Science.gov

Sample records for acp porous nanospheres

  1. Preparation, characterization and cytocompatibility of porous ACP/PLLA composites.

    PubMed

    Gao, Yanbo; Weng, Wenjian; Cheng, Kui; Du, Piyi; Shen, Ge; Han, Gaorong; Guan, Binggang; Yan, Weiqi

    2006-10-01

    The purpose of this work was to incorporate amorphous calcium phosphate (ACP) into porous poly(L-lactic acid) (PLLA), because ACP is capable of fast phase transformation and morphological change in body fluid, such, a desired pore wall surface within bone tissue engineering scaffolds can be created. A highly porous ACP/PLLA composite was prepared by a thermally induced phase separation technique. The results showed that the composite had an interconnected pore structure with 100 mum macropores and 10 mum micropores, and 91% porosity; 40 nm primary particles of ACP were agglomerated to 3 mum aggregates, and the aggregates were homogeneously distributed in pore walls; These aggregates showed to be in situ transformed into bone-like apatite after 1 h soaking in phosphate buffered saline solution. Human osteoblast-like cell culture showed that the ACP/PLLA composite had better cell adhesion and alkaline phosphotase activity than pure PLLA. This study demonstrates that the ACP/PLLA composite can enhance cytocompatibility and could act as a promising scaffold for bone tissue engineering.

  2. From porous gold nanocups to porous nanospheres and solid particles--a new synthetic approach.

    PubMed

    Ihsan, Ayesha; Katsiev, Habib; Alyami, Noktan; Anjum, Dalaver H; Khan, Waheed S; Hussain, Irshad

    2015-05-15

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4⋅3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  3. Magnetic and porous nanospheres from ultrasonic spray pyrolysis.

    PubMed

    Suh, Won Hyuk; Suslick, Kenneth S

    2005-08-31

    We have used an inexpensive high-frequency ultrasound generator from a household humidifier to create a useful source for ultrasonic spray pyrolysis and produced submicrometer silica particles that are porous on the nanometer scale. By using two heated zones, we first initiate polymerization of organic monomers in the presence of silica colloid, which creates in situ a composite of silica with an organic polymer, followed by a second heating to pyrolyze and remove the polymer. The morphology and surface area of the final porous silica are controlled by varying the silica-to-organic monomer ratio. In a single flow process, ferromagnetic cobalt nanoparticles can be easily encapsulated in the porous silica, and the resulting nanospheres are extremely resistant to air oxidation. Products were characterized by SEM, (S)TEM, EDS, XPS, and SQUID.

  4. Synthesis of poly(3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film

    NASA Astrophysics Data System (ADS)

    Abid, S.; Raza, Z. A.; Rehman, A.

    2016-10-01

    Polymeric nanostructures have gained importance in medical science as drug delivery carriers due to their biocompatibility and biodegradability. Polyhydroxybutyrate (PHB) is one of the natural biodegradable polymers used to deliver drugs in the form of nano/microcapsules. In this study, solvent evaporation method has been used for the synthesis of PHB nanospheres using poly(vinyl) alcohol (PVA) both as emulsifier and stabilizer. The produced PHB nanospheres were analyzed using dynamic light scattering and scanning electron microscopy. The size of nanospheres decreased whereas the zeta potential increased on increasing the concentration of emulsifier. The PHB nanospheres were then deposited into porous thin film on a glass surface and characterized against bulk PHB film by using atomic force microscopy, contact angle measurement and x-ray diffraction.

  5. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis.

    PubMed

    Wang, Chengwei; Wang, Yuan; Graser, Jake; Zhao, Ran; Gao, Fei; O'Connell, Michael J

    2013-12-23

    A facile and scalable solution-based, spray pyrolysis synthesis technique was used to synthesize individual carbon nanospheres with specific surface area (SSA) up to 1106 m(2)/g using a novel metal-salt catalyzed reaction. The carbon nanosphere diameters were tunable from 10 nm to several micrometers by varying the precursor concentrations. Solid, hollow, and porous carbon nanospheres were achieved by simply varying the ratio of catalyst and carbon source without using any templates. These hollow carbon nanospheres showed adsorption of to 300 mg of dye per gram of carbon, which is more than 15 times higher than that observed for conventional carbon black particles. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed, with no capacitance loss after 20,000 cycles.

  6. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  7. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  8. Facile synthesis of PdSx/C porous nanospheres and their applications for ethanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Fuhua; Ma, Xuemei; Zheng, Yiqun; Hou, Shifeng

    2016-12-01

    We report a facile approach for the synthesis of carbon-supported palladium polysulphide porous nanospheres (PdSx/C) and their applications for ethanol oxidation reaction. Typical synthesis started with generation of palladium/poly (3,4-ethylenedioxythiophene)(Pd/PEDOT) nanospheres, followed by a calcination process at an optimized temperature to form PdSx/C, with an average size of 2.47 ± 0.60 and 50 nm of PdSx nanoparticles and carbon porous nanospheres, respectively. Various techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were performed to characterize their morphologies, compositions and structures. In contrary to most Pd-based electrochemical catalysts that could be easily poised with trace sulfur during the catalytic oxidation process, the as-prepared PdSx/C porous nanospheres exhibited high electrocatalytic activities and stabilities for the electrochemical catalytic oxidation of ethanol in alkaline medium. In particular, the forward peak current intensity achieved 162.1 mA mg-1 and still maintained at 46.7 mA mg-1 even after 1000 cycles. This current work not only offers a novel type of fuel-cell catalyst for ethanol oxidation reaction, but also provides a possible route for solving the sulfur-poisoning problem in catalysis.

  9. Size-tunable fabrication of multifunctional Bi2O3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis.

    PubMed

    Qin, Fan; Zhao, Huiping; Li, Guangfang; Yang, Hao; Li, Ju; Wang, Runming; Liu, Yunling; Hu, Juncheng; Sun, Hongzhe; Chen, Rong

    2014-05-21

    Multifunctional Bi2O3 porous nanospheres (PNs) with tunable size have been successfully synthesized via a facile solvothermal method. The obtained Bi2O3 porous nanospheres demonstrate outstanding performance in visible-light-driven photocatalysis for Cr(VI) and organic dye removal, inactivation of Gram-negative and Gram-positive bacteria, as well as template-synthesis for fabrication of bismuth-related hollow nanostructures.

  10. Large-deformation and high-strength amorphous porous carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  11. Large-deformation and high-strength amorphous porous carbon nanospheres

    PubMed Central

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-01-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation. PMID:27072412

  12. Facile synthesis of fluorescent porous zinc sulfide nanospheres and their application for potential drug delivery and live cell imaging

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Liu, Shanhu

    2012-05-01

    Fabrication of intrinsically fluorescent porous nanocarriers that are simultaneously stable in aqueous solutions and photostable is critical for their application in drug delivery and optical imaging but remains a challenge. In this study, fluorescent porous zinc sulfide nanospheres were synthesized by a facile gum arabic-assisted hydrothermal procedure. The morphology, composition and properties of the nanospheres have been characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, N2 adsorption-desorption analysis, thermal gravimetric analysis, fourier transform infrared spectrograph, optical measurement, dynamic light scattering, and cytotoxicity assay. They exhibit larger surface area, excellent colloidal stability, photostable fluorescent signals, and good biocompatibility, which makes them promising hosts for drug delivery and cellular imaging. The fluorescent dye safranine-T was employed as a drug model and loaded into the porous nanospheres, which were delivered to human cervical cancer HeLa cells in vitro for live cell imaging.Fabrication of intrinsically fluorescent porous nanocarriers that are simultaneously stable in aqueous solutions and photostable is critical for their application in drug delivery and optical imaging but remains a challenge. In this study, fluorescent porous zinc sulfide nanospheres were synthesized by a facile gum arabic-assisted hydrothermal procedure. The morphology, composition and properties of the nanospheres have been characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, N2 adsorption-desorption analysis, thermal gravimetric analysis, fourier transform infrared spectrograph, optical measurement, dynamic light scattering, and cytotoxicity assay. They exhibit larger surface area, excellent colloidal stability, photostable fluorescent signals, and good biocompatibility, which makes them promising

  13. Synthesis of porous CuO-CeO2 nanospheres with an enhanced low-temperature COoxidation activity

    NASA Astrophysics Data System (ADS)

    Qin, Jinwen; Lu, Junfeng; Cao, Minhua; Hu, Changwen

    2010-12-01

    CuO-CeO2 nanospheres with a porous structure were synthesized by an improved urea method involving first hydrothermal treatment to get Ce-Cu binary precursor and then the calcination of the precursor. The CuO-CeO2 nanospheres consist of spherical particles with diameters in the range of 300-400 nm. These nanospheres are actually composed of nanoparticles of ca. 10 nm, resulting in the formation of a mesoporous structure. Compared with conventional urea method, in which Ce-Cu binary precursor is commonly achieved in an oil bath at appropriate temperature, the Ce-Cu binary precursor obtained via the hydrothermal process could be more highly homogeneous and more highly interdispersed CuO-CeO2 thus was formed. In addition, the resulted porous CuO-CeO2catalyst has a lower COoxidation temperature of as low as 71 °C

  14. Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Guo, Zheng; Seol, Myeong-Lok; Kim, Moon-Seok; Ahn, Jae-Hyuk; Choi, Yang-Kyu; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-11-01

    Hollow CuO nanospheres have been prepared via a reduction reaction of copper ions on porous Si nanowires combined with calcination in air and uniformly anchored on their surfaces. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize and analyze as-synthesized samples. The results reveal that Si nanowires fabricated from heavily doped Si wafer are formed with a meso-porous structure by an Ag-assisted etching approach, and Cu nanoparticles are formed and uniformly decorated on the Si nanowires through a reaction of copper ions reduced by silicon. After annealing in air, Cu nanoparticles are in situ oxidized and transformed into CuO, leading to the formation of hollow nanospheres because of the Kirkendall effect. The diameter size of as-prepared CuO hollow spheres anchored on porous Si nanowires is mainly around 30 nm. Finally, in order to illuminate the advantages of this novel hybrid nanostructure of nanosized hollow spheres supported on porous nanowires, its electrochemical sensing performance to hydrazine as an example has been further investigated. The results confirm that it is a good potential application to detect hydrazine.Hollow CuO nanospheres have been prepared via a reduction reaction of copper ions on porous Si nanowires combined with calcination in air and uniformly anchored on their surfaces. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize and analyze as-synthesized samples. The results reveal that Si nanowires fabricated from heavily doped Si wafer are formed with a meso-porous structure by an Ag-assisted etching approach, and Cu nanoparticles are formed and uniformly decorated on the Si nanowires through a reaction of copper ions reduced by silicon. After annealing in air, Cu nanoparticles are in situ oxidized and transformed into CuO, leading to the

  15. Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors.

    PubMed

    Guo, Zheng; Seol, Myeong-Lok; Kim, Moon-Seok; Ahn, Jae-Hyuk; Choi, Yang-Kyu; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-12-07

    Hollow CuO nanospheres have been prepared via a reduction reaction of copper ions on porous Si nanowires combined with calcination in air and uniformly anchored on their surfaces. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize and analyze as-synthesized samples. The results reveal that Si nanowires fabricated from heavily doped Si wafer are formed with a meso-porous structure by an Ag-assisted etching approach, and Cu nanoparticles are formed and uniformly decorated on the Si nanowires through a reaction of copper ions reduced by silicon. After annealing in air, Cu nanoparticles are in situ oxidized and transformed into CuO, leading to the formation of hollow nanospheres because of the Kirkendall effect. The diameter size of as-prepared CuO hollow spheres anchored on porous Si nanowires is mainly around 30 nm. Finally, in order to illuminate the advantages of this novel hybrid nanostructure of nanosized hollow spheres supported on porous nanowires, its electrochemical sensing performance to hydrazine as an example has been further investigated. The results confirm that it is a good potential application to detect hydrazine.

  16. Facile synthesis of porous Pt-Pd nanospheres supported on reduced graphene oxide nanosheets for enhanced methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Li, Shan-Shan; Lv, Jing-Jing; Hu, Yuan-Yuan; Zheng, Jie-Ning; Chen, Jian-Rong; Wang, Ai-Jun; Feng, Jiu-Ju

    2014-02-01

    In this study, a simple, facile, and effective wet-chemical strategy was developed in the synthesis of uniform porous Pt-Pd nanospheres (Pt-Pd NSs) supported on reduced graphene oxide nanosheets (RGOs) under ambient temperature, where octylphenoxypolye thoxyethanol (NP-40) is used as a soft template, without any seed, organic solvent or special instruments. The as-prepared nanocomposites display enhanced electrocatalytic activity and good stability toward methanol oxidation, compared with commercial Pd/C and Pt/C catalysts. This strategy may open a new route to design and prepare advanced electrocatalysts for fuel cells.

  17. Porous ZnMn2O4 nanospheres: Facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoqiao; Zhang, Yuanming; Lin, Haibin; Xia, Pan; Cai, Xia; Li, Xiaogang; Li, Xiaoping; Li, Weishan

    2016-04-01

    Porous ZnMn2O4 nanospheres are synthesized through a facile microemulsion method. Crystal structure, morphology and electrochemical performance of the product as anode of lithium ion battery were investigated with FESEM, TEM, HRTEM, BET, XPS, XRD, CV, EIS, and charge/discharge test, with a comparison of ZnMn2O4 microparticle synthesized by sol-gel method. It is found that the microemulsion can effectively control particle size and morphology of the precursor and thus porous ZnMn2O4 nanospheres consisting of smaller primary nanoparticles can be successfully obtained, which exhibit far better rate capability and cyclic stability than ZnMn2O4 microparticles. The porous ZnMn2O4 nanospheres deliver a reversible capacity of 300 mAh g-1 at 6000 mA g-1 and yield a capacity retention of 91% after 120 cycles at 200 mA g-1, compared to the 20 mAh g-1 and 0% of ZnMn2O4 microparticles, respectively. The space in the porous structure of ZnMn2O4 nanospheres buffers the mechanical strain induced by the volume change during cycling, which causes destruction of ZnMn2O4 microparticle, resulting in the excellent cyclic stability. Moreover, the primary nanoparticles in ZnMn2O4 nanospheres reduce the path of lithium ion transportation and increase reaction sites for lithium intercalation/deintercalation, leading to the better rate capability of porous ZnMn2O4 nanospheres than ZnMn2O4 microparticles.

  18. Enhanced arsenic removal from water by hierarchically porous CeO₂-ZrO₂ nanospheres: role of surface- and structure-dependent properties.

    PubMed

    Xu, Weihong; Wang, Jing; Wang, Lei; Sheng, Guoping; Liu, Jinhuai; Yu, Hanqing; Huang, Xing-Jiu

    2013-09-15

    Arsenic contaminated natural water is commonly used as drinking water source in some districts of Asia. To meet the increasingly strict drinking water standards, exploration of efficient arsenic removal methods is highly desired. In this study, hierarchically porous CeO₂-ZrO₂ nanospheres were synthesized, and their suitability as arsenic sorbents was examined. The CeO₂-ZrO₂ hollow nanospheres showed an adsorption capacity of 27.1 and 9.2 mg g(-1) for As(V) and As(III), respectively, at an equilibrium arsenic concentration of 0.01 mg L(-1) (the standard for drinking water) under neutral conditions, indicating a high arsenic removal performance of the adsorbent at low arsenic concentrations. Such a great arsenic adsorption capacity was attributed to the high surface hydroxyl density and presence of hierarchically porous network in the hollow nanospheres. The analysis of Fourier transformed infrared spectra and X-ray photoelectron spectroscopy demonstrated that the adsorption of arsenic on the CeO₂-ZrO₂ nanospheres was completed through the formation of a surface complex by substituting hydroxyl with arsenic species. In addition, the CeO₂-ZrO₂ nanospheres were able to remove over 97% arsenic in real underground water with initial arsenic concentration of 0.376 mg L(-1) to meet the guideline limit of arsenic in drinking water regulated by the World Health Organization without any pre-treatment and/or pH adjustment.

  19. Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaochang; Peng, Hongliang; You, Chenghang; Liu, Fangfang; Zheng, Ruiping; Xu, Dongwei; Li, Xiuhua; Liao, Shijun

    2015-08-01

    Nitrogen, phosphorus and Fe doped carbon nanospheres have been synthesized by a facile method in which polyacrylonitrile nanospheres are pyrolyzed in the presence of diammonium phosphate and iron trichloride hexahydrate. The specific surface area of the catalyst is high up to 771.3 m2 g-1, and it has a hierarchical micro-meso-macroporous structure. In an alkaline medium, the catalyst exhibits high electrocatalytic activity towards the oxygen reduction reaction (ORR) as well as excellent stability and methanol tolerance-superior in each case to commercial Pt/C catalyst. The effects that adding Fe salt and phosphorus on the structure and performance of the catalyst are also investigated. We suggest that the catalyst's excellent electrocatalytic performance may be attributed to: (1) the synergistic effect, which provides more catalytic sites for the ORR, due to the nitrogen and phosphorus co-doping; (2) the strong promotion by trace Fe residues; and (3) the high surface area and excellent mass transport rate arising from the hierarchical porous structure.

  20. Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage.

    PubMed

    Ma, Lianbo; Chen, Renpeng; Hu, Yi; Zhu, Guoyin; Chen, Tao; Lu, Hongling; Liang, Jia; Tie, Zuoxiu; Jin, Zhong; Liu, Jie

    2016-10-20

    To improve the energy storage performance of carbon-based materials, considerable attention has been paid to the design and fabrication of novel carbon architectures with structural and chemical modifications. Herein, we report that hierarchical porous nitrogen-rich carbon (HPNC) nanospheres originating from acidic etching of metal carbide/carbon hybrid nanoarchitectures can be employed as high-performance anode materials for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The structural advantages of HPNC nanospheres are that the exceptionally-high content of nitrogen (17.4 wt%) can provide abundant electroactive sites and enlarge the interlayer distance (∼3.5 Å) to improve the capacity, and the large amount of micropores and mesopores can serve as reservoirs for storing lithium/sodium ions. In LIBs, HPNC based anodes deliver a high reversible capacity of 1187 mA h g(-1) after 100 cycles at 100 mA g(-1), a great rate performance of 470 mA h g(-1) at 5000 mA g(-1), and outstanding cycling stabilities with a capacity of 788 mA h g(-1) after 500 cycles at 1000 mA g(-1). In SIBs, HPNC based anodes exhibit a remarkable reversible capacity of 357 mA h g(-1) at 100 mA g(-1) and high long-term stability with a capacity of 136 mA h g(-1) after 500 cycles at 1000 mA g(-1).

  1. Porous fluorinated SnO(2) hollow nanospheres: transformative self-assembly and photocatalytic inactivation of bacteria.

    PubMed

    Liu, Shengwei; Huang, Guocheng; Yu, Jiaguo; Ng, Tsz Wai; Yip, Ho Yin; Wong, Po Keung

    2014-02-26

    Highly porous surface fluorinated SnO2 hollow nanospheres (SnO2(F) HNS) were produced in high yield by a hydrothermal treatment of stannous fluoride in the presence of hydrogen peroxide. Two important processes in terms of oriented self-assembly and in situ self-transformation were highlighted for the formation of as-prepared SnO2(F) HNS, which were largely relying on the directing effects of selected specific chemical species in the present synthesis system. Significantly, these SnO2(F) HNS showed considerable activity in photocatalytic inactivation of a surface negatively charged bacterium, Escherichia coli K-12, in aqueous saline solution. The dominant reactive species involved in the inactivation process were also identified.

  2. Fabrication of the Flexible Highly Ordered Porous Alumina Templates by the Combined Nanosphere Lithography and Anodization.

    PubMed

    Krupinski, Michal; Perzanowski, Marcin; Maximenko, Alexey; Zabila, Yevhen; Marszalek, Marta

    2017-03-23

    In this work, we propose a new method for a large-scale production of flexible, periodic alumina arrays with well-ordered pores. We show the incorporation of pre-patterning based on a polystyrene (PS) nanosphere lithography into aluminium anodization process. We prepared ordered monolayers of PS spheres with average diameters of (510 ± 10) nm, and (430 ± 10) nm on a large area (1.5 x 1.5 cm2) of the Si substrate. Next, we deposited the 5 μm aluminium layer on arrays of PS nanospheres using the sputtering technique. After the deposition, we covered the aluminium film with a polymer Scotch adhesive tape, and separated it from silicon substrate by ultrasonic-assisted lift-off. Finally, we performed anodization of aluminium. We compared the pore and cell sizes, and the pore distance for templates obtained by this technique with reference templates prepared by a two-step anodization process. Using the new approach we obtained highly ordered hexagonal 2D lattices over a large area up to 2 cm2 with sparse defects, on average not more than four defects per 1000 μm2. Here, we show that the use of indentation techniques is not necessary and can be replaced by fast, cheap, and easy pre-patterning step based on nanosphere lithography.

  3. Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electro-catalytic oxidation of methanol

    NASA Astrophysics Data System (ADS)

    Gu, Li; Qian, Lei; Lei, Ying; Wang, Yanyan; Li, Jing; Yuan, Hongyan; Xiao, Dan

    2014-09-01

    A fast microwave-assisted synthesis method followed by a post-calcining process is used to prepare three-dimensional (3D) nanosphere-like NiCo2O4 nanostructure. The 3D NiCo2O4 nanospheres are constructed by intertwined two-dimensional (2D) ultrathin mesoporous nanosheets. The nanosphere-like NiCo2O4 has a large specific surface area (SSA, 146.5 m2 g-1) and is successfully applied to electro-catalytic oxidation of methanol. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurements are used to investigate electro-catalytic performance of the as-prepared NiCo2O4. The current density of NiCo2O4/Ni foam (NiCo2O4/NF) electrode in 1 M KOH with 0.5 M methanol is up to 40.9 A g-1. And the current density can be returned to 97% of the original value by replacing new 1 M KOH electrolyte with 0.5 M methanol after a long-term CV cycle (500 cycles). These results show that our prepared NiCo2O4 possesses high electro-catalytic activity and good long-term stability for methanol oxidation. This may be benefit from the unique porous nanosphere-like structure and large SSA.

  4. Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Cao, Yang; Chen, Yong; Peng, Juan; Lai, Xiaoyong; Tu, Jinchun

    2017-02-01

    In this paper, we report the fast synthesis of porous NiCo2O4 hollow nanospheres via a polycrystalline Cu2O-templated route based on the elaborately designed "coordinating etching and precipitating" process. The composition and morphology of the porous NiCo2O4 hollow nanospheres were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electron-transfer capability and electrocatalytic activity of the materials were investigated by electrochemical impedance spectroscopy and cyclic voltammetry. NiCo2O4 was endowed with superior electron-transfer capability, large surface area, and abundant intrinsic redox couples of Ni2+/Ni3+ and Co2+/Co3+ ions; thus, the modified electrode exhibited excellent glucose-sensing properties, with a high sensitivity of 1917 μA·mM-1·cm-2 at a low concentration, a good linear range from 0.01 mM to 0.30 mM and from 0.30 mM to 2.24 mM, and a low detection limit of 0.6 μM (S/N = 3).

  5. Synthesis and magnetic properties of hollow α-Fe 2O 3 nanospheres templated by carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Sun, Lingna; Cao, Minhua; Hu, Changwen

    2010-12-01

    Hollow α-Fe 2O 3 nanospheres were synthesized by using novel carbon spheres as templates. By carefully controlling the fundamental experimental parameters, porous nanospheres with diameters of 60-80 nm and nanojujubes with diameters of 80-100 nm have been efficiently obtained, respectively. The growth mechanism and magnetic properties are also discussed in detail. The coercivity values of the hollow α-Fe 2O 3 nanospheres and nanojujubes are much higher than those of other α-Fe 2O 3 nanomaterials. Due to the unique morphology with cavum and porous wall, the ferromagnetic nanospheres could be promising candidates as a magnetic carrier for drug targeting.

  6. Development of an ACP facility

    SciTech Connect

    Gil-Sung You; Won-Myung Choung; Jeong-Hoe Ku; il-Je Cho; Dong-Hak Kook; Kie-Chan Kwon; Eun-Pyo Lee; Ji-Sup Yoon; Seong-Won Park; Won-Kyung Lee

    2007-07-01

    KAERI has been developing an advanced spent fuel conditioning process (ACP). The ACP facility for a process demonstration consists of two air-sealed type hot cells. The safety analysis results showed that the facility was designed safely. The relevant integrated performance tests were also carried out successfully. (authors)

  7. Layer-by-layer functionalized porous Zinc sulfide nanospheres-based solid-phase extraction combined with liquid chromatography time-of-flight/mass and gas chromatography-mass spectrometry for the specific enrichment and identification of alkaloids from Crinum asiaticum var. sinicum.

    PubMed

    Zhu, Dong; Miao, Zhao Yi; Yang, Rui Xiang; Wen, Hong Mei; Li, Wei; Chen, Jun; Kang, An; Shan, Chen-Xiao; Yu, Sheng; Hu, Yue

    2016-08-17

    The current widely utilized polymer or C8, C18 end-capped material-based sorbents for solid-phase extraction could not capture alkaloids well only based on "like dissolves like" principle. In this paper, a layer-by-layer functionalized porous Zinc sulfide nanospheres-based solid-phase extraction (SPE) combined with liquid chromatography time-of-flight/mass spectrometry (LC-TOF/MS) and gas chromatography-mass spectrometry (GC-MS) was developed for the specific enrichment and identification of alkaloids from complex matrixes, Crinum asiaticum var. sinicum crude extracts. The functionalized porous Zinc sulfide nanospheres were prepared by the amidation reaction of poly-(acrylic acid) (PAA) homopolymer with amino groups onto the porous ZnS nanospheres. Tandem LC-TOF/MS spectrometry presented that the almost all of the twenty-three main peaks in elution fraction from the SPE could be inferred as alkaloids with ion of mass according to the nitrogen rule and hit formula with Peak View1.2@software from AB SCIEX, and seven alkaloids including two new found chemical entities were directly identified from their GC-MS spectra and retention indices. We believe that this SPE protocol can also be utilized in the future to selectively enrich alkaloids from extracts of other plant species.

  8. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  9. Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template.

    PubMed

    Fukasawa, Yuki; Takanabe, Kazuhiro; Shimojima, Atsushi; Antonietti, Markus; Domen, Kazunari; Okubo, Tatsuya

    2011-01-03

    Uniform-sized silica nanospheres (SNSs) assembled into close-packed structures were used as a primary template for ordered porous graphitic carbon nitride (g-C(3)N(4)), which was subsequently used as a hard template to generate regularly arranged Ta(3)N(5) nanoparticles of well-controlled size. Inverse opal g-C(3)N(4) structures with the uniform pore size of 20-80 nm were synthesized by polymerization of cyanamide and subsequent dissolution of the SNSs with an aqueous HF solution. Back-filling of the C(3)N(4) pores with tantalum precursors, followed by nitridation in an NH(3) flow gave regularly arranged, crystalline Ta(3)N(5) nanoparticles that are connected with each other. The surface areas of the Ta(3)N(5) samples were as high as 60 m(2) g(-1), and their particle size was tunable from 20 to 80 nm, which reflects the pore size of g-C(3)N(4). Polycrystalline hollow nanoparticles of Ta(3)N(5) were also obtained by infiltration of a reduced amount of the tantalum source into the g-C(3)N(4) template. An improved photocatalytic activity for H(2) evolution on the assembly of the Ta(3)N(5) nanoparticles under visible-light irradiation was attained as compared with that on a conventional Ta(3)N(5) bulk material with low surface area.

  10. Facile fabrication of mesoporous ZnO nanospheres for the controlled delivery of captopril

    NASA Astrophysics Data System (ADS)

    Bakrudeen, Haja Bava; Tsibouklis, John; Reddy, Boreddy S. R.

    2013-03-01

    In the present study, to formulate captopril in a hierarchical porous structure of ZnO nanospheres by means of the soluble-starch-insertion method, state of drug carrier delivery toward oral route and the mode of delivery in suitable medium. Mesoporous ZnO nanospheres were synthesized by simple soluble-starch-insertion method, followed by loading of captopril using ultrasonic force. The materials were characterized by PXRD, SEM, FESEM, TEM, TGA, FT-IR, and BET analyses, and biocompatibility studies. Captopril-loaded porous ZnO nanospheres were evaluated as in vitro drug-release studies and its kinetic models. Crystallite plane arrangement, functional groups, materials morphology, and porosity of porous ZnO nanospheres were confirmed. Larger surface area and distribution in constrained pores on its surface make the nanospheres suitable for high drug loading of captopril. The ZnO nanocrystallites have given porous properties on the spherical surface leads to the drug adsorption. The loading and release studies (in vitro in simulated gastric and intestinal fluids) have shown that both were affected by the mesoporous nanospheres' surface properties of the ZnO materials and its biocompatibility has also been proved. Therefore, the in vitro experiments have indicated the considerable promise of mesoporous ZnO nanospheres, fabricated by the soluble-starch-insertion method acting as a biocompatible carrier for the controlled delivery of captopril in oral route of administration.

  11. Highly Monodisperse Microporous Polymeric and Carbonaceous Nanospheres with Multifunctional Properties

    PubMed Central

    Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai

    2013-01-01

    Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487

  12. 26 CFR 1.401(m)-2 - ACP test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false ACP test. 1.401(m)-2 Section 1.401(m)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-2 ACP test. (a) Actual contribution percentage (ACP) test—(1) In general—(i) ACP test formula. A plan satisfies the ACP test for...

  13. Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojian; Li, Wei

    2016-06-01

    Bioactive inorganic materials are attractive for hard tissue regeneration, and they are used as delivery vehicles for pharmaceutical molecules, scaffolds and components for bio-composites. We demonstrated mesoporous bioactive glass (BG) nanospheres that exhibited the capacity to deliver pharmaceutical molecules. Mesoporous BG nanospheres with variable Ca to Si ratios were synthesized using sol-gel chemistry. By controlling the hydrolysis and condensation conditions, the diameter of the mesoporous BG nanospheres was changed from 300 nm to 1500 nm. The porous structure and surface area of the BG nanospheres were shown to be dependent on their composition. The surface area of the BG nanospheres decreased from 400 ± 2 m2 g-1 to 56 ± 0.1 m2 g-1 when the Ca/Si ratio increased from 5 to 50 at.%. When the mesoporous BG nanospheres were loaded with ibuprofen (IBU), they exhibited a sustained release profile in simulated body fluid (SBF). In the meantime, the IBU-loaded BG nanospheres degraded in SBF, and induced apatite layer formation on the surface as a result of their good bioactivity. When the BG nanospheres were used as a composite filler to poly (ɛ-caprolactone) (PCL), they were shown to be effective at improving the in vitro bioactivity of PCL microspheres.

  14. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM... General § 701.44 Agricultural Conservation Program (ACP) contracts. Contracts for ACP that are, or...

  15. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM... General § 701.44 Agricultural Conservation Program (ACP) contracts. Contracts for ACP that are, or...

  16. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM... General § 701.44 Agricultural Conservation Program (ACP) contracts. Contracts for ACP that are, or...

  17. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM... General § 701.44 Agricultural Conservation Program (ACP) contracts. Contracts for ACP that are, or...

  18. MnO{sub 2}-wrapped hollow graphitized carbon nanosphere electrode for supercapacitor

    SciTech Connect

    Lv, Jing; Yang, Xing; Zhou, Haiyan; Kang, Liping; Lei, Zhibin; Liu, Zong-Huai

    2016-01-15

    Highlights: • MnO{sub 2}/HGC nanospheres are prepared by a cooperative template wrapping method. • MnO{sub 2}/HGC nanospheres possess large specific surface area. • MnO{sub 2}/HGC nanospheres are benefit for transmission of ions and electrons. • MnO{sub 2}/HGC electrodes exhibit a high specific capacitance. - Abstract: MnO{sub 2}-wrapped hollow graphitized carbon nanospheres (MnO{sub 2}/HGC) electrodes are prepared by a cooperative template wrapping method. hollow Graphitized carbon nanospheres (HGC) are firstly obtained by carbonizing phenolic resin followed by etching the SiO{sub 2} template, then the MnO{sub 2} ultrathin nanoplates are coated on the surfaces of the HGC nanospheres through a redox reaction between KMnO{sub 4} and HGC nanospheres. The as-prepared MnO{sub 2}/HGC hollow nanospheres possess porous structure and large specific surface area (∼230 m{sup 2} g{sup −1}). The specific capacitances of MnO{sub 2}/HGC nanosphere electrodes with different mass ratios of MnO{sub 2} to HGC are about 340–380 F g{sup −1} at a scan rate of 5 mV s{sup −1} in Na{sub 2}SO{sub 4} solution, and shows relative good cycling performance of the initial capacitance after 1000 cycles. The good specific capacitance is ascribed to the novel hollow nanosphere structure, which possesses high surface-to-volume ratio, and makes it easy for the mass diffusion of electrolyte and transmission of ions and electrons and also maintains the mechanical integrality.

  19. Nanospheric Chemotherapeutic and Chemoprotective Agents

    DTIC Science & Technology

    2008-09-01

    targeting the drug-nanosphere complex to diseased cells, thereby minimizing unwanted effects on healthy cells. This report describes the optimization of...military and civilian requirements for effective breast cancer chemotherapy : nontoxic administration, increased bioavailability, prolonged circulation...provide highly effective delivery of hydrophobic paclitaxel to human tumor cells in vitro; (b) tyrosine-derived nanospheres exhibit no toxicity as

  20. Microfluidic preparation of polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Kucuk, Israfil; Edirisinghe, Mohan

    2014-12-01

    In this work, solid polymer nanospheres with their surface tailored for drug adhesion were prepared using a V-shaped microfluidic junction. The biocompatible polymer solutions were infused using two channels of the microfluidic junction which was also simultaneously fed with a volatile liquid, perfluorohexane using the other channel. The mechanism by which the nanospheres are generated is explained using high speed camera imaging. The polymer concentration (5-50 wt%) and flow rates of the feeds (50-300 µl min-1) were important parameters in controlling the nanosphere diameter. The diameter of the polymer nanospheres was found to be in the range of 80-920 nm with a polydispersity index of 11-19 %. The interior structure and surfaces of the nanospheres prepared were studied using advanced microscopy and showed the presence of fine pores and cracks on surface which can be used as drug entrapment locations.

  1. Dissecting Amelogenin Protein Nanospheres

    PubMed Central

    Bromley, Keith M.; Kiss, Andrew S.; Lokappa, Sowmya Bekshe; Lakshminarayanan, Rajamani; Fan, Daming; Ndao, Moise; Evans, John Spencer; Moradian-Oldak, Janet

    2011-01-01

    Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp161, Trp45, and Trp25) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (RH) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg·ml−1. We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp161) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp25 and Trp45 is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite. PMID:21840988

  2. 26 CFR 1.401(m)-2 - ACP test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false ACP test. 1.401(m)-2 Section 1.401(m)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-2 ACP test. (a) Actual... under paragraph (a)(1) of this section either— (A) Pursuant to section 401(m)(5)(C), the ACP test...

  3. A facile hydrothermal synthesis, characterization and magnetic properties of mesoporous CoFe2O4 nanospheres

    NASA Astrophysics Data System (ADS)

    Reddy, M. Penchal; Mohamed, A. M. A.; Zhou, X. B.; Du, S.; Huang, Q.

    2015-08-01

    Mesoporous CoFe2O4 nanospheres with an average size of 180 nm were fabricated via a facile hydrothermal process using ethylene glycol as solvent and sodium acetate (NaAc) as electrostatic stabilizer. In this method, ethylene glycol plays a vital role in the formation of cobalt nanoospheres as a solvent and reducing agent. The structure and morphology of the prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nanospheres exhibited ferromagnetic properties with high saturation magnetization value of about 60.19 emu/g at room temperature. The BET surface area of the nanospheres was determined using the nitrogen absorption method. The porous CoFe2O4 nanospheres displayed good magnetic properties, which may provide a very promising candidate for their applications in target drug delivery.

  4. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  5. Shewanella oneidensis FabB: A β-ketoacyl-ACP Synthase That Works with C16:1-ACP.

    PubMed

    Luo, Qixia; Li, Meng; Fu, Huihui; Meng, Qiu; Gao, Haichun

    2016-01-01

    It is established that Escherichia coli β-ketoacyl-ACP synthase (KAS) I (encoded by EcfabB) is the primary, if not exclusive, factor for elongation of the cis-3-decenoyl-ACP (C10:1-ACP) but not effective with C16:1- or longer-chain-ACPs. To test the extent to which these features apply to KAS I proteins in other species, in this study, we examined the physiological role of FabB in Shewanella oneidensis, an excellent model for researching type II fatty acid synthetic (FAS) system and its regulation. We showed that the loss of either FabA (the enzyme that introduces double bond) or FabB, in the absence of DesA which desaturizes C16 and C18 to generate respective C16:1 and C18:1, leads to a UFA auxotroph. However, fatty acid profiles of membrane phospholipid of the fabA and fabB mutants are significantly different, suggesting that FabB participates in steps beyond elongation of C10:1-ACP. Further analyses demonstrated that S. oneidensis FabB differs from EcFabB in that (i) it is not the only enzyme capable of catalyzing elongation of the cis-3-decenoyl-ACP produced by FabA, (ii) it plays a critical role in elongation of C16:1- and longer-chain-ACPs, and (iii) its overproduction is detrimental.

  6. The ACP (Advanced Computer Program) Branch bus and real-time applications of the ACP multiprocessor system

    SciTech Connect

    Hance, R.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Fischler, M.; Gaines, I.; Husby, D.; Nash, T.; Zmuda, T.

    1987-05-08

    The ACP Branchbus, a high speed differential bus for data movement in multiprocessing and data acquisition environments, is described. This bus was designed as the central bus in the ACP multiprocessing system. In its full implementation with 16 branches and a bus switch, it will handle data rates of 160 MByte/sec and allow reliable data transmission over inter rack distances. We also summarize applications of the ACP system in experimental data acquisition, triggering and monitoring, with special attention paid to FASTBUS environments.

  7. The Interactions of CPP–ACP with Saliva

    PubMed Central

    Huq, Noorjahan Laila; Myroforidis, Helen; Cross, Keith J.; Stanton, David P.; Veith, Paul D.; Ward, Brent R.; Reynolds, Eric C.

    2016-01-01

    The repair of early dental caries lesions has been demonstrated by the application of the remineralisation technology based on casein phosphopeptide-stabilised amorphous calcium phosphate complexes (CPP–ACP). These complexes consist of an amorphous calcium phosphate mineral phase stabilised and encapsulated by the self-assembly of milk-derived phosphopeptides. During topical application of CPP–ACP complexes in the oral cavity, the CPP encounters the enamel pellicle consisting of salivary proteins and peptides. However the interactions of the CPP with the enamel salivary pellicle are not known. The studies presented here reveal that the predominant peptides of CPP–ACP complexes do interact with specific salivary proteins and peptides of the enamel pellicle, and provide a mechanism by which the CPP–ACP complexes are localised at the tooth surface to promote remineralisation. PMID:27294918

  8. Hollow Carbon Nanospheres with Tunable Hierarchical Pores for Drug, Gene, and Photothermal Synergistic Treatment.

    PubMed

    Du, Xin; Zhao, Caixia; Zhou, Mengyun; Ma, Tianyi; Huang, Hongwei; Jaroniec, Mietek; Zhang, Xueji; Qiao, Shi-Zhang

    2017-02-01

    Design and synthesis of porous and hollow carbon spheres have attracted considerable interest in the past decade due to their superior physicochemical properties and widespread applications. However, it is still a big challenge to achieve controllable synthesis of hollow carbon nanospheres with center-radial large mesopores in the shells and inner surface roughness. Herein, porous hollow carbon nanospheres (PHCNs) are successfully synthesized with tunable center-radial mesopore channels in the shells and crater-like inner surfaces by employing dendrimer-like mesoporous silica nanospheres (DMSNs) as hard templates. Compared with conventional mesoporous nanospheres, DMSN templates not only result in the formation of center-radial large mesopores in the shells, but also produce a crater-like inner surface. PHCNs can be tuned from open center-radial mesoporous shells to relatively closed microporous shells. After functionalization with polyethyleneimine (PEI) and poly(ethylene glycol) (PEG), PHCNs not only have negligible cytotoxicity, excellent photothermal property, and high coloading capacity of 482 µg of doxorubicin and 44 µg of siRNA per mg, but can also efficiently deliver these substances into cells, thus displaying enhanced cancer cell killing capacity by triple-combination therapy.

  9. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions

    PubMed Central

    Beld, Joris; Blatti, Jillian L.; Behnke, Craig; Mendez, Michael; Burkart, Michael D.

    2014-01-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes. PMID:25110394

  10. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed Central

    Jones, A; Davies, H M; Voelker, T A

    1995-01-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase. PMID:7734968

  11. Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor.

    PubMed

    Wu, Jingjing; Zhang, Mingzhi; Liu, Delong

    2016-03-09

    More and more targeted agents become available for B cell malignancies with increasing precision and potency. The first-in-class Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been in clinical use for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. More selective BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292) are being explored. Acalabrutinib (ACP-196) is a novel irreversible second-generation BTK inhibitor that was shown to be more potent and selective than ibrutinib. This review summarized the preclinical research and clinical data of acalabrutinib.

  12. Porous TiO2 Assembled from Monodispersed Nanoparticles.

    PubMed

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-12-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending on the further treating temperature. Porous TiO2 nanospheres exhibited enhanced photocatalysis activity compared to the nanoparticles.

  13. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM AND CERTAIN RELATED PROGRAMS PREVIOUSLY ADMINISTERED UNDER THIS PART § 701.44 Agricultural...

  14. Characterization of a Pseudomonas aeruginosa Fatty Acid Biosynthetic Gene Cluster: Purification of Acyl Carrier Protein (ACP) and Malonyl-Coenzyme A:ACP Transacylase (FabD)

    PubMed Central

    Kutchma, Alecksandr J.; Hoang, Tung T.; Schweizer, Herbert P.

    1999-01-01

    A DNA fragment containing the Pseudomonas aeruginosa fabD (encoding malonyl-coenzyme A [CoA]:acyl carrier protein [ACP] transacylase), fabG (encoding β-ketoacyl-ACP reductase), acpP (encoding ACP), and fabF (encoding β-ketoacyl-ACP synthase II) genes was cloned and sequenced. This fab gene cluster is delimited by the plsX (encoding a poorly understood enzyme of phospholipid metabolism) and pabC (encoding 4-amino-4-deoxychorismate lyase) genes; the fabF and pabC genes seem to be translationally coupled. The fabH gene (encoding β-ketoacyl-ACP synthase III), which in most gram-negative bacteria is located between plsX and fabD, is absent from this gene cluster. A chromosomal temperature-sensitive fabD mutant was obtained by site-directed mutagenesis that resulted in a W258Q change. A chromosomal fabF insertion mutant was generated, and the resulting mutant strain contained substantially reduced levels of cis-vaccenic acid. Multiple attempts aimed at disruption of the chromosomal fabG gene were unsuccessful. We purified FabD as a hexahistidine fusion protein (H6-FabD) and ACP in its native form via an ACP-intein-chitin binding domain fusion protein, using a novel expression and purification scheme that should be applicable to ACP from other bacteria. Matrix-assisted laser desorption–ionization spectroscopy, native polyacrylamide electrophoresis, and amino-terminal sequencing revealed that (i) most of the purified ACP was properly modified with its 4′-phosphopantetheine functional group, (ii) it was not acylated, and (iii) the amino-terminal methionine was removed. In an in vitro system, purified ACP functioned as acyl acceptor and H6-FabD exhibited malonyl-CoA:ACP transacylase activity. PMID:10464226

  15. Thermodynamics of nanospheres encapsulated in virus capsids.

    PubMed

    Siber, Antonio; Zandi, Roya; Podgornik, Rudolf

    2010-05-01

    We investigate the thermodynamics of complexation of functionalized charged nanospheres with viral proteins. The physics of this problem is governed not only by electrostatic interaction between the proteins and the nanosphere cores (screened by salt ions), but also by configurational degrees of freedom of the charged protein N tails. We approach the problem by constructing an appropriate complexation free-energy functional. On the basis of both numerical and analytical studies of this functional we construct the phase diagram for the assembly which contains the information on the assembled structures that appear in the thermodynamical equilibrium, depending on the size and surface charge density of the nanosphere cores. We show that both the nanosphere core charge and its radius determine the size of the capsid that forms around the core.

  16. Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution.

    PubMed

    Li, Yang; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2017-02-21

    We herein report a monomer-mediated in situ growth strategy for the controllable construction of porous nanospheres with a magnetic core and a tunable COF shell. The composite exhibits high stability and excellent performance for the removal of a typical class of endocrine-disrupting chemicals, bisphenol chemicals, in aqueous solution.

  17. Preliminary calibration of the ACP safeguards neutron counter

    NASA Astrophysics Data System (ADS)

    Lee, T. H.; Kim, H. D.; Yoon, J. S.; Lee, S. Y.; Swinhoe, M.; Menlove, H. O.

    2007-10-01

    The Advanced Spent Fuel Conditioning Process (ACP), a kind of pyroprocess, has been developed at the Korea Atomic Energy Research Institute (KAERI). Since there is no IAEA safeguards criteria for this process, KAERI has developed a neutron coincidence counter to make it possible to perform a material control and accounting (MC&A) for its ACP materials for the purpose of a transparency in the peaceful uses of nuclear materials at KAERI. The test results of the ACP Safeguards Neutron Counter (ASNC) show a satisfactory performance for the Doubles count measurement with a low measurement error for its cylindrical sample cavity. The neutron detection efficiency is about 21% with an error of ±1.32% along the axial direction of the cavity. Using two 252Cf neutron sources, we obtained various parameters for the Singles and Doubles rates for the ASNC. The Singles, Doubles, and Triples rates for a 252Cf point source were obtained by using the MCNPX code and the results for the ft8 cap multiplicity tally option with the values of ɛ, fd, and ft measured with a strong source most closely match the measurement results to within a 1% error. A preliminary calibration curve for the ASNC was generated by using the point model equation relationship between 244Cm and 252Cf and the calibration coefficient for the non-multiplying sample is 2.78×10 5 (Doubles counts/s/g 244Cm). The preliminary calibration curves for the ACP samples were also obtained by using an MCNPX simulation. A neutron multiplication influence on an increase of the Doubles rate for a metal ingot and UO2 powder is clearly observed. These calibration curves will be modified and complemented, when hot calibration samples become available. To verify the validity of this calibration curve, a measurement of spent fuel standards for a known 244Cm mass will be performed in the near future.

  18. Phenylalanine containing hydrophobic nanospheres for antibody purification.

    PubMed

    Türkmen, Deniz; Denizli, Adil; Oztürk, Nevra; Akgöl, Sinan; Elkak, Assem

    2008-01-01

    In this study, novel hydrophobic nanospheres with an average size of 158 nm utilizing N-methacryloyl-(L)-phenylalanine methyl ester (MAPA) as a hydrophobic monomer were produced by surfactant free emulsion polymerization of 2-hydroxyethyl methacrylate (HEMA) and MAPA conducted in an aqueous dispersion medium. MAPA was synthesized using methacryloyl chloride and L-phenylalanine methyl ester. Specific surface area of the nonporous nanospheres was found to be 1874 m2/g. Poly(HEMA-MAPA) nanospheres were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Average particle size, size distribution, and surface charge measurements were also performed. Elemental analysis of MAPA for nitrogen was estimated as 0.42 mmol/g polymer. Then, poly(HEMA-MAPA) nanospheres were used in the adsorption of immunoglobulin G (IgG) in batch system. Higher adsorption values (780 mg/g) were obtained when the poly (HEMA-MAPA) nanospheres were used from both aqueous solutions and human plasma. The adsorption phenomena appeared to follow a typical Langmuir isotherm. It was observed that IgG could be repeatedly adsorbed and desorbed without significant loss in adsorption amount. These findings show considerable promise for this material as a hydrophobic support in industrial processes.

  19. Microscopic reversal behavior of magnetically capped nanospheres

    SciTech Connect

    Guenther, C. M.; Pfau, B.; Eisebitt, S.; Hellwig, O.; Menzel, A.; Radu, F.; Makarov, D.; Albrecht, M.; Goncharov, A.; Schrefl, T.; Schlotter, W. F.; Rick, R.; Luening, J.

    2010-02-01

    The magnetic switching behavior of Co/Pd multilayer-capped nanospheres is investigated by x-ray spectro-holography. Images of the magnetic state of individual nanocaps are recorded as a function of externally applied magnetic field and the angle under which the field is applied, pertaining to magnetic data storage applications with patterned, tilted, and perpendicular storage media. Dispersed nanospheres with different coverage in the submonolayer regime are investigated simultaneously in a multiplexed experiment. In clustered nanosphere arrangements, we find that individual switching events are influenced by dipolar magnetostatic interactions. Micromagnetic simulations of the switching behavior complement the experimental observations, corroborating the influence of thermal activation processes and magnetostatic interactions in this system. Such magnetostatic interactions could lead to undesired cross-talk between bits in ultrahigh-density magnetic recording applications.

  20. Preparation of hydrophilic magnetic nanospheres with high saturation magnetization

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Tong, Naihu; Cui, Longlan; Lu, Ying; Gu, Hongchen

    2007-04-01

    Well-defined silica-magnetite core-shell nanospheres were prepared via a modified sol-gel method. Sphere-like magnetite aggregates were obtained as cores of the final nanospheres by assembling in the presence of Tween 20. Characterization by transmission electron microscopy (TEM) showed spherical morphology of the nanospheres with controlled silica shell thickness from 9 to 30 nm, depending on the amount of tetraethoxysilane (TEOS) used. The nanospheres contained up to 41.7 wt% magnetite with a saturation magnetization of 21.8 emu/g. Up to 35 μg/mg of the model biomolecule streptavidin (SA) could be bound covalently to the hydrophilic silica nanospheres.

  1. Gemcitabine-loaded magnetic albumin nanospheres for cancer chemohyperthermia

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Ke, Fei; An, Yanli; Hou, Xinxin; Zhang, Hao; Lin, Mei; Zhang, Dongsheng

    2013-03-01

    Eliminating cancer without harming normal body tissue remains a longstanding challenge in medicine. Toward this goal, we prepared nanosized magnetic albumin nanospheres encapsulating magnetic nanoparticles (Fe3O4) and antitumor drugs (Gemcitabine, GEM). Magnetic albumin nanospheres (average size ≈ 224 nm) had good magnetic responsiveness upon exposure to an alternating magnetic field even though Fe3O4 was encased in nanospheres. Thermodynamic test showed that Fe3O4 could serve as a heating source under AMF and lead the nanospheres to reach their steady temperature (45 °C). The release results in vitro indicated that nanospheres had an obvious effect of sustained release of GEM. The result of cytotoxicity assay showed that the toxicity of this material was classified as grade 1, which belongs to no cytotoxicity. The antitumor efficacy of the GEM/Fe3O4 albumin nanospheres combined with magnetic fluid hyperthermia on non-small lung cancer cell line GlC-82 was examined by MTT assay and flow cytometry assay. Compared with nanospheres entrapping GEM group, nanospheres entrapping Fe3O4 combined with MFH group, and GEM/Fe3O4 albumin nanospheres without MFH group, the GEM/Fe3O4 albumin nanospheres exhibited enhanced antitumor efficacy. Thus, the GEM/Fe3O4 albumin nanospheres have promising applications in cancer treatment.

  2. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity

    PubMed Central

    2011-01-01

    Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids. PMID:21831316

  3. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry

    PubMed Central

    Lee, Jihye; Kim, Jinhee; Son, Kidong; d’Alexandry d’Orengiani, Anne-Laure Pham Humg; Min, Ji-Young

    2017-01-01

    Influenza viruses exploit host factors to successfully replicate in infected cells. Using small interfering RNA (siRNA) technology, we identified six human genes required for influenza A virus (IAV) replication. Here we focused on the role of acid phosphatase 2 (ACP2), as its knockdown showed the greatest inhibition of IAV replication. In IAV-infected cells, depletion of ACP2 resulted in a significant reduction in the expression of viral proteins and mRNA, and led to the attenuation of virus multi-cycle growth. ACP2 knockdown also decreased replication of seasonal influenza A and B viruses and avian IAVs of the H7 subtype. Interestingly, ACP2 depletion had no effect on the replication of Ebola or hepatitis C virus. Because ACP2 is known to be a lysosomal acid phosphatase, we assessed the role of ACP2 in influenza virus entry. While neither binding of the viral particle to the cell surface nor endosomal acidification was affected in ACP2-depleted cells, fusion of the endosomal and viral membranes was impaired. As a result, downstream steps in viral entry were blocked, including nucleocapsid uncoating and nuclear import of viral ribonucleoproteins. Our results established ACP2 as a necessary host factor for regulating the fusion step of influenza virus entry. PMID:28272419

  4. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    PubMed Central

    Yao, Qilu; Lu, Zhang-Hui; Zhang, Zhujun; Chen, Xiangshu; Lan, Yaqian

    2014-01-01

    Ultrafine copper nanoparticles (Cu NPs) within porous silica nanospheres (Cu@SiO2) were prepared via a simple one-pot synthetic route in a reverse micelle system and characterized by SEM, TEM, EDX, XRD, N2 adsorption-desorption, CO-TPD, XPS, and ICP methods. The characterized results show that ultrafine Cu NPs with diameter of around 2 nm are effectively embedded in the center of well-proportioned spherical SiO2 NPs of about 25 nm in diameter. Compared to commercial SiO2 supported Cu NPs, SiO2 nanospheres supported Cu NPs, and free Cu NPs, the synthesized core-shell nanospheres Cu@SiO2 exhibit a superior catalytic activity for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) and hydrazine borane (HB, N2H4BH3) under ambient atmosphere at room temperature. The turnover frequencies (TOF) for the hydrolysis of AB and HB in the presence of Cu@SiO2 nanospheres were measured to be 3.24 and 7.58 mol H2 (mol Cu min)−1, respectively, relatively high values for Cu nanocatalysts in the same reaction. In addition, the recycle tests show that the Cu@SiO2 nanospheres are still highly active in the hydrolysis of AB and HB, preserving 90 and 85% of their initial catalytic activity even after ten recycles, respectively. PMID:25534772

  5. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis

    PubMed Central

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4’-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. DOI: http://dx.doi.org/10.7554/eLife.17828.001 PMID:27540631

  6. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes.

    PubMed

    He, Guang; Evers, Scott; Liang, Xiao; Cuisinier, Marine; Garsuch, Arnd; Nazar, Linda F

    2013-12-23

    Porous hollow carbon spheres with different tailored pore structures have been designed as conducting frameworks for lithium-sulfur battery cathode materials that exhibit stable cycling capacity. By deliberately creating shell porosity and utilizing the interior void volume of the carbon spheres, sufficient space for sulfur storage as well as electrolyte pathways is guaranteed. The effect of different approaches to develop shell porosity is examined and compared in this study. The most highly optimized sulfur-porous carbon nanosphere composite, created using pore-formers to tailor shell porosity, exhibits excellent cycling performance and rate capability. Sulfur is primarily confined in 4-5 nm mesopores in the carbon shell and inner lining of the shells, which is beneficial for enhancing charge transfer and accommodating volume expansion of sulfur during redox cycling. Little capacity degradation (∼0.1% /cycle) is observed over 100 cycles for the optimized material.

  7. Purification of a tartrate-resistant acid phosphatase (TrACP) from bovine cortical bone matrix

    SciTech Connect

    Lau, K.H.W.; Freeman, T.K.; Baylink, D.J.

    1986-05-01

    It has been previously demonstrated that a partially purified bovine skeletal TrACP showed protein phosphatase (P'ase) activity that was specific for phosphotyrosyl (Ptyr) proteins. They have now purified TrACP activity from bovine cortical bone matrix to apparent homogeneity. The purification procedures included CM-Sepharose ion-exchange, cellulose phosphate affinity, sephacryl S-300 gel filtration and phenyl sepharose affinity chromatographies. Overall yield was > 25% and purification was approximately 2000-fold with a specific activity of 8.15 umol pNPP hydrolyzed/min/mg protein at 37/sup 0/C. The purified enzyme was judged to be homogeneous based on: (i) appearance as a single protein band on SDS-PAGE (silver staining technique) and (ii) distribution analysis of radioiodinated purified TrACP after SDS-PAGE revealing one band of radioactivity at the same positions as the TrACP protein band. M.W. of TrACP was 34,600 as assessed by gel filtration and 32,500 by SDS-PAGE, suggesting that bovine skeletal TrACP exists as active monomer. Analysis of the purified TrACP by isoelectric focusing showed at least 9 bands of enzyme activities with pIs between 4 and 5, indicating micro-heterogenecity. Substrate specificity analyses revealed that the purified TrACP also hydrolyzed nucleotide tri- and di-phosphates, but not monophosphates or other low M.W. phosphoryl esters, and was also capable of hydrolyzing phosphotyrosine (Tyr(P)) and Ptyr proteins with little activity toward other phosphoamino acids or phosphoseryl proteins. Optimal pH was 5.5 for TrACP activity, 6.0 for Tyr(P) P'ase activity and 7.0 for Ptyr protein P'ase activity. Results of these studies represent the first purification of a skeletal TrACP to apparent homogeneity.

  8. Size Dependent Mechanical Properties of Monolayer Densely Arranged Polystyrene Nanospheres.

    PubMed

    Huang, Peng; Zhang, Lijing; Yan, Qingfeng; Guo, Dan; Xie, Guoxin

    2016-12-13

    In contrast to macroscopic materials, the mechanical properties of polymer nanospheres show fascinating scientific and application values. However, the experimental measurements of individual nanospheres and quantitative analysis of theoretical mechanisms remain less well performed and understood. We provide a highly efficient and accurate method with monolayer densely arranged honeycomb polystyrene (PS) nanospheres for the quantitatively mechanical characterization of individual nanospheres on the basis of atomic force microscopy (AFM) nanoindentation. The efficiency is improved by 1-2 orders, and the accuracy is also enhanced almost by half-order. The elastic modulus measured in the experiments increases with decreasing radius to the smallest nanospheres (25-35 nm in radius). A core-shell model is introduced to predict the size dependent elasticity of PS nanospheres, and the theoretical prediction agrees reasonably well with the experimental results and also shows a peak modulus value.

  9. Sympathetic cooling of nanospheres with cold atoms

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  10. Effect of ethyl-alpha-hydroxymethylacrylate on selected properties of copolymers and ACP resin composites.

    PubMed

    Antonucci, Joseph M; Fowler, Bruce O; Weir, Michael D; Skrtic, Drago; Stansbury, Jeffrey W

    2008-10-01

    There is an increased interest in the development of bioactive polymeric dental composites and related materials that have potential for mineralized tissue regeneration and preservation. This study explores how the substitution of ethyl alpha-hydroxymethylacryate (EHMA) for 2-hydroxyethyl methacrylate (HEMA) in photo-activated 2,2-bis[p-(2'-hydroxy-3'-methacryloxypropoxy)phenyl]propane (Bis-GMA) and Bis-GMA/tri(ethylene glycol) dimethacrylate (TEGDMA) resins affected selected physicochemical properties of the polymers and their amorphous calcium phosphate (ACP) composites. Rate of polymerization and the degree of conversion (DC) of polymers {EHMA (E), HEMA (H), Bis-GMA/EHMA (BE), Bis-GMA/HEMA (BH), Bis-GMA/TEGDMA/EHMA (BTE) and Bis-GMA/TEGDMA/HEMA (BTH)} were assessed by photo-differential scanning calorimetry and Fourier-Transform Infrared (FTIR) spectroscopy. ACP/BTE and ACP/BTH composites were evaluated for DC, biaxial flexure strength (BFS), water sorption (WS) and mineral ion release. Mid-FTIR and near-IR measurements revealed the following order of decreasing DC: [E, H polymers (97.0%)] > [BE copolymer (89.9%)] > [BH copolymer (86.2%)] > [BTE, BTH copolymers (85.5%)] > [ACP/BTH composite (82.6%)] > [ACP/BTE composite (79.3%)]. Compared to HEMA, EHMA did not adversely affect the BFS of its copolymers and/or ACP composites. Lower WS of BTE copolymers and composites (28% and 14%, respectively, compared to the BTH copolymers and composites) only marginal reduced the ion release from ACP/BTE composites compared to ACP/BTH composites. More hydrophobic ACP composites with acceptable ion-releasing properties were developed by substituting the less hydrophilic EHMA for HEMA.

  11. Characterization of bismuth nanospheres deposited by plasma focus device

    SciTech Connect

    Ahmad, M.; Al-Hawat, Sh.; Akel, M.; Mrad, O.

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  12. Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoming; Zhang, Xiaoting; Yang, Lin; Wang, Ge; Jiang, Kai; Wu, Geoffrey; Cui, Weigang; Wei, Zipeng

    2016-04-01

    The development of multi-shelled hollow carbonate nanospheres (MHCN) for biomedical applications is challenging, and has not been reported. In this study, a facile approach is firstly reported to synthesize hierarchically porous MHCN with controllable shell numbers using a novel strategy called layer-by-layer thermal decomposition of organic acid salts and templates. The choice of organic acid salts as the reactants is innovative and crucial. The shell numbers of porous MHCN can be easily controlled and tuned through adjusting the adsorption temperature of organic acid salts and/or the adsorption ability of the template. The synthetic method can not only open a window to prepare the multi-shelled carbonates but also provide a new strategy to synthesise other multi-shelled inorganic salts. Notably, the hierarchically porous multi-shelled hollow structures empower the carbonates with not only a large specific surface area but also good porosity and permeability, showing great potential for future applications. Herein, our in vitro/vivo evaluations show that CaCO3 MHCN possess a high drug loading capacity and a sustained-release drug profile. It is highly expected that this novel synthetic strategy for MHCN and novel MHCN platform have the potential for biomedical applications in the near future.The development of multi-shelled hollow carbonate nanospheres (MHCN) for biomedical applications is challenging, and has not been reported. In this study, a facile approach is firstly reported to synthesize hierarchically porous MHCN with controllable shell numbers using a novel strategy called layer-by-layer thermal decomposition of organic acid salts and templates. The choice of organic acid salts as the reactants is innovative and crucial. The shell numbers of porous MHCN can be easily controlled and tuned through adjusting the adsorption temperature of organic acid salts and/or the adsorption ability of the template. The synthetic method can not only open a window to

  13. Dimethylformamide as a cryoprotectant for canine semen diluted and frozen in ACP-106C.

    PubMed

    Mota Filho, A C; Teles, C H A; Jucá, R P; Cardoso, J F S; Uchoa, D C; Campello, C C; Silva, A R; Silva, L D M

    2011-10-15

    The objective was to assess the effect of adding various concentrations of dimethylformamide on characteristics of canine semen diluted in powdered coconut water (ACP-106C; ACP Biotecnologia, Fortaleza, CE, Brazil) and frozen at -196°C. Fifteen ejaculates were collected by manual stimulation from five adult Boxer dogs. The sperm-rich fraction was diluted in ACP-106C (ACP Biotecnologia) containing 10% egg yolk and divided into four aliquots. The cryoprotectants used for each aliquot were 6% glycerol (control group; CG) or 2%, 4%, or 6% dimethylformamide (DF2, DF4, and DF6, respectively). After thawing, total motility (mean ± SEM) for CG (58.4 ± 24.6) was higher (P < 0.05) than that of the other groups (2% dimethylformamide, 24.4 ± 12.3; 4% dimethylformamide, 26.5 ± 16.1; and 6% dimethylformamide, 21.7 ± 17.9). Furthermore, there was a greater percentage of fast, average, and slow moving sperm (assessed with computer-aided semen analysis; CASA) in CG in comparison with the other three groups. Therefore, based on concentrations tested in this study, dimethylformamide, together with ACP-106C (ACP Biotecnologia) and 10% egg yolk as a diluent, yielded unsatisfactory in vitro results for freezing canine semen.

  14. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia

    PubMed Central

    Byrd, John C; Harrington, Bonnie; O’Brien, Susan; Jones, Jeffrey A; Schuh, Anna; Devereux, Steve; Chaves, Jorge; Wierda, William G; Awan, Farrukh T; Brown, Jennifer R; Hillmen, Peter; Stephens, Deborah M; Ghia, Paolo; Barrientos, Jacqueline C; Pagel, John M; Woyach, Jennifer; Johnson, Dave; Huang, Jane; Wang, Xiaolin; Lannutti, Brian J; Covey, Todd; Fardis, Maria; McGreivy, Jesse; Hamdy, Ahmed; Rothbaum, Wayne; Izumi, Raquel; Diacovo, Thomas G; Johnson, Amy J; Furman, Richard R

    2016-01-01

    Background Irreversible inhibition of Bruton tyrosine kinase (Btk) by ibrutinib represents a significant therapeutic advance for chronic lymphocytic leukemia (CLL). However, ibrutinib also irreversibly inhibits alternative kinase targets, which potentially compromise its therapeutic index. Acalabrutinib (ACP-196) is a more selective irreversible Btk inhibitor specifically designed to improve upon the safety and efficacy of first generation Btk inhibitors. Methods Sixty-one patients with relapsed CLL were treated in a phase 1–2 multicenter study designed to assess the safety, efficacy, pharmacokinetics and pharmacodynamics of oral acalabrutinib. Patients were continuously treated with acalabrutinib 100 to 400 mg once daily in the dose-escalation portion of the study, and 100 mg twice daily in the expansion portion. Results Patient demographics include a median age of 62 years; median of 3 prior therapies; 31% del(17)(p13.1) and 75% unmutated immunoglobulin heavy chain variable genes. No dose-limiting toxicities occurred. The most common adverse events observed were headache (43%), diarrhea (39%) and increased weight (26%). Most adverse events were Grade 1–2. At a median follow-up of 14.3 months, the best overall response rate was 95%, including 85% partial response, 10% partial response with lymphocytosis and 5% stable disease. In patients with del(17)(p13.1), the best overall response was 100%. No cases of Richter’s transformation and only 1 CLL progression have occurred. Conclusions Acalabrutinib is a highly selective Btk inhibitor that provides effective and well tolerated treatment for patients with relapsed CLL, including those with del(17)(p13.1). PMID:26641137

  15. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2013-09-10

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  16. Porphyrin coordination polymer nanospheres and nanorods

    SciTech Connect

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  17. Atomistic deformation mechanisms in twinned copper nanospheres.

    PubMed

    Bian, Jianjun; Niu, Xinrui; Zhang, Hao; Wang, Gangfeng

    2014-01-01

    In the present study, we perform molecular dynamic simulations to investigate the compression response and atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the underlying plastic deformation mechanisms are illuminated. Twin boundaries (TBs) act as obstacles to dislocation motion and lead to strengthening. As the loading direction varies, the plastic deformation transfers from dislocations intersecting with TBs, slipping parallel to TBs, and then to being restrained by TBs. The strengthening of TBs depends strongly on the twin spacing.

  18. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate

    PubMed Central

    Maloney, Finn P.; Gerwick, Lena; Gerwick, William H.; Sherman, David H.; Smith, Janet L.

    2016-01-01

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA. PMID:27573844

  19. Recovery and cryopreservation of epididymal sperm from agouti (Dasiprocta aguti) using powdered coconut water (ACP-109c) and Tris extenders.

    PubMed

    Silva, M A; Peixoto, G C X; Santos, E A A; Castelo, T S; Oliveira, M F; Silva, A R

    2011-10-01

    The objective was to compare the use of powdered coconut water (ACP-109c; ACP Biotecnologia, Fortaleza, CE, Brazil) and Tris extenders for recovery and cryopreservation of epididymal sperm from agouti. The caudae epididymus and proximal ductus deferens from 10 sexually mature agoutis were subjected to retrograde washing using ACP-109c (ACP Biotecnologia) or Tris. Epididymal sperm were evaluated for motility, vigor, sperm viability, membrane integrity, and morphology. Samples were centrifuged, and extended in the same diluents plus egg yolk (20%) and glycerol (6%), frozen in liquid nitrogen, and subsequently thawed at 37°C for 1 min, followed by re-evaluation of sperm characteristics. The two extenders were similarly efficient for epididymal recovery, with regard to the number and quality of sperm recovered. However, for both extenders, sperm quality decreased (P < 0.05) after centrifugation and dilution. After sperm cryopreservation and thawing, there were (mean ± SEM) 26.5 ± 2.6% motile sperm with 2.6 ± 0.2 vigor in the ACP-109c (ACP Biotecnologia) group, which was significantly better than 9.7 ± 2.6% motile sperm with 1.2 ± 0.3 vigor in Tris. In conclusion, agouti epididymal sperm were successfully recovered using either ACP-109c (ACP Biotecnologia) or Tris extenders; however, ACP-109c (ACP Biotecnologia) was a significantly better extender for processing and cryopreserving these sperm.

  20. The Drosophila melanogaster seminal fluid protein Acp62F is a protease inhibitor that is toxic upon ectopic expression.

    PubMed Central

    Lung, Oliver; Tram, Uyen; Finnerty, Casey M; Eipper-Mains, Marcie A; Kalb, John M; Wolfner, Mariana F

    2002-01-01

    Drosophila melanogaster seminal fluid proteins stimulate sperm storage and egg laying in the mated female but also cause a reduction in her life span. We report here that of eight Drosophila seminal fluid proteins (Acps) and one non-Acp tested, only Acp62F is toxic when ectopically expressed. Toxicity to preadult male or female Drosophila occurs upon one exposure, whereas multiple exposures are needed for toxicity to adult female flies. Of the Acp62F received by females during mating, approximately 10% enters the circulatory system while approximately 90% remains in the reproductive tract. We show that in the reproductive tract, Acp62F localizes to the lumen of the uterus and the female's sperm storage organs. Analysis of Acp62F's sequence, and biochemical assays, reveals that it encodes a trypsin inhibitor with sequence and structural similarities to extracellular serine protease inhibitors from the nematode Ascaris. In light of previous results demonstrating entry of Acp62F into the mated female's hemolymph, we propose that Acp62F is a candidate for a molecule to contribute to the Acp-dependent decrease in female life span. We propose that Acp62F's protease inhibitor activity exerts positive protective functions in the mated female's reproductive tract but that entry of a small amount of this protein into the female's hemolymph could contribute to the cost of mating. PMID:11805057

  1. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    PubMed

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  2. Cystic fibrosis sputum: a barrier to the transport of nanospheres.

    PubMed

    Sanders, N N; De Smedt, S C; Van Rompaey, E; Simoens, P; De Baets, F; Demeester, J

    2000-11-01

    Cystic fibrosis (CF) is characterized by the presence of a viscoelastic mucus layer in the upper airways and bronchi. The underlying problem is a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator protein. Clinical studies of gene transfer for CF are ongoing. For gene delivery to the airways of CF patients to be effective, the mucus covering the target cells must be overcome. We therefore examined the extent to which CF sputum presents a physical barrier to the transport of nanospheres of a size comparable to that of lipoplexes and other transfection systems currently being clinically evaluated for CF gene therapy. We observed that an extremely low percentage of nanospheres (< 0.3%) moved through a 220-microm-thick CF sputum layer after 150 min. The largest nanospheres studied (560 nm) were almost completely blocked by the sputum, whereas the smaller nanospheres (124 nm) were retarded only by a factor of 1.3 as compared with buffer. Surprisingly, the nanospheres diffused significantly more easily through the more viscoelastic sputum samples. We hypothesize that the structure of the network in sputum becomes more macroporous when the sputum becomes more viscoelastic. Sputum from a patient with chronic obstructive pulmonary disease retarded the transport of nanospheres to the same extent as did CF sputum. When directly mixed with CF sputum, recombinant human deoxyribonuclease I moderately facilitated the transport of nanospheres through CF sputum.

  3. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage

    PubMed Central

    Xu, Fei; Tang, Zhiwei; Huang, Siqi; Chen, Luyi; Liang, Yeru; Mai, Weicong; Zhong, Hui; Fu, Ruowen; Wu, Dingcai

    2015-01-01

    Exceptionally large surface area and well-defined nanostructure are both critical in the field of nanoporous carbons for challenging energy and environmental issues. The pursuit of ultrahigh surface area while maintaining definite nanostructure remains a formidable challenge because extensive creation of pores will undoubtedly give rise to the damage of nanostructures, especially below 100 nm. Here we report that high surface area of up to 3,022 m2 g−1 can be achieved for hollow carbon nanospheres with an outer diameter of 69 nm by a simple carbonization procedure with carefully selected carbon precursors and carbonization conditions. The tailor-made pore structure of hollow carbon nanospheres enables target-oriented applications, as exemplified by their enhanced adsorption capability towards organic vapours, and electrochemical performances as electrodes for supercapacitors and sulphur host materials for lithium–sulphur batteries. The facile approach may open the doors for preparation of highly porous carbons with desired nanostructure for numerous applications. PMID:26072734

  4. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries.

    PubMed

    Ge, Danhua; Geng, Hongbo; Wang, Jiaqing; Zheng, Junwei; Pan, Yue; Cao, Xueqin; Gu, Hongwei

    2014-08-21

    A simple and scalable coordination-derived method for the synthesis of porous Co3O4 hollow nanospheres is described here. The initially formed coordination-driven self-assembled aggregates (CDSAAs) could act as the precursor followed by calcination treatment. Then the porous hollow Co3O4 nanospheres are obtained, in which the primary Co3O4 nanoparticles are inter-dispersed. When the nanospheres are used as anode materials for lithium storage, they show excellent coulombic efficiency, high lithium storage capacity and superior cycling performance. In view of the facile synthesis and excellent electrochemical performance obtained, this protocol to fabricate special porous hollow frameworks could be further extended to other metal oxides and is expected to improve the practicality of superior cycle life anode materials with large volume excursions for the development of the next generation of LIBs.

  5. Design of Ag@C@SnO2@TiO2 yolk-shell nanospheres with enhanced photoelectric properties for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Peilu; Li, Dan; Yao, Shiting; Zhang, Yiqun; Liu, Fengmin; Sun, Peng; Chuai, Xiaohong; Gao, Yuan; Lu, Geyu

    2016-06-01

    The hierarchical Ag@C@SnO2@TiO2 nanospheres (ACSTS) have been successfully synthesized by deposition of SnO2 and TiO2 on the Ag@C templates layer by layer. The size of ACSTS is ca. 360 nm while the Ag@C cores have an average diameter of about 300 nm. The rough and porous shell structure consisting of SnO2 and TiO2 ensures a large specific surface area (115.5 m2 g-1). To demonstrate how such a unique structure might lead to more excellent photovoltaic property, several kinds of dye-sensitized solar cells (DSSCs) are also fabricated using different nanospheres based photoanodes. It is found that the ACSTS based DSSC exhibits an obvious improvement in cell performance. According to various technical characterization, the ACSTS can provide dual-functions of light absorption and charge transfer, hence resulting in an enhanced short-circuit photocurrent density of 18.68 mA cm-2 and a higher FF of 63% compared with other DSSCs. The ACSTS cell finally obtains a PCE of up to 8.62%, increasing by 70.4% and 10.2% than hollow TiO2 nanospheres and Ag@C@TiO2 nanospheres based cells, respectively. The improved photovoltaic properties of ACSTS cell can be mainly ascribed to the unique microstructure and the synergistic effect of the encapsulated Ag@C cores.

  6. Metallic lead nanospheres discovered in ancient zircons

    PubMed Central

    Kusiak, Monika A.; Dunkley, Daniel J.; Wirth, Richard; Whitehouse, Martin J.; Wilde, Simon A.; Marquardt, Katharina

    2015-01-01

    Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U–Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (>4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5–30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U–Pb ages obtained by high spatial resolution methods. PMID:25848043

  7. Metallic lead nanospheres discovered in ancient zircons.

    PubMed

    Kusiak, Monika A; Dunkley, Daniel J; Wirth, Richard; Whitehouse, Martin J; Wilde, Simon A; Marquardt, Katharina

    2015-04-21

    Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U-Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (>4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5-30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U-Pb ages obtained by high spatial resolution methods.

  8. Anion-exchange nanospheres as titration reagents for anionic analytes.

    PubMed

    Zhai, Jingying; Xie, Xiaojiang; Bakker, Eric

    2015-08-18

    We present here anion-exchange nanospheres as novel titration reagents for anions. The nanospheres contain a lipophilic cation for which the counterion is initially Cl(-). Ion exchange takes place between Cl(-) in the nanospheres and a more lipophilic anion in the sample, such as ClO4(-) and NO3(-). Consecutive titration in the same sample solution for ClO4(-) and NO3(-) were demonstrated. As an application, the concentration of NO3(-) in spinach was successfully determined using this method.

  9. Efficacious long-term cooling and freezing of Sapajus apella semen in ACP-118(®).

    PubMed

    Leão, D L; Miranda, S A; Brito, A B; Lima, J S; Santos, R R; Domingues, S F S

    2015-08-01

    The objectives of the present study were to test the effect of coconut water solution (CWS), TES-TRIS and ACP-118(®) on the seminal cooling and cryopreservation of semen from capuchin monkeys (Sapajus apella). Semen was collected from six males by electro-ejaculation, diluted in TES-TRIS, CWS or ACP-118(®), and maintained at 4°C for 28h. Semen was subsequently evaluated (Experiment I) or cryopreserved in the presence of different glycerol concentrations (3%, 5% or 7%) (Experiment II). ACP-118(®) was the preferred extender to preserve sperm motility and viability after 28h incubation at 4°C. Cooled sperm were successfully frozen-thawed in a medium containing 3% glycerol. After thawing, sperm retained the capacity to fertilize oocytes and zygotes were obtained. In conclusion, ACP-118(®) can be effectively and efficiently used as extender for the cooling of S. apella semen. Furthermore, cryopreservation using ACP-118(®) by adding 3% glycerol is suitable to maintain sperm morphology and the capacity of these cells to fertilize in vitro.

  10. [Constructing an ACP Simulation-Situation Communication Training Program for Patients With Chronic Kidney Disease].

    PubMed

    Chen, Jui-O; Lin, Chiu-Chu

    2016-06-01

    The aging population and changing lifestyles have lead to the increased general risk of chronic kidney disease. Taiwan currently has the highest incidence and prevalence of end-stage renal disease (ESRD) of any country or region in the world. Hemodialysis patients must endure comorbidities and face the uncertainties of death. The best way to achieve a good death is for patients to sign advance care planning (ACP). However, the key factors contributing to low ACP signature rates have been the lack of communication skills and related training among medical staffs. This article explores the dilemma of ACP using an example of chronic kidney disease (CKD) and proposes a theory-based approach to develop a theoretical framework for an ACP simulation-situation communication training program that integrates the simulation situation model, PREPARED model, and scaffolding theory. Readers may use this framework to design ACP simulation-situation communication training programs that conform to their own conditions and then test the effectiveness and feasibility of these programs in clinical settings.

  11. A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica.

    PubMed

    Pollard, M R; Anderson, L; Fan, C; Hawkins, D J; Davies, H M

    1991-02-01

    Umbellularia californica (California Bay) seeds accumulate 10:0 and 12:0 as principal reserve fatty acyl groups. An in vitro fatty acid synthesis system from the developing cotyledons produces chiefly 10:0 and 12:0, in approximately the same proportions as the intact tissue. The kinetics of acyl thioester and free fatty acid formation in this system suggest that a medium-chain specific acyl-acyl-carrier protein (ACP) hydrolysis mechanism is responsible for the preponderance of medium-chain products. A crude extract of the developing cotyledons exhibits hydrolytic activity toward acyl-ACPs, with marked preference for 12:0-ACP and 18:1-ACP in the test series 6:0, 8:0, 10:0, 11:0, 12:0, 14:0, 16:0, and 18:1-ACPs. Partial purification of the 12:0-ACP hydrolytic activity has resulted in its separation from the 18:1-ACP hydrolase(s) and the 12:0-coenzyme A hydrolase(s) that are also present, thereby demonstrating its specificity for the 12-carbon acyl chain length and the ACP derivative. During cotyledon development, as the proportion of medium-chain to other fatty acyl groups increases, the extractable yield of this activity also increases substantially. Collectively these results suggest a role for this 12-ACP thioesterase in medium-chain production in vivo.

  12. A novel and facile synthesis of porous SiO2-coated ultrasmall Se particles as a drug delivery nanoplatform for efficient synergistic treatment of cancer cells

    NASA Astrophysics Data System (ADS)

    Liu, Xijian; Deng, Guoying; Wang, Yeying; Wang, Qian; Gao, Zhifang; Sun, Yangang; Zhang, Wenlong; Lu, Jie; Hu, Junqing

    2016-04-01

    A novel and facile synthetic route has been developed to fabricate porous SiO2-coated ultrasmall Se particles (Se@SiO2 nanospheres) as a drug delivery nanoplatform which combines Se quantum dots and doxorubicin (DOX) for efficient synergistic treatment of cancer cells.A novel and facile synthetic route has been developed to fabricate porous SiO2-coated ultrasmall Se particles (Se@SiO2 nanospheres) as a drug delivery nanoplatform which combines Se quantum dots and doxorubicin (DOX) for efficient synergistic treatment of cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02298g

  13. Polymeric nanospheres as a displacement fluid in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Zhang, Julien

    2015-11-01

    This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.

  14. Advanced spent fuel conditioning process (ACP) progress with respect to remote operation and maintenance

    SciTech Connect

    Lee, Hyo Jik; Lee, Jong Kwang; Park, Byung Suk; Yoon, Ji Sup

    2007-07-01

    Korea Atomic Energy Research Institute (KAERI) has been developing an Advanced Spent Fuel Conditioning Process (ACP) to reduce the volume of spent fuel, and the construction of the ACP facility (ACPF) for a demonstration of its technical feasibility has been completed. In 2006 two inactive demonstrations were performed with simulated fuels in the ACPF. Accompanied by process equipment performance tests, its remote operability and maintainability were also tested during that time. Procedures for remote operation tasks are well addressed in this study and evaluated thoroughly. Also, remote maintenance and repair tasks are addressed regarding some important modules with a high priority order. The above remote handling test's results provided a lot of information such as items to be revised to improve the efficiency of the remote handling tasks. This paper deals with the current status of ACP and the progress of remote handling of ACPF. (authors)

  15. SiO{sub 2} nanospheres with tailorable interiors by directly controlling Zn{sup 2+} and NH{sub 3}.H{sub 2}O species in an emulsion process

    SciTech Connect

    Liao Yuchao; Wu Xiaofeng; Wang Zhen; Chen Yunfa

    2011-07-15

    SiO{sub 2} nanospheres with tailorable interiors were synthesized by a facile one-spot microemulsion process using TEOS as silica source, wherein cyclohexane including triton X-100 and n-octanol as oil phase and Zn{sup 2+} or NH{sub 3}.H{sub 2}O aqueous solution as dispersive phase, respectively. The products were characterized by Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray Powder Diffraction. It was suggested that the as-synthesized silica nanospheres possessed grape-stone-like porous or single hollow interior, and also found that the ammonia dosage and aging time played key roles in controlling the size and structure of silica nanospheres. Furthermore, the comparative results confirmed that in-situ zinc species [ZnO/Zn(OH){sub 2}] acted as the temporary templates to construct grape-stone-like interior, and a simultaneously competing etching process occurred owing to the soluble Zn(NH{sub 3}){sub 4}{sup 2+} complex formation while the additional excessive ammonia was introduced. With the aging time being extended, the in-situ nanocrystals tended to grow into bigger ones by Ostwald Ripening, producing single hollow interior. - Graphical Abstract: Formation process of SiO{sub 2} nanospheres with porous and single hollow interior. Highlights: > ZnO/Zn(OH){sub 2} nanocrystals as the temporary templates shape the interior structures of SiO{sub 2} nanospheres. > Fabrication of porous and single hollow interiors needs no additional processes such as roasting or dissolving. > Tailorable interiors can be easily obtained through adjusting the aging time of temporary templates.

  16. Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography.

    PubMed

    Li, Luping; Fang, Yin; Xu, Cheng; Zhao, Yang; Wu, Kedi; Limburg, Connor; Jiang, Peng; Ziegler, Kirk J

    2017-03-01

    A tunable nanosphere lithography (NSL) technique is combined with metal-assisted etching of silicon (Si) to fabricate ordered, high-aspect-ratio Si nanowires. Non-close-packed structures are directly prepared via shear-induced ordering of the nanospheres. The spacing between the nanospheres is independent of their diameters and tuned by changing the loading of nanospheres. Nanowires with spacings between 110 and 850 nm are easily achieved with diameters between 100 and 550 nm. By eliminating plasma or heat treatment of the nanospheres, the diameter of the nanowires fabricated is nearly identical to the nanosphere diameter in the suspension. The elimination of this step helps avoid common drawbacks of traditional NSL approaches, leading to the high-fidelity, large-scale fabrication of highly crystalline, nonporous Si nanowires in ordered hexagonal patterns. The ability to simultaneously control the diameter and spacing makes the NSL technique more versatile and expands the range of geometries that can be fabricated by top-down approaches.

  17. USGS tethered ACP platforms: New design means more safety and accuracy

    USGS Publications Warehouse

    Morlock, S.E.; Stewart, J.A.; Rehmel, M.S.

    2004-01-01

    The US Geological Survey has developed an innovative tethered platform that supports an Acoustic Current Profiler (ACP) in making stream-flow measurements (use of the term ACP in this article refers to a class of instruments and not a specific brand name or model). The tethered platform reduces the hazards involved in conventional methods of stream-flow measurement. The use of the platform reduces or eliminates time spent by personnel in streams and boats or on bridges and cableway and stream-flow measurement accuracy is increased.

  18. Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres

    PubMed Central

    Lin, Jin-Han; Patil, Ranjit A.; Devan, Rupesh S.; Liu, Zhe-An; Wang, Yi-Ping; Ho, Ching-Hwa; Liou, Yung; Ma, Yuan-Ron

    2014-01-01

    We utilized a thermal radiation method to synthesize semiconducting hollow ZnO nanoballoons and metal-semiconductor concentric solid Zn/ZnO nanospheres from metallic solid Zn nanospheres. The chemical properties, crystalline structures, and photoluminescence mechanisms for the metallic solid Zn nanospheres, semiconducting hollow ZnO nanoballoons, and metal-semiconductor concentric solid Zn/ZnO nanospheres are presented. The PL emissions of the metallic Zn solid nanospheres are mainly dependent on the electron transitions between the Fermi level (EF) and the 3d band, while those of the semiconducting hollow ZnO nanoballoons are ascribed to the near band edge (NBE) and deep level electron transitions. The PL emissions of the metal-semiconductor concentric solid Zn/ZnO nanospheres are attributed to the electron transitions across the metal-semiconductor junction, from the EF to the valence and 3d bands, and from the interface states to the valence band. All three nanostructures are excellent room-temperature light emitters. PMID:25382186

  19. Preparation and Characterization of P(MAA-g-EG) Nanospheres for Protein Delivery Applications

    NASA Astrophysics Data System (ADS)

    Torres-Lugo, Madeline; Peppas, Nicholas A.

    2002-04-01

    Novel complexation hydrogel nanospheres of poly(methacrylic acid-grafted-poly(ethylene glycol)) (P(MAA-g-EG)) were prepared by dispersion polymerization to be used for protein delivery applications. Polymerization was conducted in solvents such as deionized water, ethanol/water, sodium hydroxide, hydrochloric acid, and acetic acid solutions. When polymerizing in deionized water we produced nanospheres without agglomeration. Photon correlation spectroscopy studies revealed that the nanospheres possessed a narrow particle size distribution and the size was inversely proportional to the concentration of poly(ethylene glycol) incorporated in the monomer mixture. These nanospheres exhibited pH-sensitivity comparable to that encountered in hydrogel films with the same composition. The composition of the nanospheres was investigated by transmission Fourier transform infrared spectroscopy. The comparison between hydrogel films and nanospheres with the same monomer composition revealed that nanospheres possessed similar spectral characteristics than hydrogel films prepared by the same techniques. These nanospheres could be used for calcitonin release under physiological conditions.

  20. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    SciTech Connect

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  1. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    NASA Astrophysics Data System (ADS)

    Schindel, Daniel G.; Singh, Mahi R.

    2014-03-01

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  2. Adsorption of carbon dioxide by solution-plasma-synthesized heteroatom-doped carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Thongwichit, Nanthiya; Li, Oi Lun Helena; Yaowarat, Wattanachai; Saito, Nagahiro; Suriyapraphadilok, Uthaiporn

    2016-01-01

    Porous carbon nanospheres (CNSs) synthesized by a plasma-in-liquid technique were applied as an adsorbent for CO2 adsorption. Two different types of aromatic solvents, benzene and pyridine, were used as precursors to generate CNSs. The prepared CNSs were carbonized and then activated with CO2 to obtain carbon materials with a suitable porous structure for CO2 adsorption. To improve CO2 adsorption capacity, activated CNSs were then chemically modified using different approaches of surface treatment, namely, HNO3 oxidation, amination without HNO3 preoxidation, and amination with HNO3 preoxidation. The CO2 adsorption capacities of the samples were investigated at 1 atm and 40 °C using a simultaneous thermal analyzer. It was found that the CO2 adsorption of CNSs was enhanced through the development of textural properties. All of the surface treatment approaches led to the increase in CO2 adsorption capacity of the activated CNSs owing to the presence of nitrogen or oxygen functional groups introduced onto the carbon surface during the treatment.

  3. Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres.

    PubMed

    Wang, Yongsheng; Moo, Ying Xin; Chen, Chunping; Gunawan, Poernomo; Xu, Rong

    2010-12-15

    Shape-controlled synthesis of calcium carbonate with specific polymorphs can be achieved by the assistance of organic additives. In this study, highly uniform nanosized calcium carbonate spheres were synthesized by a fast precipitation method in the presence of a simple polymer, poly(styrene sulfonate) (PSS). The polymorph of the synthesized calcium carbonate products changes from pure calcite in PSS-free reactions to vaterite in PSS-containing (1-50 g/L) reactions. The effect of PSS on the formation of vaterite can be attributed to the two aspects: decrease of driving force by reducing the interfacial energy, and phase stabilization effect caused by the adsorbed PSS. A higher PSS concentration (50 g/L) results in highly uniform vaterite nanospheres of 400-500 nm in diameter. Furthermore, PSS is found more effective to induce the formation of vaterite in the Ca(2+)-rich reaction condition (Ca(2+):CO(3)(2-)=5:1) than in the CO(3)(2-)-rich conditions (Ca(2+):CO(3)(2-)=1:5). It has also been found that different mixing mode of the calcium and carbonate precursor solutions has a significant influence on the size distribution of the products. Finally, with a controlled anion-exchange method, the as-prepared vaterite nanospheres can be easily transformed to hollow hydroxyapatite spheres, which exhibit great potential to be used as the drug carriers due to their considerably high surface area and biocompatibility.

  4. Functionalized CdS nanospheres and nanorods

    NASA Astrophysics Data System (ADS)

    Lee, Hyeokjin; Yang, Heesun; Holloway, Paul H.

    2009-12-01

    Functionalized nanoparticles are discussed. Surfaces of CdS:Mn/ZnS core/shell nanospheres (Qdots) were converted from hydrophobic to hydrophilic by growth of a SiO 2 shell. The colloidal dispersion was stabilize by adding a surfactant with a negative surface charge, and a cell-penetrating-peptide, TAT, was attached through a primary amine group. The TAT functionalized Qdots were shown to pass the blood-brain-barrier and luminescence in the infused half of the brain. In addition, nanorods of S 2- rich CdS were synthesized by reaction of excess S with Cd precursors in the presence of ethylene diamine. The photoluminescence (PL) peak from the S 2- rich CdS nanorods was broad with a maximum at ∼710 nm, which was 40 nm longer in wavelength than the PL peak from Cd 2+ rich CdS (∼670 nm) nanorods. The influence of surface electron or hole trap states on the luminescent pathway of CdS nanorods were used to explain these shifts in wavelength. Nanocrystals of Au with ∼2 nm diameters were grown on S 2- rich surfaces of CdS nanorods. Significant quenching of photoluminescence was observed from Au nanocrystals on CdS nanorods due to interfacial charge separation. Charge separation by Au nanocrystals on CdS resulted in enhanced UV photocatalytic degradation of Procion red mix-5B (PRB) dye in aqueous solution.

  5. Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes

    PubMed Central

    Claussen, Jonathan C.; Kim, Sungwon S.; Haque, Aeraj ul; Artiles, Mayra S.; Porterfield, D. Marshall; Fisher, Timothy S.

    2010-01-01

    Background Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Method Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GOX) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Results Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GOX–CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H2O2 (7.4 μA/mM/cm2) and glucose (70 μA/mM/cm2), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t90%), respectively. The apparent Michaelis–Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GOX/nanomaterial complexes. Conclusions The GOX–CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. PMID:20307391

  6. Solution Structure of 4'-Phosphopantetheine - GmACP3 from Geobacter Metallireducens: A Specialized Acyl Carrier Protein with Atypical Structural Features and a Putative Role in Lipopolysaccharide Biosyntheses

    SciTech Connect

    Ramelot, Theresa A.; Smola, Matthew J.; Lee, Hsiau-Wei; Ciccosanti, Colleen; Hamilton, Keith; Acton, Thomas; Xiao, Rong; Everett, John K.; Prestegard, James H.; Montelione, Gaetano; Kennedy, Michael A.

    2011-03-08

    GmACP3 from Geobacter metallireducens is a specialized acyl carrier protein (ACP) whose gene, gmet_2339, is located near genes encoding many proteins involved in lipopolysaccharide (LPS) biosynthesis, indicating a likely function for GmACP3 in LPS production. By overexpression in Escherichia coli, about 50% holo-GmACP3 and 50% apo-GmACP3 were obtained. Apo-GmACP3 exhibited slow precipitation and non-monomeric behavior by 15NNMRrelaxation measurements. Addition of 4'-phosphopantetheine (4'-PP) via enzymatic conversion by E. coli holo-ACP synthase resulted in stable >95% holo-GmACP3 that was characterized as monomeric by 15N relaxation measurements and had no indication of conformational exchange. We have determined a high-resolution solution structure of holo-GmACP3 by standard NMR methods, including refinement with two sets of NH residual dipolar couplings, allowing for a detailed structural analysis of the interactions between 4'-PP and GmACP3. Whereas the overall four helix bundle topology is similar to previously solved ACP structures, this structure has unique characteristics, including an ordered 4'-PP conformation that places the thiol at the entrance to a central hydrophobic cavity near a conserved hydrogen-bonded Trp-His pair. These residues are part of a conservedWDSLxH/N motif found in GmACP3 and its orthologs. The helix locations and the large hydrophobic cavity are more similar tomediumand long-chain acyl-ACPs than to other apo- and holo-ACP structures. Taken together, structural characterization along with bioinformatic analysis of nearby genes suggests that GmACP3 is involved in lipid A acylation, possibly by atypical long-chain hydroxy fatty acids, and potentially is involved in synthesis of secondary metabolites.

  7. Testing gravity at the micron scale using optically trapped nanospheres

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew; Ranjit, Gambhir; Cunningham, Mark; Casey, Kirsten

    2017-01-01

    According to several theories beyond the Standard Model, Yukawa-type corrections to Newtonian gravity may occur at micrometer length scales. I will discuss our experiment dedicated to searching for these forces using laser-cooled silica nanospheres in an optical standing-wave trap. Using this system we have demonstrated calibrated force sensing at the zeptonewton level. The nanospheres can act as a sensor for short-range Yukawa-forces when levitated near a microfabricated source mass. Work supported by the National Science Foundation, Grants PHY-1205994, PHY-1506431

  8. Results of First Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect

    Reda, I.; Grobner, J.; Wacker, S.; Stoffel, T.

    2013-03-01

    The ACP and IRIS are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are unwindowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The first outdoor comparison between the two designs was held from January 28 to February 8, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of IRIS was within 1 W/m2. A difference of 5 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG).

  9. SiO 2 nanospheres with tailorable interiors by directly controlling Zn 2+ and NH 3·H 2O species in an emulsion process

    NASA Astrophysics Data System (ADS)

    Liao, Yuchao; Wu, Xiaofeng; Wang, Zhen; Chen, Yun-Fa

    2011-07-01

    SiO 2 nanospheres with tailorable interiors were synthesized by a facile one-spot microemulsion process using TEOS as silica source, wherein cyclohexane including triton X-100 and n-octanol as oil phase and Zn 2+ or NH 3·H 2O aqueous solution as dispersive phase, respectively. The products were characterized by Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray Powder Diffraction. It was suggested that the as-synthesized silica nanospheres possessed grape-stone-like porous or single hollow interior, and also found that the ammonia dosage and aging time played key roles in controlling the size and structure of silica nanospheres. Furthermore, the comparative results confirmed that in-situ zinc species [ZnO/Zn(OH) 2] acted as the temporary templates to construct grape-stone-like interior, and a simultaneously competing etching process occurred owing to the soluble Zn(NH 3) 42+ complex formation while the additional excessive ammonia was introduced. With the aging time being extended, the in-situ nanocrystals tended to grow into bigger ones by Ostwald Ripening, producing single hollow interior.

  10. Transition metal HE`s - VII ACP. Progress report, August 1971--October 1971

    SciTech Connect

    Clink, G.L.

    1998-12-31

    Physical and physicochemical properties of hexaamminechromium III perchlorate (ACP) were investigated to determine its potentiality for HE and/or HE component application. Physicochemical properties obtained through investigation of isothermally aged ACP under conditions of various system and boundary restrictions (open and closed; 50 and 80 C; 0.65 and 0.85 g/cc) show the material to be substantially stable under these simulated isothermal storage conditions from a standpoint of infrared and DTA thermal pattern behavior and chemical analysis of aged residues. Spark sensitivity was 0.25 joules at 5 kv (by LASL type test) and impact sensitivity was about 23 and 14 cm on sandpaper (12A) and steel (12B), respectively.

  11. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders

    NASA Astrophysics Data System (ADS)

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J.; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-08-01

    A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields.A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then

  12. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  13. A 12-Week Assessment of the Treatment of White Spot Lesions with CPP-ACP Paste and/or Fluoride Varnish

    PubMed Central

    Güçlü, Zeynep Aslı; Alaçam, Alev

    2016-01-01

    This 12-week clinical study evaluated the impact of 10% CPP-ACP and 5% sodium fluoride varnish regimes on the regression of nonorthodontic white spot lesions (WSLs). The study included 21 children with 101 WSLs who were randomised into four treatment regimes: weekly clinical applications of fluoride varnish for the first month (FV); twice daily self-applications of CPP-ACP paste (CPP-ACP); weekly applications of fluoride varnish for the first month and twice daily self-applications of CPP-ACP paste (CPP-ACP-FV); and no intervention (control). All groups undertook a standard oral hygiene protocol and weekly consultation. Visual appraisals and laser fluorescence (LF) measurements were made in weeks one and twelve. The majority of WSLs in the control and FV groups exhibited no shift in appearance, whereas, in the CPP-ACP and CPP-ACP-FV groups, the lesions predominantly regressed. The visual and LF assessments indicated that the extent of remineralisation afforded by the treatments was of the following order: control ~ FV < CPP-ACP ~ CPP-ACP-FV. Self-applications of CPP-ACP paste as an adjunct to standard oral hygiene significantly improved the appearance and remineralisation of WSLs. No advantage was observed for the use of fluoride varnish as a supplement to either the standard or CPP-ACP-enhanced oral hygiene regimes. PMID:27843950

  14. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres.

    PubMed

    Iram, Mahmood; Guo, Chen; Guan, Yueping; Ishfaq, Ahmad; Liu, Huizhou

    2010-09-15

    Fe(3)O(4) hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe(3)O(4) hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 degrees C and pH 6, was found to be 105 mg g(-1). Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe(3)O(4) nanospheres can be useful as a powerful separation tool to deal with environmental pollution.

  15. Effect of CPP-ACP paste on dental caries in primary teeth: a randomized trial.

    PubMed

    Sitthisettapong, T; Phantumvanit, P; Huebner, C; Derouen, T

    2012-09-01

    This clinical trial tested the effect of daily application of 10% w/v calcium phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste for 1 yr when added to regular toothbrushing with fluoridated toothpaste to prevent dental caries in pre-school children. High-caries-risk children aged 2½ to 3½ yrs in a suburban area of central Thailand were assigned to receive either CPP-ACP (n = 150) or a placebo control (n = 146) in addition to fluoridated toothpaste. The International Caries Detection and Assessment System (ICDAS) was recorded at baseline, 6 mos, and 1 yr. At 1 yr, a significant increase in mean numbers of enamel and dentin caries lesions, as well as dmfs, was found in both groups (p < 0.001). No significant difference was observed between groups on these 3 outcome measures (p = 0.23, 0.84, and 0.91, respectively). The odds of enamel caries lesion transitions to a state of regression or stability, compared with progression from baseline, was also not different between groups [OR = 1.00, 95% CI (0.86, 1.17)]. This trial found that daily application of 10% w/v CPP-ACP paste on school days for 1 yr, when added to regular toothbrushing with a fluoride toothpaste, had no significant added effect in preventing caries in the primary dentition of these pre-school children (ClinicalTrials.gov number CT01 604109).

  16. Histochemical localization and characterization of AKP, ACP, NSE, and POD from cultured Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Li, Jiye; Sun, Xiuqin; Zheng, Fengrong; Sun, Hushan

    2009-09-01

    We investigated the distribution of four enzymes involved in the immune response of Apostichopus japonicus. We collected samples of the tentacles, papillate podium, integument, respiratory tree, and digestive tract and stained them for acid phosphatase (ACP), alkaline phosphatase (AKP), non-specific esterase (NSE) and peroxidase (POD) activity. The distribution and content of ACP, AKP, NSE, and POD differed among the tissues. The coelomic epithelium of the tentacle, papillate podium, and integument and the mucous layer of respiratory tree were positive for ACP activity. The coelomic epithelium and cuticular layer of the tentacle, papillate podium, and integument and the mucous layer and tunica externa of the respiratory tree and digestive tract stained positive or weakly positive for AKP activity. Almost all the epithelial tissues stained positive, strongly positive, or very strongly positive for NSE activity. The cuticular layer of the tentacle and integument and the mucous layer, tunica submucosa, and tunica externa of the respiratory tree and digestive tract stained positive for POD activity. We hypothesize that these enzymes play a role in the immune response in A. japonicus.

  17. The influence of powdered coconut water (ACP-318®) in in vitro maturation of canine oocytes.

    PubMed

    Silva, A E F; Cavalcante, L F; Rodrigues, B A; Rodrigues, J L

    2010-12-01

    The objective of this study was to determine the influence of powdered coconut water (ACP-318(®)) diluted in high glucose (11.0 mM) TCM199 in the achievement of nuclear in vitro maturation (IVM) of canine oocytes. Cumulus oocyte complexes (COCs) (n = 632) were randomly allocated into three experimental groups named as group 1 (control group), group 2 (5% powdered coconut water) and group 3 (10% powdered coconut water). The percentage of meiotic resumption (MR) (GVBD to MII) was 39.1% (81/207), 50.2% (108/215) and 46.6% (98/210) for groups 1, 2 and 3 respectively (p < 0.05). There were no differences in MR rates among groups 2 and 3. The medium with ACP-318(®) slightly enhanced the nuclear maturation of canine oocytes when a comparison was established with rates of maturation exhibited by oocytes in the experimental group 1 without ACP-318(®) (p < 0.05). The results suggest that oocytes' nuclear morphology integrity and meiosis achievement were positively influenced when exposed to high glucose TCM199 supplemented with 5% powdered coconut water. Further investigation must be performed for a better understanding of powdered coconut water influence in cellular events during IVM of dog oocytes.

  18. The Joint Polar Satellite System (JPSS) Program's Algorithm Change Process (ACP): Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Griffin, Ashley

    2017-01-01

    The Joint Polar Satellite System (JPSS) Program Office is the supporting organization for the Suomi National Polar Orbiting Partnership (S-NPP) and JPSS-1 satellites. S-NPP carries the following sensors: VIIRS, CrIS, ATMS, OMPS, and CERES with instruments that ultimately produce over 25 data products that cover the Earths weather, oceans, and atmosphere. A team of scientists and engineers from all over the United States document, monitor and fix errors in operational software code or documentation with the algorithm change process (ACP) to ensure the success of the S-NPP and JPSS 1 missions by maintaining quality and accuracy of the data products the scientific community relies on. This poster will outline the programs algorithm change process (ACP), identify the various users and scientific applications of our operational data products and highlight changes that have been made to the ACP to accommodate operating system upgrades to the JPSS programs Interface Data Processing Segment (IDPS), so that the program is ready for the transition to the 2017 JPSS-1 satellite mission and beyond.

  19. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  20. Membrane-Based Gas Separation Accelerated by Hollow Nanosphere Architectures

    SciTech Connect

    Zhang, Jinshui; Schott, Jennifer Ann; Li, Yunchao; Zhan, Wangcheng; Mahurin, Shannon M.; Nelson, Kimberly; Sun, Xiao-Guang; Paranthaman, Mariappan Parans; Dai, Sheng

    2016-11-15

    We report that the coupling of hollow carbon nanospheres with triblock copolymers is a promising strategy to fabricate mixed-matrix membranes, because the symmetric microporous shells combine with the hollow space to promote gas transport and the unique soft-rigid molecular structure of triblock copolymers can accommodate a high loading of fillers without a significant loss of mechanical strength.

  1. Nitrogen-doped carbon nanospheres derived from cocoon silk as metal-free electrocatalyst for glucose sensing.

    PubMed

    Li, Tongtong; Li, Yahang; Wang, Chunyu; Gao, Zhi-Da; Song, Yan-Yan

    2015-11-01

    Nitrogen-doped carbon materials have attracted tremendous attention because of their high activity in electrocatalysis. In the present work, cocoon silk -- a biomass material is used to prepare porous carbon fibers due to its abundant nitrogen content. The as-prepared carbon microfibers have been activated and disintegrated into carbon nanospheres (CNS) with a diameter of 20--60 nm by a simple nitric acid refluxing process. Considering their excellent electrocatalytic activity towards the reduction of oxygen, the CNS modified electrodes are further applied in the construction of glucose amperometric biosensor using glucose oxidase as a model. The proposed biosensor exhibits fast response, high sensitivity, good stability and selectivity for glucose detection with a wide linear range from 79.7 to 2038.9 μM, and a detection limit of 39.1 μM. The performance is comparable to leading literature results indicating a great potential for electrochemical sensing application.

  2. Developmental induction, purification, and further characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica.

    PubMed

    Davies, H M; Anderson, L; Fan, C; Hawkins, D J

    1991-10-01

    The fatty acyl content of developing cotyledons of Umbellularia californica (California Bay) changes from a long-chain composition to a predominance of 10:0 and 12:0 in just 4-5 days at the beginning of an approximately 100-day period of medium-chain deposition. This striking change occurs at the earliest appearance of 12:0-acyl-carrier protein (ACP) thioesterase activity. The coincidence of these rapid events is consistent with the hypothesis that the enzyme plays a major role in medium-chain biosynthesis. The 12:0-ACP thioesterase has been substantially purified; enzyme activity consistently comigrates in chromatographic and electrophoretic systems with a protein or pair of proteins having an apparent molecular weight of approximately 34 kDa. A native molecular weight of approximately 42 kDa has been estimated by gel filtration chromatography, suggesting that the enzyme is a monomer. Affinity chromatography on immobilized ACP is a critical step in the purification procedure, and resolves the 12:0-ACP and 18:1-ACP thioesterases sufficiently to confirm that the medium-chain enzyme has negligible action on 18:1-ACP.

  3. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition.

    PubMed

    Moreno-Pérez, Antonio J; Sánchez-García, Alicia; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2011-01-01

    The mechanisms by which macadamia nuts accumulate the unusual palmitoleic and asclepic acyl moieties, which constitute up to 20% of the fatty acids in some varieties, are still unknown. Acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) are intraplastidial enzymes that terminate the synthesis of fatty acids in plants and that facilitate the export of the acyl moieties to the endoplasmic reticulum where they can be used in the production of glycerolipids. Here, we have investigated the possible role of acyl-ACP thioesterase activity in the composition of macadamia kernel oil. Accordingly, two acyl-ACP thioesterases were cloned from developing macadamia kernels, one of the FatA type and the other of the FatB type. These enzymes were heterologously expressed in Escherichia coli, and the recombinant thioesterases were purified, characterized kinetically and assayed with a variety of substrates, demonstrating the high specificity of macadamia FatA towards 16:1-ACP. Acyl-ACP thioesterase activity was also characterized in crude extracts from two different varieties of macadamia, Cate and Beaumont, which accumulate different amounts of n-7 fatty acids. The impact of acyl-ACP thioesterase activities on the oil composition of these kernels is discussed in the light of these results.

  4. Intravaginal artificial insemination in bitches using frozen/thawed semen after dilution in powdered coconut water (ACP-106c).

    PubMed

    Uchoa, D C; Silva, T F P; Mota Filho, A C; Silva, L D M

    2012-12-01

    The aim of this study was to evaluate powdered coconut water extender (ACP-106c; ACP Serviços Tecnológicos Ltda, ACP Biotecnologia, Fortaleza, Ceará, Brazil) as a diluent for freezing dog semen and the fertility after vaginal insemination of semen frozen therein. Ten ejaculates were collected from five dogs, evaluated fresh, diluted in ACP-106c, 10% egg yolk and 6% glycerol, cooled and frozen. In the first phase of the study, straws with frozen semen were thawed and immediately subjected to the same analysis as the fresh semen and, in addition, to Computer-Assisted Semen Analysis (CASA). In phase 2, 10 bitches that had been subjected to natural breeding during a preceding oestrous cycle were vaginally inseminated with thawed semen that had been re-diluted in ACP-106c. After thawing, a mean of 77% sperm motility was obtained through subjective analysis and 77.3% through CASA. Following artificial insemination, a 60% pregnancy rate was observed, resulting in a 50% parturition rate and a mean litter size of 3.4 (SEM 0.6), with 47.1% males and 52.9% females. ACP-106c can be successfully used for freezing canine semen, and vaginal deposition of such semen yields similar pregnancy rates to those reported in other studies.

  5. WE-G-BRE-08: Radiosensitization by Olaparib Eluting Nanospheres

    SciTech Connect

    Tangutoori, S; Kumar, R; Sridhar, S; Korideck, H; Makrigiorgos, G; Cormack, R

    2014-06-15

    Purpose: Permanent prostate brachytherapy often uses inert bio-absorbable spacers to achieve the desired geometric distribution of sources within the prostate. Transforming these spacers into implantable nanoplatforms for chemo-radiation therapy (INCeRT) provides a means of providing sustained in-situ release of radiosensitizers in the prostate to enhance the therapeutic ratio of the procedure. Olaparib, a PARP inhibitor, suppresses DNA repair processes present during low dose rate continuous irradiation. This work investigates the radiosensitizing/DNA damage repair inhibition by NanoOlaparib eluting nanospheres. Methods: Human cell line PC3 (from ATCC), was maintained in F12-k medium supplemented with fetal bovine serum. Clonogenic assay kit (from Fischer Scientific) was used to fix and stain the cells to determine the long term effects of irradiation. Nanoparticle size and zeta potential of nanospheres were determined using a Zeta particle size analyzer. The incorporation of Olaparib in nanospheres was evaluated by HPLC. Irradiation was performed in a small animal irradiator operating at 220 KeV.The long term effects of radio-sensitization with olaparib and nanoolaparib was determined using the clonogenic assay at 2 Gy and 4 Gy doses. The cells were allowed to grow for around 10 doubling cycles, The colonies were fixed and stained using clonogenic assay kit. The excess stain was washed off using DI water and the images were taken using a digital camera. Results: Radiosensitization studies were carried out in prostate cancer cell line, PC3 radiation at 0, 2 and 4Gy doses. Strongest dose response was observed with nanoolaparib treated cells compared to untreated cells. Conclusion: A two stage drug release of drug eluting nanospheres from a biodegradable spacer has been suggested for sustained in-situ release of Olaparib to suppress DNA repair processes during prostate brachytherapy. The Olaparib eluting nanospheres had the same in-vitro radiosensitizing effect as

  6. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders.

    PubMed

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-09-21

    A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields.

  7. Ultra-small and anionic starch nanospheres: formation and vitro thrombolytic behavior study.

    PubMed

    Huang, Yinjuan; Ding, Shenglong; Liu, Mingzhu; Gao, Chunmei; Yang, Jinlong; Zhang, Xinjie; Ding, Bin

    2013-07-25

    This paper is considered as the first report on the investigation of nattokinase (NK) release from anionic starch nanospheres. The ultra-small and anionic starch nanospheres were prepared by the method of reverse micro-emulsion crosslinking in this work. Starch nanospheres were characterized through Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). Effects of preparation conditions on particle size were studied. The cytotoxicity, biodegradable and vitro thrombolytic behaviors of nattokinase (NK) loaded anionic starch nanospheres were also studied. The results showed that the anionic starch nanospheres are non-toxic, biocompatible and biodegradable. Moreover, the anionic starch nanospheres can protect NK from fast biodegradation hence prolongs the circulation in vivo and can reduce the risk of acute hemorrhage complication by decreasing the thrombolysis rate.

  8. Utilization of microfluidic V-junction device to prepare surface itraconazole adsorbed nanospheres.

    PubMed

    Kucuk, Israfil; Ahmad, Zeeshan; Edirisinghe, Mohan; Orlu-Gul, Mine

    2014-09-10

    Itraconazole is widely used as an anti-fungal drug to treat infections. However, its poor aqueous solubility results in low bioavailability. The aim of the present study was to improve the drug release profile by preparing surface itraconazole adsorbed polymethylsilsesquioxane (PMSQ) nanospheres using a V-junction microfluidic (VJM) device. In order to generate nanospheres with rough surface, the process flow rate of perfluorohexane (PFH) was set between 50 and 300 μl min(-1) while the flow rate of PMSQ and itraconazole solution were constant at 300 μl min(-1). Variations in the PFH flow rate enable the controlled size generation of nanospheres. PMSQ nanospheres adsorbing itraconazole were characterized by SEM, FTIR and Zetasizer. The release of itraconazole from PMSQ nanosphere surface was measured using UV spectroscopy. Nanosphere formulations with a range of sphere size (120, 320 and 800 nm diameter) were generated and drug release was studied. 120 nm itraconazole coated PMSQ nanospheres were found to present highest drug encapsulation efficiency and 13% drug loading in a more reproducible manner compared to 320 nm and 800 nm sized nanosphere formulations. Moreover, 120 nm itraconazole coated PMSQ nanospheres (encapsulation efficiency: 88%) showed higher encapsulation efficiency compared to 320 nm (encapsulation efficiency: 74%) and 800 nm (encapsulation efficiency: 62%) sized nanosphere formulations. The itraconazole coated PMSQ nanospheres were prepared continuously at the rate of 2.6 × 10(6) per minute via VJM device. Overall the VJM device enabled the preparation of monodisperse surface itraconazole adsorbed nanospheres with controlled in vitro drug release profile.

  9. Identification of Genes Required for Secretion of the Francisella Oxidative Burst-Inhibiting Acid Phosphatase AcpA

    PubMed Central

    Hoang, Ky Van; Chen, Carolyn G.; Koopman, Jacob; Moshiri, Jasmine; Adcox, Haley E.; Gunn, John S.

    2016-01-01

    Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI)-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant) AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease) and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses. PMID:27199935

  10. Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries

    PubMed Central

    Wang, Yun-Xiao; Yang, Jianping; Chou, Shu-Lei; Liu, Hua Kun; Zhang, Wei-xian; Zhao, Dongyuan; Dou, Shi Xue

    2015-01-01

    Sodium–metal sulfide battery holds great promise for sustainable and cost-effective applications. Nevertheless, achieving high capacity and cycling stability remains a great challenge. Here, uniform yolk-shell iron sulfide–carbon nanospheres have been synthesized as cathode materials for the emerging sodium sulfide battery to achieve remarkable capacity of ∼545 mA h g−1 over 100 cycles at 0.2 C (100 mA g−1), delivering ultrahigh energy density of ∼438 Wh kg−1. The proven conversion reaction between sodium and iron sulfide results in high capacity but severe volume changes. Nanostructural design, including of nanosized iron sulfide yolks (∼170 nm) with porous carbon shells (∼30 nm) and extra void space (∼20 nm) in between, has been used to achieve excellent cycling performance without sacrificing capacity. This sustainable sodium–iron sulfide battery is a promising candidate for stationary energy storage. Furthermore, this spatially confined sulfuration strategy offers a general method for other yolk-shell metal sulfide–carbon composites. PMID:26507613

  11. A Novel Technique for Visualizing the Intralymphatic Primo Vascular System by Using Hollow Gold Nanospheres.

    PubMed

    Carlson, Eric; Perez-Abadia, Gustavo; Adams, Staci; Zhang, Jin Z; Kang, Kyung A; Maldonado, Claudio

    2015-12-01

    Until recently, the primo vascular system (PVS) has been unnoticed by most anatomists due to the small diameter and translucent features of the threadlike network. These properties make primo vessels (PVs) difficult to visualize for harvest and for further characterization. One particular PVS subtype that is located within the lymphatic vessels (LVs) is of strong interest because with a proper contrast, these long PVs can be visualized through the transparent LV wall and can be harvested to provide sufficient sample material for analysis. The most common method to visualize this PVS subtype utilizes Alcian blue as the contrast agent. This technique is effective, but tedious, and has relatively low repeatability. The purpose of this study was to develop a new technique that allows reliable visualization of the intralymphatic PVS (IL-PVS) in a user-friendly manner. The method was designed to provide optical contrast to the PVS by taking advantage of the porous nature of the PV's external wall and interstitial matrix. Turquoise-green-colored hollow gold nanospheres (HGNs) in the size range of 50-125 nm were found to provide excellent optical contrast for the IL-PVS in rats. The PVS was visualized within 10 minutes after HGN administration at a 95% success rate.

  12. Remineralizing efficacy of a CPP-ACP cream on enamel caries lesions in situ.

    PubMed

    Meyer-Lueckel, Hendrik; Wierichs, Richard J; Schellwien, Timo; Paris, Sebastian

    2015-01-01

    The aim of this double-blind, randomized, cross-over in situ study was to compare the remineralizing effects induced by the application of casein phosphopeptide-stabilized amorphous calcium phosphate complexes (CPP-ACP)-containing cream (without fluoride) after the use of fluoride toothpaste with the prolonged use of fluoride toothpaste on enamel caries lesions in situ. During each of three experimental legs of 4 weeks, 13 participants wore intra-oral mandibular appliances with 8 pre-demineralized bovine enamel specimens in the vestibular flanges mimicking either 'easily cleanable' or 'proximal' surfaces (n = 312). The three randomly allocated treatments were as follows: (1) application of CPP-ACP-containing cream (GC Tooth Mouse, non-fluoride) after the use of fluoride toothpaste (1,400 ppm NaF; TM), (2) prolonged application of fluoride toothpaste (1,400 ppm NaF; positive control, PC) and (3) prolonged application of fluoride-free toothpaste (negative control, NC). Additionally, one of each of the two flanges was brushed twice daily with the respective toothpaste. The differences in integrated mineral loss as assessed by transversal microradiography were calculated between values before and after the in situ period. Changes in mineral loss were analysed for those pairs of subgroups differing in only one of the three factors (intervention, brushing and position). The PC treatment induced a significantly higher mineral gain compared with the TM and NC treatments. No significant differences between TM and NC for both positions were observed. In conclusion, the additional use of a CPP-ACP-containing cream seems to be less efficacious in remineralizing caries lesions than the prolonged application of fluoride toothpaste.

  13. Combining CPP-ACP with fluoride: a synergistic remineralization potential of artificially demineralized enamel or not?

    NASA Astrophysics Data System (ADS)

    El-Sayad, I. I.; Sakr, A. K.; Badr, Y. A.

    2008-08-01

    Background and objective: Minimal intervention dentistry (MID) calls for early detection and remineralization of initial demineralization. Laser fluorescence is efficient in detecting changes in mineral tooth content. Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP- ACP) which delivers calcium and phosphate ions to enamel. A new product which also contains fluoride is launched in United States. The remineralizing potential of CPP- ACP per se, or when combined with 0.22% Fl supplied in an oral care gel on artificially demineralised enamel using laser fluorescence was investigated. Methods: Fifteen sound human molars were selected. Mesial surfaces were tested using He-Cd laser beam at 441.5nm with 18mW power as excitation source on a suitable set-up based on Spex 750 M monochromator provided with PMT for detection of collected auto-fluorescence from sound enamel. Mesial surfaces were subjected to demineralization for ten days. The spectra from demineralized enamel were measured. Teeth were then divided according to the remineralizing regimen into three groups: group I recaldent per se, group II recaldent combined with fluoride gel and group III artificial saliva as a positive control. After following these protocols for three weeks, the spectra from remineralized enamel from the three groups were measured. The spectra of enamel auto-fluorescence were recorded and normalized to peak intensity at about 540 nm to compare between spectra from sound, demineralized and remineralized enamel surfaces. Results: A slight red shift was noticed in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group II showed the highest remineralizing potential. Conclusions: Combining fluoride with CPP-ACP had a synergistic effect on enamel remineralization. In addition, laser auto-fluorescence is an accurate technique for assessment of changes in tooth enamel minerals.

  14. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    NASA Astrophysics Data System (ADS)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-06-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  15. A facile method for synthesis of polyaniline nanospheres and effect of doping on their electrical conductivity

    PubMed Central

    Neelgund, Gururaj M.; Oki, Aderemi

    2011-01-01

    The synthesis of polyaniline (PANI) nanospheres by a simple template-free method has been described. The polymerization of aniline in aqueous medium was accomplished using ammonium persulfate without any protonic acid. The UV-vis spectrum of PANI nanospheres displayed the characteristic absorption peak of π-π* transition of the benzenoid ring at 355 nm. The oxidation state of PANI nanospheres was identified with FT-IR spectroscopy by comparing the two bands at 1582 (ring stretching in quinoid unit) and 1498 cm−1 (ring stretching in bezenoid unit). The X-ray diffraction patterns demonstrated the low crystalline nature of PANI nanospheres. The morphology of PANI nanospheres was spherical and the mean diameter of nanospheres was found in the range of 3-12 nm. The thermal behavior of PANI nanospheres was studied by thermogravimetric analysis. The effect of doping of HCl and H2SO4 on PANI nanospheres was studied by measuring the current as a function of time of exposure. The high electrical conductivity of 6×10−2 S cm−1 was obtained for PANI nanospheres at their optimum doping state by 100 ppm HCl. PMID:21966097

  16. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    SciTech Connect

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Liu, Gao; Zhao, Peng; Zhang, Sulin; Wang, Chong M.; Lu, Yunfeng; Cai, Mei

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-level outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. We find the low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.

  17. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    DOE PAGES

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; ...

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-levelmore » outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. We find the low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.« less

  18. Simulated Investigation of Optical Properties in Noble Metallic Alloy Nanosphere

    NASA Astrophysics Data System (ADS)

    Luo, D.; Liu, J.; Feng, H.

    2016-01-01

    Extinction efficiencies of Ag-Cu and Ag-Au alloy nanospheres are studied based on the Mie theory. The effect of the radius size and the alloy composition on the extinction efficiency has been considered. In alloy nanoparticles such as Ag x Au 1-x nanospheres, the extinction efficiencies vary with the Ag component x. The full width half maxima of the extinction efficiency band becomes broad with decrease in x, however the extinction peak value decreases at the same time. The optimal radius was investigated when double equal extinction peaks arise and the modulation effect of the extinction efficiencies was found. While the Ag component x increases, the extinction peak value becomes greater, but the separation distance between the peaks decreases.

  19. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    PubMed

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  20. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

    PubMed Central

    Holban, Alina Maria; Grumezescu, Valentina; Vasile, Bogdan Ştefan; Truşcă, Roxana; Cristescu, Rodica; Socol, Gabriel; Iordache, Florin

    2014-01-01

    Summary We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections. PMID:24991524

  1. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique.

    PubMed

    Holban, Alina Maria; Grumezescu, Valentina; Grumezescu, Alexandru Mihai; Vasile, Bogdan Ştefan; Truşcă, Roxana; Cristescu, Rodica; Socol, Gabriel; Iordache, Florin

    2014-01-01

    We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections.

  2. Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia.

    SciTech Connect

    Liu, X.; Novosad, V.; Rozhkova, E. A.; Chen, H.; Yefremenko, V.; Pearson, J.; Torno, M.; Bader, S. D.; Rosengart, A. J.; Univ. Chicago Pritzker School of Medicine

    2007-06-01

    We report a simplified single emulsion (oil-in-water) solvent evaporation protocol to synthesize surface functionalized biocompatible magnetic nanospheres by using highly concentrated hydrophobic magnetite (gel) and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol-maleimide) (PLA-PEG-maleimide) (10:1 by mass) polymers. The as-synthesized particles are approximately spherical with an average diameter of 360-370 nm with polydispersity index of 0.12-0.18, are surface-functionalized with maleimide groups, and have saturation magnetization values of 25-40 emu/g. The efficiency of the heating induced by 400-kHz oscillating magnetic fields is compared for two samples with different magnetite loadings. Results show that these nanospheres have the potential to provide an efficient cancer-targeted hyperthermia.

  3. ACP1 Genetic Polymorphism and Coronary Artery Disease: Evidence of Effects on Clinical Parameters of Cardiac Function

    PubMed Central

    Gloria-Bottini, Fulvia; Banci, Maria; Saccucci, Patrizia; Nardi, Paolo; Scognamiglio, Mattia; Papetti, Federica; Adanti, Sara; Magrini, Andrea; Pellegrino, Antonio; Bottini, Egidio; Chiariello, Luigi

    2013-01-01

    Background Kinases and phosphatases have an important role in the susceptibility and clinical variability of cardiac diseases. We have recently reported an association between a phosphoprotein phosphatase controlled by Acid Phosphatase locus 1 (ACP1), and Coronary artery disease (CAD) suggesting an effect on the susceptibility to this disease. In the present note we have investigated a possible role of ACP1 in the variability of clinical parameters of cardiac function. Methods We have studied 345 subjects admitted to Valmontone Hospital for cardiovascular diseases: 202 subjects with CAD and 143 without CAD, 53 subjects admitted to Cardiac Surgery Division of Tor Vergata University were also considered. Results In diabetic patients with CAD there is a significant negative association between Left ventricular ejection fraction (LVEF) and ACP1 S isoform concentration. Genotypes with high S isoform concentration show a lower value of LVEF as compared to genotypes with low S isoform concentration. We have also found a significant positive association between cNYHA class and ACP1 S isoform. After surgical intervention, in subjects with high S isoform concentration the decrease of LVEF is more marked as compared to subjects with low S isoform concentration. Overall these observations indicate that high S isoform activity has negative effects on cardiac function. The observation in patients undergoing cardiac surgery confirms the negative association between high S isoform activity and LVEF. Conclusions The present study suggests that ACP1 influences both susceptibility to CAD and clinical manifestations of the disease.

  4. Short-term storage of canine preantral ovarian follicles using a powdered coconut water (ACP)-based medium.

    PubMed

    Lima, G L; Costa, L L M; Cavalcanti, D M L P; Rodrigues, C M F; Freire, F A M; Fontenele-Neto, J D; Silva, A R

    2010-07-01

    The objective was to investigate the use of powdered coconut water (ACP)-based medium for short-term preservation of canine preantral follicles. Pairs of ovaries from mongrel bitches (n=9) were divided into fragments. One ovarian fragment, treated as a fresh control, was immediately fixed for histological analysis, whereas the other six ovarian fragments were stored either in phosphate-buffered saline (PBS; control group) or ACP medium in isothermal Styrofoam boxes containing biological ice packs. The boxes were sealed and opened only after 12, 24, or 36h. After opening each box, the ovarian fragments were submitted to histological analysis. In total, 12,302 preantral follicles were evaluated, with 64.5% primordial, 33.3% primary, and 2.3% secondary follicles. There were multiple oocytes in 1.3% of the follicles analyzed. At 24h, ACP was more efficient in preserving follicular morphology than PBS (P<0.05). Compared with the fresh control group, a significant reduction in the percentage of morphologically normal ovarian follicles was observed for PBS, starting at 24h; however, the decline started only at 36h for the ACP medium. During the experiment, the temperature inside the isothermal boxes increased from 3 to 9 degrees C (P<0.05), despite a constant room temperature. In conclusion, powdered coconut water (ACP) was an appropriate medium for short-term storage of canine preantral ovarian follicles.

  5. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.

    PubMed

    Rodríguez-Rodríguez, Manuel Fernando; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2014-11-01

    Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results.

  6. Optimization of Broadband Optical Response of Multilayer Nanospheres

    DTIC Science & Technology

    2012-07-27

    optimization-based theoretical approach to tailor the optical response of silver /silica multilayer nanospheres over the visible spectrum. We show that the...structure that provides the largest cross-section per volume/mass, averaged over a wide frequency range, is the silver coated silica sphere. We also show...Lett. 104, 207402 (2010). 2. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods : From synthesis and properties to biological and biomedical

  7. Controlled preparation of porous TiO2-Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis.

    PubMed

    Fei, Jinbo; Li, Junbai

    2015-01-14

    By templating Ag(+)-induced supramolecular assembly at different temperatures, porous TiO2-Ag nanotubes and nanospheres are fabricated in a controlled manner due to the effect of Rayleigh instability. Compared with traditional TiO2 nanoparticles, TiO2-Ag nanostructures above show much more extensive visible light absorption and exhibit the noticeably plasmon-enhanced photocatalysis because of the existence of Ag nanoparticles.

  8. Hyperspectral Dark Field Optical Microscopy of Single Silver Nanospheres

    SciTech Connect

    El-Khoury, Patrick Z.; Joly, Alan G.; Hess, Wayne P.

    2016-04-07

    We record spectrally (400 nm ≤ λ ≤ 675 nm, Δλ < 4.69 nm) and spatially (diffraction-limited, sampled at 85 nm2/pixel) resolved dark field (DF) scattering from single silver nanospheres of 100 nm in diameter. Hyperspectral DF optical microscopy is achieved by coupling a hyperspectral detector to an optical microscope, whereby spectrally resolved diffraction-limited images of hundreds of silver nanoparticles can be recorded in ~30 seconds. We demonstrate how the centers and edges of individual particles can be localized in 2D to within a single pixel (85 nm2), using a statistical method for examining texture based on a co-occurrence matrix. Subsequently, spatial averaging of the spectral response in a 3x3 pixel area around the particle centers affords ample signal-to-noise to resolve the plasmon resonance of a single silver nanosphere. A close inspection of the scattering spectra of 31 different nanospheres reveals that each particle has its unique (i) relative scattering efficiency, and (ii) plasmon resonance maximum and dephasing time. These observations are suggestive of nanometric structural variations over length scales much finer than the spatial resolution attainable using the all-optical technique described herein.

  9. Physical and Chemical Changes of Polystyrene Nanospheres Irradiated with Laser

    SciTech Connect

    Mustafa, Mohd Ubaidillah; Juremi, Nor Rashidah Md.; Mohamad, Farizan; Wibawa, Pratama Jujur; Agam, Mohd Arif; Ali, Ahmad Hadi

    2011-05-25

    It has been reported that polymer resist such as PMMA (Poly(methyl methacrylate) which is a well known and commonly used polymer resist for fabrication of electronic devices can show zwitter characteristic due to over exposure to electron beam radiation. Overexposed PMMA tend to changes their molecular structure to either become negative or positive resist corresponded to electron beam irradiation doses. These characteristic was due to crosslinking and scissors of the PMMA molecular structures, but till now the understanding of crosslinking and scissors of the polymer resist molecular structure due to electron beam exposure were still unknown to researchers. Previously we have over exposed polystyrene nanospheres to various radiation sources, such as electron beam, solar radiation and laser, which is another compound that can act as polymer resist. We investigated the physical and chemical structures of the irradiated polystyrene nanospheres with FTIR analysis. It is found that the physical and chemical changes of the irradiated polystyrene were found to be corresponded with the radiation dosages. Later, combining Laser irradiation and Reactive Ion Etching manipulation, created a facile technique that we called as LARIEA NSL (Laser and Reactive Ion Etching Assisted Nanosphere Lithography) which can be a facile technique to fabricate controllable carbonaceous nanoparticles for applications such as lithographic mask, catalysts and heavy metal absorbers.

  10. Recent Advances on Carbon Nanospheres. Synthetic Routes and Applications

    DOE PAGES

    Zhang, Pengfei; Qiao, Zhenan; Dai, Sheng

    2015-01-01

    Carbon-based materials are the most popular material types in both fundamental research and industrial applications, partly because of their well-controlled nano-morphologies. In the past two decades, we have witnessed a number of breakthroughs in carbon research: fullerenes, carbon nanotubes, and more recently graphene. Nowadays, carbon nanospheres are attracting more and more attention worldwide due to their excellent performance in various fields: drug delivery, heterogeneous catalysis, encapsulation of support and electrode materials. Actually, spherical carbon is an old material, whereas controlling carbon spheres in the nanometer range is a recent story. In the past 5 years, it has become possible tomore » precisely control the particle size, surface area, pore size, chemical composition, and dispersity of carbon nanospheres. Toward this end, a number of synthetic strategies are emerging, such as hydrothermal carbonization of biomass-based resources, extended Stöber synthesis, and organic–organic self-assembly via different binding methods. In this feature article, we summarize recent routes for carbon nanospheres and briefly touch on their applications to shed light on the potential of this field. Throughout this article, a special emphasis is placed on the possible modulation of spherical structures at the nanoscale, and we wish to inspire many more designs and applications of carbon nanostructures in the near future.« less

  11. Recent Advances on Carbon Nanospheres. Synthetic Routes and Applications

    SciTech Connect

    Zhang, Pengfei; Qiao, Zhenan; Dai, Sheng

    2015-01-01

    Carbon-based materials are the most popular material types in both fundamental research and industrial applications, partly because of their well-controlled nano-morphologies. In the past two decades, we have witnessed a number of breakthroughs in carbon research: fullerenes, carbon nanotubes, and more recently graphene. Nowadays, carbon nanospheres are attracting more and more attention worldwide due to their excellent performance in various fields: drug delivery, heterogeneous catalysis, encapsulation of support and electrode materials. Actually, spherical carbon is an old material, whereas controlling carbon spheres in the nanometer range is a recent story. In the past 5 years, it has become possible to precisely control the particle size, surface area, pore size, chemical composition, and dispersity of carbon nanospheres. Toward this end, a number of synthetic strategies are emerging, such as hydrothermal carbonization of biomass-based resources, extended Stöber synthesis, and organic–organic self-assembly via different binding methods. In this feature article, we summarize recent routes for carbon nanospheres and briefly touch on their applications to shed light on the potential of this field. Throughout this article, a special emphasis is placed on the possible modulation of spherical structures at the nanoscale, and we wish to inspire many more designs and applications of carbon nanostructures in the near future.

  12. The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes.

    PubMed

    El Mel, Abdel-Aziz; Nakamura, Ryusuke; Bittencourt, Carla

    2015-01-01

    Hollow nanostructures are ranked among the top materials for applications in various modern technological areas including energy storage devices, catalyst, optics and sensors. The last years have witnessed increasing interest in the Kirkendall effect as a versatile route to fabricate hollow nanostructures with different shapes, compositions and functionalities. Although the conversion chemistry of nanostructures from solid to hollow has reached a very advanced maturity, there is still much to be discovered and learned on this effect. Here, the recent progress on the use of the Kirkendall effect to synthesize hollow nanospheres and nanotubes is reviewed with a special emphasis on the fundamental mechanisms occurring during such a conversion process. The discussion includes the oxidation of metal nanostructures (i.e., nanospheres and nanowires), which is an important process involving the Kirkendall effect. For nanospheres, the symmetrical and the asymmetrical mechanisms are both reviewed and compared on the basis of recent reports in the literature. For nanotubes, in addition to a summary of the conversion processes, the unusual effects observed in some particular cases (e.g., formation of segmented or bamboo-like nanotubes) are summarized and discussed. Finally, we conclude with a summary, where the prospective future direction of this research field is discussed.

  13. Favoring the birth of female puppies after artificial insemination using chilled semen diluted with powdered coconut water (ACP-106c).

    PubMed

    Uchoa, Daniel Couto; da Silva, Ticiana Franco Pereira; Cardoso, Janaína de Fátima Saraiva; Mota Filho, Antônio Cavalcante; Jucá, Ricardo Parente; Silva, Alexandre Rodrigues; da Silva, Lúcia Daniel Machado

    2012-06-01

    The objective was to determine the effect of powdered coconut water extender (ACP-106c) on the proportion of female puppies born. Twenty French Bulldog bitches were subjected to natural mating (NM) and, during the subsequent two estrus periods, were bred by intravaginal artificial insemination (AI), using chilled semen (from the same males) diluted in Tris-egg yolk (AI-Tris) or ACP-106c (AI-ACP-106c). Fresh semen was cooled to 5 °C and maintained at that temperature for 6 h, rewarmed (37 °C for 30 s), and used for AI. Pregnancy and whelping rates following NM were both 100% and were both 90.0% following AI with either extender. Litter size (mean ± SD) was 5.4 ±1.1, 4.7 ± 2.0, and 5.1 ± 2.0 (P > 0.05) for NM, AI-Tris, and AI-ACP-106c, respectively. Furthermore, for these groups, the number of female vs. male puppies born were 2.6 ± 0.6 vs. 2.8 ± 1.0, 2.2 ± 1.0 vs. 2.5 ± 1.1, and 3.4 ± 1.6 vs. 1.8 ± 1.2 (P < 0.05 for AI-ACP-106c only). In conclusion, our hypothesis was supported; AI of semen in ACP-106c extender resulted in a significantly higher proportion of female puppies. Furthermore, this extender yielded acceptable litter size and rates of pregnancy and whelping.

  14. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    PubMed

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo.

  15. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    EPA Science Inventory

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  16. Water-soluble chitosan-quantum dot hybrid nanospheres toward bioimaging and biolabeling.

    PubMed

    Lin, Ying; Zhang, Luzhong; Yao, Wei; Qian, Hanqing; Ding, Dan; Wu, Wei; Jiang, Xiqun

    2011-04-01

    A facile approach to prepare CdSe/ZnS quantum dot-encapsulated chitosan hybrid nanospheres (CS-QD) is developed by utilizing ethanol-aided counterion complexation in aqueous solution. The obtained CS-QD hybrid nanospheres have not only the loading space provided by the chitosan spherical matrix for loading multiply QDs but also unique fluorescent properties provided by the encapsulated QDs. Moreover, these hybrid nanospheres possess good biocompatibility and optical stability in physiological environment. It is demonstrated that CS-QD hybrid nanospheres can be internalized by tumor cells and hence act as labeling agent in cell imaging by optical microscopy. In addition, CS-QD hybrid nanospheres can be used for imaging of tumor in tumor-bearing mice via intratumoral administration and can accumulate at tumor site via the blood circulation based on intravenous injection. Thus, on the one hand, chitosan nanospheres provide the protection in both colloidal and optical stability arising from QDs and offer biocompatibility. On the other hand, the encapsulated QDs light up polymer nanospheres and display the fate of polymer nanospheres in cells and bodies.

  17. Silicon nanospheres for directional scattering in thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Shokeen, Poonam; Jain, Amit; Kapoor, Avinashi

    2016-07-01

    Reducing active layer thickness of solar cell stresses on efficient light trapping mechanisms to keep the cell efficiency intact. Directional light scattering and promising refractive index of silicon nanoparticles make them encouraging scattering centers for thin-film silicon solar cells. Finite-difference time-domain simulations are used to study the optical properties of silicon nanospheres embedded in the top and bottom buffer layer of solar cells. Diameter of a silicon nanoparticle plays a crucial role in the forward and backward scattering of incident light into the cell. Silicon nanospheres outperform commonly used metallic and dielectric nanospheres and trapped the incident light over a broad spectrum. Silicon nanospheres require special attention when placed in both the buffer layers of the solar cell simultaneously, and lateral displacement of the silicon nanospheres at the top buffer layer with respect to nanospheres at the bottom buffer layer is beneficial. Lateral displacement of nanospheres provides a total quantum efficiency of 51.49% in comparison to 21.9% of the pristine cell. These exceptional scattering competencies of silicon nanospheres make them a promising candidate for photovoltaic applications. Silicon scatterers may be used with well-established fabrication techniques.

  18. Optimization of a simple technique for preparation of monodisperse poly(lactide-co-glycolide) nanospheres

    NASA Astrophysics Data System (ADS)

    Ito, Fuminori

    2016-09-01

    In this study, we report the optimization of a solvent evaporation technique for preparing monodisperse poly-(lactide-co-glycolide) (PLGA) nanospheres, from a mixture of solvents composed of ethanol and PVA solution. Various experimental conditions were investigated in order to control the particle size and size distribution of the nanospheres. In addition, nanospheres containing rifampicin (RFP, an antituberculosis drug), were prepared using PLGA of various molecular weights, to study the effects of RFP as a model hydrophobic drug. The results showed that a higher micro-homogenizer stirring rate facilitated the preparation of monodisperse PLGA nanospheres with a low coefficient of variation ( 20 %), with sizes below 200 nm. Increasing the PLGA concentration from 0.1 to 0.5 g resulted in an increase in the size of the obtained nanospheres from 130 to 174 nm. The molecular weight of PLGA had little effect on the particle sizes and particle size distributions of the nanospheres. However, the drug loading efficiencies of the obtained RFP/PLGA nanospheres decreased when the molecular weight of PLGA was increased. Based on these experiments, an optimized technique was established for the preparation of monodisperse PLGA nanospheres, using the method developed by the authors.

  19. Functionalization of Recombinant Amelogenin Nanospheres Allows Their Binding to Cellulose Materials.

    PubMed

    Butler, Samuel J; Bülow, Leif; Bonde, Johan

    2016-10-01

    Protein engineering to functionalize the self-assembling enamel matrix protein amelogenin with a cellulose binding domain (CBD) is used. The purpose is to examine the binding of the engineered protein, rh174CBD, to cellulose materials, and the possibility to immobilize self-assembled amelogenin nanospheres on cellulose. rh174CBD assembled to nanospheres ≈35 nm in hydrodynamic diameter, very similar in size to wild type amelogenin (rh174). Uniform particles are formed at pH 10 for both rh174 and rh174CBD, but only rh174CBD nanospheres showes significant binding to cellulose (Avicel). Cellulose binding of rh174CBD is promoted when the protein is self-assembled to nanospheres, compared to being in a monomeric form, suggesting a synergistic effect of the multiple CBDs on the nanospheres. The amount of bound rh174CBD nanospheres reached ≈15 mg/g Avicel, which corresponds to 4.2 to 6.3 × 10(-7) mole/m(2) . By mixing rh174 and rh174CBD, and then inducing self-assembly, composite nanospheres with a high degree of cellulose binding can be formed, despite a lower proportion of rh174CBD. This demonstrates that amelogenin variants like rh174 can be incorporated into the nanospheres, and still retain most of the binding to cellulose. Engineered amelogenin nanoparticles can thus be utilized to construct a range of new cellulose based hybrid materials, e.g. for wound treatment.

  20. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    NASA Astrophysics Data System (ADS)

    Seisno, Satoshi; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO2 nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO2 templates were fully coated with magnetite nanoparticles. Dissolution of the SiO2 core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe3O4 grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO2 templates contributed to the adsorption of the Fe ion precursor and/or Fe3O4 seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere.

  1. Mesoporous titanium zirconium oxide nanospheres with potential for drug delivery applications.

    PubMed

    Wang, Xiaojian; Chen, Dehong; Cao, Lu; Li, Yuncang; Boyd, Ben J; Caruso, Rachel A

    2013-11-13

    Mesoporous titanium zirconium (TiZr) oxide nanospheres with variable Ti to Zr ratios were synthesized using sol-gel chemistry followed by solvothermal treatment. These oxide nanospheres exhibited similar diameters (~360 nm), high surface areas (from 237 ± 2 to 419 ± 4 m(2) g(-1)), and uniform pore diameters (~3.7 nm). Three drugs, ibuprofen, dexamethasone, and erythromycin, were loaded into the TiZr oxide nanospheres. The TiZr oxide nanospheres exhibited a high loading capacity, up to 719 mg g(-1), and sustained release profiles in phosphate buffered saline (PBS) at pH 7.4. The mesoporous TiZr oxide nanospheres also exhibited hydrolytic stability, as evidenced by the retention of the integrity of the mesostructures after drug release in PBS for 21 days.

  2. Characterization of polylactic co-glycolic acid nanospheres modified with PVA and DDAB

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Satyapertiwi, Dwiantari; Devina, Ranee; Krisanti, Elsa

    2017-02-01

    The common treatment for diabetic retinopathy is corticosteroids intravitreal injection that sometimes lead to complications. Dexamethasone-loaded polylactic co-glycolic acid (PLGA) nanospheres, modified with dioctadecyldimethylammonium bromide (DDAB) as the cationic surfactant, is expected to prolong drug retention time. Zeta potential of the PLGA nanospheres prepared using non-ionic surfactant PVA and DDAB confirmed the cationic surfactant increase the surface charge of the PLGA nanospheres. The optimal formulation based on the particle size and high positive surface charge was the PLGA-DDAB nanospheres. SEM analysis showed spherical morphology of the nanospheres having diameter 626.9 ± 98.01 nm positive zeta potential of +22.5 mV.

  3. Enhanced Hot-Carrier Luminescence in Multilayer Reduced Graphene Oxide Nanospheres

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Zhang, Chunfeng; Xue, Fei; Zhou, Yong; Li, Wei; Wang, Ye; Tu, Wenguang; Zou, Zhigang; Wang, Xiaoyong; Xiao, Min

    2013-07-01

    We report a method to promote photoluminescence emission in graphene materials by enhancing carrier scattering instead of directly modifying band structure in multilayer reduced graphene oxide (rGO) nanospheres. We intentionally curl graphene layers to form nanospheres by reducing graphene oxide with spherical polymer templates to manipulate the carrier scattering. These nanospheres produce hot-carrier luminescence with more than ten-fold improvement of emission efficiency as compared to planar nanosheets. With increasing excitation power, hot-carrier luminescence from nanospheres exhibits abnormal spectral redshift with dynamic feature associated to the strengthened electron-phonon coupling. These experimental results can be well understood by considering the screened Coulomb interactions. With increasing carrier density, the reduced screening effect promotes carrier scattering which enhances hot-carrier emission from such multilayer rGO nanospheres. This carrier-scattering scenario is further confirmed by pump-probe measurements.

  4. A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system

    NASA Astrophysics Data System (ADS)

    Schindel, Daniel; Singh, Mahi R.

    2015-09-01

    We have studied energy absorption rate in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. We applied a control field to induce dipole moments in the quantum dot and the metal nanosphere, and monitored the energy absorption using a probe field. These external fields induce dipole moments in the metal nanosphere and the quantum dot, and these two structures interact with one another via the dipole-dipole interaction. The density matrix method was used to evaluate the absorption, indicating that it can be shifted by moving the metal nanosphere close to the quantum dot. Also, absorption efficiency can either be quenched or enhanced by the addition of a metal nanosphere. This hybrid system can be used to create ultrafast switching and sensing nanodevices.

  5. Poly(vinylimidazole) radiografted PVDF nanospheres as alternative binder for high temperature PEMFC electrodes

    NASA Astrophysics Data System (ADS)

    Galbiati, Samuele; Coulon, Pierre-Eugène; Rizza, Giancarlo; Clochard, Marie-Claude; Castellino, Micaela; Sangermano, Marco; Nayoze, Christine; Morin, Arnaud

    2015-11-01

    Within the framework of high-temperature polymer fuel cells doped with phosphoric acid, we investigate the replacement of the conventional binder in the catalyst layers by functionalized solid PVDF nanospheres. Aim of this study is to develop and test an innovative binder which might create enhanced electrode porosity and acid distribution. Aqueous suspensions of PVDF nanospheres (d ∼ 200 nm) are obtained by radical emulsion polymerization and are functionalized by Vinyl-Imidazole (VI) groups via in situ γ-radiation. As a consequence the nanospheres can interact with H3PO4 to obtain proton conductivity. Catalyst inks are prepared mixing the nanospheres with commercial Pt/C electrocatalyst powder, solvents and phosphoric acid. Prototype electrodes are deposited by spraying and preliminary fuel cell tests are carried out at 160 °C under dry H2/air. Electrodes with grafted PVDF nanospheres as solid binder are demonstrated and its understanding is in progress. Further improvements are outlined.

  6. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    PubMed Central

    Al-Amri, Amal M.; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%. PMID:27339612

  7. Chaplain Documentation and the Electronic Medical Record: A Survey of ACPE Residency Programs.

    PubMed

    Tartaglia, Alexander; Dodd-McCue, Diane; Ford, Timothy; Demm, Charles; Hassell, Alma

    2016-01-01

    This study explores the extent to which chaplaincy departments at ACPE-accredited residency programs make use of the electronic medical record (EMR) for documentation and training. Survey data solicited from 219 programs with a 45% response rate and interview findings from 11 centers demonstrate a high level of usage of the EMR as well as an expectation that CPE residents document each patient/family encounter. Centers provided considerable initial training, but less ongoing monitoring of chaplain documentation. Centers used multiple sources to develop documentation tools for the EMR. One center was verified as having created the spiritual assessment component of the documentation tool from a peer reviewed published model. Interviews found intermittent use of the student chart notes for educational purposes. One center verified a structured manner of monitoring chart notes as a performance improvement activity. Findings suggested potential for the development of a standard documentation tool for chaplain charting and training.

  8. Evaluation of the remineralization capacity of CPP-ACP containing fluoride varnish by different quantitative methods

    PubMed Central

    SAVAS, Selcuk; KAVRÌK, Fevzi; KUCUKYÌLMAZ, Ebru

    2016-01-01

    ABSTRACT Objective The aim of this study was to evaluate the efficacy of CPP-ACP containing fluoride varnish for remineralizing white spot lesions (WSLs) with four different quantitative methods. Material and Methods Four windows (3x3 mm) were created on the enamel surfaces of bovine incisor teeth. A control window was covered with nail varnish, and WSLs were created on the other windows (after demineralization, first week and fourth week) in acidified gel system. The test material (MI Varnish) was applied on the demineralized areas, and the treated enamel samples were stored in artificial saliva. At the fourth week, the enamel surfaces were tested by surface microhardness (SMH), quantitative light-induced fluorescence-digital (QLF-D), energy-dispersive spectroscopy (EDS) and laser fluorescence (LF pen). The data were statistically analyzed (α=0.05). Results While the LF pen measurements showed significant differences at baseline, after demineralization, and after the one-week remineralization period (p<0.05), the difference between the 1- and 4-week was not significant (p>0.05). With regards to the SMH and QLF-D analyses, statistically significant differences were found among all the phases (p<0.05). After the 1- and 4-week treatment periods, the calcium (Ca) and phosphate (P) concentrations and Ca/P ratio were higher compared to those of the demineralization surfaces (p<0.05). Conclusion CPP-ACP containing fluoride varnish provides remineralization of WSLs after a single application and seems suitable for clinical use. PMID:27383699

  9. Cloning and characterization of a novel β-ketoacyl-ACP reductase from Comamonas testosteroni.

    PubMed

    Zhang, Hao; Ji, Ye; Wang, Yan; Zhang, Xiao; Yu, Yuanhua

    2015-06-05

    Comamonas testosteroni (C. testosteroni) is a gram negative bacterium which can use steroid as a carbon source and degrade steroid with about 20 special enzymes. Most of the enzymes are inducible enzymes. 3-Oxoacyl-ACP reductase (E.C. 1.1.1.100) alternatively known as β-ketoacyl-ACP reductase (BKR) is involved in fatty acid syntheses. DNA sequence comparison showed that BKR belongs to the short-chain alcohol dehydrogenase (SDR) family. Our results showed that BKR is necessary for the degradation of steroid hormones in C. testosteroni. The DNA fragment of the BKR gene was cloned into an expressional plasmid pET-15b. BKR protein was expressed with 6× His-tag on the N-terminus and the enzyme was purified with Ni-column. Antibodies against BKR were prepared and a new BKR quantitative ELISA was created in our laboratory. The purified BKR is a 30.6 kDa protein on SDS-PAGE. C. testosteroni was induced by testosterone, estradiol, estriol and cholesterol. The expression of BKR was detected with an ELISA. The result showed that the BKR expression could be induced by cholesterol and estriol but not by testosterone and estradiol. BKR gene knock-out mutant (M-C.T.) was prepared by homologous integration. High performance liquid chromatography (HPLC) was used to detect steroid hormone degradation in C. testosteroni ATCC11996 and BKR gene knock-out mutant. We proved that the M-C.T. eliminated of testosterone degradation. Degradations of cholesterol and estradiol were also decreased. We conclude that the novel BKR in C. testosteroni plays an important role in steroid degradation. This work provides some new information of SDR and steroid degradation in C. testosteroni.

  10. Inward lithium-ion breathing of hierarchically porous silicon anodes

    PubMed Central

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Liu, Gao; Zhao, Peng; Zhang, Sulin; Wang, Chongmin; Lu, Yunfeng; Cai, Mei

    2015-01-01

    Silicon has been identified as a highly promising anode for next-generation lithium-ion batteries (LIBs). The key challenge for Si anodes is large volume change during the lithiation/delithiation cycle that results in chemomechanical degradation and subsequent rapid capacity fading. Here we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. On charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward Li breathing with negligible particle-level outward expansion. Our mechanics analysis revealed that such inward expansion is enabled by the much stiffer lithiated layer than the unlithiated porous layer. LIBs assembled with the hp-SiNSs exhibit high capacity, high power and long cycle life, which is superior to the current commercial Si-based anode materials. The low-cost synthesis approach provides a new avenue for the rational design of hierarchically porous structures with unique materials properties. PMID:26538181

  11. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine.

    PubMed

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-12

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  12. Design and synthesis of 2-pyridones as novel inhibitors of the Bacillus anthracis enoyl-ACP reductase.

    PubMed

    Tipparaju, Suresh K; Joyasawal, Sipak; Forrester, Sara; Mulhearn, Debbie C; Pegan, Scott; Johnson, Michael E; Mesecar, Andrew D; Kozikowski, Alan P

    2008-06-15

    Enoyl-ACP reductase (ENR), the product of the FabI gene, from Bacillus anthracis (BaENR) is responsible for catalyzing the final step of bacterial fatty acid biosynthesis. A number of novel 2-pyridone derivatives were synthesized and shown to be potent inhibitors of BaENR.

  13. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    NASA Astrophysics Data System (ADS)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  14. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    PubMed Central

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID). PMID:28079165

  15. Rhamnolipid and poly (hydrozyalkanoate) biosynthesis in 3-hydrozyacyl-ACP:COA transacylase (phaG) - knockouts of pseudomonas chloroaphis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 3-hydroxyacyl-ACP:CoA transacylase gene (phaG(Pc30761)) of P. chlororaphis NRRL B-30761 was cloned and analyzed. The nucleotide and translated amino-acid sequences of phaG(Pc30761) had 99% identities (at 100% query coverage) with the phaG gene of P. fluorescens O6. Two phaG-knockout strains of...

  16. Optimized zein nanospheres for improved oral bioavailability of atorvastatin

    PubMed Central

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA

    2015-01-01

    Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716

  17. Fabrication and characterization of DNA-loaded zein nanospheres

    PubMed Central

    2012-01-01

    Background Particulates incorporating DNA are promising vehicles for gene delivery, with the ability to protect DNA and provide for controlled, localized, and sustained release and transfection. Zein, a hydrophobic protein from corn, is biocompatible and has properties that make it a promising candidate material for particulate delivery, including its ability to form nanospheres through coacervation and its insolubility under physiological conditions, making it capable of sustained release of encapsulated compounds. Due to the promise of this natural biomaterial for drug delivery, the objective of this study was to formulate zein nanospheres encapsulating DNA as the therapeutic compound, and to characterize size, charge, sustained release, cell cytotoxicity and cellular internalization of these particles. Results Zein nanospheres encapsulating DNA were fabricated using a coacervation technique, without the use of harsh solvents or temperatures, resulting in the preservation of DNA integrity and particles with diameters that ranged from 157.8 ± 3.9 nm to 396.8 ± 16.1 nm, depending on zein to DNA ratio. DNA encapsulation efficiencies were maximized to 65.3 ± 1.9% with a maximum loading of 6.1 ± 0.2 mg DNA/g zein. The spheres protected encapsulated DNA from DNase I degradation and exhibited sustained plasmid release for at least 7 days, with minimal burst during the initial phase of release. Zein/DNA nanospheres demonstrated robust biocompatibility, cellular association, and internalization. Conclusions This study represents the first report on the formation of zein particles encapsulating plasmid DNA, using simple fabrication techniques resulting in preservation of plasmid integrity and tunable sizes. DNA encapsulation efficiencies were maximized to acceptable levels at higher zein to DNA ratios, while loading was comparable to that of other hydrophilic compounds encapsulated in zein and that of DNA incorporated into PLGA nano- and

  18. Expression of Cyanobacterial Acyl-ACP Reductase Elevates the Triacylglycerol Level in the Red Alga Cyanidioschyzon merolae.

    PubMed

    Sumiya, Nobuko; Kawase, Yasuko; Hayakawa, Jumpei; Matsuda, Mami; Nakamura, Mami; Era, Atsuko; Tanaka, Kan; Kondo, Akihiko; Hasunuma, Tomohisa; Imamura, Sousuke; Miyagishima, Shin-ya

    2015-10-01

    Nitrogen starvation is known to induce the accumulation of triacylglycerol (TAG) in many microalgae, and potential use of microalgae as a source of biofuel has been explored. However, nitrogen starvation also stops cellular growth. The expression of cyanobacterial acyl-acyl carrier protein (ACP) reductase in the unicellular red alga Cyanidioschyzon merolae chloroplasts resulted in an accumulation of TAG, which led to an increase in the number and size of lipid droplets while maintaining cellular growth. Transcriptome and metabolome analyses showed that the expression of acyl-ACP reductase altered the activities of several metabolic pathways. The activities of enzymes involved in fatty acid synthesis in chloroplasts, such as acetyl-CoA carboxylase and pyruvate dehydrogenase, were up-regulated, while pyruvate decarboxylation in mitochondria and the subsequent consumption of acetyl-CoA by the tricarboxylic acid (TCA) cycle were down-regulated. Aldehyde dehydrogenase, which oxidizes fatty aldehydes to fatty acids, was also up-regulated in the acyl-ACP reductase expresser. This activation was required for the lipid droplet accumulation and metabolic changes observed in the acyl-ACP reductase expresser. Nitrogen starvation also resulted in lipid droplet accumulation in C. merolae, while cell growth ceased as in the case of other algal species. The metabolic changes that occur upon the expression of acyl-ACP reductase are quite different from those caused by nitrogen starvation. Therefore, there should be a method for further increasing the storage lipid level while still maintaining cell growth that is different from the metabolic response to nitrogen starvation.

  19. Microleakage of Three Types of Glass Ionomer Cement Restorations: Effect of CPP-ACP Paste Tooth Pretreatment

    PubMed Central

    Doozandeh, Maryam; Shafiei, Fereshteh; Alavi, Mostafa

    2015-01-01

    Statement of the Problem Casein phosphopeptide–amorphous calcium phosphate (CPP-ACP) increases the mineral content of tooth structure. This may enhance the chemical bonding of glass ionomer cements (GIC) and marginal sealing of their restorations. Purpose The aim of this study was to evaluate the effect of CPP-ACP paste pretreatment on the microleakage of three types of GIC. Materials and Method In this study, 72 Class V cavities were prepared on the buccal and lingual surfaces of molars with occlusal margins in enamel and gingival margins in root. The cavities were divided into 6 groups. Cavities in group 1 and 2 were restored with Fuji II, group 3 and 4 with Fuji II LC, and group 5 and 6 with Ketac N100 with respect to the manufacturers’ instructions. In groups 2, 4 and 6, CPP-ACP containing paste (MI paste) was placed into the cavities for 3 minutes before being filled with GIC. The teeth were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. Kruskall-Wallis and Chi-Square tests were used to analyze the data. Result There were no statistically significant differences between the control and the CPP-ACP pretreatment groups in enamel and dentin margins. In pairwise comparisons, there were no significant differences between the control and the experimental groups in enamel margin, and in dentin margins of G1 and 2, G5 and 6; however, a significant differences was detected in dentin margins between G3 and 4 (p= 0.041). Conclusion CPP-ACP paste pretreatment did not affect the microleakage of Fuji II and Ketac N100 in enamel or dentin, but decreased the microleakage in dentine margins of Fuji II LC when cavity conditioner was applied before surface treatment. PMID:26331147

  20. An in vitro study on the retentive strength of orthodontic bands cemented with CPP-ACP-containing GIC

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-12-01

    Caries and white spot lesions around orthodontic bands are well known occurrences in fixed orthodontic treatment. There are several methods to overcome these problems. One of these includes modification of the band cement with remineralizing agents such as casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). However, it should be evaluated that the cement modification has no significant negative effects on the retentive strength of the cemented orthodontic bands. In a continuation of our previous studies on the effects of the addition of CPP-ACP on the mechanical properties of luting and lining glass ionomer cement (GIC), this study aimed to investigate the retentive strength of orthodontic bands cemented with CPP-ACP containing GIC. Sixty extracted human pre molars teeth were embedded in acrylic resin and randomly divided into two groups of 30 specimens. In group 1, bands were cemented to the tooth with a GIC. In group 2, CPP-ACP (1.56% w/w) was added to the GIC before cementation. The retentive strength of each groups was determined with a universal testing machine. Further, the amount of cement remaining on the tooth surface was evaluated under a stereomicroscope, and the adhesive remnant index (ARI) score was determined. Results of this study showed that there were no significant differences between the groups in retentive strength and ARI score. In conclusion, modification of GIC with 1.56% w/w CPP-ACP had no negative effects on the retentive strength of the bands so can be used during fixed orthodontic treatment.

  1. Electroplated porous polypyrrole nanostructures patterned by colloidal lithography for drug-delivery applications

    NASA Astrophysics Data System (ADS)

    Pokki, J.; Ergeneman, O.; Sivaraman, K. M.; Özkale, B.; Zeeshan, M. A.; Lühmann, T.; Nelson, B. J.; Pané, S.

    2012-05-01

    Porous nanostructures of polypyrrole (Ppy) were fabricated using colloidal lithography and electrochemical techniques for potential applications in drug delivery. A sequential fabrication method was developed and optimized to maximize the coverage of the Ppy nanostructures and to obtain a homogeneous layer over the substrate. This was realized by masking with electrophoretically-assembled polystyrene (PS) nanospheres and then electroplating. Drug/biomolecule adsorption and the release characteristics for the porous nanostructures of Ppy were investigated using rhodamine B (Rh-B). Rh-B is an easily detectable small hydrophobic molecule that is used as a model for many drugs or biological substances. The porous Ppy nanostructures with an enhanced surface area exhibited higher Rh-B loading capacity than bulk planar films of Ppy. Moreover, tunability of surface morphology for further applications (e.g., sensing, cell adhesion) was demonstrated.Porous nanostructures of polypyrrole (Ppy) were fabricated using colloidal lithography and electrochemical techniques for potential applications in drug delivery. A sequential fabrication method was developed and optimized to maximize the coverage of the Ppy nanostructures and to obtain a homogeneous layer over the substrate. This was realized by masking with electrophoretically-assembled polystyrene (PS) nanospheres and then electroplating. Drug/biomolecule adsorption and the release characteristics for the porous nanostructures of Ppy were investigated using rhodamine B (Rh-B). Rh-B is an easily detectable small hydrophobic molecule that is used as a model for many drugs or biological substances. The porous Ppy nanostructures with an enhanced surface area exhibited higher Rh-B loading capacity than bulk planar films of Ppy. Moreover, tunability of surface morphology for further applications (e.g., sensing, cell adhesion) was demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30192j

  2. Water-in-Water Emulsion Based Synthesis of Hydrogel Nanospheres with Tunable Release Kinetics

    NASA Astrophysics Data System (ADS)

    Aydın, Derya; Kızılel, Seda

    2016-06-01

    Poly(ethylene glycol) (PEG) micro/nanospheres have several unique advantages as polymer based drug delivery systems (DDS) such as tunable size, large surface area to volume ratio, and colloidal stability. Emulsification is one of the widely used methods for facile synthesis of micro/nanospheres. Two-phase aqueous system based on polymer-polymer immiscibility is a novel approach for preparation of water-in-water (w/w) emulsions. This method is promising for the synthesis of PEG micro/nanospheres for biological systems, since the emulsion is aqueous and do not require organic solvents or surfactants. Here, we report the synthesis of nano-scale PEG hydrogel particles using w/w emulsions using phase separation of dextran and PEG prepolymer. Dynamic light scattering (DLS) and scaning electron microscopy (SEM) results demonstrated that nano-scale hydrogel spheres could be obtained with this approach. We investigated the release kinetics of a model drug, pregabalin (PGB) from PEG nanospheres and demonstrated the influence of polymerization conditions on loading and release of the drug as well as the morphology and size distribution of PEG nanospheres. The experimental drug release data was fitted to a stretched exponential function which suggested high correlation with experimental results to predict half-time and drug release rates from the model equation. The biocompatibility of nanospheres on human dermal fibroblasts using cell-survival assay suggested that PEG nanospheres with altered concentrations are non-toxic, and can be considered for controlled drug/molecule delivery.

  3. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries.

    PubMed

    Chen, Yuming; Lu, Zhouguang; Zhou, Limin; Mai, Yiu-Wing; Huang, Haitao

    2012-11-07

    We report on in situ formation of hollow graphitic carbon nanospheres (HGCNs) in amorphous carbon nanofibers (ACNFs) by a combination of electrospinning, calcination and acid treatment. The prepared carbon nanofibers contain many HGCNs on which defects such as discontinuous graphene sheets with a large d-spacing in their wall exist and provide extra sites for Li(+) storage and serve as buffers for withstanding large volume expansion and shrinkage during the Li insertion and extraction procedure. Furthermore, some exposed HGCNs on the surface of the ACNFs as well as hollow structures are favorable for lithium ion diffusion from different orientations and sufficient contact between active material and electrolyte. In addition, the high conductivity architectures facilitate collection and transport of electrons during the cycling process. As a result, the ACNFs/HGCNs display a high reversible specific gravimetric capacity of ∼750 mA h g(-1) and volumetric capacity of ∼1.1 A h cm(-3) with outstanding rate capability and good cycling stability, which is superior to those of carbon nanofibers (CNFs), carbon nanotubes (CNTs), porous ACNFs, graphene nanosheets (GNSs), GNSs/CNFs, hollow carbon nanospheres and graphite. The synthesis process is simple, low-cost and environmentally friendly, providing new avenues for the rational engineering of high-energy carbon-based anode materials.

  4. Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation

    NASA Astrophysics Data System (ADS)

    Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan

    2016-11-01

    In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.

  5. Formation of hollow silica nanospheres by reverse microemulsion.

    PubMed

    Lin, Cheng-Han; Chang, Jen-Hsuan; Yeh, Yi-Qi; Wu, Si-Han; Liu, Yi-Hsin; Mou, Chung-Yuan

    2015-06-07

    Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water.

  6. Nickel titanates hollow shells: nanosphere, nanorod, and their photocatalytic properties.

    PubMed

    Li, Qiuye; Xing, Yangyang; Zong, Lanlan; Li, Rui; Yang, Jianjun

    2013-01-01

    Two kinds of hollow shell structured nickel titanates (nanosphere, nanorod) were prepared by the microwave-assisted hydrothermal method using carbon material as the template. Their phase structure, morphology, and optical properties were well characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). Comparing with the template-free NiTiO3 (NiTiO3-TF), the two kinds of hollow shell structured NiTiO3 have larger Brunauer-Emmet-Teller (BET) surface areas. Both NiTiO3 nanosphere (NiTiO3-NS) and nanorod (NiTiO3-NR) showed remarkably photocatalytic H2 evolution from the methanol aqueous solution under full-arc lamp and visible light. Additional, their photocatalytic activities were also determined by photo-degradation of methyl blue (MB), and the degradation yield reached nearly 100% within 100 min on NiTiO3-NR under visible light. Whatever in photocatalytic H2 evolution or MB degradation, their photocatalytic activities all followed the order: NiTiO3-NR > NiTiO3-NS > NiTiO3-TF. The higher photocatalytic activities of the hollow shelled NiTiO3 should be due to their larger BET surface areas and more utilization of the incident light.

  7. Excitonic lasing in solution-processed subwavelength nanosphere assemblies

    SciTech Connect

    Appavoo, Kannatassen; Liu, Xiaoze; Menon, Vinod; Sfeir, Matthew Y.

    2016-02-03

    Lasing in solution-processed nanomaterials has gained significant interest because of the potential for low-cost integrated photonic devices. Still, a key challenge is to utilize a comprehensive knowledge of the system’s spectral and temporal dynamics to design low-threshold lasing devices. Here, we demonstrate intrinsic lasing (without external cavity) at low-threshold in an ultrathin film of coupled, highly crystalline nanospheres with overall thickness on the order of ~λ/4. The cavity-free geometry consists of ~35 nm zinc oxide nanospheres that collectively localize the in-plane emissive light fields while minimizing scattering losses, resulting in excitonic lasing with fluence thresholds at least an order of magnitude lower than previous UV-blue random and quantum-dot lasers (<75 μJ/cm2). Fluence-dependent effects, as quantified by subpicosecond transient spectroscopy, highlight the role of phonon-mediated processes in excitonic lasing. Subpicosecond evolution of distinct lasing modes, together with three-dimensional electromagnetic simulations, indicate a random lasing process, which is in violation of the commonly cited criteria of strong scattering from individual nanostructures and an optically thick sample. Subsequently, an electron–hole plasma mechanism is observed with increased fluence. Furthermore, these results suggest that coupled nanostructures with high crystallinity, fabricated by low-cost solution-processing methods, can function as viable building blocks for high-performance optoelectronics devices.

  8. Excitonic lasing in solution-processed subwavelength nanosphere assemblies

    DOE PAGES

    Appavoo, Kannatassen; Liu, Xiaoze; Menon, Vinod; ...

    2016-02-03

    Lasing in solution-processed nanomaterials has gained significant interest because of the potential for low-cost integrated photonic devices. Still, a key challenge is to utilize a comprehensive knowledge of the system’s spectral and temporal dynamics to design low-threshold lasing devices. Here, we demonstrate intrinsic lasing (without external cavity) at low-threshold in an ultrathin film of coupled, highly crystalline nanospheres with overall thickness on the order of ~λ/4. The cavity-free geometry consists of ~35 nm zinc oxide nanospheres that collectively localize the in-plane emissive light fields while minimizing scattering losses, resulting in excitonic lasing with fluence thresholds at least an order ofmore » magnitude lower than previous UV-blue random and quantum-dot lasers (<75 μJ/cm2). Fluence-dependent effects, as quantified by subpicosecond transient spectroscopy, highlight the role of phonon-mediated processes in excitonic lasing. Subpicosecond evolution of distinct lasing modes, together with three-dimensional electromagnetic simulations, indicate a random lasing process, which is in violation of the commonly cited criteria of strong scattering from individual nanostructures and an optically thick sample. Subsequently, an electron–hole plasma mechanism is observed with increased fluence. Furthermore, these results suggest that coupled nanostructures with high crystallinity, fabricated by low-cost solution-processing methods, can function as viable building blocks for high-performance optoelectronics devices.« less

  9. Sponge-supported synthesis of colloidal selenium nanospheres

    NASA Astrophysics Data System (ADS)

    Ahmed, Snober; Brockgreitens, John; Xu, Ke; Abbas, Abdennour

    2016-11-01

    With increasing biomedical and engineering applications of selenium nanospheres (SeNS), new efficient methods are needed for the synthesis and long-term preservation of these nanomaterials. Currently, SeNS are mostly produced through the biosynthesis route using microorganisms or by using wet chemical reduction, both of which have several limitations in terms of nanoparticle size, yield, production time and long-term stability of the nanoparticles. Here, we introduce a novel approach for rapid synthesis and long-term preservation of SeNS on a solid microporous support by combining a mild hydrothermal process with chemical reduction. By using a natural sponge as a solid three-dimensional matrix for nanoparticle growth, we have synthesized highly monodisperse spherical nanoparticles with a wide size range (10-1000 nm) and extremely high yield in a relatively short period of time (1 h). Additionally, the synthesized SeNS can be stored and retrieved whenever needed by simply washing the sponge in water. Keeping the nanospheres in the support offers remarkable long-term stability as particles left on the sponge preserve their morphological and colloidal characteristics even after eight months of storage. Furthermore, this work reveals that SeNS can be used for efficient mercury capture from contaminated waters with a record-breaking mercury removal capacity of 1900 mg g-1.

  10. A convenient solvothermal synthesis route to metal phosphides with a shape of hollow nanospheres.

    PubMed

    Bao, Keyan; Liu, Shuzhen; Cao, Jie; Liang, Jiangbo; Zhu, Yongchun; Hu, Xiaobo; Zhu, Lingling; Liu, Xiaoyan; Qian, Yitai

    2009-08-01

    InP hollow nanospheres with an average size of 550 nm and shell thickness of about 110 nm were solvothermally synthesized in EA (ethanolamine)-H2O binary solution at 190 degrees C for 36 h. The shells of InP hollow nanospheres were composed of small nanoparticles. The similar route has been extended to prepare Cd3P2, Cu3P and Sn4P3 hollow nanospheres in 150-190 degrees C for 24-36 h.

  11. Synthesis, morphology and optical properties of LaFeO{sub 3} nanospheres

    SciTech Connect

    Kumar, R. Dhinesh; Jayavel, R.

    2014-04-24

    LaFeO{sub 3} nanospheres have been successively synthesized via hydrothermal method. Structural, morphological and optical properties of the prepared nanopowder were analyzed by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–Vis absorption spectroscopy. The UV–Vis shows strong absorption at 475 nm which has excellent visible light absorption ability. Band gap energy of the prepared nanosphere was found to be 2.60 eV. The results indicate that the LaFeO{sub 3} nanospheres prepared by this method could be a kind of photocatalytic material.

  12. One-pot synthesis of α-Fe2O3 nanospheres by solvothermal method.

    PubMed

    Wang, Caihua; Cui, Yumin; Tang, Kaibin

    2013-05-06

    We have successfully prepared α-Fe2O3 nanospheres by solvothermal method using 2-butanone and water mixture solvent for the first time, which were about 100 nm in diameter and composed of very small nanoparticles. The as-prepared samples were characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that the product was α-Fe2O3 nanosphere, and the temperature was an important factor on the formation of α-Fe2O3 nanospheres.

  13. Preparation of Ni-doped carbon nanospheres with different surface chemistry and controlled pore structure

    NASA Astrophysics Data System (ADS)

    Zubizarreta, L.; Arenillas, A.; Pis, J. J.

    2008-04-01

    In classic carbon supports is very difficult to control pore size, pore size distribution, and surface chemical properties at the same time. In this work microporous carbons derived from furfuryl alcohol are used as support to prepare Ni-doped carbon materials. The N 2 flow rate used during the carbonisation process of the precursor influences on the size of the nanospheres obtained but not in their textural properties. Microporous carbon nanospheres have been synthesised with a narrow pore size distribution centred in 5.5 Å. The surface chemistry of these materials can be easily modified by different treatments without detriment of the pore structure of the doped carbon nanospheres.

  14. Crystal structure of FabZ-ACP complex reveals a dynamic seesaw-like catalytic mechanism of dehydratase in fatty acid biosynthesis.

    PubMed

    Zhang, Lin; Xiao, Jianfeng; Xu, Jianrong; Fu, Tianran; Cao, Zhiwei; Zhu, Liang; Chen, Hong-Zhuan; Shen, Xu; Jiang, Hualiang; Zhang, Liang

    2016-12-01

    Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS.

  15. Crystal structure of FabZ-ACP complex reveals a dynamic seesaw-like catalytic mechanism of dehydratase in fatty acid biosynthesis

    PubMed Central

    Zhang, Lin; Xiao, Jianfeng; Xu, Jianrong; Fu, Tianran; Cao, Zhiwei; Zhu, Liang; Chen, Hong-Zhuan; Shen, Xu; Jiang, Hualiang; Zhang, Liang

    2016-01-01

    Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS. PMID:27874013

  16. Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Jiang, Xinbing; Ding, Shujiang; Li, Ben Q.

    2014-06-01

    Porous hollow nanospheres (or spherical shells) made of NiO nanosheets are synthesized and tested for the electrochemical performance of the electrodes made of these materials for supercapacitors. Preparation of the NiO sheet hollow spheres starts with synthesis of polystyrene nanospheres with carboxyl groups (CPS), followed by a two-step activation procedure and the subsequent nucleation and growth by electroless deposition of Ni on the CPS core to obtain CPS@Ni core-shell nanoparticles. The CPS core is eliminated and metallic Ni nanoshell is converted into NiO by calcinations at high temperatures. The material properties of as-prepared hollow NiO nanospheres are characterized by TEM, XRD and N2-absorption measurements. The electrochemical characteristics of the electrodes made of these nanostructured NiO materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the NiO nanosheet hollow spheres exhibit an improved reversible capacitance of 600 F g-1 after 1000 cycles at a high current density of 10 A g-1. It is believed that the good electrochemical performance of these electrodes is attributed to the improved OH- transport in the porous network structures associated with the hollow spheres of randomly oriented NiO nanosheets.

  17. Ordered silicon nanowire arrays prepared by an improved nanospheres self-assembly in combination with Ag-assisted wet chemical etching

    NASA Astrophysics Data System (ADS)

    Jia, Guobin; Westphalen, Jasper; Drexler, Jan; Plentz, Jonathan; Dellith, Jan; Dellith, Andrea; Andrä, Gudrun; Falk, Fritz

    2016-04-01

    An improved Langmuir-Blodgett self-assembly process combined with Ag-assisted wet chemical etching for the preparation of ordered silicon nanowire arrays is presented in this paper. The new process is independent of the surface conditions (hydrophilic or hydrophobic) of the substrate, allowing for depositing a monolayer of closely packed polystyrene nanospheres onto any flat surface. A full control of the morphology of the silicon nanowire is achieved. Furthermore, it is observed that the formation of porous-Si at the tips of the nanowires is closely related to the release of Ag nanoparticles from the Ag mask during the etching, which subsequently redeposit on the surface initially free of Ag, and these Ag nanoparticles catalyze the etching of the tips and lead to the porous-Si formation. This finding will help to improve the resulting nano- and microstructures to get them free of pores, and renders it a promising technology for low-cost high throughput fabrication of specific optical devices, photonic crystals, sensors, MEMS, and NEMS by substituting the costly BOSCH process. It is shown that ordered nanowire arrays free of porous structures can be produced if all sources of Ag nanoparticles are excluded, and structures with aspect ratio more than 100 can be produced.

  18. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    PubMed

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-04

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light.

  19. Quasi-monodisperse β-SiC nanospheres: Synthesis and application in chemical-mechanical polishing

    NASA Astrophysics Data System (ADS)

    Zhang, Meng

    2017-04-01

    A composite surfactants-assisted mix-solvothermal route has been presented to synthesize quasi-monodisperse silicon carbide (β-SiC) nanospheres in hexane and water mixed solvent at 180 °C. By changing hexane/water ratio, the size of β-SiC nanospheres can be effectively adjusted. Benefit from the spherical shapes and nearly uniform sizes, quasi-monodisperse β-SiC nanospheres exhibit excellent planarization ability and material removal rate. Take silicon wafers polishing as an example, compared with irregular β-SiC nanoparticles, quasi-monodisperse β-SiC nanospheres decrease the surface roughness by 50-74% and increase the removal rate by 17-30%.

  20. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    NASA Astrophysics Data System (ADS)

    Zhou, Changhua; Mao, Mao; Yuan, Hang; Shen, Huaibin; Wu, Feng; Ma, Lan; Li, Lin Song

    2013-09-01

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46-103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 °C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit.

  1. A facile method to synthesize magnetic polymer nanospheres with multifunctional groups

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojuan; Jiang, Wei; Ye, Yuanfeng; Feng, Zhiqiang; Sun, Zhendong; Li, Fengsheng; Hao, Lingyun; Chu, Jianjun

    2011-06-01

    Magnetic poly(styrene methyl methacrylate)/Fe 3O 4 nanospheres with ester groups were prepared by a modified one-step mini-emulsion polymerization in the presence of Fe 3O 4 ferrofluids. The effects of monomer dose, surfactant content, ferrofluid concentration and initiator content on the particle characteristics such as the size, morphology and magnetic properties were investigated by Fourier-transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis and vibrating sample magnetometer. The results indicated that magnetic nanospheres were superparamagnetic with high saturation magnetization of 51.0 emu/g and corresponding magnetite content of 61.5 wt%. Subsequently, magnetic nanospheres with carboxyl and amino groups were also obtained by hydrolysis and ammonolysis reaction. These magnetic nanospheres with multifunctional groups have biomedical applications.

  2. Soft-templated synthesis of mesoporous carbon nanospheres and hollow carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Cheng, Youliang; Li, Tiehu; Fang, Changqing; Zhang, Maorong; Liu, Xiaolong; Yu, Ruien; Hu, Jingbo

    2013-10-01

    Using coal tar pitch based amphiphilic carbonaceous materials (ACMs) as the precursor and amphiphilic triblock copolymer Plutonic P123 as the only soft template, carbon nanospheres with partially ordered mesopores and hollow carbon nanofibers were synthesized. The concentration of P123, cp, and the mass ratio of P123 to ACM, r, are the key parameters of controlling the shape of the as-prepared products. Mesoporous carbon nanospheres with diameter of 30-150 nm were prepared under the condition of cp = 13.3 g/L and r = 1.2. When cp = 26.7 g/L and r = 2, hollow carbon nanofibers with diameters of 50-200 nm and mesopores/macropores were obtained. Carbon nanospheres and hollow carbon fibers were amorphous materials. The mesoporous carbon nanospheres show good stability in the cyclic voltammograms and their specific capacitance at 10 mV s-1 is 172.1 F/g.

  3. Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity

    SciTech Connect

    Li Yao; He Xiaoyan; Cao Minhua

    2008-11-03

    ZnS nanospheres with rough surface were synthesized by using a micro-emulsion-assisted solvothemal process. The molar ratio of [water]/[surfactant] played an important role in controlling the size of the ZnS nanospheres. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscope (FE-SEM), and selected area electron diffraction (SAED) were used for the characterization of the resulting ZnS nanospheres. A possible formation mechanism was proposed. These ZnS nanospheres exhibited a good photocatalytic activity for degradation of an aqueous p-nitrophenol solution and the total organic carbon (TOC) of the degradation product has also been investigated.

  4. Curved polymer nanodiscs by wetting nanopores of anodic aluminum oxide templates with polymer nanospheres.

    PubMed

    Chi, Mu-Huan; Kao, Yi-Huei; Wei, Tzu-Hui; Lee, Chih-Wei; Chen, Jiun-Tai

    2014-01-01

    Although nanostructures with diverse morphologies have been fabricated, it is still a great challenge to prepare anisotropic two-dimensional (2-D) nanostructures, especially non-planar disc-like nanostructures. In this work, we develop a simple method to prepare curved polymer nanodiscs with regular sizes by wetting polymer nanospheres in the nanopores of anodic aluminum oxide (AAO) templates. Polystyrene (PS) nanospheres are first fabricated by using a non-solvent-assisted template wetting method. By annealing the PS nanospheres in the nanopores of AAO templates, curved PS nanodiscs can be produced. The length and morphology of the curved PS nanodiscs can be controlled by the wetting conditions such as the annealing temperatures and times. For some stacked nanospheres, the annealing process can result in the formation of helix-like nanostructures. To demonstrate the universality of this work, this approach is also applied to poly(methyl methacrylate) (PMMA), another common polymer, and similar results are obtained.

  5. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus

    PubMed Central

    Wang, Hui; Lu, Yang; Liu, Li; Kim, Sung Won; Hooker, Jacob M.; Fowler, Joanna S.; Tonge, Peter J.

    2014-01-01

    The pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a Ki value of 0.01 nM and a residence time of 750 min on the enzyme target, has been evaluated in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU’s in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in both healthy and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ~1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo. PMID:25217335

  6. Targeting InhA, the FASII Enoyl-ACP Reductase: SAR Studies on Novel Inhibitor Scaffolds

    PubMed Central

    Pan, Pan; Tonge, Peter J.

    2015-01-01

    The bacterial type II fatty acid biosynthesis (FASII) pathway is an essential but unexploited target for drug discovery. In this review we summarize SAR studies on inhibitors of InhA, the enoyl-ACP reductase from the FASII pathway in M. tuberculosis. Inhibitor scaffolds that are described include the diaryl ethers, pyrrolidine carboxamides, piperazine indoleformamides, pyrazoles, arylamides, fatty acids, and imidazopiperidines, all of which form ternary complexes with InhA and the NAD cofactor, as well as isoniazid and the diazaborines which covalently modify the cofactor. Analysis of the structural data has enabled the development of a common binding mode for the ternary complex inhibitors, which includes a hydrogen bond network, a large hydrophobic pocket and a third ‘size-limited’ binding area comprised of both polar and non-polar groups. A critical factor in InhA inhibition involves ordering of the substrate binding loop, located close to the active site, and a direct link is proposed between loop ordering and slow onset enzyme inhibition. Slow onset inhibitors have long residence times on the enzyme target, a property that is of critical importance for in vivo activity. PMID:22283812

  7. The sex-peptide gene (Acp70A) is duplicated in Drosophila subobscura.

    PubMed

    Cirera, S; Aguadé, M

    1998-04-14

    A 3.1-kb region of Drosphila subobscura homologous to the Acp70A region of D. melanogaster, which contains the sex-peptide gene, was cloned and sequenced. This region contains an approximately 600-bp duplication that includes the sex-peptide and its 5' and 3' flanking regions. The preproteins are 54 and 56 amino acids long, respectively (as compared to 55 amino acids in D. melanogaster), and each includes a 19-amino-acid-long signal peptide. The C-terminal part of the mature peptide is highly conserved between D. melanogaster and the two copies of D. subobscura. In this species, both copies of the gene are transcribed and, like in D. melangaster, only expressed in males. The duplicated region includes 300 bp upstream of the gene that would therefore seem sufficient for their expression in males. This region presents at its 5' end a stretch 93-bp that has a high similarity with the corresponding region of D. melanogaster and could be part of a still unidentified regulatory element of these genes.

  8. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus

    SciTech Connect

    Wang, Hui; Lu, Yang; Liu, Li; Kim, Sung Won; Hooker, Jacob M.; Fowler, Joanna S.; Tonge, Peter J.

    2014-09-06

    Here we evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a Ki value of 0.01 nM and a residence time of 750 min on the enzyme target in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU’s in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in both healthy and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ~1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo.

  9. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus

    DOE PAGES

    Wang, Hui; Lu, Yang; Liu, Li; ...

    2014-09-06

    Here we evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a Ki value of 0.01 nM and a residence time of 750 min on the enzyme target in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU’s in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in both healthymore » and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ~1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo.« less

  10. Porous Shape Memory Polymers.

    PubMed

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C; Wilson, Thomas S; Maitland, Duncan J

    2013-02-04

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use.

  11. Tailored Porous Materials

    SciTech Connect

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  12. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  13. Negative refraction for TM polarization in nanosphere dispersed liquid crystal (NDLC) metamaterial

    NASA Astrophysics Data System (ADS)

    Pawlik, G.; Walasik, W.; Tarnowski, K.; Mitus, A. C.; Khoo, I. C.

    2013-09-01

    We discuss the effect of a negative refraction at the interface of uniaxial anisotropic media in the case of nanosphere dispersed liquid crystal (NDLC) matematerial. Finite Element (FE) calculations (COMSOL Multiphysics) are used to trace the propagation of the electromagnetic wave. We show that for chosen values of the parameters of nanospheres and of nematic liquid crystal (NLC) host negative refraction can be obtained for a wide range of incident angles.

  14. Hydrothermal Synthesis of Monodisperse Single-Crystalline Alpha-Quartz Nanospheres

    PubMed Central

    Jiang, Xingmao; Jiang, Ying-Bing

    2014-01-01

    Uniformly-sized, single-crystal alpha-quartz nanospheres have been synthesized at 200°C and 15atm under continuous stirring starting from uniform, amorphous Stöber silica colloids and using NaCl and alkali hydroxide as mineralizers. Quartz nanosphere size is controlled by the colloid particle size via direct devitrification. Uniform, high-purity nanocrystalline quartz is important for understanding nanoparticle toxicology and for advanced polishing and nanocomposite fabrication. PMID:21629887

  15. Immobilization of Organophosphorus Acid Anhydrolase Mutant Y212F on Silica Nanospheres

    DTIC Science & Technology

    2016-09-01

    IMMOBILIZATION OF ORGANOPHOSPHORUS ACID ANHYDROLASE MUTANT Y212F ON SILICA NANOSPHERES Disclaimer The findings in this report are not to be...Dec 2014 4. TITLE AND SUBTITLE Immobilization of Organophosphorus Acid Anhydrolase Mutant Y212F on Silica Nanospheres 5a. CONTRACT NUMBER...STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT-LIMIT 200 We have engineered mutants of the

  16. Optical properties of local surface plasmon resonance in Ag/ITO sliced nanosphere by the discrete dipole approximation

    NASA Astrophysics Data System (ADS)

    Haiwei, Mu; Jingwei, Lv; Zhaoting, Liu; Shijie, Zheng; Lin, Yang; Tao, Sun; Qiang, Liu; Chao, Liu

    2016-04-01

    Optical properties of localized surface plasmon resonances (LSPR) of Ag/ITO sliced nanosphere have been studied using discrete dipole approximation and plasmon hybridization theory. It is found that different morphologies of sliced nanosphere can induce distinctive features in the extinction spectra. In the meanwhile, gap distances and refractive index of the surrounding medium could modulate the plasmon hybridization and the LSPR shifting. At large separation, the shift of LSPR peaks for the nanosphere sliced in halves consisting of ITO and Ag is small and insensitive to the gap distance in the weak coupling, whereas smaller separation exhibits a distinct red shift. Additionally, multiple resonance peaks are excited for the nanosphere sliced in quarters consisting of ITO and Ag. In this situation, electric field is mainly distributed in the gap region of sliced nanosphere and the central point. These results indicate that different morphologies of sliced nanosphere could create abundant tunable LSPR modes, which provides potential for multiplex optical sensing.

  17. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide.

    PubMed

    Liu, Shuiping; Gu, Tianxun; Fu, Jiajia; Li, Xiaoqiang; Chronakis, Ioannis S; Ge, Mingqiao

    2014-12-01

    In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ~127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems.

  18. Synthesis and structure determination of uranyl peroxide nanospheres in the presence of organic structure directing agents

    NASA Astrophysics Data System (ADS)

    Forbes, T. Z.; Burns, P. C.

    2007-12-01

    Recently, actinyl peroxide nanoclusters containing 20, 24, 28, or 32 actinyl polyhedra have been synthesized and their structures identified with single crystal X-ray diffraction [1]. Most nanomaterials are composed of main group elements or transition metals, therefore, these actinyl nanospheres may display vastly different chemical and physical properties due to the presence of filled f-orbitals. A major goal of our research group is to create novel actinyl materials, focusing on nano- and mesoporous materials. The original nanosphere syntheses were limited to inorganic crystallization agents, such as monovalent cations. Over the last decade, the use of organic compounds and surfactants have received increased attention as structure-directing agents for the generation of novel inorganic materials. Using structure-directing organic amines we have successfully synthesized and determined the structures of uranyl nanospheres containing 40 and 50 uranyl polyhedra. The topology of the skeletal U-50 nanosphere is identical to the C50Cl10 fullerene [2]. The topographical relationship between the actinyl nanospheres and fullerene or fullerene-like material may provide additional insight into stable configurations for lower fullerenes. [1] Burns et al., Actinyl peroxide nanospheres. Angewandte Chemie, International Edition, 2005. 44(14): p. 2135. [2] Xie et al., Capturing the Labile Fullerene[50] as C50Cl10. Science, (2004) 305(5671): p. 699.

  19. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    PubMed

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  20. Direct fabrication of hybrid nanofibres composed of SiO2-PMMA nanospheres via electrospinning.

    PubMed

    Zhang, Ran; Shang, Tinghua; Yang, Guang; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-08-01

    The direct fabrication of hybrid nanofibres composed of poly(methyl methacrylate)-grafted SiO2 (SiO2-PMMA) nanospheres via electrospinning was investigated in detail. SiO2-PMMA nanospheres were successfully prepared, with the SiO2 nanospheres synthesized via the Stober method, followed by in situ surface-initiated atom transfer radical polymerization of methyl methacrylate (MMA). Electrospinning was carried out with N,N-dimethylformamide (DMF) as the solvent to disperse SiO2-PMMA nanospheres. The size of the SiO2 core, the molecular weight of the PMMA shell and the concentration of the SiO2-PMMA/DMF solution all had substantial effects on the morphology and structure of electrospun nanofibres composed of SiO2-PMMA nanospheres. When these determining factors were well-tailored, it was found that one-dimensional necklace-like nanofibres were obtained, with SiO2-PMMA nanospheres aligned one by one along the fibre. The successful fabrication of nanofibres by directly electrospinning the SiO2-PMMA/DMF solution verified that polymer-grafted particles possess polymer-like characteristics, which endowed them with the ability to be processed into desirable shapes and structures.

  1. Efficient removal and highly selective adsorption of Hg2+ by polydopamine nanospheres with total recycle capacity

    NASA Astrophysics Data System (ADS)

    Zhang, Xiulan; Jia, Xin; Zhang, Guoxiang; Hu, Jiamei; Sheng, Wenbo; Ma, Zhiyuan; Lu, Jianjiang; Liu, Zhiyong

    2014-09-01

    This study reported a new method for efficient removal of Hg2+ from contaminated water using highly selective adsorptive polydopamine (PDA) nanospheres, which were uniform and had a small diameter (150-200 nm). The adsorption isotherms, kinetics, thermodynamics were investigated. Also, the effects of ionic strength, co-existing ions on removing ability of PDA nanospheres for Hg2+ were studied. Adsorption of Hg2+ was very fast and efficient as adsorption equilibrium was completed within 4 h and the maximum adsorption capacities were 1861.72 mg/g, 2037.22 mg/g, and 2076.81 mg/g at 298 K, 313 K, and 328 K respectively, increasing with increasing of temperature. The PDA nanospheres exhibited highly selective adsorption of Hg2+ and had a total desorption capacity of 100% in hydrochloric acid solution, pH 1. The results showed that the structure of PDA nanospheres remained almost unchanged after recycling five times. Furthermore, X-ray photoelectron spectroscopy (XPS) was employed to determine the elements of PDA nanospheres before and after Hg2+ adsorption. Considering their efficient and highly Hg2+ selective adsorption, total recycle capacity, and high stability, PDA nanospheres will be feasible in a number of practical applications.

  2. Dry-powder form of chitosan nanospheres containing influenza virus and adjuvants for nasal immunization.

    PubMed

    Dehghan, S; Tavassoti Kheiri, M; Tabatabaiean, M; Darzi, S; Tafaghodi, M

    2013-08-01

    The objective of this study was to develop and statistically optimize chitosan nanospheres. For this purpose chitosan powder was turned into nanospheres using tripolyphosphate as a crosslinker and through ionic gelation. D-optimal response surface design was applied to optimize the nanospheres. Their size and polydispersity index (PDI) were measured as the dependant variables. Then the inactivated influenza virus and/or CpG ODN or Quillaja saponin (QS) were incorporated into the chitosan nanospheres. The release profiles of the antigen and both adjuvants were obtained. The toxicity of the formulations was tested by XTT using Calu 6 cell lines. The size distribution and PDI of plain chitosan nanospheres was 581.1 ± 32.6 and 0.478 ± 0.04. After 4 h the release of antigen, QS and CpG from the chitosan matrix were 33, 36 and 62%, respectively. The inactivated virus remained intact during preparation, as revealed by the SDS-PAGE method. Differential scanning calorimetry and Fourier Transform Infrared Spectroscopy indicated no serious structural changes in the chitosan carrier in the presence of either the antigen or the immunoadjuvants. Although the antigen loaded into chitosan nanospheres showed slight cytotoxicity on lung-cancer cells, co-encapsulation of the adjuvant (especially CpG) lowered this effect. The results demonstrated that chitosan as a carrier and immunostimulator, along with CpG or QS adjuvants, creates a potential influenza vaccine delivery system which can be administered nasally.

  3. Continuous Fluorescence Imaging of Intracellular Calcium by Use of Ion-Selective Nanospheres with Adjustable Spectra.

    PubMed

    Yang, Chenye; Qin, Yu; Jiang, Dechen; Chen, Hong-Yuan

    2016-08-10

    Continuous fluorescence imaging of intracellular ions in various spectral ranges is important for biological studies. In this paper, fluorescent calcium-selective nanospheres, including calix[4]arene-functionalized bodipy (CBDP) or 9-(diethylamino)-5-[(2-octyldecyl)imino]benzo[a]phenoxazine (ETH 5350) as the chromoionophore, were prepared to demonstrate intracellular calcium imaging in visible or near-IR regions, respectively. The fluorescence of the nanospheres was controlled by the chromoionophore, and thus the spectral range for detection was adjustable by choosing the proper chromoionophore. The response time of the nanospheres to calcium was typically 1 s, which allowed accurate measurement of intracellular calcium. These nanospheres were loaded into cells through free endocytosis and exhibited fluorescence for 24 h, and their intensity was correlated with the elevation of intracellular calcium upon stimulation. The successful demonstration of calcium imaging by use of ion-selective nanospheres within two spectral ranges in 24 h supported that these nanospheres could be applied for continuous imaging of intracellular ions with adjustable spectra.

  4. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2014-05-28

    Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption.

  5. Lanthanide doped Bi2O3 upconversion luminescence nanospheres for temperature sensing and optical imaging.

    PubMed

    Lei, Pengpeng; Liu, Xiuling; Dong, Lile; Wang, Zhuo; Song, Shuyan; Xu, Xia; Su, Yue; Feng, Jing; Zhang, Hongjie

    2016-02-14

    Water-soluble lanthanide (Ln(3+)) doped Bi2O3 nanospheres have been successfully prepared through a solid-state-chemistry thermal decomposition process. The nanospheres exhibit intense upconversion luminescence (UCL) by doping the Ln(3+) (Ln = Yb, Er/Ho/Tm) ions into the Bi2O3 host matrix under 980 nm excitation. The ratio of red/green emission of Bi2O3:Yb(3+)/Er(3+) nanospheres exhibits a significant change as the calcination temperature increases and the value could reach 105.6. Moreover, the UCL of Bi2O3:Yb(3+)/Tm(3+) nanospheres are temperature-sensitive, where the intensity ratios of 799 and 808 nm emissions increase monotonously with temperature. The MTT assay reveals that Bi2O3:Yb(3+)/Tm(3+) nanospheres exhibit good biocompatibility by grafting citric acid molecules on the surface. The application possibility of Bi2O3:Yb(3+)/Tm(3+) nanospheres as bioprobes for optical imaging in vivo is also confirmed by the high-contrast photoluminescence images between the background and the UCL imaging area.

  6. Estrone specific molecularly imprinted polymeric nanospheres: synthesis, characterization and applications for electrochemical sensor development.

    PubMed

    Congur, Gulsah; Senay, Hilal; Turkcan, Ceren; Canavar, Ece; Erdem, Arzum; Akgol, Sinan

    2013-06-28

    The aim of this study is (i) to prepare estrone-imprinted nanospheres (nano-EST-MIPs) and (ii) to integrate them into the electrochemical sensor as a recognition layer. N-methacryloyl-(l)-phenylalanine (MAPA) was chosen as the complexing monomer. Firstly, estrone (EST) was complexed with MAPA and the EST-imprinted poly(2-hyroxyethylmethacrylate-co-N-methacryloyl-(l)-phenylalanine) [EST-imprinted poly(HEMA-MAPA)] nanospheres were synthesized by surfactant- free emulsion polymerization method. The specific surface area of the EST-imprinted poly(HEMA-MAPA) nanospheres was found to be 1275 m2/g with a size of 163.2 nm in diameter. According to the elemental analysis results, the nanospheres contained 95.3 mmole MAPA/g nanosphere. The application of EST specific MIP nanospheres for the development of an electrochemical biosensor was introduced for the first time in our study by using electrochemical impedance spectroscopy (EIS) technique. This nano-MIP based sensor presented a great specificity and selectivity for EST.

  7. Synthesis of Water-Based Dispersions of Polymer/TiO2 Hybrid Nanospheres

    PubMed Central

    Jin, Lu; Wu, Hua; Morbidelli, Massimo

    2015-01-01

    We develop a strategy for preparing water-based dispersions of polymer/TiO2 nanospheres that can be used to form composite materials applicable in various fields. The formed hybrid nanospheres are monodisperse and possess a hierarchical structure. It starts with the primary TiO2 nanoparticles of about 5 nm, which first assemble to nanoclusters of about 30 nm and then are integrated into monomer droplets. After emulsion polymerization, one obtains the water-based dispersions of polymer/TiO2 nanospheres. To achieve universal size, it is necessary to have treatments with intense turbulent shear generated in a microchannel device at different stages. In addition, a procedure combining synergistic actions of steric and anionic surfactants has been designed to warrant the colloidal stability of the process. Since the formed polymer/TiO2 nanospheres are stable aqueous dispersions, they can be easily mixed with TiO2-free polymeric nanoparticle dispersions to form new dispersions, where TiO2-containing nanospheres are homogeneously distributed in the dispersions at the nanoscale, thus leading to various applications. As an example, the proposed strategy has been applied to generate polystyrene/TiO2 nanospheres of about 100 nm in diameter.

  8. Cavity opto-mechanics using an optically levitated nanosphere

    PubMed Central

    Chang, D. E.; Regal, C. A.; Papp, S. B.; Wilson, D. J.; Ye, J.; Painter, O.; Kimble, H. J.; Zoller, P.

    2010-01-01

    Recently, remarkable advances have been made in coupling a number of high-Q modes of nano-mechanical systems to high-finesse optical cavities, with the goal of reaching regimes in which quantum behavior can be observed and leveraged toward new applications. To reach this regime, the coupling between these systems and their thermal environments must be minimized. Here we propose a novel approach to this problem, in which optically levitating a nano-mechanical system can greatly reduce its thermal contact, while simultaneously eliminating dissipation arising from clamping. Through the long coherence times allowed, this approach potentially opens the door to ground-state cooling and coherent manipulation of a single mesoscopic mechanical system or entanglement generation between spatially separate systems, even in room-temperature environments. As an example, we show that these goals should be achievable when the mechanical mode consists of the center-of-mass motion of a levitated nanosphere. PMID:20080573

  9. Fabrication of Large Area Periodic Nanostructures Using Nanosphere Photolithography

    PubMed Central

    2008-01-01

    Large area periodic nanostructures exhibit unique optical and electronic properties and have found many applications, such as photonic band-gap materials, high dense data storage, and photonic devices. We have developed a maskless photolithography method—Nanosphere Photolithography (NSP)—to produce a large area of uniform nanopatterns in the photoresist utilizing the silica micro-spheres to focus UV light. Here, we will extend the idea to fabricate metallic nanostructures using the NSP method. We produced large areas of periodic uniform nanohole array perforated in different metallic films, such as gold and aluminum. The diameters of these nanoholes are much smaller than the wavelength of UV light used and they are very uniformly distributed. The method introduced here inherently has both the advantages of photolithography and self-assembled methods. Besides, it also generates very uniform repetitive nanopatterns because the focused beam waist is almost unchanged with different sphere sizes.

  10. Probing spontaneous wave-function collapse with entangled levitating nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Tiancai; Li, Jie

    2017-01-01

    Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.

  11. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites.

    PubMed

    Tartaj, Pedro; Serna, Carlos J

    2003-12-24

    A new method for the synthesis of monodisperse superparamagnetic nanospherical composites with a core containing metallic alpha-Fe nanocrystals dispersed in a silica matrix, and a shell only containing silica, is reported. Essential to the formation of this microstructure is to work with lamellar-like structures in conditions close to the upper-phase boundary limit for formation of microemulsions, and to control the solubility and pH of the metallic precursors. An advantage of the method is its versatility, which allows us to change the particle size (both for the nanomagnets and for the composite) and the spatial arrangement of the nanomagnets in the matrix. Our results indicate that this material could be adequate for biotechnology applications.

  12. Formation of hollow silica nanospheres by reverse microemulsion

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Han; Chang, Jen-Hsuan; Yeh, Yi-Qi; Wu, Si-Han; Liu, Yi-Hsin; Mou, Chung-Yuan

    2015-05-01

    Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water.Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and

  13. Results of Second Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect

    Reda, I.; Grobner, J.; Wacker, S.

    2014-01-01

    The Absolute Cavity Pyrgeometer (ACP) and InfraRed Integrating Sphere radiometer (IRIS) are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are un-windowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The second outdoor comparison between the two designs was held from September 30 to October 11, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of the IRIS was within 1 W/m2 (3 IRISs: PMOD + Australia + Germany). From the first and second comparisons, a difference of 4-6 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG). This presentation includes results from the first and second comparison in an effort to establish the world reference for pyrgeometer calibrations, a key deliverable for the World Meteorological Organization (WMO), and the DOE-ASR.

  14. Structural analysis and interaction studies of acyl-carrier protein (acpP) of Staphylococcus aureus, an extraordinarily thermally stable protein.

    PubMed

    Volk, Kathrin; Breunig, Sven D; Rid, Raphaela; Herzog, Julia; Bräuer, Maria; Hundsberger, Harald; Klein, Christian; Müller, Norbert; Önder, Kamil

    2017-01-01

    Acyl-carrier-protein (acpP) is an essential protein in fatty acid biosynthesis of Staphylococcus aureus [Cronan, J.E. and Thomas, J. (2009). Complex enzymes in microbial natural product biosynthesis, part B: polyketides, aminocoumarins and carbohydrates.

  15. Genomic structures and characterization of the 5'-flanking regions of acyl carrier protein and Delta4-palmitoyl-ACP desaturase genes from Coriandrum sativum.

    PubMed

    Kim, Mi Jung; Shin, Jeong Sheop; Kim, Jeong-Kook; Suh, Mi Chung

    2005-09-25

    The seed-specific or seed-predominant promoters of acyl carrier protein (Cs-ACP1) and Delta4-palmitoyl-acyl carrier protein desaturase (Cs-4PAD) genes, which are involved in the biosynthesis of petroselinic acid, were isolated from coriander (Coriandrum sativum) and analyzed in coriander endosperms and transgenic Arabidopsis. The expression of Cs-ACP1 and Cs-4PAD genes was coordinately regulated during seed development.

  16. Effects of the SARM ACP-105 on rotorod performance and cued fear conditioning in sham-irradiated and irradiated female mice.

    PubMed

    Dayger, Catherine; Villasana, Laura; Pfankuch, Timothy; Davis, Matthew; Raber, Jacob

    2011-03-24

    Female mice are more susceptible to radiation-induced cognitive changes than male mice. Previously, we showed that, in female mice, androgens antagonize age-related cognitive decline in aged wild-type mice and androgens and selective androgen receptor modulators (SARMs) antagonize cognitive changes induced by human apolipoprotein E4, a risk factor for developing age-related cognitive decline. In this study, the potential effects of the SARM ACP-105 were assessed in female mice that were either sham-irradiated or irradiated with ¹³⁷Cesium at a dose of 10Gy. Behavioral testing started 2 weeks following irradiation. Irradiation impaired sensorimotor function in vehicle-treated mice but not in ACP-105-treated mice. Irradiation impaired cued fear conditioning and ACP-105 enhanced fear conditioning in sham-irradiated and irradiated mice. When immunoreactivity for microtubule-associated protein 2 was assessed in the cortex of sham-irradiated mice, there was a brain area × ACP-105 interaction. While ACP-105 reduced MAP-2 immunoreactivity in the sensorimotor cortex, there was a trend towards increased MAP-2 immunoreactivity in the enthorhinal cortex. No effect on MAP-2 immunoreactivity was seen in the irradiated cortex or sham-irradiated or irradiated hippocampus. Thus, there are relatively early radiation-induced behavioral changes in female mice and reduced MAP-2 levels in the sensorimotor cortex following ACP-105 treatment might contribute to enhanced rotorod performance.

  17. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation.

    PubMed

    Sánchez-García, Alicia; Moreno-Pérez, Antonio J; Muro-Pastor, Alicia M; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2010-06-01

    Acyl-acyl carrier protein (ACP) thioesterases are enzymes that terminate the intraplastidial fatty acid synthesis in plants by hydrolyzing the acyl-ACP intermediates and releasing free fatty acids to be incorporated into glycerolipids. These enzymes are classified in two families, FatA and FatB, which differ in amino acid sequence and substrate specificity. In the present work, both FatA and FatB thioesterases were cloned, sequenced and characterized from castor (Ricinus communis) seeds, a crop of high interest in oleochemistry. Single copies of FatA and FatB were found in castor resulting to be closely related with those of Jatropha curcas. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization after purification, resulting in high catalytic efficiency of RcFatA on oleoyl-ACP and palmitoleoyl-ACP and high efficiencies of RcFatB for oleoyl-ACP and palmitoyl-ACP. The expression profile of these genes displayed the highest levels in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm and young expanding leaves. The contribution of these two enzymes to the synthesis of castor oil is discussed.

  18. Production and purification of refolded recombinant Plasmodium falciparum beta-ketoacyl-ACP reductase from inclusion bodies.

    PubMed

    Karmodiya, Krishanpal; Srivastav, Ratnesh Kumar; Surolia, Namita

    2005-07-01

    A recombinant form of Plasmodium falciparum beta-ketoacyl-ACP reductase (PfFabG) was overexpressed in Escherichia coli BL-21 codon plus (DE3). The resulting insoluble inclusion bodies were separated from cellular debris by extensive washing with buffer containing 0.05% Tween 20 and solubilized by homogenization with 8 M urea. Attempts to refold PfFabG from solubilized inclusion bodies employing Rotofor (separation based on different pIs of proteins in a mixture) followed by Ni(2+) or cation exchange chromatography were not successful either by bringing down the urea concentration instantaneously, stepwise, or by dialysis. Denatured PfFabG was therefore initially purified by cation exchange chromatography and was then correctly refolded at a final concentration of 100-200 microg/ml in a 20 mM Na-acetate buffer, pH 5.3, with 300 mM NaCl, 10% glycerol, and 0.05% Tween 20. The protein was found to be properly folded only in the presence of the cofactor NADPH and salt at a concentration 300 mM by drop dilution method at 2-8 degrees C for 12 h. The purified final product was >98% pure by denaturing gel electrophoresis. The purified protein was biologically active in a standard enzymatic assay using acetoacetyl-CoA as a substrate. The enzyme was found to be stable up to fourth day of purification and glycerol was found to stabilize enzyme activity for several weeks, during storage. This effort paves the way for elucidation of the structure-function correlations for PfFabG as well as exploration of the enzyme for developing inhibitors against it for combating malaria.

  19. Design of a high perveance ACP gun for the Litton 95 GHz harmonic gyroklystron

    SciTech Connect

    True, R.B.; Bemis, T.M.; Good, G.R.; Scheitrum, G.P.; Higgins, L.L.

    1995-12-31

    This paper describes a new advanced centerpost (ACP) gun for the Litton 95 GHz harmonic gyroklystron which provides roughly four times higher beam current than that available from the original gun. The magnetic focusing structure has been carefully matched to the beam in order to provide a very high quality, low velocity spread, axis-encircling beam. The level of magnetic field in the rf interaction region is consistent with fourth harmonic operation of the device (approximately 8,500 gauss) which allows a conventional solenoid to be used. At an operating voltage of 30 kilovolts and a beam current of 6.4 amps, peak power in the beam from the new gun is 192 kilowatts. At this voltage and current, the perveance of the gun is 1.23 micropervs. Procedures, computer codes, and methodology used to design the gun and magnetic focusing system will be discussed in detail. In design of the magnetic focusing structure, the authors made use of codes POISSON and DEMEOS, in combination with a powerful design method developed by one of the authors (Bemis). The method is based upon Busch`s theorem ;and it will be discussed in the paper. The gun was designed to operate into a .064 inch diameter drift tube for values of {alpha} ranging from 1.2 to 2.0 depending upon the beam voltage. Computed axial velocity spread ({delta}{nu}{sub z}/{nu}{sub z}) achieved so far is just over 2.5 percent which represents an excellent start considering the level of perveance and beam power density. The authors are working to lower this number even further and will report the results of their efforts at the meeting.

  20. Dentinal hypersensitivity: A comparative clinical evaluation of CPP-ACP F, sodium fluoride, propolis, and placebo

    PubMed Central

    Madhavan, Souparna; Nayak, Moksha; Shenoy, Amarnath; Shetty, Rajesh; Prasad, Krishna

    2012-01-01

    Background: Dentine hypersensitivity is a transient condition that often resolves with the natural sclerotic obturation of dentinal tubules. A potent topically applied in-office desensitizing treatment is indicated as the choice of treatment when dentine hypersensitivity is localized to one or two teeth. Aim: The present study aimed to evaluate and compare the clinical efficiency of CPP-ACP F, sodium fluoride, propolis, and distilled water that was used as placebo in treating dentinal hypersensitivity. Materials and Methods: 120 patients aged 20–40 years reporting with dentinal hypersensitivity in relation to canine, premolar and molars with erosion, abrasion, and gingival recession were randomly assigned to four groups of 30 patients each. Response to air jet and tactile stimuli were measured using visual analogue scale initially on 1st, 7th, 15th, 28th, 60th, and final assessment was done on the 90th day. Statistical Analysis: A statistical analysis was done using Anova test (Fischer's test) and Tukey HSD test for multicomparison. Results: The teeth treated with the test group showed decrease in the mean hypersensitivity values compared to control group, over a period of three months. The results showed propolis to be most efficient in treating dentinal hypersensitivity and CPP- ACPF showed to be the least efficient. Conclusion: All test groups were effective in reducing dentinal hypersensitivity, although they differed in rapidity of action over the period of 3 months. Further studies can be done using advanced materials and techniques. Multiple therapeutic modalities have been developed to treat dentinal hypersensitivity including products that impede nerve conduction of pain stimulus, products that mechanically occlude dentinal tubules, and calcium containing products designed to create plugs in the tubules utilizing a demineralization mechanism. PMID:23112475

  1. The 3-hydroxyacyl-ACP dehydratase component of the plant mitochondrial fatty acid synthase system.

    PubMed

    Guan, Xin; Okazaki, Yozo; Lithio, Andrew; Li, Ling; Zhao, Xuefeng; Jin, Huanan; Nettleton, Dan; Saito, Kazuki; Nikolau, Basil J

    2017-02-15

    We report the characterization of the Arabidopsis 3-hydroxyacyl-acyl carrier protein (ACP) dehydratase (mtHD) component of the mitochondrial fatty acid synthase (mtFAS) system, encoded by AT5G60335. The mitochondrial localization and catalytic capability of mtHD were demonstrated with a green fluorescent protein (GFP) transgenesis experiment, and by in vivo complementation and in vitro enzymatic assays. RNAi knockdown lines with reduced mtHD expression exhibit traits typically associated with mtFAS mutants, namely a miniaturized morphological appearance, reduced lipoylation of lipoylated proteins, and altered metabolomes consistent with the reduced catalytic activity of lipoylated enzymes. These alterations are reversed when mthd-rnai mutant plants are grown in a 1% CO2 atmosphere, indicating the link between mtFAS and photorespiratory deficiency due to the reduced lipoylation of glycine decarboxylase. In vivo biochemical feeding experiments illustrate that sucrose and glycolate are the metabolic modulators that mediate the alterations in morphology and lipid accumulation. In addition, both mthd-rnai and mtkas mutants exhibit reduced accumulation of 3-hydroxytetradecanoic acid (i.e. a hallmark of lipid A-like molecules) and abnormal chloroplastic starch granules; these changes are not reversible by the 1% CO2 atmosphere, demonstrating two novel mtFAS functions that are independent of photorespiration. Finally, RNA-Seq analysis revealed that mthd-rnai and mtkas mutants are near equivalent to each other in altering transcriptome, and these analyses further identified genes whose expression is affected by a functional mtFAS system, but independent of photorespiratory deficiency. These data demonstrate the non-redundant nature of the mtFAS system, which contributes unique lipid components needed to support plant cell structure and metabolism.

  2. Porous organic molecules

    NASA Astrophysics Data System (ADS)

    Holst, James R.; Trewin, Abbie; Cooper, Andrew I.

    2010-11-01

    Most synthetic materials that show molecular-scale porosity consist of one-, two- or three-dimensional networks. Porous metal-organic frameworks in particular have attracted a lot of recent attention. By contrast, discrete molecules tend to pack efficiently in the solid state, leaving as little empty space as possible, which leads to non-porous materials. This Perspective discusses recent developments with discrete organic molecules that are porous in the solid state. Such molecules, which may be either crystalline or amorphous, can be categorized as either intrinsically porous (containing permanent covalent cavities) or extrinsically porous (inefficiently packed). We focus on the possible advantages of organic molecules over inorganic or hybrid systems in terms of molecular solubility, choice of components and functionalities, and structural mobility and responsiveness in non-covalent extended solids. We also highlight the potential for 'undiscovered' porous systems among the large number of cage-like organic molecules that are already known.

  3. Measuring Order and the Debye-Waller Factor for Porous Arrays

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi

    2007-03-01

    We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete radial distribution function (RDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. Nanoporous anodized aluminum oxide, hexagonal arrays from functional materials, hexagonal arrays from nanosphere lithography, and arrays from block copolymer lithography (all taken from the literature) are compared to two-dimensional model systems. The DWF is normalized to the first harmonic and depends on N, the number of peaks in the fit for these finite arrays. We optimize N to the classical model for the DWF as a fit to reciprocal space K^2.

  4. In situ Effect of Chewing Gum with and without CPP-ACP on Enamel Surface Hardness Subsequent to ex vivo Acid Challenge.

    PubMed

    Jordão, M C; Alencar, C R B; Mesquita, I M; Buzalaf, M A R; Magalhães, A C; Machado, M A A M; Honório, H M; Rios, D

    2016-01-01

    The erosion-protective effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is controversial. This study aimed to investigate the ability of CPP-ACP chewing gum to prevent a single event of erosive demineralization in situ. Bovine enamel blocks (n = 120) were randomly assigned to 3 phases according to the baseline surface hardness: phase I (PI) - chewing gum with CPP-ACP, phase II (PII) - chewing gum without CPP-ACP, and control phase (PIII) - salivary effect without stimulation (no gum). Nineteen volunteers participated in this study during 3 crossover phases of 2 h. In PI and PII, the volunteers wore intraoral palatal appliances for 120 min and chewed a unit of the corresponding chewing gum for the final 30 min. In the control phase the volunteers wore the appliance for 2 h, without chewing gum. Immediately after intraoral use, the appliances were extraorally immersed in a cola drink for 5 min to promote erosive demineralization. The percentage of surface hardness loss was calculated. The data were analyzed by ANOVA models and Tukey's test. Lower enamel hardness loss was found after the use of chewing gum with CPP-ACP (PI: 32.7%) and without CPP-ACP (PII: 33.5%) compared to the salivary effect without stimulation (PIII: 39.8%) (p < 0.05). There was no difference between PI and PII (p > 0.05). The results suggest that the use of chewing gum immediately before an erosive demineralization can diminish enamel hardness loss. However, the presence of CPP-ACP in the chewing gum cannot enhance this protective effect.

  5. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.

    2013-10-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.

  6. In vivo monitoring of nanosphere onsite delivery using fiber optic microprobe

    NASA Astrophysics Data System (ADS)

    Lo, Leu-Wei; Yang, Chung-Shi

    2005-02-01

    To recognize the information of ischemia-induced blood vessel permeability would be valuable to formulate the drugs for optimal local delivery, we constructed an implantable needle type fiber-optic microprobe for the monitoring of in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers and catheterized using a thin wall tubing of stainless steel (~400 um O.D. and ~300 um I.D.). The central fiber, with 100 um core diameter and 20 um cladding, coated with a 30 um layer of gold, was surrounded by 10 fibers with 50 um cores. The central fiber carried the light from the 488 nm Argon laser to the tissue while the surrounding fibers collected the emitted fluorescence to the detector. When the fiber-optic microprobe was placed in the solutions containing various concentrations of fluorescent nanospheres (20 nm), either with or without 10% lipofundin as optical phantom, nanosphere concentration-dependent responses of the fluorescence intensity were observed. The microprobe was then implanted into the liver and the brain of anesthetized rats to monitor the in situ extravasation of pre-administered fluorescent nanospheres from vasculature following the ischemic insults. Both the hepatic and cerebral ischemic insults showed immediate increases of the extracellular 20 nm fluorescent nanospheres. The implantable fiber-optic microprobe constructed in present study provides itself as a minimally-invasive technique capable of investigating the vascular permeability for in vivo nanosphere delivery in both ischemic liver and brain.

  7. Synthesis and characterization of pullulan-polycaprolactone core-shell nanospheres encapsulated with ciprofloxacin.

    PubMed

    Shady, Sally Fouad; Gaines, Peter; Garhwal, Rahul; Leahy, Charles; Ellis, Edward; Crawford, Kathryn; Schmidt, Daniel F; McCarthy, Stephen P

    2013-09-01

    Nanosphere-encapsulated drugs offer a means to overcome many drug delivery limitations by localizing the site of delivery and providing controlled release. This research details the synthesis and encapsulation of ciprofloxacin in pullulan-polycaprolactone (PCL) core shell nanospheres and the characterization of these materials by 1H-NMR, UV spectroscopy, dynamic light scattering (DLS) and scanning electron microscopy (SEM).1H-NMR results confirm that the pullulan-PCL grafted copolymer was successfully synthesized. UV spectroscopy showed that the ciprofloxacin loaded nanospheres contain 35-40% ciprofloxacin by weight. DLS and SEM results indicate that the loaded nanospheres are spherical in shape and approximately 142+/-12 nm in size. Under in vitro test conditions, approximately 20% of the ciprofloxacin is released in the first 4 hours, with additional release over 10 days. The nanoparticles demonstrate bioactivity against Escheria coli and do not affect the proliferation of two human cell lines. These results demonstrate the potential of pullulan-PCL core-shell nanospheres as delivery vehicles of hydrophobic drugs, including antibiotics for localized treatments applicable to a wide-range of human bacterial infections.

  8. Cellular response to empty and palladium-conjugated amino-polystyrene nanospheres uptake: a proteomic study.

    PubMed

    Pietrovito, Laura; Cano-Cortés, Victoria; Gamberi, Tania; Magherini, Francesca; Bianchi, Laura; Bini, Luca; Sánchez-Martín, Rosario M; Fasano, Mauro; Modesti, Alessandra

    2015-01-01

    Amino polystyrene nanospheres are shown to be efficient and controllable delivery devices, capable of transporting several bioactive cargoes. Recently, the design of a new device for prodrug activation, using these nanospheres with palladium encapsulated onto them, has been developed successfully. To study the influence of the cellular uptake of these nanodevices, we investigated the cellular response of human embryonic kidney cells (HEK-293T) and murine fibroblasts (L929) treated with empty or palladium-conjugated amino polystyrene nanospheres. To identify differentially expressed proteins, we performed an exhaustive proteomic analysis. In accordance with genomic data previously obtained, the uptake of the empty nanospheres did not induce significant variation in protein expression levels. Following the treatment with palladium-conjugated nanospheres, some changes in protein profiles in both cell lines were observed; these alterations affect proteins involved in cell metabolism and intracellular transport. No key regulator of the cell cycle result was differentially expressed after the treatment, confirming that these innovative drug delivery systems are harmless and well tolerated by the cells.

  9. Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres.

    PubMed

    Chen, Rui; Wang, Xin; Yao, Xikuan; Zheng, Xianchuang; Wang, Jing; Jiang, Xiqun

    2013-11-01

    Gold nanorods (AuNR)- and indocyanine green (ICG)-encapsulated chitosan hybrid nanospheres (CS-AuNR-ICG NSs) were successfully prepared and used for photothermal and photodynamic combined therapy with a single irradiation. These nanospheres were characterized by transmission electron microscopy, dynamic light scattering and UV-Vis absorption spectra. The in vivo anticancer effects of the hybrid nanospheres were examined by photodynamic therapy (PDT), photothermal therapy (PTT), and PTT/PDT combined therapy. It was found that the hybrid nanospheres had spherical size of 180 nm and a broad adsorption from 650 nm to 900 nm. The spherical chitosan matrix could effectively load ICG and protect it from the rapid hydrolysis. In vivo near-infrared fluorescence imaging and biodistribution demonstrated that ICG and AuNR could be selectively delivered to the tumor site with high accumulation. With the irradiation by 808 nm laser, chitosan hybrid nanospheres were capable to simultaneously produce sufficient hyperthermia and reactive oxygen species to kill cancer cells at irradiation sites, resulting in the complete tumor disappearance in the most of tumor-bearing mice. Compared with photothermal therapy or photodynamic therapy alone, the combined therapy had a significantly synergistic effect and improved the therapeutic efficacy.

  10. Enhanced hot-carrier luminescence in multilayer reduced graphene oxide nanospheres

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Zhang, Chunfeng; Xiao, Min

    2015-03-01

    We report a method to promote photoluminescence emission in graphene materials by enhancing carrier scattering instead of directly modifying band structure in multilayer reduced graphene oxide (rGO) nanospheres. We intentionally curl graphene layers to form nanospheres by reducing graphene oxide with spherical polymer templates to manipulate the carrier scattering. These nanospheres produce hot-carrier luminescence with more than ten-fold improvement of emission efficiency as compared to planar nanosheets. With increasing excitation power, hot-carrier luminescence from nanospheres exhibits abnormal spectral redshift with dynamic feature associated to the strengthened electron-phonon coupling. These experimental results can be well understood by considering the screened Coulomb interactions. With increasing carrier density, the reduced screening effect promotes carrier scattering which enhances hot-carrier emission from such multilayer rGO nanospheres. This carrier-scattering scenario is further confirmed by pump-probe measurements. This work is supported by the National Basic Research Program of China (2012CB921801 and 2013CB932903), the National Science Foundation of China (91233103, 61108001, 11227406 and 11021403), and the Program of International S&T Cooperation (2011DFA01400).

  11. Bio-physical evaluation and in vivo delivery of plant proteinase inhibitor immobilized on silica nanospheres.

    PubMed

    Khandelwal, Neha; Doke, Dhananjay S; Khandare, Jayant J; Jawale, Priyanka V; Biradar, Ankush V; Giri, Ashok P

    2015-06-01

    Recombinant expression of Capsicum annuum proteinase inhibitors (CanPI-13) and its application via synthetic carrier for the crop protection is the prime objective of our study. Herein, we explored proteinase inhibitor peptide immobilization on silica based nanospheres and rods followed by its pH mediated release in vitro and in vivo. Initial studies suggested silica nanospheres to be a suitable candidate for peptide immobilization. Furthermore, the interactions were characterized biophysically to ascertain their conformational stability and biological activity. Interestingly, bioactive peptide loading at acidic pH on nanospheres was found to be 62% and showed 56% of peptide release at pH 10, simulating gut milieu of the target pest Helicoverpa armigera. Additionally, in vivo study demonstrated significant reduction in insect body mass (158 mg) as compared to the control insects (265 mg) on 8th day after feeding with CanPI-13 based silica nanospheres. The study confirms that peptide immobilized silica nanosphere is capable of affecting overall growth and development of the feeding insects, which is known to hamper fecundity and fertility of the insects. Our study illustrates the utility and development of peptide-nanocarrier based platform in delivering diverse biologically active complexes specific to gut pH of H. armigera.

  12. Simple preparation of Pd-NP/polythiophene nanospheres for heterogeneous catalysis.

    PubMed

    Bae, Sang-Eun; Kim, Ki-Jung; Hwang, Yong-Kyung; Huh, Seong

    2015-10-15

    A very simple preparation was developed for catalytically active Pd-nanoparticles (Pd-NPs) decorating polythiophene conducting polymer nanospheres by the redox reaction between PdCl4(2-) ion and 2-thiophenemethanol (2-TPM) in an aqueous solution at room temperature. 2-TPM polymerized to form polythiophene nanospheres in the presence of PdCl4(2-) ions, reduced to Pd-NPs without the need for extra reducing agents or organic surface capping ligands for sub-20 nm Pd-NPs that uniformly cover polythiophene nanospheres whose dimensions range from 120 nm to 200 nm. The Pd-NP/polythiophene nanospheres were characterized by scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), and inductively-coupled plasma atomic emission spectroscopy (ICP-AES). The Pd-NP/polythiophene nanospheres were found to be an excellent catalyst for Suzuki-Miyaura cross-coupling reaction for a wide range of substrates under mild aerobic reaction conditions.

  13. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms.

    PubMed

    Christensen, Thomas; Yan, Wei; Raza, Søren; Jauho, Antti-Pekka; Mortensen, N Asger; Wubs, Martijn

    2014-02-25

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss spectroscopy, and light scattering. These constitute two near-field and one far-field measurements, with zero-, one-, and two-dimensional excitation sources, respectively. We search for the clearest signatures of hydrodynamic pressure waves in nanospheres. We employ a linearized hydrodynamic model, and Mie-Lorenz theory is applied for each case. Nonlocal response shows its mark in all three configurations, but for the two near-field measurements, we predict especially pronounced nonlocal effects that are not exhibited in far-field measurements. Associated with every multipole order is not only a single blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii. For selected metals, we predict hydrodynamic multipolar plasmons to be measurable on single nanospheres.

  14. Solvatochromic Dyes as pH-Independent Indicators for Ionophore Nanosphere-Based Complexometric Titrations.

    PubMed

    Zhai, Jingying; Xie, Xiaojiang; Bakker, Eric

    2015-12-15

    For half a century, complexometric titrations of metal ions have been performed with water-soluble chelators and indicators that typically require careful pH control. Very recently, ion-selective nanosphere emulsions were introduced that exhibit ion-exchange properties and are doped with lipophilic ionophores originally developed for chemical ion sensors. They may serve as novel, highly selective and pH independent complexometric reagents. While ion optode emulsions have been demonstrated as useful indicators for such titrations, they exhibit a pH cross-response that unfortunately complicates the identification of the end point. Here, we present pH-independent optode nanospheres as indicators for complexometric titrations, with calcium as an initial example. The nanospheres incorporate an ionic solvatochromic dye (SD), ion exchanger and ionophore. The solvatochromic dye will be only expelled from the core of the nanosphere into the aqueous solution at the end point at which point it results in an optical signal change. The titration curves are demonstrated to be pH-independent and with sharper end points than with previously reported chromoionophore-based optical nanospheres as indicator. The calcium concentration in mineral water was successfully determined using this method.

  15. Controllable fabrication of platinum nanospheres with a polyoxometalate-assisted process

    SciTech Connect

    Sun Guoying; Li Qiuyu; Xu Rui; Gu Jianmin; Ju Mingliang; Wang Enbo

    2010-11-15

    Pt nanospheres with an average diameter of 60{+-}10 nm have been successfully synthesized at room temperature through a facile polyoxometalate(POM)-assisted process. Characterization by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) clearly showed that these Pt nanospheres consisted of 2-7 nm Pt nanodots. During the formation of such unique nanostructures, POMs were found to serve as both catalyst and stabilizer. The size of the as-synthesized Pt nanospheres could be controlled solely by adjusting the molar ratio of POMs to H{sub 2}PtCl{sub 6}. A possible formation mechanism based on POMs-mediated electron transfer from ascorbic acid (AA) to PtCl{sub 6}{sup 2-} and AA-assisted aggregation was tentatively proposed to rationalize the formation of such nanostructures. Importantly, these specific Pt nanospheres exhibited good electrocatalytic activity towards the oxidation of methanol, making them promising for applications in direct methanol fuel cells. - Graphical abstract: Large-scale Pt nanospheres were synthesized through a polyoxometalate-assisted process, and exhibited good electrocatalytic activity towards the oxidation of methanol, making them promising for applications in fuel cells. Display Omitted

  16. In vivo potentialities of EWS-Fli-1 targeted antisense oligonucleotides-nanospheres complexes.

    PubMed

    Maksimenko, Andrei; Polard, Valerie; Villemeur, Marie; Elhamess, Hind; Couvreur, Patrick; Bertrand, Jean-Remi; Aboubakar, Malam; Gottikh, Marina; Malvy, Claude

    2005-11-01

    The EWS/FLI-1 fusion gene, resulting from a t(11;22) translocation, plays a key role in the pathogenesis of Ewing sarcoma. Previously, we have shown that antisense oligonucleotides designed against EWS-Fli-1 inhibited tumor growth in nude mice provided they were delivered intratumorally by nanocapsules or by CTAB-coated nanospheres. In this study, we have used two types of nanospheres (designated as type 1 and type 2 nanospheres) stabilized with chitosan for both intratumoral and systemic administration of oligonucleotides. Inhibition of the tumor growth in vivo was found to be dependent on the carrier type as well as on antisense oligonucleotide modification. Indeed, whereas both types of nanospheres were efficient in reducing tumor growth after intratumoral injection, we have obtained only with type 2 nanospheres an antitumoral effect after intravenous injection in a preliminary experiment. Additionally, the anticancer efficacy of a localized modification of the EWS-Fli-1 phosphodiester/phosphorothioate chimeric antisense oligonucleotide was demonstrated. In cell culture the oligonucleotides inhibit cell growth by their antisense activity. Further investigations are needed in vivo to learn the mechanism of action of the complexes.

  17. Amphiphilic Graft Copolymer Nanospheres: From Colloidal Self-Assembly to CO2 Capture Membranes.

    PubMed

    Jeon, Harim; Kim, Dong Jun; Park, Min Su; Ryu, Du Yeol; Kim, Jong Hak

    2016-04-13

    Colloidal nanosphere self-assembly effectively generates ordered nanostructures, prompting tremendous interest in many applications such as photonic crystals and templates for inverse opal fabrication. Here we report the self-assembly of low-cost, graft copolymer nanospheres for CO2 capture membranes. Specifically, poly(dimethylsiloxane)-graft-poly(4-vinylpyridine) (PDMS-g-P4VP) is synthesized via one-pot, free radical dispersion polymerization to give discrete monodisperse nanospheres. These nanospheres comprise a surface-anchored highly permeable PDMS layer and internal CO2-philic P4VP spherical core. Their diameter is controllable below the submicrometer range by varying grafting ratios. The colloidal dispersion forms a long-range, close-packed hexagonal array on a substrate by inclined deposition and convective assembly. The array shows dispersion medium-dependent packing characteristics. A thermodynamic correlation is determined using different solvents to obtain stable PDMS-g-P4VP dispersions and interpreted in terms of Flory-Huggins interaction parameter. As a proof-of-concept, the implementation of these nanospheres into membranes simultaneously enhances the CO2 permeability and CO2/N2 selectivity of PDMS-based transport matrixes. Upon physical aging of the solution, the CO2/N2 selectivity is improved up to 26, one of the highest values for highly permeable PDMS-based polymeric membranes.

  18. AFM characterization of spin coated carboxylated polystyrene nanospheres/xyloglucan layers on mica and silicon.

    PubMed

    Lubambo, Adriana F; Lucyszyn, Neoli; Petzhold, Cesar L; Sierakowski, Maria-R; Schreiner, Wido H; Saul, Cyro K

    2013-03-01

    Self-assembled nano-arrays have a potential application as solid-phase diagnostics in many biomedical devices. The easiness of its production is directly connected to manufacture cost reduction. In this work, we present self-assembled structures starting from spin coated thin films of carboxylated polystyrene (PSC) and xyloglucan (XG) mixtures on both mica and silicon substrates. AFM images showed PSC nanospheres on top of a homogeneous layer of XG, for both substrates. The average nanosphere diameter fluctuated for a constant speed and it was likely to be independent of the component proportions on the mixture within a range of 30-50% (v/v) PSC. It was also observed that the largest diameters were found at the center of the sample and the smallest at the border. The detected nanospheres were also more numerous at the border. This behavior presents a similarity to spin coated colloidal dispersions. We observed that the average nanosphere diameter on mica substrates was bigger than the nanosphere diameters obtained on top of silicon substrates, under the same conditions. This result seems to be possibly connected to different mixture-surface interactions.

  19. Magnetic hyaluronic acid nanospheres via aqueous Diels-Alder chemistry to deliver dexamethasone for adipose tissue engineering.

    PubMed

    Jia, Yang; Fan, Ming; Chen, Huinan; Miao, Yuting; Xing, Lian; Jiang, Bohong; Cheng, Qifan; Liu, Dongwei; Bao, Weikang; Qian, Bin; Wang, Jionglu; Xing, Xiaodong; Tan, Huaping; Ling, Zhonghua; Chen, Yong

    2015-11-15

    Biopolymer-based nanospheres have great potential in the field of drug delivery and tissue regenerative medicine. In this work, we present a flexible way to conjugate a magnetic hyaluronic acid (HA) nanosphere system that are capable of vectoring delivery of adipogenic factor, e.g. dexamethasone, for adipose tissue engineering. Conjugation of nanospheres was established by aqueous Diels-Alder chemistry between furan and maleimide of HA derivatives. Simultaneously, a furan functionalized dexamethasone peptide, GQPGK, was synthesized and covalently immobilized into the nanospheres. The magnetic HA nanospheres were fabricated by encapsulating super-paramagnetic iron oxide nanoparticles, which exhibited quick magnetic sensitivity. The aqueous Diels-Alder chemistry made nanospheres high binding efficiency of dexamethasone, and the vectoring delivery of dexamethasone could be easily controlled by a external magnetic field. The potential application of the magnetic HA nanospheres on vectoring delivery of adipogenic factor was confirmed by co-culture of human adipose-derived stem cells (ASCs). In vitro cytotoxicity tests demonstrated that incorporation of dexamethasone into magnetic HA nanospheres showed high efficiency to promote ASCs viabilities, in particular under a magnetic field, which suggested a promising future for adipose regeneration applications.

  20. Hierarchical Porous Structures

    SciTech Connect

    Grote, Christopher John

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  1. Ventilation of porous media

    DOEpatents

    Neeper, D.A.

    1994-02-22

    Methods are presented for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction. 10 figures.

  2. Ventilation of porous media

    DOEpatents

    Neeper, Donald A.

    1994-01-01

    Methods for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction.

  3. Hollow Sodium Tungsten Bronze (Na0.15WO3) Nanospheres: Preparation, Characterization, and Their Adsorption Properties

    PubMed Central

    2009-01-01

    We report herein a facile method for the preparation of sodium tungsten bronzes hollow nanospheres using hydrogen gas bubbles as reactant for chemical reduction of tungstate to tungsten and as template for the formation of hollow nanospheres at the same time. The chemical composition and the crystalline state of the as-prepared hollow Na0.15WO3nanospheres were characterized complementarily, and the hollow structure formation mechanism was proposed. The hollow Na0.15WO3nanospheres showed large Brunauer–Emment–Teller specific area (33.8 m2 g−1), strong resistance to acids, and excellent ability to remove organic molecules such as dye and proteins from aqueous solutions. These illustrate that the hollow nanospheres of Na0.15WO3should be a useful adsorbent. PMID:20596394

  4. Hollow Sodium Tungsten Bronze (Na0.15WO3) Nanospheres: Preparation, Characterization, and Their Adsorption Properties.

    PubMed

    Hou, Jing; Zuo, Guanke; Shen, Guangxia; Guo, He; Liu, Hui; Cheng, Ping; Zhang, Jingyan; Guo, Shouwu

    2009-07-17

    We report herein a facile method for the preparation of sodium tungsten bronzes hollow nanospheres using hydrogen gas bubbles as reactant for chemical reduction of tungstate to tungsten and as template for the formation of hollow nanospheres at the same time. The chemical composition and the crystalline state of the as-prepared hollow Na0.15WO3nanospheres were characterized complementarily, and the hollow structure formation mechanism was proposed. The hollow Na0.15WO3nanospheres showed large Brunauer-Emment-Teller specific area (33.8 m2 g-1), strong resistance to acids, and excellent ability to remove organic molecules such as dye and proteins from aqueous solutions. These illustrate that the hollow nanospheres of Na0.15WO3should be a useful adsorbent.

  5. One-step synthesis of monodisperse AuNPs@PANI composite nanospheres as recyclable catalysts for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Li, Runming; Li, Zhiyuan; Wu, Qiang; Li, Dongfeng; Shi, Jiahua; Chen, Yuewen; Yu, Shuling; Ding, Tao; Qiao, Congzhen

    2016-06-01

    Oxidative polymerization of aniline was carried out in ethanol using chloroauric acid (HAuCl4) as the oxidant. Simultaneous reduction of HAuCl4 and formation of gold nanoparticles (AuNPs) and polyaniline (PANI) composite nanospheres (AuNPs@PANI nanospheres) were achieved without using any templates or structure-directing agents. The composite nanospheres are uniformly distributed with an average diameter of about 400 nm, in which the ultrafine AuNPs with size of about 2-4 nm were evenly embedded in the PANI matrix which acted as the dispersing agent and stabilizer of AuNPs. In addition, the catalytic performance of these composite nanospheres towards the reduction of 4-nitrophenol in the presence of NaBH4 was studied. Furthermore, the possible formation mechanism and catalytic mechanism of the self-assembled AuNPs@PANI nanospheres were also discussed.

  6. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M.

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  7. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  8. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    PubMed

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  9. Interconnected hollow carbon nanospheres for stable lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g-1) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm-2. The Coulombic efficiency improves to ˜99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes.

  10. Fabrication of Nickel Nanostructure Arrays Via a Modified Nanosphere Lithography

    PubMed Central

    2011-01-01

    In this paper, we present a modified nanosphere lithographic scheme that is based on the self-assembly and electroforming techniques. The scheme was demonstrated to fabricate a nickel template of ordered nanobowl arrays together with a nickel nanostructure array-patterned glass substrate. The hemispherical nanobowls exhibit uniform sizes and smooth interior surfaces, and the shallow nanobowls with a flat bottom on the glass substrate are interconnected as a net structure with uniform thickness. A multiphysics model based on the level set method (LSM) was built up to understand this fabricating process by tracking the interface between the growing nickel and the electrolyte. The fabricated nickel nanobowl template can be used as a mold of long lifetime in soft lithography due to the high strength of nickel. The nanostructure–patterned glass substrate can be used in optical and magnetic devices due to their shape effects. This fabrication scheme can also be extended to a wide range of metals and alloys. PMID:27502648

  11. UV Spectra of Amino Acid Immobilized at Nanoparticles Formation through Nanosphere Lithography (NSL) by Plasma Treatment

    SciTech Connect

    Mohamad, Farizan; Agam, Mohd Arif; Nur, Hadi

    2011-05-25

    The modifying of nanospheres structures by plasma treatments to the fabricated nanoparticles arrays by Nanosphere Lithography (NSL) techniques to create Periodic Particles Arrays (PPAs) with different size, shape and orientation. Spectra of amino acid that immobilized to the nanoparticles arrays under Ultra Violet (UV) spectrums were studied. The PPAs with different sizes, shapes and orientation were fabricated by plasma treatment of 5 sec, 7 sec and 10 sec to the Polystyrene Nanosphere (PSN). Plasma treatment will effect to the PSN including etching part of the PSN to produce a much bigger channel to the single layer template of the PSN. Metal was deposited at interstitial sites between of the polymer balls and later removed by dissolving them in organic solvent, leaving a hexagonal pattern of metal structures at the interstitial sites. The nanoparticles immobilized with the standard amino acid, which later investigated under UV spectrums. The spectrums shows the possibilities use as biosensor devices.

  12. Highly emissive and low refractive index layers from doped silica nanospheres for solar cell applications

    NASA Astrophysics Data System (ADS)

    Haranath, D.; Gandhi, Namita; Sahai, Sonal; Husain, M.; Shanker, Virendra

    2010-08-01

    Confinement of europium (Eu 3+) ions in silica (SiO 2) nanospheres yields efficient red-emitting nanophosphors when excited via charge transfer states (CTS) absorption in UV (393 nm) radiation. This is explained on the basis of modulation of f-f transition due to quantum confinement of rare-earth ion in a nanosize host. It is also evidenced that the short range crystallanity and confinement effects provided by the nanospheres increases the Eu 3+ emission intensity by almost ten times at the expense of CTS. Coating of organically modified SiO 2 nanospheres resulted in low refractive index layers that are highly useful as cover glazing for solar collectors.

  13. A Multifunctional Subphthalocyanine Nanosphere for Targeting, Labeling, and Killing of Antibiotic-Resistant Bacteria.

    PubMed

    Roy, Indranil; Shetty, Dinesh; Hota, Raghunandan; Baek, Kangkyun; Kim, Jeesu; Kim, Chulhong; Kappert, Sandro; Kim, Kimoon

    2015-12-07

    Developing a material that can combat antibiotic-resistant bacteria, a major global health threat, is an urgent requirement. To tackle this challenge, we synthesized a multifunctional subphthalocyanine (SubPc) polymer nanosphere that has the ability to target, label, and photoinactivate antibiotic-resistant bacteria in a single treatment with more than 99 % efficiency, even with a dose as low as 4.2 J cm(-2) and a loading concentration of 10 nM. The positively charged nanosphere shell composed of covalently linked SubPc units can increase the local concentration of photosensitizers at therapeutic sites. The nanosphere shows superior performance compared to corresponding monomers presumably because of their enhanced water dispersibility, higher efficiency of singlet-oxygen generation, and phototoxicity. In addition, this material is useful in fluorescence labeling of living cells and shows promise in photoacoustic imaging of bacteria in vivo.

  14. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy

    NASA Astrophysics Data System (ADS)

    Shao, Jundong; Xie, Hanhan; Huang, Hao; Li, Zhibin; Sun, Zhengbo; Xu, Yanhua; Xiao, Quanlan; Yu, Xue-Feng; Zhao, Yuetao; Zhang, Han; Wang, Huaiyu; Chu, Paul K.

    2016-09-01

    Photothermal therapy (PTT) offers many advantages such as high efficiency and minimal invasiveness, but clinical adoption of PTT nanoagents have been stifled by unresolved concerns such as the biodegradability as well as long-term toxicity. Herein, poly (lactic-co-glycolic acid) (PLGA) loaded with black phosphorus quantum dots (BPQDs) is processed by an emulsion method to produce biodegradable BPQDs/PLGA nanospheres. The hydrophobic PLGA not only isolates the interior BPQDs from oxygen and water to enhance the photothermal stability, but also control the degradation rate of the BPQDs. The in vitro and in vivo experiments demonstrate that the BPQDs/PLGA nanospheres have inappreciable toxicity and good biocompatibility, and possess excellent PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) laser illumination. These BP-based nanospheres combine biodegradability and biocompatibility with high PTT efficiency, thus promising high clinical potential.

  15. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy

    PubMed Central

    Shao, Jundong; Xie, Hanhan; Huang, Hao; Li, Zhibin; Sun, Zhengbo; Xu, Yanhua; Xiao, Quanlan; Yu, Xue-Feng; Zhao, Yuetao; Zhang, Han; Wang, Huaiyu; Chu, Paul K.

    2016-01-01

    Photothermal therapy (PTT) offers many advantages such as high efficiency and minimal invasiveness, but clinical adoption of PTT nanoagents have been stifled by unresolved concerns such as the biodegradability as well as long-term toxicity. Herein, poly (lactic-co-glycolic acid) (PLGA) loaded with black phosphorus quantum dots (BPQDs) is processed by an emulsion method to produce biodegradable BPQDs/PLGA nanospheres. The hydrophobic PLGA not only isolates the interior BPQDs from oxygen and water to enhance the photothermal stability, but also control the degradation rate of the BPQDs. The in vitro and in vivo experiments demonstrate that the BPQDs/PLGA nanospheres have inappreciable toxicity and good biocompatibility, and possess excellent PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) laser illumination. These BP-based nanospheres combine biodegradability and biocompatibility with high PTT efficiency, thus promising high clinical potential. PMID:27686999

  16. Tuning the peak position of subwavelength silica nanosphere broadband antireflection coatings.

    PubMed

    Tao, Fei; Hiralal, Pritesh; Ren, Lianbing; Wang, Yong; Dai, Qing; Amaratunga, Gehan Aj; Zhou, Hang

    2014-01-01

    Subwavelength nanostructures are considered as promising building blocks for antireflection and light trapping applications. In this study, we demonstrate excellent broadband antireflection effect from thin films of monolayer silica nanospheres with a diameter of 100 nm prepared by Langmuir-Blodgett method on glass substrates. With a single layer of compact silica nanosphere thin film coated on both sides of a glass, we achieved maximum transmittance of 99% at 560 nm. Furthermore, the optical transmission peak of the nanosphere thin films can be tuned over the UV-visible range by changing processing parameters during Langmuir-Blodgett deposition. The tunable optical transmission peaks of the Langmuir-Blodgett films were correlated with deposition parameters such as surface pressure, surfactant concentration, ageing of suspensions and annealing effect. Such peak-tunable broadband antireflection coating has wide applications in diversified industries such as solar cells, windows, displays and lenses.

  17. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    SciTech Connect

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H.

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  18. Polyelectrolyte - mediated adsorption of amelogenin monomers and nanospheres forming mono- or multi-layers

    PubMed Central

    Gergely, Csilla; Szalontai, Balázs; Moradian-Oldak, Janet; Cuisinier, Frédéric J.G.

    2008-01-01

    We have applied optical waveguide lightmode spectroscopy combined with streaming potential measurements and Fourier transformed infrared spectroscopy to investigate adsorption of amelogenin nanospheres onto polyelectrolytes. The long term objective was to better understand the chemical nature of these assemblies and to gain further insight into the molecular mechanisms involved during self-assembly. It was found that monolayers of monomers and negatively charged nanospheres of a recombinant amelogenin (rM179) irreversibly adsorbed onto a positively charged polyelectrolyte multilayer films. Based on measurements performed at different temperatures it was demonstrated that intermolecular interactions for the formation of nanospheres were not affected by their adsorption onto polyelectrolytes. Consecutive adsorption of nanospheres resulting in the formation of multilayer structures was possible by using cationic poly(L-lysine) as mediators. N-Acetyl-D-Glucosamine (GlcNac) did not disturb the nanosphere-assembled protein’s structure and it only affected the adsorption of monomeric amelogenin. Infrared spectroscopy of adsorbed amelogenin revealed conformational differences between the monomeric and assembled forms of rM179. While there was a considerable amount of α-helices in the monomers, β-turn and β-sheet structures dominated the assembled proteins. Our work constitutes the first report on a structurally controlled in-vitro buildup of an rM179 nanosphere monolayer-based matrix. Our data support the notion that amelogenin self-assembly is mostly driven by hydrophobic interactions and that amelogenin/PEM interactions are dominated by electrostatic forces. We suggest that similar forces can govern amelogenin interactions with non-amelogenins or the mineral phase during enamel biomineralization. PMID:17579474

  19. Porous silicon nanocrystals in a silica aerogel matrix

    NASA Astrophysics Data System (ADS)

    Amonkosolpan, Jamaree; Wolverson, Daniel; Goller, Bernhard; Polisski, Sergej; Kovalev, Dmitry; Rollings, Matthew; Grogan, Michael D. W.; Birks, Timothy A.

    2012-07-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation.

  20. Porous silicon nanocrystals in a silica aerogel matrix

    PubMed Central

    2012-01-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation. PMID:22805684

  1. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli.

    PubMed

    Liu, Ran; Zhu, Fayin; Lu, Lei; Fu, Aisi; Lu, Jiankai; Deng, Zixin; Liu, Tiangang

    2014-03-01

    Fatty alcohols are important components of surfactants and cosmetic products. The production of fatty alcohols from sustainable resources using microbial fermentation could reduce dependence on fossil fuels and greenhouse gas emission. However, the industrialization of this process has been hampered by the current low yield and productivity of this synthetic pathway. As a result of metabolic engineering strategies, an Escherichia coli mutant containing Synechococcus elongatus fatty acyl-ACP reductase showed improved yield and productivity. Proteomics analysis and in vitro enzymatic assays showed that endogenous E. coli AdhP is a major contributor to the reduction of fatty aldehydes to fatty alcohols. Both in vitro and in vivo results clearly demonstrated that the activity and expression level of fatty acyl-CoA/ACP reductase is the rate-limiting step in the current protocol. In 2.5-L fed-batch fermentation with glycerol as the only carbon source, the most productive E. coli mutant produced 0.75 g/L fatty alcohols (0.02 g fatty alcohol/g glycerol) with a productivity of up to 0.06 g/L/h. This investigation establishes a promising synthetic pathway for industrial microbial production of fatty alcohols.

  2. SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function.

    PubMed

    Li, Man; Li, Yong; Weeks, Olivia; Mijatovic, Vladan; Teumer, Alexander; Huffman, Jennifer E; Tromp, Gerard; Fuchsberger, Christian; Gorski, Mathias; Lyytikäinen, Leo-Pekka; Nutile, Teresa; Sedaghat, Sanaz; Sorice, Rossella; Tin, Adrienne; Yang, Qiong; Ahluwalia, Tarunveer S; Arking, Dan E; Bihlmeyer, Nathan A; Böger, Carsten A; Carroll, Robert J; Chasman, Daniel I; Cornelis, Marilyn C; Dehghan, Abbas; Faul, Jessica D; Feitosa, Mary F; Gambaro, Giovanni; Gasparini, Paolo; Giulianini, Franco; Heid, Iris; Huang, Jinyan; Imboden, Medea; Jackson, Anne U; Jeff, Janina; Jhun, Min A; Katz, Ronit; Kifley, Annette; Kilpeläinen, Tuomas O; Kumar, Ashish; Laakso, Markku; Li-Gao, Ruifang; Lohman, Kurt; Lu, Yingchang; Mägi, Reedik; Malerba, Giovanni; Mihailov, Evelin; Mohlke, Karen L; Mook-Kanamori, Dennis O; Robino, Antonietta; Ruderfer, Douglas; Salvi, Erika; Schick, Ursula M; Schulz, Christina-Alexandra; Smith, Albert V; Smith, Jennifer A; Traglia, Michela; Yerges-Armstrong, Laura M; Zhao, Wei; Goodarzi, Mark O; Kraja, Aldi T; Liu, Chunyu; Wessel, Jennifer; Boerwinkle, Eric; Borecki, Ingrid B; Bork-Jensen, Jette; Bottinger, Erwin P; Braga, Daniele; Brandslund, Ivan; Brody, Jennifer A; Campbell, Archie; Carey, David J; Christensen, Cramer; Coresh, Josef; Crook, Errol; Curhan, Gary C; Cusi, Daniele; de Boer, Ian H; de Vries, Aiko P J; Denny, Joshua C; Devuyst, Olivier; Dreisbach, Albert W; Endlich, Karlhans; Esko, Tõnu; Franco, Oscar H; Fulop, Tibor; Gerhard, Glenn S; Glümer, Charlotte; Gottesman, Omri; Grarup, Niels; Gudnason, Vilmundur; Hansen, Torben; Harris, Tamara B; Hayward, Caroline; Hocking, Lynne; Hofman, Albert; Hu, Frank B; Husemoen, Lise Lotte N; Jackson, Rebecca D; Jørgensen, Torben; Jørgensen, Marit E; Kähönen, Mika; Kardia, Sharon L R; König, Wolfgang; Kooperberg, Charles; Kriebel, Jennifer; Launer, Lenore J; Lauritzen, Torsten; Lehtimäki, Terho; Levy, Daniel; Linksted, Pamela; Linneberg, Allan; Liu, Yongmei; Loos, Ruth J F; Lupo, Antonio; Meisinger, Christine; Melander, Olle; Metspalu, Andres; Mitchell, Paul; Nauck, Matthias; Nürnberg, Peter; Orho-Melander, Marju; Parsa, Afshin; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Porteous, David; Probst-Hensch, Nicole M; Psaty, Bruce M; Qi, Lu; Raitakari, Olli T; Reiner, Alex P; Rettig, Rainer; Ridker, Paul M; Rivadeneira, Fernando; Rossouw, Jacques E; Schmidt, Frank; Siscovick, David; Soranzo, Nicole; Strauch, Konstantin; Toniolo, Daniela; Turner, Stephen T; Uitterlinden, André G; Ulivi, Sheila; Velayutham, Dinesh; Völker, Uwe; Völzke, Henry; Waldenberger, Melanie; Wang, Jie Jin; Weir, David R; Witte, Daniel; Kuivaniemi, Helena; Fox, Caroline S; Franceschini, Nora; Goessling, Wolfram; Köttgen, Anna; Chu, Audrey Y

    2017-03-01

    Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (nStage1: 111,666; nStage2: 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (PPM1J, EDEM3, ACP1, SPEG, EYA4, CYP1A1, and ATXN2L; PStage1<3.7×10(-7)), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 (P=5.4×10(-8) by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2-knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation.

  3. Fabrication of biodegradable PEG-PLA nanospheres for solubility, stabilization, and delivery of curcumin.

    PubMed

    Liang, Hongying; Friedman, Joel M; Nacharaju, Parimala

    2017-03-01

    Curcumin is an effective and safe anticancer agent, and also known to induce vasodilation, but its hydrophobicity limits its clinical application. In this study, a simple emulsion method was developed to prepare biodegradable poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) nanospheres to encapsulate curcumin to improve its solubility and stability. The nanoparticle size was around 150 nm with a narrow size distribution. Fluorescence microscopy showed that curcumin encapsulated PEG-PLA nanospheres were taken up rapidly by Hela and MDA-MB-231 cancer cells. This novel nanoparticulate carrier may improve the bioavailability of curcumin without affecting its anticancer properties.

  4. Studies on the annealing and antibacterial properties of the silver-embedded aluminum/silica nanospheres

    NASA Astrophysics Data System (ADS)

    Pan, Ko-Ying; Chien, Chia-Hung; Pu, Ying-Chih; Liu, Chia-Ming; Hsu, Yung-Jung; Yeh, Jien-Wei; Shih, Han C.

    2014-06-01

    Substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by sol-gel technique. After various annealing temperatures, the surface mechanisms of each sample were analyzed using scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The chemical durability examinations and antibacterial tests of each sample were also carried out for the confirmation of its practical usage. Based on the result of the above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils.

  5. Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres.

    PubMed

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2004-11-09

    A one-step sequential method for preparing AgCl@polypyrrole-chitosan core-shell nanoparticles and subsequently the formation of polypyrrole-chitosan hollow nanospheres is reported. The formation of the core and the shell is performed in one reaction medium almost simultaneously. Transmission electron microscopy (TEM) images show the presence of core-shell nanoparticles and hollow nanospheres. Ultraviolet-visible (UV-vis) studies reveal that AgCl was formed first followed by polypyrrole. X-ray diffration (XRD) and UV-vis studies show that AgCl was present in the core-shell nanoparticles and could be removed completely from the core.

  6. Studies on the annealing and antibacterial properties of the silver-embedded aluminum/silica nanospheres

    PubMed Central

    2014-01-01

    Substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by sol-gel technique. After various annealing temperatures, the surface mechanisms of each sample were analyzed using scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The chemical durability examinations and antibacterial tests of each sample were also carried out for the confirmation of its practical usage. Based on the result of the above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils. PMID:25136275

  7. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  8. Fabricating porous silicon carbide

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.

  9. Chitosan Tethered Colloidal Gold Nanospheres for Drug Delivery Applications.

    PubMed

    Hari, Kalpana; Kumpati, Premkumar

    2016-01-01

    Gold Nanospheres (AuNS) have been widely explored as an emerging system for various biomedical applications including drug delivery, bioimaging and photomedicine. However, method of synthesizing nanoparticles and its toxicity including bioaccumulation has been a problem of concern. In the present study, we explored the appropriateness of 12.0 ±1.99 nm chitosan reduced AuNS in vivo models with respect to its bioavailability and toxicity against various concentrations (2.5-7.5 mg/kg). Administration of AuNS did not show any signs of morbidity. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of blood (0.156 ± 0.154), urine (0.084 ± 0.08) and tissues indicates gradual dissipation and obligatory clearance within 24 h time interval. Nevertheless, pres- ence of AuNS in blood after 24 h confirms the bioavailability of AuNS demonstrating the evidence for no immune clearance and efficient tissue uptake. Further, brain shows the lowest quantity of injected AuNS. From this result, we determine this chitosan monolayer protected AuNS could cross the blood brain barrier and enter to the neural tissues. Interestingly there was no evidence of toxicity in any of the organs. In conclusion, our data suggest that AuNS injected though tail vain were easily taken up by tissues and does not produce sub-acute physiological damage even at high concentrations tested, supporting chitosan reduced AuNS as biocompatible, nontoxic nanoconjugates for targeted drug delivery and other biomedical applications.

  10. Preparation of Biodegradable Gelatin Nanospheres with a Narrow Size Distribution for Carrier of Cellular Internalization of Plasmid DNA.

    PubMed

    Doi, Norio; Jo, Jun-Ichiro; Tabata, Yasuhiko

    2012-01-01

    The objective of this study is to design biodegradable nanospheres of cationized gelatin as a carrier of cellular internalization of plasmid DNA. Ethylenediamine was chemically introduced into the carboxyl groups of gelatin to obtain cationized gelatin. The gelatin solution was filtered through a glass membrane under high pressure and dropped into 2-butanol, acetone or a mixture of the two to form nanospheres of cationized gelatin. The microspheres of cationized gelatin were prepared by the conventional water-in-oil emulsion method. The resulting nano- and microspheres of cationized gelatin were dehydrothermally treated at 160°C for different time periods to allow them to cross-link chemically. The size of nanospheres, prepared by the filtration method and changed by the type of solvents, was 1.86, 0.83 or 0.24 μm. The in vitro degradation of spheres became faster as the time period of dehydrothermal treatment was shorter. The degradation time of spheres in HCl solution linearly increased with an increase in the cross-linking time, irrespective of the sphere size. However, in the collagenase solution, when compared at the similar cross-linking density, the smaller spheres were degraded more slowly than the larger ones. The plasmid DNA incorporated in the nanospheres was released from the nanospheres with their degradation. The nanospheres incorporating plasmid DNA were internalized into cells, and intracellularly degraded with time to release plasmid DNA. The time period of plasmid DNA release was prolonged by increasing the nanosphere degradation time.

  11. Formulation, characterization and evaluation of cyclodextrin-complexed bendamustine-encapsulated PLGA nanospheres for sustained delivery in cancer treatment.

    PubMed

    Gidwani, Bina; Vyas, Amber

    2016-03-01

    PLGA nanospheres are considered to be promising drug carrier in the treatment of cancer. Inclusion complex of bendamustine (BM) with epichlorohydrin beta cyclodextrin polymer was prepared by freeze-drying method. Phase solubility study revealed formation of AL type complex with stability constant (Ks = 645 M(-1)). This inclusion complex was encapsulated into PLGA nanospheres using solid-in-oil-in-water (S/O/W) technique. The particle size and zeta potential of PLGA nanospheres loaded with cyclodextrin-complexed BM were about 151.4 ± 2.53 nm and - 31.9 ± (-3.08) mV. In-vitro release study represented biphasic release pattern with 20% burst effect and sustained slow release. DSC studies indicated that inclusion complex incorporated in PLGA nanospheres was not in a crystalline state but existed in an amorphous or molecular state. The cytotoxicity experiment was studied in Z-138 cells and IC50 value was found to be 4.3 ± 0.11 µM. Cell viability studies revealed that the PLGA nanospheres loaded with complex exerts a more pronounced effect on the cancer cells as compared to the free drug. In conclusion, PLGA nanospheres loaded with inclusion complex of BM led to sustained drug delivery. The nanospheres were stable after 3 months of storage conditions with slight change in their particle size, zeta potential and entrapment efficiency.

  12. Temperature-responsive polymeric nanospheres containing methotrexate and gold nanoparticles: A multi-drug system for theranostic in rheumatoid arthritis.

    PubMed

    Costa Lima, Sofia A; Reis, Salette

    2015-09-01

    Inflammation plays a crucial role in rheumatoid arthritis progress. In the present work, a novel stealth polymeric nanospheres platform able to carry anti-inflammatory drugs and an imaging agent was developed. Incorporation of gold nanoparticles will allow photoacoustic imaging and near infra-red photothermal application. Through emulsion-diffusion evaporation technique methotrexate and gold nanoparticles were incorporated in the pegylated-poly(DL-lactic-co-glycolic acid) nanospheres. In vitro drug release assays revealed pH and temperature-dependence on gold nanoparticles. Blank nanospheres exhibited negligible in vitro cytotoxicity, while methotrexate-loaded nanospheres hampered monocytes and macrophages viability at a higher level than free methotrexate. Confocal fluorescent microscopy and flow cytometry revealed effective nanospheres internalization, and that their cellular uptake was energy dependent mediated by caveolae and clathrin-endocytosis mechanism. Finally, MTX-loaded multifunctional nanospheres containing gold lead to a significant reduction of IL-1β, IL-6 and TNF-α inflammatory cytokines produced by monocytes and macrophages upon in vitro inflammatory stimulation, suggesting a favorable anti-inflammatory activity. These results confirm that the multifunctional nanospheres represent a promising theranostic platform for RA diagnosis and intracellular treatment, by combining methotrexate and gold nanoparticles for a highly effective targeted chemo-photothermal therapy.

  13. Metal filled porous carbon

    DOEpatents

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  14. Specificity of lectin-immobilized fluorescent nanospheres for colorectal tumors in a mouse model which more resembles the clinical disease

    PubMed Central

    Kitamura, Tokio; Sakuma, Shinji; Shimosato, Moe; Higashino, Haruki; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Hiwatari, Ken-ichiro; Kumagai, Hironori; Morimoto, Naoki; Koike, Seiji; Tobita, Etsuo; Hoffman, Robert M.; Gore, John C.; Pham, Wellington

    2014-01-01

    We are investigating an imaging agent that enables real-time and accurate diagnosis of early colorectal cancer at the intestinal mucosa by colonoscopy. The imaging agent is peanut agglutinin-immobilized polystyrene nanospheres with surface poly(N-vinylacetamide) chains encapsulating coumarin 6. Intracolonically-administered lectin-immobilized fluorescent nanospheres detect tumor-derived changes through molecular recognition of lectin for the terminal sugar of cancer-specific antigens on the mucosal surface. The focus of this study was to evaluate imaging abilities of the nanospheres in animal models that reflect clinical environments. We previously developed an orthotopic mouse model with human colorectal tumors growing on the mucosa of the descending colon to more resemble the clinical disease. The entire colon of the mice in the exposed abdomen was monitored in real-time with an in vivo imaging apparatus. Fluorescence from the nanospheres was observed along the entire descending colon after intracolonical administration of them from the anus. When the luminal side of the colon was washed with PBS, most of the nanospheres drained away. However, fluorescence persisted in areas where the cancer cells were implanted. Histological evaluation demonstrated that tumors were present in the mucosal epithelia where the nanospheres fluoresced. In contrast, no fluorescence was observed when control mice without tumors were tested. The lectin-immobilized fluorescent nanospheres were tumor specific and bound to tumors even after vigorously washing. The nanospheres non-specifically bound to normal mucosa were easily removed through mild washing. Results indicate that the nanospheres accompanied by colonoscopy will be a clinically-valuable diagnostic tool for the early stage primary colon carcinoma. PMID:24976331

  15. Hierarchical SnO2 Nanospheres: Bio-inspired Mineralization, Vulcanization, Oxidation Techniques, and the Application for NO Sensors

    PubMed Central

    Wang, Lei; Chen, Yuejiao; Ma, Jianmin; Chen, Libao; Xu, Zhi; Wang, Taihong

    2013-01-01

    Controllable synthesis and surface engineering of nanomaterials are of strategic importance for tailoring their properties. Here, we demonstrate that the synthesis and surface adjustment of highly stable hierarchical of SnO2 nanospheres can be realized by biomineralization, vulcanization and oxidation techniques. Furthermore, we reveal that the highly stable hierarchical SnO2 nanospheres ensure a remarkable sensitivity towards NO gas with fast response and recovery due to their high crystallinity and special structure. Such technique acquiring highly stable hierarchical SnO2 nanospheres offers promising potential for future practical applications in monitoring the emission from waste incinerators and combustion process of fossil fuels. PMID:24336171

  16. Synthesis of hematite α-Fe{sub 2}O{sub 3} nanospheres for lithium ion battery applications

    SciTech Connect

    Rao, B. Nageswara; Padmaraj, O.; Kumar, P. Ramesh; Satyanarayana, N.; Venkateswarlu, M.; Rao, V. Madhusudhan

    2015-06-24

    Hematite α-Fe{sub 2}O{sub 3} nanospheres were prepared by a rapid microwave assisted hydrothermal process. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy studies confirm the phase and structural coordination of α-Fe{sub 2}O{sub 3} respectively. The formation of uniform shape of nanospheres α-Fe{sub 2}O{sub 3} was confirmed from the results scanning electron microscopy (SEM). Galvanostatic battery testing shows that the α-Fe{sub 2}O{sub 3} nanospheres exhibit good electrochemical performance in the voltage range 0.002 - 3 V.

  17. Hierarchical SnO2 Nanospheres: Bio-inspired Mineralization, Vulcanization, Oxidation Techniques, and the Application for NO Sensors

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Chen, Yuejiao; Ma, Jianmin; Chen, Libao; Xu, Zhi; Wang, Taihong

    2013-12-01

    Controllable synthesis and surface engineering of nanomaterials are of strategic importance for tailoring their properties. Here, we demonstrate that the synthesis and surface adjustment of highly stable hierarchical of SnO2 nanospheres can be realized by biomineralization, vulcanization and oxidation techniques. Furthermore, we reveal that the highly stable hierarchical SnO2 nanospheres ensure a remarkable sensitivity towards NO gas with fast response and recovery due to their high crystallinity and special structure. Such technique acquiring highly stable hierarchical SnO2 nanospheres offers promising potential for future practical applications in monitoring the emission from waste incinerators and combustion process of fossil fuels.

  18. Hierarchical SnO2 nanospheres: bio-inspired mineralization, vulcanization, oxidation techniques, and the application for NO sensors.

    PubMed

    Wang, Lei; Chen, Yuejiao; Ma, Jianmin; Chen, Libao; Xu, Zhi; Wang, Taihong

    2013-12-16

    Controllable synthesis and surface engineering of nanomaterials are of strategic importance for tailoring their properties. Here, we demonstrate that the synthesis and surface adjustment of highly stable hierarchical of SnO2 nanospheres can be realized by biomineralization, vulcanization and oxidation techniques. Furthermore, we reveal that the highly stable hierarchical SnO2 nanospheres ensure a remarkable sensitivity towards NO gas with fast response and recovery due to their high crystallinity and special structure. Such technique acquiring highly stable hierarchical SnO2 nanospheres offers promising potential for future practical applications in monitoring the emission from waste incinerators and combustion process of fossil fuels.

  19. Ligand-assisted fabrication of hollow CdSe nanospheres viaOstwald ripening and their microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Cao, Minhua; Lian, Huiqin; Hu, Changwen

    2010-12-01

    Hollow CdSe nanospheres were successfully synthesized by a ligand-assisted solvothermal method based on an Ostwald ripening mechanism. The hollow CdSe nanospheres were synthesized in benzyl alcohol under solvothermal conditions using Cd(Ac)2 and Se as the precursors, and tryptophan as a ligand. The resulting hollow structures consisted of small nanocrystallite building blocks. More importantly, the hollow CdSe nanospheres could be used as an excellent microwave absorber for cm- and mm-wave absorption, depending on the thickness of the absorber.

  20. Micro/Nanospheres Generation by Fluid-Fluid Interaction Technology: A Literature Review.

    PubMed

    Lei, Lei; Bergstrom, Don; Zhang, Bing; Zhang, Hongbo; Yin, Ruixue; Song, Ki-Young; Zhang, Wenjun

    2016-05-30

    This review focuses on the fundamental fluid mechanics which governs the generation of micro/nanospheres. The micro/nanosphere generation process has gathered significant attention in the past two decades, since micro/nanospheres are widely used in drug delivery, food science, cosmetics, and other application areas. Many methods have been developed based on different operating principles, such as microfluidic methods, electrospray methods, chemical methods, and so forth. This paper focuses on microfluidic methods. Although the structure of the microfluidic devices may be different, the operating principles behind them are often very similar. Following an initial discussion of the fluid mechanics related to the generation of microspheres, various design approaches are discussed, including T-junction, flow focusing, membrane emulsification, modified T-junction, and double emulsification methods. The advantages and problems associated with each method are also discussed. Next, the most commonly used computational fluid dynamics (CFD) methods are reviewed at three different levels: microscopic, mesoscopic, and macroscopic. Finally, the issues identified in the current literature are discussed, and some suggestions are offered regarding the future direction of technology development related to micro/nanosphere generation.

  1. Influence of the Molecular Weight and Charge of Antibiotics on Their Release Kinetics From Gelatin Nanospheres.

    PubMed

    Song, Jiankang; Odekerken, Jim C E; Löwik, Dennis W P M; López-Pérez, Paula M; Welting, Tim J M; Yang, Fang; Jansen, John A; Leeuwenburgh, Sander C G

    2015-07-01

    In this study, we investigated the fundamental relationship between the physicochemical characteristics of antibiotics and the kinetics of their release from gelatin nanospheres. We observed that antibiotics of high molecular weight (colistin and vancomycin) were released in a sustained manner from oppositely charged gelatin carriers for more than 14 d, as opposed to antibiotics of low molecular weight (gentamicin and moxifloxacin) which were released in a burst-like manner. The release kinetics of positively charged colistin strongly correlated with the rate of the enzymatic degradation of gelatin. To elucidate the differences among release kinetics of antibiotics, we explored the mechanism of interactions between antibiotics and gelatin nanospheres by monitoring the kinetics of release of antibiotics as a function of pH, ionic strength, and detergent concentrations. These studies revealed that the interactions between antibiotics and gelatin nanospheres were mainly dominated by (i) strong electrostatic forces for colistin; (ii) strong hydrophobic and electrostatic forces for vancomycin; (iii) weak electrostatic and hydrophobic forces for gentamicin; and (iv) weak hydrophobic forces for moxifloxacin. These results confirm that release of antibiotics from gelatin nanospheres strongly depends on the physicochemical characteristics of the antibiotics.

  2. Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Herbel, M.J.; Blum, J.S.; Langley, S.; Beveridge, T.J.; Ajayan, P.M.; Sutto, T.; Ellis, A.V.; Curran, S.

    2004-01-01

    Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, ???300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.

  3. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres.

    PubMed

    Koneracká, M; Múčková, M; Závišová, V; Tomašovičová, N; Kopčanský, P; Timko, M; Juríková, A; Csach, K; Kavečanský, V; Lancz, G

    2008-05-21

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  4. Dual protection of sulfur by carbon nanospheres and graphene sheets for lithium-sulfur batteries.

    PubMed

    Wang, Bei; Wen, Yanfen; Ye, Delai; Yu, Hua; Sun, Bing; Wang, Guoxiu; Hulicova-Jurcakova, Denisa; Wang, Lianzhou

    2014-04-25

    Well-confined elemental sulfur was implanted into a stacked block of carbon nanospheres and graphene sheets through a simple solution process to create a new type of composite cathode material for lithium-sulfur batteries. Transmission electron microscopy and elemental mapping analysis confirm that the as-prepared composite material consists of graphene-wrapped carbon nanospheres with sulfur uniformly distributed in between, where the carbon nanospheres act as the sulfur carriers. With this structural design, the graphene contributes to direct coverage of sulfur to inhibit the mobility of polysulfides, whereas the carbon nanospheres undertake the role of carrying the sulfur into the carbon network. This composite achieves a high loading of sulfur (64.2 wt %) and gives a stable electrochemical performance with a maximum discharge capacity of 1394 mAh g(-1) at a current rate of 0.1 C as well as excellent rate capability at 1 C and 2 C. The improved electrochemical properties of this composite material are attributed to the dual functions of the carbon components, which effectively restrain the sulfur inside the carbon nano-network for use in lithium-sulfur rechargeable batteries.

  5. Silicon nanocolumns on nanosphere lithography templated substrates: effects of sphere size and substrate temperature.

    PubMed

    Patzig, Christian; Fuhrmann, Bodo; Leipner, Hartmut S; Rauschenbach, Bernd

    2009-03-01

    Glancing angle ion beam sputter deposition was used to grow regular arrays of Si nanocolumns with a nominal height of 650 nm at room temperature on polystyrene nanospheres with sphere diameters between 260 nm and 3550 nm, and at elevated temperatures on SiO2 nanospheres with a sphere diameter of 360 nm. Top view and cross sectional scanning electron microscopy reveals that the Si nanocolumns resemble cylinder-like structures, terminated by a hemispherical cap. Diameter, height and inter-column-spacing are found to depend linearly on the nanosphere diameter, thus giving the possibility to grow arrays of vertical Si columns with distinct porosities. For the growth at elevated temperatures, it was found that while on non-patterned substrates diffusion effects lead to broadening and finally merging of initially separated nanocolumns, on nanosphere patterned substrates this broadening effect is only moderate. No merging of columns is observable in this case, but a decrease of the column height due to a temperature-driven inter-column densification.

  6. The Use of Micro- and Nanospheres as Functional Components for Bone Tissue Regeneration

    PubMed Central

    Wang, Huanan; Leeuwenburgh, Sander C.G.; Li, Yubao

    2012-01-01

    During the last decade, the use of micro- and nanospheres as functional components for bone tissue regeneration has drawn increasing interest. Scaffolds comprising micro- and nanospheres display several advantages compared with traditional monolithic scaffolds that are related to (i) an improved control over sustained delivery of therapeutic agents, signaling biomolecules and even pluripotent stem cells, (ii) the introduction of spheres as stimulus-sensitive delivery vehicles for triggered release, (iii) the use of spheres to introduce porosity and/or improve the mechanical properties of bulk scaffolds by acting as porogen or reinforcement phase, (iv) the use of spheres as compartmentalized microreactors for dedicated biochemical processes, (v) the use of spheres as cell delivery vehicle, and, finally, (vi) the possibility of preparing injectable and/or moldable formulations to be applied by using minimally invasive surgery. This article focuses on recent developments with regard to the use of micro- and nanospheres for bone regeneration by categorizing micro-/nanospheres by material class (polymers, ceramics, and composites) as well as summarizing the main strategies that employ these spheres to improve the functionality of scaffolds for bone tissue engineering. PMID:21806489

  7. Au/Au@polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes.

    PubMed

    Shin, Hye-Seon; Huh, Seong

    2012-11-01

    Monodisperse Au/Au@polythiophene core/shell nanospheres were facilely prepared through the reduction of gold precursor, AuCl₄⁻, by 2-thiopheneacetonitrile in an aqueous solution. Concomitantly, 2-thiopheneacetonitrile polymerized during this redox process. As a result, Au nanoparticle was encapsulated by conductive polymer shell to afford novel core/shell nanospheres. Interestingly, the shell was composed of very tiny Au nanoparticles surrounded with thiophene polymers. Thus, the new material is best described as Au/Au@polythiophene core/shell nanospheres. FT-IR spectroscopy revealed that the Au nanoparticles were coordinated by the C≡N groups of the polythiophene shell. Some of the C≡N groups were partially hydrolyzed into COOH groups during the redox process because of the acidic reaction condition. The shell was conductive based on the typical ohmic behavior found in electrical measurement. The Au/Au@polythiophene core/shell nanospheres were found to be very active catalysts for the hydrogenation of various nitroarene compounds into corresponding aminoarene compounds in the presence of NaBH₄. Both hydrophilic and hydrophobic nitroarenes were efficiently hydrogenated under mild conditions.

  8. Fabrication of metallic nanodisc hexagonal arrays using nanosphere lithography and two-step lift-off

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolu; Ratchford, Daniel; Pehrsson, Pehr E.; Yeom, Junghoon

    2016-09-01

    Nanosphere lithography (NSL) has been widely used as an inexpensive method to create periodic arrays of metallic nanoparticles or nanodiscs on substrates. However, most nanodisc arrays derived from a NSL template are restricted to hexagonally-ordered triangular arrays because the metal layer is deposited onto the interstices between the nanospheres. Metallic nanodisc arrays with the same arrangement as the original nanosphere array have been rarely reported. Here, we demonstrate a facile, low-cost method to fabricate large-area hexagonal arrays of metallic nanodiscs using an NSL template combined with a two-step lift-off process. We employ a bi-layer of two dissimilar metals to create a re-entrant sidewall profile to undercut the sacrificial layer and facilitate the final lift-off of the metallic nanodiscs. The quality of the nanodisc pattern and the array periodicity is determined using statistical image analysis and compared to the original nanosphere array in terms of size distribution, surface smoothness, and array pitch. This nanodisc array is used as an etch mask to create a vertically-aligned Si nanowire array. This combined approach is a scalable and inexpensive fabrication method for creating relatively large-area, ordered arrays of various nanostructures.

  9. One-pot synthesis of hollow superparamagnetic CoPt nanospheres.

    PubMed

    Vasquez, Yolanda; Sra, Amandeep K; Schaak, Raymond E

    2005-09-14

    Hollow metal nanospheres are of interest for a variety of academic and technological applications, including drug delivery, catalysis, plasmonics, and lightweight structural composites. Despite recent advances in synthesizing metal nanostructures with controlled morphologies, there are very few reports of hollow bimetallic nanospheres, although such systems promise to offer advantages over single-metal systems. Here, were report a one-pot synthetic strategy for accessing hollow CoPt nanospheres with a Co-Pt alloy structure. The approach utilizes an in situ Co template and exploits galvanic displacement reactions to selectively dissolve the Co core while depositing a Pt shell. The combination of reducing conditions and a polymer stabilizer appears to allow the Co and Pt to co-reduce and form a Co-Pt fcc alloy phase with a morphology that is templated by the sacrificial Co core. The hollow CoPt nanospheres, which show magnetic hysteresis at low temperatures, are thermally stable up to 300 degrees C. The approach, which adds to a growing toolbox of reactions that yield morphologically controlled magnetic CoPt and FePt nanomaterials, is likely to be general for a variety of alloy systems.

  10. Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process

    SciTech Connect

    Zhang Jilin; Shi Jianxin; Gong Menglian

    2009-08-15

    Nickel ferrite nanospheres were successfully synthesized by a reverse emulsion-assisted hydrothermal method. The reverse emulsion was composed of water, cetyltrimethyl ammonium bromide, polyoxyethylene(10)nonyl phenyl ether, iso-amyl alcohol and hexane. During the hydrothermal process, beta-FeO(OH) and Ni{sub 0.75}Fe{sub 0.25}(CO{sub 3}){sub 0.125}(OH){sub 2}.0.38H{sub 2}O (INCHH) nanorods formed first and then transformed into nickel spinel ferrite nanospheres. The phase transformation mechanism is proposed based on the results of X-ray powder diffraction, transmission electron microscopy and energy-dispersive X-ray spectroscopy, etc. Nickel ferrite may form at the end of the INCHH nanorods or from the solution accompanied by the dissolution of beta-FeO(OH) and INCHH nanorods. The X-ray photoelectron spectroscopy analysis shows that a few Fe{sup 3+} ions have been reduced to Fe{sup 2+} ions during the formation of nickel ferrite. The maximum magnetization of the nickel ferrite nanospheres obtained after hydrothermal reaction for 30 h is 55.01 emu/g, which is close to that of bulk NiFe{sub 2}O{sub 4}. - Graphical abstract: Nickel ferrite nanospheres were obtained through a reverse emulsion-assisted hydrothermal process. The phase transformation as a function of reaction time was studied based on the XRD, TEM and EDS analyses.

  11. Cloning of Acyl-ACP Thioesterase FatA from Arachis hypogaea L. and Its Expression in Escherichia coli

    PubMed Central

    Chen, Gao; Peng, Zhen-ying; Shan, Lei; Xuan, Ning; Tang, Gui-ying; Zhang, Yan; Li, Lan; He, Qing-fang; Bi, Yu-ping

    2012-01-01

    In this study, a full-length cDNA of the acyl-ACP thioesterase, AhFatA, was cloned from developing seeds of Arachis hypogaea L. by 3′-RACE. Sequence analysis showed that the open reading frame encodes a peptide of 372 amino acids and has 50–70% identity with FatA from other plants. Real-time quantitative PCR analysis revealed that AhFatA was expressed in all tissues of A. hypogaea L., but most strongly in the immature seeds harvested at 60 days after pegging. Heterologous expression of AhFatA in Escherichia coli affected bacterial growth and changed the fatty acid profiles of the membrane lipid, resulting in directed accumulation towards palmitoleic acid and oleic acid. These results indicate that AhFatA is at least partially responsible for determining the high palmitoleic acid and oleic acid composition of E. coli. PMID:23093853

  12. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    SciTech Connect

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  13. A Novel Europium Chelate Coated Nanosphere for Time-Resolved Fluorescence Immunoassay.

    PubMed

    Shen, Yifeng; Xu, Shaohan; He, Donghua

    2015-01-01

    A novel europium ligand 2,2',2'',2'''-(4,7-diphenyl-1,10-phenanthroline-2,9-diyl) bis (methylene) bis (azanetriyl) tetra acetic acid (BC-EDTA) was synthesized and characterized. It shows an emission spectrum peak at 610 nm when it is excited at 360 nm, with a large Stock shift (250 nm). It is covalently coated on the surface of a bare silica nanosphere containi free amino groups, using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-Hydroxysuccinimide. We also observed an interesting phenomenon that when BC-EDTA is labeled with a silica nanosphere, the chelate shows different excitation spectrum peaks of about 295 nm. We speculate that the carboxyl has a significant influence on its excitation spectrum. The BC-EDTA/Eu3+coated nanosphere could be used as a fluorescent probe for time-resolved fluorescence immunoassay. We labeled the antibody with the fluorescent nanosphere to develop a nanosphere based hepatitis B surface antigen as a time-resolved fluorescence immunoassay reagent, which is very easy to operate and eliminates potential contamination of Eu3+ contained in the environment. The analytical and functional sensitivities are 0.0037 μg/L and 0.08 μg/L (S/N≥2.0) respectively. The detection range is 0.08-166.67 μg/L, which is much wider than that of ELISA (0.2-5 μg/L). It is comparable to the commercial dissociation-enhanced lanthanide fluoro-immunoassay system (DELFIA) reagents (0.2-145 μg/L). We propose that it can fulfill clinical applications.

  14. Carbon nanospheres-promoted electrochemical immunoassay coupled with hollow platinum nanolabels for sensitivity enhancement.

    PubMed

    Zhou, Jun; Zhuang, Junyang; Miró, Manuel; Gao, Zhuangqian; Chen, Guonan; Tang, Dianping

    2012-05-15

    Two nanostructures including carbon nanospheres-graphene hybrid nanosheets (CNS-GNS) and hollow platinum nanospheres (HPtNS) were first synthesized by using direct electrolytic reduction and wet chemistry methods, respectively. Thereafter, a specific sandwich-type electrochemical immunoassay was designed for determination of carcinoembryonic antigen (CEA) by using HPtNS-labeled horseradish peroxidase-anti-CEA conjugates (HRP-anti-CEA) as molecular tags and anti-CEA-assembled CNS-GPS as sensing probes. Compared with pure graphene nanosheets, the presence of carbon nanospheres on the graphene increased the surface coverage of the substrate, and enhanced the immobilized amount of primary antibodies. Several labeling protocols, such as HRP-anti-CEA, solid platinum nanoparticle-labeled HRP-anti-CEA, and hollow platinum nanospheres-labeled HRP-anti-CEA, were investigated for determination of CEA and improved analytical features were obtained with hollow platinum nanosphere labeling. With the HPtNS labeling method, the effects of incubation time and pH on the current responses of the immunosensors were also studied. The strong attachment of biomolecules to the CNS-GPS and HPtNS resulted in a good repeatability and intermediate precision down to 10.2%. The dynamic concentration range spanned from 0.001 ng mL(-1) to 100 ng mL(-1) CEA with a detection limit of 1.0 pg mL(-1) at the 3S(blank) level. No significant differences at the 0.05 significance level were encountered in the analysis of 10 clinical serum samples between the developed immunoassay and the commercially available electrochemiluminescent method for determination of CEA.

  15. Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia.

    PubMed

    Hauser, Frank; Grimmelikhuijzen, Cornelis J P

    2014-12-01

    In this review we trace the evolutionary connections between GnRH receptors from vertebrates and the receptors for adipokinetic hormone (AKH), AKH/corazonin-related peptide (ACP), and corazonin from arthropods. We conclude that these G protein-coupled receptors (GPCRs) are closely related and have a common evolutionary origin, which dates back to the split of Proto- and Deuterostomia, about 700 million years ago. We propose that in the protostomian lineage, the ancestral GnRH-like receptor gene duplicated as did its GnRH-like ligand gene, followed by diversification, leading to (i) a corazonin receptor gene and a corazonin-like ligand gene, and (ii) an AKH receptor gene and an AKH-like ligand gene in the Mollusca and Annelida. Subsequently, the AKH receptor and ligand genes duplicated once more, yielding the situation that we know from arthropods today, where three independent hormonal systems exist, signalling with AKH, ACP, and corazonin. Our model for the evolution of GnRH signaling in the Protostomia is a striking example of receptor-ligand co-evolution. This model has been developed using several bioinformatics tools (TBLASTN searches, phylogenetic tree analyses), which also helped us to annotate six novel AKH preprohormones and their corresponding AKH sequences from the following molluscs: the sea hare Aplysia californica (AKH sequence: pQIHFSPDWGTamide), the sea slug Tritonia diomedea (pQIHFSPGWEPamide), the fresh water snail Bithynia siamensis goniomphalos (pQIHFTPGWGSamide), the owl limpet Lottia gigantea (pQIHFSPTWGSamide), the oyster Crassostrea gigas (pQVSFSTNWGSamide), and the freshwater pearl mussel Hyriopsis cumingii (pQISFSTNWGSamide). We also found AKHs in the tardigrade Hysibius dujardini (pQLSFTGWGHamide), the rotifer Brachionus calycifloros (pQLTFSSDWSGamide), and the penis worm Priapulus caudatus (pQIFFSKGWRGamide). This is the first report, showing that AKH signaling is widespread in molluscs.

  16. Crystallization and preliminary X-ray crystallographic analysis of enoyl-ACP reductase III (FabL) from Bacillus subtilis

    SciTech Connect

    Kim, Kook-Han; Park, Joon Kyu; Ha, Byung Hak; Moon, Jin Ho; Kim, Eunice EunKyeong

    2007-03-01

    Enoyl-ACP reductase III (FabL) from B. subtilis has been overexpressed, purified and crystallized. The crystal belongs to space group P622, with unit-cell parameters a = b = 139.56, c = 62.75 Å, α = β = 90, γ = 120°, and data were collected to 2.5 Å resolution using synchrotron radiation. Enoyl-[acyl-carrier protein] reductase (enoyl-ACP reductase; ENR) is a key enzyme in type II fatty-acid synthase that catalyzes the last step in each elongation cycle. It has been considered as an antibiotic target since it is an essential enzyme in bacteria. However, recent studies indicate that some pathogens have more than one ENR. Bacillus subtilis is reported to have two ENRs, namely BsFabI and BsFabL. While BsFabI is similar to other FabIs, BsFabL shows very little sequence similarity and is NADPH-dependent instead of NADH-dependent as in the case of FabI. In order to understand these differences on a structural basis, BsFabL has been cloned, expressed and and crystallized. The crystal belongs to space group P622, with unit-cell parameters a = b = 139.56, c = 62.75 Å, α = β = 90, γ = 120° and one molecule of FabL in the asymmetric unit. Data were collected using synchrotron radiation (beamline 4A at the Pohang Light Source, Korea). The crystal diffracted to 2.5 Å resolution.

  17. X-ray structure of putative acyl-ACP desaturase DesA2 from Mycobacterium tuberculosis H37Rv

    SciTech Connect

    Dyer, David H.; Lyle, Karen S.; Rayment, Ivan; Fox, Brian G.

    2010-07-13

    Genome sequencing showed that two proteins in Mycobacterium tuberculosis H37Rv contain the metal binding motif (D/E)X{sub 2}HX{sub {approx}100}(D/E)X{sub 2}H characteristic of the soluble diiron enzyme superfamily. These putative acyl-ACP desaturase genes desA1 and desA2 were cloned from genomic DNA and expressed in Escherichia coli BL21(DE3). DesA1 was found to be insoluble, but in contrast, DesA2 was a soluble protein amenable to biophysical characterization. Here, we report the 2.0 {angstrom} resolution X-ray structure of DesA2 determined by multiple anomalous dispersion (MAD) phasing from a Se-met derivative and refinement against diffraction data obtained on the native protein. The X-ray structure shows that DesA2 is a homodimeric protein with a four-helix bundle core flanked by five additional helices that overlay with 192 structurally equivalent amino acids in the structure of stearoyl-ACP {Delta}9 desaturase from castor plant with an rms difference 1.42 {angstrom}. In the DesA2 crystals, one metal (likely Mn from the crystallization buffer) was bound in high occupancy at the B-site of the conserved metal binding motif, while the A-site was not occupied by a metal ion. Instead, the amino group of Lys-76 occupied this position. The relationships between DesA2 and known diiron enzymes are discussed.

  18. Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification.

    PubMed

    Bai, Hongwei; Liu, Lei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl(-) in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti(4+) from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG = 1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti(4+) by increasing the content of EG at a molar ratio of TTIP:EG = 1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A "win-win" strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2

  19. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2009-2010 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2010

    2010-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its five staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by Commissioners…

  20. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2006-2007 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2007

    2007-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a 5 year strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its eight staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by…

  1. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2007-2008 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2008

    2008-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a 5-year strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its nine staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by …

  2. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2008-2009 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2009

    2009-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a 5-year strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its eight staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by…

  3. Method of porous diamond deposition on porous silicon

    NASA Astrophysics Data System (ADS)

    Baranauskas, Vitor; Peterlevitz, Alfredo C.; Chang, Dahge C.; Durrant, Steven F.

    2001-12-01

    In this paper, we discuss the experimental results of the fabrication of porous diamond/porous silicon and porous diamond structures by chemical vapor deposition of diamond over a skeleton of porous silicon, replicating the porous surface geometry around the Si pores and also creating new porous diamond structures. Scanning electron microscopy (SEM) revealed that the diamond nuclei are deposited on the top of the porous silicon skeleton, forming isolated grains in the first nucleation stages, and then growing like the usual structure of most ceramic materials, making a self-sustained porous diamond structure. Raman spectroscopy revealed that the diamond films are of good quality, close to that of diamond films grown on crystalline silicon.

  4. Forward Genetic Screen in Caenorhabditis elegans Suggests F57A10.2 and acp-4 As Suppressors of C9ORF72 Related Phenotypes

    PubMed Central

    Wang, Xin; Hao, Limin; Saur, Taixiang; Joyal, Katelyn; Zhao, Ying; Zhai, Desheng; Li, Jie; Pribadi, Mochtar; Coppola, Giovanni; Cohen, Bruce M.; Buttner, Edgar A.

    2016-01-01

    An abnormally expanded GGGGCC repeat in C9ORF72 is the most frequent causal mutation associated with amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration (FTLD). Both gain-of-function (gf) and loss-of-function (lf) mechanisms have been involved in C9ORF72 related ALS/FTLD. The gf mechanism of C9ORF72 has been studied in various animal models but not in C. elegans. In the present study, we described mutant C9ORF72 modeling in C. elegans and report the finding of two suppressor genes. We made transgenes containing 9 or 29 repeats of GGGGCC in C9ORF72, driven by either the hsp-16 promoters or the unc-119 promoter. Transgenic worms were made to carry such transgenes. Phenotypic analysis of those animals revealed that Phsp−16::(G4C2)29::GFP transgenic animals (EAB 135) displayed severe paralysis by the second day of adulthood, followed by lethality, which phenotypes were less severe in Phsp−16::(G4C2)9::GFP transgenic animals (EAB242), and absent in control strains expressing empty vectors. Suppressor genes of this locomotor phenotype were pursued by introducing mutations with ethyl methanesulfonate in EAB135, screening mutant strains that moved faster than EAB135 by a food-ring assay, identifying mutations by whole-genome sequencing and testing the underlying mechanism of the suppressor genes either by employing RNA interference studies or C. elegans genetics. Three mutant strains, EAB164, EAB165 and EAB167, were identified. Eight suppressor genes carrying nonsense/canonical splicing site mutations were confirmed, among which a nonsense mutation of F57A10.2/VAMP was found in all three mutant strains, and a nonsense mutation of acp-4/ACP2 was only found in EAB164. Knock down/out of those two genes in EAB135 animals by feeding RNAi/introducing a known acp-4 null allele phenocopied the suppression of the C9ORF72 variant related movement defect in the mutant strains. Translational conformation in a mammalian system is required, but our worm data

  5. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.

    PubMed

    Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun

    2014-09-01

    Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.

  6. The Preparation of Magnetic Silica Nanospheres and Incorporation of CdSe/ZnS Quantum Dots-DNA Probe.

    PubMed

    Do, Youngjin; Kim, Jongsung

    2016-03-01

    Silica nanospheres containing magnetic particles were prepared, and CdSe/ZnS QDs functionalized with carboxyl group were incorporated into the silica nanospheres by EDC/NHS coupling reaction. The silica nanospheres were prepared by a co-precipitation of ferrous and ferric solutions followed by the sol-gel reaction of TEOS (tetraethoxysilane) and APTES (3-aminopropyltriethoxysilane) using base catalyst. The size of magnetic silica nanospheres was confirmed by Transmission electron microscope (TEM). Thiol group modified single stranded oligonucleotides were immobilized on the surface of QDs and fluorescence quenching by intercalation dye (TOTO-3) after hybridization with target oligonucleotide was observed. The fluorescence from QDs could be quenched by intercalating dye (TOTO-3) after hybridization of target DNA to probe DNA. This shows that the magnetic silica-QD-DNA probe can be used to detect specific DNA.

  7. Preparation and analysis of the Au-SiO2 multi-layer nanospheres as high SERS resolution substrate

    NASA Astrophysics Data System (ADS)

    Tian, Weihua; Wu, Kaiyu; Cheng, Xiulan; Chen, Xiaodong; Chen, Rui; Wang, Ying

    2011-12-01

    Metallic nanocomposite material is widely used in Surface Plasmon Rsesonance (SPR) due to its high stability and special optical features which enhance the Surface Enhanced Ramon Scattering (SERS) effect. A novel multi-layered Au-dielectric core-shell structural SERS substrate is proposed. Finite Elment Analysis (FEA) simulation shows multi-layer shell-core nanosphere (SiO2@Au, SiO2@Au@SiO2...) can improve Local Field Enhancement (LFE), comparing to Au single-layer nanosphere. That is because multi-layer nanoshpere exists intra-layer coupling besides cavity coupling. Moreover, red-shift can be observed via tuning the thickness of multi-layer nanospheres, which is greatly beneficial to biological detection in near infrared region (NIR). Lastly, these multi-layer nanospheres are synthesised by liquid phase reduction. And high absorbance and red-shift effect are verified with UV-vis absorption spectrum.

  8. Synthesis and characterization of a novel boronic acid-functionalized chitosan polymeric nanosphere for highly specific enrichment of glycopeptides.

    PubMed

    Zou, Xiajuan; Liu, Dan; Zhong, Lijun; Yang, Bin; Lou, Yaxin; Yin, Yuxin

    2012-10-01

    In this study we describe a method for highly specific enrichment of glycopeptides with boronic acid-functionalized chitosan polymeric nanospheres and matrix assisted laser desorption-ionization mass spectrometry (MALDI-MS). This is the first time chitosan has been used to create nanosphere support material for selective enrichment of glycopeptides by modification with glycidyl methacrylate (GMA) and derivatization with 3-aminophenylboronic acid (APB). Due to their multifunctional chemical moieties, these 20-100 nm chitosan-GMA-APB nanospheres have unique properties, such as good dispersibility, good biocompatibility and chemical stability, as well as augmented specificity with glycopeptides. Enrichment conditions were optimized by using trypsin digested glycoprotein horseradish peroxidase. The high specificity of chitosan-GMA-APB nanospheres was demonstrated by effectively enriching glycopeptides from a digest mixture of horseradish peroxidase and nonglycoproteins (bovine serum albumin (BSA)).

  9. Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent

    PubMed Central

    2011-01-01

    Uniform bismuth nanospheres were successfully prepared from bismuth nitrate in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) by solvothermal process. The product was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray. PVP plays a critical role both as a reducing agent and a capping agent in the formation of bismuth nanospheres. Shape and size of bismuth nanospheres could be tuned by changing the employed PVP/bismuth salt ratio. It was also found the solvent had an effect on the morphologies of bismuth nanomaterials. The possible formation and growth mechanism of bismuth nanospheres were also discussed and proposed to explain the reduction step. PMID:21711606

  10. Strong quantum confinement effects in kesterite Cu2ZnSnS4 nanospheres for organic optoelectronic cells.

    PubMed

    Arul, Narayanasamy Sabari; Yun, Dong Yeol; Lee, Dea Uk; Kim, Tae Whan

    2013-12-07

    X-ray photoelectron spectra, X-ray diffraction patterns, scanning electron microscopy images, and high-resolution transmission electron microscopy images showed that the as-prepared samples were Cu2ZnSnS4 (CZTS) nanospheres with a kesterite phase. Ultraviolet-visible absorption spectra for the CZTS nanospheres with an average crystallite size of 3.26 nm showed that the absorption edge corresponding to the energy gap shifted to the higher energy side due to the quantum confinement within the CZTS nanoparticles. Current-density measurements showed that the power conversion efficiency (0.952%) of the organic photovoltaic cells with CZTS nanospheres was much higher than that (0.120%) of the cells without CZTS nanospheres.

  11. Enhancement of light harvesting efficiency of silicon solar cell utilizing arrays of poly(methyl methacrylate-co-acrylic acid) nano-spheres and nano-spheres with embedded silver nano-particles

    NASA Astrophysics Data System (ADS)

    Lee, Chee-Leong; Goh, Wee-Sheng; Chee, Swee-Yong; Yik, Lai-Kuan

    2017-02-01

    An array of uniformly distributed monolayer of poly(methyl methacrylate-co-acrylic acid) nano-spheres were deposited onto an amorphous silicon photovoltaic cell utilizing dip coating technique. The electrical characteristics of the coated photovoltaic cell reveal that the nano-spheres with an average diameter size of 101 nm exhibits excellent light harvesting characteristics if compared to the nano-spheres of other sizes. The power conversion efficiency from such integration of the nano-structures (i.e. 3.14% per PV cell) indicates that at least 1.6 times of improvement (or relative enhancement of 57%) can be achieved comparatively to the uncoated photovoltaic cell (i.e. 2% per PV cell). Further increment of the power conversion efficiency of the solar cell has been attained with the incorporation of the silver nano-particles into the nano-spheres of similar average size. With the inclusion of the silver nano-particles into such nano-spheres, the power conversion efficiency of the solar cell has attained 5.57% per PV cell, which is about 2.8 times (or relative enhancement of 179%) if compared to the uncoated samples. Hence, this novel and controllable technique of fabricating omnidirectional light-harvesting nano-spheres with embedded silver nano-particles will indubitably be beneficial to various types of optoelectronic devices.

  12. The PIP training programme: building of ACP experts capacities in crop protection and food safety to support local companies to comply with EU regulations on pesticides residues.

    PubMed

    Schiffers, B C; Schubert, A; Schiffers, C; Fontaine, S; Gumusboga, N; Werner, B; Webb, M; Lugros, H; Stinglhamber, G

    2006-01-01

    Regulatory requirements, and in particular phytosanitary quality standards change rapidly. As ACP producers/exporters race to become more competitive, to keep their market share and to satisfay their customers' commercial demands (e.g. EUREP-GAP certification), the need for competent staff who are aware of the company's quality objectives and trained to follow instructions is crucial. Mastering sanitary quality is only possible if matched with a programme to build the skills of companies' human resources. The Pesticide Initiative Programme (PIP), mindful of the importance of making operators autonomous and of training them to monitor EU food safety regulations and technology on their own, has successfully developed a training programme while building a quality network of local/ACP service providers. By building the capacities of ACP experts and then securing their services as trainers, PIP also guarantees companies' access to expertise and the sustainability of their efforts to comply with new EU regulations. The training strategy developed by PIP rests on two pilars: instructor training and collective training. Instructor training consists in reinforcing the technical knowledge of local experts (agronomists, hygienists, etc.) by providing them with active teaching methods. Once the ACP experts have gained enough technical knowledge of the key areas of crop protection--mainly pesticides management--and food safety, and have demonstrated their capacity to train the technical staff of local companies, the PIP has carried out a collective training programme in 2004, 2005 and 2006. To date, more than 130 consultants covering about 15 ACP countries have received instructor training, and more than 700 people have participated in collective and in-company training sessions.

  13. Efficacy of a novel at-home bleaching technique with carbamide peroxides modified by CPP-ACP and its effect on the microhardness of bleached enamel.

    PubMed

    Borges, B C D; Borges, J S; de Melo, C D; Pinheiro, I V A; Santos, A J S Dos; Braz, R; Montes, M A J R

    2011-01-01

    This study was designed to evaluate in vitro the efficacy of a novel at-home bleaching technique using 10% or 16% carbamide peroxide modified by casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and its influence on the microhardness of bleached enamel. A total of 40 bovine incisors were divided into four groups (n=10) according to the bleaching agent used: 10% carbamide peroxide only; a blend of 10% carbamide peroxide and a CPP-ACP paste; 16% carbamide peroxide only; and a blend of 16% carbamide peroxide and a CPP-ACP paste. During the 14-day bleaching regimen, the samples were stored in artificial saliva. The Vickers microhardness and color of the teeth were assessed at baseline (T0) and immediately after the bleaching regimen (T14) using a microhardness tester and a spectrophotometer, respectively. The degree of color change was determined by the Commission Internationale de l'Eclariage (CIE) L*a*b* system (ΔE, ΔL*, Δa*, and Δb*) and Vita shade guide parameters. The data were analyzed by analysis of variance and the Tukey test (p<0.05). The teeth that were bleached with a blend of peroxide (10% or 16%) and the CPP-ACP paste presented increased microhardness values at T14 compared with T0, whereas the samples that were bleached with peroxide only did not show any differences in their microhardness values. All of the bleaching agents were effective at whitening the teeth and did not show a statistically significant difference using the CIEL*a*b* system (ΔE, ΔL*, Δa*, and Δb*) or the Vita shade guide parameters. The use of a CPP-ACP paste with carbamide peroxide bleaching agents increased the bleached enamel's microhardness and did not have an influence on whitening efficacy.

  14. High-precision investigation of nanorod and nanosphere topological structures for nanoelectronic issues by means of atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Lysak, V. V.; Mukhin, I. S.; Golubok, A. O.

    2016-08-01

    Fabrication and study of specialized single nanowhisker probes are performed for high-precision investigation of elements such as nanospheres and nanorods using the atomic force microscopy. It was found that single nanowhisker probe significantly increases the resolution and contrast of images obtained in the semi-contact mode. Furthermore, the roughness analysis and adhesion forces are investigated in contact mode to comprehensively characterize properties of nanospherical and nanorod electronic structures.

  15. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-05

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  16. Porous material neutron detector

    DOEpatents

    Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  17. FLUID TRANSPORT THROUGH POROUS MEDIA

    EPA Science Inventory

    Fluid transport through porous media is a relevant topic to many scientific and engineering fields. Soil scientists, civil engineers, hydrologists and hydrogeologists are concerned with the transport of water, gases and nonaqueous phase liquid contaminants through porous earth m...

  18. Fructose 1,6-bisphosphate trisodium salt as a new phosphorus source for the rapid microwave synthesis of porous calcium-phosphate microspheres and their application in drug delivery.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Chen, Feng

    2013-01-01

    Calcium phosphates (CPs), as the major inorganic component of biological hard tissues, have been investigated for applications as biomaterials owing to their excellent biocompatibility. However, the traditional synthetic CPs are usually prepared from inorganic phosphorus and calcium sources. Herein, we report a new strategy for the synthesis of a variety of calcium-phosphate nanostructures, including porous amorphous calcium phosphate (ACP) microspheres, hydroxyapatite (HAP) nanorods, and ACP/HAP composite microspheres, by using fructose 1,6-bisphosphate trisodium salt (FBP) as an organic phosphorus source in aqueous solution in a rapid microwave-assisted hydrothermal reaction. The important role of FBP and the effect of the experimental conditions on the formation and evolution of the CPs nanostructures were investigated. The crystal phase and composition of the as-prepared products were characterized by powder X-ray diffraction (XRD), FTIR spectroscopy, and thermogravimetric (TGA) analysis and the morphologies of the products were characterized by SEM and TEM. This method is facile, rapid, surfactant-free, and environmentally friendly. The as-prepared porous ACP microspheres have a relatively high drug-loading capacity and good sustained drug-release behavior; thus, they are promising for applications in drug delivery.

  19. Porous block nanofiber composite filters

    SciTech Connect

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold

    2016-08-09

    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  20. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  1. Polymeric nanospheres as strategy to increase the amount of triclosan retained in the skin: passive diffusion vs. iontophoresis.

    PubMed

    Rodríguez-Cruz, Isabel M; Merino, Virginia; Merino, Matilde; Díez, Octavio; Nácher, Amparo; Quintanar-Guerrero, David

    2013-01-01

    The aim of this study was to evaluate the passive and iontophoretic permeation of triclosan in human skin using a triclosan solution and triclosan-loaded cationic nanospheres in order to determine which of the two strategies is more effective in allowing the deposition of triclosan within the skin. Triclosan-loaded nanospheres were prepared by the emulsification-solvent displacement technique using aminoalkyl methacrylate (Eudragit® RL 100) as polymer matrix. Nanospheres of 261.0 ± 15.1 nm with a positive surface charge (Ψz = 26.0 ± 3.2 mV) were obtained. Drug loading was 62.0 ± 1.7%. Results demonstrated that the amount of triclosan retained within the skin was significantly greater (8.5-fold) when this was encapsulated into cationic nanospheres and administered by passive diffusion than when the triclosan solution was employed. The amount of triclosan retained within the skin when the cationic nanospheres were administered by iontophoresis was 3.1-fold greater than when the triclosan solution was administered by passive diffusion. Iontophoresis proved to be effective in enhancing the passage of triclosan in solution throughout the skin, whereas the triclosan nanospheres could achieve a local effect by forming a controlled release dermal depot.

  2. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Guo, Jinxin; Zhang, Jun; Su, Qingmei; Du, Gaohui

    2015-01-01

    Lithium-sulfur (Li-S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li-S battery. The sulfur nanospheres with diameter of 400-500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g-1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li-S batteries.

  3. Facile synthesis of water-soluble luminescent mesoporous Tb(OH)3@SiO2 core-shell nanospheres

    PubMed Central

    2013-01-01

    Luminescent mesoporous Tb(OH)3@SiO2 core-shell nanospheres were synthesized through W/O microemulsion process at ambient temperature. The negatively charged silica favors a coating of the positively charged Tb3+ composite. Thus, silicon layer was adsorbed on the surface of Tb(OH)3 groups to form Tb-O-Si through electrostatic interaction. X-ray diffraction, field emission transmission electron microscopy (FE-TEM), energy-dispersive X-ray spectrometry, and Fourier transform infrared, UV/Visible, and photoluminescence spectroscopies were applied to examine the phase purity, crystallinity, surface morphology, and optical properties of the core-shell nanospheres. The FE-TEM results have revealed typically ordered mesoporous characteristics of the material with monodisperse spherical morphology in a narrow size distribution. The luminescent mesoporous core-shell nanospheres exposed remarkable splitting with broadening in the emission transition 5D4 → 7F5 (543 nm). In addition, the luminescent mesoporous core-shell nanospheres emit strong green fluorescence (from Tb3+) in the middle of the visible region under 325 nm (3.8) excitation. The luminescent mesoporous Tb(OH)3@SiO2 core-shell nanospheres can therefore be exploited as fluorescent probes in biomarkers or biolabeling, optical sensing, and drug delivery system. Further, these nanospheres could have potential use as scattering layers in dye-sensitized solar cells. PMID:23574757

  4. Facile synthesis of water-soluble luminescent mesoporous Tb(OH)3@SiO2 core-shell nanospheres

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Labis, Joselito; Aldwayyan, Abdullah S.; Hezam, Mahmoud

    2013-04-01

    Luminescent mesoporous Tb(OH)3@SiO2 core-shell nanospheres were synthesized through W/O microemulsion process at ambient temperature. The negatively charged silica favors a coating of the positively charged Tb3+ composite. Thus, silicon layer was adsorbed on the surface of Tb(OH)3 groups to form Tb-O-Si through electrostatic interaction. X-ray diffraction, field emission transmission electron microscopy (FE-TEM), energy-dispersive X-ray spectrometry, and Fourier transform infrared, UV/Visible, and photoluminescence spectroscopies were applied to examine the phase purity, crystallinity, surface morphology, and optical properties of the core-shell nanospheres. The FE-TEM results have revealed typically ordered mesoporous characteristics of the material with monodisperse spherical morphology in a narrow size distribution. The luminescent mesoporous core-shell nanospheres exposed remarkable splitting with broadening in the emission transition 5D4 → 7F5 (543 nm). In addition, the luminescent mesoporous core-shell nanospheres emit strong green fluorescence (from Tb3+) in the middle of the visible region under 325 nm (3.8) excitation. The luminescent mesoporous Tb(OH)3@SiO2 core-shell nanospheres can therefore be exploited as fluorescent probes in biomarkers or biolabeling, optical sensing, and drug delivery system. Further, these nanospheres could have potential use as scattering layers in dye-sensitized solar cells.

  5. A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor.

    PubMed

    Zhong, Xia; Chai, Ya-Qin; Yuan, Ruo

    2014-10-01

    Well-distributed hollow gold nanospheres (Aushell@GOD) (20 ± 5 nm) were synthesized using the glucose oxidase (GOD) cross-linked with glutaraldehyde as a template. A glucose biosensor was prepared based on Aushell@GOD nanospheres for catalyzing luminol electrogenerated chemiluminescence (ECL). Firstly, chitosan was modified in a glassy carbon electrode which offered an interface of abundant amino-groups to assemble Aushell@GOD nanospheres. Then, glucose oxidase was adsorbed on the surface of Aushell@GOD nanospheres via binding interactions between Aushell and amino groups of GOD to construct a glucose biosensor. The Aushell@GOD nanospheres were investigated with TEM and UV-vis. The ECL behaviors of the biosensor were also investigated. Results showed that, the obtained Aushell@GOD nanospheres exhibited excellent catalytic effect towards the ECL of luminol-H2O2 system. The response of the prepared biosensor to glucose was linear with the glucose concentration in the range of 1.0 μM to 4.3mM (R=0.9923) with a detection limit of 0.3 μM (signal to noise=3). This ECL biosensor exhibited short response time and excellent stability for glucose. At the same time the prepared ECL biosensor showed good reproducibility, sensitivity and selectivity.

  6. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres.

    PubMed

    Shen, Zheyu; Li, Yan; Kohama, Kazuhiro; Oneill, Brian; Bi, Jingxiu

    2011-01-01

    Folic acid-conjugated albumin nanospheres (FA-AN) have been developed to provide an actively targetable drug delivery system for improved drug targeting of cancer cells with reduced side effects. The nanospheres were prepared by conjugating folic acid onto the surface of albumin nanospheres using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as a catalyst. To test the efficacy of these nanospheres as a potential delivery platform, doxorubicin-loaded albumin nanospheres (DOX-AN) and doxorubicin-loaded FA-AN (FA-DOX-AN) were prepared by entrapping DOX (an anthracycline, antibiotic drug widely used in cancer chemotherapy that works by intercalating DNA) into AN and FA-AN nanoparticles. Cell uptake of the DOX was then measured. The results show that FA-AN was incorporated into HeLa cells (tumor cells) only after 2.0h incubation, whereas HeLa cells failed to incorporate albumin nanospheres without conjugated folic acid after 4.0h incubation. When HeLa cells were treated with the DOX-AN, FA-DOX-AN nanoparticles or free DOX, cell viability decreased with increasing culture time (i.e. cell death increases with time) over a 70h period. Cell viability was always the lowest for free DOX followed by FA-DOX-AN4 and then DOX-AN. In a second set of experiments, HeLa cells washed to remove excess DOX after an initial incubation for 2h were incubated for 70h. The corresponding cell viability was slightly higher when the cells were treated with FA-DOX-AN or free DOX whilst cells treated with DOX-AN nanoparticles remained viable. The above experiments were repeated for non-cancerous, aortic smooth muscle cells (AoSMC). As expected, cell viability of the HeLa cells (with FA receptor alpha, FRα) and AoSMC cells (without FRα) decreased rapidly with time in the presence of free DOX, but treatment with FA-DOX-AN resulted in selective killing of the tumor cells. These results indicated that FA-AN may be used as a promising actively targetable drug delivery system to improve drug

  7. Template-free preparation of volvox-like Cd(x)Zn(1-x)S nanospheres with cubic phase for efficient photocatalytic hydrogen production.

    PubMed

    Zhou, Hangyue; Liu, Qingyun; Liu, Weimin; Ge, Jiechao; Lan, Minhuan; Wang, Chao; Geng, Jianxin; Wang, Pengfei

    2014-03-01

    Volvox-like Cdx Zn1-x S solid solutions with a cubic zinc blend structure were synthesized through a template-free ethylene glycol process. Cd(Ac)2 ⋅2 H2 O, Zn(Ac)2 ⋅2 H2 O, and thiourea are used as the starting materials and dissolved in ethylene glycol. These reaction precursors and solvent not only contributed to control over the formation of the volvox-like spherical geometry, but also exerted vigorous domination for existence of cubic-phase Cdx Zn1-x S nanostructures. As-prepared volvox-like Cdx Zn1-x S nanospheres have a diameter of around 100 nm with extensional shells. These samples show excellent photocatalytic H2 evolution activity from water splitting under visible-light irradiation without any cocatalyst or scaffolding, owing to their tunable band gap, cubic zinc blend structure, and unique hierarchical porous structure with a high surface area (as high as 95.2 m(2)  g(-1) ).

  8. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules.

    PubMed

    Lai, Cheng-Yu; Trewyn, Brian G; Jeftinija, Dusan M; Jeftinija, Ksenija; Xu, Shu; Jeftinija, Srdija; Lin, Victor S-Y

    2003-04-16

    An MCM-41 type mesoporous silica nanosphere-based (MSN) controlled-release delivery system has been synthesized and characterized using surface-derivatized cadmium sulfide (CdS) nanocrystals as chemically removable caps to encapsulate several pharmaceutical drug molecules and neurotransmitters inside the organically functionalized MSN mesoporous framework. We studied the stimuli-responsive release profiles of vancomycin- and adenosine triphosphate (ATP)-loaded MSN delivery systems by using disulfide bond-reducing molecules, such as dithiothreitol (DTT) and mercaptoethanol (ME), as release triggers. The biocompatibility and delivery efficiency of the MSN system with neuroglial cells (astrocytes) in vitro were demonstrated. In contrast to many current delivery systems, the molecules of interest were encapsulated inside the porous framework of the MSN not by adsorption or sol-gel types of entrapment but by capping the openings of the mesoporous channels with size-defined CdS nanoparticles to physically block the drugs/neurotransmitters of certain sizes from leaching out. We envision that this new MSN system could play a significant role in developing new generations of site-selective, controlled-release delivery nanodevices.

  9. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    SciTech Connect

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.

  10. Porous metallic bodies

    DOEpatents

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  11. Analysis of porous silicon

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; Farr, J. P. G.; Grzeszczyk, P. E.; Sturland, I.; Keen, J. M.

    1985-06-01

    Porous silicon, suitable after oxidation for dielectric isolation, has been produced successfully by anodizing silicon in strong HF. The oxidized layer has been shown to have promise in device manufacture, providing high packing densities and radiation hardness. Anodizing has been carried out using both single and double cells, following the effects of current density. HF concentration and silicon resistivity. The resultant porous layers have been characterised with respect to composition and structure. The materials produced differ considerably in lattice strain, composition and reactivities. Prompt radiation analyses 19F(p,αγ), 16O(d,α), 12C(d,p), are useful for monitoring the anodizing procedures and subsequent oxidation: currently, interest centres on the mechanistic information obtained. RBS analysis using α-particles gives a much lower Si response from porous than from bulk silicon. Glancing angle proton recoil analyses reveal considerable quantities of hydrogen in the porous layers. These mutually consistent findings have considerable mechanistic significance; extensive Si-H bonding occurs following a 2 equivalent Faradaic process.

  12. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  13. Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection.

    PubMed

    In, Hyun Jin; Field, Christopher R; Pehrsson, Pehr E

    2011-09-02

    Nanowires of various materials and configurations have been shown to be highly effective in the detection of chemical and biological species. In this paper, we report a novel, nanosphere-enabled approach to fabricating highly sensitive gas sensors based on ordered arrays of vertically aligned silicon nanowires topped with a periodically porous top electrode. The vertical array configuration helps to greatly increase the sensitivity of the sensor while the pores in the top electrode layer significantly improve sensing response times by allowing analyte gases to pass through freely. Herein, we show highly sensitive detection to both nitrogen dioxide (NO(2)) and ammonia (NH(3)) in humidified air. NO(2) detection down to 10 parts per billion (ppb) is demonstrated and an order-of-magnitude improvement in sensor response time is shown in the detection of NH(3).

  14. Metal nanosphere at an interface: revival of degeneracy of a dipole plasmon

    NASA Astrophysics Data System (ADS)

    Vartanyan, T. A.; Baryshnikova, K. V.; Przhibel'skii, S. G.

    2016-01-01

    Metal nanoparticles supporting surface plasmon modes are used in many areas of science and technology. Often it is important to know the exact location of the metal nanoparticle relative to a larger dielectric object. In this paper, we demonstrate that this goal may be achieved by monitoring the localized surface plasma resonance splitting in the course of the nanoparticle movement. In particular, we simulate splitting of the plasma resonance localized in a metal nanosphere while it approaches and penetrates the interface of two dielectric media. Numerical simulations show that splitting goes through two maxima at the beginning and at the end of the penetration process while the plasmon modes become exactly degenerate at some distance near the midpoint of the nanosphere trajectory. These results may be used to real time monitoring of the exact position of the nanoparticles while they approach and penetrate different targets. Applications in the drug delivery, photodynamic therapy and other biomedicine branches are envisioned.

  15. The Measurement of Surface Rheological and Surface Adhesive Properties using Nanosphere Embedment

    NASA Astrophysics Data System (ADS)

    Hutcheson, Stephen; McKenna, Gregory

    2008-03-01

    In previous work, we determined the actual rheological behavior at the surface of a polystyrene film with nanometer scale resolution by applying a viscoelastic contact mechanics model to experimental data in the literature. The goal of our current research is to build upon this analysis and use nanosphere embedment experiments to probe the nanorheological behavior of polymer surfaces near the glass transition, in the melt state and in the solid rubbery state. An atomic force microscope (AFM) is used to measure the embedment depth as nanoparticles are pulled into the surface by the thermodynamic work of adhesion. The results show that, with properly designed experiments, both the surface adhesion properties and the surface rheological properties can be extracted from nanosphere embedment rates. We include work on a phase separated copolymer and a commercially available polydimethylsiloxane (PDMS) rubber.

  16. Preparation of quantum dot-coated magnetic polystyrene nanospheres for cancer cell labelling and separation

    NASA Astrophysics Data System (ADS)

    Chu, Maoquan; Song, Xin; Cheng, Duo; Liu, Shupeng; Zhu, Jian

    2006-07-01

    CdTe-coated magnetic polystyrene nanospheres (MPN) were prepared via a stepwise electrostatic self-assembly approach, and the conjugation of epidermal growth factor (EGF) to the MPN/CdTe core-shell nanocomposites was prepared by using 1-ethyl-3(3-dimethylamino propyl)-carbodiimide (EDC) as a cross-linking reagent. The MPN/CdTe and their bioconjugates yielded not only emitted bright fluorescence, but also exhibited superparamagnetism. The human breast cancer MDA-MB-435S cells could be labelled and rapidly separated by the MPN/CdTe-EGF bioconjugates. These magnetofluorescent nanospheres, consisting of magnetic spheres and quantum dots (QDs), may be of special interest for many biomedical applications.

  17. Evolution of Nanoflowers and Nanospheres of Zinc Bisporphyrinate Tweezers at the Air/water Interface.

    PubMed

    Xie, Fan; Zhuo, Congcong; Hu, Chuanjiang; Liu, Ming Hua

    2017-03-22

    While the sophisticated Langmuir and Langmuir-Blodgett technique facilitates the fabrication of uniform ultrathin monolayer and films, it is also revealed as a powerful tool for the bottom-up constructions of the nanostructures through the air/water interface. In this paper, unique nanoflowers or nanospheres were constructed based on the synthesized m-phthalic diamide-linked Zinc bis-porphyrinate tweezers using the Langmuir and Langmuir-Blodgett (LB) technique. It was found that both the two tweezer type Zinc bisporphyrinates could form stable two-dimensional spreading films at the air/water interface, which could be subsequently transferred onto solid substrates by the vertical lifting method. The atomic force microscope (AFM) revealed that at the initial spreading stage the compound formed flat disk-like domains and then hierarchically evolved into nanoflowers or nanospheres upon compressing the floating film. Such nanostructures have not been reported before and cannot be fabricated using the other self-assembly methods.

  18. Microwave absorption properties and mechanism for hollow Fe3 O4 nanosphere composites

    NASA Astrophysics Data System (ADS)

    Li, Z. W.; Yang, Z. H.

    2015-08-01

    Hollow Fe3 O4 nanospheres with the diameter of 450 nm and the wall thickness of 80 nm are prepared using the Ostwald ripening process. The composites filled with the hollow nanospheres of 60 wt% have good high-frequency and absorption properties. In RL-f curves, two absorption frequencies are found, which have their origins in quarter-wavelength resonator and magnetic resonance, respectively. Based on the quarter-wavelength resonator model, the calculated fA1 and RLA1 are in a good agreement with the observed values. Due to the overlap of the two absorptions, the frequency band is expanded. The composite with light weight of the density of 2.71 g/cm3 has bandwidth WP of 65% with return loss RL ≤ - 10 dB at thickness of 0.3 cm for EM absorption or attenuation applications.

  19. Scanning metallic nanosphere microscopy for vectorial profiling of optical focal spots.

    PubMed

    Yi, Hui; Long, Jing; Li, Hongquan; He, Xiaolong; Yang, Tian

    2015-04-06

    Recent years have witnessed fast progress in the development of spatially variant states of polarization under high numerical aperture focusing, and intensive exploration of their applications. We report a vectorial, broadband, high contrast and subwavelength resolution method for focal spot profiling. In this experiment, a 100 nm diameter gold nanosphere on a silica aerogel substrate is raster scanned across the focal spots, and the orthogonal polarization components can be obtained simultaneously by measuring the scattering far field in a confocal manner. The metallic-nanosphere-on-aerogel structure ensures negligible distortion to the focal spots, low crosstalk between orthogonal polarization components (1/39 in experiment), and a low level background noise (1/80 of peak intensity in experiment), while high contrast imaging is not limited by the resonance bandwidth.

  20. Magnetic hollow mesoporous silica nanospheres: facile fabrication and ultrafast immobilization of enzymes.

    PubMed

    Chen, Yu; Chen, Hangrong; Guo, Limin; Shi, Jianlin

    2011-12-01

    Hollow mesoporous silica nanospheres with large pore size of around 11 nm have been synthesized by a structural difference based selective etching strategy, and the highly dispersed hydrophobic Fe3O4 nanoparticles with a particle size of 5 nm were then impregnated into hollow cores of nanospheres through these large pores by a vacuum impregnation technique. The structural characteristics of obtained magnetic composites were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Selected Area Electron Diffraction (SAED), Ultraviolet-visible (UV-Vis) and Vibrating Sample Magnetometer (VSM). The results show that the obtained Fe3O4-hollow mesoporous silica composites exhibit superparamagnetic property with saturation magnetization value of 4.17 emu/g. Furthermore, the obtained supports show ultrafast immobilization of hemoglobin and the immobilized enzymes are not denatured, indicating that the superparamagnetic hollow mesoporous silica spheres are excellent support for immobilization of enzymes with magnetic recycling property.

  1. Incorporating mobile nanospheres in the lumen of hybrid microcapsules for enhanced enzymatic activity.

    PubMed

    Shi, Jiafu; Zhang, Xiaoman; Zhang, Shaohua; Wang, Xiaoli; Jiang, Zhongyi

    2013-11-13

    Physical encapsulation of enzymes in microcapsules, as a mild, controllable method, has been widely utilized for enzyme immobilization. However, this method often suffers from the big mass transfer resistance from the capsule lumen. In this study, a novel biocatalysis system with enhanced catalytic activity is constructed through coencapsulating enzymes and nanospheres in the lumen of protamine/silica hybrid microcapsules, which are synthesized through the synergy of biomimetic silicification and layer-by-layer (LbL) assembly. When utilized as the host for catalase (CAT) encapsulation, the hybrid microcapsules maintain high mechanical stability, high enzyme loading, and low enzyme leaching. Particularly, because of the existence of mobile nanospheres, the mass transfer resistance in the microcapsules is significantly reduced because of the vigorous agitation, thus acquiring an enhanced catalytic activity. Our strategy may also find applications in drug delivery and biosensor fields.

  2. Absorption of ultrashort electromagnetic pulses by metal nanospheres in a dielectric medium

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.; Svita, S. Yu

    2015-02-01

    The absorption of ultrashort electromagnetic pulses on silver nanosphere embedded into glass in vicinity of plasmon resonance is studied theoretically in the frame of perturbation theory. The calculations are made for corrected Gaussian shape of incident pulse which enables us to consider both the short duration and the long duration regimes. Analysis based on numerical calculations reveals the specific features of considered process so as the change of absorption spectra for different pulse length and nonlinear dependence of absorbed energy upon pulse duration.

  3. Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfeng; Xue, Mei; Shen, Huajun; Wu, Zhe; Kim, Seongku; Ho, Jyh-Jier; Hassani-Afshar, Aram; Zeng, Baoqing; Wang, Kang L.

    2011-04-01

    We present a plasmonic nanostructure design by embedding a layer of hexagonal periodic metallic nanospheres between the active layer and transparent anode for bulk heterojunction organic solar cells. The hybrid structure shows broadband optical absorption enhancement from localized surface plasmon resonance with a weak dependence on polarization of incident light. We also theoretically study the optimization of the design to enhance the absorption up to 1.90 times for a typical hybrid active layer based on a low band gap material.

  4. Rational design of oriented assembly of gold nanospheres with nanorods by biotin-streptavidin connectors.

    PubMed

    Zhou, Xi; Wang, Yan; Zhong, Lubin; Bao, Shixiong; Han, Yu; Ren, Lei; Zhang, Qiqing

    2012-10-21

    Through the different functionalities on Au nanosphere (AuNSs) and Au nanorod (AuNRs) surfaces, we successfully control AuNSs attachment onto either the end or side surface of anisotropic AuNRs via bio-recognition, and then consciously construct side-by-side or end-to-end assembly nanostructures. This study provides a feasible approach to organize nanoparticles with different morphologies into controllable assembly geometries, which can potentially benefit the construction of future nanodevices.

  5. Polymer-functionalized silica nanosphere labels for ultrasensitive detection of tumor necrosis factor-alpha.

    PubMed

    Yuan, Liang; Hua, Xin; Wu, Yafeng; Pan, Xiaohu; Liu, Songqin

    2011-09-01

    A signal amplification strategy for sensitive detection of tumor necrosis factor-alpha (TNF-α) using quantum dots (QDs)-polymer-functionalized silica nanosphere as the label was proposed. In this approach, silica nanospheres with good monodispersity and uniform structure were employed as carriers for surface-initiated atom transfer radical polymerization of glycidyl methacrylate, which is readily available functional monomer that possessing easily transformable epoxy groups for subsequent CdTe QDs binding through ring-open reaction. Then, human anti rabbit TNF-α antibody (anti-TNF-α, Ab2, served as a model protein) was bonded to CdTe QDs-modified silica nanospheres coated with polymer to obtain QDs-polymer-functionalized silica nanosphere labels (Si/PGMA/QD/Ab2). The Si/PGMA/QD/Ab2 labels were attached onto a gold electrode surface through a subsequent "sandwich" immunoreaction. This reaction was confirmed by scanning electron microscopy (SEM) and fluorescence microscopic images. Enhanced sensitivity could be achieved by an increase of CdTe QD loading per immunoassay event, because of a large number of surface functional epoxy groups offered by the PGMA. As a result, the electrochemiluminescence (ECL) and square-wave voltammetry (SWV) measurements showed 10.0- and 5.5-fold increases in detection signals, respectively, in comparison with the unamplified method. The detection limits of 7.0 pg mL(-1) and 3.0 pg mL(-1) for TNF-α antibodies by ECL and SWV measurements, respectively, were achieved. The proposed strategy successfully demonstrated a simple, reproducible, specific, and potent method that can be expanded to detect other proteins and DNA.

  6. Surface phonons and alloying effects in (CdS) x( CdSe) 1- x nanospheres

    NASA Astrophysics Data System (ADS)

    Mlayah, A.; Brugman, A. M.; Carles, R.; Renucci, J. B.; Valakh, M. Ya.; Pogorelov, A. V.

    1994-06-01

    The present work is devoted to Raman scattering in (CdS) x(CdSe) 1- x nanospheres. Surface phonon modes are observed. Their frequency change, as a function of the alloy content, is analyzed quantitatively. Calculations performed within the framework of the dielectric approaches are found to agree well with the data. Alloying effects and boundary conditions at the sphere- matrix interface are taken into account in these calculations.

  7. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c

  8. Nanowire networks and hollow nanospheres of Ag–Au bimetallic alloys at room temperature

    NASA Astrophysics Data System (ADS)

    Britto Hurtado, R.; Cortez-Valadez, M.; Arizpe-Chávez, H.; Flores-Lopez, N. S.; Álvarez, Ramón A. B.; Flores-Acosta, M.

    2017-03-01

    Due to their physicochemical properties, metallic nanoalloys have potential applications in biomedicine, electrocatalysis and electrochemical sensors, among many other fields. New alternative procedures have emerged in order to reduce production costs and the use of toxic substances. In this study we present a novel low-toxicity synthesis method for the fabrication of nanowire networks (NWNs) and Ag–Au hollow nanospheres. The synthesis process is performed at room temperature without any sophisticated equipment, such as special cameras or furnaces, etc. Transmission electron microscopy showed that the NWNs contain random alloys with a diameter of between 10–13 nm. The radius for the hollow nanospheres is approximately located between 70–130 nm. The absorption bands in the UV–vis spectrum associated with the surface plasmon in Ag–Au bimetallic nanoparticles are highlighted at 385 nm for the NWNs and 643 nm for the hollow nanospheres. The study was performed with low-toxicity substances, such as rongalite, ascorbic acid and sucrose, and showed high efficiency for the fabrication of these types of nanostructures, as well as good stability for long periods of time.

  9. Model for large-area monolayer coverage of polystyrene nanospheres by spin coating

    PubMed Central

    Chandramohan, Abhishek; Sibirev, Nikolai V.; Dubrovskii, Vladimir G.; Petty, Michael C.; Gallant, Andrew J.; Zeze, Dagou A.

    2017-01-01

    Nanosphere lithography, an inexpensive and high throughput technique capable of producing nanostructure (below 100 nm feature size) arrays, relies on the formation of a monolayer of self-assembled nanospheres, followed by custom-etching to produce nanometre size features on large-area substrates. A theoretical model underpinning the self-ordering process by centrifugation is proposed to describe the interplay between the spin speed and solution concentration. The model describes the deposition of a dense and uniform monolayer by the implicit contribution of gravity, centrifugal force and surface tension, which can be accounted for using only the spin speed and the solid/liquid volume ratio. We demonstrate that the spin recipe for the monolayer formation can be represented as a pathway on a 2D phase plane. The model accounts for the ratio of polystyrene nanospheres (300 nm), water, methanol and surfactant in the solution, crucial for large area uniform and periodic monolayer deposition. The monolayer is exploited to create arrays of nanoscale features using ‘short’ or ‘extended’ reactive ion etching to produce 30–60 nm (diameter) nanodots or 100–200 nm (diameter) nanoholes over the entire substrate, respectively. The nanostructures were subsequently utilized to create master stamps for nanoimprint lithography. PMID:28102358

  10. Nanowire networks and hollow nanospheres of Ag-Au bimetallic alloys at room temperature.

    PubMed

    Hurtado, R Britto; Cortez-Valadez, M; Arizpe-Chávez, H; Flores-Lopez, N S; Álvarez, Ramón A B; Flores-Acosta, M

    2017-03-17

    Due to their physicochemical properties, metallic nanoalloys have potential applications in biomedicine, electrocatalysis and electrochemical sensors, among many other fields. New alternative procedures have emerged in order to reduce production costs and the use of toxic substances. In this study we present a novel low-toxicity synthesis method for the fabrication of nanowire networks (NWNs) and Ag-Au hollow nanospheres. The synthesis process is performed at room temperature without any sophisticated equipment, such as special cameras or furnaces, etc. Transmission electron microscopy showed that the NWNs contain random alloys with a diameter of between 10-13 nm. The radius for the hollow nanospheres is approximately located between 70-130 nm. The absorption bands in the UV-vis spectrum associated with the surface plasmon in Ag-Au bimetallic nanoparticles are highlighted at 385 nm for the NWNs and 643 nm for the hollow nanospheres. The study was performed with low-toxicity substances, such as rongalite, ascorbic acid and sucrose, and showed high efficiency for the fabrication of these types of nanostructures, as well as good stability for long periods of time.

  11. Low-temperature collapsing boron nitride nanospheres into nanoflakes and their photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Li, Jie; Luo, Han; Lin, Jing; Xue, Yanming; Liu, Zhenya; Jin, Peng; Xu, Xuewen; Huang, Yang; Liu, Dong; Zhang, Jun; Tang, Chengchun

    2014-09-01

    Flake-like boron nitride (BN) nanocrystals with a uniform diameter of ˜200 nm and thickness of ˜20 nm were fabricated by directly transforming from BN nanospheres with the assistance of NaCl salt at 1300 °C. The transformation from nanospheres to nano-pies and further to nanoflakes was achieved in a simple procedure of Na or Cl ions intercalation/deintercalation procedure at such low temperature. The morphologies of the spherical precursor and resulting nanoflakes were almost identical. X-ray powder diffractions revealed that the BN nanoflakes (BNfs) were well crystallized in the hexagonal structure via graphitizing index calculation. Elemental content analysis, FTIR spectra and TEM images were also used to characterize the products. Strong ultraviolet (UV) emissions were detected by photoluminescence (PL) spectroscopic analysis, in which the emission regions could be facilely tuned by controlling the reaction temperature. Detailed studies indicated that the collapsing temperature of unstable BN nanospheres into nanoflakes was strongly dependent on the introduction of NaCl molten salts or not. We believe the use of the NaCl molten salt medium may enhance the kinetics of the crystallization and also purification. The green fabrication characteristics, such as using NaCl salt as the additive, energy saving (300 °C lower than the commercial process), non-toxicity of byproduct and easy scale-up, make the present novel synthetic route likely to be of interest to commercial-scale production of BN nanoflakes.

  12. Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers

    PubMed Central

    Yan, J. H.; Liu, P.; Lin, Z. Y.; Wang, H.; Chen, H. J.; Wang, C. X.; Yang, G. W.

    2015-01-01

    Electromagnetically induced transparency is a type of quantum interference that induces near-zero reflection and near-perfect transmission. As a classical analogy, metal nanostructure plasmonic ‘molecules' produce plasmon-induced transparency conventionally. Herein, an electromagnetically induced transparency interaction is demonstrated in silicon nanosphere oligomers, wherein the strong magnetic resonance couples with the electric gap mode effectively to markedly suppress reflection. As a result, a narrow-band transparency window created at visible wavelengths, called magnetically induced transparency, is easily realized in nearly touching silicon nanospheres, exhibiting low dependence on the number of spheres and aggregate states compared with plasmon induced transparency. A hybridization mechanism between magnetic and electric modes is proposed to pursue the physical origin, which is crucial to build all-dielectric metamaterials. Remarkably, magnetic induced transparency effect exhibiting near-zero reflection and near-perfect transmission causes light to propagate with no extra phase change. This makes silicon nanosphere oligomers promising as a unit cell in epsilon-near-zero metamaterials. PMID:25940445

  13. Development of antibacterial coating on silicone surface via chlorhexidine-loaded nanospheres.

    PubMed

    Phuengkham, Hathaichanok; Nasongkla, Norased

    2015-02-01

    Urinary tract infections (UTIs) are the most common type of hospital-acquired infection which cause significant morbidity and mortality. Antibacterial urinary devices to prevent UTIs are in great demand, while the problem of releasing antibacterials is still limited by duration of antibacterial release and hinders their clinical applications. This study investigated a new approach to sustain release of chlorhexidine (CHX) from urinary devices by coating of chlorhexidine-loaded nanospheres (CHX-NPs) on the surface. CHX-NPs were prepared by high-pressure emulsification-solvent evaporation technique that provided the size of nanospheres at 198.8 nm and the drug loading content at 5.6%. These nanospheres were spray-coated on silicone surface with reproducible and predictable amount of CHX. Release studies conducted in artificial urine to mimic in vivo condition showed that suitable dose of CHX was released in a sustained manner within a couple of weeks. Additionally, CHX-NPs showed antibacterial activity against common bacteria causing UTIs up to 15 days, which is threefold longer than that of physical mixing between CHX and polymer. Results from this study suggest possible applications of CHX-NPs in coating the surface of ureteral-relating devices for sustained antibacterial release.

  14. Synthesis and characterization of highly-magnetic biodegradable poly(D,L-lactide-co-glycolide) nanospheres.

    SciTech Connect

    Liu, X.; Kaminski, M. D.; Chen, H.; Torno, M.; Taylor, L.; Rosengart, A. J.; Univ. of Chicago

    2007-05-14

    The objective of this study was to develop high magnetization, biodegradable/biocompatible polymer-coated magnetic nanospheres for biomedical applications. Magnetic spheres were prepared by a modified single oil-in-water emulsion-solvent evaporation method utilizing highly-concentrated hydrophobic magnetite and poly(d,l lactide-co-glycolide) (PLGA). Hydrophobic magnetite prepared using oleic acid exhibited high magnetite concentrations (84 wt.%) and good miscibility with biopolymer solvents to form a stable oily suspension. The oily suspension was then emulsified within an aqueous solution containing poly(vinyl alcohol). After rapid evaporation of the organic solvent, we obtained solid magnetic nanospheres. We characterized these spheres in terms of external morphology, microstructure, size and zeta potential, magnetite content and distribution within the nanospheres, and magnetic properties. The results showed good encapsulation where the magnetite distorted the smooth surface morphology only at the highest magnetite concentrations. The mean diameter was 360-370 nm with polydispersity indices of 0.12-0.20. We obtained high magnetite content (40-60%) and high magnetization (26-40 emu/g). The high magnetization properties were obtained while leaving sufficient polymer to retain drugs making these biodegradable spheres suitable as a potential platform for the design of magnetically-guided drug delivery and other in vivo biomagnetic applications.

  15. Photoirradiation study of gold nanospheres and rods in Vero and Hela cell lines

    NASA Astrophysics Data System (ADS)

    Gananathan, Poorani; Aruna, Prakasarao; Ganesan, Singaravelu; Elanchezhiyan, Manickan

    2014-03-01

    Photoirradiation effect of gold nanospheres in conjucation with green light and rods in conjugation with red light corresponds to their absorption wavelength range found to be appreciable. In this present work concentration of nanomaterial and light dose were optimized. Gold nanospheres were synthesized by reduction technique using Sodium Borohydrate as reducing agent and Trisodium Citrate as capping agent. Au nanorods having 680-900nm absorption were synthesized using reduction techniques with CTAB and BDAC polymers. From UV-Vis absorption and Transmission Electron Microscopy the size of nanoparticles were confirmed. 30nm Gold nanospheres and green light source of 530nm wavelength with power 30mW were applied to Vero and Hela cell lines shows higher toxicity for Hela cells. Nanorods were applied and irradiated with 680nm wavelength light source with light intensity 45mW. Post irradiation effect for 24hrs, 48hrs confirms cell proliferation in normal rate in viable cells. The morphological changes in irradiated spot leads to apoptotoic cell death was confirmed with microscopic imaging. The LD50 value was also calculated.

  16. Electrophoretic Deposition of Chitosan Coatings Modified with Gelatin Nanospheres To Tune the Release of Antibiotics.

    PubMed

    Song, Jiankang; Chen, Qiang; Zhang, Yang; Diba, Mani; Kolwijck, Eva; Shao, Jinlong; Jansen, John A; Yang, Fang; Boccaccini, Aldo R; Leeuwenburgh, Sander C G

    2016-06-08

    Orthopedic and dental implants are increasingly used in the medical field in view of their high success rates. Implant-associated infections, however, still occur and are difficult to treat. To combat these infections, the application of an active coating to the implant surface is advocated as an effective strategy to facilitate sustained release of antibacterial drugs from implant surfaces. Control over this release is, however, still a major challenge. To overcome this problem, we deposited composite coatings composed of a chitosan matrix containing gelatin nanospheres loaded with antibiotics onto stainless steel plates by means of the electrophoretic deposition technique. The gelatin nanospheres were distributed homogeneously throughout the coatings. The surface roughness and wettability of the coatings could be tuned by a simple adjustment of the weight ratio between the gelatin nanospheres and chitosan. Vancomycin and moxifloxacin were released in sustained and burst-type manners, respectively, while the coatings were highly cytocompatible. The antibacterial efficacy of the coatings containing different amounts of antibiotics was tested using a zone of inhibition test against Staphylococcus aureus, which showed that the coatings containing moxifloxacin exhibited an obvious inhibition zone. The coatings containing a high amount of vancomycin were able to kill bacteria in direct contact with the implant surface. These results suggest that the antibacterial capacity of metallic implants can be tuned by orthogonal control over the release of (multiple) antibiotics from electrophoretically deposited composite coatings, which offers a new strategy to prevent orthopedic implant-associated infections.

  17. Model for large-area monolayer coverage of polystyrene nanospheres by spin coating

    NASA Astrophysics Data System (ADS)

    Chandramohan, Abhishek; Sibirev, Nikolai V.; Dubrovskii, Vladimir G.; Petty, Michael C.; Gallant, Andrew J.; Zeze, Dagou A.

    2017-01-01

    Nanosphere lithography, an inexpensive and high throughput technique capable of producing nanostructure (below 100 nm feature size) arrays, relies on the formation of a monolayer of self-assembled nanospheres, followed by custom-etching to produce nanometre size features on large-area substrates. A theoretical model underpinning the self-ordering process by centrifugation is proposed to describe the interplay between the spin speed and solution concentration. The model describes the deposition of a dense and uniform monolayer by the implicit contribution of gravity, centrifugal force and surface tension, which can be accounted for using only the spin speed and the solid/liquid volume ratio. We demonstrate that the spin recipe for the monolayer formation can be represented as a pathway on a 2D phase plane. The model accounts for the ratio of polystyrene nanospheres (300 nm), water, methanol and surfactant in the solution, crucial for large area uniform and periodic monolayer deposition. The monolayer is exploited to create arrays of nanoscale features using ‘short’ or ‘extended’ reactive ion etching to produce 30–60 nm (diameter) nanodots or 100–200 nm (diameter) nanoholes over the entire substrate, respectively. The nanostructures were subsequently utilized to create master stamps for nanoimprint lithography.

  18. Model for large-area monolayer coverage of polystyrene nanospheres by spin coating.

    PubMed

    Chandramohan, Abhishek; Sibirev, Nikolai V; Dubrovskii, Vladimir G; Petty, Michael C; Gallant, Andrew J; Zeze, Dagou A

    2017-01-19

    Nanosphere lithography, an inexpensive and high throughput technique capable of producing nanostructure (below 100 nm feature size) arrays, relies on the formation of a monolayer of self-assembled nanospheres, followed by custom-etching to produce nanometre size features on large-area substrates. A theoretical model underpinning the self-ordering process by centrifugation is proposed to describe the interplay between the spin speed and solution concentration. The model describes the deposition of a dense and uniform monolayer by the implicit contribution of gravity, centrifugal force and surface tension, which can be accounted for using only the spin speed and the solid/liquid volume ratio. We demonstrate that the spin recipe for the monolayer formation can be represented as a pathway on a 2D phase plane. The model accounts for the ratio of polystyrene nanospheres (300 nm), water, methanol and surfactant in the solution, crucial for large area uniform and periodic monolayer deposition. The monolayer is exploited to create arrays of nanoscale features using 'short' or 'extended' reactive ion etching to produce 30-60 nm (diameter) nanodots or 100-200 nm (diameter) nanoholes over the entire substrate, respectively. The nanostructures were subsequently utilized to create master stamps for nanoimprint lithography.

  19. Thermo-sensitive polymer nanospheres as a smart plugging agent for shale gas drilling operations.

    PubMed

    Wang, Wei-Ji; Qiu, Zheng-Song; Zhong, Han-Yi; Huang, Wei-An; Dai, Wen-Hao

    2017-01-01

    Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcohol-water medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive monomer N-isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA-St) nanospheres at 80 °C, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD-SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability.

  20. Study of SiRNA-loaded PS-mPEG/CaP nanospheres on lung cancer

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qin, Liubin; Sun, Ying; Shen, Ming; Duan, Yourong

    2014-05-01

    An ultrasound-adsorption method was used to prepare Bcl-2-SiRNA-loaded PS-mPEG/CaP nanospheres. The size and zeta potential were 18.41 ± 4.31 nm ( n = 5) and -23.5 ± 0.6 mV, respectively. The entrapment efficiency of SiRNA was 92.86 %. MTT assay results confirmed that the blank nanospheres demonstrated a negligible cytotoxicity response in H1299 cells. Flow cytometer analysis results demonstrated that PS-mPEG/CaP NSs could carry SiRNA into the cells effectively. RT-PCR experiments and apoptosis assay results approved that, compared with free SiRNA, SiRNA-loaded PS-mPEG/CaP NSs could silence Bcl-2 gene and induce cell apoptosis effectively. In vivo distribution results confirmed PS-mPEG/CaP NSs could carry SiRNA enter the tumor tissue effectively. Taken together, these results suggest that the Bcl-2-SiRNA-loaded PS-mPEG/CaP nanospheres have great potential to be used to cure lung cancer.

  1. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.

    PubMed

    Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang; Li, Dan; Chen, Yunfa; Zhong, Ziyi; Su, Fabing

    2014-01-07

    We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, Cu(x)Si, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g(-1) at 50, 200, 800, and 50 mA g(-1) respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, Cu(x)Si, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive Cu(x)Si and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries.

  2. Mechanistic studies on the degradation and protein release characteristics of poly(lactic-co-glycolic-co-hydroxymethylglycolic acid) nanospheres.

    PubMed

    Samadi, N; van Nostrum, C F; Vermonden, T; Amidi, M; Hennink, W E

    2013-04-08

    The purpose of this study was to gain mechanistic insights into the effect of different formulation parameters on the degradation and release behavior of protein-loaded nanoparticulate carrier systems based on an aliphatic polyester with pendant hydroxyl groups, poly(lactic-co-glycolic-hydroxymethyl glycolic acid) (pLGHMGA). Bovine serum albumin (BSA) was used as a model protein. BSA-loaded pLGHMGA nanospheres of 400-700 nm were prepared using a solvent evaporation method using pLGHMGA of different molecular weights and different compositions. Also, the concentration of pLGHMGA in the organic phase was varied. The nanospheres showed a continuous mass loss accompanied by continuous decrease in number average molecular weight, which indicates that the degradation of the nanospheres is by bulk degradation with a rapid release of water-soluble low molecular weight fragments. On the basis of NMR analysis, it is concluded that intramolecular transesterification precedes extensive hydrolysis of the polymer and degradation of the nanospheres. BSA-loaded freeze-dried nanospheres showed a significant burst release of 40-50% of the BSA loading. In contrast, nonfreeze-dried samples showed a small burst of around 10-20%, indicating that freeze-drying induced pore formation. Nonlyophilized nanospheres prepared from pLGHMGA with 64/18/18 lactic/glycolic/hydroxymethylglycolic acid (L/G/HMG) ratio showed a relatively fast release of BSA for the next 30 days. Nanospheres prepared from a more hydrophobic pLGHMGA (74/13/13, L/G/HMG) showed a two-phase release. Circular dichroism analysis showed that the secondary structure of the released protein was preserved. This study shows a correlation between release behavior and particle erosion rate, which can be modulated by the copolymer composition.

  3. Porous bioactive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a

  4. A [32P]-NAD+-based method to identify and quantitate long residence time enoyl-ACP reductase inhibitors

    PubMed Central

    Yu, Weixuan; Neckles, Carla; Chang, Andrew; Bommineni, Gopal Reddy; Spagnuolo, Lauren; Zhang, Zhuo; Liu, Nina; Lai, Christina; Truglio, James; Tonge, Peter J.

    2015-01-01

    The classical methods for quantifying drug-target residence time (tR) use loss or regain of enzyme activity in progress curve kinetic assays. However, such methods become imprecise at very long residence times, mitigating the use of alternative strategies. Using the NAD(P)H-dependent FabI enoyl-ACP reductase as a model system, we developed a Penefsky column-based method for direct measurement of tR, where the off-rate of the drug was determined with radiolabeled [adenylate-32P] NAD(P+) cofactor. Twenty-three FabI inhibitors were analyzed and a mathematical model was used to estimate limits to the tR values of each inhibitor based on percent drug-target complex recovery following gel filtration. In general, this method showed good agreement with the classical steady state kinetic methods for compounds with tR values of 10-100 min. In addition, we were able to identify seven long tR inhibitors (100-1500 min) and to accurately determine their tR values. The method was then used to measure tR as a function of temperature, an analysis not previously possible using the standard kinetic approach due to decreased NAD(P)H stability at elevated temperatures. In general, a 4-fold difference in tR was observed when the temperature was increased from 25 °C to 37 °C . PMID:25684450

  5. Modification of triclosan scaffold in search of improved inhibitors for enoyl-acyl carrier protein (ACP) reductase in Toxoplasma gondii.

    PubMed

    Stec, Jozef; Fomovska, Alina; Afanador, Gustavo A; Muench, Stephen P; Zhou, Ying; Lai, Bo-Shiun; El Bissati, Kamal; Hickman, Mark R; Lee, Patty J; Leed, Susan E; Auschwitz, Jennifer M; Sommervile, Caroline; Woods, Stuart; Roberts, Craig W; Rice, David; Prigge, Sean T; McLeod, Rima; Kozikowski, Alan P

    2013-07-01

    Through our focused effort to discover new and effective agents against toxoplasmosis, a structure-based drug design approach was used to develop a series of potent inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4' of the well-known ENR inhibitor triclosan afforded a series of 29 new analogues. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16 a and 16 c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against recombinant TgENR were found to be 43 and 26 nM, respectively. Additionally, 11 other analogues in this series had IC50 values ranging from 17 to 130 nM in the enzyme-based assay. With respect to their excellent in vitro activity as well as improved drug-like properties, the lead compounds 16 a and 16 c are deemed to be excellent starting points for the development of new medicines to effectively treat Toxoplasma gondii infections.

  6. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii.

    PubMed

    Tan, Kenneth Wei Min; Lee, Yuan Kun

    2017-04-10

    Biofuel production from genetically-engineered microalgae is currently among the most widely studied strategies in generating renewable energy. However, microalgae currently suffer from low oil yields which limit the commercial feasibility of industrial-scale production. A major bottleneck in cost-efficient biofuel production from microalgae is the dilemma between biomass productivity and lipid accumulation. When grown under stressful culture conditions such as nitrogen depletion, microalgae accumulate large amounts of neutral lipids, but it comes at the expense of growth which negatively impacts overall lipid productivity. Overexpression of acyl-ACP thioesterases (TE) had been successful in increasing the production of fatty acids (FA) in prokaryotes such as E. coli and cyanobacteria, but has not been effectively tested in microalgae. In this study, we introduced a TE from D. tertiolecta (DtTE) into C. reinhardtii to investigate its effects on FA production without compromising growth. The results indicate that C. reinhardtii transformants were able to produce 63 and 94% more neutral lipids than the wild-type, which translates to an approximately 56% improvement in total lipids, without compromising growth. These findings demonstrate the cross-species functionality of TE, and provide a platform for further studies into using TE as a strategy to increase biofuel production from microalgae.

  7. Modification of Triclosan Scaffold in Search of Improved Inhibitors for Enoyl-Acyl Carrier Protein (ACP) Reductase in Toxoplasma gondii

    PubMed Central

    Stec, Jozef; Fomovska, Alina; Afanador, Gustavo A.; Muench, Stephen P.; Zhou, Ying; Lai, Bo-Shiun; Bissati, Kamal El; Hickman, Mark R.; Lee, Patty J.; Leed, Susan E.; Auschwitz, Jennifer M.; Sommervile, Caroline; Woods, Stuart; Roberts, Craig W.; Rice, David; Prigge, Sean T.; McLeod, Rima; Kozikowski, Alan P.

    2013-01-01

    Through our focused effort to discover new and effective agents against toxoplasmosis, a structure-based drug design approach was utilized to develop a series of potent inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4′ of the well-known ENR inhibitor triclosan afforded a series of 29 new analogs. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16a and 16c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against the recombinant TgENR were 43 and 26 nM, respectively. Additionally, 11 other analogs in this series had IC50 values ranging from 17 to 130 nM in the enzyme-based assay. With respect to their excellent in vitro activity as well as improved drug-like properties, the lead compounds 16a and 16c are deemed to be an excellent starting point for the development of new medicines to effectively treat Toxoplasma gondii infections. PMID:23776166

  8. 3-Oxoacyl-ACP Reductase from Schistosoma japonicum: Integrated In Silico-In Vitro Strategy for Discovering Antischistosomal Lead Compounds

    PubMed Central

    Liu, Jian; Dyer, Dave; Wang, Jipeng; Wang, Shuqi; Du, Xiaofeng; Xu, Bin; Zhang, Haobing; Wang, Xiaoning; Hu, Wei

    2013-01-01

    Background Schistosomiasis is a disease caused by parasitic worms and more than 200 million people are infected worldwide. The emergence of resistance to the most commonly used drug, praziquantel (PZQ), makes the development of novel drugs an urgent task. 3-oxoacyl-ACP reductase (OAR), a key enzyme involved in the fatty acid synthesis pathway, has been identified as a potential drug target against many pathogenic organisms. However, no research on Schistosoma japonicum OAR (SjOAR) has been reported. The characterization of the SjOAR protein will provide new strategies for screening antischistosomal drugs that target SjOAR. Methodology/Principal Findings After cloning the SjOAR gene, recombinant SjOAR protein was purified and assayed for enzymatic activity. The tertiary structure of SjOAR was obtained by homology modeling and 27 inhibitor candidates were identified from 14,400 compounds through molecular docking based on the structure. All of these compounds were confirmed to be able to bind to the SjOAR protein by BIAcore analysis. Two compounds exhibited strong antischistosomal activity and inhibitory effects on the enzymatic activity of SjOAR. In contrast, these two compounds showed relatively low toxicity towards host cells. Conclusions/Significance The work presented here shows the feasibility of isolation of new antischistosomal compounds using a combination of virtual screening and experimental validation. Based on this strategy, we successfully identified 2 compounds that target SjOAR with strong antischistosomal activity but relatively low cytotoxicity to host cells. PMID:23762275

  9. Type III polyketide synthase beta-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining.

    PubMed

    Song, Lijiang; Barona-Gomez, Francisco; Corre, Christophe; Xiang, Longkuan; Udwary, Daniel W; Austin, Michael B; Noel, Joseph P; Moore, Bradley S; Challis, Gregory L

    2006-11-22

    Polyketide synthases (PKSs) are involved in the biosynthesis of many important natural products. In bacteria, type III PKSs typically catalyze iterative decarboxylation and condensation reactions of malonyl-CoA building blocks in the biosynthesis of polyhydroxyaromatic products. Here it is shown that Gcs, a type III PKS encoded by the sco7221 ORF of the bacterium Streptomyces coelicolor, is required for biosynthesis of the germicidin family of 3,6-dialkyl-4-hydroxypyran-2-one natural products. Evidence consistent with Gcs-catalyzed elongation of specific beta-ketoacyl-ACP products of the fatty acid synthase FabH with ethyl- or methylmalonyl-CoA in the biosynthesis of germicidins is presented. Selectivity for beta-ketoacyl-ACP starter units and ethylmalonyl-CoA as an extender unit is unprecedented for type III PKSs, suggesting these enzymes may be capable of utilizing a far wider range of starter and extender units for natural product assembly than believed until now.

  10. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  11. Strong, Lightweight, Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  12. Porous polymer media

    DOEpatents

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  13. Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase.

    PubMed

    Wang, Hui; Liu, Li; Lu, Yang; Pan, Pan; Hooker, Jacob M; Fowler, Joanna S; Tonge, Peter J

    2015-11-01

    PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.

  14. Cryopreservation of collared peccaries (Tayassu tajacu) semen using a powdered coconut water (ACP-116c) based extender plus various concentrations of egg yolk and glycerol.

    PubMed

    Silva, M A; Peixoto, G C X; Lima, G L; Bezerra, J A B; Campos, L B; Paiva, A L C; Paula, V V; Silva, A R

    2012-08-01

    The objective was to determine the effectiveness of a powdered coconut water-based extender (ACP-116c), plus various concentrations of egg-yolk and glycerol, as an alternative for cryopreservation of collared peccary semen. Twelve ejaculates were obtained from captive adult males by electroejaculation, and evaluated for sperm motility, kinetic rating, viability, morphology, and functional membrane integrity. The ejaculates were apportioned into aliquots that were diluted in Tris plus 10% egg yolk and 3% glycerol, or in ACP-116c plus 10 or 20% egg yolk and 1.5 or 3% glycerol. Samples were frozen in liquid nitrogen and, after 1 mo, thawed at 37 °C for 1 min. After thawing, samples were evaluated as reported for fresh semen, and also for sperm membrane integrity (fluorescent probes) and kinematic parameters (computerized analysis). Results were presented as means ± SEM. Freezing and thawing decreased sperm characteristics relative to fresh semen. Overall, ACP-116c plus 20% egg yolk and 3% glycerol provided better (P < 0.05) sperm motility and kinetic rating (48 ± 6.1% and 2.8 ± 0.2, respectively) after thawing than Tris extender (30.4 ± 5.7% and 2.4 ± 0.2). However, there were no differences (P > 0.05) among treatments with regard to the other sperm characteristics. Based on computerized motion analysis, total (26.5 ± 5.9%) and progressive (8.1 ± 2.2%) motility were best preserved (P < 0.05) with the above-mentioned treatment. In conclusion, a coconut water-based extender, ACP-116c, plus 20% egg yolk and 3% glycerol, was effective for cryopreservation of semen from collared peccaries.

  15. Evaluation of fertilizing potential of frozen-thawed dog spermatozoa diluted in ACP-106 using an in vitro sperm--oocyte interaction assay.

    PubMed

    Cardoso, R C S; Silva, A R; Silva, L D M; Chirinéa, V H; Souza, F F; Lopes, M D

    2007-02-01

    The aim of present study was to evaluate frozen canine semen with ACP-106 (Powder Coconut Water) using an in vitro sperm--oocyte interaction assay (SOIA). Ten ejaculates from five stud dogs were diluted in ACP-106 containing 20% egg yolk, submitted to cooling in a thermal box for 40 min and in a refrigerator for 30 min. After this period, a second dilution was performed using ACP-106 containing 20% egg yolk and 12% glycerol. Samples were thawed at 38 degrees C for 1 min. Post-thaw motility was evaluated by light microscopy and by using a computer aided semen analysis (CASA). Plasma membrane integrity and sperm morphology/acrosomal status were evaluated by fluorescent probes (C-FDA/PI) and Bengal Rose respectively. Moreover, frozen-thawed semen was analysed by a SOIA. Subjective post-thaw motility was 52.0 +/- 14.8% and it was significant higher than the total motility estimated by CASA (23.0 +/- 14.8%) because this system considered the egg yolk debris as immotile spermatozoa. Although normal sperm rate and acrosomal integrity evaluated by Bengal Rose stain was 89.6 +/- 3.1% and 94.3 +/- 3.1%, respectively, post-thaw percentage of intact plasma membrane was only 35.1 +/- 14.3%. Regarding SOIA, the percentage of interacted oocytes (bound, penetrated and bound and/or penetrated) was 75.3%. Using regression analysis, it was found significant relations between some CASA patterns and data for SOIA. In conclusion, the freezing-thawing procedure using ACP-106 was efficient for maintain the in vitro fertility potential of dog spermatozoa.

  16. Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase

    DOE PAGES

    Wang, Hui; Liu, Li; Lu, Yang; ...

    2015-07-14

    PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.

  17. Facile synthesis of Fe3O4@C hollow nanospheres and their application in polluted water treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanguang; Xu, Shihao; Xia, Hongyu; Zheng, Fangcai

    2016-11-01

    Nanostructured carbon-based materials, such as carbon nanotube arrays have shown respectable removal ability for heavy metal ions and organic dyes in aqueous solution. Although the carbon-based materials exhibited excellent removal ability, the separation of them from the aqueous solution is difficult and time-consuming. Here we demonstrated a novel and facile route for the large-scale fabrication of Fe3O4@C hollow nanospheres, with using ferrocene as a single reagent and SiO2 as a template. The as-prepared Fe3O4@C hollow nanospheres exhibited adsorption ability for heavy metal ions and organic dyes from aqueous solution, and can be easily separated by an external magnet. When the as-prepared Fe3O4@C hollow nanospheres were mixed with the aqueous solution of Hg2+ within 15 min, the removal efficiency was 90.3%. The as-prepared Fe3O4@C hollow nanospheres were also exhibited a high adsorption capacity (100%) as the adsorbent for methylene blue (MB). In addition, the as-prepared Fe3O4@C hollow nanospheres can be used as the recyclable sorbent for water treatment via a simple magnetic separation.

  18. Surfactant free synthesis of CdS nanospheres, microstructural analysis, chemical bonding, optical properties and photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Ganesh, R. Sankar; Sharma, Sanjeev K.; Durgadevi, E.; Navaneethan, M.; Binitha, H. S.; Ponnusamy, S.; Muthamizhchelvan, C.; Hayakawa, Y.; Kim, Deuk Young

    2017-04-01

    The surfactant free cadmium sulfide (CdS) nanospheres were synthesized by the chemical method in a single step. The uniform shape of CdS spheres was controlled by the variation of concentration of thioacetamide (C2H5NS). The cubic phase of CdS nanopowder was determined from XRD analysis, which closely matched to the standard card. The spherical grains of CdS powder were confirmed from the microstructural analysis. The concentration of thioacetamide (TAA) played a vital role in the formation of nanospheres. The bandgap of CdS nanospheres decreased from 2.44 to 2.22 eV as the mole concentration of C2H5NS increased from 0.05 M to 2.0 M. FTIR spectra confirmed the presence of the stretching bond of Cdsbnd S. The dominant PL peak of purely and uniformed CdS nanospheres was observed at 528 nm due to S vacancies or surface defects. The prepared photocatalyst demonstrated the superior visible light photocatalytic degradation of methylene blue (MB). The highest degradation (96%) of MB was achieved within 180 min. Therefore, CdS nanospheres grown in the single step by the chemical method has a remarkable enhancement in the degradation of pollutants under irradiation of visible light.

  19. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates.

    PubMed

    Liu, Yating; Tian, Ailin; Wang, Xiong; Qi, Jing; Wang, Fengkang; Ma, Ying; Ito, Yoichiro; Wei, Yun

    2015-06-26

    As the rapid development of nanotechnology, the magnetic nanospheres modified with special chiral selective ligands show a great potentiality in enantiomeric separation. In this study, magnetic nanospheres modified with task-specific chiral ionic liquid were designed for the separation of chiral amino acids. These modified magnetic nanospheres were effective in a direct chiral separation of five racemic amino acids (D- and L-cysteine, D- and L-arginine, D- and L-leucine, D- and L-glutamine and D- and L-tryptophan). Furthermore, a new online method for complete separation of the enantiomers via the magnetic nanospheres was established with centrifugal chiral chromatography using a spiral tube assembly mounted on a type-J coil planet centrifuge. One kind of chiral compounds, D- and L-tryptophan was resolved well using this method. These results demonstrated that the modified nanospheres display a good chiral recognition ability, and can be used as a potential material for chiral separation of various racemates.

  20. Controlled synthesis of mesoporous β-Ni(OH){sub 2} and NiO nanospheres with enhanced electrochemical performance

    SciTech Connect

    Xing, Shengtao; Wang, Qian; Ma, Zichuan; Wu, Yinsu; Gao, Yuanzhe

    2012-09-15

    Highlights: ► Uniform mesoporous β-Ni(OH){sub 2} and NiO nanospheres with hierarchical structures were synthesized by a simple complexation–precipitation method. ► Both ammonia and citrate played an important role for the formation of mesoporous nanospheres. ► β-Ni(OH){sub 2} and NiO nanospheres showed excellent capacitive properties due to their mesoporous structures and larger surface areas. -- Abstract: Uniform mesoporous β-Ni(OH){sub 2} and NiO nanospheres with hierarchical structures were synthesized by a facile complexation–precipitation method. The effects of ammonia and citrate on the structure and morphology of the products were thoroughly investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements. The results indicated that ammonia played an important role for the formation of flowerlike spheres assembled from nanosheets. The addition of citrate could remarkably reduce the particle sizes and increase the specific surface areas of flowerlike spheres. A possible formation mechanism based on the experimental results was proposed to understand their growing procedures. β-Ni(OH){sub 2} and NiO nanospheres prepared with the addition of citrate showed excellent capacitive properties due to their mesoporous structures and large surface areas, suggesting the importance of controlled synthesis of hierarchical nanostructures for their applications.

  1. Gold nanoparticles embedded in silica hollow nanospheres induced by compressed CO2 as an efficient catalyst for selective oxidation.

    PubMed

    Guo, Li; Zhang, Ran; Chen, Chen; Chen, Jizhong; Zhao, Xiuge; Chen, Angjun; Liu, Xuerui; Xiu, Yuhe; Hou, Zhenshan

    2015-03-07

    Metal nanoparticles embedded in hollow materials are important due to their wide applications in catalysis. In this work, we disclosed a nontraditional synthetic pathway to prepare silica hollow nanospheres by hydrothermal treatment in the presence of compressed CO2. Especially, the silica hollow nanospheres with an outer diameter of about 16 nm and an inner pore size of 7 nm were obtained using 1.0 MPa CO2. The formation mechanism of silica hollow nanospheres induced by CO2 was investigated by high-pressured UV/Vis spectroscopy. Moreover, gold nanoparticles (2.5 nm) embedded in the silica hollow nanospheres were prepared by a one-pot synthesis using HAuCl4 as a precursor. The current synthetic route of nano-catalysts was simple and facile, in which no etching agent was needed in the process of the hollow material preparation. Besides, this nano-catalyst showed an excellent catalytic performance in epoxidation of styrene with high conversion (82.2%) and selectivity (90.2%) toward styrene oxide, as well as in the selective oxidation of ethylbenzene with good conversion (26.6%) and selectivity (87.8%) toward acetophenone. Moreover, the Au nanoparticles (AuNPs) embedded in silica hollow nanospheres exhibited an excellent recyclability in both the oxidation reactions.

  2. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Yang, Zeheng; Xu, Feifei; Zhang, Weixin; Mei, Zhousheng; Pei, Bo; Zhu, Xiao

    2014-01-01

    In this work, we demonstrate a facile layer-by-layer (LBL) self-assembly method for controllable preparation of single-, double-, and triple-shelled NiO hollow nanospheres by calcining Ni(OH)2/C precursors formed at different stage. It is observed that the external nanoflakes of the NiO hollow nanospheres are inherited from the Ni(OH)2 precursors organized on the surface of carbon spheres via a self-assembly growth process and the inner shells result from the formation of different Ni(OH)2 layers within the carbon spheres during different preparation cycles. Supercapacitive performance of the three types of NiO hollow nanospheres as active electrode materials has been evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge. The results indicate that double-shelled NiO hollow nanosphere sample with largest surface area (92.99 m2 g-1) exhibits the best electrochemical properties among the three NiO hollow nanosphere samples. It delivers a high capacitance of 612.5 F g-1 at 0.5 A g-1 and demonstrates a superior long-term cyclic stability, with over 90% specific capacitance retention after 1000 charge-discharge cycles. This excellent performance is ascribed to the short diffusion path and large surface area of the unique hollow structure with nanoflake building blocks for bulk accessibility of faradaic reaction.

  3. Formation of nickel-doped magnetite hollow nanospheres with high specific surface area and superior removal capability for organic molecules

    NASA Astrophysics Data System (ADS)

    Li, Zhenhu; Ma, Yurong; Qi, Limin

    2016-12-01

    A strategy for the formation of magnetic Ni x Fe3-x O4 hollow nanospheres with very high specific surface areas was designed through a facile solvothermal method in mixed solvents of ethylene glycol and water in this work. The Ni/Fe ratios and the crystal phases of the Ni x Fe3-x O4 hollow nanocrystals can be readily tuned by changing the molar ratios of Ni to Fe in the precursors. An inside-out Ostwald ripening mechanism was proposed for the formation of uniform Ni x Fe3-x O4 hollow nanospheres. Moreover, the obtained Ni x Fe3-x O4 hollow nanospheres exhibited excellent adsorption capacity towards organic molecules such as Congo red in water. The maximum adsorption capacities of Ni x Fe3-x O4 hollow nanospheres for Congo red increase dramatically from 263 to 500 mg g-1 with the increase of the Ni contents (x) in Ni x Fe3-x O4 hollow nanospheres from 0.2 to 0.85. The synthesized Ni x Fe3-x O4 nanoparticles can be potentially applied for waste water treatment.

  4. Investigation on raspberry-like magnetic-hollow silica nanospheres and its preliminary application for drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Chunlei; Yan, Juntao; Li, Zhanfeng; Wang, Hongyan; Cui, Xuejun

    2013-09-01

    A series of raspberry-like magnetic-hollow silica nanospheres were successfully synthesized via the sol-gel process, which was based on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene. The Fe3O4@SiO2 particles as the outer shell were compactly assembled on the surface of PS, and then magnetic-hollow nanospheres were obtained by calcination. Different synthesis conditions including the amount of NH4OH, TEOS, Fe3O4, and the adding time of PS were systematically investigated to discuss the influence of these conditions on the morphology and structure. The prepared magnetic-hollow nanospheres were systematically characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectrometry, energy-dispersive X-ray analysis, thermogravimetric analysis and nitrogen adsorption-desorption measurement. SEM and TEM images exhibited that the obtained samples with the perfect spherical profile and large cavities structure were well monodisperse and uniform under the optimized condition. Zeta-potential analysis was employed to make clear the formation mechanism of raspberry-like PS@Fe3O4@SiO2 composite nanosphere. Moreover, the drug release of ibuprofen experiment results demonstrated that the magnetic-hollow nanospheres could be used as a drug carrier to slowly release and deliver drugs.

  5. In vitro studies of serum albumin interaction with poly(D,L-lactide) nanospheres loaded by hydrophobic cargo.

    PubMed

    Pietkiewicz, Jadwiga; Wilk, Kazimiera A; Bazylińska, Urszula

    2016-01-05

    The various polymer-based nanocarriers are very attractive for in vitro and in vivo bioapplications. A new type of a promising drug delivery systems for cancer tissues-poly(D,L-lactide) nanospheres stabilized with Cremophor EL and loaded with hydrophobic cyanines (IR-780 or ZnPc) or curcumin (CUR) were fabricated by the nanoprecipitation method. The Cremophor EL/PLA/water nanospheres demonstrated regular shape, low polydispersity (PdI<0.3) and high entrapment efficiency of selected cargo (over 90%). The size of those nanoconstructs below 130 nm are in the desired nanocarriers size range for tumor delivery. Low level of in vitro drug release from loaded nanospheres after long-time storage indicates their good stability. The half-life of nanocarriers in the circulation, and their biodistribution after parenteral administration are associated with the ability of plasma proteins adsorption. For these reasons the affinity of obtained nanospheres for albumin as a major plasma protein was in vitro investigated. The binding of nanocarrier containing cyanine IR-780 with albumin immobilized in the wells of polystyrene plate occurred with lower efficiency than analogs loaded with ZnPc or CUR. Similar relationships were observed after UV-vis spectra analysis of nanospheres in the presence of albumin at various protein concentrations.

  6. On-plate digestion of proteins using novel trypsin-immobilized magnetic nanospheres for MALDI-TOF-MS analysis.

    PubMed

    Li, Yan; Yan, Bo; Deng, Chunhui; Tang, Jia; Liu, Junyan; Zhang, Xiangmin

    2007-10-01

    In this study, a novel method of on-plate digestion using trypsin-immobilized magnetic nanospheres was developed followed by MALDI-TOF-MS for rapid and effective analysis and identification of proteins. We utilized a facile one-pot method for the direct preparation of amine-functionalized magnetic nanospheres with highly magnetic properties and the amino groups on the outer surface. Through the reaction of the aldehyde groups with amine groups, trypsin was simply and stably immobilized onto the magnetic nanospheres. The obtained trypsin-linked magnetic nanospheres were then applied for on-plate digestion of sample proteins (myoglobin and Cytochrome c). Moreover, after digestion, the trypsin-linked nanospheres could be easily removed from the plate due to their magnetic property, which would avoid causing contamination on the ion source chamber in MS. The effects of the temperature and incubation time on the digestion efficiency were characterized. Within only 5 min, proteins could be efficiently digested with the peptide sequence coverage higher than or equal to that of the traditional in-solution digestion for 12 h. Furthermore, RPLC fractions of rat liver extract were also successfully processed using this novel method. These results suggested that our improved on-plate digestion protocol for MALDI-MS may find further application in automated analysis of large sets of proteins.

  7. Therapeutic Use of 3β-[N-(N′,N′-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury

    PubMed Central

    Gwak, So-Jung; Yun, Yeomin; Yoon, Do Heum; Kim, Keung Nyun; Ha, Yoon

    2016-01-01

    Gene delivery holds therapeutic promise for the treatment of neurological diseases and spinal cord injury. Although several studies have investigated the use of non-viral vectors, such as polyethylenimine (PEI), their clinical value is limited by their cytotoxicity. Recently, biodegradable poly (lactide-co-glycolide) (PLGA) nanospheres have been explored as non-viral vectors. Here, we show that modification of PLGA nanospheres with 3β-[N-(N′,N′-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) enhances gene transfection efficiency. PLGA/DC-Chol nanospheres encapsulating DNA were prepared using a double emulsion-solvent evaporation method. PLGA/DC-Chol nanospheres were less cytotoxic than PEI both in vitro and in vivo. DC-Chol modification improved the uptake of nanospheres, thereby increasing their transfection efficiency in mouse neural stem cells in vitro and rat spinal cord in vivo. Also, transgene expression induced by PLGA nanospheres was higher and longer-lasting than that induced by PEI. In a rat model of spinal cord injury, PLGA/DC-Chol nanospheres loaded with vascular endothelial growth factor gene increased angiogenesis at the injury site, improved tissue regeneration, and resulted in better recovery of locomotor function. These results suggest that DC-Chol-modified PLGA nanospheres could serve as therapeutic gene delivery vehicles for spinal cord injury. PMID:26824765

  8. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions.

    PubMed

    Yamamoto, Hiromitsu; Kuno, Yoshio; Sugimoto, Shohei; Takeuchi, Hirofumi; Kawashima, Yoshiaki

    2005-02-02

    Surface-modified DL-lactide/glycolide copolymer (PLGA) nanospheres with chitosan (CS) were prepared by the emulsion solvent diffusion method for pulmonary delivery of peptide, i.e., elcatonin. The nanosphere suspension was successfully aerosolized with a nebulizer similar to the drug solution, whereas the microsphere suspensions could not be aerosolized. After pulmonary administration, CS-modified PLGA nanospheres were more slowly eliminated from the lungs than unmodified PLGA nanospheres. CS-modified PLGA nanospheres loaded with elcatonin reduced blood calcium levels to 80% of the initial calcium concentration and prolonged the pharmacological action to 24 h, which was a significantly longer duration of action than that by CS-unmodified nanospheres. These results were attributed to the retention of nanospheres adhered to the bronchial mucus and lung tissue and sustained drug release at the adherence site. In addition, CS and CS on the surface of the nanospheres enhanced the absorption of drug. The rank order of the absorption of the model drugs with CS solution was carboxyfluorescein>FITC-dextran-4 (FD-4; Mw. 4000)>FD-21 (Mw. 21,000)>FD70 (Mw. 70,000), which corresponded to the molecular weights ([Mw.] given in parentheses). The absorption-enhancing effect may have been caused by opening the intercellular tight junctions.

  9. Drug-loadable Mesoporous Bioactive Glass Nanospheres: Biodistribution, Clearance, BRL Cellular Location and Systemic Risk Assessment via 45Ca Labelling and Histological Analysis

    PubMed Central

    Sui, Baiyan; Zhong, Gaoren; Sun, Jiao

    2016-01-01

    Mesoporous bioactive glass (MBG) nanospheres with excellent drug loading property have attracted significant attention in the field of nano-medicine. However, systemic metabolism and biosafety of MBG nanospheres which are crucial issues for clinical application are yet to be fully understood. Isotope quantitative tracing combined with biochemical parameters and histopatological changes were used to analyze biodistribution, excretion path and the effect on metabolism and major organs, and then we focused on the hepatocellular location and damaging effect of MBG. The results indicated MBG possessed a longer residence time in blood. After being cleared from circulation, nanospheres were mainly distributed in the liver and were slightly internalized in the form of exogenous phagosome by hepatocyte, whereby more than 96% of nanospheres were located in the cytoplasm (nearly no nuclear involvement). A little MBG was transferred into the mitochondria, but did not cause ROS reaction. Furthermore, no abnormal metabolism and histopathological changes was observed. The accumulation of MBG nanospheres in various organs were excreted mainly through feces. This study revealed comprehensively the systemic metabolism of drug-loadable MBG nanospheres and showed nanospheres have no obvious biological risk, which provides a scientific basis for developing MBG nanospheres as a new drug delivery in clinical application. PMID:27628013

  10. Therapeutic Use of 3β-[N-(N',N'-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury.

    PubMed

    Gwak, So-Jung; Yun, Yeomin; Yoon, Do Heum; Kim, Keung Nyun; Ha, Yoon

    2016-01-01

    Gene delivery holds therapeutic promise for the treatment of neurological diseases and spinal cord injury. Although several studies have investigated the use of non-viral vectors, such as polyethylenimine (PEI), their clinical value is limited by their cytotoxicity. Recently, biodegradable poly (lactide-co-glycolide) (PLGA) nanospheres have been explored as non-viral vectors. Here, we show that modification of PLGA nanospheres with 3β-[N-(N',N'-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) enhances gene transfection efficiency. PLGA/DC-Chol nanospheres encapsulating DNA were prepared using a double emulsion-solvent evaporation method. PLGA/DC-Chol nanospheres were less cytotoxic than PEI both in vitro and in vivo. DC-Chol modification improved the uptake of nanospheres, thereby increasing their transfection efficiency in mouse neural stem cells in vitro and rat spinal cord in vivo. Also, transgene expression induced by PLGA nanospheres was higher and longer-lasting than that induced by PEI. In a rat model of spinal cord injury, PLGA/DC-Chol nanospheres loaded with vascular endothelial growth factor gene increased angiogenesis at the injury site, improved tissue regeneration, and resulted in better recovery of locomotor function. These results suggest that DC-Chol-modified PLGA nanospheres could serve as therapeutic gene delivery vehicles for spinal cord injury.

  11. Porous microsphere and its applications

    PubMed Central

    Cai, Yunpeng; Chen, Yinghui; Hong, Xiaoyun; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies. PMID:23515359

  12. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  13. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Jones (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  14. Facile synthesis of CdS/C core-shell nanospheres with ultrathin carbon layer for enhanced photocatalytic properties and stability

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhang, Fu; Zhao, Yu-Ling; Guo, Yan-Chuan; Gong, Peijun; Li, Zheng-Quan; Qian, Hai-Sheng

    2016-01-01

    In this work, we described a facile one-pot hydrothermal process developed to synthesize CdS/C core-shell nanospheres successfully. The as-prepared CdS/C core-shell nanospheres are with 100 nm in diameter and the amorphous carbon shell is with several nanometers in thickness. The phase, morphology and structures of the samples were investigated by X-ray power diffraction (XRD) analyses, field-emission scanning electron microscopy (FESEM, JEOL-6700F) and transmission electron microscopy (TEM, JEOL 3010); respectively. The as-prepared CdS/C core-shell nanospheres showed enhanced photocatalytic properties and photostability compared to the single counterpart of CdS nanospheres owing to the efficiently separation of photogenerated electrons (e-) and holes (h+) derived from the photocatalyst. In addition, the as-prepared CdS/C core-shell nanospheres might find wide application in wastewater treatment, solar cells, lithium ion batteries, etc.

  15. Monodispersed Silica Nanospheres Encapsulating Fe3O4 and LaF3:Eu3+ Nanoparticles for MRI Contrast Agent and Luminescent Imaging

    NASA Astrophysics Data System (ADS)

    Tian, Yang; Yu, Binbin; Yang, Hong-Yu; Liao, Ji

    2013-03-01

    Bifunctional nanospheres of silica encapsulating Fe3O4 and LaF3:Eu nanoparticles were synthesized in a reverse microemulsion solution. The nanospheres were perfectly monodispersed with a small diameter of 20 nm. The composition of the bifunctional nanospheres was confirmed by powder X-ray diffraction. Their magnetic and luminescent properties were measured at room temperature. The relaxation efficiency and T2-weighted images showed the high-performance for the product as a resonance imaging contrast agent. In addition, a qualitative cell uptake in human cervical cancer HeLa cells demonstrated that the SFLE nanospheres were efficiently up-taken into cytosol. Taken together, these findings suggest that the SiO2/Fe3O4-LaF3:Eu3+ nanospheres are good luminescence probes for bio-imaging.

  16. Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci.

    PubMed

    Cho, Kwangsoo; O'Neill, Carmel M; Kwon, Soo-Jin; Yang, Tae-Jin; Smooker, Andrew M; Fraser, Fiona; Bancroft, Ian

    2010-02-01

    We conducted a sequence-level comparative analyses, at the scale of complete bacterial artificial chromosome (BAC) clones, between the genome of the most economically important Brassica species, Brassica napus (oilseed rape), and those of Brassica rapa, the genome of which is currently being sequenced, and Arabidopsis thaliana. We constructed a new B. napus BAC library and identified and sequenced clones that contain homoeologous regions of the genome including stearoyl-ACP desaturase-encoding genes. We sequenced the orthologous region of the genome of B. rapa and conducted comparative analyses between the Brassica sequences and those of the orthologous region of the genome of A. thaliana. The proportion of genes conserved (approximately 56%) is lower than has been reported previously between A. thaliana and Brassica (approximately 66%). The gene models for sets of conserved genes were used to determine the extent of nucleotide conservation of coding regions. This was found to be 84.2 +/- 3.9% and 85.8 +/- 3.7% between the B. napus A and C genomes, respectively, and that of A. thaliana, which is consistent with previous results for other Brassica species, and 97.5 +/- 3.1% between the B. napus A genome and B. rapa, and 93.1 +/- 4.9% between the B. napus C genome and B. rapa. The divergence of the B. napus genes from the A genome and the B. rapa genes was greater than anticipated and indicates that the A genome ancestor of the B. napus cultivar studied was relatively distantly related to the cultivar of B. rapa selected for genome sequencing.

  17. Rationalizing the Binding Kinetics for the Inhibition of the Burkholderia pseudomallei FabI1 Enoyl-ACP Reductase.

    PubMed

    Neckles, Carla; Eltschkner, Sandra; Cummings, Jason E; Hirschbeck, Maria; Daryaee, Fereidoon; Bommineni, Gopal R; Zhang, Zhuo; Spagnuolo, Lauren; Yu, Weixuan; Davoodi, Shabnam; Slayden, Richard A; Kisker, Caroline; Tonge, Peter J

    2017-04-04

    There is growing awareness of the link between drug-target residence time and in vivo drug activity, and there are increasing efforts to determine the molecular factors that control the lifetime of a drug-target complex. Rational alterations in the drug-target residence time require knowledge of both the ground and transition states on the inhibition reaction coordinate, and we have determined the structure-kinetic relationship for 22 ethyl- or hexyl-substituted diphenyl ethers that are slow-binding inhibitors of bpFabI1, the enoyl-ACP reductase FabI1 from Burkholderia pseudomallei. Analysis of enzyme inhibition using a two-dimensional kinetic map demonstrates that the ethyl and hexyl diphenyl ethers fall into two distinct clusters. Modifications to the ethyl diphenyl ether B ring result in changes to both on and off rates, where residence times of up to ∼700 min (∼11 h) are achieved by either ground state stabilization (PT444) or transition state destabilization (slower on rate) (PT404). By contrast, modifications to the hexyl diphenyl ether B ring result in residence times of 300 min (∼5 h) through changes in only ground state stabilization (PT119). Structural analysis of nine enzyme:inhibitor complexes reveals that the variation in structure-kinetic relationships can be rationalized by structural rearrangements of bpFabI1 and subtle changes to the orientation of the inhibitor in the binding pocket. Finally, we demonstrate that three compounds with residence times on bpFabI1 from 118 min (∼2 h) to 670 min (∼11 h) have in vivo efficacy in an acute B. pseudomallei murine infection model using the virulent B. pseudomallei strain Bp400.

  18. Mutations in a delta9-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds

    SciTech Connect

    Zhang, P.; Shanklin, J.; Burton, J. W.; Upchurch, R. G.; Whittle, E.; Dewey, R. E.

    2008-11-01

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoform of {Delta}{sup 9}-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability.

  19. Effect of ACP-CPP Chewing Gum and Natural Chewable Products on Plaque pH, Calcium and Phosphate Concentration

    PubMed Central

    Sultan, Saima; Chaudhary, Seema; Manuja, Naveen; Kaur, Harsimran; Amit, Sinha Ashish; Lingesha, Ravishankar Telgi

    2016-01-01

    Introduction Numerous epidemiological studies have documented dental caries as the major public health problems throughout the world. It is gradually increasing in the underdeveloped and developing countries especially in children due to increasing popularity of refined sugars. Aim The aim of the study was to evaluate the effect of natural chewable products (Tulsi, sesame seeds, fennel seeds, coconut) and ACP-CPP chewing gum on plaque pH, calcium and phosphate concentration. Materials and Methods A randomized controlled trial, with a cross-over study design, was conducted. Ten subjects aged 15-17 years who agreed to refrain from oral hygiene practice for 48 hours prior to the sample collection were selected for the study. The baseline plaque pH, calcium and phosphate was measured and repeated after 5 and 30 minutes. It was ensured that each study participant was subjected to all the products making an effective sample of ten subjects per product. The data was statistically analysed. Results The mean pH in all the study groups increased after 5 minutes and 30 minutes compared to baseline, except for coconut group at 30 minutes and fennel group at 5 minutes. Highest increase in plaque calcium concentration was found in fennel group followed by recaldent and sesame, respectively. Whereas, the highest increase in plaque phosphate was found in recaldent group followed by sesame group and fennel group respectively. Conclusion Plant products can be effective, inexpensive, easily accessible methods of maintaining oral health. Further studies are recommended to confirm long term effects. PMID:27190943

  20. Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds.

    PubMed

    Zhao, Na; Zhang, Yuan; Li, Qiuqi; Li, Rufang; Xia, Xinli; Qin, Xiaowei; Guo, Huihong

    2015-02-01

    Xanthoceras sorbifolia Bunge is an oilseed tree that grows well on barren lands in dry climate. Its seeds contain a large amount of oil rich in oleic acid (18:1(Δ9)) and linoleic acid (18:2(Δ9, 12)). However, the molecular regulation of oil biosynthesis in X. sorbifolia seeds is poorly understood. Stearoyl-ACP desaturase (SAD, EC 1.14.99.6) is a plastid-localized soluble desaturase that catalyzes the conversion of stearic acid (18:0) to oleic acid, which plays a key role in determining the ratio of saturated to unsaturated fatty acids. In this study, a full-length cDNA of XsSAD was isolated from developing X. sorbifolia embryos. The XsSAD open reading frame had 1194-bp, encoding a polypeptide of 397 amino acids. XsSAD expression in Escherichia coli cells resulted in increased 18:1(Δ9) level, confirming the biological activity of the enzyme encoded by XsSAD. XsSAD expression in Arabidopsis ssi2 mutants partially restored the morphological phenotype and effectively increased the 18:1(Δ9) level. The levels of other unsaturated fatty acids synthesized with 18:1(Δ9) as the substrate also increased to some degree. XsSAD in X. sorbifolia had a much higher expression in embryos than in leaves and petals. XsSAD expression also correlated well with the oleic acid, unsaturated fatty acid, and total fatty acid levels in developing embryos. These data suggested that XsSAD determined the synthesis of oleic acid and contributed to the accumulation of unsaturated fatty acid and total oil in X. sorbifolia seeds. A preliminary tobacco rattle virus-based virus-induced gene silencing system established in X. sorbifolia can also be helpful for further analyzing the functions of XsSAD and other oil synthesis-related genes in woody plants.

  1. Preparation of agar nanospheres: comparison of response surface and artificial neural network modeling by a genetic algorithm approach.

    PubMed

    Zaki, Mohammad Reza; Varshosaz, Jaleh; Fathi, Milad

    2015-05-20

    Multivariate nature of drug loaded nanospheres manufacturing in term of multiplicity of involved factors makes it a time consuming and expensive process. In this study genetic algorithm (GA) and artificial neural network (ANN), two tools inspired by natural process, were employed to optimize and simulate the manufacturing process of agar nanospheres. The efficiency of GA was evaluated against the response surface methodology (RSM). The studied responses included particle size, poly dispersity index, zeta potential, drug loading and release efficiency. GA predicted greater extremum values for response factors compared to RSM. However, real values showed some deviations from predicted data. Appropriate agreement was found between ANN model predicted and real values for all five response factors with high correlation coefficients. GA was more successful than RSM in optimization and along with ANN were efficient tools in optimizing and modeling the fabrication process of drug loaded in agar nanospheres.

  2. Fabrication of Worm-Like Nanorods and Ultrafine Nanospheres of Silver Via Solid-State Photochemical Decomposition

    NASA Astrophysics Data System (ADS)

    Navaladian, S.; Viswanathan, B.; Varadarajan, T. K.; Viswanath, R. P.

    2009-05-01

    Worm-like nanorods and nanospheres of silver have been synthesized by photochemical decomposition of silver oxalate in water by UV irradiation in the presence of CTAB and PVP, respectively. No external seeds have been employed for the synthesis of Ag nanorods. The synthesized Ag colloids have been characterized by UV-visible spectra, powder XRD, HRTEM, and selected area electron diffraction (SAED). Ag nanospheres of average size around 2 nm have been obtained in the presence of PVP. XRD and TEM analyses revealed that top and basal planes of nanorods are bound with {111} facets. Williamson-Hall plot has revealed the presence of defects in the Ag nanospheres and nanorods. Formation of defective Ag nanocrystals is attributed to the heating effect of UV-visible irradiation.

  3. Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN.

    PubMed

    Tafaghodi, Mohsen; Khamesipour, Ali; Jaafari, Mahmoud R

    2011-05-01

    Various adjuvants and delivery systems have been evaluated for increasing the protective immune responses against leishmaniasis and mostly have been shown not to be effective enough. In this study, poly(D,L-lactide-co-glycolide) (PLGA) nanospheres as an antigen delivery system and CpG-ODN as an immunoadjuvant have been used for the first time to enhance the immune response against autoclaved Leishmania major (ALM). PLGA nanospheres were prepared by a double-emulsion (W/O/W) technique. Particulate characteristics were studied by scanning electron microscopy and particle size analysis. Mean diameter of ALM + CpG-ODN-loaded nanospheres was 300 ± 128 nm. BALB/c mice were immunized three times in 3-week intervals using ALM plus CpG-ODN-loaded nanospheres [(ALM + CpG-ODN)(PLGA)], ALM encapsulated PLGA nanospheres [(ALM)(PLGA)], (ALM)(PLGA) + CpG, ALM + CpG, ALM alone, or phosphate buffer solution (PBS). The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P<0.05) smaller footpad, was observed in mice immunized with (ALM + CpG-ODN)(PLGA). The (ALM)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG were also showed a significantly (P<0.05) smaller footpad swelling compared to the groups received either PBS or ALM alone. The mice immunized with (ALM + CpG-ODN)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG showed the highest IgG2a/IgG1 ratio, interferon-γ production, and lowest interleukin-4 production compared to the other groups. It is concluded that when both PLGA nanospheres and CpG-ODN adjuvants were used simultaneously, it induce stronger immune response and enhance protection rate against Leishmania infection.

  4. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins.

    PubMed

    Tafaghodi, M; Eskandari, M; Kharazizadeh, M; Khamesipour, A; Jaafari, M R

    2010-12-01

    Immune responses against the Leishmania antigens are not sufficient to protect against a leishmania challenge. Therefore these antigens need to be potentiated by various adjuvants and delivery systems. In this study, Poly (d,l-lactide-co-glycolide (PLGA) nanospheres as antigen delivery system and Quillaja saponins (QS) as immunoadjuvant have been used to enhance the immune response against autoclaved Leishmania major (ALM). PLGA nanospheres were prepared by a double-emulsion (W/O/W) technique. Particulate characteristics were studied by scanning electron microscopy and particle size analysis. Mean diameter for nanospheres loaded with ALM+QS was 294 ± 106 nm. BALB/c mice were immunized three times in 3-weeks intervals using ALM plus QS loaded nanospheres [(ALM+QS)PLGA], ALM encapsulated with PLGA nanospheres [(ALM)PLGA], (ALM)PLGA + QS, ALM + QS, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P < 0.05) smaller footpad, were observed in mice immunized with (ALM)PLGA. The (ALM+QS)PLGA group showed the least protection and highest swelling, while the (ALM)PLGA+QS, ALM+QS and ALM showed an intermediate protection with no significant difference. The mice immunized with ALM and ALM+QS showed the highest IgG2a/IgG1 ratio (P < 0.01), followed by (ALM)PLGA+QS. The highest IFN-γ and lowest IL-4 production was seen in (ALM)PLGA+QS, ALM+QS groups. The highest parasite burden was observed in (ALM)PLGA+QS and (ALM+QS)PLGA groups. It is concluded that PLGA nanospheres as a vaccine delivery system could increase the protective immune responses, but QS adjuvant has a reverse effect on protective immune responses and the least protective responses were seen in the presence of this adjuvant.

  5. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  6. Photoactive porous silicon nanopowder.

    PubMed

    Meekins, Benjamin H; Lin, Ya-Cheng; Manser, Joseph S; Manukyan, Khachatur; Mukasyan, Alexander S; Kamat, Prashant V; McGinn, Paul J

    2013-04-24

    Bulk processing of porous silicon nanoparticles (nSi) of 50-300 nm size and surface area of 25-230 m(2)/g has been developed using a combustion synthesis method. nSi exhibits consistent photoresponse to AM 1.5 simulated solar excitation. In confirmation of photoactivity, the films of nSi exhibit prompt bleaching following femtosecond laser pulse excitation resulting from the photoinduced charge separation. Photocurrent generation observed upon AM 1.5 excitation of these films in a photoelectrochemical cell shows strong dependence on the thickness of the intrinsic silica shell that encompasses the nanoparticles and hinders interparticle electron transfer.

  7. Tortuosity of porous particles.

    PubMed

    Barrande, M; Bouchet, R; Denoyel, R

    2007-12-01

    Tortuosity is often used as an adjustable parameter in models of transfer properties through porous media. This parameter, not reducible to classical measured microstructural parameters like specific surface area, porosity, or pore size distribution, reflects the efficiency of percolation paths, which is linked to the topology of the material. The measurement of the effective conductivity of a bed of particles saturated with an electrolyte is a simple way to evaluate tortuosity. Nevertheless, it received only little attention because of the real difficulties in both getting reliable results and interpreting data. Notably, the discrimination between the contribution of interparticle and intraparticle porosities to the tortuosity is not resolved. To our knowledge, there is no model able to fit the experimental data of the tortuosity of a suspension, and a fortiori of a particle bed, in the whole porosity range. Only empirical expressions have been proposed, but they do not allow deriving intratortuosity of a porous particle. For a dilute system, Maxwell's equation predicts the effective conductivity of suspensions of spherical particles as a function of the bulk electrolyte conductivity and of particle conductivity. The intraparticle tortuosity can be derived from the particle conductivity obtained from the Maxwell equation applied to data at infinite dilution of particles. Then, by assuming that the Maxwell equation is a first-order approximation of the conductivity as a function of porosity, we propose an explicit relation of the tortuosity tau of a suspension of porous particles, obtained by conductivity measurement, as tau = tau(epsilon, epsilon(p), tau(p)), where epsilon is the total porosity of the suspension, tau(p) is the intraparticle tortuosity, and epsilon(p) is the particle porosity. This relationship fits the experimental data in the whole porosity range and can be used to determine tau(p) from an experiment at only one porosity. Finally, the obtained

  8. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  9. Small, porous polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  10. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  11. Hyaluronic acid coated poly-epsilon-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea.

    PubMed

    Yenice, Irem; Mocan, Mehmet C; Palaska, Erhan; Bochot, Amélie; Bilensoy, Erem; Vural, Imran; Irkeç, Murat; Hincal, A Atilla

    2008-09-01

    The objective of this study was to determine cyclosporine A (Cy A) levels in ocular tissues and fluids after topical administration of poly-epsilon-caprolactone (PCL)/benzalkonium chloride (BKC) nanospheres and hyaluronic acid (HA) coated PCL/BKC nanospheres onto healthy rabbit corneas. Nanospheres were prepared by nanoprecipitation and purified by gradient-rate centrifugation. Cy A (0.1%) in either castor oil solution (group 1), PCL/BKC nanosphere formulation (group 2) or HA coated PCL/BKC nanosphere formulation (group 3) was instilled onto rabbit corneas. Tear samples were adsorbed onto Schirmer tear strips. Cy A concentrations of fluid (blood, aqueous humor, tear) and specimen extracts (cornea, conjunctiva, iris/ciliary body) were determined by high performance liquid chromatography-mass spectrometry (LC-MS). The mean corneal Cy A concentration obtained at 0.5, 1, 2, 4, 8 and 24h following instillation of the formulations ranged between 0.12 and 1.2 ng/mg tissue for group 1, 5.9-15.5 ng/mg tissue for group 2 and 11.4-23.0 ng/mg for group 3 (one-way analysis of variance (ANOVA) and pairwise tests (SNK (Student-Newman-Keuls) and Tukey); p<0.05). Conjunctival Cy A levels of group 2 and 3 were not significantly different at any of the time points tested. However, there was a significant difference between Cy A concentration of castor oil formulation and that of PCL/BKC nanosphere formulation at 1 and 8h (p<0.05). The mean iris/ciliary body concentrations obtained with the three formulations were not significantly different at any time point with the exception of group 2 levels being higher than those of groups 1 and 3 at 1h (p<0.05). The lowest ocular tear Cy A concentrations (16-114 ng/ml) were found following the instillation of HA coated PCL/BKC nanoparticles (group 3) during the time period tested. Cy A loaded PCL/BKC and HA coated PCL/BKC nanospheres are able to achieve high levels of Cy A in the cornea that is 10-15-fold higher than that is achieved with Cy A

  12. Mapping magnetic fields of Fe{sub 3}O{sub 4} nanosphere assemblies by electron holography

    SciTech Connect

    He Kai; Cumings, John; Ma Feixiang; Xu Chengyan

    2013-05-07

    Crystalline Fe{sub 3}O{sub 4} nanospheres with averaged diameters of 150 nm have been synthesized by a facile solvothermal method and characterized using transmission electron microscopy and electron holography. The nanospheres can self-assemble into either chain-like or ring-like shapes with sizes of a few micrometers, where large magnetic moments are found for individual particles at the remanent state and lead to strong fringing field in vicinity of the assemblies. Magnetic dipolar moments can be aligned both within and out of the sample plane, with a typical length scale on the order of 500 nm.

  13. Visible light catalysis-assisted assembly of Ni(h)-QD hollow nanospheres in situ via hydrogen bubbles.

    PubMed

    Li, Zhi-Jun; Fan, Xiang-Bing; Li, Xu-Bing; Li, Jia-Xin; Ye, Chen; Wang, Jiu-Ju; Yu, Shan; Li, Cheng-Bo; Gao, Yu-Ji; Meng, Qing-Yuan; Tung, Chen-Ho; Wu, Li-Zhu

    2014-06-11

    Hollow spheres are one of the most promising micro-/nanostructures because of their unique performance in diverse applications. Templates, surfactants, and structure-directing agents are often used to control the sizes and morphologies of hollow spheres. In this Article, we describe a simple method based on visible light catalysis for preparing hollow nanospheres from CdE (E = Te, Se, and S) quantum dots (QDs) and nickel (Ni(2+)) salts in aqueous media. In contrast to the well-developed traditional approaches, the hollow nanospheres of QDs are formed in situ by the photogeneration of hydrogen (H2) gas bubbles at room temperature. Each component, that is, the QDs, metal ions, ascorbic acid (H2A), and visible light, is essential for the formation of hollow nanospheres. The quality of the hollow nanospheres depends on the pH, metal ions, and wavelength and intensity of visible light used. Of the various metal ions investigated, including Cu(+), Cu(2+), Fe(2+), Fe(3+), Ni(2+), Mn(2+), RuCl5(2-), Ag(+), and PtCl4(2-), Ni(2+) ions showed the best ability to generate H2 and hollow-structured nanospheres under visible light irradiation. The average diameter and shell thickness of the nanospheres ranged from 10 to 20 nm and from 3 to 6 nm, respectively, which are values rarely reported in the literature. Studies using high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma-mass spectroscopy (ICP-AES), and steady-state and time-resolved spectroscopy revealed the chemical nature of the hollow nanospheres. Additionally, the hollow-structured nanospheres exhibit excellent photocatalytic activity and stability for the generation of H2 with a rate constant of 21 μmol h(-1) mg(-1) and a turnover number (TON) of 137,500 or 30,250 for CdTe QDs or nickel, respectively, under visible light irradiation for 42 h.

  14. Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres

    PubMed Central

    Morales-Cruz, Moraima; Flores-Fernández, Giselle M.; Morales-Cruz, Myreisa; Orellano, Elsie A.; Rodriguez-Martinez, José A.; Ruiz, Mercedes; Griebenow, Kai

    2012-01-01

    One of the first methods to encapsulate drugs within polymer nanospheres was developed by Fessi and coworkers in 1989 and consisted of one-step nanoprecipitation based on solvent displacement. However, proteins are poorly encapsulated within polymer nanoparticles using this method because of their limited solubility in organic solvents. To overcome this limitation, we developed a two-step nanoprecipitation method and encapsulated various proteins with high efficiency into poly(lactic-co-glycolic)acid (PLGA) nanospheres (NP). In this method, a protein nanoprecipitation step is used first followed by a second polymer nanoprecipitation step. Two model enzymes, lysozyme and α-chymotrypsin, were used for the optimization of the method. We obtained encapsulation efficiencies of >70%, an amount of buffer-insoluble protein aggregates of typically <2%, and a high residual activity of typically >90%. The optimum conditions identified for lysozyme were used to successfully encapsulate cytochrome c(Cyt-c), an apoptosis-initiating basic protein of similar size, to verify reproducibility of the encapsulation procedure. The size of the Cyt-c loaded-PLGA nanospheres was around 300–400 nm indicating the potential of the delivery system to passively target tumors. Cell viability studies, using a human cervical cancer cell line (HeLa), demonstrate excellent biocompatibility of the PLGA nanoparticles. PLGA nanoparticles carrying encapsulated Cyt-c were not efficient in causing apoptosis presumably because PLGA nanoparticles are not efficiently taken up by the cells. Future systems will have to be optimized to ascertain efficient cellular uptake of the nanoparticles by, e.g., surface modification with receptor ligands. PMID:23316451

  15. CuO hollow nanosphere-catalyzed cross-coupling of aryl iodides with thiols

    PubMed Central

    2013-01-01

    New functionalized CuO hollow nanospheres on acetylene black (CuO/AB) and on charcoal (CuO/C) have been found to be effective catalysts for C-S bond formation under microwave irradiation. CuO catalysts showed high catalytic activity with a wide variety of substituents which include electron-rich and electron-poor aryl iodides with thiophenols by the addition of two equivalents of K2CO3 as base in the absence of ligands. PMID:24044527

  16. Experimental study on stimulated scattering of ZnO nanospheres dispersed in water

    NASA Astrophysics Data System (ADS)

    Shi, Jiulin; Wu, Haopeng; Yan, Feng; Yang, Junjie; He, Xingdao

    2016-01-01

    The backward stimulated scattering (BSS) from ZnO nanospheres dispersed in water has been investigated experimentally by employing a Nd:YAG pulse laser with 532 nm wavelength and 8 ns pulse width as the pump laser source. The present results show that the BSS effect is uniquely and unequivocally different compared to other known stimulated scattering, such as stimulated Rayleigh scattering, stimulated Brillouin scattering, and stimulated Raman scattering, and it displays the characteristics of no frequency shift and threshold dependence on initial spontaneous Mie scattering seed source. These can be understood by means of the Mie scattering theory and a laser-induced stationary Bragg grating model.

  17. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    PubMed

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology.

  18. Torque studies of large-area Co arrays fabricated by etched nanosphere lithography

    SciTech Connect

    Weekes, S. M.; Ogrin, F.Y.

    2005-05-15

    Large-area arrays of size-tunable Co nanomagnets have been fabricated using a methodology based on nanosphere lithography. The technique employs a monolayer of latex spheres as an inverse mask for the formation of Co elements by electrodeposition. By tuning the size of the spheres with reactive ion etching, magnetic elements of 310 and 240 nm diameter have been obtained. Analysis of the arrays using high-field torque magnetometry and three-dimensional micromagnetic modeling clearly demonstrates a change in anisotropy as the diameter of the elements is reduced. More detailed investigation of the field dependence indicates the presence of magnetic vortices at low fields.

  19. Multichannel biosensing platform of surface-immobilized gold nanospheres for linear and nonlinear optical imaging.

    PubMed

    Tsuboi, Kazuma; Fukuba, Shinya; Naraoka, Ryo; Fujita, Katsuhiko; Kajikawa, Kotaro

    2007-07-10

    What we believe to be a new label-free multichannel biosensing platform is proposed. It is composed of surface-immobilized gold nanospheres (SIGNs) above a gold surface with a nanogap supported by a merocyanine self-assembled monolayer. The circular SIGN spots with a diameter of 120 microm were arrayed for multichannel biosensing on a glass slide. Two kinds of sensing methods were examined: One is a reflectivity measurement of a blue ray and the other is a second-harmonic generation measurement. It was found that the SIGN system can be used as a promising platform for multichannel biosensing in both sensing methods.

  20. Controlled hydrothermal synthesis of CeO2 nanospheres and their excellent magnetic properties

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofei

    2017-04-01

    Monodisperse spherical CeO2 nanostructures with irregular and rough surfaces have successfully been synthesized via a facile hydrothermal technology. XRD, SEM, XPS, Raman scattering, and M-H curves were employed to characterize the samples. The results showed that the spherical CeO2 nanostructures have a cubic fluorite structure and that there are Ce3+ ions and oxygen vacancies in the surface of the samples. The M-H curve of CeO2 nanospheres exhibits excellent room-temperature ferromagnetism (RT-FM), which is likely ascribed to the effects of the Ce3+ ions and oxygen vacancies.

  1. Kinetically controlled self-assembly of redox-active ferrocene-diphenylalanine: from nanospheres to nanofibers.

    PubMed

    Wang, Yuefei; Huang, Renliang; Qi, Wei; Wu, Zhongjie; Su, Rongxin; He, Zhimin

    2013-11-22

    Putting metals into organic compounds such as peptides can lead to many new desirable properties. Here we designed a novel bioorganometallic molecule, ferrocene-diphenylalanine (Fc-FF), and investigated its self-assembly behavior. We directly observed a morphological transition from metastable nanospheres to nanofibers, which led to the formation of a self-supporting hydrogel. The strong hydrophobic interaction of the Fc moiety was suggested to have a key role in this kinetically controlled self-assembly process. Moreover, the redox center of the ferrocene group further allowed us to reversibly control the self-assembly behavior of Fc-FF by altering its redox state.

  2. Kinetically controlled self-assembly of redox-active ferrocene-diphenylalanine: from nanospheres to nanofibers

    NASA Astrophysics Data System (ADS)

    Wang, Yuefei; Huang, Renliang; Qi, Wei; Wu, Zhongjie; Su, Rongxin; He, Zhimin

    2013-11-01

    Putting metals into organic compounds such as peptides can lead to many new desirable properties. Here we designed a novel bioorganometallic molecule, ferrocene-diphenylalanine (Fc-FF), and investigated its self-assembly behavior. We directly observed a morphological transition from metastable nanospheres to nanofibers, which led to the formation of a self-supporting hydrogel. The strong hydrophobic interaction of the Fc moiety was suggested to have a key role in this kinetically controlled self-assembly process. Moreover, the redox center of the ferrocene group further allowed us to reversibly control the self-assembly behavior of Fc-FF by altering its redox state.

  3. Enzymatic assembly of epothilones: the EpoC subunit and reconstitution of the EpoA-ACP/B/C polyketide and nonribosomal peptide interfaces.

    PubMed

    O'Connor, Sarah E; Chen, Huawei; Walsh, Christopher T

    2002-04-30

    The biosynthesis of epothilones, a family of hybrid polyketide (PK)/nonribosomal peptide (NRP) antitumor agents, provides an ideal system to study a hybrid PK/NRP natural product with significant biomedical value. Here the third enzyme involved in epothilone production, the five domain 195 kDa polyketide synthase (PKS) EpoC protein, has been expressed and purified from Escherichia coli. EpoC was combined with the first two enzymes of the epothilone biosynthesis pathway, the acyl carrier protein (ACP) domain of EpoA and EpoB, to reconstitute the early steps in epothilone biosynthesis. The acyltransferase (AT) domain of EpoC transfers the methylmalonyl moiety from methylmalonyl-CoA to the holo HS-acyl carrier protein (ACP) in an autoacylation reaction. The ketosynthase (KS) domain of EpoC decarboxylates the methylmalonyl-S-EpoC acyl enzyme to generate the carbon nucleophile that reacts with methylthiazolylcarboxyl-S-EpoB. The resulting condensation product can be reduced in the presence of NADPH by the ketoreductase (KR) domain of EpoC and then dehydrated by the dehydratase (DH) domain to produce the methylthiazolylmethylacrylyl-S-EpoC acyl enzyme intermediate that serves as the acyl donor for subsequent elongation of the epothilone chain. The acetyl-CoA donor can be replaced with propionyl-CoA, isobutyryl-CoA, and benzoyl-CoA and the acyl chains accepted by both EpoB and EpoC subunits to produce ethyl-, isopropyl-, and phenylthiazolylmethylacrylyl-S-EpoC acyl enzyme intermediates, suggesting that future combinatorial biosynthetic variations in epothilone assembly may be feasible. These results demonstrate in vitro reconstitution of both the PKS/NRPS interface (EpoA-ACP/B) and the NRPS/PKS interface (EpoB/C) in the assembly line for this antitumor natural product.

  4. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII).

    PubMed

    Liu, Qing; Wu, Man; Zhang, Baolong; Shrestha, Pushkar; Petrie, James; Green, Allan G; Singh, Surinder P

    2017-01-01

    Palmitic acid (C16:0) already makes up approximately 25% of the total fatty acids in the conventional cotton seed oil. However, further enhancements in palmitic acid content at the expense of the predominant unsaturated fatty acids would provide increased oxidative stability of cotton seed oil and also impart the high melting point required for making margarine, shortening and confectionary products free of trans fatty acids. Seed-specific RNAi-mediated down-regulation of β-ketoacyl-ACP synthase II (KASII) catalysing the elongation of palmitoyl-ACP to stearoyl-ACP has succeeded in dramatically increasing the C16 fatty acid content of cotton seed oil to well beyond its natural limits, reaching up to 65% of total fatty acids. The elevated C16 levels were comprised of predominantly palmitic acid (C16:0, 51%) and to a lesser extent palmitoleic acid (C16:1, 11%) and hexadecadienoic acid (C16:2, 3%), and were stably inherited. Despite of the dramatic alteration of fatty acid composition and a slight yet significant reduction in oil content in these high-palmitic (HP) lines, seed germination remained unaffected. Regiochemical analysis of triacylglycerols (TAG) showed that the increased levels of palmitic acid mainly occurred at the outer positions, while C16:1 and C16:2 were predominantly found in the sn-2 position in both TAG and phosphatidylcholine. Crossing the HP line with previously created high-oleic (HO) and high-stearic (HS) genotypes demonstrated that HP and HO traits could be achieved simultaneously; however, elevation of stearic acid was hindered in the presence of high level of palmitic acid.

  5. Cloning, characterization, and expression analysis of acyl-acyl carrier protein (ACP)-thioesterase B from seeds of Chinese Spicehush (Lindera communis).

    PubMed

    Dong, Shubin; Huang, Jiacong; Li, Yannan; Zhang, Jing; Lin, Shanzhi; Zhang, Zhixiang

    2014-05-25

    Acyl-acyl carrier protein (ACP) thioesterases (TE EC 3.1.2.14) are fatty acid biosynthesis key enzymes that determine fatty acid carbon chain length in most plant tissues. A full-length cDNA corresponding to one of the fatty acyl-ACP thioesterase (Fat) genes, designated LcFatB, was isolated from developing Lindera communis seeds using PCR and RACE with degenerate primers based on conserved sequences of multiple TE gene sequences obtained from GenBank. The 1788 bp cDNA had an open reading frame (ORF) of 1260 bp encoding a protein of 419 amino acids. The deduced amino acid sequence showed 61-73% identity to proteins in the FatB class of plant thioesterases. Real-time quantitative PCR analysis revealed that LcFatB was expressed in all tissues of L. communis, with the highest expression in the developing seeds 75days after flowering. Recombinant pET-MLcFatB was constructed using the pET-30 a vector and transformed into Escherichia coli BL21(DE3)△FadE, a strain that deleted the acyl-CoA dehydrogenase (FadE). SDS-PAGE analysis of proteins isolated from pET-MLcFatB E. coli cells after induction with IPTG revealed a protein band at ~40.5kDa, corresponding to the predicted size of LcFatB mature protein. The decanoic acid and lauric acid contents of the pET-MLcFatB transformant were increased significantly. These findings suggest that an LcFatB gene from a non-traditional oil-seed tree could be used to function as a saturated acyl-ACP thioesterase and could potentially be used to modify the fatty acid composition of seed oil from L. communis or other species through transgenic approaches.

  6. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol).

    PubMed

    Mu, L; Feng, S S

    2002-04-23

    The D-alpha-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) was applied in the present investigation as surfactant stabiliser to fabricate paclitaxel-loaded PLGA nanospheres in the solvent evaporation/extraction technique with successful achievement. Laser light scattering system (LLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), Fourier transform infra-red spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were employed to characterise the nanopsheres fabricated in various recipes under various preparation conditions for size and size distribution, surface morphology, thermogram property and surface chemistry. Encapsulation efficiency and in vitro release was measured by the high-performance liquid chromatography (HPLC). The outcomes were discussed with respect to the development of polymeric nanospheres delivery system of the anticancer drug, paclitaxel (Taxol((R))). The produced nanospheres were found in fine spherical shape with smooth surfaces and without aggregation or adhesion. There was no significant difference in morphology between the vitamin E TPGS emulsified and PVA emulsified PLGA nanospheres. However, it was found that, in comparison with the traditional chemical emulsifier PVA, the TPGS could significantly improve the encapsulation efficiency of the drug in the PLGA nanospheres, which could be as high as 100%. The size of the vitamin E TPGS emulsified nanospheres ranged from 300 to 800 nm and the size distribution was narrow with polydispersity of 0.005-0.045. XPS investigation demonstrated that there were residual surfactant molecules remained on the surface although the TPGS could be washed out relatively thoroughly in the process of nanospheres formation. This finding was also confirmed by FTIR-PAS investigation of the nanospheres. The in vitro release indicated that the release property of paclitaxel from the nanospheres strongly depends on the emulsifier

  7. MnO nanoparticles interdispersed in 3D porous carbon framework for high performance lithium-ion batteries.

    PubMed

    Wang, Shengbin; Xing, Yalan; Xu, Huaizhe; Zhang, Shichao

    2014-08-13

    Interdispersed MnO nanoparticles that are anchored and encapsulated in a three-dimensional (3D) porous carbon framework (MnO@CF) have been constructed, which display nanosphere architecture with rich porosity, well-defined carbon framework configuration, and excellent structure stability. When evaluated as an anode material, the MnO@CF exhibits relatively high specific capacity of 939 mA h g(-1) at current rate of 0.2 A g(-1) over 200 cycles and excellent rate capability of 560.2 mA h g(-1) at 4 A g(-1). By virtue of its mechanical stability and desirable ionic/electronic conductivity, the specific design can be a promising approach to fabricate high-performance lithium-ion batteries.

  8. Fabrication of conjugated microporous polytriazine nanotubes and nanospheres for highly selective CO2 capture.

    PubMed

    Wang, Zhiqiang; Liu, Junling; Fu, Yu; Liu, Cheng; Pan, Chunyue; Liu, Zhiyong; Yu, Guipeng

    2017-04-06

    A one-spot template approach for fabricating porous organic nanotubes was developed and a molecular design, i.e. introducing thiophene and s-triazine functionalities to enhance host-guest interactions, lead to novel porous solids with high capacities for CO2 and exceptionally high ideal selectivities over N2 for effective gas storage and separation.

  9. Biogenic Cracks in Porous Rock

    NASA Astrophysics Data System (ADS)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  10. Immobilization of calcium phosphate nano-clusters into alkoxy-derived porous TiO2 coatings.

    PubMed

    Shirkhanzadeh, M; Sims, S

    1997-10-01

    Alkoxy-derived porous coatings of titanium oxide were fabricated on commercially pure titanium substrates by an electrochemical method in methanolic electrolytes. Nano-clusters of brushite (CaHPO4. 2H2O) were immobilized into the pores of the oxide network by reacting these coatings in acidic calcium phosphate solutions at 50 degrees C. The acid-base reaction between calcium phosphate solutions and the hydroxyl groups of the oxide network resulted in the formation of nano-clusters of brushite crystals immobilized inside the oxide pores. This treatment resulted in the conversion of the porous oxide network into a coherent mass with improved physical integrity. Nano-clusters of brushite crystals immobilized in the oxide matrix were converted into amorphous calcium phosphate (ACP) and poorly crystallized hydroxyapatite (HA) by further treatment of the oxide in alkaline solutions. The porous oxide coating also reacted strongly with concentrated phosphoric acid. The phosphate-modified oxide resulting from this reaction was further treated in calcium hydroxide solution to form nano-clusters of poorly crystallized HA within the oxide network.

  11. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Dong, Lifeng; Zhang, Baoqin; Yu, Mingxun; Liu, Jingquan

    2016-03-01

    Copper is a good dielectric loss material but has low stability, whereas nickel is a good magnetic loss material and is corrosion resistant but with low conductivity, therefore Cu-Ni hybrid nanostructures have synergistic advantages as microwave absorption (MA) materials. Different Cu/Ni molar ratios of bimetallic nanowires (Cu13@Ni7, Cu5@Ni5 and Cu7@Ni13) and nanospheres (Cu13@Ni7, Cu5@Ni5 and Cu1@Ni3) have been successfully synthesized via facile reduction of hydrazine under similar reaction conditions, and the morphology can be easily tuned by varying the feed ratio or the complexing agent. Apart from the concentrations of Cu2+ and Ni2+, the reduction parameters are similar for all samples to confirm the effects of the Cu/Ni molar ratio and morphology on MA properties. Ni is incorporated into the Cu-Ni nanomaterials as a shell over the Cu core at low temperature, as proved by XRD, SEM, TEM and XPS. Through the complex relative permittivity and permeability, reflection loss was evaluated, which revealed that the MA capacity greatly depended on the Cu/Ni molar ratio and morphology. For Cu@Ni nanowires, as the molar ratio of Ni shell increased the MA properties decreased accordingly. However, for Cu@Ni nanospheres, the opposite trend was found, that is, as the molar ratio of the Ni shell increased the MA properties increased.

  12. Selective cholesterol adsorption by molecular imprinted polymeric nanospheres and application to GIMS.

    PubMed

    Inanan, Tülden; Tüzmen, Nalan; Akgöl, Sinan; Denizli, Adil

    2016-11-01

    Molecular imprinted polymers (MIPs) are tailor-made materials with selective recognition to the target. The goals of this study were to prepare cholesterol imprinted polymeric nanospheres (CIPNs) and optimize their adsorption parameters and also to use CIPNs for adsorption of cholesterol (CHO), which is an important physiological biomacromolecule, from gastrointestinal mimicking solution (GIMS). Pre-polymerization complex was prepared using CHO as template and N-methacryloylamido-(l)-phenylalanine methyl ester (MAPA). This complex was polymerized with 2-hydroxyethyl methacrylate (HEMA). CHO was removed by MeOH and tetrahydrofuran (THF). Adsorption studies were performed after chacterization studies to interrogate the effects of time, initial concentration, temperature, and ionic strength on CHO adsorption onto CIPNs. Maximum adsorption capacity (714.17mg/g) was higher than that of cholesterol imprinted polymers in literature. Pseudo-second-order kinetics and Langmuir isotherm fitted best with the adsorption onto CIPNs. 86% of adsorbed cholesterol was desorbed with MeOH:HAc (80:20, v/v) and CIPNs were used in adsorption-desorption cycle for 5-times with a decrease as 12.28%. CHO analogues; estron, estradiol, testosterone, and progesterone were used for competitive adsorption. The relative selectivity coefficients of CINPs for cholesterol/estron and cholesterol/testosterone were 3.84 and 10.47 times greater than the one of non-imprinted polymeric nanospheres (NIPNs) in methanol, respectively.

  13. Interstitial and interlayer ion diffusion geometry extraction in graphitic nanosphere battery materials

    SciTech Connect

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; Wang, Bei; Bremer, Peer -Timo; Papka, Michael E.; Curtiss, Larry A.; Pascucci, Valerio

    2016-01-31

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Lastly, our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.

  14. Resonant spin tunneling in randomly oriented nanospheres of Mn12 acetate

    DOE PAGES

    Lendínez, S.; Zarzuela, R.; Tejada, J.; ...

    2015-01-06

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less

  15. Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials.

    PubMed

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; Wang, Bei; Bremer, Peer-Timo; Papka, Michael E; Curtiss, Larry A; Pascucci, Valerio

    2016-01-01

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.

  16. Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery

    PubMed Central

    Chang, Pei-Yi; Bindumadhavan, Kartick; Doong, Ruey-An

    2015-01-01

    The present work demonstrates the application of various sizes of ordered mesoporous carbon nanospheres (OMCS) with diameters of 46–130 nm as an active anode material for Li-ion batteries (LIB). The physical and chemical properties of OMCS have been evaluated by performing scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis; small-angle scattering system (SAXS) and X-ray diffraction (XRD). The electrochemical analysis of using various sizes of OMCS as anode materials showed high capacity and rate capability with the specific capacity up to 560 mA·h·g−1 at 0.1 C after 85 cycles. In terms of performance at high current rate compared to other amorphous carbonaceous materials; a stable and extremely high specific capacity of 240 mA·h·g−1 at 5 C after 15 cycles was achieved. Such excellent performance is mainly attributed to the suitable particle size distribution of OMCS and intimate contact between OMCS and conductive additives; which can be supported from the TEM images. Results obtained from this study clearly indicate the excellence of size distribution of highly integrated mesoporous structure of carbon nanospheres for LIB application.

  17. Cationic-modified cyclodextrin nanosphere/anionic polymer as flocculation/sorption systems.

    PubMed

    Xiao, Huining; Cezar, Norlito

    2005-03-15

    Simultaneous removal of dissolved and colloidal substances has been a challenging task. The cationic-modified beta-cyclodextrin nanospheres synthesized in this work, in conjunction with a water-soluble polyacrylamide-based anionic polymer, potentially provide a novel approach to address the problem. The cyclodextrin was rendered cationic using (2,3-epoxypropyl)trimethylammonium chloride as a reagent. The cationicity of the modified cyclodextrin and the reaction between cyclodextrin and the reagent were characterized by electrophoresis measurement, polyelectrolyte titration, and NMR. As a dual-component flocculation system, the cationic cyclodextrin/anionic polymer significantly induced clay flocculation, lowering the relative turbidity of the clay suspension over a wide pH range. Meanwhile, as a nanospherical absorbent, the modified cyclodextrins exhibited strong affinity toward aromatic compounds via inclusion complex formation in the hydrophobic cavities, which was monitored by UV spectroscopy. These systems facilitated the simultaneous removal of dissolved and colloidal substances, which was unachievable previously. In addition, the interaction between anionic polymers and the clay particles pretreated with cationic cyclodextrin was investigated in order to reveal the flocculation mechanism.

  18. Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics

    PubMed Central

    Shao, Jingwei; Griffin, Robert J.; Galanzha, Ekaterina I.; Kim, Jin-Woo; Koonce, Nathan; Webber, Jessica; Mustafa, Thikra; Biris, Alexandru S.; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2013-01-01

    Nanotechnology has been extensively explored for drug delivery. Here, we introduce the concept of a nanodrug based on synergy of photothermally-activated physical and biological effects in nanoparticle-drug conjugates. To prove this concept, we utilized tumor necrosis factor-alpha coated gold nanospheres (Au-TNF) heated by laser pulses. To enhance photothermal efficiency in near-infrared window of tissue transparency we explored slightly ellipsoidal nanoparticles, its clustering, and laser-induced nonlinear dynamic phenomena leading to amplification and spectral sharpening of photothermal and photoacoustic resonances red-shifted relatively to linear plasmonic resonances. Using a murine carcinoma model, we demonstrated higher therapy efficacy of Au-TNF conjugates compared to laser and Au-TNF alone or laser with TNF-free gold nanospheres. The photothermal activation of low toxicity Au-TNF conjugates, which are in phase II trials in humans, with a laser approved for medical applications opens new avenues in the development of clinically relevant nanodrugs with synergistic antitumor theranostic action. PMID:23443065

  19. Phase stability of a reversible supramolecular polymer solution mixed with nanospheres.

    PubMed

    Tuinier, Remco

    2011-05-18

    Theory is presented for the phase stability of mixtures containing nanospheres and non-adsorbing reversible supramolecular polymers. This was made possible by incorporating the depletion thickness and osmotic pressure of reversible supramolecular polymer chains into generalized free-volume theory, recently developed for investigating the phase behaviour of colloidal spheres mixed with interacting polymers (Fleer and Tuinier 2008 Adv. Colloid Interface Sci. 143 1-47). It follows that the fluid-fluid phase stability region where reversible supramolecular polymer chains can be mixed with nanospheres is sensitive to the energy of scission between the monomers and to the nanoparticle radius. One can then expect the fluid-fluid coexistence curves to have a strong dependence on temperature and that shifting of phase boundaries within a single experimental system should be possible by varying the temperature. The calculations reveal the width of the stability region to be rather small. This implies that phase homogeneity of product formulations containing reversible supramolecular polymers is only possible at low nanoparticle concentrations.

  20. Embelin lipid nanospheres for enhanced treatment of ulcerative colitis - Preparation, characterization and in vivo evaluation.

    PubMed

    Badamaranahalli, Shivaram Shivakumar; Kopparam, Manjunath; Bhagawati, Siddalingappa Tippanna; Durg, Sharanbasappa

    2015-08-30

    Aim of the present study is to develop embelin lipid nanospheres (LNE) for better treatment of ulcerative colitis. Embelin LNs were developed using soya bean oil/virgin coconut oil as liquid lipid carrier and soya/egg lecithin as stabilizer by hot homogenization followed by ultrasonication technique. The particle size of LNEs ranged from 196.1±3.57 to 269.2±1.05nm with narrow polydispersity index values whereas zeta potential was from -36.6 to -62.0mV. Embelin was successfully incorporated into lipid nanospheres with entrapment efficiency about 99%. There was no interaction between embelin and selected liquid lipids which was confirmed by FTIR studies. In vitro drug release studies performed using Franz diffusion cell and results showed sustained release of embelin. Embelin LNs were stabilized with egg and soya lecithin, embelin release from these LNs followed Higuchi model and first order model, respectively, however mechanism of drug release in both LNs was non-Fickian. In vivo studies were carried out using acetic acid induced ulcerative colitis rat model and results revealed that treatment with embelin LNs significantly reduced clinical activity and macroscopic scores compared to embelin conventional suspension. Treatment with embelin LNs decreased MPO, LDH and LPO levels, increased reduced GSH levels which indicated better treatment of ulcerative colitis was achieved. This was also confirmed by improved histopathological conditions. Thus embelin LNs could be favourably used for treatment of ulcerative colitis.

  1. Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

    PubMed Central

    Walia, Shanka

    2015-01-01

    Summary Nano-theranostics offer remarkable potential for future biomedical technology with simultaneous applications for diagnosis and therapy of disease sites. Through smart and careful chemical modifications of the nanoparticle surface, these can be converted to multifunctional tiny objects which in turn can be used as vehicle for delivering multimodal imaging agents and therapeutic material to specific target sites in vivo. In this sense, bimodal imaging probes that simultaneously enable magnetic resonance imaging and fluorescence imaging have gained tremendous attention because disease sites can be characterized quick and precisely through synergistic multimodal imaging. But such hybrid nanocomposite materials have limitations such as low chemical stability (magnetic component) and harsh cytotoxic effects (fluorescent component) and, hence, require a biocompatible protecting agent. Silica micro/nanospheres have shown promise as protecting agent due to the high stability and low toxicity. This review will cover a full description of MRI-active and fluorescent multifunctional silica micro/nanospheres including the design of the probe, different characterization methods and their application in imaging and treatment in cancer. PMID:25821696

  2. Enhancing absorption properties of composite nanosphere and nanowire arrays by localized surface plasmon resonance shift

    NASA Astrophysics Data System (ADS)

    Tang, Xiaobing; Zhou, Leping; Du, Xiaoze; Yang, Yongping

    Nanoparticles with nonmetallic core and metallic shell can improve the spectral solar absorption efficiency for traditional working fluids, due to the localized surface plasmon resonance (LSPR) effect exists at the surfaces of these core-shell composite nanoparticles. In this work, the effect of geometry and material, and hence the LSPR effect, on the optical absorption properties of core-shell nanostructures was numerically demonstrated by the finite difference time domain method. The nanostructures were formed by varying the inner and outer radii of the composite nanospheres and nanowires and by changing the particle spacing for their arrays. The result indicates that varying the inner radius itself can tune the absorption efficiency factors of the nanostructures monotonously, while an optimal outer radius may exist for maximizing the absorption efficiency factors. It also shows that varying the inner radius itself can widen the absorption spectrums for the arrays, but the absorptance tends to increase with decreasing inner radius or particle spacing. Meanwhile, the second absorption peaks may be observed for nanowires or nanosphere/nanowire arrays, which can be tuned by the resonance shifts induced by the change of either inner or outer radius and hence the LSPR effect. The coupled LSPR effect under studied can be efficiently utilized for tuning the optical absorption properties of nanoparticles used in many applications including photothermal conversion, and perspective also exists for many other applications including surface-enhanced Raman spectroscopy (SERS) enhancement.

  3. Copper induced hollow carbon nanospheres by arc discharge method: controlled synthesis and formation mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Alexandru Ciolan, Mihai; Wang, Xiangke; Nagatsu, Masaaki

    2016-08-01

    Hollow carbon nanospheres with controlled morphologies were synthesized via the copper-carbon direct current arc discharge method by alternating the concentrations of methane in the reactant gas mixture. A self-healing process to keep the structural integrity of encapsulated graphitic shells was evolved gradually by adding methane gas from 0% to 20%. The outer part of the coated layers expanded and hollow nanospheres grew to be large fluffy ones with high methane concentrations from 30% to 50%. A self-repairing function by the reattachment of broken graphitic layers initiated from near-electrode space to distance was also distinctly exhibited. By comparing several comparable metals (e.g. copper, silver, gold, zinc, iron and nickel)-carbon arc discharge products, a catalytic carbon-encapsulation mechanism combined with a core-escaping process has been proposed. Specifically, on the basis of the experimental results, copper could be applied as a unique model for both the catalysis of graphitic encapsulation and as an adequate template for the formation of hollow nanostructures.

  4. Synthesis of core-shell AlOOH hollow nanospheres by reacting Al nanoparticles with water

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, A. S.; Glazkova, E. A.; Bakina, O. V.; Lerner, M. I.; Gotman, I.; Gutmanas, E. Y.; Kazantsev, S. O.; Psakhie, S. G.

    2016-05-01

    A novel route for the synthesis of boehmite nanospheres with a hollow core and the shell composed of highly crumpled AlOOH nanosheets by oxidizing Al nanopowder in pure water under mild processing conditions is described. The stepwise events of Al transformation into boehmite are followed by monitoring the pH in the reaction medium. A mechanism of formation of hollow AlOOH nanospheres with a well-defined shape and crystallinity is proposed which includes the hydration of the Al oxide passivation layer, local corrosion of metallic Al accompanied by hydrogen evolution, the rupture of the protective layer, the dissolution of Al from the particle interior and the deposition of AlOOH nanosheets on the outer surface. In contrast to previously reported methods of boehmite nanoparticle synthesis, the proposed method is simple, and environmentally friendly and allows the generation of hydrogen gas as a by-product. Due to their high surface area and high, slit-shaped nanoporosity, the synthesized AlOOH nanostructures hold promise for the development of more effective catalysts, adsorbents, vaccines and drug carriers.

  5. Rational design of oriented assembly of gold nanospheres with nanorods by biotin-streptavidin connectors

    NASA Astrophysics Data System (ADS)

    Zhou, Xi; Wang, Yan; Zhong, Lubin; Bao, Shixiong; Han, Yu; Ren, Lei; Zhang, Qiqing

    2012-09-01

    Through the different functionalities on Au nanosphere (AuNSs) and Au nanorod (AuNRs) surfaces, we successfully control AuNSs attachment onto either the end or side surface of anisotropic AuNRs via bio-recognition, and then consciously construct side-by-side or end-to-end assembly nanostructures. This study provides a feasible approach to organize nanoparticles with different morphologies into controllable assembly geometries, which can potentially benefit the construction of future nanodevices.Through the different functionalities on Au nanosphere (AuNSs) and Au nanorod (AuNRs) surfaces, we successfully control AuNSs attachment onto either the end or side surface of anisotropic AuNRs via bio-recognition, and then consciously construct side-by-side or end-to-end assembly nanostructures. This study provides a feasible approach to organize nanoparticles with different morphologies into controllable assembly geometries, which can potentially benefit the construction of future nanodevices. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c2nr32022c

  6. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries.

    PubMed

    Yang, Yufen; Jin, Song; Zhang, Zhen; Du, Zhenzhen; Liu, Huarong; Yang, Jia; Xu, Hangxun; Ji, Hengxing

    2017-04-13

    N-doped carbon materials is of particular attraction for anodes of lithium-ion batteries (LIBs) because of their high surface areas, superior electrical conductivity, and excellent mechanical strength, which can store energy by adsorption/desorption of Li(+) at the interfaces between the electrolyte and electrode. By directly carbonization of zeolitic imidazolate framework-8 nanospheres synthesized by an emulsion-based interfacial reaction, we obtained N-doped hollow carbon nanospheres with tunable shell thickness (20 nm to solid sphere) and different N dopant concentrations (3.9 to 21.7 at %). The optimized anode material possessed a shell thickness of 20 nm and contained 16.6 at % N dopants that were predominately pyridinic and pyrrolic. The anode delivered a specific capacity of 2053 mA h g(-1) at 100 mA g(-1) and 879 mA h g(-1) at 5 A g(-1) for 1000 cycles, implying a superior cycling stability. The improved electrochemical performance can be ascribed to (1) the Li(+) adsorption dominated energy storage mechanism prevents the volume change of the electrode materials, (2) the hollow nanostructure assembled by the nanometer-sized primary particles prevents the agglomeration of the nanoparticles and favors for Li(+) diffusion, (3) the optimized N dopant concentration and configuration facilitate the adsorption of Li(+); and (4) the graphitic carbon nanostructure ensures a good electrical conductivity.

  7. A novel method to obtain chitosan/DNA nanospheres and a study of their release properties

    NASA Astrophysics Data System (ADS)

    Masotti, Andrea; Bordi, Federico; Ortaggi, Giancarlo; Marino, Federica; Palocci, Cleofe

    2008-02-01

    Polysaccharides and other cationic polymers have recently been used in pharmaceutical research and industry for their properties to control the release of antibiotics, DNA, proteins, peptide drugs or vaccines, and they have also been extensively studied as non-viral DNA carriers for gene delivery and therapy. Among them, chitosan is the most used since it can promote long-term release of incorporated drugs. This work is focused on the preparation of chitosan and chitosan/DNA nanospheres by using a novel and simple osmosis-based method, recently patented. The morphology of chitosan/DNA particles is spherical (as observed by scanning electron microscopy, SEM) and the nanospheres' average diameter is 38 ± 4 nm (obtained by dynamic light scattering, DLS). With this method, DNA is incorporated with high yield (up to 30%) and the release process is gradual and prolonged in time. The novelty of the reported method resides in the general applicability to various synthetic or natural biopolymers. Solvent, temperature and membrane cut-off are the physicochemical parameters that one is able to use to control the overall osmotic process, leading to several nanostructured systems with different size and shape that may be used in several biotechnological applications.

  8. High-nuclearity metal-organic nanospheres: a Cd66 ball.

    PubMed

    Argent, Stephen P; Greenaway, Alex; Gimenez-Lopez, Maria del Carmen; Lewis, William; Nowell, Harriott; Khlobystov, Andrei N; Blake, Alexander J; Champness, Neil R; Schröder, Martin

    2012-01-11

    Reaction of H(3)L with Cd(NO(3))(2)·4H(2)O in DMF at 150 °C for 3 days affords the metal-organic nanosphere [Cd(66)(μ(3)-OH)(28)(μ(3)-O)(16)(μ(5)-NO(3)-O,O,O',O',O″,O″)(12)(L)(20)(μ(2)-DMF)(12)⊂(DMF)(9)]. The cluster is composed of a spherical shell of 66 Cd(II) cations bridged by 28 μ(3)-hydroxide, 16 μ(3)-oxo, and five μ(5)-NO(3)(-) anions surrounded by a shell of 20 tripodal capping ligands (L) and 12 DMF ligands. The 66 Cd(II) cations and 12 NO(3)(-) anions form a polydeltahedron that has 78 vertices [Cd(II) or NO(3)(-)] (V), 228 edges (E), and 152 triangular faces (F), giving it an Euler characteristic (χ) of 2 (χ = V + F - E). Reaction of H(3)L with Cd(NO(3))(2)·4H(2)O at lower temperatures or with CdCl(2) affords coordination polymer frameworks instead of nanospheres.

  9. Facile synthesis of hydrogenated carbon nanospheres with a graphite-like ordered carbon structure.

    PubMed

    Xiao, Junping; Yao, Mingguang; Zhu, Kai; Zhang, Dong; Zhao, Shijia; Lu, Shuangchen; Liu, Bo; Cui, Wen; Liu, Bingbing

    2013-11-21

    We report a synthesis of hydrogenated carbon nanospheres (HCNSs) via a facile solvothermal route at low temperatures (60-100 °C), using CHCl3 as the carbon source and potassium (K) as the reductant. Selective cleavage of the relatively lower stable C-Cl bonds (compared to C-H bonds) of the carbon precursor (CHCl3) by K metal results in the growth of HCNSs. The diameter of HCNSs ranges from 40 to 90 nm. The HCNSs have a graphite-like ordered carbon structure in spite of their high degree of hydrogenation. The HCNSs exhibit an average Brunauer-Emmett-Teller (BET) surface area of 43 m(2) g(-1), containing a small amount of mesopores and macropores in the structure. The nanospheres' sample as an anode material for lithium ion batteries (LIBs) has been studied. It exhibits a high discharge capacity (3539 mA h g(-1) in the first cycle, 978 mA h g(-1) after 50 cycles) and good cycling stability, demonstrating advantages as a promising candidate for anode materials in LIBs. The high capacity of the HCNSs is due to their unique nanostructures and high percentage hydrogenation, as well as hydrogenation induced structural defects.

  10. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    SciTech Connect

    Borglin, Johan; Guldbrand, Stina; Evenbratt, Hanne; Kirejev, Vladimir; Ericson, Marica B.; Grönbeck, Henrik

    2015-12-07

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.

  11. An analysis of DSSC performance based on nanosphere, nanorod, and nanoparticle anode morphologies

    NASA Astrophysics Data System (ADS)

    Ako, Rajour Tanyi; Ekanayake, Piyasiri; Lim, Chee Ming

    2016-10-01

    The precise nature of dye-sensitized solar cell (DSSC) anodes plays a vital role in inter-particle contact, dye absorption, electrolyte diffusion, and distribution of sub conduction band states. This study compares the charge transfer dynamics at the oxide-dye-electrolyte interface in DSSC anodes composed of either nanoparticles (NPs), nanospheres (NSs), or nanorods (NRs). The crystallinity, morphology, visible light and dye absorption on the films were studied by XRD, SEM, and UV-Vis diffuse reflectance spectroscopy while the optoelectronic properties in the DSSC were evaluated by current-voltage, Incident photon to current conversion efficiency, and Electrochemical Impedance Spectroscopy (EIS) measurements. Visible light absorption was highest in NR films while NS films showed the highest light scattering. However, the DSSC with NP films showed the highest power conversion efficiency (PCE) that was attributed to increased dye adsorption amount. The DSSC with NS films had the least PCE but showed the highest Voc of 0.86 V. This high Voc was attributed to the high Fermi level, reduced charge recombination between the electrolyte and primary nanoparticles, and increased electrolyte diffusion within the nanospheres, as deducted from EIS measurements. The study suggests that the interparticle interaction and shape significantly influence the optoelectronic properties of DSSC anodes. The performance in this case was limited by dye absorption.

  12. Synthesis of grape-like carbon nanospheres and their application as photocatalyst and electrocatalyst

    SciTech Connect

    Mahajan, Mani Singla, Gourav Singh, K. Pandey, O.P.

    2015-12-15

    Carbon nanospheres of grape-like structure (CNS) with diameter ranging from 40 to 50 nm and wall thickness of 6–8 nm were synthesized by solvothermal route. The phase structure, morphology, microstructure, thermal stability, disorder and optical properties of synthesized CNS were investigated by various characterization techniques. The possible formation and growth mechanism for CNS were discussed on the basis of the in-build reaction conditions. The degradation study of organic pollutants (methylene blue) in UV light in the presence of synthesized CNS was done. The stability of the CNS in electrochemical performance was also discussed at the different potential window and compared its electrocatalytic activity with platinum supported on CNS which shows the better response for oxygen reduction reactions (ORR) at an optimized potential window (–0.2 to 1.0 V vs SCE). - Graphical abstract: A representative synthesis mechanism of carbon nano sphere (CNS) showing spherical morphology with its photo as well as electrocatalyst properties. - Highlights: • Carbon nanospheres (CNS) have been synthesized using in situ chemical-reduction route. • The bare CNS shows good luminescence and photocatalytic applications. • The Pt/CNS shows better electrochemical performance than the reported Pt/C.

  13. The preparation of core-shell magnetic silica nanospheres for enhancing magnetism and fluorescence intensity.

    PubMed

    Yoo, Jeong Ha; Kim, Jong Sung

    2013-11-01

    Recently, magnetic and luminescent composite silica with structure of micro- and nanospheres containing both magnetic (Fe3O4) nanoparticles (MPs) and quantum dots (QDs) has attracted great interests. In this study, we have prepared core-shell structure of silica spheres in which magnets are incorporated into silica core and QDs into a mesoporous silica shell by using C18-TMS (octade-cyltrimethoxysilane). MPs were synthesized by a co-precipitation method from ferrous and ferric solutions with a molecular ratio of 2:3. Monodisperse magnetic silica cores have been prepared via sol-gel reaction of TEOS (tetraethoxysilane) and water using base catalyst. The size of magnetic silica nanospheres was confirmed by dynamic laser light scattering system (DLS) and scanning electoron microscope (SEM). The pore volume and surface area were calculated by using BET after calcination. The core-shell structure plays an important role in providing more domains for MPs in silica Core and QDs in silica shell. QDs were incorporated into the mesoporous shell by hydrophobic interactions. Magnetic characterization was performed using a superconducting quantum interference device (SQUID). The optical properties of the particles were characterized with UV/Vis spectrometer, PL spectrometer, and fluorescence microscope.

  14. Interstitial and interlayer ion diffusion geometry extraction in graphitic nanosphere battery materials

    DOE PAGES

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; ...

    2016-01-31

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermallymore » annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Lastly, our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.« less

  15. Preparation of magnetite-chitosan/methylcellulose nanospheres by entrapment and adsorption techniques for targeting the anti-cancer drug 5-fluorouracil.

    PubMed

    Şanlı, Oya; Kahraman, Aslı; Kondolot Solak, Ebru; Olukman, Merve

    2016-05-01

    In this work, we have formulated novel nanospheres that could be used in the controlled release of the anticancer drug, 5-fluorouracil (5-FU). The nanospheres are composed of magnetite, containing chitosan (CS) and methylcellulose (MC). The drug entrapment was achieved through the encapsulation and adsorption processes. The effects of the preparation conditions, such as magnetite content, CS/MC ratio, crosslinking concentration, exposure time to glutaraldehyde (GA), and the drug/polymer ratio were investigated for both processes. The 5-FU release was found to follow the Fickian mechanism, and the Langmuir isotherm for the nanospheres was achieved through encapsulation and adsorption processes, respectively.

  16. Effect of reaction parameters on photoluminescence and photocatalytic activity of zinc sulfide nanosphere synthesized by hydrothermal route

    NASA Astrophysics Data System (ADS)

    Chanu, T. Inakhunbi; Samanta, Dhrubajyoti; Tiwari, Archana; Chatterjee, Somenath

    2017-01-01

    Zinc Sulfide (ZnS) nanospheres have been synthesized using amino acid, L-Histidine as a capping agent by hydrothermal method. The as prepared ZnS have been characterised using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Photoluminescence (PL), Fourier Transform Infra-Red spectroscopy (FTIR), UV-vis absorption spectroscopy and X-ray Photo Electron Spectroscopy (XPS). Effect of reaction parameters on particle size has been investigated. The morphology and size of the ZnS can be tuned based on the reaction parameters. ZnS nanosphere with a particle size of 5 nm is obtained when the reaction parameters are kept at 120 °C for 3 h. The PL of ZnS shows multiple defect emissions arising from interstitials/vacancies. Particle size of ZnS nanoparticles plays an important role in determining the photo catalytic activity. A chronological study on synthesis of ZnS nanosphere and its photo catalytic activity under the sunlight are discussed here, which reveals the photo degradation of Rhodamine B (RhB) upto 87% as observed with ZnS nanosphere having a particle size of 5 nm.

  17. Poly(ionic liquids) hollow nanospheres with PDMAEMA as joint support of highly dispersed gold nanoparticles for thermally adjustable catalysis

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Liu, Zhirong; Fan, Fuhong; Qiang, Shenglu; Cheng, Li; Yang, Wu

    2015-02-01

    A smart hollow hybrid system was prepared by introducing poly(2-(1-methylimidazolium 3-yl)-ethyl methacrylate chloride) (PMIMC) network, the temperature-responsive PDMAEMA brushes, and Au nanoparticles into silica nanoparticles through two-step surface-initiated atom transfer radical polymerization. TEM, FTIR, EDX, XRD, XPS, and TGA were used to characterize the morphology and structure of air@PMIMC-PDMAEMA-Au hairy hollow nanospheres. The result showed that Au nanoparticles with an average diameter of 1.5 ± 0.2 nm were homogeneously embedded inside the PMIMC-PDMAEMA shell. Catalytic activity of the as-synthesized air@PMIMC-PDMAEMA-Au hairy hollow nanospheres were investigated using the reduction of 4-nitrophenol with NaBH4 as a model reaction. It was found that the joint structures of PMIMC hollow nanospheres and PDMAEMA brushes lead to production of the highly active and stable catalyst for reduction of 4-nitrophenol. Furthermore, the obtained air@PMIMC-PDMAEMA-Au hairy hollow nanospheres were found to have a thermally adjustable catalytic activity for the reduction of 4-nitrophenol.

  18. Biogenic nanospheres of amorphous carbonated Ca-Mg phosphate within the periostracum of the green mussel Perna viridis.

    PubMed

    Xu, Jun; Zhang, Gangsheng

    2014-12-01

    Recently there is increasing evidence that the shell biomineralization proceeds via an amorphous precursor route. Therefore, the search for and investigation of amorphous biominerals in bivalve shells are of great importance and interest. Here, using a scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), and Fourier transform infrared spectrometer (FTIR), we investigate the microstructure and mineralogy of the periostracum in Perna viridis. We find that: (1) the periostracum has three layers, of which the inner and outer layer are of proteins, while the middle layer is mineralized with nanospheres of amorphous biominerals; (2) the nanospheres are of amorphous carbonated Ca-Mg phosphate (ACCP), where the CO3(2)(-)/PO4(3)(-) weight ratio is estimated to be ∼0.3, and the Ca/P and Ca/Mg atomic ratio is ∼1.4 and 1.6, respectively; (3) the nanospheres, with a diameter of 43-106nm, are found to assemble into spherules with a diameter of 160-500nm, which are further organized into parallel microlayers separated by the proteins; and (4) the nanospheres are assumed to function as the pH stabilizer to facilitate the shell's initial mineralization. Finally, we expect that these findings will advance our understanding of the shell's biomineralization process.

  19. k-vector angular correlations in negative refraction for TM polarization in nanosphere dispersed liquid crystal (NDLC) metamaterial

    NASA Astrophysics Data System (ADS)

    Pawlik, G.; Walasik, W.; Tarnowski, K.; Mitus, A. C.; Khoo, I. C.

    2013-10-01

    We study the behavior of refracted angle for k-vector at the interface of uniaxial anisotropic media in the case of nanosphere dispersed liquid crystal (NDLC) matematerial. Finite Element (FE) calculations (COMSOL Multiphysics) are used to trace the propagation of the electromagnetic wave. Preliminary results on the influence of incident angle on refracted angle wave-vector are presented.

  20. Large-scale nanofabrication of periodic nanostructures using nanosphere-related techniques for green technology applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yen, Chen-Chung; Wu, Jyun-De; Chien, Yi-Hsin; Wang, Chang-Han; Liu, Chi-Ching; Ku, Chen-Ta; Chen, Yen-Jon; Chou, Meng-Cheng; Chang, Yun-Chorng

    2016-09-01

    Nanotechnology has been developed for decades and many interesting optical properties have been demonstrated. However, the major hurdle for the further development of nanotechnology depends on finding economic ways to fabricate such nanostructures in large-scale. Here, we demonstrate how to achieve low-cost fabrication using nanosphere-related techniques, such as Nanosphere Lithography (NSL) and Nanospherical-Lens Lithography (NLL). NSL is a low-cost nano-fabrication technique that has the ability to fabricate nano-triangle arrays that cover a very large area. NLL is a very similar technique that uses polystyrene nanospheres to focus the incoming ultraviolet light and exposure the underlying photoresist (PR) layer. PR hole arrays form after developing. Metal nanodisk arrays can be fabricated following metal evaporation and lifting-off processes. Nanodisk or nano-ellipse arrays with various sizes and aspect ratios are routinely fabricated in our research group. We also demonstrate we can fabricate more complicated nanostructures, such as nanodisk oligomers, by combining several other key technologies such as angled exposure and deposition, we can modify these methods to obtain various metallic nanostructures. The metallic structures are of high fidelity and in large scale. The metallic nanostructures can be transformed into semiconductor nanostructures and be used in several green technology applications.

  1. Facile fabrication of large-area and uniform silica nanospheres monolayer for efficient surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Tang, Junqi; Zhao, Qianrun; Zhang, Ning; Man, Shi-Qing

    2014-07-01

    A large-area efficient surface enhanced Raman scattering (SERS) substrate was deposited by Langmuir-Blodgett (LB) assembly and followed by sputter coating process. The interparticle distance of silica nanospheres was convenient and readily regulated by controlling the surface pressure. After sputter coating with a small amount of gold, the nanocomposite film was formed. The surfaces of nanostructures were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The applicability of the nanostructures as SERS substrates was investigated by adsorption of crystal violet (CV) molecules. Different SERS effects were observed on deposited gold nanostructure upon large-area silica nanospheres monolayer with diameter of 250, 570 and 800 nm. It was also discussed the nanospheres with diameter of 250 nm for the fabrication of ordered arrangement of monolayers at surface pressures of 10-30 mN/m. These substrates with the close-packed nanospheres and sputtering of gold were found to exhibit high and uniform enhancement of the Raman signal across the entire surface. The averaged surface enhancement factor (ASEF) was calculated and discussed. The fabricated nanocomposite structures could be utilized as low-cost SERS-active substrates for biomedical and analytical chemistry field.

  2. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm2, which is 48.76% higher than that of flat system.

  3. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells

    PubMed Central

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-01-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm2, which is 48.76% higher than that of flat system. PMID:27455911

  4. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.

    PubMed

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-26

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm(2), which is 48.76% higher than that of flat system.

  5. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B2: Catalytic Polymerisation of Aniline and Pyrrole

    EPA Science Inventory

    For the first time, we report green chemistry approach using vitamin B2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride (NaBH4) or hydroxylamine hydro...

  6. Regeneratively Cooled Porous Media Jacket

    NASA Technical Reports Server (NTRS)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  7. Light emission from porous silicon

    NASA Astrophysics Data System (ADS)

    Penczek, John

    The continuous evolution of silicon microelectronics has produced significant gains in electronic information processing. However, greater improvements in performance are expected by utilizing optoelectronic techniques. But these techniques have been severely limited in silicon- based optoelectronics due to the lack of an efficient silicon light emitter. The recent observation of efficient light emission from porous silicon offer a promising opportunity to develop a suitable silicon light source that is compatible with silicon microelectronics. This dissertation examined the porous silicon emission mechanism via photoluminescence, and by a novel device structure for porous silicon emitters. The investigation first examined the correlation between porous silicon formation conditions (and subsequent morphology) with the resulting photoluminescence properties. The quantum confinement theory for porous silicon light emission contends that the morphology changes induced by the different formation conditions determine the optical properties of porous silicon. The photoluminescence spectral shifts measured in this study, in conjunction with TEM analysis and published morphological data, lend support to this theory. However, the photoluminescence spectral broadening was attributed to electronic wavefunction coupling between adjacent silicon nanocrystals. An novel device structure was also investigated in an effort to improve current injection into the porous silicon layer. The selective etching properties of porous silicon were used to create a p-i-n structure with crystalline silicon contacts to the porous silicon layer. The resulting device was found to have unique characteristics, with a negative differential resistance region and current-induced emission that spanned from 400 nm to 5500 nm. The negative differential resistance was correlated to resistive heating effects in the device. A numerical analysis of thermal emission spectra from silicon films, in addition to

  8. Fabrication and characterization of porous silicon nanowires

    NASA Astrophysics Data System (ADS)

    Jung, Daeyoon; Cho, Soo Gyeong; Moon, Taeho; Sohn, Honglae

    2016-01-01

    We report the synthesis of porous silicon nanowires through the metalassisted chemical etching of porous silicon in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of porous silicon nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The etch rate of the porous silicon nanowires was faster than that of silicon nanowires, but slower than that of porous silicon. The porous silicon nanowires distributed uniformly on the entire porous silicon layer and the tips of the porous silicon nanowires congregated together. The single crystalline and sponge-like porous structure with the pore diameters of less than 5 nm was confirmed for the porous silicon nanowires. [Figure not available: see fulltext.

  9. Nb{sub 2}O{sub 5} hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    SciTech Connect

    Sasidharan, Manickam; Gunawardhana, Nanda; Yoshio, Masaki; Nakashima, Kenichi

    2012-09-15

    Graphical abstract: Nb{sub 2}O{sub 5} hollow nanosphere constructed electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ► Nb{sub 2}O{sub 5} hollow nanospheres synthesis was synthesized by soft-template. ► Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode material in Li-ion battery. ► Nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles. ► The electrode maintains the structural integrity and excellent cycling stability. ► Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb{sub 2}O{sub 5} hollow nanospheres of average diameter ca. ∼29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g{sup −1}. The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb{sub 2}O{sub 5} shell domain that facilitates fast lithium intercalation/deintercalation kinetics.

  10. Novel multifunctional chitosan-GMA-IDA-Cu(II) nanospheres for high dynamic range characterization of the human plasma proteome.

    PubMed

    Zou, Xiajuan; Zhong, Lijun; Liu, Dan; Yang, Bin; Lou, Yaxin; Peng, Jiarou; Rainer, Matthias; Feuerstein, Isabel; Muhammad, Najam-ul-Haq; Huck, Christian W; Bonn, Günther K; Yin, Yuxin

    2011-05-01

    In this study, we describe characterization of the human plasma proteome based on analysis with multifunctional chitosan-GMA-IDA-Cu(II) nanospheres. Chitosan-GMA-IDA-Cu(II) nanospheres with diameters of 20 to 100 nm have unique properties due to multifunctional chemical moieties, high surface area, high capacity, good dispersibility in buffer solution as well as good biocompatibility and chemical stability which improves their specific interaction with peptides and proteins of the human plasma using different binding buffers. Combining these chitosan-GMA-IDA-Cu(II) nanospheres with MS spectrometry results in a novel strategy which should make it possible to characterize the plasma proteome in a single test. Peptides and proteins adsorbed on the nanosphere can be directly detected by MALDI-TOF-MS. The eluted lower molecular weight peptides and proteins are identified by nano-LC-ESI-MS/MS. A total of 842 unique LMW peptides and 1,682 human unredundant proteins IDs were identified in two different binding buffers, which included relatively low-level proteins (e.g., pg/mL of IL3 Interleukin-3) co-distributed with high-abundance proteins (e.g., 35-55 mg/mL level serum albumin). As such, this nanosphere technique selectively enabled the identification of proteins over a dynamic range of greater than 8 orders of magnitude. Considering this capacity for selective enrichment of peptides and proteins in human plasma, and the large number of LMW peptides and proteins which can be identified, this method promises to accelerate discovery of biomarkers for clinical application.

  11. EPR study of porous silicon

    NASA Astrophysics Data System (ADS)

    Jishi, Fu; Jinchang, Mao; En, Wu; Yongqiang, Jia; Borui, Zhang; Lizhu, Zhang; Guogang, Qin; Yuhua, Zhang; Genshuan, Wui

    1994-12-01

    An anisotropic EPR signal was observed in porous Si. According to its symmetry and g value, the EPR signal can be attributed to silicon dangling bonds located on the surface of a porous Si skeleton. The evolution of the EPR signal at room temperature in air was measured. The annealing temperature dependence of the EPR and the PL of porous Si in oxygen and the effects of gamma irradiation on the EPR and the PL spectra of porous Si were studied. The changes of the EPR signal and the PL intensity induced in atmosphere by ethyl alcohol and acetone were discovered. The dangling bond is only one of the factors which affect the PL.

  12. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  13. Porous light-emitting compositions

    SciTech Connect

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Bauer, Eve; Mueller, Alexander H

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  14. Porous carbon EOS: numerical analysis

    NASA Astrophysics Data System (ADS)

    Aliverdiev, A.; Batani, D.; Dezulian, R.; Vinci, T.

    2010-10-01

    In this paper, we address the problem of direct simulation of laser-driven shock experiments aiming at determining the equation of state (EOS) of carbon using the "relative" impedance mismatch method. In particular, using tabulated carbon EOS (SESAME library, material number 7830), we have found some difficulties in reducing the initial density of the material in simulations with porous carbon. We have therefore calculated a new EOS for porous carbon with a reduced bulk modulus.

  15. Deposition of stearate-oleate rich seed fat in Mangifera indica is mediated by a FatA type acyl-ACP thioesterase.

    PubMed

    Bhattacharjee, Ashish; Ghosh, Santosh K; Neogi, Krishnakali; Aich, Aniruddha; Willard, Belinda; Kinter, Michael; Sen, Soumitra K; Ghosh, Dolly; Ghosh, Sudhamoy

    2011-02-01

    Although the mechanism of accumulation of C8-C16 saturated fatty acids in seed oils has been well-studied, the control of stearic (C18:0) acid deposition in high stearate seed fat is still unclear. We investigated the mechanism that regulates high level of stearate and oleate (C18:1) accumulation in mango (Mangifera indica) seeds during its development, and examined the seed plastid extracts for induction of any specialized fatty acyl-ACP thioesterase (Fat) that may control this high level of deposition. Though the specificity of the Fat enzymes does not account directly for the fatty acid composition of mango seeds, our result suggested that an induced synthesis of a FatA type of thioesterase could be responsible for the high content of oleate and stearate in its seed fat. The major thioesterase from developing seed kernel was purified to near homogeneity, and characterized as a heat-labile, dimeric, neutral protein with relative substrate specificity of 100:35:1.8 towards oleoyl-, stearoyl- and palmitoyl-ACP, respectively. This enzyme was confirmed as Mi FatA by mass spectrometric analysis. Additionally, a heat-stable FatB type enzyme (Mi FatB) was also partially purified, with relative substrate specificity for the same substrates as 9:8.5:100, respectively. Mi FatA is an enzyme of great biotechnological interest because of its involvement in the regulation of stearate rich seed fat in mango.

  16. Biochemical characteristics of AtFAR2, a fatty acid reductase from Arabidopsis thaliana that reduces fatty acyl-CoA and -ACP substrates into fatty alcohols.

    PubMed

    Doan, Thuy T P; Carlsson, Anders S; Stymne, Sten; Hofvander, Per

    2016-01-01

    Fatty alcohols and derivatives are important for proper deposition of a functional pollen wall. Mutations in specific genes encoding fatty acid reductases (FAR) responsible for fatty alcohol production cause abnormal development of pollen. A disrupted AtFAR2 (MS2) gene in Arabidopsis thaliana results in pollen developing an abnormal exine layer and a reduced fertility phenotype. AtFAR2 has been shown to be targeted to chloroplasts and in a purified form to be specific for acyl-ACP substrates. Here, we present data on the in vitro and in planta characterizations of AtFAR2 from A. thaliana and show that this enzyme has the ability to use both, C16:0-ACP and C16:0-CoA, as substrates to produce C16:0-alcohol. Our results further show that AtFAR2 is highly similar in properties and substrate specificity to AtFAR6 for which in vitro data has been published, and which is also a chloroplast localized enzyme. This suggests that although AtFAR2 is the major enzyme responsible for exine layer functionality, AtFAR6 might provide functional redundancy to AtFAR2.

  17. Antimicrobial effect by extracts of rhizome of Alpinia officinarum Hance may relate to its inhibition of beta-ketoacyl-ACP reductase.

    PubMed

    Huang, Hui; Wu, Dan; Tian, Wei-Xi; Ma, Xiao-Feng; Wu, Xiao-Dong

    2008-06-01

    Inhibitory effects on bacterial growth showed that 40% ethanol extract of galangal (rhizome of Alpinia officinarum Hance) can inhibit Staphylococcus aureus, alpha-Hemolytic streptococcus, beta-Hemolytic streptococcus and Streptococcus pneumoniae. beta-ketoacyl-ACP reductase (FabG, EC.1.1.1.100) is a key enzyme in type II fatty acid synthase system in bacteria and catalyzes beta-ketoacyl-ACP reduction. The galangal extracts inhibited FabG with an IC(50) value of only 4.47 +/- 0.10 microg/mL and is more potent than other previously published inhibitors. Kinetics studies showed that the inhibition consisted of both reversible and irreversible inhibition. The extracts of galangal inhibit FabG in a competitive pattern against NADPH. So far, no inhibitor has been reported to exhibit irreversible inhibition of FabG, whereas the galangal ethanol extract can inhibit FabG irreversibly. The irreversible inhibition presented two phases. It is probable that the galangal extract inhibit FabG, thereby displaying antibacterial ability.

  18. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting.

  19. From Dispersed Microspheres to Interconnected Nanospheres: Carbon-Sandwiched Monolayered MoS2 as High-Performance Anode of Li-Ion Batteries.

    PubMed

    Shao, Jie; Qu, Qunting; Wan, Zhongming; Gao, Tian; Zuo, Zhichen; Zheng, Honghe

    2015-10-21

    Hierarchical structured carbon@MoS2 (C@MoS2) microspheres and nanospheres composed of carbon-sandwiched monolayered MoS2 building blocks are synthesized through a facile one-pot polyvinylpyrrolidone (PVP) micelle-assisted hydrothermal route. The dimension and carbon content of C@MoS2 spheres are effectively controlled by singly adjusting the concentration of PVP, which plays the dual functions of soft-template and carbon source. As the anode materials of Li-ion batteries, C@MoS2 nanospheres present considerably higher capacity, better rate behavior and cycling stability than C@MoS2 microspheres. The reasons are attributed to the unique interconnected nanospherical morphology and the internal hierarchical construction of C@MoS2 nanospheres with expanded MoS2/carbon interlayer spacing.

  20. Synthesis of uniform α-Si3N4 nanospheres by RF induction thermal plasma and their application in high thermal conductive nanocomposites.

    PubMed

    Hou, Guolin; Cheng, Benli; Ding, Fei; Yao, Mingshui; Hu, Peng; Yuan, Fangli

    2015-02-04

    In this paper, single-crystalline α-Si3N4 nanospheres with uniform size of ∼50 nm are successfully synthesized by using a radio frequency (RF) thermal plasma system in a one-step and continuous way. All Si3N4 nanoparticles present nearly perfect spherical shape with a narrow size distribution, and the diameter is well-controlled by changing the feeding rate. Compact Si3N4/PR (PR = phenolic resin) composites with high thermal conductivity, excellent temperature stability, low dielectric loss tangent, and enhanced breakdown strength are obtained by incorporating the as-synthesized Si3N4 nanospheres. These enhanced properties are the results of good compatibility and strong interfacial adhesion between compact Si3N4 nanospheres and polymer matrix, as large amount of Si3N4 nanospheres can uniformly disperse in the polymer matrix and form thermal conductive networks for diffusion of heat flow.