsion polymerization method in the presence of magnetite powder. The specific surface area of the mPHEMA nanospheres was found to be 1302 m(2)/g. Subsequent to Cibacron Blue F3GA (CB) immobilization onto mPHEMA nanospheres, a serial characterization processing was implemented. The quantity of immobilized CB was calculated as 800 μmol/g. Ultimately, albumin adsorption performance of the CB-attached mPHEMA nanospheres from both aqueous dissolving medium and human plasma were explored.

  8. Supramolecular self-assembly carbazolyl radicals nanospheres triggered by ultraviolet light for explosives sensing.

    PubMed

    Ma, Hongwei; Li, Feng; Zhang, Yanan; Li, Xiaobai; Li, Tao; Shen, Fangzhong; Zhang, Ming

    2016-11-01

    In this work, we designed and synthesized a carbazole-type molecule that can form carbazolyl radicals in chloroform solution under the irradiation of UV light. The process is accompanied by an obvious change in the emission color from blue to bright green. The radicals and the neutral molecules assemble together and form nanospheres through synergistic effect of π-π stacking, intermolecular hydrogen bonds and charge transfer interaction. High resolution-transmission electron microscopy (HR-TEM) is used to confirm the nanospheres. The radius sizes of the nanospheres are mainly in 80-100nm. Further, these nanospheres act as the fluorescence sensor for explosives detection, and they exhibit high selectivity and sensitivity to 2, 4, 6-trinitrophenol (TNP). The limit of detection for nanospheres is 1.2×10(-7)M. PMID:27591596

  9. Electroplated porous polypyrrole nanostructures patterned by colloidal lithography for drug-delivery applications.

    PubMed

    Pokki, J; Ergeneman, O; Sivaraman, K M; Ozkale, B; Zeeshan, M A; Lühmann, T; Nelson, B J; Pané, S

    2012-05-21

    Porous nanostructures of polypyrrole (Ppy) were fabricated using colloidal lithography and electrochemical techniques for potential applications in drug delivery. A sequential fabrication method was developed and optimized to maximize the coverage of the Ppy nanostructures and to obtain a homogeneous layer over the substrate. This was realized by masking with electrophoretically-assembled polystyrene (PS) nanospheres and then electroplating. Drug/biomolecule adsorption and the release characteristics for the porous nanostructures of Ppy were investigated using rhodamine B (Rh-B). Rh-B is an easily detectable small hydrophobic molecule that is used as a model for many drugs or biological substances. The porous Ppy nanostructures with an enhanced surface area exhibited higher Rh-B loading capacity than bulk planar films of Ppy. Moreover, tunability of surface morphology for further applications (e.g., sensing, cell adhesion) was demonstrated.

  10. Biomimetic Remineralization of Demineralized Dentine Using Scaffold of CMC/ACP Nanocomplexes in an In Vitro Tooth Model of Deep Caries

    PubMed Central

    Chen, Zhen; Cao, Shansong; Wang, Haorong; Li, Yanqiu; Kishen, Anil; Deng, Xuliang; Yang, Xiaoping; Wang, Yinghui; Cong, Changhong; Wang, Huajun; Zhang, Xu

    2015-01-01

    Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID). PMID:25587986

  11. Overexpression of the olive acyl carrier protein gene (OeACP1) produces alterations in fatty acid composition of tobacco leaves.

    PubMed

    De Marchis, Francesca; Valeri, Maria Cristina; Pompa, Andrea; Bouveret, Emmanuelle; Alagna, Fiammetta; Grisan, Simone; Stanzione, Vitale; Mariotti, Roberto; Cultrera, Nicolò; Baldoni, Luciana; Bellucci, Michele

    2016-02-01

    Taking into account that fatty acid (FA) biosynthesis plays a crucial role in lipid accumulation in olive (Olea europaea L.) mesocarp, we investigated the effect of olive acyl carrier protein (ACP) on FA composition by overexpressing an olive ACP cDNA in tobacco plants. The OeACP1.1A cDNA was inserted in the nucleus or in the chloroplast DNA of different tobacco plants, resulting in extensive transcription of the transgenes. The transplastomic plants accumulated lower olive ACP levels in comparison to nuclear-transformed plants. Moreover, the phenotype of the former plants was characterized by pale green/white cotyledons with abnormal chloroplasts, delayed germination and reduced growth. We suggest that the transplastomic phenotype was likely caused by inefficient olive ACP mRNA translation in chloroplast stroma. Conversely, total lipids from leaves of nuclear transformants expressing high olive ACP levels showed a significant increase in oleic acid (18:1) and linolenic acid (18:3), and a concomitant significant reduction of hexadecadienoic acid (16:2) and hexadecatrienoic acid (16:3). This implies that in leaves of tobacco transformants, as likely in the mesocarp of olive fruit, olive ACP not only plays a general role in FA synthesis, but seems to be specifically involved in chain length regulation forwarding the elongation to C18 FAs and the subsequent desaturation to 18:1 and 18:3. PMID:26560313

  12. Synthesis of functional carbon nanospheres by a composite-molten-salt method and amperometric sensing of hydrogen peroxide.

    PubMed

    Wang, Xue; Hu, Chenguo; Xiong, Yufeng; Zhang, Cuiling

    2013-02-01

    Functional carbon nanospheres have been synthesized from analytically pure glucose by a composite-molten-salt (CMS) method. Field emission scanning electron microscopy, transmission electron microscopy, Raman and Fourier transformation infra-red spectroscopy indicate the carbon nanospheres are solid, bond hybridisation (sp2/sp3) and with many functional groups on their surfaces. Amperometric sensor based on the synthesized carbon nanospheres have been fabricated without pretreatment or modification. The detection of hydrogen peroxide exhibits high sensitivity and good selectivity. The electrochemical measurement of these nanospheres demonstrates much superior performance to those of the carbon nanospheres synthesized by hydrothermal method.

  13. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    PubMed Central

    Al-Amri, Amal M.; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%. PMID:27339612

  14. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres.

    PubMed

    Al-Amri, Amal M; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%. PMID:27339612

  15. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    NASA Astrophysics Data System (ADS)

    Al-Amri, Amal M.; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He-Hau, Jr.

    2016-06-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  16. Pomegranate-like N,P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution.

    PubMed

    Chen, Yu-Yun; Zhang, Yun; Jiang, Wen-Jie; Zhang, Xing; Dai, Zhihui; Wan, Li-Jun; Hu, Jin-Song

    2016-09-27

    Well-defined pomegranate-like N,P-doped Mo2C@C nanospheres were prepared by simply using phosphomolybdic acid (PMo12) to initiate the polymerization of polypyrrole (PPy) and as a single source for Mo and P to produce N,P-doped Mo2C nanocrystals. The existence of PMo12 at the molecular scale in the polymer network allows the formation of pomegranate-like Mo2C@C nanospheres with a porous carbon shell as peel and Mo2C nanocrystals well-dispersed in the N-doped carbon matrix as seeds. This nanostructure provides several favorable features for hydrogen evolution application: (1) the conductive carbon shell and matrix effectively prevent the aggregation of Mo2C nanocrystals and facilitate electron transportation; (2) the uniform N,P-doping in the carbon shell/matrix and plenty of Mo2C nanocrystals provide abundant catalytically highly active sites; and (3) nanoporous structure allows the effective exposure of active sites and mass transfer. Moreover, the uniform distribution of P and Mo from the single source of PMo12 and N from PPy in the polymeric PPy-PMo12 precursor guarantees the uniform N- and P-co-doping in both the graphitic carbon matrix and Mo2C nanocrystals, which contributes to the enhancement of electrocatalytic performance. As a result, the pomegranate-like Mo2C@C nanospheres exhibit extraordinary electrocatalytic activity for the hydrogen evolution reaction (HER) in terms of an extremely low overpotential of 47 mV at 10 mA cm(-2) in 1 M KOH, which is one of the best Mo-based HER catalysts. The strategy for preparing such nanostructures may open up opportunities for exploring low-cost high-performance electrocatalysts for various applications. PMID:27617483

  17. Optimized zein nanospheres for improved oral bioavailability of atorvastatin

    PubMed Central

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA

    2015-01-01

    Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716

  18. Fabrication of SERS Substrate by Multilayered Nanosphere Deposition Technique

    SciTech Connect

    Fu, Chit Yaw; Dinish, U. S.; Praveen, Thoniyot; Koh, Zhen Yu; Kho, Khiang Wei; Malini, Olivo

    2010-08-06

    Metal film over nanosphere (MFON) has been employed as a reproducible and predictable SERS-active device in biosensing applications. In addition to its economic fabrication process, such substrate can be further processed to a prism-structure with increased SERS enhancement and wider Plasmon tunability. In this work, we investigate an alternative coating method to deposit a larger area of well-ordered PS beads with different sizes (oe = 100nm and 400 nm) onto a glass. The result suggests that the proposed well-coating technique can be suitably used to form closely-packed PS beads with diameter less than 100 nm for developing MFON substrates.

  19. Polycationic peptides from diatom biosilica that direct silica nanosphere formation.

    PubMed

    Kröger, N; Deutzmann, R; Sumper, M

    1999-11-01

    Diatom cell walls are regarded as a paradigm for controlled production of nanostructured silica, but the mechanisms allowing biosilicification to proceed at ambient temperature at high rates have remained enigmatic. A set of polycationic peptides (called silaffins) isolated from diatom cell walls were shown to generate networks of silica nanospheres within seconds when added to a solution of silicic acid. Silaffins contain covalently modified lysine-lysine elements. The first lysine bears a polyamine consisting of 6 to 11 repeats of the N-methyl-propylamine unit. The second lysine was identified as epsilon-N,N-dimethyl-lysine. These modifications drastically influence the silica-precipitating activity of silaffins.

  20. SURFACE COATING EFFECTS ON THE ASSEMBLY OF GOLD NANOSPHERES

    SciTech Connect

    Meyer, Kent A; Shuford, Kevin L; Whitten, William B; Shaw, Robert W

    2010-01-01

    Optical spectra and atomic force microscopy (AFM) images of individually selected spheres and mechanically assembled silica-coated gold nanosphere pairs were recorded. The 10-nm spacing of the spheres allowed discrete dipole approximation (DDA) computational simulations to provide a meaningful results regarding the dimers. Both the data and simulation indicate that the silica shell integrity was maintained throughout the assembly, so that the shell therefore served as a means of rigid control of the spacing between the metal cores. Optical perturbative effects due to the presence of the fused silica substrate were negligible. Experimental investigations regarding less rigid polyvinylpyrrolidone (PVP) coatings also were performed and some comparisons were made.

  1. Surface coating effects on the assembly of gold nanospheres.

    PubMed

    Meyer, Kent A; Polemi, Alessia; Shuford, Kevin L; Whitten, William B; Shaw, Robert W

    2010-10-15

    Optical spectra and atomic force microscopy (AFM) images of individually selected spheres and mechanically assembled silica-coated gold nanosphere pairs were recorded. The shell served as a means of rigid control of the minimum spacing between the metal cores. The spectra of the assembled spheres were simulated using classical electrodynamics. The observed spectra resulted in superior characterization of the particle assembly geometry, relative to the AFM data. Experimental investigations regarding less-rigid polyvinylpyrrolidone (PVP) sphere coatings were also performed and some comparisons were made.

  2. Quercetin-Imprinted Nanospheres as Novel Drug Delivery Devices

    PubMed Central

    Curcio, Manuela; Cirillo, Giuseppe; Parisi, Ortensia Ilaria; Iemma, Francesca; Picci, Nevio; Puoci, Francesco

    2012-01-01

    In this work, molecularly imprinted nanospheres for controlled/sustained release of quercetin were synthesized employing methacrylic acid and ethylene glycoldymethacrylate as functional monomer and crosslinking agent, respectively. One pot precipitation polymerization was chosen as polymerization technique to obtain nanosized materials with spherical shape. Morphological and hydrophilic properties by scanning electron microscopy and water content measurements were determined, and recognition and selectivity properties of the imprinted materials were tested using the template quercetin and its structural analogue, the flavonoid catechin. Finally, the applicability of the obtained materials as drug delivery devices was evaluated by performing in vitro release studies in plasma simulating fluids and cytotoxicity testson HeLa cells. PMID:24955531

  3. Fabrication and characterization of DNA-loaded zein nanospheres

    PubMed Central

    2012-01-01

    Background Particulates incorporating DNA are promising vehicles for gene delivery, with the ability to protect DNA and provide for controlled, localized, and sustained release and transfection. Zein, a hydrophobic protein from corn, is biocompatible and has properties that make it a promising candidate material for particulate delivery, including its ability to form nanospheres through coacervation and its insolubility under physiological conditions, making it capable of sustained release of encapsulated compounds. Due to the promise of this natural biomaterial for drug delivery, the objective of this study was to formulate zein nanospheres encapsulating DNA as the therapeutic compound, and to characterize size, charge, sustained release, cell cytotoxicity and cellular internalization of these particles. Results Zein nanospheres encapsulating DNA were fabricated using a coacervation technique, without the use of harsh solvents or temperatures, resulting in the preservation of DNA integrity and particles with diameters that ranged from 157.8 ± 3.9 nm to 396.8 ± 16.1 nm, depending on zein to DNA ratio. DNA encapsulation efficiencies were maximized to 65.3 ± 1.9% with a maximum loading of 6.1 ± 0.2 mg DNA/g zein. The spheres protected encapsulated DNA from DNase I degradation and exhibited sustained plasmid release for at least 7 days, with minimal burst during the initial phase of release. Zein/DNA nanospheres demonstrated robust biocompatibility, cellular association, and internalization. Conclusions This study represents the first report on the formation of zein particles encapsulating plasmid DNA, using simple fabrication techniques resulting in preservation of plasmid integrity and tunable sizes. DNA encapsulation efficiencies were maximized to acceptable levels at higher zein to DNA ratios, while loading was comparable to that of other hydrophilic compounds encapsulated in zein and that of DNA incorporated into PLGA nano- and

  4. Delayed information flow effect in economy systems. An ACP model study

    NASA Astrophysics Data System (ADS)

    Miśkiewicz, Janusz; Ausloos, M.

    2007-08-01

    Applying any strategy requires some knowledge about the past state of the system. Unfortunately in the case of economy, collecting information is a difficult, expensive and time consuming process. Therefore, the information about the system is usually known only at the end of some well-defined intervals, e.g. through company, national bank inflation data and Gross Domestic Product (GDP) reports, etc. They describe a (market) situation in the past. The time delay is specific to the market branch. It can be very short (e.g. stock market offer is updated every minute or so and this information is quasi-immediately available) or long, like months in the case of agricultural markets, when the decisions are taken based on the results from the previous harvest. The analysis of the information flow delay can be based on the Ausloos-Clippe-Pękalski (ACP) model of spatial evolution of economic systems. The entities can move on a (square) lattice and when meeting take one of the two following decisions: merge or create a new entity. The decision is based on the system state, which is known with some time delay. The effect of system's feedback is hereby investigated. We consider the case of company distribution evolution in a heterogeneous field. The information flow time delay implies different final states, including cycles; it is like a control parameter in a logistic map.

  5. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus

    DOE PAGES

    Wang, Hui; Lu, Yang; Liu, Li; Kim, Sung Won; Hooker, Jacob M.; Fowler, Joanna S.; Tonge, Peter J.

    2014-09-06

    Here we evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a Ki value of 0.01 nM and a residence time of 750 min on the enzyme target in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU’s in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in both healthymore » and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ~1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo.« less

  6. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus

    SciTech Connect

    Wang, Hui; Lu, Yang; Liu, Li; Kim, Sung Won; Hooker, Jacob M.; Fowler, Joanna S.; Tonge, Peter J.

    2014-09-06

    Here we evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a Ki value of 0.01 nM and a residence time of 750 min on the enzyme target in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU’s in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in both healthy and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ~1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo.

  7. Synthesis of Au-SiO2 Composite Nanospheres and Their Catalytic Activity.

    PubMed

    Dexuan, Wang; Guian, Li; Qingyan, Han; Ziqiang, Wang; Liping, Pan; Zhonayue, Zhang; Hairong, Zhenq

    2016-04-01

    We report a simple and environmentally friendly approach to the synthesis of Au-SiC2 composite nanospheres. Our method presents a route for the decoration of preformed amine functionalized SiO2 nanospheres by in situ formation of Au nanoparticles at three different concentrations of Au precursor (HAuCl4). Herein, the silane coupling agent (KH-550) is used as an intermediary to connect the Au nanoparticles to the surfaces of the SiO2 nanospheres, which helps avoid the aggregation of Au nanoparticles. The crystal structure, chemical elements, morphology and catalytic properties of the Au-SiO2 composite nanospheres were analyzed by transmission electron microscopy (TEM), X-Ray powder diffraction (XRD), UV-vis-spectrophotometer (UV-vis) and X-ray photoelectron spectroscopy (XPS). The analytical results demonstrate that the Au nanoparticles (4-9 nm) were homogeneously distributed on the surface of the SiO2 nanospheres, which had a good FCC crystal structure. Moreover, the Au-SiO2 composite nanospheres exhibited good catalytic properties, measured by their ability to reduce organic dyes. The Au-SiO2 composite nanospheres are promising candidates for applications in catalysis and wastewater treatment. PMID:27451717

  8. Water-in-Water Emulsion Based Synthesis of Hydrogel Nanospheres with Tunable Release Kinetics

    NASA Astrophysics Data System (ADS)

    Aydın, Derya; Kızılel, Seda

    2016-06-01

    Poly(ethylene glycol) (PEG) micro/nanospheres have several unique advantages as polymer based drug delivery systems (DDS) such as tunable size, large surface area to volume ratio, and colloidal stability. Emulsification is one of the widely used methods for facile synthesis of micro/nanospheres. Two-phase aqueous system based on polymer-polymer immiscibility is a novel approach for preparation of water-in-water (w/w) emulsions. This method is promising for the synthesis of PEG micro/nanospheres for biological systems, since the emulsion is aqueous and do not require organic solvents or surfactants. Here, we report the synthesis of nano-scale PEG hydrogel particles using w/w emulsions using phase separation of dextran and PEG prepolymer. Dynamic light scattering (DLS) and scaning electron microscopy (SEM) results demonstrated that nano-scale hydrogel spheres could be obtained with this approach. We investigated the release kinetics of a model drug, pregabalin (PGB) from PEG nanospheres and demonstrated the influence of polymerization conditions on loading and release of the drug as well as the morphology and size distribution of PEG nanospheres. The experimental drug release data was fitted to a stretched exponential function which suggested high correlation with experimental results to predict half-time and drug release rates from the model equation. The biocompatibility of nanospheres on human dermal fibroblasts using cell-survival assay suggested that PEG nanospheres with altered concentrations are non-toxic, and can be considered for controlled drug/molecule delivery.

  9. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application. PMID:26210098

  10. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application.

  11. Results of Second Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect

    Reda, I.; Grobner, J.; Wacker, S.

    2014-01-01

    The Absolute Cavity Pyrgeometer (ACP) and InfraRed Integrating Sphere radiometer (IRIS) are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are un-windowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The second outdoor comparison between the two designs was held from September 30 to October 11, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of the IRIS was within 1 W/m2 (3 IRISs: PMOD + Australia + Germany). From the first and second comparisons, a difference of 4-6 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG). This presentation includes results from the first and second comparison in an effort to establish the world reference for pyrgeometer calibrations, a key deliverable for the World Meteorological Organization (WMO), and the DOE-ASR.

  12. Sustained Ocular Delivery of Ciprofloxacin Using Nanospheres and Conventional Contact Lens Materials

    PubMed Central

    Garhwal, Rahul; Shady, Sally F.; Ellis, Edward J.; Ellis, Jeanne Y.; Leahy, Charles D.; McCarthy, Stephen P.; Crawford, Kathryn S.

    2012-01-01

    Purpose. To formulate conventional contact lenses that incorporate nanosphere-encapsulated antibiotic and demonstrate that the lenses provide for sustained antibacterial activity. Methods. A copolymer composed of pullulan and polycaprolactone (PCL) was used to synthesize core-shell nanospheres that encapsulated ciprofloxacin. Bactericidal activity of the nanosphere-encapsulated ciprofloxacin (nanosphere/cipro) was tested by using liquid cultures of either Staphylococcus aureus or Pseudomonas aeruginosa. Nanosphere/cipro was then incorporated into HEMA-based contact lenses that were tested for growth inhibition of S. aureus or P. aeruginosa in liquid cultures inoculated daily with fresh bacteria. Lens designs included thin or thick lenses incorporating nanosphere/cipro and ciprofloxacin-HCl-soaked Acuvue lenses (Acuvue; Johnson & Johnson Vision Care, Inc., Jacksonville, FL). Results. Less than 2 μg/mL of nanosphere/cipro effectively inhibited the proliferation of cultures inoculated with 107 or 108 bacteria/mL of S. aureus and P. aeruginosa, respectively. HEMA-based contact lenses polymerized with nanosphere/cipro were transparent, effectively inhibited the proliferation of greater than 107/mL of bacteria added daily over 3 days of culture, and killed up to 5 × 109 total microbes in a single inoculation. A thicker lens design provided additional inhibition of bacterial growth for up to 96 hours. Conclusions. Core-shell nanospheres loaded with an antibiotic can be incorporated into a conventional, transparent contact lens and provide for sustained and effective bactericidal activity and thereby provide a new drug delivery platform for widespread use in treating ocular disorders. PMID:22266514

  13. [Development of gene delivery system using PLGA nanospheres].

    PubMed

    Tahara, Kohei; Yamamoto, Hiromitsu; Takeuchi, Hirofumi; Kawashima, Yoshiaki

    2007-10-01

    The development of nonviral vectors for the efficient and safe delivery to cells has long been awaited to facilitate gene therapy. Recently, many nonviral vectors modified with cationic lipids, cationic polymers, etc. have been reported. However, those nonviral vectors with cationic materials require improved stability, longer duration of gene expression, and reduced cytotoxicity. We successfully prepared mucoadhesive poly (lactide-co-glycolide) nanospheres (PLGA NS) by modifying the nanoparticulate surface with chitosan to improve mucosal peptide absorption after oral and pulmonary administration. Furthermore, we found that nucleic acid, which was not dispersed in the organic solvent, could be dispersed by forming a complex with cationic lipid. Using this phenomenon, polynucleic acids for gene therapy (plasmid DNA, antisense oligonucleotide, small interfering RNA, etc.) can be encapsulated into the matrix of the polymer particles with the emulsion solvent diffusion method. The advantages of this preparation method are its simple process and avoidance of an ultrasonication process for submicronization of particles. The resultant nanospheres show better cellular uptake and different gene therapeutic effects compared with conventional vectors due to their improved adherence to cells and sustained release of polynucleic acid in the cells. In conclusion, chitosan-coated PLGA NS can possibly be applied in nonviral vectors for gene therapy.

  14. Excitonic lasing in solution-processed subwavelength nanosphere assemblies

    DOE PAGES

    Appavoo, Kannatassen; Liu, Xiaoze; Menon, Vinod; Sfeir, Matthew Y.

    2016-02-03

    Lasing in solution-processed nanomaterials has gained significant interest because of the potential for low-cost integrated photonic devices. Still, a key challenge is to utilize a comprehensive knowledge of the system’s spectral and temporal dynamics to design low-threshold lasing devices. Here, we demonstrate intrinsic lasing (without external cavity) at low-threshold in an ultrathin film of coupled, highly crystalline nanospheres with overall thickness on the order of ~λ/4. The cavity-free geometry consists of ~35 nm zinc oxide nanospheres that collectively localize the in-plane emissive light fields while minimizing scattering losses, resulting in excitonic lasing with fluence thresholds at least an order ofmore » magnitude lower than previous UV-blue random and quantum-dot lasers (<75 μJ/cm2). Fluence-dependent effects, as quantified by subpicosecond transient spectroscopy, highlight the role of phonon-mediated processes in excitonic lasing. Subpicosecond evolution of distinct lasing modes, together with three-dimensional electromagnetic simulations, indicate a random lasing process, which is in violation of the commonly cited criteria of strong scattering from individual nanostructures and an optically thick sample. Subsequently, an electron–hole plasma mechanism is observed with increased fluence. Furthermore, these results suggest that coupled nanostructures with high crystallinity, fabricated by low-cost solution-processing methods, can function as viable building blocks for high-performance optoelectronics devices.« less

  15. Water-Dispersible, Responsive, and Carbonizable Hairy Microporous Polymeric Nanospheres.

    PubMed

    Mai, Weicong; Sun, Bin; Chen, Luyi; Xu, Fei; Liu, Hao; Liang, Yeru; Fu, Ruowen; Wu, Dingcai; Matyjaszewski, Krzysztof

    2015-10-21

    Multifunctionalization of microporous polymers is highly desirable but remains a significant challenge, considering that the current microporous polymers are generally hydrophobic and nonresponsive to different environmental stimuli and difficult to be carbonized without damage of their well-defined nanomorphology. Herein, we demonstrate a facile and versatile method to fabricate water-dispersible, pH/temperature responsive and readily carbonizable hairy microporous polymeric nanospheres based on combination of the hyper-cross-linking chemistry with the surface-initiated atom transfer radical polymerization (SI-ATRP). The hyper-cross-linking creates a highly microporous core, whereas the SI-ATRP provides diverse functionalities by surface grafting of hairy functional blocks. The as-prepared materials present multifunctional properties, including sensitive response to pH/temperature, high adsorption capacity toward adsorbates from aqueous solution, and valuable transformation into well-defined microporous carbon nanospheres because of hybrid of carbonizable core and thermo-decomposable protection shell. We hope this strategy could promote the development of both functional microporous polymers and advanced hairy nanoparticles for multipurpose applications.

  16. Terahertz plasmon and surface-plasmon modes in hollow nanospheres.

    PubMed

    Xiao, Yiming; Xu, Wen; Zhang, Yaya; Hu, Jiaguang

    2012-10-23

    : We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively.

  17. Excitonic Lasing in Solution-Processed Subwavelength Nanosphere Assemblies

    NASA Astrophysics Data System (ADS)

    Appavoo, Kannatassen; Liu, Xiaoze; Menon, Vinod; Sfeir, Matthew

    Lasing in solution-processed nanomaterials has gained significant interest because of the potential for low-cost integrated photonic devices. Still, a key challenge is designing low-threshold lasing devices based on a comprehensive understanding of the system's spectral and temporal dynamics. Here we show low-threshold random lasing in sub-wavelength thin films of coupled, highly crystalline zinc oxide nanospheres, with an overall thickness on the order of λ/4. The cavity-free geometry consists of 35nm zinc oxide nanospheres that collectively localize the in-plane emissive light fields while minimizing scattering losses, resulting in excitonic lasing with fluence thresholds at least an order of magnitude lower than previous UV-blue random and quantum-dot lasers. Fluence-dependent effects, as quantified by sub-picosecond transient spectroscopy, highlight the role of phonon-mediated processes in excitonic lasing. Sub-picosecond evolution of distinct lasing modes, together with 3D electromagnetic simulations, indicate a random lasing process - in violation of the commonly cited criteria of strong scattering from individual nanostructures. These results show that coupled nanostructures with high crystallinity can function as building blocks for high-performance optoelectronics. Research is carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S.DOE (DE-AC02-98CH10886). This work is supported by the National Science Foundation through Grant No. DMR 1410249.

  18. In vitro evaluation of doxorubicin-incorporated magnetic albumin nanospheres.

    PubMed

    Zeybek, Ayça; Şanlı-Mohamed, Gülşah; Ak, Güliz; Yılmaz, Habibe; Şanlıer, Şenay H

    2014-07-01

    Magnetic albumin nanospheres that incorporate doxorubicin (M-DOX-BSA-NPs) were prepared previously by our research group to develop magnetically responsive drug carrier system. This nanocarrier was synthesized as a drug delivery system for targeted chemotherapy. In this work, cytotoxic effects of doxorubicin (DOX)-loaded/unloaded or magnetic/non-magnetic nanoparticles and free DOX against PC-3 cells and A549 cells were determined with the MTT test and the results were compared with each other. DOX-loaded magnetic albumin nanospheres (M-DOX-BSA-NPs) were found more cytotoxic than other formulations. The quantitative data obtained from flow cytometry analysis further verified the higher targeting and killing ability of M-DOX-BSA-NPs than free DOX on both of the cancer cell lines. Additionally, the results of cell cycle analysis have showed that M-DOX-BSA-NPs affected G1 and G2 phases. Finally, cell images were obtained using spin-disk confocal microscopy, and cellular uptake of M-DOX-BSA-NPs was visualized. The findings of this study suggest that M-DOX-BSA-NPs represent a potential doxorubicin delivery system for targeted drug transport into prostate and lung cancer cells.

  19. Nickel titanates hollow shells: nanosphere, nanorod, and their photocatalytic properties.

    PubMed

    Li, Qiuye; Xing, Yangyang; Zong, Lanlan; Li, Rui; Yang, Jianjun

    2013-01-01

    Two kinds of hollow shell structured nickel titanates (nanosphere, nanorod) were prepared by the microwave-assisted hydrothermal method using carbon material as the template. Their phase structure, morphology, and optical properties were well characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). Comparing with the template-free NiTiO3 (NiTiO3-TF), the two kinds of hollow shell structured NiTiO3 have larger Brunauer-Emmet-Teller (BET) surface areas. Both NiTiO3 nanosphere (NiTiO3-NS) and nanorod (NiTiO3-NR) showed remarkably photocatalytic H2 evolution from the methanol aqueous solution under full-arc lamp and visible light. Additional, their photocatalytic activities were also determined by photo-degradation of methyl blue (MB), and the degradation yield reached nearly 100% within 100 min on NiTiO3-NR under visible light. Whatever in photocatalytic H2 evolution or MB degradation, their photocatalytic activities all followed the order: NiTiO3-NR > NiTiO3-NS > NiTiO3-TF. The higher photocatalytic activities of the hollow shelled NiTiO3 should be due to their larger BET surface areas and more utilization of the incident light. PMID:23646762

  20. Sensing short range forces with a nanosphere matter-wave interferometer

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew; Goldman, Hart

    2015-09-01

    We describe a method for sensing short range forces using matter-wave interference in dielectric nanospheres. When compared with atom interferometers, the larger mass of the nanosphere results in reduced wave-packet expansion, enabling investigations of forces nearer to surfaces in a free-fall interferometer. By laser cooling a nanosphere to the ground state of an optical potential and releasing it by turning off the optical trap, acceleration sensing at the 10-8 m /s2 level is possible. The approach can yield improved sensitivity to Yukawa-type deviations from Newtonian gravity at the 5 μ m length scale by a factor of 104 over current limits.

  1. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  2. Tailored Porous Materials

    SciTech Connect

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  3. Ordered silicon nanowire arrays prepared by an improved nanospheres self-assembly in combination with Ag-assisted wet chemical etching

    NASA Astrophysics Data System (ADS)

    Jia, Guobin; Westphalen, Jasper; Drexler, Jan; Plentz, Jonathan; Dellith, Jan; Dellith, Andrea; Andrä, Gudrun; Falk, Fritz

    2016-04-01

    An improved Langmuir-Blodgett self-assembly process combined with Ag-assisted wet chemical etching for the preparation of ordered silicon nanowire arrays is presented in this paper. The new process is independent of the surface conditions (hydrophilic or hydrophobic) of the substrate, allowing for depositing a monolayer of closely packed polystyrene nanospheres onto any flat surface. A full control of the morphology of the silicon nanowire is achieved. Furthermore, it is observed that the formation of porous-Si at the tips of the nanowires is closely related to the release of Ag nanoparticles from the Ag mask during the etching, which subsequently redeposit on the surface initially free of Ag, and these Ag nanoparticles catalyze the etching of the tips and lead to the porous-Si formation. This finding will help to improve the resulting nano- and microstructures to get them free of pores, and renders it a promising technology for low-cost high throughput fabrication of specific optical devices, photonic crystals, sensors, MEMS, and NEMS by substituting the costly BOSCH process. It is shown that ordered nanowire arrays free of porous structures can be produced if all sources of Ag nanoparticles are excluded, and structures with aspect ratio more than 100 can be produced.

  4. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation.

    PubMed

    Sánchez-García, Alicia; Moreno-Pérez, Antonio J; Muro-Pastor, Alicia M; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2010-06-01

    Acyl-acyl carrier protein (ACP) thioesterases are enzymes that terminate the intraplastidial fatty acid synthesis in plants by hydrolyzing the acyl-ACP intermediates and releasing free fatty acids to be incorporated into glycerolipids. These enzymes are classified in two families, FatA and FatB, which differ in amino acid sequence and substrate specificity. In the present work, both FatA and FatB thioesterases were cloned, sequenced and characterized from castor (Ricinus communis) seeds, a crop of high interest in oleochemistry. Single copies of FatA and FatB were found in castor resulting to be closely related with those of Jatropha curcas. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization after purification, resulting in high catalytic efficiency of RcFatA on oleoyl-ACP and palmitoleoyl-ACP and high efficiencies of RcFatB for oleoyl-ACP and palmitoyl-ACP. The expression profile of these genes displayed the highest levels in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm and young expanding leaves. The contribution of these two enzymes to the synthesis of castor oil is discussed.

  5. Ion-selective optode nanospheres as heterogeneous indicator reagents in complexometric titrations.

    PubMed

    Zhai, Jingying; Xie, Xiaojiang; Bakker, Eric

    2015-03-01

    Traditionally, optical titrations of inorganic ions are based on a rapid and visible color change at the end point with water-soluble organic dyes as indicators. Adequate selectivity is required for both the indicator and the complexing agent, which is often limited. We present here alternative, heterogeneous ionophore-based ion-selective nanospheres as indicators and chelators for optical titrations. The indicating nanospheres rely on a weaker extraction of the analyte of interest by ion-exchange, owing to the additional incorporation of a lipophilic pH indicator in the nanosphere core. Ca(2+) titration was demonstrated as a proof-of-concept. Both the chelating and the indicating nanospheres showed good selectivity and a wide working pH range.

  6. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    PubMed

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-01

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light.

  7. One-pot synthesis, optical property and self-assembly of monodisperse silver nanospheres

    NASA Astrophysics Data System (ADS)

    Tang, Aiwei; Qu, Shengchun; Hou, Yanbing; Teng, Feng; Wang, Yongsheng; Wang, Zhanguo

    2011-08-01

    High-quality spherical silver (Ag) nanocrystals have been synthesized by using a one-pot approach, in which pre-synthesis of organometallic precursors is not required. This reaction involves the thermolysis of a mixed solution of silver acetate and n-dodecanethiol in a non-coordinating organic solvent. The size of the as-obtained Ag nanospheres can be controlled by adjusting the reaction time, reaction temperature and the amount of silver acetate added. The growth and nucleation process of the resultant Ag nanospheres have been studied by employing UV-vis absorption spectra and transmission electron microscopy (TEM) images. Furthermore, these Ag nanospheres have good self-assembly behaviors, and they are easily self-assembled into two- or three-dimensional superlattice structures due to the bundling and interdigitation of thiolate molecules adsorbed on Ag nanospheres. This one-pot synthetic procedure is simple and highly reproducible, which may be extended to prepare other noble-metal nanocrystals.

  8. Tunable assembly of carbon nanospheres on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Qu, Liangti; Zhang, Han; Zhu, Jia; Dai, Liming

    2010-07-01

    We have developed a process for spontaneous assembly of carbon nanospheres on aligned or nonaligned single-walled carbon nanotubes (SWNTs) by virtue of plasma-enhanced chemical vapor deposition (PECVD). The formation of carbon nanospheres with a uniform size of 30-60 nm is a catalyst-free process and strongly dependent on the applied plasma power and other factors. Both co-deposition and post-deposition approaches have been developed for effective assembly of carbon nanospheres on SWNTs. Furthermore, the method developed here also allows us to tailor the density and size of carbon nanospheres along nanotubes in a controllable way. The heterojunction structure based on different types of carbon demonstrated in this study represents a new hybrid manner for building complex systems which are promising for various applications.

  9. Tunable assembly of carbon nanospheres on single-walled carbon nanotubes.

    PubMed

    Qu, Liangti; Zhang, Han; Zhu, Jia; Dai, Liming

    2010-07-30

    We have developed a process for spontaneous assembly of carbon nanospheres on aligned or nonaligned single-walled carbon nanotubes (SWNTs) by virtue of plasma-enhanced chemical vapor deposition (PECVD). The formation of carbon nanospheres with a uniform size of 30-60 nm is a catalyst-free process and strongly dependent on the applied plasma power and other factors. Both co-deposition and post-deposition approaches have been developed for effective assembly of carbon nanospheres on SWNTs. Furthermore, the method developed here also allows us to tailor the density and size of carbon nanospheres along nanotubes in a controllable way. The heterojunction structure based on different types of carbon demonstrated in this study represents a new hybrid manner for building complex systems which are promising for various applications. PMID:20603535

  10. Hydrophobic drug delivery by self-assembling triblock copolymer-derived nanospheres.

    PubMed

    Sheihet, Larisa; Dubin, Robert A; Devore, David; Kohn, Joachim

    2005-01-01

    We describe the synthesis and characterization of a family of biocompatible ABA-triblock copolymers that comprised of hydrophilic A-blocks of poly(ethylene glycol) and hydrophobic B-blocks of oligomers of suberic acid and desaminotyrosyl-tyrosine esters. The triblock copolymers spontaneously self-assemble in aqueous solution into nanospheres, with hydrodynamic diameters between 40 and 70 nm, that do not dissociate under chromatographic and ultracentrifugation conditions. These nanospheres form strong complexes with hydrophobic molecules, including the fluorescent dye 5-dodecanoylaminofluorescein (DAF) and the antitumor drug, paclitaxel, but not with hydrophilic molecules such as fluorescein and Oregon Green. The nanosphere-paclitaxel complexes retain in vitro the high antiproliferative activity of paclitaxel, demonstrating that these nanospheres may be useful for delivery of the hydrophobic drugs.

  11. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    PubMed

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-01

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light. PMID:27136989

  12. Size-dependence of the Lorentz friction for surface plasmons in metallic nanospheres.

    PubMed

    Jacak, Witold A

    2015-02-23

    An inclusion of the Lorentz friction to the damping of plasmons in metallic nanosphere is performed within the random phase approximation quasiclassical approach. The explanation of the experimentally observed anomalous red shift of plasmon resonance frequency with increase of the metallic particle radius for a large size limit is given and the perfect coincidence of the measured plasmon resonance red shift for Au nanospheres with radii 10 - 75 nm and the theory with accurately included Lorentz friction is demonstrated. PMID:25836484

  13. Optical properties of local surface plasmon resonance in Ag/ITO sliced nanosphere by the discrete dipole approximation

    NASA Astrophysics Data System (ADS)

    Haiwei, Mu; Jingwei, Lv; Zhaoting, Liu; Shijie, Zheng; Lin, Yang; Tao, Sun; Qiang, Liu; Chao, Liu

    2016-04-01

    Optical properties of localized surface plasmon resonances (LSPR) of Ag/ITO sliced nanosphere have been studied using discrete dipole approximation and plasmon hybridization theory. It is found that different morphologies of sliced nanosphere can induce distinctive features in the extinction spectra. In the meanwhile, gap distances and refractive index of the surrounding medium could modulate the plasmon hybridization and the LSPR shifting. At large separation, the shift of LSPR peaks for the nanosphere sliced in halves consisting of ITO and Ag is small and insensitive to the gap distance in the weak coupling, whereas smaller separation exhibits a distinct red shift. Additionally, multiple resonance peaks are excited for the nanosphere sliced in quarters consisting of ITO and Ag. In this situation, electric field is mainly distributed in the gap region of sliced nanosphere and the central point. These results indicate that different morphologies of sliced nanosphere could create abundant tunable LSPR modes, which provides potential for multiplex optical sensing.

  14. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2014-05-28

    Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption.

  15. Dry-powder form of chitosan nanospheres containing influenza virus and adjuvants for nasal immunization.

    PubMed

    Dehghan, S; Tavassoti Kheiri, M; Tabatabaiean, M; Darzi, S; Tafaghodi, M

    2013-08-01

    The objective of this study was to develop and statistically optimize chitosan nanospheres. For this purpose chitosan powder was turned into nanospheres using tripolyphosphate as a crosslinker and through ionic gelation. D-optimal response surface design was applied to optimize the nanospheres. Their size and polydispersity index (PDI) were measured as the dependant variables. Then the inactivated influenza virus and/or CpG ODN or Quillaja saponin (QS) were incorporated into the chitosan nanospheres. The release profiles of the antigen and both adjuvants were obtained. The toxicity of the formulations was tested by XTT using Calu 6 cell lines. The size distribution and PDI of plain chitosan nanospheres was 581.1 ± 32.6 and 0.478 ± 0.04. After 4 h the release of antigen, QS and CpG from the chitosan matrix were 33, 36 and 62%, respectively. The inactivated virus remained intact during preparation, as revealed by the SDS-PAGE method. Differential scanning calorimetry and Fourier Transform Infrared Spectroscopy indicated no serious structural changes in the chitosan carrier in the presence of either the antigen or the immunoadjuvants. Although the antigen loaded into chitosan nanospheres showed slight cytotoxicity on lung-cancer cells, co-encapsulation of the adjuvant (especially CpG) lowered this effect. The results demonstrated that chitosan as a carrier and immunostimulator, along with CpG or QS adjuvants, creates a potential influenza vaccine delivery system which can be administered nasally. PMID:23568383

  16. Nanosphere lithography for improved absorption in thin crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Yuanchih; Payne, David N. R.; Pollard, Michael E.; Pillai, Supriya; Bagnall, Darren M.

    2015-12-01

    Over the last decade, plasmonic nanoparticle arrays have been extensively studied for their light trapping potential in thin film solar cells. However, the commercial use of such arrays has been limited by complex and expensive fabrication techniques such as e-beam lithography. Nanosphere lithography (NSL) is a promising low-cost alternative for forming regular arrays of nanoscale features. Here, we use finite-difference time-domain (FDTD) simulations to determine the optical enhancement due to nanosphere arrays embedded at the rear of a complete thin film device. Array parameters including the nanosphere pitch and diameter are explored, with the FDTD model itself first validated by comparing simulations of Ag nanodisc arrays with optical measurements of pre-existing e-beam fabricated test structures. These results are used to guide the development of a nanosphere back-reflector for 20 μm thin crystalline silicon cells. The deposition of polystyrene nanosphere monolayers is optimized to provide uniform arrays, which are subsequently incorporated into preliminary, proof of concept device structures. Absorption and photoluminescence measurements clearly demonstrate the potential of nanosphere arrays for improving the optical response of a solar cell using economical and scalable methods.

  17. Direct fabrication of hybrid nanofibres composed of SiO2-PMMA nanospheres via electrospinning.

    PubMed

    Zhang, Ran; Shang, Tinghua; Yang, Guang; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-08-01

    The direct fabrication of hybrid nanofibres composed of poly(methyl methacrylate)-grafted SiO2 (SiO2-PMMA) nanospheres via electrospinning was investigated in detail. SiO2-PMMA nanospheres were successfully prepared, with the SiO2 nanospheres synthesized via the Stober method, followed by in situ surface-initiated atom transfer radical polymerization of methyl methacrylate (MMA). Electrospinning was carried out with N,N-dimethylformamide (DMF) as the solvent to disperse SiO2-PMMA nanospheres. The size of the SiO2 core, the molecular weight of the PMMA shell and the concentration of the SiO2-PMMA/DMF solution all had substantial effects on the morphology and structure of electrospun nanofibres composed of SiO2-PMMA nanospheres. When these determining factors were well-tailored, it was found that one-dimensional necklace-like nanofibres were obtained, with SiO2-PMMA nanospheres aligned one by one along the fibre. The successful fabrication of nanofibres by directly electrospinning the SiO2-PMMA/DMF solution verified that polymer-grafted particles possess polymer-like characteristics, which endowed them with the ability to be processed into desirable shapes and structures.

  18. Shape-induced separation of nanospheres and aligned nanorods.

    PubMed

    Ahmad, I; Zandvliet, H J W; Kooij, E S

    2014-07-15

    We studied the phase separation and spatial arrangement of gold nanorods and nanospheres after evaporative self-assembly from aqueous suspension. Depending on the position relative to the contact line of the drying droplet, spheres and rods separate into various liquid-crystalline phases. Nanorods exhibit a strong preference for side-by-side alignment, giving rise to smectic phases; spheres in solution are forced out of these regions and form close-packed arrays. We discuss this self-separation into nanorod- and sphere-rich phases in terms of various interactions, including electrostatic, van der Waals, and deplection interactions forces. The experimental results are compared to quantitative calculations of the colloidal interaction energies. We also describe and discuss the role of the surfactant on the different crystal facets of the nanorods on the assembly process.

  19. Formation of hollow silica nanospheres by reverse microemulsion

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Han; Chang, Jen-Hsuan; Yeh, Yi-Qi; Wu, Si-Han; Liu, Yi-Hsin; Mou, Chung-Yuan

    2015-05-01

    Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water.Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and

  20. Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications

    PubMed Central

    Guterres, Sílvia S.; Alves, Marta P.; Pohlmann, Adriana R.

    2007-01-01

    This review presents an overview about pharmaceutical and cosmetic topical products containing polymeric nanoparticles (nanospheres and nanocapsules), reporting the main preparation and characterization methods and the studies of penetration and transport of substances through the skin. The penetration and transport extent of those systems through the skin depends on the ingredients chemical composition, on the encapsulation mechanism influencing the drug release, on the size of nanoparticles and on the viscosity of the formulations. The polymeric nanoparticles are able to modify the activity of drugs, delay and control the drug release, and increase the drug adhesivity or its time of permanence in the skin. Briefly, the nanoparticles can be useful as reservoirs of lipophilic drugs to deliver them in the stratum corneum becoming an important strategy to control their permeation into the skin. PMID:21901071

  1. Ultrasensitive ELISA using enzyme-loaded nanospherical brushes as labels.

    PubMed

    Qu, Zhenyuan; Xu, Hong; Xu, Ping; Chen, Kaimin; Mu, Rong; Fu, Jianping; Gu, Hongchen

    2014-10-01

    Improving the detection sensitivity of enzyme-linked immunosorbent assay (ELISA) is of utmost importance for meeting the demand of early disease diagnosis. Herein we report an ultrasensitive ELISA system using horseradish peroxidase (HRP)-loaded nanospherical poly(acrylic acid) brushes (SPAABs) as labels. HRP was covalently immobilized in SPAABs with high capacity and activity via an efficient "chemical conjugation after electrostatic entrapment" (CCEE) process, thus endowing SPAABs with high amplification capability as labels. The periphery of SPAAB-HRP was further utilized to bind a layer of antibody with high density for efficient capture of analytes owing to the three-dimensional architecture of SPAABs. Using human chorionic gonadotrophin (hCG) as a model analyte, the SPAAB-amplified system drastically boosted the detection limit of ELISA to 0.012 mIU mL(-1), a 267-fold improvement as compared to conventional ELISA systems.

  2. Preparation of bovine serum albumin nanospheres as drug targeting carriers.

    PubMed

    Nakagawa, Y; Takayama, K; Ueda, H; Machida, Y; Nagai, T

    1987-12-01

    Bovine serum albumin nanospheres (BSA-NS) of mean diameter about 170 nm were prepared by means of the tanning method with glutaraldehyde, and their efficacy as drug targeting carriers was evaluated. To gain insight of biodegradability, BSA microspheres (BSA-MS) were first administered to rats and their distributions in the lungs and liver were observed by a scanning electron microscope. A large amount of BSA-MS was found in the lungs and their surface was slightly degraded at 1 week after the administration. For investigating biocompatibility, the weight increase of the spleen and liver was measured after the administration of the BSA-NS to mice. The spleen weight of the group receiving BSA-NS was equivalent to that of the control group, though the liver weight was significantly increased. It was observed that conjugates of BSA-NS with antibody selectively concentrated on the surface of Sepharose beads which were coated with antigen.

  3. Preparation and Characterization of an Amphipathic Magnetic Nanosphere

    PubMed Central

    Ji, Yongsheng; Lv, Ruihong; Xu, Zhigang; Zhao, Chuande; Zhang, Haixia

    2014-01-01

    The amphipathic magnetic nanospheres were synthesized using C8 and polyethylene glycol as ligands. Their morphology, structure, and composition were characterized by transmission electron microscope, Fourier transform infrared, and elementary analysis. The prepared materials presented uniform sphere with size distribution about 200 nm. The magnetic characteristics of magnetic nanomaterials were measured by vibrating sample magnetometer. The target products had a saturation magnetization value of 50 emu g−1 and superparamagnetism. The adsorption capability was also studied by static tests, and the material was applied to enrich benzenesulfonamide from calf serum. The results exhibited that the C8-PEG phase owned better adsorption capability, biocompatible property, and dispersivity in aqueous samples. PMID:24729917

  4. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.

    2013-10-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.

  5. Dual pH-Mediated Mechanized Hollow Zirconia Nanospheres.

    PubMed

    Wang, MingDong; Gong, GuangCai; Feng, Jing; Wang, Ting; Ding, ChenDi; Zhou, BaoJing; Jiang, Wei; Fu, JiaJun

    2016-09-01

    We demonstrate for the first time how to assemble mechanized hollow zirconia nanospheres (MHzNs), consisting of hollow mesoporous zirconia nanospheres (HMZNs) as nanoscaffolds and supramolecular switches anchored on the exterior surface of HMZNs. The remarkable advantage of substitution of HMZNs for conventional mesoporous silica nanoscaffolds is that HMZNs can suffer the hot alkaline reaction environment, which provides a novel strategy for functionalization and thus achieve dual pH-mediated controlled release functions by simple and practicable assembly procedure. Under neutral solution, cucurbituril[7] (CB[7]) macrocycles complexed with propanone bis(2-aminoethyl)ketal (PBAEK) to form [2]pseudorotaxanes as supramolecular switches, blocking the pore orifices and preventing the undesirable leakage of cargoes. When solution pH was adjusted to alkaline range, CB[7] macrocycles, acting as caps, disassociated from PBAEK stalks and opened the switches due to the dramatic decrease of ion-dipole interactions. While under acidic conditions, PBAEK stalks were broken on account of the cleavage of ketal groups, resulting in the collapse of supramolecular switches and subsequent release of encapsulated cargoes. MHzNs owning dual pH-mediated controlled release characteristic are expected to apply in many fields. In this work, the feasibility of doxorubicin (DOX)-loaded MHzNs as targeted drug delivery systems was evaluated. In vitro cellular studies demonstrate that DOX-loaded MHzNs can be easily taken up by SMMC-7721 cells, can rapidly release DOX intracellularly, and can enhance cytotoxicity against tumor cells, proving their potential for chemotherapy. PMID:27523904

  6. Quantitative Control of Pore Size of Mesoporous Carbon Nanospheres through the Self-Assembly of Diblock Copolymer Micelles in Solution.

    PubMed

    Tian, Hao; Lin, Zhixing; Xu, Fugui; Zheng, Jingxu; Zhuang, Xiaodong; Mai, Yiyong; Feng, Xinliang

    2016-06-01

    This paper reports facile synthesis of nitrogen-doped mesoporous carbon nanospheres (MCNSs) with average diameters of around 300 nm and well-controlled pore sizes ranging from 8 to 38 nm, by employing polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblocks with different PS block lengths as the soft templates and dopamine as the carbon-rich precursor. For the first time, a linear equation is achieved for the quantitative control of the average pore size of MCNSs by simply adjusting a block length of diblock copolymer. The resultant MCNSs possess high surface areas of up to 450 m(2) g(-1) and nitrogen doping contents of up to ≈3 wt%. As electrode materials of supercapacitors, the MCNSs exhibit excellent electrochemical performance with high specific capacitances of up to 350 F g(-1) at 0.1 A g(-1) , superior rate capability, and cycling stability. Interestingly, the specific capacitance of the MCNSs reduces linearly with increasing pore size, whereas the normalized capacitance by specific surface area remains invariable. This represents a new spectrum of the relationship between electrochemical capacitance and pore size (>5 nm) for porous carbons, which makes a complement to the existing spectra focusing on pore diameters of <5 nm. PMID:27120340

  7. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO.

    PubMed

    Wu, Hongxin; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2016-06-01

    With the deterioration of air quality, great efforts were devoted to designing various photocatalysts for effective removal of NOx in air. However, the present photocatalysts have a fatal problem of low photocatalytic efficiency. In this work, a hollow porous carbon nitride nanosphere coupled with reduced graphene oxide (HCNS/rGO) was exploited as a visible-light photocatalyst to remove nitrogen monoxide in air at a low concentration (600 ppb level) under irradiation of an energy saving lamp. HCNS/rGO showed a NO removal ratio of 64%, which was superior to that of most other visible-light photocatalysts. The excellent photocatalytic ability of HCNS/rGO originates from the hollow porous morphology of HCNS and the grafted rGO on the surface. HCNS/rGO was immobilized on porous carbonized polymer nanofibers to obtain a photocatalytic membrane without affecting photocatalytic efficiency. Furthermore, the membrane showed excellent photochemical stability and recyclability. PMID:27245319

  8. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO

    NASA Astrophysics Data System (ADS)

    Wu, Hongxin; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2016-06-01

    With the deterioration of air quality, great efforts were devoted to designing various photocatalysts for effective removal of NOx in air. However, the present photocatalysts have a fatal problem of low photocatalytic efficiency. In this work, a hollow porous carbon nitride nanosphere coupled with reduced graphene oxide (HCNS/rGO) was exploited as a visible-light photocatalyst to remove nitrogen monoxide in air at a low concentration (600 ppb level) under irradiation of an energy saving lamp. HCNS/rGO showed a NO removal ratio of 64%, which was superior to that of most other visible-light photocatalysts. The excellent photocatalytic ability of HCNS/rGO originates from the hollow porous morphology of HCNS and the grafted rGO on the surface. HCNS/rGO was immobilized on porous carbonized polymer nanofibers to obtain a photocatalytic membrane without affecting photocatalytic efficiency. Furthermore, the membrane showed excellent photochemical stability and recyclability.With the deterioration of air quality, great efforts were devoted to designing various photocatalysts for effective removal of NOx in air. However, the present photocatalysts have a fatal problem of low photocatalytic efficiency. In this work, a hollow porous carbon nitride nanosphere coupled with reduced graphene oxide (HCNS/rGO) was exploited as a visible-light photocatalyst to remove nitrogen monoxide in air at a low concentration (600 ppb level) under irradiation of an energy saving lamp. HCNS/rGO showed a NO removal ratio of 64%, which was superior to that of most other visible-light photocatalysts. The excellent photocatalytic ability of HCNS/rGO originates from the hollow porous morphology of HCNS and the grafted rGO on the surface. HCNS/rGO was immobilized on porous carbonized polymer nanofibers to obtain a photocatalytic membrane without affecting photocatalytic efficiency. Furthermore, the membrane showed excellent photochemical stability and recyclability. Electronic supplementary information

  9. Measuring Order and the Debye-Waller Factor for Porous Arrays

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi

    2007-03-01

    We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete radial distribution function (RDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. Nanoporous anodized aluminum oxide, hexagonal arrays from functional materials, hexagonal arrays from nanosphere lithography, and arrays from block copolymer lithography (all taken from the literature) are compared to two-dimensional model systems. The DWF is normalized to the first harmonic and depends on N, the number of peaks in the fit for these finite arrays. We optimize N to the classical model for the DWF as a fit to reciprocal space K^2.

  10. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    SciTech Connect

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H.

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  11. Ventilation of porous media

    DOEpatents

    Neeper, D.A.

    1994-02-22

    Methods are presented for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction. 10 figures.

  12. Ventilation of porous media

    DOEpatents

    Neeper, Donald A.

    1994-01-01

    Methods for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction.

  13. Comparing the Effects of Whey Extract and Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) on Enamel Microhardness

    PubMed Central

    Rezvani, Mohammad Bagher; Karimi, Mehrdad; Akhavan Rasoolzade, Raheleh; Haghgoo, Roza

    2015-01-01

    Statement of the Problem With the recent focus of researches on the development of non-invasive treatment modalities, the non-invasive treatment of early carious lesions by remineralization would bring a major advance in the clinical management of these dental defects. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is considered to be effective in tooth remineralization. Purpose The aim of this in-vitro study was to compare the effects of whey and CPP-ACP in increasing the enamel microhardness. Materials and Method Microhardness of 30 sound human permanent premolars was measured before and after 8-minute immersion of samples in Coca-Cola. The teeth were then randomly divided into 3 groups and were immersed in artificial saliva, whey, and tooth mousse for 10 minutes. The changes of microhardness within each group and among the groups were recorded and analyzed using paired t-test. Results The microhardness increased in each group and between the groups; this increase was statistically significant (p= 0.009). Conclusion The effect of whey on increasing the enamel microhardness was more than that of tooth mousse. PMID:25759858

  14. Discovery of an Allosteric Inhibitor Binding Site in 3-Oxo-acyl-ACP Reductase from Pseudomonas aeruginosa

    PubMed Central

    2013-01-01

    3-Oxo-acyl-acyl carrier protein (ACP) reductase (FabG) plays a key role in the bacterial fatty acid synthesis II system in pathogenic microorganisms, which has been recognized as a potential drug target. FabG catalyzes reduction of a 3-oxo-acyl-ACP intermediate during the elongation cycle of fatty acid biosynthesis. Here, we report gene deletion experiments that support the essentiality of this gene in P. aeruginosa and the identification of a number of small molecule FabG inhibitors with IC50 values in the nanomolar to low micromolar range and good physicochemical properties. Structural characterization of 16 FabG-inhibitor complexes by X-ray crystallography revealed that the compounds bind at a novel allosteric site located at the FabG subunit–subunit interface. Inhibitor binding relies primarily on hydrophobic interactions, but specific hydrogen bonds are also observed. Importantly, the binding cavity is formed upon complex formation and therefore would not be recognized by virtual screening approaches. The structure analysis further reveals that the inhibitors act by inducing conformational changes that propagate to the active site, resulting in a displacement of the catalytic triad and the inability to bind NADPH. PMID:24015914

  15. In silico analysis and modeling of ACP-MIP–PilQ chimeric antigen from Neisseria meningitidis serogroup B

    PubMed Central

    Gholami, Mehrdad; Salimi Chirani, Alireza; Moshiri, Mona; Sedighi, Mansour; Pournajaf, Abazar; Tohidfar, Masoud; Irajian, Gholamreza

    2015-01-01

    Background: Neisseria meningitidis, a life-threatening human pathogen with the potential to cause large epidemics, can be isolated from the nasopharynx of 5–15% of adults. The aim of the current study was to evaluate biophysical and biochemical properties and immunological aspects of chimeric acyl-carrier protein-macrophage infectivity potentiator protein-type IV pilus biogenesis protein antigen (ACP-MIP-PilQ) from N. meningitidis serogroup B strain. Methods: Biochemical properties and multiple alignments were predicted by appropriate web servers. Secondary molecular structures were predicted based on Chou and Fasman, Garnier-Osguthorpe-Robson, and Neural Network methods. Tertiary modeling elucidated conformational properties of the chimeric protein. Proteasome cleavage and transporter associated with antigen processing (TAP) binding sites, and T- and B-cell antigenic epitopes, were predicted using bioinformatic web servers. Results: Based on our in silico and immunoinformatics analyses, the ACP-MIP-PilQ protein (AMP) can induce high-level cross-strain bactericidal activity. In addition, several immune proteasomal cleavage sites were detected. The 22 epitopes associated with MHC class I and class II (DR) alleles were confirmed in the AMP. Thirty linear B-cell epitopes as antigenic regions were predicted from the full-length protein. Conclusion: All predicted properties of the AMP indicate it could be a good candidate for further immunological in vitro and in vivo studies. PMID:26989750

  16. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M.

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  17. Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence

    NASA Astrophysics Data System (ADS)

    Karadan, Prajith; John, Siju; Anappara, Aji A.; Narayana, Chandrabhas; Barshilia, Harish C.

    2016-07-01

    We have fabricated highly ordered, vertically aligned, high aspect ratio silicon nanopillars (SiNPLs) of diameter ~80 nm by combining metal-assisted chemical etching and nanosphere lithography. The evolution of surface morphology of porous silicon nanopillars has been explained, and the presence of mesoporous structures was detected on the top of silicon nanopillars using field emission scanning electron microscopy. The mesoporosity of the SiNPLs is confirmed by Brunauer-Emmett-Teller measurements. The peak shift and the splitting of optical phonon modes into LO and TO modes in the micro-Raman spectra of mesoporous SiNPLs manifest the presence of 2-3 nm porous Si nanocrystallites ( P-SiNCs) on the top of SiNPLs and the size of crystallites was calculated using bond polarizability model for spherical phonon confinement. The origin of red luminescence is explained using quantum confinement (QC) and QC luminescent center models for the P-SiNCs, which is correlated with the micro-Raman spectra. Finally, we confirmed the origin of the red luminescence is from the P-SiNCs formed on surface of SiNPLs, highly desired for LED devices by suitably tailoring the substrate.

  18. One-Pot Synthesis of Fe(III)-Polydopamine Complex Nanospheres: Morphological Evolution, Mechanism, and Application of the Carbonized Hybrid Nanospheres in Catalysis and Zn-Air Battery.

    PubMed

    Ang, Jia Ming; Du, Yonghua; Tay, Boon Ying; Zhao, Chenyang; Kong, Junhua; Stubbs, Ludger Paul; Lu, Xuehong

    2016-09-13

    We report one-pot synthesis of Fe(III)-polydopamine (PDA) complex nanospheres, their structures, morphology evolution, and underlying mechanism. The complex nanospheres were synthesized by introducing ferric ions into the reaction mixture used for polymerization of dopamine. It is verified that both the oxidative polymerization of dopamine and Fe(III)-PDA complexation contribute to the "polymerization" process, in which the ferric ions form coordination bonds with both oxygen and nitrogen, as indicated by X-ray absorption fine-structure spectroscopy. In the "polymerization" process, the morphology of the complex nanostructures is gradually transformed from sheetlike to spherical at the feed Fe(III)/dopamine molar ratio of 1/3. The final size of the complex spheres is much smaller than its neat PDA counterpart. At higher feed Fe(III)/dopamine molar ratios, the final morphology of the "polymerization" products is sheetlike. The results suggest that the formation of spherical morphology is likely to be driven by covalent polymerization-induced decrease of hydrophilic functional groups, which causes reself-assembly of the PDA oligomers to reduce surface area. We also demonstrate that this one-pot synthesis route for hybrid nanospheres enables the facile construction of carbonized PDA (C-PDA) nanospheres uniformly embedded with Fe3O4 nanoparticles of only 3-5 nm in size. The C-PDA/Fe3O4 nanospheres exhibit catalytic activity toward oxygen reduction reaction and deliver a stable discharge voltage for over 200 h when utilized as the cathode in a primary Zn-air battery and are also good recyclable catalyst supports.

  19. One-Pot Synthesis of Fe(III)-Polydopamine Complex Nanospheres: Morphological Evolution, Mechanism, and Application of the Carbonized Hybrid Nanospheres in Catalysis and Zn-Air Battery.

    PubMed

    Ang, Jia Ming; Du, Yonghua; Tay, Boon Ying; Zhao, Chenyang; Kong, Junhua; Stubbs, Ludger Paul; Lu, Xuehong

    2016-09-13

    We report one-pot synthesis of Fe(III)-polydopamine (PDA) complex nanospheres, their structures, morphology evolution, and underlying mechanism. The complex nanospheres were synthesized by introducing ferric ions into the reaction mixture used for polymerization of dopamine. It is verified that both the oxidative polymerization of dopamine and Fe(III)-PDA complexation contribute to the "polymerization" process, in which the ferric ions form coordination bonds with both oxygen and nitrogen, as indicated by X-ray absorption fine-structure spectroscopy. In the "polymerization" process, the morphology of the complex nanostructures is gradually transformed from sheetlike to spherical at the feed Fe(III)/dopamine molar ratio of 1/3. The final size of the complex spheres is much smaller than its neat PDA counterpart. At higher feed Fe(III)/dopamine molar ratios, the final morphology of the "polymerization" products is sheetlike. The results suggest that the formation of spherical morphology is likely to be driven by covalent polymerization-induced decrease of hydrophilic functional groups, which causes reself-assembly of the PDA oligomers to reduce surface area. We also demonstrate that this one-pot synthesis route for hybrid nanospheres enables the facile construction of carbonized PDA (C-PDA) nanospheres uniformly embedded with Fe3O4 nanoparticles of only 3-5 nm in size. The C-PDA/Fe3O4 nanospheres exhibit catalytic activity toward oxygen reduction reaction and deliver a stable discharge voltage for over 200 h when utilized as the cathode in a primary Zn-air battery and are also good recyclable catalyst supports. PMID:27550631

  20. A strategy to synthesize hollow micro/nanospheres with tunable shell thickness.

    PubMed

    Yang, Gongzheng; Cui, Hao; Wang, Chengxin

    2014-02-01

    A simple one-step direct templating method is developed to synthesize hollow carbon and sandwich-like ZnO/C/ZnO micro/nanospheres. The type and shell thickness of the final products can be controlled by simply adjusting the reaction temperature. The removal of the templates can also be easily controlled during the synthesis. At a low temperature, the templates remain in the products to form hollow sandwich-like micro/nanospheres. As the reaction temperature rises, the templates are consumed, which results in the preparation of hollow carbon micro/nanospheres. On the basis of a series of experiments, we propose a simple plausible mechanism to address the original strategy for synthesizing these hollow micro/nanospheres. Furthermore, the sandwich-like ZnO/C/ZnO nanospheres can be used as the anode in lithium-ion batteries, exhibiting an extraordinary cyclability and a high coulombic efficiency. This approach can be extended to the synthesis of other hollow spheres. Further investigation is underway in our group.

  1. Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation.

    PubMed

    Zhuang, Jia; Kuo, Chun-Hong; Chou, Lien-Yang; Liu, De-Yu; Weerapana, Eranthie; Tsung, Chia-Kuang

    2014-03-25

    We have developed a general synthetic route to encapsulate small molecules in monodisperse zeolitic imid-azolate framework-8 (ZIF-8) nanospheres for drug delivery. Electron microscopy, powder X-ray diffraction, and elemental analysis show that the small-molecule-encapsulated ZIF-8 nanospheres are uniform 70 nm particles with single-crystalline structure. Several small molecules, including fluorescein and the anticancer drug camptothecin, were encapsulated inside of the ZIF-8 framework. Evaluation of fluorescein-encapsulated ZIF-8 nanospheres in the MCF-7 breast cancer cell line demonstrated cell internalization and minimal cytotoxicity. The 70 nm particle size facilitates cellular uptake, and the pH-responsive dissociation of the ZIF-8 framework likely results in endosomal release of the small-molecule cargo, thereby rendering the ZIF-8 scaffold an ideal drug delivery vehicle. To confirm this, we demonstrate that camptothecin encapsulated ZIF-8 particles show enhanced cell death, indicative of internalization and intracellular release of the drug. To demonstrate the versatility of this ZIF-8 system, iron oxide nanoparticles were also encapsulated into the ZIF-8 nanospheres, thereby endowing magnetic features to these nanospheres.

  2. Simple preparation of Pd-NP/polythiophene nanospheres for heterogeneous catalysis.

    PubMed

    Bae, Sang-Eun; Kim, Ki-Jung; Hwang, Yong-Kyung; Huh, Seong

    2015-10-15

    A very simple preparation was developed for catalytically active Pd-nanoparticles (Pd-NPs) decorating polythiophene conducting polymer nanospheres by the redox reaction between PdCl4(2-) ion and 2-thiophenemethanol (2-TPM) in an aqueous solution at room temperature. 2-TPM polymerized to form polythiophene nanospheres in the presence of PdCl4(2-) ions, reduced to Pd-NPs without the need for extra reducing agents or organic surface capping ligands for sub-20 nm Pd-NPs that uniformly cover polythiophene nanospheres whose dimensions range from 120 nm to 200 nm. The Pd-NP/polythiophene nanospheres were characterized by scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), and inductively-coupled plasma atomic emission spectroscopy (ICP-AES). The Pd-NP/polythiophene nanospheres were found to be an excellent catalyst for Suzuki-Miyaura cross-coupling reaction for a wide range of substrates under mild aerobic reaction conditions.

  3. Solvatochromic Dyes as pH-Independent Indicators for Ionophore Nanosphere-Based Complexometric Titrations.

    PubMed

    Zhai, Jingying; Xie, Xiaojiang; Bakker, Eric

    2015-12-15

    For half a century, complexometric titrations of metal ions have been performed with water-soluble chelators and indicators that typically require careful pH control. Very recently, ion-selective nanosphere emulsions were introduced that exhibit ion-exchange properties and are doped with lipophilic ionophores originally developed for chemical ion sensors. They may serve as novel, highly selective and pH independent complexometric reagents. While ion optode emulsions have been demonstrated as useful indicators for such titrations, they exhibit a pH cross-response that unfortunately complicates the identification of the end point. Here, we present pH-independent optode nanospheres as indicators for complexometric titrations, with calcium as an initial example. The nanospheres incorporate an ionic solvatochromic dye (SD), ion exchanger and ionophore. The solvatochromic dye will be only expelled from the core of the nanosphere into the aqueous solution at the end point at which point it results in an optical signal change. The titration curves are demonstrated to be pH-independent and with sharper end points than with previously reported chromoionophore-based optical nanospheres as indicator. The calcium concentration in mineral water was successfully determined using this method. PMID:26595520

  4. Dissolution-recrystallization mechanism for the conversion of silver nanospheres to triangular nanoplates.

    PubMed

    Yang, Jun; Zhang, Qingbo; Lee, Jim Yang; Too, Heng-Phon

    2007-04-01

    A solution chemistry method for transforming polycrystalline Ag spherical particles into single crystalline triangular Ag nanoplates has been developed. The synthesis consists of three consecutive steps: (1) the synthesis of Ag nanospheres by NaBH(4) reduction of AgNO(3) in the presence of sodium citrate; (2) the conversion of citrate-stabilized Ag nanospheres into SDS (sodium dodecyl sulfate)-stabilized Ag nanospheres, and (3) the aging of the SDS-stabilized Ag nanospheres in 0.01 M NaCl solution. Our study indicates that the shape evolved through a Ag nanoparticle dissolution- and re-deposition process; and demonstrated the critical role of SDS in the process: SDS regulates the dynamics in the dissolved O(2)/Cl(-) etching of the Ag nanospheres and the reduction of the released Ag(+) by citrate ions in the same solution. SDS also functions as a shape-directing agent to assimilate the Ag(0) atoms into single crystalline triangular Ag nanoplates. A model for the shape conversion is also proposed which provides the clue for the synthesis of anisotropic Ag nanoparticles with other shapes (rods, wires, cubes, etc.).

  5. Optically encoded multifunctional nanospheres for one-pot separation and detection of multiplex DNA sequences.

    PubMed

    Hu, Jun; Wen, Cong-Ying; Zhang, Zhi-Ling; Xie, Min; Hu, Jiao; Wu, Min; Pang, Dai-Wen

    2013-12-17

    In this study, we report a simple method for simultaneous detection of multiplex DNA sequences, including complementary DNA (cDNA) sequences of HIV and HCV, DNA sequence of HBV, with QDs-encoded fluorescent nanospheres and nano-γ-Fe2O3-coated magnetic nanospheres. Detection was achieved on a fluorescence spectrophotometer without additional auxiliary instruments, and the detection limit was about 100 pM. Here, QDs-encoded fluorescent nanospheres (FNS) with different photoluminescent properties, and magnetic nanospheres (MNS) were separately fabricated by stepwise assembly of hydrophobic QDs or nano-γ-Fe2O3 on the surface of branched poly(ethylene imine) (PEI)-coated nanospheres in precisely controlled amounts, finally followed by silica encapsulation. FNS-labeled probe DNAs and MNS-labeled capture DNAs were used to hybridize with the corresponding targets at the same time. After magnetic separation, the sandwich-structured adducts were measured by fluorescence spectrophotometry. The results indicated that the targets could be detected with high sensitivity. This method is convenient, fast enough, and capable of high anti-interference. Therefore, it is expected to be used for simultaneous detection and separation of multiple targets at high levels of purity and throughput.

  6. Size-Controllable Synthesis of Fe3O4 Nanospheres for Electromagnetic Wave Absorber

    NASA Astrophysics Data System (ADS)

    Wang, Yanping; Sun, Danping; Liu, Gongzong; Wang, Yujiao; Jiang, Wei

    2015-07-01

    We present a hydrothermal method to control the size of Fe3O4 nanospheres by adjusting the concentration of FeCl3·6H2O in ethylene glycol/diethylene glycol binary solvent mixtures. The electromagnetic wave absorption properties of Fe3O4 nanospheres of different diameters have been investigated using a vector network analyzer. The reflection loss of Fe3O4 nanospheres/paraffin wax composite can reach as high as -30.00 dB at 17.50 GHz and -37.95 dB at 7.67 GHz for Fe3O4 nanospheres with diameter of about 120 nm and 170 nm, respectively. The absorption bandwidth with reflection loss below -10 dB is up to 7.01 GHz when the Fe3O4 diameter is about 220 nm. In contrast, the bandwidth decreased to 4.28 GHz when the size shrank to 70 nm. Therefore, our method can be utilized to precisely control the size of Fe3O4 nanospheres in order to manipulate their electromagnetic wave absorption properties.

  7. Solvatochromic Dyes as pH-Independent Indicators for Ionophore Nanosphere-Based Complexometric Titrations.

    PubMed

    Zhai, Jingying; Xie, Xiaojiang; Bakker, Eric

    2015-12-15

    For half a century, complexometric titrations of metal ions have been performed with water-soluble chelators and indicators that typically require careful pH control. Very recently, ion-selective nanosphere emulsions were introduced that exhibit ion-exchange properties and are doped with lipophilic ionophores originally developed for chemical ion sensors. They may serve as novel, highly selective and pH independent complexometric reagents. While ion optode emulsions have been demonstrated as useful indicators for such titrations, they exhibit a pH cross-response that unfortunately complicates the identification of the end point. Here, we present pH-independent optode nanospheres as indicators for complexometric titrations, with calcium as an initial example. The nanospheres incorporate an ionic solvatochromic dye (SD), ion exchanger and ionophore. The solvatochromic dye will be only expelled from the core of the nanosphere into the aqueous solution at the end point at which point it results in an optical signal change. The titration curves are demonstrated to be pH-independent and with sharper end points than with previously reported chromoionophore-based optical nanospheres as indicator. The calcium concentration in mineral water was successfully determined using this method.

  8. In vivo monitoring of nanosphere onsite delivery using fiber optic microprobe

    NASA Astrophysics Data System (ADS)

    Lo, Leu-Wei; Yang, Chung-Shi

    2005-02-01

    To recognize the information of ischemia-induced blood vessel permeability would be valuable to formulate the drugs for optimal local delivery, we constructed an implantable needle type fiber-optic microprobe for the monitoring of in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers and catheterized using a thin wall tubing of stainless steel (~400 um O.D. and ~300 um I.D.). The central fiber, with 100 um core diameter and 20 um cladding, coated with a 30 um layer of gold, was surrounded by 10 fibers with 50 um cores. The central fiber carried the light from the 488 nm Argon laser to the tissue while the surrounding fibers collected the emitted fluorescence to the detector. When the fiber-optic microprobe was placed in the solutions containing various concentrations of fluorescent nanospheres (20 nm), either with or without 10% lipofundin as optical phantom, nanosphere concentration-dependent responses of the fluorescence intensity were observed. The microprobe was then implanted into the liver and the brain of anesthetized rats to monitor the in situ extravasation of pre-administered fluorescent nanospheres from vasculature following the ischemic insults. Both the hepatic and cerebral ischemic insults showed immediate increases of the extracellular 20 nm fluorescent nanospheres. The implantable fiber-optic microprobe constructed in present study provides itself as a minimally-invasive technique capable of investigating the vascular permeability for in vivo nanosphere delivery in both ischemic liver and brain.

  9. Development of a nanosphere adsorbent for the removal of fluoride from water.

    PubMed

    Zhang, Kaisheng; Wu, Shibiao; He, Junyong; Chen, Liang; Cai, Xingguo; Chen, Kai; Li, Yulian; Sun, Bai; Lin, Dongyue; Liu, Guqing; Kong, Lingtao; Liu, Jinhuai

    2016-08-01

    A new uniform-sized CeCO3OH nanosphere adsorbent was developed, and tested to establish its efficiency, using kinetic and thermodynamic studies, for fluoride removal. The results demonstrated that the CeCO3OH nanospheres exhibited much high adsorption capacities for fluoride anions due to electrostatic interactions and exchange of the carbonate and hydroxyl groups on the adsorbent surface with fluoride anions. Adsorption kinetics was fitted well by the pseudo-second-order model as compared to a pseudo-first-order rate expression, and adsorption isotherm data were well described by Langmuir model with max adsorption capacity of 45mg/g at pH 7.0. Thermodynamic examination demonstrated that fluoride adsorption on the CeCO3OH nanospheres was reasonably endothermic and spontaneous. Moreover, the CeCO3OH nanospheres have less influence on adsorption of F(-) by pH and co-exiting ions, such as SO4(2-), Cl(-), HCO3(-), CO3(2-), NO3(-) and PO4(3-), and the adsorption efficiency is very high at the low initial fluoride concentrations in the basis of the equilibrium adsorption capacities. This study indicated that the CeCO3OH nanospheres could be developed into a very viable technology for highly effective removal of fluoride from drinking water. PMID:27138842

  10. Cellular response to empty and palladium-conjugated amino-polystyrene nanospheres uptake: a proteomic study.

    PubMed

    Pietrovito, Laura; Cano-Cortés, Victoria; Gamberi, Tania; Magherini, Francesca; Bianchi, Laura; Bini, Luca; Sánchez-Martín, Rosario M; Fasano, Mauro; Modesti, Alessandra

    2015-01-01

    Amino polystyrene nanospheres are shown to be efficient and controllable delivery devices, capable of transporting several bioactive cargoes. Recently, the design of a new device for prodrug activation, using these nanospheres with palladium encapsulated onto them, has been developed successfully. To study the influence of the cellular uptake of these nanodevices, we investigated the cellular response of human embryonic kidney cells (HEK-293T) and murine fibroblasts (L929) treated with empty or palladium-conjugated amino polystyrene nanospheres. To identify differentially expressed proteins, we performed an exhaustive proteomic analysis. In accordance with genomic data previously obtained, the uptake of the empty nanospheres did not induce significant variation in protein expression levels. Following the treatment with palladium-conjugated nanospheres, some changes in protein profiles in both cell lines were observed; these alterations affect proteins involved in cell metabolism and intracellular transport. No key regulator of the cell cycle result was differentially expressed after the treatment, confirming that these innovative drug delivery systems are harmless and well tolerated by the cells.

  11. Amphiphilic Graft Copolymer Nanospheres: From Colloidal Self-Assembly to CO2 Capture Membranes.

    PubMed

    Jeon, Harim; Kim, Dong Jun; Park, Min Su; Ryu, Du Yeol; Kim, Jong Hak

    2016-04-13

    Colloidal nanosphere self-assembly effectively generates ordered nanostructures, prompting tremendous interest in many applications such as photonic crystals and templates for inverse opal fabrication. Here we report the self-assembly of low-cost, graft copolymer nanospheres for CO2 capture membranes. Specifically, poly(dimethylsiloxane)-graft-poly(4-vinylpyridine) (PDMS-g-P4VP) is synthesized via one-pot, free radical dispersion polymerization to give discrete monodisperse nanospheres. These nanospheres comprise a surface-anchored highly permeable PDMS layer and internal CO2-philic P4VP spherical core. Their diameter is controllable below the submicrometer range by varying grafting ratios. The colloidal dispersion forms a long-range, close-packed hexagonal array on a substrate by inclined deposition and convective assembly. The array shows dispersion medium-dependent packing characteristics. A thermodynamic correlation is determined using different solvents to obtain stable PDMS-g-P4VP dispersions and interpreted in terms of Flory-Huggins interaction parameter. As a proof-of-concept, the implementation of these nanospheres into membranes simultaneously enhances the CO2 permeability and CO2/N2 selectivity of PDMS-based transport matrixes. Upon physical aging of the solution, the CO2/N2 selectivity is improved up to 26, one of the highest values for highly permeable PDMS-based polymeric membranes. PMID:27004536

  12. Hierarchical superhydrophobic/hydrophilic substrates based on nanospheres self-assembly onto micro-pillars

    NASA Astrophysics Data System (ADS)

    Ma, Pengcheng; Wang, Yifei; Feng, Kaijun; Chen, Zhuojie; Wu, Wengang

    2014-12-01

    We report a novel superhydrophobic/hydrophilic substrate with micro-/nano-hierarchical structures by mimicking the lotus effect. Intrinsic hydrophobic polystyrene nanospheres or intrinsic hydrophilic silica nanospheres, via evaporation-induced self-assembly, are deposited on the surfaces of silicon pillars, including on tops as well as sidewalls. The obtained hierarchical structures with the polystyrene nanosphere deposition could amplify its intrinsic hydrophobicity, because gas interstices between both the nanospheres and micro-pillars jointly enhance the liquid-gas contact fraction significantly. Related theoretical analysis indicates that such structures could easily achieve an apparent contact angle (CA) of higher than 150°. In experiments, we measure the apparent CA of such kinds of hierarchical structures with the silicon pillars in different geometries, and find that the maximum value is up to 163.8°, with a 3.2° slide angle. The hierarchical structures with the silica nanosphere deposition could amplify its intrinsic hydrophilicity as well, because the double structures greatly increase the liquid-solid contact area. The corresponding experiment results show that the apparent CA can be as low as 7.6°.

  13. Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization.

    PubMed

    Lan, Fang; Liu, Ke-Xia; Jiang, Wen; Zeng, Xiao-Bo; Wu, Yao; Gu, Zhong-Wei

    2011-06-01

    Monodisperse superparamagnetic Fe(3)O(4)/polymethyl methacrylate (PMMA) composite nanospheres with high saturation magnetization were successfully prepared by a facile novel miniemulsion polymerization method. The ferrofluid, MMA monomer and surfactants were co-sonicated and emulsified to form stable miniemulsion for polymerization. The samples were characterized by DLS, TEM, FTIR, XRD, TGA and VSM. The diameter of the Fe(3)O(4)/PMMA composite nanospheres by DLS was close to 90 nm with corresponding polydispersity index (PDI) as small as 0.099, which indicated that the nanospheres have excellent homogeneity in aqueous medium. The TEM results implied that the Fe(3)O(4)/PMMA composite nanospheres had a perfect core-shell structure with about 3 nm thin PMMA shells, and the core was composed of many homogeneous and closely packed Fe(3)O(4) nanoparticles. VSM and TGA showed that the Fe(3)O(4)/PMMA composite nanospheres with at least 65% high magnetite content were superparamagnetic, and the saturation magnetization was as high as around 39 emu g(-1) (total mass), which was only decreased by 17% compared with the initial bare Fe(3)O(4) nanoparticles. PMID:21454944

  14. Self-assembly of poly(o-methoxyaniline) hollow nanospheres from a polymeric acid solution

    NASA Astrophysics Data System (ADS)

    Sui, Jing; Zhang, Lijuan; Peng, Hui; Travas-Sejdic, Jadranka; Kilmartin, Paul A.

    2009-10-01

    Self-assembled poly(o-methoxyaniline) (POMA) hollow nanospheres were prepared in a solution of poly(methyl vinyl ether-alt-maleic acid) (PMVEA) by oxidative polymerization using ammonium persulfate as the oxidant. The weight ratio of PMVEA to o-methoxyaniline in the solution had a significant effect on the morphology of the poly(o-methoxyaniline) nanospheres as determined by scanning electron microscopy. The diameter of the hollow nanospheres decreased from 440 to 210 nm with an increase in the PMVEA concentration from 1% to 5%. Freeze-fracture transmission electron microscopy results showed the presence of spherical micelles composed of PMVEA/ o-methoxyaniline prior to polymerization, which also decreased in size as more PMVEA was added to the solution, and can act as soft templates for the formation of the hollow POMA nanospheres. The POMA/PMVEA hollow nanospheres were characterized by means of Fourier transform infrared, UV-visible, x-ray photoelectron spectroscopy, elemental analysis and conductivity measurements.

  15. Controllable fabrication of platinum nanospheres with a polyoxometalate-assisted process

    SciTech Connect

    Sun Guoying; Li Qiuyu; Xu Rui; Gu Jianmin; Ju Mingliang; Wang Enbo

    2010-11-15

    Pt nanospheres with an average diameter of 60{+-}10 nm have been successfully synthesized at room temperature through a facile polyoxometalate(POM)-assisted process. Characterization by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) clearly showed that these Pt nanospheres consisted of 2-7 nm Pt nanodots. During the formation of such unique nanostructures, POMs were found to serve as both catalyst and stabilizer. The size of the as-synthesized Pt nanospheres could be controlled solely by adjusting the molar ratio of POMs to H{sub 2}PtCl{sub 6}. A possible formation mechanism based on POMs-mediated electron transfer from ascorbic acid (AA) to PtCl{sub 6}{sup 2-} and AA-assisted aggregation was tentatively proposed to rationalize the formation of such nanostructures. Importantly, these specific Pt nanospheres exhibited good electrocatalytic activity towards the oxidation of methanol, making them promising for applications in direct methanol fuel cells. - Graphical abstract: Large-scale Pt nanospheres were synthesized through a polyoxometalate-assisted process, and exhibited good electrocatalytic activity towards the oxidation of methanol, making them promising for applications in fuel cells. Display Omitted

  16. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms.

    PubMed

    Christensen, Thomas; Yan, Wei; Raza, Søren; Jauho, Antti-Pekka; Mortensen, N Asger; Wubs, Martijn

    2014-02-25

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss spectroscopy, and light scattering. These constitute two near-field and one far-field measurements, with zero-, one-, and two-dimensional excitation sources, respectively. We search for the clearest signatures of hydrodynamic pressure waves in nanospheres. We employ a linearized hydrodynamic model, and Mie-Lorenz theory is applied for each case. Nonlocal response shows its mark in all three configurations, but for the two near-field measurements, we predict especially pronounced nonlocal effects that are not exhibited in far-field measurements. Associated with every multipole order is not only a single blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii. For selected metals, we predict hydrodynamic multipolar plasmons to be measurable on single nanospheres.

  17. Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization

    NASA Astrophysics Data System (ADS)

    Lan, Fang; Liu, Ke-Xia; Jiang, Wen; Zeng, Xiao-Bo; Wu, Yao; Gu, Zhong-Wei

    2011-06-01

    Monodisperse superparamagnetic Fe3O4/polymethyl methacrylate (PMMA) composite nanospheres with high saturation magnetization were successfully prepared by a facile novel miniemulsion polymerization method. The ferrofluid, MMA monomer and surfactants were co-sonicated and emulsified to form stable miniemulsion for polymerization. The samples were characterized by DLS, TEM, FTIR, XRD, TGA and VSM. The diameter of the Fe3O4/PMMA composite nanospheres by DLS was close to 90 nm with corresponding polydispersity index (PDI) as small as 0.099, which indicated that the nanospheres have excellent homogeneity in aqueous medium. The TEM results implied that the Fe3O4/PMMA composite nanospheres had a perfect core-shell structure with about 3 nm thin PMMA shells, and the core was composed of many homogeneous and closely packed Fe3O4 nanoparticles. VSM and TGA showed that the Fe3O4/PMMA composite nanospheres with at least 65% high magnetite content were superparamagnetic, and the saturation magnetization was as high as around 39 emu g - 1 (total mass), which was only decreased by 17% compared with the initial bare Fe3O4 nanoparticles.

  18. AFM characterization of spin coated carboxylated polystyrene nanospheres/xyloglucan layers on mica and silicon.

    PubMed

    Lubambo, Adriana F; Lucyszyn, Neoli; Petzhold, Cesar L; Sierakowski, Maria-R; Schreiner, Wido H; Saul, Cyro K

    2013-03-01

    Self-assembled nano-arrays have a potential application as solid-phase diagnostics in many biomedical devices. The easiness of its production is directly connected to manufacture cost reduction. In this work, we present self-assembled structures starting from spin coated thin films of carboxylated polystyrene (PSC) and xyloglucan (XG) mixtures on both mica and silicon substrates. AFM images showed PSC nanospheres on top of a homogeneous layer of XG, for both substrates. The average nanosphere diameter fluctuated for a constant speed and it was likely to be independent of the component proportions on the mixture within a range of 30-50% (v/v) PSC. It was also observed that the largest diameters were found at the center of the sample and the smallest at the border. The detected nanospheres were also more numerous at the border. This behavior presents a similarity to spin coated colloidal dispersions. We observed that the average nanosphere diameter on mica substrates was bigger than the nanosphere diameters obtained on top of silicon substrates, under the same conditions. This result seems to be possibly connected to different mixture-surface interactions. PMID:23465925

  19. Hollow silica nanospheres coated with insoluble calcium salts for pH-responsive sustained release of anticancer drugs.

    PubMed

    Guo, Yuming; Fang, Qilong; Li, Han; Shi, Weike; Zhang, Jie; Feng, Jing; Jia, Weili; Yang, Lin

    2016-08-23

    Hollow silica nanospheres coated with biocompatible and pH-sensitive inorganic insoluble calcium salts including calcium carbonate and hydroxyapatite have been successfully prepared. The results indicate that the nanospheres can efficiently load doxorubicin and release it in a pH-responsive and sustained manner, and improve the treatment efficacy significantly. PMID:27501741

  20. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N.

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  1. Porous silicon nanocrystals in a silica aerogel matrix

    PubMed Central

    2012-01-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation. PMID:22805684

  2. Porous silicon nanocrystals in a silica aerogel matrix

    NASA Astrophysics Data System (ADS)

    Amonkosolpan, Jamaree; Wolverson, Daniel; Goller, Bernhard; Polisski, Sergej; Kovalev, Dmitry; Rollings, Matthew; Grogan, Michael D. W.; Birks, Timothy A.

    2012-07-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation.

  3. Fabricating porous silicon carbide

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.

  4. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  5. Fabrication and structure of "polymer nanosphere multilayered organization".

    PubMed

    Fujimori, Atsuhiro; Kaneko, Yohei; Kikkawa, Takahiro; Chiba, Satoshi; Shibasaki, Yuji

    2014-03-15

    We constructed a multiparticle layered organization of aromatic polyamides with rigid main chains and flexible side chains by the Langmuir-Blodgett (LB) technique, which resulted in a highly regular arrangement along the c-axis. The particle arrangement was estimated by performing out-of-plane X-ray diffraction (XRD) analysis and atomic force microscopic (AFM) observation. The results suggest that a double-particle layered structure (Y-type) is formed by the LB technique, forming amphiphilic particles at the air/water interface. Copolymers with highly hydrophobic carbazole contents and both hydrogenated and fluorinated side-chains also formed a single-particle layer at the air/water interface and exhibited multiparticle layers by a LB technique. Therefore, it is possible to control the formation of single- and double-particle layered structure using these techniques. Further, it was found that multiparticle layered organization of polymer nanospheres and polymer nanosheets could be formed simultaneously with the same component material.

  6. Concentration-controlled formation of myoglobin/gold nanosphere aggregates.

    PubMed

    Sevilla, Paz; Sánchez-Cortés, Santiago; García-Ramos, José V; Feis, Alessandro

    2014-05-15

    Gold nanoparticles are being increasingly proposed as biotechnological tools for medical diagnosis and therapy purposes. Their safety for human beings and the environment is therefore becoming an emerging issue, which calls for basic research on the interactions between nanostructured gold particles and biological materials, including physicochemical studies of model systems. In this Article, we focus on the "reaction products" of a widely known nanoparticle type, citrate-capped 30 nm gold nanospheres, with a model protein, horse myoglobin. Protein adsorption and partial denaturation were accompanied by the formation of nanoparticle aggregates with strongly distinct optical spectroscopy properties and shapes, as observed by transmission electron microscopy. We singled out the concentration of myoglobin as the determinant of these differences, and verified on this basis that surface-enhanced Raman scattering (SERS) spectra can only be obtained by aggregates with strong interparticle optical coupling, which are obtained at low protein concentration. The results can be useful both in improving the spectroscopy of biomolecules and in understanding the formation of the protein corona in biomedical applications.

  7. Interconnected hollow carbon nanospheres for stable lithium metal anodes.

    PubMed

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g(-1)) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm(-2). The Coulombic efficiency improves to ∼ 99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes.

  8. Preparation, characterization and application of polyaniline nanospheres to biosensing

    NASA Astrophysics Data System (ADS)

    Dhand, Chetna; Das, Maumita; Sumana, Gajjala; Srivastava, Avanish Kumar; Pandey, Manoj Kumar; Kim, Cheol Gi; Datta, Monika; Malhotra, Bansi Dhar

    2010-05-01

    Polyaniline nanospheres (PANI-NS) prepared by morphological transformation of micelle polymerized camphorsulfonic acid (CSA) doped polyaniline nanotubes (PANI-NT) in the presence of ethylene glycol (EG) have been characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, Fourier transform infra-red and UV-Visible spectroscopy. A PANI-NS (60-80 nm) film deposited onto an indium-tin-oxide (ITO) coated glass plate by the solution casting method has been utilized for covalent immobilization of biomolecules (cholesterol oxidase (ChOx)) viaN-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry for fabrication of a cholesterol biosensor. The ChOx/PANI-NS/ITO bioelectrode detects cholesterol in the concentration range of 25 to 500 mg dL-1 with sensitivity of 1.3 × 10-3 mA mg-1 dL and regression coefficient of 0.98. Further, this PANI-NS based bioelectrode shows fast response time (10 s), low Michaelis-Menten constant (2.5 mM) and shelf-life of 12 weeks. The spherical nanostructure observed in the final morphology of the PANI-NS film is attributed to hydrogen bonding interactions between PANI-NT and EG.

  9. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    PubMed

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  10. Enhancement of hydrophobic chromophore fluorescence by adsorption to nanospheres

    NASA Astrophysics Data System (ADS)

    Blair, Elizabeth; Carr, Aaron; Krishnan, Rajagopal; Nordlund, Thomas M.

    2003-11-01

    Optical properties of hydrophobic molecules are usually studied in solvents of low dielectric constant. However, biologically or medically important molecules often exist in a mixed hydrophobic/ aqueous environment, e.g., in emulsions or membranes. In order to study optical processes occurring in oily sunscreen agents, octyl salicylate and octyl methoxycinnamate, in a model aqueous/hydrophobic environment, we dispersed the agents in suspensions of polystyrene nanospheres, ranging in diameter from 30 to 1500 nm. The spheres had sulfate functional groups and a low negative charge on the surface. Adsorption of salicylate resulted in a fluorescence intensity enhancement of 6 +/- 0.5 compared to a solution in methanol. The enhancement was independent of sphere diameter. Cinnamate had a much lower enhancement, about 1.5. The enhancement correlates with fluorescence yield vs. dielectric constant in organic solvents: the adsorbed chromophore acts as if it were surrounded by a material of dielectric constant less than 2, in spite of the presence of neighboring water molecules.

  11. Ultraslow dynamics in asymmetric block copolymers with nanospherical domains.

    PubMed

    Mandare, Prashant; Winter, H Henning

    2006-01-01

    Low shear rate and low frequency measurements focused on the extremely slow dynamics of a three-dimensional body-centered cubic (BCC) structure of an asymmetric block copolymer under nanophase-separated conditions. The material studied was poly(styrene-b-ethylene-co-butylene-b-styrene) swollen in a hydrocarbon oil selective for the midblock. Transient viscosities during start-up of shear flow at extremely low shear rates are governed by very long relaxation times and by a modulus that is nearly the same as the plateau modulus obtained from oscillatory shear experiments. Only at extremely low shear rates a zero shear viscosity could be attained. Its very high value is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude when increasing the shear rate. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. The SAXS profile recorded on such a sample showed a first-order maximum followed by a broad shoulder indicating a liquid-like short-range order of PS nanospheres in the swollen EB matrix.

  12. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    PubMed

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  13. UV Spectra of Amino Acid Immobilized at Nanoparticles Formation through Nanosphere Lithography (NSL) by Plasma Treatment

    SciTech Connect

    Mohamad, Farizan; Agam, Mohd Arif; Nur, Hadi

    2011-05-25

    The modifying of nanospheres structures by plasma treatments to the fabricated nanoparticles arrays by Nanosphere Lithography (NSL) techniques to create Periodic Particles Arrays (PPAs) with different size, shape and orientation. Spectra of amino acid that immobilized to the nanoparticles arrays under Ultra Violet (UV) spectrums were studied. The PPAs with different sizes, shapes and orientation were fabricated by plasma treatment of 5 sec, 7 sec and 10 sec to the Polystyrene Nanosphere (PSN). Plasma treatment will effect to the PSN including etching part of the PSN to produce a much bigger channel to the single layer template of the PSN. Metal was deposited at interstitial sites between of the polymer balls and later removed by dissolving them in organic solvent, leaving a hexagonal pattern of metal structures at the interstitial sites. The nanoparticles immobilized with the standard amino acid, which later investigated under UV spectrums. The spectrums shows the possibilities use as biosensor devices.

  14. Nanospheres with tunable size and chirality from helical polymer-metal complexes.

    PubMed

    Freire, Félix; Seco, José Manuel; Quiñoá, Emilio; Riguera, Ricardo

    2012-11-28

    A new family of nanospheres is made by complexation of divalent metals (i.e., Ca(2+), Ba(2+)) and poly(phenylacetylene) polymers bearing α-methoxyphenylacetic acid (MPA) pendants with high content of the cis isomer responsible for their helical structures. The resulting helical polymer-metal complex (HPMC) nanospheres present two interesting properties: (a) their diameter can be tuned to different sizes, to growth or to shrink, by changing the metal ion or the polymer/metal ion ratio, and (b) the helicity on the surface and the interior of the particle can be tuned to any of the two helical senses (M or P) by selection of the metal ion. The role of the solvent, the metal ion, and the helicity of the polymer in the aggregation are discussed. The ability of these nanospheres to encapsulate is demonstrated with examples.

  15. A Multifunctional Subphthalocyanine Nanosphere for Targeting, Labeling, and Killing of Antibiotic-Resistant Bacteria.

    PubMed

    Roy, Indranil; Shetty, Dinesh; Hota, Raghunandan; Baek, Kangkyun; Kim, Jeesu; Kim, Chulhong; Kappert, Sandro; Kim, Kimoon

    2015-12-01

    Developing a material that can combat antibiotic-resistant bacteria, a major global health threat, is an urgent requirement. To tackle this challenge, we synthesized a multifunctional subphthalocyanine (SubPc) polymer nanosphere that has the ability to target, label, and photoinactivate antibiotic-resistant bacteria in a single treatment with more than 99 % efficiency, even with a dose as low as 4.2 J cm(-2) and a loading concentration of 10 nM. The positively charged nanosphere shell composed of covalently linked SubPc units can increase the local concentration of photosensitizers at therapeutic sites. The nanosphere shows superior performance compared to corresponding monomers presumably because of their enhanced water dispersibility, higher efficiency of singlet-oxygen generation, and phototoxicity. In addition, this material is useful in fluorescence labeling of living cells and shows promise in photoacoustic imaging of bacteria in vivo.

  16. Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy

    PubMed Central

    Kessentini, Sameh; Barchiesi, Dominique

    2012-01-01

    The purpose of this study is to get more efficient gold nanoparticles, for necrosis of cancer cells, in photothermal therapy. Therefore a numerical maximization of the absorption efficiency of a set of nanoparticles (nanorod, nanoshell and hollow nanosphere) is proposed, assuming that all the absorbed light is converted to heat. Two therapeutic cases (shallow and deep cancer) are considered. The numerical tools used in this study are the full Mie theory, the discrete dipole approximation and the particle swarm optimization. The optimization leads to an improved efficiency of the nanoparticles compared with previous studies. For the shallow cancer therapy, the hollow nanosphere seems to be more efficient than the other nanoparticles, whereas the hollow nanosphere and nanorod, offer comparable absorption efficiencies, for deep cancer therapy. Finally, a study of tolerance for the size parameters to guarantee an absorption efficiency threshold is included. PMID:22435104

  17. Controlled fabrication of silicon nanowires via nanosphere lithograph and metal assisted chemical etching.

    PubMed

    Sun, Bo; Shi, Tielin; Sheng, Wenjun; Liao, Guanglan

    2013-08-01

    We investigated the controlled fabrication of uniform vertical aligned silicon nanowires with desired length, diameter and location by combining nanosphere lithograph and metal assisted chemical etching techniques. The close-packed polystyrene nanospheres array was obtained by self-assemble technique, followed by reactive ion etching to acquire a non-close-packed monolayer template. Subsequently, the template was used to create a metal film with nanoholes array, which enable the controlled fabrication of ordered silicon nanowires via metal assisted chemical etching technique. By adjusting the monolayer of polystyrene nanospheres and the conditions for the metal assisted chemical etching, we obtained uniform distributed silicon nanowires with desired morphology. The aspect ratio of the silicon nanowires can reach to about 86:1. Furthermore, we have obtained the double-layer silicon nanowires by slight modifying the process. The influences of various conditions during etching were also discussed for improving the controlled fabrication.

  18. Imaging plasmonic fields near gold nanospheres in attosecond time-resolved streaked photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Thumm, Uwe

    2016-05-01

    To study time-resolved photoemission from gold nanospheres, we introduce a quantum-mechanical approach, including the plasmonic near-field-enhancement of the streaking field at the surface of the nanosphere. We use Mie theory to calculate the plasmonically enhanced fields near 10 to 200 nm gold nanospheres, driven by incident near infrared (NIR) or visible laser pulses. We model the gold conduction band in terms of a spherical square well potential. Our simulated streaked photoelectron spectra reveal a plasmonic amplitude enhancement and phase shift related to calculations that exclude the induced plasmonic field. The phase shift is due to the plasma resonance. This suggests the use of streaked photoelectron spectroscopy for imaging the dielectric response and plasmonic field near nanoparticles. Supported by the NSD-EPSCoR program, NSF, and the USDoE.

  19. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy

    NASA Astrophysics Data System (ADS)

    Shao, Jundong; Xie, Hanhan; Huang, Hao; Li, Zhibin; Sun, Zhengbo; Xu, Yanhua; Xiao, Quanlan; Yu, Xue-Feng; Zhao, Yuetao; Zhang, Han; Wang, Huaiyu; Chu, Paul K.

    2016-09-01

    Photothermal therapy (PTT) offers many advantages such as high efficiency and minimal invasiveness, but clinical adoption of PTT nanoagents have been stifled by unresolved concerns such as the biodegradability as well as long-term toxicity. Herein, poly (lactic-co-glycolic acid) (PLGA) loaded with black phosphorus quantum dots (BPQDs) is processed by an emulsion method to produce biodegradable BPQDs/PLGA nanospheres. The hydrophobic PLGA not only isolates the interior BPQDs from oxygen and water to enhance the photothermal stability, but also control the degradation rate of the BPQDs. The in vitro and in vivo experiments demonstrate that the BPQDs/PLGA nanospheres have inappreciable toxicity and good biocompatibility, and possess excellent PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) laser illumination. These BP-based nanospheres combine biodegradability and biocompatibility with high PTT efficiency, thus promising high clinical potential.

  20. Fabrication and magnetic property analysis of monodisperse manganese-zinc ferrite nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhu, Meifang; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2009-10-01

    Monodisperse Mn-Zn ferrite (Mn 1-xZn xFe 2O 4) nanospheres have been prepared via a simple solvothermal method. The as-synthesized samples were characterized in detail by X-ray diffraction pattern (XRD), transmission electron microscope (TEM), high-solution transmission electron microscope (HRTEM), select area electron diffraction pattern (SAED), scanning electron microscope (SEM), and vibrating sample magnetometer (VSM). The results show that a large number of the high-purity Mn 1-xZn xFe 2O 4 nanocrystallites were synthesized and these nanocrystallites oriented aggregated to nanospheres. The dependence of magnetic properties of Mn 1-xZn xFe 2O 4 nanospheres on the composition content x of Zn was studied. The maximum saturation magnetization value of the as-prepared sample (Mn 0.6Zn 0.4Fe 2O 4) reached 52.4 emu g -1.

  1. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy

    PubMed Central

    Shao, Jundong; Xie, Hanhan; Huang, Hao; Li, Zhibin; Sun, Zhengbo; Xu, Yanhua; Xiao, Quanlan; Yu, Xue-Feng; Zhao, Yuetao; Zhang, Han; Wang, Huaiyu; Chu, Paul K.

    2016-01-01

    Photothermal therapy (PTT) offers many advantages such as high efficiency and minimal invasiveness, but clinical adoption of PTT nanoagents have been stifled by unresolved concerns such as the biodegradability as well as long-term toxicity. Herein, poly (lactic-co-glycolic acid) (PLGA) loaded with black phosphorus quantum dots (BPQDs) is processed by an emulsion method to produce biodegradable BPQDs/PLGA nanospheres. The hydrophobic PLGA not only isolates the interior BPQDs from oxygen and water to enhance the photothermal stability, but also control the degradation rate of the BPQDs. The in vitro and in vivo experiments demonstrate that the BPQDs/PLGA nanospheres have inappreciable toxicity and good biocompatibility, and possess excellent PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) laser illumination. These BP-based nanospheres combine biodegradability and biocompatibility with high PTT efficiency, thus promising high clinical potential. PMID:27686999

  2. Binary particle swarm optimization algorithm assisted to design of plasmonic nanospheres sensor

    NASA Astrophysics Data System (ADS)

    Kaboli, Milad; Akhlaghi, Majid; Shahmirzaee, Hossein

    2016-04-01

    In this study, a coherent perfect absorption (CPA)-type sensor based on plasmonic nanoparticles is proposed. It consists of a plasmonic nanospheres array on top of a quartz substrate. The refractive index changes above the sensor surface, which is due to the appearance of gas or the absorption of biomolecules, can be detected by measuring the resulting spectral shifts of the absorption coefficient. Since the CPA efficiency depends strongly on the number of plasmonic nanoparticles and the locations of nanoparticles, binary particle swarm optimization (BPSO) algorithm is used to design an optimized array of the plasmonic nanospheres. This optimized structure should be maximizing the absorption coefficient only in the one frequency. BPSO algorithm, a swarm of birds including a matrix with binary entries responsible for controlling nanospheres in the array, shows the presence with symbol of ('1') and the absence with ('0'). The sensor can be used for sensing both gas and low refractive index materials in an aqueous environment.

  3. Cloning of acyl-ACP thioesterase FatA from Arachis hypogaea L. and its expression in Escherichia coli.

    PubMed

    Chen, Gao; Peng, Zhen-ying; Shan, Lei; Xuan, Ning; Tang, Gui-ying; Zhang, Yan; Li, Lan; He, Qing-fang; Bi, Yu-ping

    2012-01-01

    In this study, a full-length cDNA of the acyl-ACP thioesterase, AhFatA, was cloned from developing seeds of Arachis hypogaea L. by 3'-RACE. Sequence analysis showed that the open reading frame encodes a peptide of 372 amino acids and has 50-70% identity with FatA from other plants. Real-time quantitative PCR analysis revealed that AhFatA was expressed in all tissues of A. hypogaea L., but most strongly in the immature seeds harvested at 60 days after pegging. Heterologous expression of AhFatA in Escherichia coli affected bacterial growth and changed the fatty acid profiles of the membrane lipid, resulting in directed accumulation towards palmitoleic acid and oleic acid. These results indicate that AhFatA is at least partially responsible for determining the high palmitoleic acid and oleic acid composition of E. coli.

  4. Cloning of Acyl-ACP Thioesterase FatA from Arachis hypogaea L. and Its Expression in Escherichia coli

    PubMed Central

    Chen, Gao; Peng, Zhen-ying; Shan, Lei; Xuan, Ning; Tang, Gui-ying; Zhang, Yan; Li, Lan; He, Qing-fang; Bi, Yu-ping

    2012-01-01

    In this study, a full-length cDNA of the acyl-ACP thioesterase, AhFatA, was cloned from developing seeds of Arachis hypogaea L. by 3′-RACE. Sequence analysis showed that the open reading frame encodes a peptide of 372 amino acids and has 50–70% identity with FatA from other plants. Real-time quantitative PCR analysis revealed that AhFatA was expressed in all tissues of A. hypogaea L., but most strongly in the immature seeds harvested at 60 days after pegging. Heterologous expression of AhFatA in Escherichia coli affected bacterial growth and changed the fatty acid profiles of the membrane lipid, resulting in directed accumulation towards palmitoleic acid and oleic acid. These results indicate that AhFatA is at least partially responsible for determining the high palmitoleic acid and oleic acid composition of E. coli. PMID:23093853

  5. QSAR and Molecular Docking Studies of Oxadiazole-Ligated Pyrrole Derivatives as Enoyl-ACP (CoA) Reductase Inhibitors

    PubMed Central

    Asgaonkar, Kalyani D.; Mote, Ganesh D.; Chitre, Trupti S.

    2014-01-01

    A quantitative structure-activity relationship model was developed on a series of compounds containing oxadiazole-ligated pyrrole pharmacophore to identify key structural fragments required for anti-tubercular activity. Two-dimensional (2D) and three-dimensional (3D) QSAR studies were performed using multiple linear regression (MLR) analysis and k-nearest neighbour molecular field analysis (kNN-MFA), respectively. The developed QSAR models were found to be statistically significant with respect to training, cross-validation, and external validation. New chemical entities (NCEs) were designed based on the results of the 2D- and 3D-QSAR. NCEs were subjected to Lipinski’s screen to ensure the drug-like pharmacokinetic profile of the designed compounds in order to improve their bioavailability. Also, the binding ability of the NCEs with enoyl-ACP (CoA) reductase was assessed by docking. PMID:24634843

  6. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    SciTech Connect

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  7. Metal filled porous carbon

    DOEpatents

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  8. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts.

    PubMed

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-04-14

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the "I(+)X(-)S(+)" mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries. PMID:25779978

  9. X-ray structure of putative acyl-ACP desaturase DesA2 from Mycobacterium tuberculosis H37Rv

    SciTech Connect

    Dyer, David H.; Lyle, Karen S.; Rayment, Ivan; Fox, Brian G.

    2010-07-13

    Genome sequencing showed that two proteins in Mycobacterium tuberculosis H37Rv contain the metal binding motif (D/E)X{sub 2}HX{sub {approx}100}(D/E)X{sub 2}H characteristic of the soluble diiron enzyme superfamily. These putative acyl-ACP desaturase genes desA1 and desA2 were cloned from genomic DNA and expressed in Escherichia coli BL21(DE3). DesA1 was found to be insoluble, but in contrast, DesA2 was a soluble protein amenable to biophysical characterization. Here, we report the 2.0 {angstrom} resolution X-ray structure of DesA2 determined by multiple anomalous dispersion (MAD) phasing from a Se-met derivative and refinement against diffraction data obtained on the native protein. The X-ray structure shows that DesA2 is a homodimeric protein with a four-helix bundle core flanked by five additional helices that overlay with 192 structurally equivalent amino acids in the structure of stearoyl-ACP {Delta}9 desaturase from castor plant with an rms difference 1.42 {angstrom}. In the DesA2 crystals, one metal (likely Mn from the crystallization buffer) was bound in high occupancy at the B-site of the conserved metal binding motif, while the A-site was not occupied by a metal ion. Instead, the amino group of Lys-76 occupied this position. The relationships between DesA2 and known diiron enzymes are discussed.

  10. Early-onset obesity and paternal 2pter deletion encompassing the ACP1, TMEM18, and MYT1L genes

    PubMed Central

    Doco-Fenzy, Martine; Leroy, Camille; Schneider, Anouck; Petit, Florence; Delrue, Marie-Ange; Andrieux, Joris; Perrin-Sabourin, Laurence; Landais, Emilie; Aboura, Azzedine; Puechberty, Jacques; Girard, Manon; Tournaire, Magali; Sanchez, Elodie; Rooryck, Caroline; Ameil, Agnès; Goossens, Michel; Jonveaux, Philippe; Lefort, Geneviève; Taine, Laurence; Cailley, Dorothée; Gaillard, Dominique; Leheup, Bruno; Sarda, Pierre; Geneviève, David

    2014-01-01

    Obesity is a common but highly, clinically, and genetically heterogeneous disease. Deletion of the terminal region of the short arm of chromosome 2 is rare and has been reported in about 13 patients in the literature often associated with a Prader–Willi-like phenotype. We report on five unrelated patients with 2p25 deletion of paternal origin presenting with early-onset obesity, hyperphagia, intellectual deficiency, and behavioural difficulties. Among these patients, three had de novo pure 2pter deletions, one presented with a paternal derivative der(2)t(2;15)(p25.3;q26) with deletion in the 2pter region and the last patient presented with an interstitial 2p25 deletion. The size of the deletions was characterized by SNP array or array-CGH and was confirmed by fluorescence in situ hybridization (FISH) studies. Four patients shared a 2p25.3 deletion with a minimal critical region estimated at 1.97 Mb and encompassing seven genes, namely SH3HYL1, ACP1, TMEMI8, SNTG2, TPO, PXDN, and MYT1L genes. The fifth patient had a smaller interstitial deletion encompassing the TPO, PXDN, and MYT1L genes. Paternal origin of the deletion was determined by genotyping using microsatellite markers. Analysis of the genes encompassed in the deleted region led us to speculate that the ACP1, TMEM18, and/or MYT1L genes might be involved in early-onset obesity. In addition, intellectual deficiency and behavioural troubles can be explained by the heterozygous loss of the SNTG2 and MYT1L genes. Finally, we discuss the parent-of-origin of the deletion. PMID:24129437

  11. Early-onset obesity and paternal 2pter deletion encompassing the ACP1, TMEM18, and MYT1L genes.

    PubMed

    Doco-Fenzy, Martine; Leroy, Camille; Schneider, Anouck; Petit, Florence; Delrue, Marie-Ange; Andrieux, Joris; Perrin-Sabourin, Laurence; Landais, Emilie; Aboura, Azzedine; Puechberty, Jacques; Girard, Manon; Tournaire, Magali; Sanchez, Elodie; Rooryck, Caroline; Ameil, Agnès; Goossens, Michel; Jonveaux, Philippe; Lefort, Geneviève; Taine, Laurence; Cailley, Dorothée; Gaillard, Dominique; Leheup, Bruno; Sarda, Pierre; Geneviève, David

    2014-04-01

    Obesity is a common but highly, clinically, and genetically heterogeneous disease. Deletion of the terminal region of the short arm of chromosome 2 is rare and has been reported in about 13 patients in the literature often associated with a Prader-Willi-like phenotype. We report on five unrelated patients with 2p25 deletion of paternal origin presenting with early-onset obesity, hyperphagia, intellectual deficiency, and behavioural difficulties. Among these patients, three had de novo pure 2pter deletions, one presented with a paternal derivative der(2)t(2;15)(p25.3;q26) with deletion in the 2pter region and the last patient presented with an interstitial 2p25 deletion. The size of the deletions was characterized by SNP array or array-CGH and was confirmed by fluorescence in situ hybridization (FISH) studies. Four patients shared a 2p25.3 deletion with a minimal critical region estimated at 1.97 Mb and encompassing seven genes, namely SH3HYL1, ACP1, TMEMI8, SNTG2, TPO, PXDN, and MYT1L genes. The fifth patient had a smaller interstitial deletion encompassing the TPO, PXDN, and MYT1L genes. Paternal origin of the deletion was determined by genotyping using microsatellite markers. Analysis of the genes encompassed in the deleted region led us to speculate that the ACP1, TMEM18, and/or MYT1L genes might be involved in early-onset obesity. In addition, intellectual deficiency and behavioural troubles can be explained by the heterozygous loss of the SNTG2 and MYT1L genes. Finally, we discuss the parent-of-origin of the deletion.

  12. Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres

    PubMed Central

    Yi, Jihaeng; Jao, Chih-Yu; Kandas, Ishac L. N.; Liu, Bo; Xu, Yong; Robinson, Hans D.

    2012-01-01

    We study the adsorption of gold nanospheres onto cylindrical and spherical glass surfaces from quiescent particle suspensions. The surfaces consist of tapers and microspheres fabricated from optical fibers and were coated with a polycation, enabling irreversible nanosphere adsorption. Our results fit well with theory, which predicts that particle adsorption rates depend strongly on surface geometry and can exceed the planar surface deposition rate by over two orders of magnitude when particle diffusion length is large compared to surface curvature. This is particularly important for plasmonic sensors and other devices fabricated by depositing nanoparticles from suspensions onto surfaces with non-trivial geometries. PMID:22550356

  13. Searching for non-Newtonian gravity at the micron scale with laser-cooled nanospheres

    NASA Astrophysics Data System (ADS)

    Ranjit, Gambhir; Atherton, David; Cunningham, Mark; Valencia, Jose; Geraci, Andrew; Goldman, Hart

    2015-05-01

    Several theories beyond the standard model predict the deviation of gravity from the Newtonian model at short range. An optically levitated and cooled silica nanosphere in vacuum has a high quality factor resulting in ultrahigh sensitivity; hence it provides a promising tool to measure such deviations. I will discuss the experiment we are developing to test non-Newtonian gravity at the micron length scale. In addition, I will also present the prospect of sensing short-range forces between a surface and a free falling nanosphere in a Talbot matter-wave interferometer.

  14. A functional analysis of ACP-20, an adult-specific cuticular protein gene from the beetle Tenebrio: role of an intronic sequence in transcriptional activation during the late metamorphic period.

    PubMed

    Lemoine, A; Mathelin, J; Braquart-Varnier, C; Everaerts, C; Delachambre, J

    2004-10-01

    A gene encoding the adult cuticular protein ACP-20 was isolated in Tenebrio. It consists of three exons interspersed by two introns, intron 1 interrupting the signal peptide. To understand the regulatory mechanisms of ACP-20 expression, ACP-20 promoter-luciferase reporter gene constructs were transfected into cultured pharate adult wing epidermis. Transfection assays needed the presence of 20-hydroxyecdysone, confirming that ACP-20 is up-regulated by ecdysteroids. Analysis of 5' deletion constructs revealed that three regions are necessary for high levels of transcription. Interaction experiments between intronic fragments and epidermal nuclear proteins confirmed the importance of intron 1 in ACP-20 transcriptional control, which results from the combined activity of regulatory cis-acting elements of the promoter and those of intron 1.

  15. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds.

    PubMed

    Moreno-Pérez, Antonio Javier; Venegas-Calerón, Mónica; Vaistij, Fabián E; Salas, Joaquin J; Larson, Tony R; Garcés, Rafael; Graham, Ian A; Martínez-Force, Enrique

    2014-03-01

    The substrate specificity of the acyl-acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty acids. In the present work, the FatA thioesterase from Helianthus annuus was used to test the impact of changes in the amino acids present in the binding pocket on substrate specificity and catalytic efficiency. Amongst all the mutated enzymes studied, Q215W was especially interesting as it had higher specificity towards saturated acyl-ACP substrates and higher catalytic efficiency compared to wild-type H. annuus FatA. Null, wild type and high-efficiency alleles were transiently expressed in tobacco leaves to check their effect on lipid biosynthesis. Expression of active FatA thioesterases altered the composition of leaf triacylglycerols but did not alter total lipid content. However, the expression of the wild type and the high-efficiency alleles in Arabidopsis thaliana transgenic seeds resulted in a strong reduction in oil content and an increase in total saturated fatty acid content. The role and influence of acyl-ACP thioesterases in plant metabolism and their possible applications in lipid biotechnology are discussed.

  16. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2009-2010 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2010

    2010-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its five staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by Commissioners…

  17. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2006-2007 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2007

    2007-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a 5 year strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its eight staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by…

  18. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2008-2009 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2009

    2009-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a 5-year strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its eight staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by…

  19. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2007-2008 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2008

    2008-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a 5-year strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its nine staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by …

  20. Morphological and metabolic changes in transgenic wheat with altered glycerol-3-phosphate acyltransferase or acyl-acyl carrier protein (ACP) thioesterase activities.

    PubMed

    Edlin, D A; Kille, P; Wilkinson, M D; Jones, H D; Harwood, J L

    2000-12-01

    We have transformed varieties of wheat with a Pisum sativum glycerol-3-phosphate acyltransferase gene, and also with an Arabidopsis thaliana acyl-ACP thioesterase gene. Morphological (growth, organelle development) and metabolic changes (fatty acid labelling of chloroplast and non-chloroplast lipids) have been observed in transgenics with altered gene expression for either enzyme. PMID:11171169

  1. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. Arizona Commission for Postsecondary Education (ACPE) Fiscal Year 2005-2006 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2006

    2006-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a 5-year strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its seven staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by…

  2. Chitosan Tethered Colloidal Gold Nanospheres for Drug Delivery Applications.

    PubMed

    Hari, Kalpana; Kumpati, Premkumar

    2016-01-01

    Gold Nanospheres (AuNS) have been widely explored as an emerging system for various biomedical applications including drug delivery, bioimaging and photomedicine. However, method of synthesizing nanoparticles and its toxicity including bioaccumulation has been a problem of concern. In the present study, we explored the appropriateness of 12.0 ±1.99 nm chitosan reduced AuNS in vivo models with respect to its bioavailability and toxicity against various concentrations (2.5-7.5 mg/kg). Administration of AuNS did not show any signs of morbidity. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of blood (0.156 ± 0.154), urine (0.084 ± 0.08) and tissues indicates gradual dissipation and obligatory clearance within 24 h time interval. Nevertheless, pres- ence of AuNS in blood after 24 h confirms the bioavailability of AuNS demonstrating the evidence for no immune clearance and efficient tissue uptake. Further, brain shows the lowest quantity of injected AuNS. From this result, we determine this chitosan monolayer protected AuNS could cross the blood brain barrier and enter to the neural tissues. Interestingly there was no evidence of toxicity in any of the organs. In conclusion, our data suggest that AuNS injected though tail vain were easily taken up by tissues and does not produce sub-acute physiological damage even at high concentrations tested, supporting chitosan reduced AuNS as biocompatible, nontoxic nanoconjugates for targeted drug delivery and other biomedical applications.

  3. Chitosan Tethered Colloidal Gold Nanospheres for Drug Delivery Applications.

    PubMed

    Hari, Kalpana; Kumpati, Premkumar

    2016-01-01

    Gold Nanospheres (AuNS) have been widely explored as an emerging system for various biomedical applications including drug delivery, bioimaging and photomedicine. However, method of synthesizing nanoparticles and its toxicity including bioaccumulation has been a problem of concern. In the present study, we explored the appropriateness of 12.0 ±1.99 nm chitosan reduced AuNS in vivo models with respect to its bioavailability and toxicity against various concentrations (2.5-7.5 mg/kg). Administration of AuNS did not show any signs of morbidity. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of blood (0.156 ± 0.154), urine (0.084 ± 0.08) and tissues indicates gradual dissipation and obligatory clearance within 24 h time interval. Nevertheless, pres- ence of AuNS in blood after 24 h confirms the bioavailability of AuNS demonstrating the evidence for no immune clearance and efficient tissue uptake. Further, brain shows the lowest quantity of injected AuNS. From this result, we determine this chitosan monolayer protected AuNS could cross the blood brain barrier and enter to the neural tissues. Interestingly there was no evidence of toxicity in any of the organs. In conclusion, our data suggest that AuNS injected though tail vain were easily taken up by tissues and does not produce sub-acute physiological damage even at high concentrations tested, supporting chitosan reduced AuNS as biocompatible, nontoxic nanoconjugates for targeted drug delivery and other biomedical applications. PMID:27398449

  4. The PIP training programme: building of ACP experts capacities in crop protection and food safety to support local companies to comply with EU regulations on pesticides residues.

    PubMed

    Schiffers, B C; Schubert, A; Schiffers, C; Fontaine, S; Gumusboga, N; Werner, B; Webb, M; Lugros, H; Stinglhamber, G

    2006-01-01

    Regulatory requirements, and in particular phytosanitary quality standards change rapidly. As ACP producers/exporters race to become more competitive, to keep their market share and to satisfay their customers' commercial demands (e.g. EUREP-GAP certification), the need for competent staff who are aware of the company's quality objectives and trained to follow instructions is crucial. Mastering sanitary quality is only possible if matched with a programme to build the skills of companies' human resources. The Pesticide Initiative Programme (PIP), mindful of the importance of making operators autonomous and of training them to monitor EU food safety regulations and technology on their own, has successfully developed a training programme while building a quality network of local/ACP service providers. By building the capacities of ACP experts and then securing their services as trainers, PIP also guarantees companies' access to expertise and the sustainability of their efforts to comply with new EU regulations. The training strategy developed by PIP rests on two pilars: instructor training and collective training. Instructor training consists in reinforcing the technical knowledge of local experts (agronomists, hygienists, etc.) by providing them with active teaching methods. Once the ACP experts have gained enough technical knowledge of the key areas of crop protection--mainly pesticides management--and food safety, and have demonstrated their capacity to train the technical staff of local companies, the PIP has carried out a collective training programme in 2004, 2005 and 2006. To date, more than 130 consultants covering about 15 ACP countries have received instructor training, and more than 700 people have participated in collective and in-company training sessions.

  5. Controlled preparation and reactive silver-ion sorption of electrically conductive poly(N-butylaniline)-lignosulfonate composite nanospheres.

    PubMed

    Lü, Qiu-Feng; Zhang, Jia-Yin; He, Zhi-Wei

    2012-12-14

    Electroconductive poly(N-butylaniline)-lignosulfonate (PBA-LS) composite nanospheres were prepared in a facile way by in situ, unstirred polymerization of N-butylaniline with lignosulfonate (LS) as a dispersant and dopant. The LS content was used to optimize the size, structure, electroconductivity, solubility, and silver ion adsorptive capacity of the PBA-LS nanospheres. Uniform PBA-LS10 nanospheres with a minimal mean diameter of 375 nm and high stability were obtained when the LS content was 10 wt %. The PBA-LS10 nanospheres possess an increased electroconductivity of 0.109 S cm(-1) compared with that of poly(N-butylaniline) (0.0751 S cm(-1)). Furthermore, the PBA-LS10 nanospheres have a maximal silver-ion sorption capacity of 815.0 mg  g(-1) at an initial silver ion concentration of 50 mmol  L(-1) (25 °C for 48 h), an enhancement of 70.4% compared with PBA. Moreover, a sorption mechanism of silver ions on the PBA-LS10 nanospheres is proposed. TEM and wide-angle X-ray diffraction results showed that silver nanoparticles with a diameter size range of 6.8-55 nm was achieved after sorption, indicating that the PBA-LS10 nanospheres had high reductibility for silver ions.

  6. Fabrication, characterization and application of nitrogen-containing carbon nanospheres obtained by pyrolysis of lignosulfonate/poly(2-ethylaniline).

    PubMed

    He, Zhi-Wei; Lü, Qiu-Feng; Lin, Qilang

    2013-01-01

    Lignosulfonate/poly(2-ethylaniline) (LS-PEA) composite nanospheres were prepared via in situ polymerization of 2-ethylaniline (EA) with lignosulfonate (LS) as a dispersant. LS-PEA nanospheres with an average diameter of 155 nm were obtained at an optimal LS concentration of 20 wt.%. Subsequently, nitrogen-containing carbon nanospheres were fabricated via direct pyrolysis of the LS-PEA composite nanospheres at 600-800 °C. The carbon nanospheres prepared by pyrolysis were used as anodes of lithium-ion batteries. The first charge and discharge capacity of carbon nanospheres prepared at 700 °C at current densities of 60 and 100 mA g(-1) were 980 and 432 mAh g(-1), and 764 and 342 mAh g(-1), respectively. The batteries still owned a high capacity of 353 and 296 mAh g(-1) after 20 cycles. The results indicated that these nitrogen-containing carbon nanospheres could be used as a promising candidate for electrode materials of lithium-ion batteries.

  7. Temperature-responsive polymeric nanospheres containing methotrexate and gold nanoparticles: A multi-drug system for theranostic in rheumatoid arthritis.

    PubMed

    Costa Lima, Sofia A; Reis, Salette

    2015-09-01

    Inflammation plays a crucial role in rheumatoid arthritis progress. In the present work, a novel stealth polymeric nanospheres platform able to carry anti-inflammatory drugs and an imaging agent was developed. Incorporation of gold nanoparticles will allow photoacoustic imaging and near infra-red photothermal application. Through emulsion-diffusion evaporation technique methotrexate and gold nanoparticles were incorporated in the pegylated-poly(DL-lactic-co-glycolic acid) nanospheres. In vitro drug release assays revealed pH and temperature-dependence on gold nanoparticles. Blank nanospheres exhibited negligible in vitro cytotoxicity, while methotrexate-loaded nanospheres hampered monocytes and macrophages viability at a higher level than free methotrexate. Confocal fluorescent microscopy and flow cytometry revealed effective nanospheres internalization, and that their cellular uptake was energy dependent mediated by caveolae and clathrin-endocytosis mechanism. Finally, MTX-loaded multifunctional nanospheres containing gold lead to a significant reduction of IL-1β, IL-6 and TNF-α inflammatory cytokines produced by monocytes and macrophages upon in vitro inflammatory stimulation, suggesting a favorable anti-inflammatory activity. These results confirm that the multifunctional nanospheres represent a promising theranostic platform for RA diagnosis and intracellular treatment, by combining methotrexate and gold nanoparticles for a highly effective targeted chemo-photothermal therapy.

  8. Temperature-responsive polymeric nanospheres containing methotrexate and gold nanoparticles: A multi-drug system for theranostic in rheumatoid arthritis.

    PubMed

    Costa Lima, Sofia A; Reis, Salette

    2015-09-01

    Inflammation plays a crucial role in rheumatoid arthritis progress. In the present work, a novel stealth polymeric nanospheres platform able to carry anti-inflammatory drugs and an imaging agent was developed. Incorporation of gold nanoparticles will allow photoacoustic imaging and near infra-red photothermal application. Through emulsion-diffusion evaporation technique methotrexate and gold nanoparticles were incorporated in the pegylated-poly(DL-lactic-co-glycolic acid) nanospheres. In vitro drug release assays revealed pH and temperature-dependence on gold nanoparticles. Blank nanospheres exhibited negligible in vitro cytotoxicity, while methotrexate-loaded nanospheres hampered monocytes and macrophages viability at a higher level than free methotrexate. Confocal fluorescent microscopy and flow cytometry revealed effective nanospheres internalization, and that their cellular uptake was energy dependent mediated by caveolae and clathrin-endocytosis mechanism. Finally, MTX-loaded multifunctional nanospheres containing gold lead to a significant reduction of IL-1β, IL-6 and TNF-α inflammatory cytokines produced by monocytes and macrophages upon in vitro inflammatory stimulation, suggesting a favorable anti-inflammatory activity. These results confirm that the multifunctional nanospheres represent a promising theranostic platform for RA diagnosis and intracellular treatment, by combining methotrexate and gold nanoparticles for a highly effective targeted chemo-photothermal therapy. PMID:25979151

  9. Hierarchical SnO2 Nanospheres: Bio-inspired Mineralization, Vulcanization, Oxidation Techniques, and the Application for NO Sensors

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Chen, Yuejiao; Ma, Jianmin; Chen, Libao; Xu, Zhi; Wang, Taihong

    2013-12-01

    Controllable synthesis and surface engineering of nanomaterials are of strategic importance for tailoring their properties. Here, we demonstrate that the synthesis and surface adjustment of highly stable hierarchical of SnO2 nanospheres can be realized by biomineralization, vulcanization and oxidation techniques. Furthermore, we reveal that the highly stable hierarchical SnO2 nanospheres ensure a remarkable sensitivity towards NO gas with fast response and recovery due to their high crystallinity and special structure. Such technique acquiring highly stable hierarchical SnO2 nanospheres offers promising potential for future practical applications in monitoring the emission from waste incinerators and combustion process of fossil fuels.

  10. Synthesis of hematite α-Fe{sub 2}O{sub 3} nanospheres for lithium ion battery applications

    SciTech Connect

    Rao, B. Nageswara; Padmaraj, O.; Kumar, P. Ramesh; Satyanarayana, N.; Venkateswarlu, M.; Rao, V. Madhusudhan

    2015-06-24

    Hematite α-Fe{sub 2}O{sub 3} nanospheres were prepared by a rapid microwave assisted hydrothermal process. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy studies confirm the phase and structural coordination of α-Fe{sub 2}O{sub 3} respectively. The formation of uniform shape of nanospheres α-Fe{sub 2}O{sub 3} was confirmed from the results scanning electron microscopy (SEM). Galvanostatic battery testing shows that the α-Fe{sub 2}O{sub 3} nanospheres exhibit good electrochemical performance in the voltage range 0.002 - 3 V.

  11. Ligand-assisted fabrication of hollow CdSe nanospheres via Ostwald ripening and their microwave absorption properties.

    PubMed

    Cao, Minhua; Lian, Huiqin; Hu, Changwen

    2010-12-01

    Hollow CdSe nanospheres were successfully synthesized by a ligand-assisted solvothermal method based on an Ostwald ripening mechanism. The hollow CdSe nanospheres were synthesized in benzyl alcohol under solvothermal conditions using Cd(Ac)2 and Se as the precursors, and tryptophan as a ligand. The resulting hollow structures consisted of small nanocrystallite building blocks. More importantly, the hollow CdSe nanospheres could be used as an excellent microwave absorber for cm- and mm-wave absorption, depending on the thickness of the absorber.

  12. Hierarchical SnO2 Nanospheres: Bio-inspired Mineralization, Vulcanization, Oxidation Techniques, and the Application for NO Sensors

    PubMed Central

    Wang, Lei; Chen, Yuejiao; Ma, Jianmin; Chen, Libao; Xu, Zhi; Wang, Taihong

    2013-01-01

    Controllable synthesis and surface engineering of nanomaterials are of strategic importance for tailoring their properties. Here, we demonstrate that the synthesis and surface adjustment of highly stable hierarchical of SnO2 nanospheres can be realized by biomineralization, vulcanization and oxidation techniques. Furthermore, we reveal that the highly stable hierarchical SnO2 nanospheres ensure a remarkable sensitivity towards NO gas with fast response and recovery due to their high crystallinity and special structure. Such technique acquiring highly stable hierarchical SnO2 nanospheres offers promising potential for future practical applications in monitoring the emission from waste incinerators and combustion process of fossil fuels. PMID:24336171

  13. Hierarchical SnO2 nanospheres: bio-inspired mineralization, vulcanization, oxidation techniques, and the application for NO sensors.

    PubMed

    Wang, Lei; Chen, Yuejiao; Ma, Jianmin; Chen, Libao; Xu, Zhi; Wang, Taihong

    2013-01-01

    Controllable synthesis and surface engineering of nanomaterials are of strategic importance for tailoring their properties. Here, we demonstrate that the synthesis and surface adjustment of highly stable hierarchical of SnO2 nanospheres can be realized by biomineralization, vulcanization and oxidation techniques. Furthermore, we reveal that the highly stable hierarchical SnO2 nanospheres ensure a remarkable sensitivity towards NO gas with fast response and recovery due to their high crystallinity and special structure. Such technique acquiring highly stable hierarchical SnO2 nanospheres offers promising potential for future practical applications in monitoring the emission from waste incinerators and combustion process of fossil fuels. PMID:24336171

  14. Hierarchical SnO2 nanospheres: bio-inspired mineralization, vulcanization, oxidation techniques, and the application for NO sensors.

    PubMed

    Wang, Lei; Chen, Yuejiao; Ma, Jianmin; Chen, Libao; Xu, Zhi; Wang, Taihong

    2013-01-01

    Controllable synthesis and surface engineering of nanomaterials are of strategic importance for tailoring their properties. Here, we demonstrate that the synthesis and surface adjustment of highly stable hierarchical of SnO2 nanospheres can be realized by biomineralization, vulcanization and oxidation techniques. Furthermore, we reveal that the highly stable hierarchical SnO2 nanospheres ensure a remarkable sensitivity towards NO gas with fast response and recovery due to their high crystallinity and special structure. Such technique acquiring highly stable hierarchical SnO2 nanospheres offers promising potential for future practical applications in monitoring the emission from waste incinerators and combustion process of fossil fuels.

  15. Determination of pK(a) Values of Hydrophobic Colorimetric pH Sensitive Probes in Nanospheres.

    PubMed

    Xie, Xiaojiang; Zhai, Jingying; Jarolímová, Zdeňka; Bakker, Eric

    2016-03-15

    A simple and novel method is proposed here for the first time to determine pK(a) values of chromogenic hydrophobic pH sensitive probes directly in nanospheres. pK(a) values can be obtained by measuring the pH response of the nanospheres (containing the probes and ion exchanger) followed by measuring the pH and Na(+) responses of the nanospheres (containing solvatochromic dyes and ion exchanger). The pK(a) values of four chromoionophores were successfully determined. This method is in principle also applicable to characterize colorimetric probes in other water immiscible nanomaterials.

  16. Fabrication of metallic nanodisc hexagonal arrays using nanosphere lithography and two-step lift-off.

    PubMed

    Huang, Xiaolu; Ratchford, Daniel; Pehrsson, Pehr E; Yeom, Junghoon

    2016-09-30

    Nanosphere lithography (NSL) has been widely used as an inexpensive method to create periodic arrays of metallic nanoparticles or nanodiscs on substrates. However, most nanodisc arrays derived from a NSL template are restricted to hexagonally-ordered triangular arrays because the metal layer is deposited onto the interstices between the nanospheres. Metallic nanodisc arrays with the same arrangement as the original nanosphere array have been rarely reported. Here, we demonstrate a facile, low-cost method to fabricate large-area hexagonal arrays of metallic nanodiscs using an NSL template combined with a two-step lift-off process. We employ a bi-layer of two dissimilar metals to create a re-entrant sidewall profile to undercut the sacrificial layer and facilitate the final lift-off of the metallic nanodiscs. The quality of the nanodisc pattern and the array periodicity is determined using statistical image analysis and compared to the original nanosphere array in terms of size distribution, surface smoothness, and array pitch. This nanodisc array is used as an etch mask to create a vertically-aligned Si nanowire array. This combined approach is a scalable and inexpensive fabrication method for creating relatively large-area, ordered arrays of various nanostructures.

  17. Double quantum light emission from gold nanowires and interacting gold nanospheres

    NASA Astrophysics Data System (ADS)

    Abid, M.; Abid, Mohamed; Brasselet, S.

    2013-09-01

    Second harmonic generation microscopy is used for the investigation of the nonlinear optical response of single gold nanowires and aggregates of quasi-spherical gold nanomaterials. Angular and spectral resolved approaches are performed to study the origin of the second harmonic emission (SH) from isolated gold nanowire, nanosphere and interacting nanospheres in aggregates. It is observed that the Second harmonic efficiency is enhanced when the excitation wavelength is resonant with the surface plasmon mode (SP) of the metallic nanomaterials. The angular resolved second harmonic analysis study demonstrated the presence of different origins (dipolar, quadrupolar and octupolar modes) involved in the nonlinear optical emission from gold nanowires and nanospheres. Our investigation demonstrates the important role of electric dipole arising from the breaking of the centrosymmetry at the surface of the nanowire and imperfect spherical shape of the gold nanospheres, and in the size regime below 50 nm. The increase of the aggregate and nanowire size induces the presence of interferences between higher orders (quadrupole) and dipole sources. For size higher than 50 nm, the analysis of the angular resolved emission pattern demonstrates the presence of retardation effects and the deviation from the dipolar emission picture. The results are in good agreement with the actual reported results in terms of character of emission. Finally, the SH emission of gold nanowire was spectrally analyzed for single gold nanowire and variable aggregates size. A clear SH emission is observed at 2ω for each excitation frequency ω with the presence of 2 photons visible photoluminescence emission (2PL).

  18. Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography.

    PubMed

    Hall, Anthony Shoji; Friesen, Stuart A; Mallouk, Thomas E

    2013-06-12

    By combining nanosphere lithography with template stripping, silicon wafers were patterned with hexagonal arrays of nanowells or pillars. These silicon masters were then replicated in gold by metal evaporation, resulting in wafer-scale hexagonal gratings for plasmonic applications. In the nanosphere lithography step, two-dimensional colloidal crystals of 510 nm diameter polystyrene spheres were assembled at the air-water interface and transferred to silicon wafers. The spheres were etched in oxygen plasma in order to define their size for masking of the silicon wafer. For fabrication of metallic nanopillar arrays, an alumina film was grown over the nanosphere layer and the spheres were then removed by bath sonication. The well pattern was defined in the silicon wafer by reactive ion etching in a chlorine plasma. For fabrication of metal nanowell arrays, the nanosphere monolayer was used directly as a mask and exposed areas of the silicon wafer were plasma-etched anisotropically in SF6/Ar. Both techniques could be used to produce subwavelength metal replica structures with controlled pillar or well diameter, depth, and profile, on the wafer scale, without the use of direct writing techniques to fabricate masks or masters.

  19. The Use of Micro- and Nanospheres as Functional Components for Bone Tissue Regeneration

    PubMed Central

    Wang, Huanan; Leeuwenburgh, Sander C.G.; Li, Yubao

    2012-01-01

    During the last decade, the use of micro- and nanospheres as functional components for bone tissue regeneration has drawn increasing interest. Scaffolds comprising micro- and nanospheres display several advantages compared with traditional monolithic scaffolds that are related to (i) an improved control over sustained delivery of therapeutic agents, signaling biomolecules and even pluripotent stem cells, (ii) the introduction of spheres as stimulus-sensitive delivery vehicles for triggered release, (iii) the use of spheres to introduce porosity and/or improve the mechanical properties of bulk scaffolds by acting as porogen or reinforcement phase, (iv) the use of spheres as compartmentalized microreactors for dedicated biochemical processes, (v) the use of spheres as cell delivery vehicle, and, finally, (vi) the possibility of preparing injectable and/or moldable formulations to be applied by using minimally invasive surgery. This article focuses on recent developments with regard to the use of micro- and nanospheres for bone regeneration by categorizing micro-/nanospheres by material class (polymers, ceramics, and composites) as well as summarizing the main strategies that employ these spheres to improve the functionality of scaffolds for bone tissue engineering. PMID:21806489

  20. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Koneracká, M.; Múčková, M.; Závišová, V.; Tomašovičová, N.; Kopčanský, P.; Timko, M.; Juríková, A.; Csach, K.; Kavečanský, V.; Lancz, G.

    2008-05-01

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  1. Fabrication of metallic nanodisc hexagonal arrays using nanosphere lithography and two-step lift-off.

    PubMed

    Huang, Xiaolu; Ratchford, Daniel; Pehrsson, Pehr E; Yeom, Junghoon

    2016-09-30

    Nanosphere lithography (NSL) has been widely used as an inexpensive method to create periodic arrays of metallic nanoparticles or nanodiscs on substrates. However, most nanodisc arrays derived from a NSL template are restricted to hexagonally-ordered triangular arrays because the metal layer is deposited onto the interstices between the nanospheres. Metallic nanodisc arrays with the same arrangement as the original nanosphere array have been rarely reported. Here, we demonstrate a facile, low-cost method to fabricate large-area hexagonal arrays of metallic nanodiscs using an NSL template combined with a two-step lift-off process. We employ a bi-layer of two dissimilar metals to create a re-entrant sidewall profile to undercut the sacrificial layer and facilitate the final lift-off of the metallic nanodiscs. The quality of the nanodisc pattern and the array periodicity is determined using statistical image analysis and compared to the original nanosphere array in terms of size distribution, surface smoothness, and array pitch. This nanodisc array is used as an etch mask to create a vertically-aligned Si nanowire array. This combined approach is a scalable and inexpensive fabrication method for creating relatively large-area, ordered arrays of various nanostructures. PMID:27559986

  2. Influence of the Molecular Weight and Charge of Antibiotics on Their Release Kinetics From Gelatin Nanospheres.

    PubMed

    Song, Jiankang; Odekerken, Jim C E; Löwik, Dennis W P M; López-Pérez, Paula M; Welting, Tim J M; Yang, Fang; Jansen, John A; Leeuwenburgh, Sander C G

    2015-07-01

    In this study, we investigated the fundamental relationship between the physicochemical characteristics of antibiotics and the kinetics of their release from gelatin nanospheres. We observed that antibiotics of high molecular weight (colistin and vancomycin) were released in a sustained manner from oppositely charged gelatin carriers for more than 14 d, as opposed to antibiotics of low molecular weight (gentamicin and moxifloxacin) which were released in a burst-like manner. The release kinetics of positively charged colistin strongly correlated with the rate of the enzymatic degradation of gelatin. To elucidate the differences among release kinetics of antibiotics, we explored the mechanism of interactions between antibiotics and gelatin nanospheres by monitoring the kinetics of release of antibiotics as a function of pH, ionic strength, and detergent concentrations. These studies revealed that the interactions between antibiotics and gelatin nanospheres were mainly dominated by (i) strong electrostatic forces for colistin; (ii) strong hydrophobic and electrostatic forces for vancomycin; (iii) weak electrostatic and hydrophobic forces for gentamicin; and (iv) weak hydrophobic forces for moxifloxacin. These results confirm that release of antibiotics from gelatin nanospheres strongly depends on the physicochemical characteristics of the antibiotics.

  3. Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Herbel, M.J.; Blum, J.S.; Langley, S.; Beveridge, T.J.; Ajayan, P.M.; Sutto, T.; Ellis, A.V.; Curran, S.

    2004-01-01

    Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, ???300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.

  4. Fabrication of metallic nanodisc hexagonal arrays using nanosphere lithography and two-step lift-off

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolu; Ratchford, Daniel; Pehrsson, Pehr E.; Yeom, Junghoon

    2016-09-01

    Nanosphere lithography (NSL) has been widely used as an inexpensive method to create periodic arrays of metallic nanoparticles or nanodiscs on substrates. However, most nanodisc arrays derived from a NSL template are restricted to hexagonally-ordered triangular arrays because the metal layer is deposited onto the interstices between the nanospheres. Metallic nanodisc arrays with the same arrangement as the original nanosphere array have been rarely reported. Here, we demonstrate a facile, low-cost method to fabricate large-area hexagonal arrays of metallic nanodiscs using an NSL template combined with a two-step lift-off process. We employ a bi-layer of two dissimilar metals to create a re-entrant sidewall profile to undercut the sacrificial layer and facilitate the final lift-off of the metallic nanodiscs. The quality of the nanodisc pattern and the array periodicity is determined using statistical image analysis and compared to the original nanosphere array in terms of size distribution, surface smoothness, and array pitch. This nanodisc array is used as an etch mask to create a vertically-aligned Si nanowire array. This combined approach is a scalable and inexpensive fabrication method for creating relatively large-area, ordered arrays of various nanostructures.

  5. K+-selective nanospheres: maximising response range and minimising response time.

    PubMed

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A H

    2006-12-01

    Cross-linked K(+) ion-selective copolymer nanospheres have been prepared by free-radical photo-initiated polymerization of n-butyl acrylate (nBA) with hexanedioldiacrylate (HDDA). Nanospheres (<200 nm) containing H(+)-chromoionophore (ETH 5294) and lipophilic salt (KTClPB) for H(+)-sensors, or ETH 5294, a K(+)-selective ionophore (valinomycin) and anionic sites for K(+)-sensors were compared, and the effect of varying the normalised concentrations for beta (R(T)(-)/L(T)) and gamma (C(m)(T)/L(T)) was studied. Experimental data were fitted to theoretical curves for the dynamic response range, based on the effect of changes in the concentration of these lipophilic sensing components incorporated into the spheres, and conditions identified for maximising the response range. A complex valinomycin-K(+) formation constant, log K(IL) = 13.13 +/- 2.22, was obtained in the nBA matrix, and from the calibration curves the apparent acid-dissociation equilibrium constant (pK(a) = 12.92 +/- 0.03) was extracted for the H(+)-sensing system, and the equilibrium exchange constant (pK(exch) = 6.16 +/- 0.03, at pH 7) calculated for the K(+)-sensing nanospheres. A basis for establishing optimum performance was identified, whereby response range and response time were balanced with maximum fluorescence yield. Parameters for achieving nanospheres with a response time <5 minutes, covering 2-3 orders of magnitude change in activity were identified, demanding nanospheres with radius <300 nm and beta(crit) approximately 0.6. An RSD(%) approximately 3% was obtained in a study of the reproducibility of the response of the proposed nanospheres, and selectivity was also evaluated for a K(+)-selective nanosensor using several cations as interfering agents. In most cases, the fluorescent emission spectra showed no response to the cations tested, confirming the selectivity of nanospheres to potassium ion. The nanosensors were satisfactorily applied to the determination of K(+) in samples mimicking

  6. K+-selective nanospheres: maximising response range and minimising response time.

    PubMed

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A H

    2006-12-01

    Cross-linked K(+) ion-selective copolymer nanospheres have been prepared by free-radical photo-initiated polymerization of n-butyl acrylate (nBA) with hexanedioldiacrylate (HDDA). Nanospheres (<200 nm) containing H(+)-chromoionophore (ETH 5294) and lipophilic salt (KTClPB) for H(+)-sensors, or ETH 5294, a K(+)-selective ionophore (valinomycin) and anionic sites for K(+)-sensors were compared, and the effect of varying the normalised concentrations for beta (R(T)(-)/L(T)) and gamma (C(m)(T)/L(T)) was studied. Experimental data were fitted to theoretical curves for the dynamic response range, based on the effect of changes in the concentration of these lipophilic sensing components incorporated into the spheres, and conditions identified for maximising the response range. A complex valinomycin-K(+) formation constant, log K(IL) = 13.13 +/- 2.22, was obtained in the nBA matrix, and from the calibration curves the apparent acid-dissociation equilibrium constant (pK(a) = 12.92 +/- 0.03) was extracted for the H(+)-sensing system, and the equilibrium exchange constant (pK(exch) = 6.16 +/- 0.03, at pH 7) calculated for the K(+)-sensing nanospheres. A basis for establishing optimum performance was identified, whereby response range and response time were balanced with maximum fluorescence yield. Parameters for achieving nanospheres with a response time <5 minutes, covering 2-3 orders of magnitude change in activity were identified, demanding nanospheres with radius <300 nm and beta(crit) approximately 0.6. An RSD(%) approximately 3% was obtained in a study of the reproducibility of the response of the proposed nanospheres, and selectivity was also evaluated for a K(+)-selective nanosensor using several cations as interfering agents. In most cases, the fluorescent emission spectra showed no response to the cations tested, confirming the selectivity of nanospheres to potassium ion. The nanosensors were satisfactorily applied to the determination of K(+) in samples mimicking

  7. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-01

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  8. Foams in porous media

    SciTech Connect

    Marsden, S.S.

    1986-07-01

    In 1978 a literature search on selective blocking of fluid flow in porous media was done by Professor S.S. Marsden and two of his graduate students, Tom Elson and Kern Huppy. This was presented as SUPRI Report No. TR-3 entitled ''Literature Preview of the Selected Blockage of Fluids in Thermal Recovery Projects.'' Since then a lot of research on foam in porous media has been done on the SUPRI project and a great deal of new information has appeared in the literature. Therefore we believed that a new, up-to-date search should be done on foam alone, one which would be helpful to our students and perhaps of interest to others. This is a chronological survey showing the development of foam flow, blockage and use in porous media, starting with laboratory studies and eventually getting into field tests and demonstrations. It is arbitrarily divided into five-year time periods. 81 refs.

  9. Porous material neutron detector

    DOEpatents

    Diawara, Yacouba; Kocsis, Menyhert

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  10. FLUID TRANSPORT THROUGH POROUS MEDIA

    EPA Science Inventory

    Fluid transport through porous media is a relevant topic to many scientific and engineering fields. Soil scientists, civil engineers, hydrologists and hydrogeologists are concerned with the transport of water, gases and nonaqueous phase liquid contaminants through porous earth m...

  11. A Novel Europium Chelate Coated Nanosphere for Time-Resolved Fluorescence Immunoassay.

    PubMed

    Shen, Yifeng; Xu, Shaohan; He, Donghua

    2015-01-01

    A novel europium ligand 2,2',2'',2'''-(4,7-diphenyl-1,10-phenanthroline-2,9-diyl) bis (methylene) bis (azanetriyl) tetra acetic acid (BC-EDTA) was synthesized and characterized. It shows an emission spectrum peak at 610 nm when it is excited at 360 nm, with a large Stock shift (250 nm). It is covalently coated on the surface of a bare silica nanosphere containi free amino groups, using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-Hydroxysuccinimide. We also observed an interesting phenomenon that when BC-EDTA is labeled with a silica nanosphere, the chelate shows different excitation spectrum peaks of about 295 nm. We speculate that the carboxyl has a significant influence on its excitation spectrum. The BC-EDTA/Eu3+coated nanosphere could be used as a fluorescent probe for time-resolved fluorescence immunoassay. We labeled the antibody with the fluorescent nanosphere to develop a nanosphere based hepatitis B surface antigen as a time-resolved fluorescence immunoassay reagent, which is very easy to operate and eliminates potential contamination of Eu3+ contained in the environment. The analytical and functional sensitivities are 0.0037 μg/L and 0.08 μg/L (S/N≥2.0) respectively. The detection range is 0.08-166.67 μg/L, which is much wider than that of ELISA (0.2-5 μg/L). It is comparable to the commercial dissociation-enhanced lanthanide fluoro-immunoassay system (DELFIA) reagents (0.2-145 μg/L). We propose that it can fulfill clinical applications.

  12. Semi-insulating behaviour of self-assembled tin(IV)corrole nanospheres.

    PubMed

    Sinha, Woormileela; Kumar, Mohit; Garai, Antara; Purohit, Chandra Shekhar; Som, Tapobrata; Kar, Sanjib

    2014-09-01

    Three novel tin(iv)corrole complexes have been prepared and characterized by various spectroscopic techniques including single crystal X-ray structural analysis. Packing diagrams of the tin(iv)corroles revealed that corrolato-tin(iv)-chloride molecules are interconnected by intermolecular C-HCl hydrogen bonding interactions. HCl distances are 2.848 Å, 3.051 Å, and 2.915 Å, respectively, for the complexes. In addition, the C-HCl angles are 119.72°, 144.70°, and 147.08°, respectively, for the complexes. It was also observed that in one of the three synthesized complexes dimers were formed, while in the other two cases 1D infinite polymer chains were formed. Well-defined and nicely organized three-dimensional hollow nanospheres (SEM images on silicon wafers) with diameters of ca. 676 nm and 661 nm are obtained in the complexes, forming 1D polymer chains. By applying a thin layer of tin(iv)corrole nanospheres to an ITO surface (AFM height images of ITO films; ∼200 nm in height), a device was fabricated with the following composition: Ag/ITO-coated glass/tin(iv)corrole nanospheres/ITO-coated glass/Ag. The resistivity (ρ) of the nanostructured film was calculated to be ∼2.4 × 10(8) Ω cm, which falls in the range of semi-insulating semiconductors. CAFM current maps at 10 V bias show bright spots with a 10-20 pA intensity and indicate that the nanospheres (∼250 nm in diameter) are the electron-conducting pathway in the device. The semi-insulating behavior arises from the non-facile electron transfer in the HOMOs of the tin(iv)corrole nanospheres.

  13. A Novel Europium Chelate Coated Nanosphere for Time-Resolved Fluorescence Immunoassay

    PubMed Central

    Shen, Yifeng; Xu, Shaohan; He, Donghua

    2015-01-01

    A novel europium ligand 2, 2’, 2’’, 2’’’-(4, 7-diphenyl-1, 10-phenanthroline-2, 9-diyl) bis (methylene) bis (azanetriyl) tetra acetic acid (BC-EDTA) was synthesized and characterized. It shows an emission spectrum peak at 610 nm when it is excited at 360 nm, with a large Stock shift (250 nm). It is covalently coated on the surface of a bare silica nanosphere containi free amino groups, using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-Hydroxysuccinimide. We also observed an interesting phenomenon that when BC-EDTA is labeled with a silica nanosphere, the chelate shows different excitation spectrum peaks of about 295 nm. We speculate that the carboxyl has a significant influence on its excitation spectrum. The BC-EDTA/Eu3+coated nanosphere could be used as a fluorescent probe for time-resolved fluorescence immunoassay. We labeled the antibody with the fluorescent nanosphere to develop a nanosphere based hepatitis B surface antigen as a time-resolved fluorescence immunoassay reagent, which is very easy to operate and eliminates potential contamination of Eu3+ contained in the environment. The analytical and functional sensitivities are 0.0037 μg/L and 0.08 μg/L (S/N≥2.0) respectively. The detection range is 0.08-166.67 μg/L, which is much wider than that of ELISA (0.2-5μg/L). It is comparable to the commercial dissociation-enhanced lanthanide fluoro-immunoassay system (DELFIA) reagents (0.2-145μg/L). We propose that it can fulfill clinical applications. PMID:26056826

  14. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  15. Chemically Layered Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    1991-01-01

    Aerogels and other porous solids in which surfaces of pores have chemical properties varying with depth below macroscopic surfaces prepared by sequences of chemical treatments. Porous glass or silica bead treated to make two depth zones having different chemical properties. Beads dropped along tube filled with flowing gas containing atomic oxygen, generated in microwave discharge. General class of materials treatable include oxides of aluminum, silicon, zirconium, tin, titanium, and nickel, and mixtures of these oxides. Potential uses of treated materials include chromatographic separations, membrane separations, controlled releases of chemicals, and catalysis.

  16. Porous block nanofiber composite filters

    DOEpatents

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold

    2016-08-09

    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  17. Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification.

    PubMed

    Bai, Hongwei; Liu, Lei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl(-) in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti(4+) from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG = 1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti(4+) by increasing the content of EG at a molar ratio of TTIP:EG = 1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A "win-win" strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2

  18. Porous metal for orthopedics implants

    PubMed Central

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Summary Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery. PMID:24133527

  19. The Preparation of Magnetic Silica Nanospheres and Incorporation of CdSe/ZnS Quantum Dots-DNA Probe.

    PubMed

    Do, Youngjin; Kim, Jongsung

    2016-03-01

    Silica nanospheres containing magnetic particles were prepared, and CdSe/ZnS QDs functionalized with carboxyl group were incorporated into the silica nanospheres by EDC/NHS coupling reaction. The silica nanospheres were prepared by a co-precipitation of ferrous and ferric solutions followed by the sol-gel reaction of TEOS (tetraethoxysilane) and APTES (3-aminopropyltriethoxysilane) using base catalyst. The size of magnetic silica nanospheres was confirmed by Transmission electron microscope (TEM). Thiol group modified single stranded oligonucleotides were immobilized on the surface of QDs and fluorescence quenching by intercalation dye (TOTO-3) after hybridization with target oligonucleotide was observed. The fluorescence from QDs could be quenched by intercalating dye (TOTO-3) after hybridization of target DNA to probe DNA. This shows that the magnetic silica-QD-DNA probe can be used to detect specific DNA. PMID:27455659

  20. Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent

    PubMed Central

    2011-01-01

    Uniform bismuth nanospheres were successfully prepared from bismuth nitrate in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) by solvothermal process. The product was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray. PVP plays a critical role both as a reducing agent and a capping agent in the formation of bismuth nanospheres. Shape and size of bismuth nanospheres could be tuned by changing the employed PVP/bismuth salt ratio. It was also found the solvent had an effect on the morphologies of bismuth nanomaterials. The possible formation and growth mechanism of bismuth nanospheres were also discussed and proposed to explain the reduction step. PMID:21711606

  1. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.

    PubMed

    Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun

    2014-09-01

    Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.

  2. The Preparation of Magnetic Silica Nanospheres and Incorporation of CdSe/ZnS Quantum Dots-DNA Probe.

    PubMed

    Do, Youngjin; Kim, Jongsung

    2016-03-01

    Silica nanospheres containing magnetic particles were prepared, and CdSe/ZnS QDs functionalized with carboxyl group were incorporated into the silica nanospheres by EDC/NHS coupling reaction. The silica nanospheres were prepared by a co-precipitation of ferrous and ferric solutions followed by the sol-gel reaction of TEOS (tetraethoxysilane) and APTES (3-aminopropyltriethoxysilane) using base catalyst. The size of magnetic silica nanospheres was confirmed by Transmission electron microscope (TEM). Thiol group modified single stranded oligonucleotides were immobilized on the surface of QDs and fluorescence quenching by intercalation dye (TOTO-3) after hybridization with target oligonucleotide was observed. The fluorescence from QDs could be quenched by intercalating dye (TOTO-3) after hybridization of target DNA to probe DNA. This shows that the magnetic silica-QD-DNA probe can be used to detect specific DNA.

  3. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  4. Porous metallic bodies

    DOEpatents

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  5. Modification of Triclosan Scaffold in Search of Improved Inhibitors for Enoyl-Acyl Carrier Protein (ACP) Reductase in Toxoplasma gondii

    PubMed Central

    Stec, Jozef; Fomovska, Alina; Afanador, Gustavo A.; Muench, Stephen P.; Zhou, Ying; Lai, Bo-Shiun; Bissati, Kamal El; Hickman, Mark R.; Lee, Patty J.; Leed, Susan E.; Auschwitz, Jennifer M.; Sommervile, Caroline; Woods, Stuart; Roberts, Craig W.; Rice, David; Prigge, Sean T.; McLeod, Rima; Kozikowski, Alan P.

    2013-01-01

    Through our focused effort to discover new and effective agents against toxoplasmosis, a structure-based drug design approach was utilized to develop a series of potent inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4′ of the well-known ENR inhibitor triclosan afforded a series of 29 new analogs. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16a and 16c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against the recombinant TgENR were 43 and 26 nM, respectively. Additionally, 11 other analogs in this series had IC50 values ranging from 17 to 130 nM in the enzyme-based assay. With respect to their excellent in vitro activity as well as improved drug-like properties, the lead compounds 16a and 16c are deemed to be an excellent starting point for the development of new medicines to effectively treat Toxoplasma gondii infections. PMID:23776166

  6. A [32P]-NAD+-based method to identify and quantitate long residence time enoyl-ACP reductase inhibitors

    PubMed Central

    Yu, Weixuan; Neckles, Carla; Chang, Andrew; Bommineni, Gopal Reddy; Spagnuolo, Lauren; Zhang, Zhuo; Liu, Nina; Lai, Christina; Truglio, James; Tonge, Peter J.

    2015-01-01

    The classical methods for quantifying drug-target residence time (tR) use loss or regain of enzyme activity in progress curve kinetic assays. However, such methods become imprecise at very long residence times, mitigating the use of alternative strategies. Using the NAD(P)H-dependent FabI enoyl-ACP reductase as a model system, we developed a Penefsky column-based method for direct measurement of tR, where the off-rate of the drug was determined with radiolabeled [adenylate-32P] NAD(P+) cofactor. Twenty-three FabI inhibitors were analyzed and a mathematical model was used to estimate limits to the tR values of each inhibitor based on percent drug-target complex recovery following gel filtration. In general, this method showed good agreement with the classical steady state kinetic methods for compounds with tR values of 10-100 min. In addition, we were able to identify seven long tR inhibitors (100-1500 min) and to accurately determine their tR values. The method was then used to measure tR as a function of temperature, an analysis not previously possible using the standard kinetic approach due to decreased NAD(P)H stability at elevated temperatures. In general, a 4-fold difference in tR was observed when the temperature was increased from 25 °C to 37 °C . PMID:25684450

  7. 3-Oxoacyl-ACP Reductase from Schistosoma japonicum: Integrated In Silico-In Vitro Strategy for Discovering Antischistosomal Lead Compounds

    PubMed Central

    Liu, Jian; Dyer, Dave; Wang, Jipeng; Wang, Shuqi; Du, Xiaofeng; Xu, Bin; Zhang, Haobing; Wang, Xiaoning; Hu, Wei

    2013-01-01

    Background Schistosomiasis is a disease caused by parasitic worms and more than 200 million people are infected worldwide. The emergence of resistance to the most commonly used drug, praziquantel (PZQ), makes the development of novel drugs an urgent task. 3-oxoacyl-ACP reductase (OAR), a key enzyme involved in the fatty acid synthesis pathway, has been identified as a potential drug target against many pathogenic organisms. However, no research on Schistosoma japonicum OAR (SjOAR) has been reported. The characterization of the SjOAR protein will provide new strategies for screening antischistosomal drugs that target SjOAR. Methodology/Principal Findings After cloning the SjOAR gene, recombinant SjOAR protein was purified and assayed for enzymatic activity. The tertiary structure of SjOAR was obtained by homology modeling and 27 inhibitor candidates were identified from 14,400 compounds through molecular docking based on the structure. All of these compounds were confirmed to be able to bind to the SjOAR protein by BIAcore analysis. Two compounds exhibited strong antischistosomal activity and inhibitory effects on the enzymatic activity of SjOAR. In contrast, these two compounds showed relatively low toxicity towards host cells. Conclusions/Significance The work presented here shows the feasibility of isolation of new antischistosomal compounds using a combination of virtual screening and experimental validation. Based on this strategy, we successfully identified 2 compounds that target SjOAR with strong antischistosomal activity but relatively low cytotoxicity to host cells. PMID:23762275

  8. Sex in Drosophila mauritiana: a very high level of amino acid polymorphism in a male reproductive protein gene, Acp26Aa.

    PubMed

    Tsaur, S C; Ting, C T; Wu, C I

    2001-01-01

    Many genes pertaining to male reproductive functions have been shown to evolve rapidly between species, and evidence increasingly suggest the influence of positive Darwinian selection. The accessory gland protein gene (Acp26Aa) of Drosophila is one such example. In order to understand the mechanism of selection, it is often helpful to examine the pattern of polymorphism. We report here that the level of amino acid polymorphism in the N-terminal quarter of Acp26Aa is high in Drosophila melanogaster and is unprecedented in its sibling species Drosophila mauritiana. We postulate that (1) this N-terminal segment may play a role in sperm competition, and (2) D. mauritiana may have been under much more intense sexual selection than other species. Both postulates have important ramifications and deserve to be tested rigorously.

  9. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Guo, Jinxin; Zhang, Jun; Su, Qingmei; Du, Gaohui

    2015-01-01

    Lithium-sulfur (Li-S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li-S battery. The sulfur nanospheres with diameter of 400-500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g-1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li-S batteries.

  10. A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor.

    PubMed

    Zhong, Xia; Chai, Ya-Qin; Yuan, Ruo

    2014-10-01

    Well-distributed hollow gold nanospheres (Aushell@GOD) (20 ± 5 nm) were synthesized using the glucose oxidase (GOD) cross-linked with glutaraldehyde as a template. A glucose biosensor was prepared based on Aushell@GOD nanospheres for catalyzing luminol electrogenerated chemiluminescence (ECL). Firstly, chitosan was modified in a glassy carbon electrode which offered an interface of abundant amino-groups to assemble Aushell@GOD nanospheres. Then, glucose oxidase was adsorbed on the surface of Aushell@GOD nanospheres via binding interactions between Aushell and amino groups of GOD to construct a glucose biosensor. The Aushell@GOD nanospheres were investigated with TEM and UV-vis. The ECL behaviors of the biosensor were also investigated. Results showed that, the obtained Aushell@GOD nanospheres exhibited excellent catalytic effect towards the ECL of luminol-H2O2 system. The response of the prepared biosensor to glucose was linear with the glucose concentration in the range of 1.0 μM to 4.3mM (R=0.9923) with a detection limit of 0.3 μM (signal to noise=3). This ECL biosensor exhibited short response time and excellent stability for glucose. At the same time the prepared ECL biosensor showed good reproducibility, sensitivity and selectivity.

  11. Facile synthesis of water-soluble luminescent mesoporous Tb(OH)3@SiO2 core-shell nanospheres

    PubMed Central

    2013-01-01

    Luminescent mesoporous Tb(OH)3@SiO2 core-shell nanospheres were synthesized through W/O microemulsion process at ambient temperature. The negatively charged silica favors a coating of the positively charged Tb3+ composite. Thus, silicon layer was adsorbed on the surface of Tb(OH)3 groups to form Tb-O-Si through electrostatic interaction. X-ray diffraction, field emission transmission electron microscopy (FE-TEM), energy-dispersive X-ray spectrometry, and Fourier transform infrared, UV/Visible, and photoluminescence spectroscopies were applied to examine the phase purity, crystallinity, surface morphology, and optical properties of the core-shell nanospheres. The FE-TEM results have revealed typically ordered mesoporous characteristics of the material with monodisperse spherical morphology in a narrow size distribution. The luminescent mesoporous core-shell nanospheres exposed remarkable splitting with broadening in the emission transition 5D4 → 7F5 (543 nm). In addition, the luminescent mesoporous core-shell nanospheres emit strong green fluorescence (from Tb3+) in the middle of the visible region under 325 nm (3.8) excitation. The luminescent mesoporous Tb(OH)3@SiO2 core-shell nanospheres can therefore be exploited as fluorescent probes in biomarkers or biolabeling, optical sensing, and drug delivery system. Further, these nanospheres could have potential use as scattering layers in dye-sensitized solar cells. PMID:23574757

  12. Polymeric nanospheres as strategy to increase the amount of triclosan retained in the skin: passive diffusion vs. iontophoresis.

    PubMed

    Rodríguez-Cruz, Isabel M; Merino, Virginia; Merino, Matilde; Díez, Octavio; Nácher, Amparo; Quintanar-Guerrero, David

    2013-01-01

    The aim of this study was to evaluate the passive and iontophoretic permeation of triclosan in human skin using a triclosan solution and triclosan-loaded cationic nanospheres in order to determine which of the two strategies is more effective in allowing the deposition of triclosan within the skin. Triclosan-loaded nanospheres were prepared by the emulsification-solvent displacement technique using aminoalkyl methacrylate (Eudragit® RL 100) as polymer matrix. Nanospheres of 261.0 ± 15.1 nm with a positive surface charge (Ψz = 26.0 ± 3.2 mV) were obtained. Drug loading was 62.0 ± 1.7%. Results demonstrated that the amount of triclosan retained within the skin was significantly greater (8.5-fold) when this was encapsulated into cationic nanospheres and administered by passive diffusion than when the triclosan solution was employed. The amount of triclosan retained within the skin when the cationic nanospheres were administered by iontophoresis was 3.1-fold greater than when the triclosan solution was administered by passive diffusion. Iontophoresis proved to be effective in enhancing the passage of triclosan in solution throughout the skin, whereas the triclosan nanospheres could achieve a local effect by forming a controlled release dermal depot.

  13. Cryopreservation of collared peccaries (Tayassu tajacu) semen using a powdered coconut water (ACP-116c) based extender plus various concentrations of egg yolk and glycerol.

    PubMed

    Silva, M A; Peixoto, G C X; Lima, G L; Bezerra, J A B; Campos, L B; Paiva, A L C; Paula, V V; Silva, A R

    2012-08-01

    The objective was to determine the effectiveness of a powdered coconut water-based extender (ACP-116c), plus various concentrations of egg-yolk and glycerol, as an alternative for cryopreservation of collared peccary semen. Twelve ejaculates were obtained from captive adult males by electroejaculation, and evaluated for sperm motility, kinetic rating, viability, morphology, and functional membrane integrity. The ejaculates were apportioned into aliquots that were diluted in Tris plus 10% egg yolk and 3% glycerol, or in ACP-116c plus 10 or 20% egg yolk and 1.5 or 3% glycerol. Samples were frozen in liquid nitrogen and, after 1 mo, thawed at 37 °C for 1 min. After thawing, samples were evaluated as reported for fresh semen, and also for sperm membrane integrity (fluorescent probes) and kinematic parameters (computerized analysis). Results were presented as means ± SEM. Freezing and thawing decreased sperm characteristics relative to fresh semen. Overall, ACP-116c plus 20% egg yolk and 3% glycerol provided better (P < 0.05) sperm motility and kinetic rating (48 ± 6.1% and 2.8 ± 0.2, respectively) after thawing than Tris extender (30.4 ± 5.7% and 2.4 ± 0.2). However, there were no differences (P > 0.05) among treatments with regard to the other sperm characteristics. Based on computerized motion analysis, total (26.5 ± 5.9%) and progressive (8.1 ± 2.2%) motility were best preserved (P < 0.05) with the above-mentioned treatment. In conclusion, a coconut water-based extender, ACP-116c, plus 20% egg yolk and 3% glycerol, was effective for cryopreservation of semen from collared peccaries.

  14. Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase

    DOE PAGES

    Wang, Hui; Liu, Li; Lu, Yang; Pan, Pan; Hooker, Jacob M.; Fowler, Joanna S.; Tonge, Peter J.

    2015-07-14

    PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.

  15. Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection.

    PubMed

    In, Hyun Jin; Field, Christopher R; Pehrsson, Pehr E

    2011-09-01

    Nanowires of various materials and configurations have been shown to be highly effective in the detection of chemical and biological species. In this paper, we report a novel, nanosphere-enabled approach to fabricating highly sensitive gas sensors based on ordered arrays of vertically aligned silicon nanowires topped with a periodically porous top electrode. The vertical array configuration helps to greatly increase the sensitivity of the sensor while the pores in the top electrode layer significantly improve sensing response times by allowing analyte gases to pass through freely. Herein, we show highly sensitive detection to both nitrogen dioxide (NO(2)) and ammonia (NH(3)) in humidified air. NO(2) detection down to 10 parts per billion (ppb) is demonstrated and an order-of-magnitude improvement in sensor response time is shown in the detection of NH(3).

  16. Template-free preparation of volvox-like Cd(x)Zn(1-x)S nanospheres with cubic phase for efficient photocatalytic hydrogen production.

    PubMed

    Zhou, Hangyue; Liu, Qingyun; Liu, Weimin; Ge, Jiechao; Lan, Minhuan; Wang, Chao; Geng, Jianxin; Wang, Pengfei

    2014-03-01

    Volvox-like Cdx Zn1-x S solid solutions with a cubic zinc blend structure were synthesized through a template-free ethylene glycol process. Cd(Ac)2 ⋅2 H2 O, Zn(Ac)2 ⋅2 H2 O, and thiourea are used as the starting materials and dissolved in ethylene glycol. These reaction precursors and solvent not only contributed to control over the formation of the volvox-like spherical geometry, but also exerted vigorous domination for existence of cubic-phase Cdx Zn1-x S nanostructures. As-prepared volvox-like Cdx Zn1-x S nanospheres have a diameter of around 100 nm with extensional shells. These samples show excellent photocatalytic H2 evolution activity from water splitting under visible-light irradiation without any cocatalyst or scaffolding, owing to their tunable band gap, cubic zinc blend structure, and unique hierarchical porous structure with a high surface area (as high as 95.2 m(2)  g(-1) ). PMID:24403243

  17. Porous silicon and porous polymer substrates for optical chemical sensors

    NASA Astrophysics Data System (ADS)

    Hajj-Hassan, Mohamad; Kim, Sung-Jin; Cheung, Maurice C.; Yao, Lei; Chodavarapu, Vamsy; Cartwright, Alexander

    2010-07-01

    Mesoporous materials, such as porous silicon and porous polymer gratings (Bragg structures), offer an attractive platform for the encapsulation of chemical and biological recognition elements. These materials include the advantages of high surface to volume ratio, biocompatibility, functionality with various recognition elements, and the ability to modify the material surface/volume properties and porosity. Two porous structures were used for chemical and biological sensing: porous silicon and porous polymer photonic bandgap structures. Specifically, a new dry etching manufacturing technique employing xenon difluoride (XeF2) based etching was used to produce porous silicon Porous silicon continues to be extensively researched for various optical and electronic devices and applications in chemical and biological sensing are abundant. The dry etching technique to manufacture porous silicon offers a simple and efficient alternative to the traditional wet electrochemical etching using hydrofluoric acid. This new porous silicon material was characterized for its pore size and morphology using top and cross-sectional views from scanning electron microscopy. Its optical properties were determined by angular dependence of reflectance measurements. A new class of holographically ordered porous polymer gratings that are an extension of holographic polymer dispersed liquid crystal (H-PDLC) structures. As an alternative structure and fabrication process, porous polymer gratings that include a volatile solvent as the phase separation fluid was fabricated. Porous silicon and porous polymer materials were used as substrates to encapsulate gaseous oxygen (O2) responsive luminophores in their nanostructured pores. These substrate materials behave as optical interference filters that allow efficient and selective detection of the wavelengths of interest in optical sensors.

  18. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    SciTech Connect

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.

  19. Porous bioactive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a

  20. Strong, Lightweight, Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  1. Porous polymer media

    DOEpatents

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  2. Porous electrode preparation method

    DOEpatents

    Arons, Richard M.; Dusek, Joseph T.

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  3. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  4. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma.

    PubMed

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G; Watts, Colin; Welland, Mark

    2014-09-21

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.

  5. Nanosphere-in-a-nanoegg: damping the high-order modes induced by symmetry breaking

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Sun, Yi-Ding; Li, Yu-Dong; Xu, Jing-Jun; Sun, Qian

    2015-01-01

    We study the optical properties of the nanosphere-in-a-nanoegg structure (NSNE) by the three-dimensional finite difference time domain method. We demonstrate the suppression of the high-order plasmon modes in NSNE, which is induced by the plasmon interaction between the inner nanosphere and the outer nanoegg shell. A two-layer plasmon hybridization model is presented to explain this mechanism. The results we showed for plasmon mode suppression would be important to the design of the metal plasmonic devices. In addition, due to high tunable plasmon resonances in the near-infrared region (700 to 1,300 nm) with sub-100-nm size, NSNE can serve as a good substitute for the Au-silica-Au multilayer nanoshells in biological applications. Furthermore, compared with the Au-silica-Au nanoshells, NSNE has the advantage that the strong field enhancement can be achieved at the outer surface of the Au shell.

  6. Nanosphere-in-a-nanoegg: damping the high-order modes induced by symmetry breaking.

    PubMed

    Qian, Jun; Sun, Yi-Ding; Li, Yu-Dong; Xu, Jing-Jun; Sun, Qian

    2015-01-01

    We study the optical properties of the nanosphere-in-a-nanoegg structure (NSNE) by the three-dimensional finite difference time domain method. We demonstrate the suppression of the high-order plasmon modes in NSNE, which is induced by the plasmon interaction between the inner nanosphere and the outer nanoegg shell. A two-layer plasmon hybridization model is presented to explain this mechanism. The results we showed for plasmon mode suppression would be important to the design of the metal plasmonic devices. In addition, due to high tunable plasmon resonances in the near-infrared region (700 to 1,300 nm) with sub-100-nm size, NSNE can serve as a good substitute for the Au-silica-Au multilayer nanoshells in biological applications. Furthermore, compared with the Au-silica-Au nanoshells, NSNE has the advantage that the strong field enhancement can be achieved at the outer surface of the Au shell. PMID:25852315

  7. Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells.

    PubMed

    Schebarchov, Dmitri; Auguié, Baptiste; Le Ru, Eric C

    2013-03-28

    This work aims to provide simple and accurate closed-form approximations to predict the scattering and absorption spectra of metallic nanospheres and nanoshells supporting localised surface plasmon resonances. Particular attention is given to the validity and accuracy of these expressions in the range of nanoparticle sizes relevant to plasmonics, typically limited to around 100 nm in diameter. Using recent results on the rigorous radiative correction of electrostatic solutions, we propose a new set of long-wavelength polarizability approximations for both nanospheres and nanoshells. The improvement offered by these expressions is demonstrated with direct comparisons to other approximations previously obtained in the literature, and their absolute accuracy is tested against the exact Mie theory. PMID:23358525

  8. Metal nanosphere at an interface: revival of degeneracy of a dipole plasmon

    NASA Astrophysics Data System (ADS)

    Vartanyan, T. A.; Baryshnikova, K. V.; Przhibel'skii, S. G.

    2016-01-01

    Metal nanoparticles supporting surface plasmon modes are used in many areas of science and technology. Often it is important to know the exact location of the metal nanoparticle relative to a larger dielectric object. In this paper, we demonstrate that this goal may be achieved by monitoring the localized surface plasma resonance splitting in the course of the nanoparticle movement. In particular, we simulate splitting of the plasma resonance localized in a metal nanosphere while it approaches and penetrates the interface of two dielectric media. Numerical simulations show that splitting goes through two maxima at the beginning and at the end of the penetration process while the plasmon modes become exactly degenerate at some distance near the midpoint of the nanosphere trajectory. These results may be used to real time monitoring of the exact position of the nanoparticles while they approach and penetrate different targets. Applications in the drug delivery, photodynamic therapy and other biomedicine branches are envisioned.

  9. Preparation TiO2 core-shell nanospheres and application as efficiency drug detection sensor

    PubMed Central

    2014-01-01

    In this paper, we report the facile preparation of monodisperse titanium dioxide-diltiazem/tetrachlorobismuth core-shell nanospheres (TiO2@DTMBi), in which, diltiazem (DTM)/tetrachlorobismuth (BiCl4) complexes were employed as electroactive materials. The morphology, size, formation, and structure of the obtained TiO2@DTMBi spheres were investigated by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray diffraction. The optimal condition of obtained monodisperse 40-nm TiO2@DTMBi spheres was researched. The results of using TiO2@DTMBi nanospheres as proposed drug sensor indicate a wide linear range (10-7 to 10-1 M) and a very low detection limit of 0.20 μg/mL. PMID:25246870

  10. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  11. Uniform InGaAs quantum dot arrays fabricated using nanosphere lithography

    SciTech Connect

    Qian, X.; Li, J.; Wasserman, D.; Goodhue, W. D.

    2008-12-08

    We demonstrate the fabrication of optically active uniform InGaAs quantum dot arrays by combining nanosphere lithography and bromine ion-beam-assisted etching on a single InGaAs/GaAs quantum well. A wide range of lateral dot sizes was achieved from an oxygen plasma nanosphere resizing process. The increased lateral confinement of carriers in the dots results in low temperature photoluminescence blueshifts from 0.5 to 11 meV. Additional quantization was achieved using a selective wet-etch process. Our model suggests the presence of a 70 nm dead layer in the outer InGaAs radial edge, which we believe to be a result of defects and dislocations introduced during the dry-etch process.

  12. Polyvinyl Pyrrolidone-Assisted Solvothermal Synthesis of Fe3O4 Vesicular Nanospheres.

    PubMed

    Song, Hongfei; Liu, Meiying; Li, Sainan; Chen, Linlin; Lin, Chunming; Zhang, Liqing

    2015-05-01

    Monodispersed Fe3O4 vesicular nanospheres with a diameter of 160 nm have been fabricated solvothermally in the mixed solution of ethylene glycol (EG) and ethylenediamine (en) with the surfactant polyvinyl pyrrolidone (PVP). The microstructure and magnetic properties of the products were characterized by XRD, Raman, SEM, TEM, HRTEM, N2 adsorption-desorption and SQUID techniques. The HRTEM result shows that spherical Fe3O4 nanoparticles are structurally uniform with a distinct lattice spacing of 2.6 Å, which can be assigned to the (311) crystal facet of cubic Fe3O4. Besides, the as-obtained Fe3O4 vesicular nanospheres are ferromagnetic with a saturation magnetization of 86.9 emu/g as high as its bulk counterpart, demonstrating its promising applications in advanced magnetic materials and biomedicine. PMID:26505038

  13. Testing wave-function-collapse models using parametric heating of a trapped nanosphere

    NASA Astrophysics Data System (ADS)

    Goldwater, Daniel; Paternostro, Mauro; Barker, P. F.

    2016-07-01

    We propose a mechanism for testing the theory of collapse models such as continuous spontaneous localization (CSL) by examining the parametric heating rate of a trapped nanosphere. The random localizations of the center of mass for a given particle predicted by the CSL model can be understood as a stochastic force embodying a source of heating for the nanosphere. We show that by utilizing a Paul trap to levitate the particle and optical cooling, it is possible to reduce environmental decoherence to such a level that CSL dominates the dynamics and contributes the main source of heating. We show that this approach allows measurements to be made on the time scale of seconds and that the free parameter λcsl which characterizes the model ought to be testable to values as low as 10-12 Hz.

  14. The Measurement of Surface Rheological and Surface Adhesive Properties using Nanosphere Embedment

    NASA Astrophysics Data System (ADS)

    Hutcheson, Stephen; McKenna, Gregory

    2008-03-01

    In previous work, we determined the actual rheological behavior at the surface of a polystyrene film with nanometer scale resolution by applying a viscoelastic contact mechanics model to experimental data in the literature. The goal of our current research is to build upon this analysis and use nanosphere embedment experiments to probe the nanorheological behavior of polymer surfaces near the glass transition, in the melt state and in the solid rubbery state. An atomic force microscope (AFM) is used to measure the embedment depth as nanoparticles are pulled into the surface by the thermodynamic work of adhesion. The results show that, with properly designed experiments, both the surface adhesion properties and the surface rheological properties can be extracted from nanosphere embedment rates. We include work on a phase separated copolymer and a commercially available polydimethylsiloxane (PDMS) rubber.

  15. Convective depletion during the fast propagation of a nanosphere through a polymer solution

    NASA Astrophysics Data System (ADS)

    Odijk, Theo

    2004-06-01

    A theory of nonlinear convective depletion is set up as a nanosphere translates fast through a semidilute polymer solution. For nanospheres a self-consistent field theory in the Rouse approximation is often legitimate. A self-similar solution of the convective depletion equation is argued to be feasible at high velocities. The nature of the thin boundary layer in front of the propagating particle is analyzed. One example of convective depletion is when a charged protein moves through a semidilute polymer under the influence of a high electric field. The protein velocity is then proportional to the fifth power of the field. The theory could be useful in interpreting the separation of protein mixtures by microchip electrophoresis.

  16. Convenient Route to Well-Dispersed Cu2O Nanospheres and Their Use as Photocatalysts.

    PubMed

    Zheng, Haiyan; Qin, Lizhao; Lin, Hua; Nie, Ming; Li, Yuan; Li, Qing

    2015-08-01

    A simple and facile method was developed to synthesize well-dispersed cuprous oxide nanospheres with uniform morphology and the size in the range of 400-600 nm. Cuprous oxide nanospheres were obtained through the chemical reduction of copper acetate by fructose in the presence of ethylene glycol and de-ionized water. X-ray powder diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), UV-Vis spectroscopy (UV-Vis) and transmission electron microscopy (TEM) as well as high-resolution transmission electron microscopy (HRTEM) were used to characterize the obtained nanoparticles. The influence of time, temperature and the solvent on the formation of cuprous oxide was investigated. The growth process of cuprous oxide was analyzed and the mechanism of crystal growth was proposed. The photocatalytic activity of degradation of methyl orange (MO) under visible light irradiation was also investigated. It was found that the product of cuprous oxide had efficient catalytic for degradation MO.

  17. Role of Serine140 in the mode of action of Mycobacterium tuberculosis β-ketoacyl-ACP Reductase (MabA)

    PubMed Central

    2012-01-01

    Background Tuberculosis (TB) still remains one of the most deadly infectious diseases in the world. Mycobacterium tuberculosis β-ketoacyl-ACP Reductase (MabA) is a member of the fatty acid elongation system type II, providing precursors of mycolic acids that are essential to the bacterial cell growth and survival. MabA has been shown to be essential for M. tuberculosis survival and to play a role in intracellular signal transduction of bacilli. Findings Here we describe site-directed mutagenesis, recombinant protein expression and purification, steady-state kinetics, fluorescence spectroscopy, and molecular modeling for S140T and S140A mutant MabA enzymes. No enzyme activity could be detected for S140T and S140A. Although the S140T protein showed impaired NADPH binding, the S140A mutant could bind to NADPH. Computational predictions for NADPH binding affinity to WT, S140T and S140A MabA proteins were consistent with fluorescence spectroscopy data. Conclusions The results suggest that the main role of the S140 side chain of MabA is in catalysis. The S140 side chain appears to also play an indirect role in NADPH binding. Interestingly, NADPH titrations curves shifted from sigmoidal for WT to hyperbolic for S140A, suggesting that the S140 residue may play a role in displacing the pre-existing equilibrium between two forms of MabA in solution. The results here reported provide a better understanding of the mode of action of MabA that should be useful to guide the rational (function-based) design of inhibitors of MabA enzyme activity which, hopefully, could be used as lead compounds with anti-TB action. PMID:23006410

  18. Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci.

    PubMed

    Cho, Kwangsoo; O'Neill, Carmel M; Kwon, Soo-Jin; Yang, Tae-Jin; Smooker, Andrew M; Fraser, Fiona; Bancroft, Ian

    2010-02-01

    We conducted a sequence-level comparative analyses, at the scale of complete bacterial artificial chromosome (BAC) clones, between the genome of the most economically important Brassica species, Brassica napus (oilseed rape), and those of Brassica rapa, the genome of which is currently being sequenced, and Arabidopsis thaliana. We constructed a new B. napus BAC library and identified and sequenced clones that contain homoeologous regions of the genome including stearoyl-ACP desaturase-encoding genes. We sequenced the orthologous region of the genome of B. rapa and conducted comparative analyses between the Brassica sequences and those of the orthologous region of the genome of A. thaliana. The proportion of genes conserved (approximately 56%) is lower than has been reported previously between A. thaliana and Brassica (approximately 66%). The gene models for sets of conserved genes were used to determine the extent of nucleotide conservation of coding regions. This was found to be 84.2 +/- 3.9% and 85.8 +/- 3.7% between the B. napus A and C genomes, respectively, and that of A. thaliana, which is consistent with previous results for other Brassica species, and 97.5 +/- 3.1% between the B. napus A genome and B. rapa, and 93.1 +/- 4.9% between the B. napus C genome and B. rapa. The divergence of the B. napus genes from the A genome and the B. rapa genes was greater than anticipated and indicates that the A genome ancestor of the B. napus cultivar studied was relatively distantly related to the cultivar of B. rapa selected for genome sequencing.

  19. Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia pestis FabV Enoyl-ACP Reductase.

    PubMed

    Neckles, Carla; Pschibul, Annica; Lai, Cheng-Tsung; Hirschbeck, Maria; Kuper, Jochen; Davoodi, Shabnam; Zou, Junjie; Liu, Nina; Pan, Pan; Shah, Sonam; Daryaee, Fereidoon; Bommineni, Gopal R; Lai, Cristina; Simmerling, Carlos; Kisker, Caroline; Tonge, Peter J

    2016-05-31

    The enoyl-ACP reductase (ENR) catalyzes the last reaction in the elongation cycle of the bacterial type II fatty acid biosynthesis (FAS-II) pathway. While the FabI ENR is a well-validated drug target in organisms such as Mycobacterium tuberculosis and Staphylococcus aureus, alternate ENR isoforms have been discovered in other pathogens, including the FabV enzyme that is the sole ENR in Yersinia pestis (ypFabV). Previously, we showed that the prototypical ENR inhibitor triclosan was a poor inhibitor of ypFabV and that inhibitors based on the 2-pyridone scaffold were more potent [Hirschbeck, M. (2012) Structure 20 (1), 89-100]. These studies were performed with the T276S FabV variant. In the work presented here, we describe a detailed examination of the mechanism and inhibition of wild-type ypFabV and the T276S variant. The T276S mutation significantly reduces the affinity of diphenyl ether inhibitors for ypFabV (20-fold → 100-fold). In addition, while T276S ypFabV generally displays an affinity for 2-pyridone inhibitors higher than that of the wild-type enzyme, the 4-pyridone scaffold yields compounds with similar affinity for both wild-type and T276S ypFabV. T276 is located at the N-terminus of the helical substrate-binding loop, and structural studies coupled with site-directed mutagenesis reveal that alterations in this residue modulate the size of the active site portal. Subsequently, we were able to probe the mechanism of time-dependent inhibition in this enzyme family by extending the inhibition studies to include P142W ypFabV, a mutation that results in a gain of slow-onset inhibition for the 4-pyridone PT156.

  20. Mutations in a delta9-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds

    SciTech Connect

    Zhang, P.; Shanklin, J.; Burton, J. W.; Upchurch, R. G.; Whittle, E.; Dewey, R. E.

    2008-11-01

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoform of {Delta}{sup 9}-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability.

  1. Effect of ACP-CPP Chewing Gum and Natural Chewable Products on Plaque pH, Calcium and Phosphate Concentration

    PubMed Central

    Sultan, Saima; Chaudhary, Seema; Manuja, Naveen; Kaur, Harsimran; Amit, Sinha Ashish; Lingesha, Ravishankar Telgi

    2016-01-01

    Introduction Numerous epidemiological studies have documented dental caries as the major public health problems throughout the world. It is gradually increasing in the underdeveloped and developing countries especially in children due to increasing popularity of refined sugars. Aim The aim of the study was to evaluate the effect of natural chewable products (Tulsi, sesame seeds, fennel seeds, coconut) and ACP-CPP chewing gum on plaque pH, calcium and phosphate concentration. Materials and Methods A randomized controlled trial, with a cross-over study design, was conducted. Ten subjects aged 15-17 years who agreed to refrain from oral hygiene practice for 48 hours prior to the sample collection were selected for the study. The baseline plaque pH, calcium and phosphate was measured and repeated after 5 and 30 minutes. It was ensured that each study participant was subjected to all the products making an effective sample of ten subjects per product. The data was statistically analysed. Results The mean pH in all the study groups increased after 5 minutes and 30 minutes compared to baseline, except for coconut group at 30 minutes and fennel group at 5 minutes. Highest increase in plaque calcium concentration was found in fennel group followed by recaldent and sesame, respectively. Whereas, the highest increase in plaque phosphate was found in recaldent group followed by sesame group and fennel group respectively. Conclusion Plant products can be effective, inexpensive, easily accessible methods of maintaining oral health. Further studies are recommended to confirm long term effects. PMID:27190943

  2. Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds.

    PubMed

    Zhao, Na; Zhang, Yuan; Li, Qiuqi; Li, Rufang; Xia, Xinli; Qin, Xiaowei; Guo, Huihong

    2015-02-01

    Xanthoceras sorbifolia Bunge is an oilseed tree that grows well on barren lands in dry climate. Its seeds contain a large amount of oil rich in oleic acid (18:1(Δ9)) and linoleic acid (18:2(Δ9, 12)). However, the molecular regulation of oil biosynthesis in X. sorbifolia seeds is poorly understood. Stearoyl-ACP desaturase (SAD, EC 1.14.99.6) is a plastid-localized soluble desaturase that catalyzes the conversion of stearic acid (18:0) to oleic acid, which plays a key role in determining the ratio of saturated to unsaturated fatty acids. In this study, a full-length cDNA of XsSAD was isolated from developing X. sorbifolia embryos. The XsSAD open reading frame had 1194-bp, encoding a polypeptide of 397 amino acids. XsSAD expression in Escherichia coli cells resulted in increased 18:1(Δ9) level, confirming the biological activity of the enzyme encoded by XsSAD. XsSAD expression in Arabidopsis ssi2 mutants partially restored the morphological phenotype and effectively increased the 18:1(Δ9) level. The levels of other unsaturated fatty acids synthesized with 18:1(Δ9) as the substrate also increased to some degree. XsSAD in X. sorbifolia had a much higher expression in embryos than in leaves and petals. XsSAD expression also correlated well with the oleic acid, unsaturated fatty acid, and total fatty acid levels in developing embryos. These data suggested that XsSAD determined the synthesis of oleic acid and contributed to the accumulation of unsaturated fatty acid and total oil in X. sorbifolia seeds. A preliminary tobacco rattle virus-based virus-induced gene silencing system established in X. sorbifolia can also be helpful for further analyzing the functions of XsSAD and other oil synthesis-related genes in woody plants.

  3. Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia pestis FabV Enoyl-ACP Reductase.

    PubMed

    Neckles, Carla; Pschibul, Annica; Lai, Cheng-Tsung; Hirschbeck, Maria; Kuper, Jochen; Davoodi, Shabnam; Zou, Junjie; Liu, Nina; Pan, Pan; Shah, Sonam; Daryaee, Fereidoon; Bommineni, Gopal R; Lai, Cristina; Simmerling, Carlos; Kisker, Caroline; Tonge, Peter J

    2016-05-31

    The enoyl-ACP reductase (ENR) catalyzes the last reaction in the elongation cycle of the bacterial type II fatty acid biosynthesis (FAS-II) pathway. While the FabI ENR is a well-validated drug target in organisms such as Mycobacterium tuberculosis and Staphylococcus aureus, alternate ENR isoforms have been discovered in other pathogens, including the FabV enzyme that is the sole ENR in Yersinia pestis (ypFabV). Previously, we showed that the prototypical ENR inhibitor triclosan was a poor inhibitor of ypFabV and that inhibitors based on the 2-pyridone scaffold were more potent [Hirschbeck, M. (2012) Structure 20 (1), 89-100]. These studies were performed with the T276S FabV variant. In the work presented here, we describe a detailed examination of the mechanism and inhibition of wild-type ypFabV and the T276S variant. The T276S mutation significantly reduces the affinity of diphenyl ether inhibitors for ypFabV (20-fold → 100-fold). In addition, while T276S ypFabV generally displays an affinity for 2-pyridone inhibitors higher than that of the wild-type enzyme, the 4-pyridone scaffold yields compounds with similar affinity for both wild-type and T276S ypFabV. T276 is located at the N-terminus of the helical substrate-binding loop, and structural studies coupled with site-directed mutagenesis reveal that alterations in this residue modulate the size of the active site portal. Subsequently, we were able to probe the mechanism of time-dependent inhibition in this enzyme family by extending the inhibition studies to include P142W ypFabV, a mutation that results in a gain of slow-onset inhibition for the 4-pyridone PT156. PMID:27136302

  4. Absorption of ultrashort electromagnetic pulses by metal nanospheres in a dielectric medium

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.; Svita, S. Yu

    2015-02-01

    The absorption of ultrashort electromagnetic pulses on silver nanosphere embedded into glass in vicinity of plasmon resonance is studied theoretically in the frame of perturbation theory. The calculations are made for corrected Gaussian shape of incident pulse which enables us to consider both the short duration and the long duration regimes. Analysis based on numerical calculations reveals the specific features of considered process so as the change of absorption spectra for different pulse length and nonlinear dependence of absorbed energy upon pulse duration.

  5. Magnetite polymer nanospheres loaded by Indomethacin for anti-inflammatory therapy

    NASA Astrophysics Data System (ADS)

    Timko, Milan; Koneracká, Martina; Tomas˘ovičová, Natália; Kopčanský, Peter; Závis˘ová, Vlasta

    2006-05-01

    This contribution is devoted to preparation and characterization of magnetite nanoparticles loaded by Indomethacin (IND) as anti-inflammatory drug suitable for magnetic drug targeting. The poorly water-soluble drug IND was successfully encapsulated in polylactic acid (PLA) magnetic nanospheres (NPs) by nanoprecipitation method. The evidence of successful entrapment of IND was confirmed by FTIR and spectrophotometric measurements. The prepared magnetite-PLA-IND NPs shown the response on external magnetic field and so availability for magnetic drug targeting.

  6. CuO hollow nanosphere-catalyzed cross-coupling of aryl iodides with thiols

    NASA Astrophysics Data System (ADS)

    Woo, Hyunje; Mohan, Balaji; Heo, Eunjung; Park, Ji Chan; Song, Hyunjoon; Park, Kang Hyun

    2013-09-01

    New functionalized CuO hollow nanospheres on acetylene black (CuO/AB) and on charcoal (CuO/C) have been found to be effective catalysts for C-S bond formation under microwave irradiation. CuO catalysts showed high catalytic activity with a wide variety of substituents which include electron-rich and electron-poor aryl iodides with thiophenols by the addition of two equivalents of K2CO3 as base in the absence of ligands.

  7. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c

  8. Porous materials. Function-led design of new porous materials.

    PubMed

    Slater, Anna G; Cooper, Andrew I

    2015-05-29

    Porous solids are important as membranes, adsorbents, catalysts, and in other chemical applications. But for these materials to find greater use at an industrial scale, it is necessary to optimize multiple functions in addition to pore structure and surface area, such as stability, sorption kinetics, processability, mechanical properties, and thermal properties. Several different classes of porous solids exist, and there is no one-size-fits-all solution; it can therefore be challenging to choose the right type of porous material for a given job. Computational prediction of structure and properties has growing potential to complement experiment to identify the best porous materials for specific applications.

  9. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  10. Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers

    NASA Astrophysics Data System (ADS)

    Yan, J. H.; Liu, P.; Lin, Z. Y.; Wang, H.; Chen, H. J.; Wang, C. X.; Yang, G. W.

    2015-05-01

    Electromagnetically induced transparency is a type of quantum interference that induces near-zero reflection and near-perfect transmission. As a classical analogy, metal nanostructure plasmonic `molecules' produce plasmon-induced transparency conventionally. Herein, an electromagnetically induced transparency interaction is demonstrated in silicon nanosphere oligomers, wherein the strong magnetic resonance couples with the electric gap mode effectively to markedly suppress reflection. As a result, a narrow-band transparency window created at visible wavelengths, called magnetically induced transparency, is easily realized in nearly touching silicon nanospheres, exhibiting low dependence on the number of spheres and aggregate states compared with plasmon induced transparency. A hybridization mechanism between magnetic and electric modes is proposed to pursue the physical origin, which is crucial to build all-dielectric metamaterials. Remarkably, magnetic induced transparency effect exhibiting near-zero reflection and near-perfect transmission causes light to propagate with no extra phase change. This makes silicon nanosphere oligomers promising as a unit cell in epsilon-near-zero metamaterials.

  11. Electrochemiluminescence immunosensor for tumor markers based on biological barcode mode with conductive nanospheres.

    PubMed

    Du, Shuping; Guo, Zhiyong; Chen, Beibei; Sha, Yuhong; Jiang, Xiaohua; Li, Xing; Gan, Ning; Wang, Sui

    2014-03-15

    A novel sandwich-type electrochemiluminescence (ECL) immunosensor was developed for highly sensitive and selective determination of tumor markers based on biological barcode mode. N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and the second antibody (Ab2) were simultaneously immobilized on conductive nanospheres to construct ABEI/Ab2-CNSs probes, which could form sandwich immunocomplex by Ab2 and emit ECL signals by ABEI. The gold layer coated on the surface of the conductive nanospheres could extend the outer Helmholtz plane (OHP) of the ECL immunosensor effectively. Benefited from it, all ABEI molecules immobilized on conductive nanospheres would act as biological barcode to give in-situ ECL signals without interfering with the activity of the second antibody. In such a case, the sensitivity of the ECL immunosensor would be greatly improved because an antigen molecule would correspond to ECL signals of thousands of ABEI molecules. Using prostate specific antigen (PSA) as a model tumor marker, the ECL intensity was found to increase with the logarithm of PSA concentration with a wide linear range from 0.04 to 10 fg/mL. In addition, specificity, stability, reproducibility, regeneration and application were satisfactory. Therefore, this developed ECL immunosensor has a potential for practical detection of disease-related proteins besides tumor markers in the clinical diagnostics.

  12. Moiré nanosphere lithography: use colloidal moiré patterns as masks

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Rajeeva, Bharath B.; Wu, Zilong; Rukavina, Michael; Dao, Thang Duy; Ishii, Satoshi; Aono, Masakazu; Nagao, Tadaaki; Zheng, Yuebing

    2015-08-01

    Nanosphere lithography (NSL) uses self-assembled layers of monodisperse micro-/nano-spheres as masks to fabricate plasmonic metal nanoparticles. Different variants of NSL have been proposed with the combination with dry etching and/or angled-deposition. These techniques have employed to fabricate a wide variety of plasmonic nanoparticles or nanostructures. Here we report another promising extension - moiré nanosphere lithography (MNSL), which incorporates in-plane twisting between neighboring monolayers, to extend the patterning capability of conventional NSL. In conventional NSL, the masks, either a monolayer or bilayer, are formed by spontaneous self-assembly. Therefore, the resulted colloidal crystal configurations are limited. In this work we used sequential stacking of polystyrene nanosphere monolayers to form a bilayer crystal at the air/water interfaces. During this layer-by-layer stacking process, a crystal domain in the top layer gains the freedom to positon itself in a relative angle to that in the bottom layer allowing for the formation of moiré patterns. Subsequent O2 plasma etching results in a variety of complex nanostructures that have not been reported before. Using etched moiré patterns as masks, we further fabricated the corresponding gold nanostructures and characterized their scattering optical properties. We believe this facile technique provides a new strategy to fabricate novel and complex plasmonic nanostructures or metasurfaces.

  13. Interface-mediated fabrication of bowl-like and deflated ballon-like hollow carbon nanospheres.

    PubMed

    Zhang, Haijiao; Li, Xia

    2015-08-15

    In our work, two kinds of hollow carbon nanospheres with controlled morphologies have been successfully prepared from low-cost and nontoxic glucose as the sole carbon precursor under neutral aqueous medium via a simple hydrothermal route. During the process, sodium dodecylbenzene sulfonate (SDBS) and triblock copolymer P123 ((EO)20(PO)70(EO)20) was skillfully selected as the structure-directing agent, respectively. SEM, TEM and AFM results revealed that the two products showed bowl-like and deflated-balloon-like morphology with uniform particle sizes, respectively. Based on the experimental observations, a possible formation mechanism was also discussed, in which the growth of the carbon nanospheres involved an interface-medicated assembly process. The present method was easy, green and mild. Apart from the unique nanostructure, the obtained bowl-like hollow carbon nanospheres exhibited excellent biocompatibility. In particular, it should be mentioned that the open window formed by the bowl-like morphology can facilitate ion transport, thus improving their performances.

  14. An innovative glucose biosensor using antibiofouling Au-F127 nanospheres.

    PubMed

    Sun, Chong; Wangi, Xiaobo; Zhou, Min; Ni, Yalong; Mao, Chun; Huang, Xiaohua; Shenl, Jian

    2013-05-01

    Quantification of the blood glucose concentration in the whole blood was not easy to achieve because the detection process was affected by many factors, such as glucose metabolism and biofouling. In this paper, we established an amperometric glucose biosensor applied in whole blood directly, which was based on the direct electron transfer of glucose oxidase (GOx) entrapped onto the Au-F127 nanospheres. Here, the Au-F127 nanospheres could provide a blood compatible surface with antifouling property for determination of glucose in whole blood. The cyclic voltammetric results indicated that GOx immobilized on the Au-F127 nanospheres exhibited direct electron transfer reaction, and the cyclic voltammogram (CV) displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of 93 mV. The biosensor had good electrocatalytic activity toward glucose with a low detection limit 3.15 pM. The glucose biosensor did not respond to ascorbic acid (AA) and uric acid (UA) at their high concentration encountered in blood. In this method, the biosensor was used for quantification of the concentration of glucose in whole blood samples. The data obtained from the biosensor showed good agreement with those from a biochemical analyzer in hospital.

  15. The role of neutral lipid nanospheres in Plasmodium falciparum haem crystallization

    PubMed Central

    Pisciotta, John M.; Coppens, Isabelle; Tripathi, Abhai K.; Scholl, Peter F.; Shuman, Joel; Bajad, Sunil; Shulaev, Vladimir; Sullivan, David J.

    2006-01-01

    The intraerythrocytic malaria parasite constructs an intracellular haem crystal, called haemozoin, within an acidic digestive vacuole where haemoglobin is degraded. Haem crystallization is the target of the widely used antimalarial quinoline drugs. The intracellular mechanism of molecular initiation of haem crystallization, whether by proteins, polar membrane lipids or by neutral lipids, has not been fully substantiated. In the present study, we show neutral lipid predominant nanospheres, which envelop haemozoin inside Plasmodium falciparum digestive vacuoles. Subcellular fractionation of parasite-derived haemozoin through a dense 1.7 M sucrose cushion identifies monoacylglycerol and diacylglycerol neutral lipids as well as some polar lipids in close association with the purified haemozoin. Global MS lipidomics detects monopalmitic glycerol and monostearic glycerol, but not mono-oleic glycerol, closely associated with haemozoin. The complex neutral lipid mixture rapidly initiates haem crystallization, with reversible pH-dependent quinoline inhibition associated with quinoline entry into the neutral lipid microenvironment. Neutral lipid nanospheres both enable haem crystallization in the presence of high globin concentrations and protect haem from H2O2 degradation. Conceptually, the present study shifts the intracellular microenvironment of haem crystallization and quinoline inhibition from a polar aqueous location to a non-polar neutral lipid nanosphere able to exclude water for efficient haem crystallization. PMID:17044814

  16. Naproxen-imprinted xerogels in the micro- and nanospherical formsby emulsion technique.

    PubMed

    Ornelas, Mariana; Azenha, Manuel; Pereira, Carlos; Silva, A Fernando

    2015-11-27

    Naproxen-imprinted xerogels in the microspherical and nanospherical forms were prepared by W/O emulsion and microemulsion, respectively. The work evolved from a sol–gel mixture previously reported for bulk synthesis. It was relatively simple to convert the original sol–gel mixture to one amenable to emulsion technique. The microspheres thus produced presented mean diameter of 3.7 μm, surface area ranging 220–340 m2/g, selectivity factor 4.3 (against ibuprofen) and imprinting factor 61. A superior capacity (9.4 μmol/g) was found, when comparing with imprints obtained from similar pre-gelification mixtures. However, slow mass transfer kinetics was deduced from column efficiency results. Concerning the nanospherical format, which constituted the first example of the production of molecularly imprinted xerogels in that format by microemulsion technique, adapting the sol–gel mixture was troublesome. In the end, nanoparticles with diameter in the order of 10 nm were finally obtained, exhibiting good indications of an efficient molecular imprinting process. Future refinements are necessary to solve serious aggregation issues, before moving to more accurate characterization of the binding characteristics or to real applications of the nanospheres.

  17. Synthesis and characterization of visible-active molybdenum disulfide (2H-MoS2) nanospheres

    NASA Astrophysics Data System (ADS)

    Cheah, A. J.; Chiu, W. S.; Khiew, P. S.; Radiman, S.; Hamid, M. A. A.

    2015-07-01

    In current study, a novel 2H-MoS2 nanospheres were successfully synthesized and underwent structural- as well as optical-property characterizations. The MoS2 were prepared by one pot hydrothermal approach through adopting L-cysteine as environmentally-benignchalcogenide precursor. TEM image shows that the as-synthesized MoS2 appear to be spherical in shape with size distribution in the range of 120 nm - 180 nm. HRTEM lattice-fringes imaging further elucidate that the interlayer spacing at the edges is equal to be 0.62 nm that correspond to (002) plane stacking. Also, the HRTEM image clearly-illustrate that the internal microstructure of MoS2 composed of randomly-arrayed alternating layers, which render the postulation that the formation of nanosphere is driven by self-assembly of individual layers into globular morphology. XRD diffractogram that appear to be broad and unresolved reveal the partially crystalline nature of the sample. Optical-absorption spectra depicts the sample is visible active with featureless absorption, which can attribute to indirect transition of the excitions generated. By using Tauc plot, the bandgap energy is determined to be 1.75 eV, which reflect the nanospheres are indeed visible-active nanostructures.

  18. Interface-mediated fabrication of bowl-like and deflated ballon-like hollow carbon nanospheres.

    PubMed

    Zhang, Haijiao; Li, Xia

    2015-08-15

    In our work, two kinds of hollow carbon nanospheres with controlled morphologies have been successfully prepared from low-cost and nontoxic glucose as the sole carbon precursor under neutral aqueous medium via a simple hydrothermal route. During the process, sodium dodecylbenzene sulfonate (SDBS) and triblock copolymer P123 ((EO)20(PO)70(EO)20) was skillfully selected as the structure-directing agent, respectively. SEM, TEM and AFM results revealed that the two products showed bowl-like and deflated-balloon-like morphology with uniform particle sizes, respectively. Based on the experimental observations, a possible formation mechanism was also discussed, in which the growth of the carbon nanospheres involved an interface-medicated assembly process. The present method was easy, green and mild. Apart from the unique nanostructure, the obtained bowl-like hollow carbon nanospheres exhibited excellent biocompatibility. In particular, it should be mentioned that the open window formed by the bowl-like morphology can facilitate ion transport, thus improving their performances. PMID:25935285

  19. Effect of nanoparticle polydispersity on the self-assembly of polymer tethered nanospheres.

    PubMed

    Phillips, Carolyn L; Glotzer, Sharon C

    2012-09-14

    Recent simulations predict that aggregating nanospheres functionalized with polymer "tethers" can self-assemble to form a cylinder, perforated lamellae, lamellae, and even the double gyroid phase, which are phases also seen in block copolymer and surfactant systems. Nanoparticle size polydispersity is likely to be a characteristic of these systems. If too high, polydispersity may destabilize a phase. Using multiple thermodynamic paths to explore the phase diagram as a function of temperature and polydispersity, we explore the effect of nanosphere size polydispersity on the phase diagram. We show that in the portions of the phase diagram characterized by an icosahedral local nanoparticle packing motif, a low amount of polydispersity lowers the energy and a large amount of polydispersity raises the energy of the system by disrupting the icosahedral packing. In general, regions of the phase diagram characterized by liquid-like icosahedral packing have high terminal polydispersities from 15% to more than 30%. In the regions of the phase diagram characterized by crystalline local packing, polydispersity raises the energy of the system and induces a phase transition from crystalline to liquid-like ordering within the nanosphere rich regions of the microphase. We find the bilayer crystalline lamellae phase has a terminal polydispersity of 6%, but may still be partially crystalline up to 12%. PMID:22979884

  20. Synthesis and characterization of highly-magnetic biodegradable poly(D,L-lactide-co-glycolide) nanospheres.

    SciTech Connect

    Liu, X.; Kaminski, M. D.; Chen, H.; Torno, M.; Taylor, L.; Rosengart, A. J.; Univ. of Chicago

    2007-05-14

    The objective of this study was to develop high magnetization, biodegradable/biocompatible polymer-coated magnetic nanospheres for biomedical applications. Magnetic spheres were prepared by a modified single oil-in-water emulsion-solvent evaporation method utilizing highly-concentrated hydrophobic magnetite and poly(d,l lactide-co-glycolide) (PLGA). Hydrophobic magnetite prepared using oleic acid exhibited high magnetite concentrations (84 wt.%) and good miscibility with biopolymer solvents to form a stable oily suspension. The oily suspension was then emulsified within an aqueous solution containing poly(vinyl alcohol). After rapid evaporation of the organic solvent, we obtained solid magnetic nanospheres. We characterized these spheres in terms of external morphology, microstructure, size and zeta potential, magnetite content and distribution within the nanospheres, and magnetic properties. The results showed good encapsulation where the magnetite distorted the smooth surface morphology only at the highest magnetite concentrations. The mean diameter was 360-370 nm with polydispersity indices of 0.12-0.20. We obtained high magnetite content (40-60%) and high magnetization (26-40 emu/g). The high magnetization properties were obtained while leaving sufficient polymer to retain drugs making these biodegradable spheres suitable as a potential platform for the design of magnetically-guided drug delivery and other in vivo biomagnetic applications.

  1. The effect of chitosan nanospheres on the immunogenicity of Toxoplasma lysate vaccine in mice.

    PubMed

    El Temsahy, Mona M; El Kerdany, Eman D H; Eissa, Maha M; Shalaby, Thanaa I; Talaat, Iman M; Mogahed, Nermine M F H

    2016-09-01

    Toxoplasmosis, a zoonotic parasitic disease, is a huge challenge for which there is no effective vaccine up till now. In this study, chitosan nanospheres encapsulated with Toxoplasma lysate vaccine was evaluated for its ability to protect mice against both acute and chronic toxoplasmosis models of infection. Results showed that chitosan nanospheres were equally effective to Freund's incomplete adjuvant (FIA) in enhancing the efficacy of Toxoplasma lysate vaccine. The effectiveness was demonstrated by the delayed death of vaccinated mice following challenge either with virulent RH or avirulent Me49 strains, the significant decrease in parasite density in different organs, significant increase in the humoral and cellular immune response (IgG and IFN γ) with a marked reduction of pathological changes in the different organs. However chitosan nanospheres were superior to FIA due to their cost effective preparation and much less necrotic changes induced in the studied organs. The success of chitosan polymer as an alternative to commonly used adjuvants paves the way for the use of other newly developed polymers to be used in the field of vaccine development. PMID:27605755

  2. Photoirradiation study of gold nanospheres and rods in Vero and Hela cell lines

    NASA Astrophysics Data System (ADS)

    Gananathan, Poorani; Aruna, Prakasarao; Ganesan, Singaravelu; Elanchezhiyan, Manickan

    2014-03-01

    Photoirradiation effect of gold nanospheres in conjucation with green light and rods in conjugation with red light corresponds to their absorption wavelength range found to be appreciable. In this present work concentration of nanomaterial and light dose were optimized. Gold nanospheres were synthesized by reduction technique using Sodium Borohydrate as reducing agent and Trisodium Citrate as capping agent. Au nanorods having 680-900nm absorption were synthesized using reduction techniques with CTAB and BDAC polymers. From UV-Vis absorption and Transmission Electron Microscopy the size of nanoparticles were confirmed. 30nm Gold nanospheres and green light source of 530nm wavelength with power 30mW were applied to Vero and Hela cell lines shows higher toxicity for Hela cells. Nanorods were applied and irradiated with 680nm wavelength light source with light intensity 45mW. Post irradiation effect for 24hrs, 48hrs confirms cell proliferation in normal rate in viable cells. The morphological changes in irradiated spot leads to apoptotoic cell death was confirmed with microscopic imaging. The LD50 value was also calculated.

  3. High-yield room temperature route to copper sulfide hollow nanospheres and their electrochemical properties

    NASA Astrophysics Data System (ADS)

    Wang, Yiying; Li, Qing; Nie, Ming; Li, Xuelian; Li, Yuan; Zhong, Xiaolin

    2011-07-01

    CuS hollow nanospheres have been successfully synthesized in high yield by reacting anhydrous cupric sulfate (CuSO4·5H2O) with thioacetamide (TAA) in ethylene glycol (EG) with the assistance of cetyltrimethylammonium bromide (CTAB). The products were characterized systematically by XRD, EDX, FESEM, TEM and BET measurement and size analysis, CV, LSV and CP. FESEM and TEM images revealed that the as-prepared CuS hollow nanospheres had a mean diameter of about 500 nm with a hollow cavity of about 340 nm and shell thickness of about 80 nm. The spheres were constructed by numerous nanoflakes. The Brunauer-Emmett-Teller (BET) surface area of the as-synthesized products was measured to be 99.77 m2g - 1. The Barrett-Joyner-Halenda (BJH) model analysis showed that the as-prepared CuS materials had a main pore size distribution of around 25 nm. CV curves, LSV of CuS for oxygen electroreduction and CP curves showed that the as-prepared CuS nanospheres were potential candidates which can be used as cathode catalysts for the oxygen reduction reaction (ORR) in alkaline media.

  4. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.

    PubMed

    Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang; Li, Dan; Chen, Yunfa; Zhong, Ziyi; Su, Fabing

    2014-01-01

    We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, Cu(x)Si, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g(-1) at 50, 200, 800, and 50 mA g(-1) respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, Cu(x)Si, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive Cu(x)Si and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries.

  5. Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers.

    PubMed

    Moghimi, S M

    2002-06-12

    A two-step approach is described to chemically camouflage the inert surface of model polystyrene nanospheres of 60 nm in diameter against recognition by the body's defenses. The first step was based on the strong protein adsorbing potency of polystyrene, and the second step utilized the chemical reactivity of the adsorbed proteins for conjugation with cyanuric chloride-activated methoxypoly(ethyleneglycol)5000, mPEG5000. Bovine serum albumin (BSA) and rat IgG were used as models of non-immune and immune proteins, respectively. The maximum adsorbance values for both proteins were near expectation for a close-packed monolayer. Adsorption isotherms studies and analysis of the hydrodynamic thickness of the adsorbed protein layer confirmed the close-packed side-on mode of adsorption for BSA and the end-on mode of adsorption for IgG, respectively. Nucleophiles on the adsorbed proteins were then reacted with cyanuric chloride activated mPEG5000. The average poly(ethyleneglycol) (PEG) content for a 60-nm nanospheres was found to be 13.7+/-0.4 micromol PEG/micromol BSA and 3.6+/-0.3 micromol PEG/micromol IgG. The interaction of both PEG-bearing nanospheres with the hydrophobic column material octyl-agarose indicated surface heterogeneity among the nanospheres. Only nanospheres with the most hydrophilic phenotype (approximately 70% of the total population) exhibited stealth properties after intravenous injection to rats. In contrast to the described approach, incubation of uncoated nanospheres with preformed BSA-mPEG5000 conjugates failed to produce long circulating entities. For design of splenotropic particles cyanuric chloride-activated mPEG5000 was conjugated to BSA-coated polystyrene beads of 225 nm in diameter. Despite their stealth property to hepatic Kupffer cell recognition, these nanospheres were cleared by the splenic red pulp macrophages.

  6. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.

    PubMed

    Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang; Li, Dan; Chen, Yunfa; Zhong, Ziyi; Su, Fabing

    2014-01-01

    We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, Cu(x)Si, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g(-1) at 50, 200, 800, and 50 mA g(-1) respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, Cu(x)Si, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive Cu(x)Si and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries. PMID:24201898

  7. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang; Li, Dan; Chen, Yunfa; Zhong, Ziyi; Su, Fabing

    2013-12-01

    We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, CuxSi, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g-1 at 50, 200, 800, and 50 mA g-1 respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, CuxSi, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive CuxSi and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries.

  8. Porous microsphere and its applications

    PubMed Central

    Cai, Yunpeng; Chen, Yinghui; Hong, Xiaoyun; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies. PMID:23515359

  9. Natural convection in porous media

    SciTech Connect

    Prasad, V.; Hussain, N.A.

    1986-01-01

    This book presents the papers given at a conference on free convection in porous materials. Topics considered at the conference included heat transfer, nonlinear temperature profiles and magnetic fields, boundary conditions, concentrated heat sources in stratified porous media, free convective flow in a cavity, heat flux, laminar mixed convection flow, and the onset of convection in a porous medium with internal heat generation and downward flow.

  10. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  11. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Jones (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  12. Stabilization of RNA through absorption by functionalized mesoporous silicate nanospheres.

    PubMed

    Johnson, Brandy J; Melde, Brian J; Dinderman, Michael A; Lin, Baochuan

    2012-01-01

    The potential for encapsulating RNA within tunable, semi-permeable structures for storage and transportation purposes offers an interesting approach to the reduction of stringent storage requirements that often hamper the field application of genetic analysis methods. In this study, we assessed the potential for application of functionalized, porous silicate sorbents in maintaining nucleic acid integrity. Mesoporous silica nanoparticles (MSNs) with and without incorporated stabilizing reagents were used to encapsulate triosephosphate isomerase mRNA of Arabidopsis thaliana. The absorption, elution, and the long-term stability of the RNA were monitored by using quantitative real-time RT-PCR. The results indicate that adsorbed RNA can be eluted from the sorbents using simple buffers and employed directly for downstream molecular diagnostic assays without any further processing. RNA integrity can be maintained for extended time periods under refrigeration temperatures in the presence of covalently immobilized stabilizing compounds. This study provides initial evidence of the potential for application of MSNs in transportation and storage. They may also have utility in sample collection and processing in restrictive environments.

  13. Characterization of porous hydroxyapatite.

    PubMed

    Hing, K A; Best, S M; Bonfield, W

    1999-03-01

    Hydroxyapatite has been considered for use in the repair of osseous defects for the last 20 years. Recent developments have led to interest in the potential of porous hydroxyapatite as a synthetic bone graft. However, despite considerable activity in this field, regarding assessment of the biological response to such materials, the basic materials characterization is often inadequate. This paper documents the characterization of the chemical composition, mechanical integrity, macro- and microstructure of a porous hydroxyapatite, Endobon (E. Merck GmbH), intended for the bone-graft market. Specimens possesed a range of apparent densities from 0.35 to 1.44 g cm(-3). Chemical analysis demonstrated that the natural apatite precursor of Endobon was not converted to pure hydroxyapatite, but retained many of the ionic substituents found in bone mineral, notably carbonate, sodium and magnesium ions. Investigation of the microstructure illustrated that the struts of the material were not fully dense, but had retained some traces of the network of osteocyte lacunae. Macrostructural analysis demonstrated the complex inter-relationship between the structural features of an open pore structure. Both pore size and connectivity were found to be inversely dependent on apparent density. Furthermore, measurement of pore aspect ratio and orientation demonstrated a relationship between apparent density and the degree of macrostructural anisotropy within the specimens, while, it was also noted that pore connectivity was sensitive to anisotropy. Compression testing demonstrated the effect of apparent density and macrostructural anisotropy on the mechanical properties. An increase in apparent density from 0.38 to 1.25 g cm(-3) resulted in increases in ultimate compressive stress and compressive modulus of 1 to 11 MPa and 0.2 to 3.1 GPa, respectively. Furthermore, anisotropic high density (> 0.9 g cm(-3)) specimens were found to possess lower compressive moduli than isotropic specimens

  14. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates.

    PubMed

    Liu, Yating; Tian, Ailin; Wang, Xiong; Qi, Jing; Wang, Fengkang; Ma, Ying; Ito, Yoichiro; Wei, Yun

    2015-06-26

    As the rapid development of nanotechnology, the magnetic nanospheres modified with special chiral selective ligands show a great potentiality in enantiomeric separation. In this study, magnetic nanospheres modified with task-specific chiral ionic liquid were designed for the separation of chiral amino acids. These modified magnetic nanospheres were effective in a direct chiral separation of five racemic amino acids (D- and L-cysteine, D- and L-arginine, D- and L-leucine, D- and L-glutamine and D- and L-tryptophan). Furthermore, a new online method for complete separation of the enantiomers via the magnetic nanospheres was established with centrifugal chiral chromatography using a spiral tube assembly mounted on a type-J coil planet centrifuge. One kind of chiral compounds, D- and L-tryptophan was resolved well using this method. These results demonstrated that the modified nanospheres display a good chiral recognition ability, and can be used as a potential material for chiral separation of various racemates.

  15. Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xiong, Yachao; Zhou, Min; Chen, Hao; Feng, Lei; Wang, Zhao; Yan, Xinzhu; Guan, Shiyou

    2015-12-01

    Improving the electrochemical performance of manganese dioxide (MnO2) electrodes is of great significance for supercapacitors. In this study, a novel honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites has been fabricated through freeze-drying method. The honeycomb MnO2 nanospheres are well inserted and dispersed on the graphene. Carbon nanoparticles in the composites act as spacers to effectively prevent graphene from restacking and agglomeration, construct efficient 3D conducting architecture with graphene for honeycomb MnO2 nanospheres, and alleviate the aggregation of honeycomb MnO2 nanospheres by separating them from each other. As a result, such honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites display much improved electrochemical capacitive performance of 255 F g-1 at a current density of 0.5 A g-1, outstanding rate capability (150 F g-1 remained at a current density of 20 A g-1) and good cycling stability (83% of the initial capacitance retained after 1000 charge/discharge cycles). The strategy for the synthesis of these composites is very effective.

  16. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Yang, Zeheng; Xu, Feifei; Zhang, Weixin; Mei, Zhousheng; Pei, Bo; Zhu, Xiao

    2014-01-01

    In this work, we demonstrate a facile layer-by-layer (LBL) self-assembly method for controllable preparation of single-, double-, and triple-shelled NiO hollow nanospheres by calcining Ni(OH)2/C precursors formed at different stage. It is observed that the external nanoflakes of the NiO hollow nanospheres are inherited from the Ni(OH)2 precursors organized on the surface of carbon spheres via a self-assembly growth process and the inner shells result from the formation of different Ni(OH)2 layers within the carbon spheres during different preparation cycles. Supercapacitive performance of the three types of NiO hollow nanospheres as active electrode materials has been evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge. The results indicate that double-shelled NiO hollow nanosphere sample with largest surface area (92.99 m2 g-1) exhibits the best electrochemical properties among the three NiO hollow nanosphere samples. It delivers a high capacitance of 612.5 F g-1 at 0.5 A g-1 and demonstrates a superior long-term cyclic stability, with over 90% specific capacitance retention after 1000 charge-discharge cycles. This excellent performance is ascribed to the short diffusion path and large surface area of the unique hollow structure with nanoflake building blocks for bulk accessibility of faradaic reaction.

  17. Gold nanoparticles embedded in silica hollow nanospheres induced by compressed CO2 as an efficient catalyst for selective oxidation.

    PubMed

    Guo, Li; Zhang, Ran; Chen, Chen; Chen, Jizhong; Zhao, Xiuge; Chen, Angjun; Liu, Xuerui; Xiu, Yuhe; Hou, Zhenshan

    2015-03-01

    Metal nanoparticles embedded in hollow materials are important due to their wide applications in catalysis. In this work, we disclosed a nontraditional synthetic pathway to prepare silica hollow nanospheres by hydrothermal treatment in the presence of compressed CO2. Especially, the silica hollow nanospheres with an outer diameter of about 16 nm and an inner pore size of 7 nm were obtained using 1.0 MPa CO2. The formation mechanism of silica hollow nanospheres induced by CO2 was investigated by high-pressured UV/Vis spectroscopy. Moreover, gold nanoparticles (2.5 nm) embedded in the silica hollow nanospheres were prepared by a one-pot synthesis using HAuCl4 as a precursor. The current synthetic route of nano-catalysts was simple and facile, in which no etching agent was needed in the process of the hollow material preparation. Besides, this nano-catalyst showed an excellent catalytic performance in epoxidation of styrene with high conversion (82.2%) and selectivity (90.2%) toward styrene oxide, as well as in the selective oxidation of ethylbenzene with good conversion (26.6%) and selectivity (87.8%) toward acetophenone. Moreover, the Au nanoparticles (AuNPs) embedded in silica hollow nanospheres exhibited an excellent recyclability in both the oxidation reactions.

  18. Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres.

    PubMed

    Kumari, Madhu; Pittman, Charles U; Mohan, Dinesh

    2015-03-15

    Magnetite nanospheres with hollow interiors were synthesized using a simple, one-pot, and template free solvothermal method with ferric chloride as the iron precursor. The composition, surface properties and morphology were studied using X-ray powder diffraction (XRD), energy dispersive X-ray fluorescence (EDXRF), Fourier transform infrared spectroscopy (FTIR), surface area analysis, point of zero charge (pHpzc), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and magnetic moment determination. These mesoporous nanospheres have a SBET=11.3m(2)/g and a high saturation magnetization of 77.5emu/g. These magnetite nanospheres successfully remediated Cr(6+) and Pb(2+) from water. The optimum pHs for Cr(6+) and Pb(2+) adsorption were 4.0 and 5.0, respectively. Adsorption was carried out at 25, 35 and 45°C. The sorption data were fitted using Freundlich, Langmuir, Redlich-Peterson, Sips, Koble-Corrigan, Radke and Prausnitz and Toth adsorption models. The pseudo-second order model better fitted the kinetics data. The Langmuir adsorption capacities of magnetic nanospheres were ∼9 and ∼19mg/g for Cr(6+) and Pb(2)(+), respectively. Magnetic collection of these magnetite nanospheres can be used to isolate and regenerate the used adsorbent.

  19. Facile synthesis of Fe3O4@C hollow nanospheres and their application in polluted water treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanguang; Xu, Shihao; Xia, Hongyu; Zheng, Fangcai

    2016-11-01

    Nanostructured carbon-based materials, such as carbon nanotube arrays have shown respectable removal ability for heavy metal ions and organic dyes in aqueous solution. Although the carbon-based materials exhibited excellent removal ability, the separation of them from the aqueous solution is difficult and time-consuming. Here we demonstrated a novel and facile route for the large-scale fabrication of Fe3O4@C hollow nanospheres, with using ferrocene as a single reagent and SiO2 as a template. The as-prepared Fe3O4@C hollow nanospheres exhibited adsorption ability for heavy metal ions and organic dyes from aqueous solution, and can be easily separated by an external magnet. When the as-prepared Fe3O4@C hollow nanospheres were mixed with the aqueous solution of Hg2+ within 15 min, the removal efficiency was 90.3%. The as-prepared Fe3O4@C hollow nanospheres were also exhibited a high adsorption capacity (100%) as the adsorbent for methylene blue (MB). In addition, the as-prepared Fe3O4@C hollow nanospheres can be used as the recyclable sorbent for water treatment via a simple magnetic separation.

  20. Synthesis and characterization of Cu2O-modified Bi2O3 nanospheres with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Luo, Yidan; Huang, Qingqing; Li, Bin; Dong, Lihui; Fan, Minguang; Zhang, Feiyue

    2015-12-01

    In this work, a series of Cu2O-modified Bi2O3 nanospheres with perfect visible-light catalytic activity were successfully synthesized via the two-step method. The obtained products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area, UV-visible diffuse reflectance spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). In the catalysts of Cu2O-modified Bi2O3 nanospheres, Cu2O was dispersed on the surface of Bi2O3 nanospheres. All of Cu2O-modified Bi2O3 nanospheres showed uniformly nanospheres with the size of 80-150 nm, and exhibited enhanced photocatalytic activity in the degradation of Rhodamine B. The higher BET surface area, the band gap narrowing, and the interfacial charge transfer effect were considered to cause the excellent photocatalysis of Cu2O loading Bi2O3 samples. Furthermore, the possible photocatalysis mechanism was proposed.

  1. Retinol encapsulated into amorphous Ca(2+) polyphosphate nanospheres acts synergistically in MC3T3-E1 cells.

    PubMed

    Müller, Werner E G; Tolba, Emad; Schröder, Heinz C; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2015-06-01

    Both the quality and quantity of collagen, the major structural component of the skin, decrease in aging skin. We succeeded to encapsulate retinol into amorphous inorganic polyphosphate (polyP) nanoparticles together with calcium ions ("aCa-polyP-NP"), under formation of amorphous Ca-polyP/retinol nanospheres ("retinol/aCa-polyP-NS"). The globular nanospheres are not cytotoxic, show an almost uniform size of ≈ 45 nm and have a retinol content of around 25%. Both components of those nanospheres, retinol and the aCa-polyP-NP, if administered together, caused a strong increase in proliferation of mouse calvaria MC3T3 cells. The expressions of collagen types I, II and III genes, but not the expression of collagen type V gene, were significantly enhanced if retinol is added together with aCa-polyP-NP. This synergistic effect was especially pronounced for the expression of the collagen type III gene. We propose that the synergistic effect of the retinol/aCa-polyP-NS on cell growth and collagen type III expression is induced via two routes, first through cellular uptake of the 45 nm nanospheres by clathrin-mediated endocytosis and second through extracellular disintegration of the nanospheres resulting in the release of retinol which is then taken up into the cells after binding to the retinal binding protein receptor.

  2. Characterization and in vivo evaluation of novel lipid–chlorambucil nanospheres prepared using a mixture of emulsifiers for parenteral administration

    PubMed Central

    Song, Honglin; Nie, Shufang; Yang, Xinggang; Li, Ning; Xu, Hongtao; Zheng, Liangyuan; Pan, Weisan

    2010-01-01

    Purpose The purpose of the study was to develop and evaluate different lipid-based formulations for parenteral administration, as potential novel carrier systems for lipophilic drugs, and to turn an unstable drug such as chlorambucil into a useful one. Methods A two-stage, high-pressure homogenizer was used to yield a very fine monodispersed lipid nanosphere. The strategy of combining egg yolk phospholipid and nonionic emulsifier (Lutrol F 68 and Tween 80) as an emulsifier mixture was adopted to increase safety and tolerance. The final lipid nanospheres, in a lipophilic mixture consisting of three components, monostearin, medium-chain triglycerides and soya oil, were evaluated for physicochemical properties, such as particle size, surface morphology, drug-entrapment efficiency, drug-loading capacity, lyophilization and in vivo drug-release behavior. Results A monodispersed lipid nanosphere with a mean particle size ranging from 90 to 150 nm was achieved. The optimized injectable cryoprotectants for lipid nanosphere were sucrose (7.5%) and mannitol (7.5%), which can stabilize the particle size (LD50) at approximately 129 nm after reconstitution. The results show that the formulation can effectively administer anticancer drugs and thus improve patient quality of life. Conclusions The novel lipid nanosphere complex developed is a useful anticancer drug delivery vehicle for parenteral administration. The formulation strategy has the potential for the development of further methods of drug delivery for a wide variety of anticancer drugs. PMID:21187945

  3. Water Dispersible and Biocompatible Porphyrin-Based Nanospheres for Biophotonics Applications: A Novel Surfactant and Polyelectrolyte-Based Fabrication Strategy for Modifying Hydrophobic Porphyrins.

    PubMed

    Sheng, Ning; Zong, Shenfei; Cao, Wei; Jiang, Jianzhuang; Wang, Zhuyuan; Cui, Yiping

    2015-09-01

    The hydrophobility of most porphyrin and porphyrin derivatives has limited their applications in medicine and biology. Herein, we developed a novel and general strategy for the design of porphyrin nanospheres with good biocompatibility and water dispersibility for biological applications using hydrophobic porphyrins. In order to display the generality of the method, we used two hydrophobic porphyrin isomers as starting material which have different structures confirmed by an X-ray technique. The porphyrin nanospheres were fabricated through two main steps. First, the uniform porphyrin nanospheres stabilized by surfactant were prepared by an interfacially driven microemulsion method, and then the layer-by-layer method was used for the synthesis of polyelectrolyte-coated porphyrin nanospheres to reduce the toxicity of the surfactant as well as improve the biocompatibility of the nanospheres. The newly fabricated porphyrin nanospheres were characterized by TEM techniques, the electronic absorption spectra, photoluminescence emission spectra, dynamic light scattering, and cytotoxicity examination. The resulting nanospheres demonstrated good biocompatibility, excellent water dispersibility and low toxicity. In order to show their application in biophotonics, these porphyrin nanospheres were successfully applied in targeted living cancer cell imaging. The results showed an effective method had been explored to prepare water dispersible and highly stable porphyrin nanomaterial for biophotonics applications using hydrophobic porphyrin. The approach we reported shows obvious flexibility because the surfactants and polyelectrolytes can be optionally selected in accordance with the characteristics of the hydrophobic material. This strategy will expand the applications of hydrophobic porphyrins owning excellent properties in medicine and biology.

  4. Water Dispersible and Biocompatible Porphyrin-Based Nanospheres for Biophotonics Applications: A Novel Surfactant and Polyelectrolyte-Based Fabrication Strategy for Modifying Hydrophobic Porphyrins.

    PubMed

    Sheng, Ning; Zong, Shenfei; Cao, Wei; Jiang, Jianzhuang; Wang, Zhuyuan; Cui, Yiping

    2015-09-01

    The hydrophobility of most porphyrin and porphyrin derivatives has limited their applications in medicine and biology. Herein, we developed a novel and general strategy for the design of porphyrin nanospheres with good biocompatibility and water dispersibility for biological applications using hydrophobic porphyrins. In order to display the generality of the method, we used two hydrophobic porphyrin isomers as starting material which have different structures confirmed by an X-ray technique. The porphyrin nanospheres were fabricated through two main steps. First, the uniform porphyrin nanospheres stabilized by surfactant were prepared by an interfacially driven microemulsion method, and then the layer-by-layer method was used for the synthesis of polyelectrolyte-coated porphyrin nanospheres to reduce the toxicity of the surfactant as well as improve the biocompatibility of the nanospheres. The newly fabricated porphyrin nanospheres were characterized by TEM techniques, the electronic absorption spectra, photoluminescence emission spectra, dynamic light scattering, and cytotoxicity examination. The resulting nanospheres demonstrated good biocompatibility, excellent water dispersibility and low toxicity. In order to show their application in biophotonics, these porphyrin nanospheres were successfully applied in targeted living cancer cell imaging. The results showed an effective method had been explored to prepare water dispersible and highly stable porphyrin nanomaterial for biophotonics applications using hydrophobic porphyrin. The approach we reported shows obvious flexibility because the surfactants and polyelectrolytes can be optionally selected in accordance with the characteristics of the hydrophobic material. This strategy will expand the applications of hydrophobic porphyrins owning excellent properties in medicine and biology. PMID:26292182

  5. Drug-loadable Mesoporous Bioactive Glass Nanospheres: Biodistribution, Clearance, BRL Cellular Location and Systemic Risk Assessment via (45)Ca Labelling and Histological Analysis.

    PubMed

    Sui, Baiyan; Zhong, Gaoren; Sun, Jiao

    2016-01-01

    Mesoporous bioactive glass (MBG) nanospheres with excellent drug loading property have attracted significant attention in the field of nano-medicine. However, systemic metabolism and biosafety of MBG nanospheres which are crucial issues for clinical application are yet to be fully understood. Isotope quantitative tracing combined with biochemical parameters and histopatological changes were used to analyze biodistribution, excretion path and the effect on metabolism and major organs, and then we focused on the hepatocellular location and damaging effect of MBG. The results indicated MBG possessed a longer residence time in blood. After being cleared from circulation, nanospheres were mainly distributed in the liver and were slightly internalized in the form of exogenous phagosome by hepatocyte, whereby more than 96% of nanospheres were located in the cytoplasm (nearly no nuclear involvement). A little MBG was transferred into the mitochondria, but did not cause ROS reaction. Furthermore, no abnormal metabolism and histopathological changes was observed. The accumulation of MBG nanospheres in various organs were excreted mainly through feces. This study revealed comprehensively the systemic metabolism of drug-loadable MBG nanospheres and showed nanospheres have no obvious biological risk, which provides a scientific basis for developing MBG nanospheres as a new drug delivery in clinical application. PMID:27628013

  6. Therapeutic Use of 3β-[N-(N',N'-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury.

    PubMed

    Gwak, So-Jung; Yun, Yeomin; Yoon, Do Heum; Kim, Keung Nyun; Ha, Yoon

    2016-01-01

    Gene delivery holds therapeutic promise for the treatment of neurological diseases and spinal cord injury. Although several studies have investigated the use of non-viral vectors, such as polyethylenimine (PEI), their clinical value is limited by their cytotoxicity. Recently, biodegradable poly (lactide-co-glycolide) (PLGA) nanospheres have been explored as non-viral vectors. Here, we show that modification of PLGA nanospheres with 3β-[N-(N',N'-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) enhances gene transfection efficiency. PLGA/DC-Chol nanospheres encapsulating DNA were prepared using a double emulsion-solvent evaporation method. PLGA/DC-Chol nanospheres were less cytotoxic than PEI both in vitro and in vivo. DC-Chol modification improved the uptake of nanospheres, thereby increasing their transfection efficiency in mouse neural stem cells in vitro and rat spinal cord in vivo. Also, transgene expression induced by PLGA nanospheres was higher and longer-lasting than that induced by PEI. In a rat model of spinal cord injury, PLGA/DC-Chol nanospheres loaded with vascular endothelial growth factor gene increased angiogenesis at the injury site, improved tissue regeneration, and resulted in better recovery of locomotor function. These results suggest that DC-Chol-modified PLGA nanospheres could serve as therapeutic gene delivery vehicles for spinal cord injury.

  7. Drug-loadable Mesoporous Bioactive Glass Nanospheres: Biodistribution, Clearance, BRL Cellular Location and Systemic Risk Assessment via 45Ca Labelling and Histological Analysis

    PubMed Central

    Sui, Baiyan; Zhong, Gaoren; Sun, Jiao

    2016-01-01

    Mesoporous bioactive glass (MBG) nanospheres with excellent drug loading property have attracted significant attention in the field of nano-medicine. However, systemic metabolism and biosafety of MBG nanospheres which are crucial issues for clinical application are yet to be fully understood. Isotope quantitative tracing combined with biochemical parameters and histopatological changes were used to analyze biodistribution, excretion path and the effect on metabolism and major organs, and then we focused on the hepatocellular location and damaging effect of MBG. The results indicated MBG possessed a longer residence time in blood. After being cleared from circulation, nanospheres were mainly distributed in the liver and were slightly internalized in the form of exogenous phagosome by hepatocyte, whereby more than 96% of nanospheres were located in the cytoplasm (nearly no nuclear involvement). A little MBG was transferred into the mitochondria, but did not cause ROS reaction. Furthermore, no abnormal metabolism and histopathological changes was observed. The accumulation of MBG nanospheres in various organs were excreted mainly through feces. This study revealed comprehensively the systemic metabolism of drug-loadable MBG nanospheres and showed nanospheres have no obvious biological risk, which provides a scientific basis for developing MBG nanospheres as a new drug delivery in clinical application. PMID:27628013

  8. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions.

    PubMed

    Yamamoto, Hiromitsu; Kuno, Yoshio; Sugimoto, Shohei; Takeuchi, Hirofumi; Kawashima, Yoshiaki

    2005-02-01

    Surface-modified DL-lactide/glycolide copolymer (PLGA) nanospheres with chitosan (CS) were prepared by the emulsion solvent diffusion method for pulmonary delivery of peptide, i.e., elcatonin. The nanosphere suspension was successfully aerosolized with a nebulizer similar to the drug solution, whereas the microsphere suspensions could not be aerosolized. After pulmonary administration, CS-modified PLGA nanospheres were more slowly eliminated from the lungs than unmodified PLGA nanospheres. CS-modified PLGA nanospheres loaded with elcatonin reduced blood calcium levels to 80% of the initial calcium concentration and prolonged the pharmacological action to 24 h, which was a significantly longer duration of action than that by CS-unmodified nanospheres. These results were attributed to the retention of nanospheres adhered to the bronchial mucus and lung tissue and sustained drug release at the adherence site. In addition, CS and CS on the surface of the nanospheres enhanced the absorption of drug. The rank order of the absorption of the model drugs with CS solution was carboxyfluorescein>FITC-dextran-4 (FD-4; Mw. 4000)>FD-21 (Mw. 21,000)>FD70 (Mw. 70,000), which corresponded to the molecular weights ([Mw.] given in parentheses). The absorption-enhancing effect may have been caused by opening the intercellular tight junctions.

  9. Drug-loadable Mesoporous Bioactive Glass Nanospheres: Biodistribution, Clearance, BRL Cellular Location and Systemic Risk Assessment via (45)Ca Labelling and Histological Analysis.

    PubMed

    Sui, Baiyan; Zhong, Gaoren; Sun, Jiao

    2016-09-15

    Mesoporous bioactive glass (MBG) nanospheres with excellent drug loading property have attracted significant attention in the field of nano-medicine. However, systemic metabolism and biosafety of MBG nanospheres which are crucial issues for clinical application are yet to be fully understood. Isotope quantitative tracing combined with biochemical parameters and histopatological changes were used to analyze biodistribution, excretion path and the effect on metabolism and major organs, and then we focused on the hepatocellular location and damaging effect of MBG. The results indicated MBG possessed a longer residence time in blood. After being cleared from circulation, nanospheres were mainly distributed in the liver and were slightly internalized in the form of exogenous phagosome by hepatocyte, whereby more than 96% of nanospheres were located in the cytoplasm (nearly no nuclear involvement). A little MBG was transferred into the mitochondria, but did not cause ROS reaction. Furthermore, no abnormal metabolism and histopathological changes was observed. The accumulation of MBG nanospheres in various organs were excreted mainly through feces. This study revealed comprehensively the systemic metabolism of drug-loadable MBG nanospheres and showed nanospheres have no obvious biological risk, which provides a scientific basis for developing MBG nanospheres as a new drug delivery in clinical application.

  10. Therapeutic Use of 3β-[N-(N′,N′-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury

    PubMed Central

    Gwak, So-Jung; Yun, Yeomin; Yoon, Do Heum; Kim, Keung Nyun; Ha, Yoon

    2016-01-01

    Gene delivery holds therapeutic promise for the treatment of neurological diseases and spinal cord injury. Although several studies have investigated the use of non-viral vectors, such as polyethylenimine (PEI), their clinical value is limited by their cytotoxicity. Recently, biodegradable poly (lactide-co-glycolide) (PLGA) nanospheres have been explored as non-viral vectors. Here, we show that modification of PLGA nanospheres with 3β-[N-(N′,N′-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) enhances gene transfection efficiency. PLGA/DC-Chol nanospheres encapsulating DNA were prepared using a double emulsion-solvent evaporation method. PLGA/DC-Chol nanospheres were less cytotoxic than PEI both in vitro and in vivo. DC-Chol modification improved the uptake of nanospheres, thereby increasing their transfection efficiency in mouse neural stem cells in vitro and rat spinal cord in vivo. Also, transgene expression induced by PLGA nanospheres was higher and longer-lasting than that induced by PEI. In a rat model of spinal cord injury, PLGA/DC-Chol nanospheres loaded with vascular endothelial growth factor gene increased angiogenesis at the injury site, improved tissue regeneration, and resulted in better recovery of locomotor function. These results suggest that DC-Chol-modified PLGA nanospheres could serve as therapeutic gene delivery vehicles for spinal cord injury. PMID:26824765

  11. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  12. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  13. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  14. Small, porous polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  15. Fullerene-doped porous glasses

    NASA Astrophysics Data System (ADS)

    Joshi, M. P.; Kukreja, L. M.; Rustagi, K. C.

    We report the doping of C60 in porous glass by diffusion in solution phase at room temperature. The presence of C60 in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials.

  16. Porous metallic bodies

    DOEpatents

    Landingham, Richard L.

    1985-01-01

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides are heated in a confining container at a controlled rate to a temperature of about greater than the temperature at which the hydride decomposes. Hydrogen is removed from the container and the remaining metal is heated during a second stage to a temperature greater than the temperature at which it was previously heated but not greater than the temperature of 1/2 to 2/3 the temperature at which the metal melts at a controlled rate. The resulting porous metallic body produced has a density less than about 25 percent theoretical and a pore size of less than about 200 microns. The metallic particles of the present invention have high inner surface area and possess minimum resistance to gas flow.

  17. Wetting of Porous Solids.

    PubMed

    Patkar, Saket; Chaudhuri, Parag

    2013-01-10

    This paper presents a simple, three stage method to simulate the mechanics of wetting of porous solid objects, like sponges and cloth, when they interact with a fluid. In the first stage, we model the absorption of fluid by the object when it comes in contact with the fluid. In the second stage, we model the transport of absorbed fluid inside the object, due to diffusion, as a flow in a deforming, unstructured mesh. The fluid diffuses within the object depending on saturation of its various parts and other body forces. Finally, in the third stage, over-saturated parts of the object shed extra fluid by dripping. The simulation model is motivated by the physics of imbibition of fluids into porous solids in the presence of gravity. It is phenomenologically capable of simulating wicking and imbibition, dripping, surface flows over wet media, material weakening and volume expansion due to wetting. The model is inherently mass conserving and works for both thin 2D objects like cloth and for 3D volumetric objects like sponges. It is also designed to be computationally efficient and can be easily added to existing cloth, soft body and fluid simulation pipelines. PMID:23319518

  18. Wetting of porous solids.

    PubMed

    Patkar, Saket; Chaudhuri, Parag

    2013-09-01

    This paper presents a simple, three stage method to simulate the mechanics of wetting of porous solid objects, like sponges and cloth, when they interact with a fluid. In the first stage, we model the absorption of fluid by the object when it comes in contact with the fluid. In the second stage, we model the transport of absorbed fluid inside the object, due to diffusion, as a flow in a deforming, unstructured mesh. The fluid diffuses within the object depending on saturation of its various parts and other body forces. Finally, in the third stage, oversaturated parts of the object shed extra fluid by dripping. The simulation model is motivated by the physics of imbibition of fluids into porous solids in the presence of gravity. It is phenomenologically capable of simulating wicking and imbibition, dripping, surface flows over wet media, material weakening, and volume expansion due to wetting. The model is inherently mass conserving and works for both thin 2D objects like cloth and for 3D volumetric objects like sponges. It is also designed to be computationally efficient and can be easily added to existing cloth, soft body, and fluid simulation pipelines. PMID:23846102

  19. Assessment of White Spot Lesions and In-Vivo Evaluation of the Effect of CPP-ACP on White Spot Lesions in Permanent Molars of Children

    PubMed Central

    Munjal, Deepti; Garg, Shalini; Dhindsa, Abhishek; Sidhu, Gagandeep Kaur

    2016-01-01

    Introduction As hindrance of remineralisation process occurs during orthodontic therapy resulting in decalcification of enamel because number of plaque retention sites increases due to banding and bonding of appliances to teeth. Aim The present analytic study was undertaken to assess the occurrence of white spot lesions in permanent molars of children with and without orthodontic therapy and to evaluate the effect of Casein PhosphoPeptide-Amorphous Calcium Phosphate (CPP-ACP) on white spot lesions in post-orthodontic patients in a given period of time. Materials and Methods The study comprised of examination of 679 first permanent molars which were examined to assess the occurrence of smooth surface white spot lesions in children of 8 to 16 years age group. Group I comprised subjects without any orthodontic treatment and Group II comprised of subjects who had undergone orthodontic therapy. The sample size was calculated using the epi-info6 computer package. Treatment group included 20 post-orthodontic patients examined with at least one white spot lesion within the enamel who received remineralizing cream (GC Tooth Mousse, Recaldent, GC Corporation.) i.e., CPP–ACP cream two times a day for 12 consecutive weeks. Computerized image analysis method was taken to evaluate white spot lesions. These frequency and percentages were compared with chi-square test. For comparison of numeric data, paired t-test was used. Results Of the total 278 (49.6%) first permanent molars showed occurrence of smooth surface white spot lesions out of 560 in Group I and 107 (89.9%) first permanent molars showed presence of white spot lesions out of 119 debanded first permanent molars of children examined in Group II. CPP-ACP therapy group showed reduction in severity of codes which was found to be highly significant after 12 weeks and eight weeks on gingival-third, p-value (<0.001) and significant after eight weeks and four weeks on middle-third according to ICDAS II criteria and

  20. Facile preparation of core-shell magnetic metal-organic framework nanospheres for the selective enrichment of endogenous peptides.

    PubMed

    Xiong, Zhichao; Ji, Yongsheng; Fang, Chunli; Zhang, Quanqing; Zhang, Lingyi; Ye, Mingliang; Zhang, Weibing; Zou, Hanfa

    2014-06-10

    Facile preparation of core-shell magnetic metal-organic framework nanospheres by a layer-by-layer approach is presented. The nanospheres have high surface area (285.89 cm(2)  g(-1)), large pore volume (0.18 cm(3)  g(-1)), two kinds of mesopores (2.50 and 4.72 nm), excellent magnetic responsivity (55.65 emu g(-1)), structural stability, and good dispersibility. The combination of porosity, hydrophobicity, and uniform magnetism was exploited for effective enrichment of peptides with simultaneous exclusion of high molecular weight proteins. The nanospheres were successfully applied in the selective enrichment of endogenous peptides in human serum.