Sample records for acp synthase iii

  1. Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short- and medium-chain acyl-ACP synthesis.

    PubMed

    Abbadi, A; Brummel, M; Spener, F

    2000-10-01

    3-ketoacyl-acyl carrier protein synthase (KAS) III catalyses the first condensing step of the fatty acid synthase (FAS) type II reaction in plants and bacteria, using acetyl CoA and malonyl-acyl carrier protein (ACP) as substrates. Enzymatic characterization of recombinant KAS III from Cuphea wrightii embryo shows that this enzyme is strongly inhibited by medium-chain acyl-ACP end products of the FAS reaction, i.e. inhibition by lauroyl-ACP was uncompetitive towards acetyl CoA and non-competitive with regard to malonyl-ACP. This indicated a distinct attachment site for regulatory acyl-ACPs. Based on alignment of primary structures of various KAS IIIs and 3-ketoacyl CoA synthases, we suspected the motif G290NTSAAS296 to be responsible for binding of regulatory acyl-ACPs. Deletion of the tetrapeptide G290NTS293 led to a change of secondary structure and complete loss of KAS III condensing activity. Exchange of asparagine291 to aspartate, alanine294 to serine and alanine295 to proline, however, produced mutant enzymes with slightly reduced condensing activity, yet with insensitivity towards acyl-ACPs. To assess the potential of unregulated KAS III as tool in oil production, we designed in vitro experiments employing FAS preparations from medium-chain fatty acid-producing Cuphea lanceolata seeds and long-chain fatty acid-producing rape seeds, each supplemented with a fivefold excess of the N291D KAS III mutant. High amounts of short-chain acyl-ACPs in the case of C. lanceolata, and of medium-chain acyl-ACPs in the case of rape seed preparations, were obtained. This approach targets regulation and offers new possibilities to derive transgenic or non-transgenic plants for production of seed oils with new qualities.

  2. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions.

    PubMed

    Beld, Joris; Blatti, Jillian L; Behnke, Craig; Mendez, Michael; Burkart, Michael D

    2014-08-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes.

  3. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions

    PubMed Central

    Beld, Joris; Blatti, Jillian L.; Behnke, Craig; Mendez, Michael; Burkart, Michael D.

    2014-01-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes. PMID:25110394

  4. Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis.

    PubMed

    Dehesh, K; Tai, H; Edwards, P; Byrne, J; Jaworski, J G

    2001-02-01

    A cDNA coding for 3-ketoacyl-acyl-carrier protein (ACP) synthase III (KAS III) from spinach (Spinacia oleracea; So KAS III) was used to isolate two closely related KAS III clones (Ch KAS III-1 and Ch KAS III-2) from Cuphea hookeriana. Both Ch KAS IIIs are expressed constitutively in all tissues examined. An increase in the levels of 16:0 was observed in tobacco (Nicotiana tabacum, WT-SR) leaves overexpressing So KAS III when under the control of the cauliflower mosaic virus-35S promoter and in Arabidopsis and rapeseed (Brassica napus) seeds overexpressing either of the Ch KAS IIIs driven by napin. These data indicate that this enzyme has a universal role in fatty acid biosynthesis, irrespective of the plant species from which it is derived or the tissue in which it is expressed. The transgenic rapeseed seeds also contained lower levels of oil as compared with the wild-type levels. In addition, the rate of lipid synthesis in transgenic rapeseed seeds was notably slower than that of the wild-type seeds. The results of the measurements of the levels of the acyl-ACP intermediates as well as any changes in levels of other fatty acid synthase enzymes suggest that malonyl-ACP, the carbon donor utilized by all the 3- ketoacyl-ACP synthases, is limiting in the transgenic plants. This further suggests that malonyl-coenzyme A is a potential limiting factor impacting the final oil content as well as further extension of 16:0.

  5. Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme.

    PubMed

    Abbadi, A; Brummel, M; Schütt, B S; Slabaugh, M B; Schuch, R; Spener, F

    2000-01-01

    A unique feature of fatty acid synthase (FAS) type II of higher plants and bacteria is 3-oxoacyl-[acyl-carrier-protein (ACP)] synthase III (KAS III), which catalyses the committing condensing reaction. Working with KAS IIIs from Cuphea seeds we obtained kinetic evidence that KAS III catalysis follows a Ping-Pong mechanism and that these enzymes have substrate-binding sites for acetyl-CoA and malonyl-ACP. It was the aim of the present study to identify these binding sites and to elucidate the catalytic mechanism of recombinant Cuphea wrightii KAS III, which we expressed in Escherichia coli. We engineered mutants, which allowed us to dissect the condensing reaction into three stages, i.e. formation of acyl-enzyme, decarboxylation of malonyl-ACP, and final Claisen condensation. Incubation of recombinant enzyme with [1-(14)C]acetyl-CoA-labelled Cys(111), and the replacement of this residue by Ala and Ser resulted in loss of overall condensing activity. The Cys(111)Ser mutant, however, still was able to bind acetyl-CoA and to catalyse subsequent binding and decarboxylation of malonyl-ACP to acetyl-ACP. We replaced His(261) with Ala and Arg and found that the former lost activity, whereas the latter retained overall condensing activity, which indicated a general-base action of His(261). Double mutants Cys(111)Ser/His(261)Ala and Cys(111)Ser/His(261)Arg were not able to catalyse overall condensation, but the double mutant containing Arg induced decarboxylation of [2-(14)C]malonyl-ACP, a reaction indicating the role of His(261) in general-acid catalysis. Finally, alanine scanning revealed the involvement of Arg(150) and Arg(306) in KAS III catalysis. The results offer for the first time a detailed mechanism for a condensing reaction catalysed by a FAS type II condensing enzyme.

  6. Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme.

    PubMed Central

    Abbadi, A; Brummel, M; Schütt, B S; Slabaugh, M B; Schuch, R; Spener, F

    2000-01-01

    A unique feature of fatty acid synthase (FAS) type II of higher plants and bacteria is 3-oxoacyl-[acyl-carrier-protein (ACP)] synthase III (KAS III), which catalyses the committing condensing reaction. Working with KAS IIIs from Cuphea seeds we obtained kinetic evidence that KAS III catalysis follows a Ping-Pong mechanism and that these enzymes have substrate-binding sites for acetyl-CoA and malonyl-ACP. It was the aim of the present study to identify these binding sites and to elucidate the catalytic mechanism of recombinant Cuphea wrightii KAS III, which we expressed in Escherichia coli. We engineered mutants, which allowed us to dissect the condensing reaction into three stages, i.e. formation of acyl-enzyme, decarboxylation of malonyl-ACP, and final Claisen condensation. Incubation of recombinant enzyme with [1-(14)C]acetyl-CoA-labelled Cys(111), and the replacement of this residue by Ala and Ser resulted in loss of overall condensing activity. The Cys(111)Ser mutant, however, still was able to bind acetyl-CoA and to catalyse subsequent binding and decarboxylation of malonyl-ACP to acetyl-ACP. We replaced His(261) with Ala and Arg and found that the former lost activity, whereas the latter retained overall condensing activity, which indicated a general-base action of His(261). Double mutants Cys(111)Ser/His(261)Ala and Cys(111)Ser/His(261)Arg were not able to catalyse overall condensation, but the double mutant containing Arg induced decarboxylation of [2-(14)C]malonyl-ACP, a reaction indicating the role of His(261) in general-acid catalysis. Finally, alanine scanning revealed the involvement of Arg(150) and Arg(306) in KAS III catalysis. The results offer for the first time a detailed mechanism for a condensing reaction catalysed by a FAS type II condensing enzyme. PMID:10600651

  7. Overexpression of 3-Ketoacyl-Acyl-Carrier Protein Synthase IIIs in Plants Reduces the Rate of Lipid Synthesis1

    PubMed Central

    Dehesh, Katayoon; Tai, Heeyoung; Edwards, Patricia; Byrne, James; Jaworski, Jan G.

    2001-01-01

    A cDNA coding for 3-ketoacyl-acyl-carrier protein (ACP) synthase III (KAS III) from spinach (Spinacia oleracea; So KAS III) was used to isolate two closely related KAS III clones (Ch KAS III-1 and Ch KAS III-2) from Cuphea hookeriana. Both Ch KAS IIIs are expressed constitutively in all tissues examined. An increase in the levels of 16:0 was observed in tobacco (Nicotiana tabacum, WT-SR) leaves overexpressing So KAS III when under the control of the cauliflower mosaic virus-35S promoter and in Arabidopsis and rapeseed (Brassica napus) seeds overexpressing either of the Ch KAS IIIs driven by napin. These data indicate that this enzyme has a universal role in fatty acid biosynthesis, irrespective of the plant species from which it is derived or the tissue in which it is expressed. The transgenic rapeseed seeds also contained lower levels of oil as compared with the wild-type levels. In addition, the rate of lipid synthesis in transgenic rapeseed seeds was notably slower than that of the wild-type seeds. The results of the measurements of the levels of the acyl-ACP intermediates as well as any changes in levels of other fatty acid synthase enzymes suggest that malonyl-ACP, the carbon donor utilized by all the 3- ketoacyl-ACP synthases, is limiting in the transgenic plants. This further suggests that malonyl-coenzyme A is a potential limiting factor impacting the final oil content as well as further extension of 16:0. PMID:11161065

  8. Mechanism and Substrate Recognition of Human Holo ACP Synthase

    PubMed Central

    Bunkoczi, Gabor; Pasta, Saloni; Joshi, Anil; Wu, Xiaoqiu; Kavanagh, Kathryn L.; Smith, Stuart; Oppermann, Udo

    2007-01-01

    Summary Mammals utilize a single phosphopantetheinyl transferase for the posttranslational modification of at least three different apoproteins: the carrier protein components of cytosolic and mitochondrial fatty acid synthases and the aminoadipate semialdehyde reductase involved in lysine degradation. We determined the crystal structure of the human phosphopantetheinyl transferase, a eukaryotic phosphopantetheinyl transferase characterized, complexed with CoA and Mg2+, and in ternary complex with CoA and ACP. The involvement of key residues in ligand binding and catalysis was confirmed by mutagenesis and kinetic analysis. Human phosphopantetheinyl transferase exhibits an α/β fold and 2-fold pseudosymmetry similar to the Sfp phosphopantetheinyl transferase from Bacillus subtilis. Although the bound ACP exhibits a typical four-helix structure, its binding is unusual in that it is facilitated predominantly by hydrophobic interactions. A detailed mechanism is proposed describing the substrate binding and catalytic process. PMID:18022563

  9. KAS IV: a 3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme.

    PubMed

    Dehesh, K; Edwards, P; Fillatti, J; Slabaugh, M; Byrne, J

    1998-08-01

    cDNA clones encoding a novel 3-ketoacyl-ACP synthase (KAS) have been isolated from Cuphea. The amino acid sequence of this enzyme is different from the previously characterized classes of KASs, designated KAS I and III, and similar to those designated as KAS II. To define the acyl chain specificity of this enzyme, we generated transgenic Brassica plants over-expressing the cDNA encoded protein in a seed specific manner. Expression of this enzyme in transgenic Brassica seeds which normally do not produce medium chain fatty acids does not result in any detectable modification of the fatty acid profile. However, co-expression of the Cuphea KAS with medium chain specific thioesterases, capable of production of either 12:0 or 8:0/10:0 fatty acids in seed oil, strongly enhances the levels of these medium chain fatty acids as compared with seed oil of plants expressing the thioesterases alone. By contrast, co-expression of the Cuphea KAS along with an 18:0/18.1-ACP thioesterase does not result in any detectable modification of the fatty acids. These data indicate that the Cuphea KAS reported here has a different acyl-chain specificity to the previously characterized KAS I, II and III. Therefore, we designate this enzyme KAS IV, a medium chain specific condensing enzyme.

  10. Molecular architectures of benzoic acid-specific type III polyketide synthases

    PubMed Central

    Stewart, Charles; Woods, Kate; Macias, Greg; Allan, Andrew C.; Noel, Joseph P.

    2017-01-01

    Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure–function relationships within the type III PKS family, the crystal structures of biphenyl synthase from Malus × domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone synthase from Malus × domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants. PMID:29199980

  11. Crystal structure and substrate specificity of the [beta]-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Xiayang; Choudhry, Anthony E.; Janson, Cheryl A.

    {beta}-Ketoacyl-ACP synthase III (FabH), an essential enzyme for bacterial viability, catalyzes the initiation of fatty acid elongation by condensing malonyl-ACP with acetyl-CoA. We have determined the crystal structure of FabH from Staphylococcus aureus, a Gram-positive human pathogen, to 2 {angstrom} resolution. Although the overall structure of S. aureus FabH is similar to that of Escherichia coli FabH, the primer binding pocket in S. aureus FabH is significantly larger than that present in E. coli FabH. The structural differences, which agree with kinetic parameters, provide explanation for the observed varying substrate specificity for E. coli and S. aureus FabH. The rankmore » order of activity of S. aureus FabH with various acyl-CoA primers was as follows: isobutyryl- > hexanoyl- > butyryl- > isovaleryl- >> acetyl-CoA. The availability of crystal structure may aid in designing potent, selective inhibitors of S. aureus FabH.« less

  12. Decarboxylation of malonyl-(acyl carrier protein) by 3-oxoacyl-(acyl carrier protein) synthases in plant fatty acid biosynthesis.

    PubMed Central

    Winter, E; Brummel, M; Schuch, R; Spener, F

    1997-01-01

    In order to identify regulatory steps in fatty acid biosynthesis, the influence of intermediate 3-oxoacyl-(acyl carrier proteins) (3-oxoacyl-ACPs) and end-product acyl-ACPs of the fatty acid synthase reaction on the condensation reaction was investigated in vitro, using total fatty acid synthase preparations and purified 3-oxoacyl-ACP synthases (KASs; EC 2.3.1.41) from Cuphea lanceolata seeds. KAS I and II in the fatty acid synthase preparations were assayed for the elongation of octanoyl- and hexadecanoyl-ACP respectively, and the accumulation of the corresponding condensation product 3-oxoacyl-ACP was studied by modulating the content of the reducing equivalentS NADH and NADPH. Complete omission of reducing equivalents resulted with either KAS in the abnormal synthesis of acetyl-ACP from malonyl-ACP by a decarboxylation reaction. Supplementation with NADPH or NADH, separately or in combination with recombinant 3-oxoacyl-ACP reductase (EC 1.1.1.100), led to a decrease in the amount of acetyl-ACP and a simultaneous increase in elongation products. This demonstrates that the accumulation of 3-oxoacyl-ACP inhibits the condensation reaction on the one hand, and induces the decarboxylation of malonyl-ACP on the other. By carrying out similar experiments with purified enzymes, this decarboxylation was attributed to the action of KAS. Our data point to a regulatory mechanism for the degradation of malonyl-ACP in plants which is activated by the accumulation of the fatty acid synthase intermediate 3-oxoacyl-ACP. PMID:9020860

  13. Decarboxylation of malonyl-(acyl carrier protein) by 3-oxoacyl-(acyl carrier protein) synthases in plant fatty acid biosynthesis.

    PubMed

    Winter, E; Brummel, M; Schuch, R; Spener, F

    1997-01-15

    In order to identify regulatory steps in fatty acid biosynthesis, the influence of intermediate 3-oxoacyl-(acyl carrier proteins) (3-oxoacyl-ACPs) and end-product acyl-ACPs of the fatty acid synthase reaction on the condensation reaction was investigated in vitro, using total fatty acid synthase preparations and purified 3-oxoacyl-ACP synthases (KASs; EC 2.3.1.41) from Cuphea lanceolata seeds. KAS I and II in the fatty acid synthase preparations were assayed for the elongation of octanoyl- and hexadecanoyl-ACP respectively, and the accumulation of the corresponding condensation product 3-oxoacyl-ACP was studied by modulating the content of the reducing equivalentS NADH and NADPH. Complete omission of reducing equivalents resulted with either KAS in the abnormal synthesis of acetyl-ACP from malonyl-ACP by a decarboxylation reaction. Supplementation with NADPH or NADH, separately or in combination with recombinant 3-oxoacyl-ACP reductase (EC 1.1.1.100), led to a decrease in the amount of acetyl-ACP and a simultaneous increase in elongation products. This demonstrates that the accumulation of 3-oxoacyl-ACP inhibits the condensation reaction on the one hand, and induces the decarboxylation of malonyl-ACP on the other. By carrying out similar experiments with purified enzymes, this decarboxylation was attributed to the action of KAS. Our data point to a regulatory mechanism for the degradation of malonyl-ACP in plants which is activated by the accumulation of the fatty acid synthase intermediate 3-oxoacyl-ACP.

  14. Beta-ketoacyl-acyl carrier protein synthase III from pea (Pisum sativum L.): properties, inhibition by a novel thiolactomycin analogue and isolation of a cDNA clone encoding the enzyme.

    PubMed

    Jones, A Lesley; Gane, Andy M; Herbert, Derek; Willey, David L; Rutter, Andrew J; Kille, Peter; Dancer, Jane E; Harwood, John L

    2003-03-01

    A beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III; short-chain condensing enzyme) has been partly purified from pea leaves. The enzyme, which had acetyl-CoA:ACP acyltransferase (ACAT) activity, was resolved from a second, specific, ACAT protein. The KAS III enzyme had a derived molecular mass of 42 kDa (from its cDNA sequence) and operated as a dimer. Its enzymological characteristics were similar to those of two other plant KAS III enzymes except for its inhibition by thiolactomycin. A derivative of thiolactomycin containing a longer (C8 saturated) hydrophobic side-chain (compound 332) was a more effective inhibitor of pea KAS III and showed competitive inhibition towards malonyl-ACP whereas thiolactomycin showed uncompetitive characteristics at high concentrations. This difference may be due to the better fit of compound 332 into a hydrophobic pocket at the active site. A full-length cDNA for the pea KAS III was isolated. This was expressed in Escherichia coli as a fusion protein with glutathione S-transferase in order to facilitate subsequent purification. Demonstrated activity in preparations from E. coli confirmed that the cDNA encoded a KAS III enzyme. Furthermore, the expressed KAS III had ACAT activity, showing that the latter was inherent. The derived amino acid sequence of the pea cDNA showed 81-87% similarity to that for other plant dicotyledon KAS IIIs, somewhat less for Allium porrum (leek, 71%) and for Porphyra spp. (62%), Synechocystis spp. (65%) and various bacteria (42-65%). The pea KAS III exhibited four areas of homology, three of which were around the active-site Cys(123), His(323) and Asn(353). In addition, a stretch of 23 amino acids (residues 207-229 in the pea KAS III) was almost completely conserved in the plant KAS IIIs. Modelling this stretch showed they belonged to a peptide fragment that fitted over the active site and contained segments suggested to be involved in substrate binding and in conformational changes during

  15. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.

    PubMed

    Maloney, Finn P; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2016-09-13

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA.

  16. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    DOE PAGES

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; ...

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products inmore » BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.« less

  17. Genetic construction and functional analysis of hybrid polyketide synthases containing heterologous acyl carrier proteins.

    PubMed Central

    Khosla, C; McDaniel, R; Ebert-Khosla, S; Torres, R; Sherman, D H; Bibb, M J; Hopwood, D A

    1993-01-01

    The gene that encodes the acyl carrier protein (ACP) of the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor A3(2) was replaced with homologs from the granaticin, oxytetracycline, tetracenomycin, and putative frenolicin polyketide synthase gene clusters. All of the replacements led to expression of functional synthases, and the recombinants synthesized aromatic polyketides similar in chromatographic properties to actinorhodin or to shunt products produced by mutants defective in the actinorhodin pathway. Some regions within the ACP were also shown to be interchangeable and allow production of a functional hybrid ACP. Structural analysis of the most abundant polyketide product of one of the recombinants by electrospray mass spectrometry suggested that it is identical to mutactin, a previously characterized shunt product of an actVII mutant (deficient in cyclase and dehydrase activities). Quantitative differences in the product profiles of strains that express the various hybrid synthases were observed. These can be explained, at least in part, by differences in ribosome-binding sites upstream of each ACP gene, implying either that the ACP concentration in some strains is rate limiting to overall PKS activity or that the level of ACP expression also influences the expression of another enzyme(s) encoded by a downstream gene(s) in the same operon as the actinorhodin ACP gene. These results reaffirm the idea that construction of hybrid polyketide synthases will be a useful approach for dissecting the molecular basis of the specificity of PKS-catalyzed reactions. However, they also point to the need for reducing the chemical complexity of the approach by minimizing the diversity of polyketide products synthesized in strains that produce recombinant polyketide synthases. Images PMID:8468280

  18. Isolation and characterization of a cDNA from Cuphea lanceolata encoding a beta-ketoacyl-ACP reductase.

    PubMed

    Klein, B; Pawlowski, K; Höricke-Grandpierre, C; Schell, J; Töpfer, R

    1992-05-01

    A cDNA encoding beta-ketoacyl-ACP reductase (EC 1.1.1.100), an integral part of the fatty acid synthase type II, was cloned from Cuphea lanceolata. This cDNA of 1276 bp codes for a polypeptide of 320 amino acids with 63 N-terminal residues presumably representing a transit peptide and 257 residues corresponding to the mature protein of 27 kDa. The encoded protein shows strong homology with the amino-terminal sequence and two tryptic peptides from avocado mesocarp beta-ketoacyl-ACP reductase, and its total amino acid composition is highly similar to those of the beta-ketoacyl-ACP reductases of avocado and spinach. Amino acid sequence homologies to polyketide synthase, beta-ketoreductases and short-chain alcohol dehydrogenases are discussed. An engineered fusion protein lacking most of the transit peptide, which was produced in Escherichia coli, was isolated and proved to possess beta-ketoacyl-ACP reductase activity. Hybridization studies revealed that in C. lanceolata beta-ketoacyl-ACP reductase is encoded by a small family of at least two genes and that members of this family are expressed in roots, leaves, flowers and seeds.

  19. In Vitro Investigation of Crosstalk between Fatty Acid and Polyketide Synthases in the Andrimid Biosynthetic Assembly Line.

    PubMed

    Ishikawa, Fumihiro; Sugimoto, Hiroyasu; Kakeya, Hideaki

    2016-11-17

    Andrimid (Adm) synthase, which belongs to the type II system of enzymes, produces Adm in Pantoea agglomerans. The adm biosynthetic gene cluster lacks canonical acyltransferases (ATs) to load the malonyl group to acyl carrier proteins (ACPs), thus suggesting that a malonyl-CoA ACP transacylase (MCAT) from the fatty acid synthase (FAS) complex provides the essential AT activity in Adm biosynthesis. Here we report that an MCAT is essential for catalysis of the transacylation of malonate from malonyl-CoA to AdmA polyketide synthase (PKS) ACP in vitro. Catalytic self-malonylation of AdmA (PKS ACP) was not observed in reactions without MCAT, although many type II PKS ACPs are capable of catalyzing self-acylation. This lack of self-malonylation was explained by amino acid sequence analysis of the AdmA PKS ACP and the type II PKS ACPs. The results show that MCAT from the organism's FAS complex can provide the missing AT activity in trans, thus suggesting a protein-protein interaction between the fatty acid and polyketide synthases in the Adm assembly line. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases.

    PubMed

    Leonard, J M; Knapp, S J; Slabaugh, M B

    1998-03-01

    Acyl-acyl carrier protein (ACP) thioesterases with specificities on medium chain substrates (C8-C14) are requisite enzymes in plants that produce 8:0, 10:0, 12:0 and 14:0 seed oils, but they may not be the sole enzymatic determinants of chain length. The contribution to chain length regulation of a beta-ketoacyl-ACP synthase, Cw KAS A1, derived from Cuphea wrightii, a species that accumulates 30% 10:0 and 54% 12:0 in seed oils, was investigated. Expression of Cw KAS A1 in Arabidopsis seeds reduced 16:0 from 8.2 to 6.2 mol%, suggesting a KAS II-type activity. In the presence of the KAS I inhibitor cerulenin, however, transgenic seed extracts extended 6:0- and 8:0-ACP at a rate four- to fivefold greater than extracts from untransformed plants, whereas no difference was observed in extension of 14:0- and 16:0-ACP. The effect of KAS A1 on seed oils was tested by combining it with the C. wrightii medium chain-specific thioesterases, Cw FatB1 and Cw FatB2, in crosses of transformed plants. Fatty acid synthesis thesis shifted towards shorter chains in progeny expressing both classes of enzymes. KasA1/FatB1 homozygotes produced threefold more 12:0 than the FatB1 parent while 14:0 and 16:0 were reduced by one-third and one-half, respectively. F2 progeny expressing KasA1 and FatB2 produced twofold more 10:0 and 1.4-fold more 12:0 than the FatB2 parent, and the double-transgenic progeny produced one-quarter less 14:0 and one-half less 16:0 than the FatB2 parent. It is hypothesized that the shift towards production of shorter chains resulted from increased pools of medium chain acyl-ACP resulting from KAS A1 activity. The combined activities of KAS A1 and FatB thioesterases appear to determine the C. wrightii phenotype.

  1. Insights from computational analysis of full-length β-ketoacyl-[ACP] synthase-II cDNA isolated from American and African oil palms

    PubMed Central

    Bhore, Subhash J.; Cha, Thye S.; Amelia, Kassim; Shah, Farida H.

    2014-01-01

    Background: Palm oil derived from fruits (mesocarp) of African oil palm (Elaeis guineensis Jacq. Tenera) and American oil palm (E. oleifera) is important for food industry. Due to high yield, Elaeis guineensis (Tenera) is cultivated on commercial scale, though its oil contains high (~54%) level of saturated fatty acids. The rate-limiting activity of beta-ketoacyl-[ACP] synthase-II (KAS-II) is considered mainly responsible for the high (44%) level of palmitic acid (C16:0) in the oil obtained from E. guineensis. Objective: The objective of this study was to annotate KAS-II cDNA isolated from American and African oil palms. Materials and Methods: The full-length E. oleifera KAS-II (EoKAS-II) cDNA clone was isolated using random method of gene isolation. Whereas, the E. guineensis KAS-II (EgTKAS-II) cDNA was isolated using reverse transcriptase polymerase chain reaction (RT-PCR) technique; and missing ends were obtained by employing 5’and 3’ RACE technique. Results: The results show that EoKAS-II and EgTKAS-II open reading frames (ORFs) are of 1689 and 1721 bp in length, respectively. Further analysis of the both EoKAS-II and EgTKAS-II predicted protein illustrates that they contains conserved domains for ‘KAS-I and II’, ‘elongating’ condensing enzymes, ‘condensing enzymes super-family’, and ‘3-oxoacyl-[ACP] synthase II’. The predicted protein sequences shows 95% similarity with each other. Consecutively, the three active sites (Cys, His, and His) were identified in both proteins. However, difference in positions of two active Histidine (His) residues was noticed. Conclusion: These insights may serve as the foundation in understanding the variable activity of KAS-II in American and African oil palms; and cDNA clones could be useful in the genetic engineering of oil palms. PMID:24678202

  2. Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.

    PubMed

    Feng, Yanbin; Zhang, Yunxiu; Wang, Yayue; Liu, Jiao; Liu, Yinghui; Cao, Xupeng; Xue, Song

    2018-04-01

    Medium-chain fatty acids have attracted significant attention as sources of biofuels in recent years. Acyl-ACP thioesterase, which is considered as the key enzyme to determine the carbon chain length, catalyzes the termination of de novo fatty acid synthesis. Although recombinant medium-chain acyl-ACP thioesterase (TE) affects the fatty acid profile in heterologous cells, tailoring of the fatty acid composition merely by engineering a specific TE is still intractable. In this study, the activity of a C8-C10-specific thioesterase FatB2 from Cuphea hookeriana on C10-ACP was quantified twice as high as that on C8-ACP based on a synthetic C8-C16 acyl-ACP pool in vitro. Whereas in vivo, it was demonstrated that ChFatB2 preferred to accumulate C8 fatty acids with 84.9% composition in the ChFatB2-engineered E. coli strain. To achieve C10 fatty acid production, ChFatB2 was rationally tuned based on structural investigation and enzymatic analysis. An I198E mutant was identified to redistribute the C8-ACP flow, resulting in C10 fatty acid being produced as the principal component at 57.6% of total fatty acids in vivo. It was demonstrated that the activity of TE relative to β-ketoacyl-ACP synthases (KAS) directly determined the fatty acid composition. Our results provide a prospective strategy in tailoring fatty acid synthesis by tuning of TE activities based on TE-ACP interaction.

  3. Mycobacterium tuberculosis acyl carrier protein synthase adopts two different pH-dependent structural conformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance

    2011-07-01

    Bacterial acyl carrier protein synthase plays an essential role in the synthesis of fatty acids, nonribosomal peptides and polyketides. In Mycobacterium tuberculosis, AcpS or group I phosphopentatheine transferase exhibits two different structural conformations depending upon the pH. The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS–ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the α2 helix andmore » in the conformation of the α3–α4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4–6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS–ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS–ADP adopt different conformations depending upon the pH conditions of the crystallization solution.« less

  4. Sulfonyl 3-alkynyl pantetheinamides as mechanism-based crosslinkers of ACP dehydratase

    PubMed Central

    Ishikawa, Fumihiro; Haushalter, Robert W.; Lee, D. John; Finzel, Kara; Burkart, Michael D.

    2013-01-01

    The acyl carrier protein (ACP) plays a central function in acetate biosynthetic pathways, serving as a tether for substrates and growing intermediates. Activity and structural studies have highlighted the complexities of this role, and its protein-protein interactions have recently come under scrutiny as a regulator of catalysis. As existing methods to interrogate these interactions have fallen short, we have sought to develop new tools to aid their study. Here we describe the design, synthesis, and application of pantetheinamides capable of crosslinking ACPs with catalytic β-hydroxyacyl carrier protein dehydratase (DH) domains based upon a 3-alkynyl sulfone warhead. We demonstrate this process by application to the Escherichia coli fatty acid synthase and apply it to probe protein-protein interactions with non-cognate carrier proteins. Finally, we use solution phase protein NMR to demonstrate that sulfonyl-3-alkynyl pantetheinamide is fully sequestered by the ACP, indicating that the crypto-ACP closely mimics the natural DH substrate. This crosslinking technology offers immediate potential to lock these biosynthetic enzymes in their native binding states by providing access to mechanistically-crosslinked enzyme complexes, presenting a solution to ongoing structural challenges. PMID:23718183

  5. Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.

    PubMed

    Jing, Fuyuan; Zhao, Le; Yandeau-Nelson, Marna D; Nikolau, Basil J

    2018-02-28

    The substrate specificity of acyl-ACP thioesterase (TE) plays an essential role in controlling the fatty acid profile produced by type II fatty acid synthases. Here we identify two groups of residues that synergistically determine different substrate specificities of two acyl-ACP TEs from Cuphea viscosissima (CvFatB1 and CvFatB2). One group (V194, V217, N223, R226, R227, and I268 in CvFatB2) is critical in determining the structure and depth of a hydrophobic cavity in the N-terminal hotdog domain that binds the substrate's acyl moiety. The other group (255-RKLSKI-260 and 285-RKLPKL-289 in CvFatB2) defines positively charged surface patches that may facilitate binding of the ACP moiety. Mutagenesis of residues within these two groups results in distinct synthetic acyl-ACP TEs that efficiently hydrolyze substrates with even shorter chains (C4- to C8-ACPs). These insights into structural determinants of acyl-ACP TE substrate specificity are useful in modifying this enzyme for tailored fatty acid production in engineered organisms.

  6. Recognition of Acyl Carrier Proteins by Ketoreductases in Assembly Line Polyketide Synthases

    PubMed Central

    Ostrowski, Matthew P.; Cane, David E.; Khosla, Chaitan

    2016-01-01

    Ketoreductases (KRs) are the most widespread tailoring domains found in individual modules of assembly line polyketide synthases (PKSs), and are responsible for controlling the configurations of both the α-methyl and β-hydroxyl stereogenic centers in the growing polyketide chain. Because they recognize substrates that are covalently bound to acyl carrier proteins (ACPs) within the same PKS module, we sought to quantify the extent to which protein-protein recognition contributes to the turnover of these oxidoreductive enzymes using stand-alone domains from the 6-deoxyerythronolide B synthase (DEBS). Reduced 2-methyl-3-hydroxyacyl-ACP substrates derived from two enantiomeric acyl chains and four distinct ACP domains were synthesized and presented to four distinct KR domains. Two KRs, from DEBS modules 2 and 5, displayed little preference for oxidation of substrates tethered to their cognate ACP domains over those attached to the other ACP domains tested. In contrast, the KR from DEBS module 1 showed a ca. 10-50-fold preference for substrate attached to its native ACP domain, whereas the KR from DEBS module 6 actually displayed a ca. 10-fold preference for the ACP from DEBS module 5. Our findings suggest that recognition of the ACP by a KR domain is unlikely to affect the rate of native assembly line polyketide biosynthesis. In some cases, however, unfavorable KR-ACP interactions may suppress the rate of substrate processing when KR domains are swapped to construct hybrid PKS modules. PMID:27118242

  7. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2016-08-01

    The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.

  8. Mycobacterium tuberculosis acyl carrier protein synthase adopts two different pH-dependent structural conformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance

    2011-09-20

    The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS-ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the {alpha}2 helix and in the conformation of the {alpha}3-{alpha}4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4-6.0). In contrast, at a highermore » pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS-ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS-ADP adopt different conformations depending upon the pH conditions of the crystallization solution.« less

  9. MCAT is not required for in vitro polyketide synthesis in a minimal actinorhodin polyketide synthase from Streptomyces coelicolor.

    PubMed

    Matharu, A L; Cox, R J; Crosby, J; Byrom, K J; Simpson, T J

    1998-12-01

    It has been proposed that Streptomyces malonyl CoA: holo acyl carrier protein transacylases (MCATs) provide a link between fatty acid and polyketide biosynthesis. Two recent studies have provided evidence that the presence of MCAT is essential for polyketide synthesis to proceed in reconstituted minimal polyketide synthases (PKSs). In contrast to this, we previously showed that the holo acyl carrier proteins (ACPs) from type II PKSs are capable of catalytic self-malonylation in the presence of malonyl CoA, which suggests that MCAT might not be necessary for polyketide biosynthesis. We reconstituted a homologous actinorhodin (act) type II minimal PKS in vitro. When act holo-ACP is present in limiting concentrations, MCAT is required by the synthase complex in order for polyketide biosynthesis to proceed. When holo-ACP is present in excess, however, efficient polyketide synthesis proceeds without MCAT. The rate of polyketide production increases with holo-ACP concentration, but at low ACP concentration or equimolar AC:KS:CLF (KS, ketosynthase; CLF, chain length determining factor) concentrations this rate is significantly lower than expected, indicating that free holo-ACP is sequestered by the KS/CLF complex. The rate of polyketide biosynthesis is dictated by the ratio of holo-ACP to KS and CLF, as well as by the total protein concentration. There is no absolute requirement for MCAT in polyketide biosynthesis in vitro, although the role of MCAT during polyketide synthesis in vivo remains an open question. MCAT might be responsible for the rate enhancement of malonyl transfer at very low free holo-ACP concentrations or it could be required to catalyse the transfer of malonyl groups from malonyl CoA to sequestered holo-ACP.

  10. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcella, Aaron M.; Culbertson, Sannie J.; Shogren-Knaak, Michael A.

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05 and 4.10 Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determiningmore » the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a KD = 62 ± 13 nM, followed by the binding of two more equivalents of holo-ACPP with KD = 1.2 ± 0.2 μM. Cooperativity was not observed for apo-ACPP which bound with KD = 2.4 ± 0.1 μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis.« less

  11. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    PubMed

    Trujillo, Uldaeliz; Vázquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J; Vassallo, David A; Vega, Irving E; Arold, Stefan T; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  12. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    PubMed Central

    Trujillo, Uldaeliz; Vázquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J.; Vassallo, David A.; Vega, Irving E.; Arold, Stefan T.; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  13. Alteration of the fatty acid profile of Streptomyces coelicolor by replacement of the initiation enzyme 3-ketoacyl acyl carrier protein synthase III (FabH).

    PubMed

    Li, Yongli; Florova, Galina; Reynolds, Kevin A

    2005-06-01

    The first elongation step of fatty acid biosynthesis by a type II dissociated fatty acid synthases is catalyzed by 3-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII, FabH). This enzyme, encoded by the fabH gene, catalyzes a decarboxylative condensation between an acyl coenzyme A (CoA) primer and malonyl-ACP. In organisms such as Escherichia coli, which generate only straight-chain fatty acids (SCFAs), FabH has a substrate preference for acetyl-CoA. In streptomycetes and other organisms which produce a mixture of both SCFAs and branched-chain fatty acids (BCFAs), FabH has been shown to utilize straight- and branched-chain acyl-CoA substrates. We report herein the generation of a Streptomyces coelicolor mutant (YL/ecFabH) in which the chromosomal copy of the fabH gene has been replaced and the essential process of fatty acid biosynthesis is initiated by plasmid-based expression of the E. coli FabH (bearing only 35% amino acid identity to the Streptomyces enzyme). The YL/ecFabH mutant produces predominantly SCFAs (86%). In contrast, BCFAs predominate (approximately 70%) in both the S. coelicolor parental strain and S. coelicolor YL/sgFabH (a deltafabH mutant carrying a plasmid expressing the Streptomyces glaucescens FabH). These results provide the first unequivocal evidence that the substrate specificity of FabH observed in vitro is a determinant of the fatty acid made in an organism. The YL/ecFabH strain grows significantly slower on both solid and liquid media. The levels of FabH activity in cell extracts of YL/ecFabH were also significantly lower than those in cell extracts of YL/sgFabH, suggesting that a decreased rate of fatty acid synthesis may account for the observed decreased growth rate. The production of low levels of BCFAs in YL/ecFabH suggests either that the E. coli FabH is more tolerant of different acyl-CoAs substrates than previously thought or that there is an additional pathway for initiation of BCFA biosynthesis in Streptomyces coelicolor.

  14. Kernel based machine learning algorithm for the efficient prediction of type III polyketide synthase family of proteins.

    PubMed

    Mallika, V; Sivakumar, K C; Jaichand, S; Soniya, E V

    2010-07-13

    Type III Polyketide synthases (PKS) are family of proteins considered to have significant roles in the biosynthesis of various polyketides in plants, fungi and bacteria. As these proteins shows positive effects to human health, more researches are going on regarding this particular protein. Developing a tool to identify the probability of sequence being a type III polyketide synthase will minimize the time consumption and manpower efforts. In this approach, we have designed and implemented PKSIIIpred, a high performance prediction server for type III PKS where the classifier is Support Vector Machines (SVMs). Based on the limited training dataset, the tool efficiently predicts the type III PKS superfamily of proteins with high sensitivity and specificity. The PKSIIIpred is available at http://type3pks.in/prediction/. We expect that this tool may serve as a useful resource for type III PKS researchers. Currently work is being progressed for further betterment of prediction accuracy by including more sequence features in the training dataset.

  15. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    PubMed

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in

  16. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity.

    PubMed

    Jing, Fuyuan; Cantu, David C; Tvaruzkova, Jarmila; Chipman, Jay P; Nikolau, Basil J; Yandeau-Nelson, Marna D; Reilly, Peter J

    2011-08-10

    Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids.

  17. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity

    PubMed Central

    2011-01-01

    Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids. PMID:21831316

  18. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex.

    PubMed

    Marcella, Aaron M; Culbertson, Sannie J; Shogren-Knaak, Michael A; Barb, Adam W

    2017-11-24

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05and 4.10Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a K D =62±13nM, followed by the binding of two more equivalents of holo-ACPP with K D =1.2±0.2μM. Cooperativity was not observed for apo-ACPP which bound with K D =2.4±0.1μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Modulation of medium-chain fatty acid synthesis in Synechococcus sp. PCC 7002 by replacing FabH with a Chaetoceros Ketoacyl-ACP synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Huiya; Jinkerson, Robert E.; Davies, Fiona K.

    The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novomore » assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase Ill increased MCFA synthesis up to fivefold. In conclusion, the level of increase is dependent on promoter strength and culturing conditions.« less

  20. Modulation of medium-chain fatty acid synthesis in Synechococcus sp. PCC 7002 by replacing FabH with a Chaetoceros Ketoacyl-ACP synthase

    DOE PAGES

    Gu, Huiya; Jinkerson, Robert E.; Davies, Fiona K.; ...

    2016-05-26

    The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novomore » assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase Ill increased MCFA synthesis up to fivefold. In conclusion, the level of increase is dependent on promoter strength and culturing conditions.« less

  1. 26 CFR 1.401(m)-2 - ACP test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false ACP test. 1.401(m)-2 Section 1.401(m)-2 Internal... TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-2 ACP test. (a) Actual contribution percentage (ACP) test—(1) In general—(i) ACP test formula. A plan satisfies the ACP test for a plan year only...

  2. Crystallization and preliminary crystallographic analysis of an acridone-producing novel multifunctional type III polyketide synthase from Huperzia serrata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Hiroyuki; Kondo, Shin; Kato, Ryohei

    2007-07-01

    An acridone-producing novel type III polyketide synthase from H. serrata has been overexpressed in E. coli, purified and crystallized. Diffraction data have been collected to 2.0 Å. Polyketide synthase 1 (PKS1) from Huperzia serrata is a plant-specific type III polyketide synthase that shows an unusually versatile catalytic potential, producing various aromatic tetraketides, including chalcones, benzophenones, phlorogulucinols and acridones. Recombinant H. serrata PKS1 expressed in Escherichia coli was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 73.3, b = 85.0, c = 137.7 Å, α =more » β = γ = 90.0°. Diffraction data were collected to 2.0 Å resolution using synchrotron radiation at BL24XU of SPring-8.« less

  3. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed Central

    Jones, A; Davies, H M; Voelker, T A

    1995-01-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase. PMID:7734968

  4. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed

    Jones, A; Davies, H M; Voelker, T A

    1995-03-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase.

  5. Protein-Protein Interactions, Not Substrate Recognition, Dominate the Turnover of Chimeric Assembly Line Polyketide Synthases*

    PubMed Central

    Klaus, Maja; Ostrowski, Matthew P.; Austerjost, Jonas; Robbins, Thomas; Lowry, Brian; Cane, David E.; Khosla, Chaitan

    2016-01-01

    The potential for recombining intact polyketide synthase (PKS) modules has been extensively explored. Both enzyme-substrate and protein-protein interactions influence chimeric PKS activity, but their relative contributions are unclear. We now address this issue by studying a library of 11 bimodular and 8 trimodular chimeric PKSs harboring modules from the erythromycin, rifamycin, and rapamycin synthases. Although many chimeras yielded detectable products, nearly all had specific activities below 10% of the reference natural PKSs. Analysis of selected bimodular chimeras, each with the same upstream module, revealed that turnover correlated with the efficiency of intermodular chain translocation. Mutation of the acyl carrier protein (ACP) domain of the upstream module in one chimera at a residue predicted to influence ketosynthase-ACP recognition led to improved turnover. In contrast, replacement of the ketoreductase domain of the upstream module by a paralog that produced the enantiomeric ACP-bound diketide caused no changes in processing rates for each of six heterologous downstream modules compared with those of the native diketide. Taken together, these results demonstrate that protein-protein interactions play a larger role than enzyme-substrate recognition in the evolution or design of catalytically efficient chimeric PKSs. PMID:27246853

  6. Discriminating the reaction types of plant type III polyketide synthases

    PubMed Central

    Shimizu, Yugo; Ogata, Hiroyuki; Goto, Susumu

    2017-01-01

    Abstract Motivation: Functional prediction of paralogs is challenging in bioinformatics because of rapid functional diversification after gene duplication events combined with parallel acquisitions of similar functions by different paralogs. Plant type III polyketide synthases (PKSs), producing various secondary metabolites, represent a paralogous family that has undergone gene duplication and functional alteration. Currently, there is no computational method available for the functional prediction of type III PKSs. Results: We developed a plant type III PKS reaction predictor, pPAP, based on the recently proposed classification of type III PKSs. pPAP combines two kinds of similarity measures: one calculated by profile hidden Markov models (pHMMs) built from functionally and structurally important partial sequence regions, and the other based on mutual information between residue positions. pPAP targets PKSs acting on ring-type starter substrates, and classifies their functions into four reaction types. The pHMM approach discriminated two reaction types with high accuracy (97.5%, 39/40), but its accuracy decreased when discriminating three reaction types (87.8%, 43/49). When combined with a correlation-based approach, all 49 PKSs were correctly discriminated, and pPAP was still highly accurate (91.4%, 64/70) even after adding other reaction types. These results suggest pPAP, which is based on linear discriminant analyses of similarity measures, is effective for plant type III PKS function prediction. Availability and Implementation: pPAP is freely available at ftp://ftp.genome.jp/pub/tools/ppap/ Contact: goto@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334262

  7. Identification and characterization of a class III chitin synthase gene of Moniliophthora perniciosa, the fungus that causes witches' broom disease of cacao.

    PubMed

    Souza, Catiane S; Oliveira, Bruno M; Costa, Gustavo G L; Schriefer, Albert; Selbach-Schnadelbach, Alessandra; Uetanabaro, Ana Paula T; Pirovani, Carlos P; Pereira, Gonçalo A G; Taranto, Alex G; Cascardo, Júlio Cézar de M; Góes-Neto, Aristóteles

    2009-08-01

    Chitin synthase (CHS) is a glucosyltransferase that converts UDP-N-acetylglucosamine into chitin, one of the main components of fungal cell wall. Class III chitin synthases act directly in the formation of the cell wall. They catalyze the conversion of the immediate precursor of chitin and are responsible for the majority of chitin synthesis in fungi. As such, they are highly specific molecular targets for drugs that can inhibit the growth and development of fungal pathogens. In this work, we have identified and characterized a chitin synthase gene of Moniliophthora perniciosa (Mopchs) by primer walking. The complete gene sequence is 3,443 bp, interrupted by 13 small introns, and comprises a cDNA with an ORF with 2,739 bp, whose terminal region was experimentally determined, encoding a protein with 913 aa that harbors all the motifs and domains typically found in class III chitin synthases. This is the first report on the characterization of a chitin synthase gene, its mature transcription product, and its putative protein in basidioma and secondary mycelium stages of M. perniciosa, a basidiomycotan fungus that causes witches' broom disease of cacao.

  8. Genetic variation of an acid phosphatase (Acp-2) in the laboratory rat: possible homology with mouse AP-1 and human ACP2.

    PubMed

    Bender, K; Bissbort, S; Kuhn, A; Nagel, M; Günther, E

    1986-02-01

    A genetic locus controlling the electrophoretic mobility of an acid phosphatase in the rat (Rattus norvegicus) is described. The locus, designed Acp-2, is not expressed in erythrocytes but is expressed in all other tissues studied. The product of Acp-2 hydrolyzes a wide variety of phosphate monoesters and is inhibited by L(+)-tartaric acid. Inbred rat strains have fixed either allele Acp-2a or allele Acp-2b. Codominant expression is observed in the respective F1 hybrids. Backcross progenies revealed the expected 1:1 segregation ratio. Possible loose linkage was found between the Acp-2 and the Pep-3 gene loci at a recombination frequency of 0.36 +/- 0.06.

  9. HAEM SYNTHASE AND COBALT PORPHYRIN SYNTHASE IN VARIOUS MICRO-ORGANISMS.

    PubMed

    PORRA, R J; ROSS, B D

    1965-03-01

    1. The preparation of a crude extract of Clostridium tetanomorphum containing cobalt porphyrin synthase but little haem-synthase activity is described. 2. The properties of cobalt porphyrin synthase in the clostridial extracts is compared with the properties of a haem synthase present in crude extracts of the yeast Torulopsis utilis. 3. Cobalt porphyrin synthase in extracts of C. tetanomorphum inserts Co(2+) ions into the following dicarboxylic porphyrins in descending order of rate of insertion: meso-, deutero- and proto-porphyrins. Esterification renders meso- and deutero-porphyrins inactive as substrates. Neither the tetracarboxylic (coproporphyrin III) nor the octacarboxylic (uroporphyrin III) compounds are converted into cobalt porphyrins by the extract, but the non-enzymic incorporation of Co(2+) ions into these two porphyrins is rapid. These extracts are unable to insert Mn(2+), Zn(2+), Mg(2+) or Cu(2+) ions into mesoporphyrin. 4. Crude extracts of T. utilis readily insert both Co(2+) and Fe(2+) ions into deutero-, meso, and proto-porphyrins. Unlike the extracts of C. tetanomorphum, these preparations catalyse the insertion of Co(2+) ions into deuteroporphyrin more rapidly than into mesoporphyrin. This parallels the formation of haems by the T. utilis extract. 5. Cobalt porphyrin synthase is present in the particulate fraction of the extracts of C. tetanomorphum but requires a heat-stable factor present in the soluble fraction. This soluble factor can be replaced by GSH. 6. Cobalt porphyrin synthase in the clostridial extract is inhibited by iodoacetamide and to a smaller extent by p-chloromercuribenzoate and N-ethylmaleimide. The haem synthases of T. utilis and Micrococcus denitrificans are also inhibited by various thiol reagents.

  10. An Unusual Fatty Acyl:Adenylate Ligase (FAAL)-Acyl Carrier Protein (ACP) Didomain in Ambruticin Biosynthesis.

    PubMed

    Hemmerling, Franziska; Lebe, Karen E; Wunderlich, Johannes; Hahn, Frank

    2018-03-08

    The divinylcyclopropane (DVC) fragment of the ambruticins is proposed to be formed by a unique polyene cyclisation mechanism, in which the unusual didomain AmbG plays a key role. It is proposed to activate the branched thioester carboxylic acid resulting from polyene cyclisation and to transfer it to its associated acyl carrier protein (ACP). After oxidative decarboxylation, the intermediate is channelled back into polyketide synthase (PKS) processing. AmbG was previously annotated as an adenylation-thiolation didomain with a very unusual substrate selectivity code but has not yet been biochemically studied. On the basis of sequence and homology model analysis, we reannotate AmbG as a fatty acyl:adenylate ligase (FAAL)-acyl carrier protein didomain with unusual substrate specificity. The expected adenylate-forming activity on fatty acids was confirmed by in vitro studies. AmbG also adenylates a number of structurally diverse carboxylic acids, including functionalised fatty acids and unsaturated and aromatic carboxylic acids. HPLC-MS analysis and competition experiments show that AmbG preferentially acylates its ACP with long-chain hydrophobic acids and tolerates a π system and a branch near the carboxylic acid. AmbG is the first characterised example of a FAAL-ACP didomain that is centrally located in a PKS and apparently activates a polyketidic intermediate. This is an important step towards deeper biosynthetic studies such as partial reconstitution of the ambruticin pathway to elucidate DVC formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 26 CFR 1.401(m)-2 - ACP test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false ACP test. 1.401(m)-2 Section 1.401(m)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-2 ACP test. (a) Actual... under paragraph (a)(1) of this section either— (A) Pursuant to section 401(m)(5)(C), the ACP test is...

  12. Ketoacylsynthase Domains of a Polyunsaturated Fatty Acid Synthase in Thraustochytrium sp. Strain ATCC 26185 Can Effectively Function as Stand-Alone Enzymes in Escherichia coli.

    PubMed

    Xie, Xi; Meesapyodsuk, Dauenpen; Qiu, Xiao

    2017-05-01

    Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. coli fabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in Thraustochytrium IMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a megaenzyme with

  13. Ketoacylsynthase Domains of a Polyunsaturated Fatty Acid Synthase in Thraustochytrium sp. Strain ATCC 26185 Can Effectively Function as Stand-Alone Enzymes in Escherichia coli

    PubMed Central

    Xie, Xi; Meesapyodsuk, Dauenpen

    2017-01-01

    ABSTRACT Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli. The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. coli fabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in Thraustochytrium. IMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a

  14. Patient safety in phlebology: The ACP Phlebology Safety Checklist.

    PubMed

    Collares, Felipe Birchal; Sonde, Mehru; Harper, Kenneth; Armitage, Michael; Neuhardt, Diana L; Fronek, Helane S

    2018-05-01

    Objectives To assess the current use of safety checklists among the American College of Phlebology (ACP) members and their interest in implementing a checklist supported by the ACP on their clinical practices; and to develop a phlebology safety checklist. Method Online surveys were sent to ACP members, and a phlebology safety checklist was developed by a multispecialty team through the ACP Leadership Academy. Results Forty-seven percent of respondents are using a safety checklist in their practices; 23% think that a phlebology safety checklist would interfere or disrupt workflow; 79% answered that a phlebology safety checklist could improve procedure outcomes or prevent complications; and 85% would be interested in implementing a phlebology safety checklist approved by the ACP. Conclusion A phlebology safety checklist was developed with the intent to increase awareness on patient safety and improve outcome in phlebology practice.

  15. Probing the Selectivity and Protein•Protein Interactions of a Non-Reducing Fungal Polyketide Synthase Using Mechanism-Based Crosslinkers

    PubMed Central

    Bruegger, Joel; Haushalter, Bob; Vagstad, Anna; Shakya, Gaurav; Mih, Nathan; Townsend, Craig A.; Burkart, Michael D.; Tsai, Shiou-Chuan

    2013-01-01

    SUMMARY Protein•protein interactions, which often involve interactions between an acyl carrier protein (ACP) and its partner enzymes, are important for coordinating polyketide biosynthesis. However, the nature of such interactions is not well understood, especially in the fungal non-reducing polyketide synthases (NR-PKSs) that biosynthesize toxic and pharmaceutically important polyketides. Here, we employ a mechanism-based crosslinker to successfully probe ACP and ketosynthase (KS) domain interactions in NR-PKSs. We found that crosslinking efficiency is closely correlated with the strength of ACP•KS interactions, and that KS demonstrates strong starter unit selectivity. We further identified positively charged surface residues by KS mutagenesis, which mediate key interactions with the negatively-charged ACP surface. Such complementary/matching contact pairs can serve as “adapter surfaces” for future efforts to generate new polyketides using NR-PKSs. PMID:23993461

  16. ACP5: its structure, distribution, regulation and novel functions.

    PubMed

    Ren, Xin; Shan, Wen-Hua; Wei, Lu-Lu; Gong, Chan-Chan; Pei, Dong-Sheng

    2018-04-11

    Tartrate-resistant acid phosphatase 5 (ACP5) is an evolutionarily conserved and multifunctional protein that is involved in generations of reactive oxygen species, normal bone development, osteoblast regulation and macrophage function, affecting a series of pathways, as well as reflecting bone resorption and osteoclast activity. Literature searches, systematic reviews and assessments about the structure, distribution, regulation and novel functions of ACP5 were performed in this review from PubMed and Medline databases. Studies demonstrate that RANKL can increase the expression of ACP5 through NFATc1 and c-Fos to accelerate osteoclastogenesis, which also can be regulated by many regulators. Based on aforementioned information, it is shown that ACP5, together with the phosphatase activity, can medicate the progression and development of human genetic diseases and cancer. As a novel target, ACP5 plays a critical role in preventing, monitoring and treating various kinds of tumors, as well as accelerating the development of a promising therapeutic strategy for human genetic diseases. However, the explicit mechanism between ACP5 and cancer is not so clear. It is necessary and significant for us to pay more in-depth attention. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Morphological, Thermal, and Rheological Properties of Starches from Maize Mutants Deficient in Starch Synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Li, Guantian

    2016-08-31

    Morphological, thermal, and rheological properties of starches from maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were studied and compared with the wild type. SSIII deficiency reduced granule size of the starches from 16.7 to ∼11 μm (volume-weighted mean). Thermal analysis showed that SSIII deficiency decreased the enthalpy change of starch during gelatinization. Steady shear analysis showed that SSIII deficiency decreased the consistency coefficient and yield stress during steady shearing, whereas additional deficiency in granule-bound starch synthase (GBSS) increased these values. Dynamic oscillatory analysis showed that SSIII deficiency decreased G' at 90 °C during heating and increased it when the paste was cooled to 25 °C at 40 Hz during a frequency sweep. Additional GBSS deficiency further decreased the G'. Structural and compositional bases responsible for these changes in physical properties of the starches are discussed. This study highlighted the relationship between SSIII and some physicochemical properties of maize starch.

  18. Beta-ketoacyl-acyl carrier protein synthase IV: a key enzyme for regulation of medium-chain fatty acid synthesis in Cuphea lanceolata seeds.

    PubMed

    Schütt, Burkhardt Siegfried; Abbadi, Amine; Loddenkötter, Brigitte; Brummel, Monika; Spener, Friedrich

    2002-09-01

    With the aim of elucidating the mechanisms involved in the biosynthesis of medium-chain fatty acids in Cuphea lanceolata Ait., a crop accumulating up to 90% decanoic acid in seed triacylglycerols, cDNA clones of a beta-ketoacyl-acyl carrier protein (ACP) synthase IV (clKAS IV, EC 2.3.1.41) were isolated from C. lanceolata seed embryos. The amino acid sequence deduced from clKAS IV cDNA showed 80% identity to other plant KAS II-type enzymes, 55% identity towards plant KAS I and over 90% towards other Cuphea KAS IV-type sequences. Recombinant clKAS IV was functionally overexpressed in Escherichia coli, and substrate specificity of purified enzyme showed strong preference for elongation of short-chain and medium-chain acyl-ACPs (C4- to C10-ACP) with nearly equal activity. Further elongation steps were catalysed with distinctly less activity. Moreover, short- and medium-chain acyl-ACPs exerted a chain-length-specific and concentration-dependent substrate inhibition of clKAS IV. Based on these findings a regulatory mechanism for medium-chain fatty acid synthesis in C. lanceolata is presented.

  19. Three-dimensional (3D) structure prediction of the American and African oil-palms β-ketoacyl-[ACP] synthase-II protein by comparative modelling.

    PubMed

    Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan

    2014-01-01

    The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates.

  20. Policing starter unit selection of the enterocin type II polyketide synthase by the type II thioesterase EncL.

    PubMed

    Kalaitzis, John A; Cheng, Qian; Meluzzi, Dario; Xiang, Longkuan; Izumikawa, Miho; Dorrestein, Pieter C; Moore, Bradley S

    2011-11-15

    Enterocin is an atypical type II polyketide synthase (PKS) product from the marine actinomycete 'Streptomyces maritimus'. The enterocin biosynthesis gene cluster (enc) codes for proteins involved in the assembly and attachment of the rare benzoate primer that initiates polyketide assembly with the addition of seven malonate molecules and culminates in a Favorskii-like rearrangement of the linear poly-β-ketone to give its distinctive non-aromatic, caged core structure. Fundamental to enterocin biosynthesis, which utilizes a single acyl carrier protein (ACP), EncC, for both priming with benzoate and elongating with malonate, involves maintaining the correct balance of acyl-EncC substrates for efficient polyketide assembly. Here, we report the characterization of EncL as a type II thioesterase that functions to edit starter unit (mis)priming of EncC. We performed a series of in vivo mutational studies, heterologous expression experiments, in vitro reconstitution studies, and Fourier-transform mass spectrometry-monitored competitive enzyme assays that together support the proposed selective hydrolase activity of EncL toward misprimed acetyl-ACP over benzoyl-ACP to facilitate benzoyl priming of the enterocin PKS complex. While this system resembles the R1128 PKS that also utilizes an editing thioesterase (ZhuC) to purge acetate molecules from its initiation module ACP in favor of alkylacyl groups, the enterocin system is distinct in its usage of a single ACP for both priming and elongating reactions with different substrates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Policing Starter Unit Selection of the Enterocin Type II Polyketide Synthase by the Type II Thioesterase EncL

    PubMed Central

    Kalaitzis, John A.; Cheng, Qian; Meluzzi, Dario; Xiang, Longkuan; Izumikawa, Miho; Dorrestein, Pieter C.; Moore, Bradley S.

    2011-01-01

    Enterocin is an atypical type II polyketide synthase (PKS) product from the marine actinomycete “Streptomyces maritimus”. The enterocin biosynthesis gene cluster (enc) codes for proteins involved in the assembly and attachment of the rare benzoate primer that initiates polyketide assembly with the addition of seven malonate molecules and culminates in a Favorskii-like rearrangement of the linear poly-β-ketone to give its distinctive non-aromatic, caged core structure. Fundamental to enterocin biosynthesis, which utilizes a single acyl carrier protein (ACP), EncC, for both priming with benzoate and elongating with malonate, involves maintaining the correct balance of acyl-EncC substrates for efficient polyketide assembly. Here we report the characterization of EncL as a type II thioesterase that functions to edit starter unit (mis)priming of EncC. We performed a series of in vivo mutational studies, heterologous expression experiments, in vitro reconstitution studies, and Fourier-transform mass spectrometry-monitored competitive enzyme assays that together support the proposed selective hydrolase activity of EncL toward misprimed acetyl-ACP over benzoyl-ACP to facilitate benzoyl priming of the enterocin PKS complex. While this system resembles the R1128 PKS that also utilizes an editing thioesterase (ZhuC) to purge acetate molecules from its initiation module ACP in favor of alkylacyl groups, the enterocin system is distinct in its usage of a single ACP for both priming and elongating reactions with different substrates. PMID:21531566

  2. European ACP1*C Allele Has Recessive Deleterious Effects on Early Life Viability

    PubMed Central

    WILDER, JASON A.; HAMMER, MICHAEL F.

    2005-01-01

    The acid phosphatase locus (ACP1) is a classical polymorphism that has been surveyed in hundreds of human populations worldwide. Among individuals of European ancestry, the ACP1*C allele occurs with an average frequency of approximately 0.05, whereas it is nearly absent in all other human populations. It has been hypothesized that this allele is maintained by over dominant selection among European populations. Here, we analyze ACP1 protein polymorphism data from more than 50,000 individuals previously surveyed in 67 populations across Europe as well as inheritance data from more than 6,000 European parent–offspring pairs to assess the signature of natural selection currently acting on this allele. Although we see a significant excess of ACP1*C heterozygotes relative to Hardy–Weinberg expectations, we find no evidence that natural selection favors ACP1*C heterozygotes. Instead, ACP1*C appears to have a strongly deleterious and recessive fitness effect. We observed only 48.9% of expected homozygous offspring from heterozygous parents and significantly fewer homozygotes than expected within populations. Because parent–offspring pairs indicate a significant deficiency of ACP1*C homozygotes, we infer that viability selection is acting on ACP1*C homozygotes very early in life, perhaps before birth. We estimate that approximately 1.2% of all couples of European ancestry are composed of individuals who both carry the APC1*C allele. As such, selection against ACP1*C homozygotes may represent a nonnegligible contribution to the overall number of spontaneous abortions among women of European ancestry and may cause substantial fertility reductions among some combinations of parental genotypes. PMID:15974295

  3. The Acp26Aa seminal fluid protein is a modulator of early egg hatchability in Drosophila melanogaster.

    PubMed

    Chapman, T; Herndon, L A; Heifetz, Y; Partridge, L; Wolfner, M F

    2001-08-22

    Drosophila melanogaster male accessory gland proteins (Acps) that are transferred in the ejaculate with sperm mediate post-mating competition for fertilizations between males. The actions of Acps include effects on oviposition and ovulation, receptivity and sperm storage. Two Acps that modulate egg production are Acp26Aa (ovulin) and Acp70A (the sex peptide). Acp26Aa acts specifically on the process of ovulation (the release of mature eggs from the ovaries), which is initiated 1.5 h after mating. In contrast, sperm storage can take as long as 6-9 h to complete. Initial ovulations after matings by virgin females will therefore occur before all sperm are fully stored and the extra eggs initially laid as a result of Acp26Aa transfer are expected to be inefficiently fertilized. Acp26Aa-mediated release of existing eggs should not cause a significant energetic cost or lead to a decrease in female lifespan assuming, as seems likely, that the energetic cost of egg laying comes from de novo egg synthesis (oogenesis) rather than from ovulation. We tested these predictions using Acp26Aa(1) mutant males that lack Acp26Aa but are normal for other Acps and Acp26Aa(2) males that transfer a truncated but fully functional Acp26Aa protein. Females mating with Acp26Aa(2) (truncation) males that received functional Acp26Aa produced significantly more eggs following their first matings than did mates of Acp26Aa(1) (null) males. However, as predicted above, these extra eggs, which were laid as a result of Acp26Aa transfer to virgin females, showed significantly lower egg hatchability. Control experiments indicated that this lower hatchability was due to lower rates of fertilization at early post-mating times. There was no drop in egg hatchability in subsequent non-virgin matings. In addition, as predicted above, females that did or did not receive Acp26Aa did not differ in survival, lifetime fecundity or lifetime progeny, indicating that Acp26Aa transfer does not represent a

  4. Inhibition of AcpA phosphatase activity with ascorbate attenuates Francisella tularensis intramacrophage survival.

    PubMed

    McRae, Steven; Pagliai, Fernando A; Mohapatra, Nrusingh P; Gener, Alejandro; Mahmou, Asma Sayed Abdelgeliel; Gunn, John S; Lorca, Graciela L; Gonzalez, Claudio F

    2010-02-19

    Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (K(i) = 380 +/- 160 microM) and 2-phosphoascorbate (K(i) = 3.2 +/- 0.85 microM) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia.

  5. Inhibition of AcpA Phosphatase Activity with Ascorbate Attenuates Francisella tularensis Intramacrophage Survival

    PubMed Central

    McRae, Steven; Pagliai, Fernando A.; Mohapatra, Nrusingh P.; Gener, Alejandro; Abdelgeliel Mahmou, Asma Sayed; Gunn, John S.; Lorca, Graciela L.; Gonzalez, Claudio F.

    2010-01-01

    Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (Ki = 380 ± 160 μm) and 2-phosphoascorbate (Ki = 3.2 ± 0.85 μm) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia. PMID:20028980

  6. In situ effect of CPP-ACP chewing gum upon erosive enamel loss

    PubMed Central

    de ALENCAR, Catarina Ribeiro Barros; de OLIVEIRA, Gabriela Cristina; MAGALHÃES, Ana Carolina; BUZALAF, Marília Afonso Rabelo; MACHADO, Maria Aparecida de Andrade Moreira; HONÓRIO, Heitor Marques; RIOS, Daniela

    2017-01-01

    Abstract Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is able to increase salivary calcium and phosphate levels at an acidic pH. Previous studies demonstrated that a CPP-ACP chewing gum was able to enhance the re-hardening of erosion lesions, but could not diminish enamel hardness loss. Therefore, there is no consensus regarding the effectiveness of CPP-ACP on dental erosion. Objective This in situ study investigated the ability of a CPP-ACP chewing gum in preventing erosive enamel loss. Material and Methods: During three experimental crossover phases (one phase per group) of seven days each, eight volunteers wore palatal devices with human enamel blocks. The groups were: GI – Sugar free chewing gum with CPP-ACP; GII – Conventional sugar free chewing gum; and GIII – No chewing gum (control). Erosive challenge was extraorally performed by immersion of the enamel blocks in cola drink (5 min, 4x/day). After each challenge, in groups CPP and No CPP, volunteers chewed one unit of the corresponding chewing gum for 30 minutes. Quantitative analysis of enamel loss was performed by profilometry (µm). Data were analyzed by Repeated-Measures ANOVA and Tukey’s test (p<0.05). Results The use of chewing gum (CPP and No CPP) resulted in lower erosive enamel loss compared with the control group (p<0.05). CPP-ACP chewing gum (CPP) did not improve the protection against erosive enamel loss compared with conventional chewing gum (No CPP) (p>0.05). Conclusion The CPP-ACP chewing gum was not able to enhance the anti-erosive effect of conventional chewing gum against enamel loss. PMID:28678944

  7. Three-dimensional (3D) structure prediction of the American and African oil-palms β-ketoacyl-[ACP] synthase-II protein by comparative modelling

    PubMed Central

    Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan

    2014-01-01

    Background: The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. Objective: The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. Materials and Methods: The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. Results: The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. Conclusion: The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates. PMID

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH wasmore » assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.« less

  9. Recognition of extended linear and cyclised polyketide mimics by a type II acyl carrier protein† †Electronic supplementary information (ESI) available: Detailed experimental procedures and characterisation data for all new compounds, additional spectra and structural statistics for derivatised ACP three-dimensional structures. See DOI: 10.1039/c5sc03864b Click here for additional data file.

    PubMed Central

    Dong, Xu; Bailey, Christopher D.; Williams, Christopher; Crosby, John; Simpson, Thomas J.

    2016-01-01

    Polyketides are secondary metabolites which display both valuable pharmaceutical and agrochemical properties. Biosynthesis is performed by polyketide synthases (PKSs), and the acyl carrier protein (ACP), a small acidic protein, that transports the growing polyketide chain and is essential for activity. Here we report the synthesis of two aromatic probes and a linear octaketide mimic that have been tethered to actinorhodin ACP. These experiments were aimed at probing the ACP's capacity to sequester a non-polar versus a phenolic aromatic ring (that more closely mimics a polyketide intermediate) as well as investigations with extended polyketide chain surrogates. The binding of these mimics has been assessed using high-resolution solution NMR studies and high-resolution structure determination. These results reveal that surprisingly a PKS ACP is able to bind and sequester a bulky non-polar substrate containing an aromatic ring in a fatty acid type binding mode, but the introduction of even a small degree of polarity favours a markedly different association at a surface site that is distinct from that employed by fatty acid ACPs. PMID:28936328

  10. ACP1 and human adaptability: association with past malarial morbidity in the Sardinian population.

    PubMed

    Bottini, E; Palmarino, R; Lucarelli, P; Lista, F; Bottini, N

    2001-01-01

    Acid Phosphatase locus 1 (ACP1) is a polymorphic enzyme controlled by a locus on chromosome 2 with three common codominant alleles: *A, *B, and *C. ACP1 shows two major isoforms, F and S. The ratio of their concentration differs markedly among genotypes. Two functions have been proposed for the enzyme: flavin-mononucleotide phosphatase and tyrosine phosphatase activity. An association between ACP1 polymorphism and past malarial morbidity in Sardinia and the Po Valley has been described. Genetic polymorphisms could contribute to natural resistance or susceptibility to the disease. On the other hand, malaria pressure may select for genes that increase susceptibility to common diseases of modern civilization. Thus, the association between ACP1 and malaria in Sardinia in the light of recent understanding of the function of ACP1 and the molecular basis of malaria pathophysiology, especially aspects of the structure of band 3 protein (B3P) and the role of cytokines have been revisited. There is a significant negative correlation between ACP1 S isoform concentration, directly related to the ACP1*C allele, and past malarial morbidity in Sardinia. Populations subjected in the past to a heavy malarial burden show, at present, a lower concentration of the S isoform compared to a nearby malaria-free population, suggesting that genotypes with high S isoform concentration have been subjected to negative selection in a malarial environment. Correlation analysis and analysis of the joint G-6-PD/ACP1 distribution suggest that the relationship between past endemic malaria and the S isoform has not been mediated by glucose-6-phosphate dehydrogenase (G-6-PD) deficiency, thus pointing to a direct effect of malaria on ACP1. Copyright 2001 Wiley-Liss, Inc.

  11. Molecular cloning and expression profile of ß-ketoacyl-acp synthase gene from tung tree (Vernicia fordii Hemsl.)

    USDA-ARS?s Scientific Manuscript database

    Tung tree (Vernicia fordii) is an important woody oil tree. Tung tree seeds contain 50-60% oil with approximately 80 mole a-eleostearic acid (9cis, 11trans, 13trans octadecatrienoic acid). Fatty acid synthesis is catalyzed by the concerted action of acetyl-CoA carboxylase and fatty acid synthase, a ...

  12. The role of beta-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower.

    PubMed

    González-Mellado, Damián; von Wettstein-Knowles, Penny; Garcés, Rafael; Martínez-Force, Enrique

    2010-05-01

    The beta-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons. Heterologous expression of HaKAS III in Escherichia coli altered their fatty acid content and composition implying an interaction of HaKAS III with the bacterial FAS complex. Testing purified HaKAS III recombinant protein by adding to a reconstituted E. coli FAS system lacking condensation activity revealed a novel substrate specificity. In contrast to all hitherto characterized plant KAS IIIs, the activities of which are limited to the first cycles of intraplastidial fatty acid biosynthesis yielding C6 chains, HaKAS III participates in at least four cycles resulting in C10 chains.

  13. Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor.

    PubMed

    Wu, Jingjing; Zhang, Mingzhi; Liu, Delong

    2016-03-09

    More and more targeted agents become available for B cell malignancies with increasing precision and potency. The first-in-class Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been in clinical use for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. More selective BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292) are being explored. Acalabrutinib (ACP-196) is a novel irreversible second-generation BTK inhibitor that was shown to be more potent and selective than ibrutinib. This review summarized the preclinical research and clinical data of acalabrutinib.

  14. Development of markers for Delta9-Stearoyl-ACP-Desaturase (SAD) to screen for cold acclimation

    USDA-ARS?s Scientific Manuscript database

    Delta 9-Stearoyl-acyl carrier protein (ACP) desaturase (SAD) is an important enzyme of fatty acid biosynthesis in higher plants. Located in the plastid stroma, SAD catalyzes the desaturation of stearoyl-ACP to oleyl-ACP. SAD plays a key role in determining the ratio of saturated fatty acids to unsat...

  15. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  16. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter

    1998-01-06

    Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  17. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    PubMed

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  18. The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements.

    PubMed

    Dawood, A E; Manton, D J; Parashos, P; Wong, Rhk; Palamara, Jea; Stanton, D P; Reynolds, E C

    2015-12-01

    This study investigated the physical properties and ion release of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified calcium silicate-based cements (CSCs) and compared the properties of a trial mineral trioxide aggregate (MTA) with two commercially available CSCs, Biodentine(™) and Angelus(®) MTA. The setting time, solubility, compressive strength and Vickers surface microhardness of the three CSCs incorporated with 0%, 0.5%, 1.0%, 2.0% and 3.0% (w/w) CPP-ACP were investigated. Release of calcium (Ca(2+) ), phosphate ions (Pi ) and pH of the test cements were measured after 24, 72, 168 and 336 h of storage. The addition of up to 1.0% CPP-ACP into Biodentine(™) and 0.5% into the other cements did not adversely affect their physical properties except for the setting time. The addition of 0.5% CPP-ACP increased Ca(2+) released from Biodentine(™) (after 168 and 336 h), Angelus(®) MTA (after 168 h) and the trial MTA (after 72 h). The addition of 1.0-3.0% CPP-ACP increased Ca(2+) and Pi released from all the cements. Biodentine(™) released more Ca(2+) particularly in the early stages and showed shorter setting time and higher mechanical properties than the other cements. The mechanical properties of Angelus(®) MTA and the trial MTA were similar. All the cements produced highly alkaline storage solutions. Up to 1.0% CPP-ACP in Biodentine(™) improves Ca(2+) and Pi release and 0.5% CPP-ACP in Angelus(®) MTA and the trial MTA improves Ca(2+) release without altering the mechanical properties and solubility. The addition of CPP-ACP into CSCs prolonged the setting time. © 2015 Australian Dental Association.

  19. Emerging lipid-lowering drugs: squalene synthase inhibitors.

    PubMed

    Elsayed, Raghda K; Evans, Jeffery D

    2008-06-01

    Lapaquistat was the only squalene synthase inhibitor in Phase III clinical trials in Europe and the United States, but was recently discontinued from clinical development. Unlike statins, the inhibition of de novo cholesterol biosynthesis by lapaquistat does not deplete mevalonate, a precursor of isoprenoids. Isoprenoids are critical in cell growth and metabolism. The present review will focus on the chemistry, pharmacology, and lipid-lowering effects of novel squalene synthase inhibitors. A search of Pubmed, IPA, and GoogleScholar for studies (animal and human) and review articles published in English between 1990 and April 2008, using the search terms "squalene synthase inhibitors" or "lapaquistat". All clinical trials identified were then cross-referenced for their citations. All literature identified was then complied for this analysis. Lapaquistat mainly targets LDL-C, but may have some effect on HDL-C and TG. Preliminary reports on Phase II and Phase III associated lapaquistat 100 mg with elevated hepatic enzymes. Hepatotoxicity, possible drug-drug interaction with statins, and the investigation of a statin/coenzyme Q10 combination are among the few challenges that impeded lapaquistat's clinical development.

  20. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  1. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.

  2. Dimethylformamide as a cryoprotectant for canine semen diluted and frozen in ACP-106C.

    PubMed

    Mota Filho, A C; Teles, C H A; Jucá, R P; Cardoso, J F S; Uchoa, D C; Campello, C C; Silva, A R; Silva, L D M

    2011-10-15

    The objective was to assess the effect of adding various concentrations of dimethylformamide on characteristics of canine semen diluted in powdered coconut water (ACP-106C; ACP Biotecnologia, Fortaleza, CE, Brazil) and frozen at -196°C. Fifteen ejaculates were collected by manual stimulation from five adult Boxer dogs. The sperm-rich fraction was diluted in ACP-106C (ACP Biotecnologia) containing 10% egg yolk and divided into four aliquots. The cryoprotectants used for each aliquot were 6% glycerol (control group; CG) or 2%, 4%, or 6% dimethylformamide (DF2, DF4, and DF6, respectively). After thawing, total motility (mean ± SEM) for CG (58.4 ± 24.6) was higher (P < 0.05) than that of the other groups (2% dimethylformamide, 24.4 ± 12.3; 4% dimethylformamide, 26.5 ± 16.1; and 6% dimethylformamide, 21.7 ± 17.9). Furthermore, there was a greater percentage of fast, average, and slow moving sperm (assessed with computer-aided semen analysis; CASA) in CG in comparison with the other three groups. Therefore, based on concentrations tested in this study, dimethylformamide, together with ACP-106C (ACP Biotecnologia) and 10% egg yolk as a diluent, yielded unsatisfactory in vitro results for freezing canine semen. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Stacking of a stearoyl-ACP thioesterase with a dual-silenced palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase in transgenic soybean.

    PubMed

    Park, Hyunwoo; Graef, George; Xu, Yixiang; Tenopir, Patrick; Clemente, Tom E

    2014-10-01

    Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end-use applications. However, the hydrogenation process leads to the formation of trans-fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl-ACP thioesterase into soybean and the subsequent stacking with an event that is dual-silenced in palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase expression in a seed-specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl-ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%-19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%-40%, while the stearic level remained elevated. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Functional Promiscuity of Two Divergent Paralogs of Type III Plant Polyketide Synthases1

    PubMed Central

    Pandith, Shahzad A.; Dhar, Niha; Bhat, Wajid Waheed; Kushwaha, Manoj; Gupta, Ajai P.; Shah, Manzoor A.; Vishwakarma, Ram

    2016-01-01

    Plants effectively defend themselves against biotic and abiotic stresses by synthesizing diverse secondary metabolites, including health-protective flavonoids. These display incredible chemical diversity and ubiquitous occurrence and confer impeccable biological and agricultural applications. Chalcone synthase (CHS), a type III plant polyketide synthase, is critical for flavonoid biosynthesis. It catalyzes acyl-coenzyme A thioesters to synthesize naringenin chalcone through a polyketidic intermediate. The functional divergence among the evolutionarily generated members of a gene family is pivotal in driving the chemical diversity. Against this backdrop, this study was aimed to functionally characterize members of the CHS gene family from Rheum emodi, an endangered and endemic high-altitude medicinal herb of northwestern Himalayas. Two full-length cDNAs (1,179 bp each), ReCHS1 and ReCHS2, encoding unique paralogs were isolated and characterized. Heterologous expression and purification in Escherichia coli, bottom-up proteomic characterization, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, and enzyme kinetic studies using five different substrates confirmed their catalytic potential. Phylogenetic analysis revealed the existence of higher synonymous mutations in the intronless divergents of ReCHS. ReCHS2 displayed significant enzymatic efficiency (Vmax/Km) with different substrates. There were significant spatial and altitudinal variations in messenger RNA transcript levels of ReCHSs correlating positively with metabolite accumulation. Furthermore, the elicitations in the form of methyl jasmonate, salicylic acid, ultraviolet B light, and wounding, chosen on the basis of identified cis-regulatory promoter elements, presented considerable differences in the transcript profiles of ReCHSs. Taken together, our results demonstrate differential propensities of CHS paralogs in terms of the accumulation of flavonoids and

  5. ACP5 (Uteroferrin): Phylogeny of an Ancient and Conserved Gene Expressed in the Endometrium of Mammals1

    PubMed Central

    Padua, Maria B.; Lynch, Vincent J.; Alvarez, Natalia V.; Garthwaite, Mark A.; Golos, Thaddeus G.; Bazer, Fuller W.; Kalkunte, Satyan; Sharma, Surendra; Wagner, Gunter P.; Hansen, Peter J.

    2012-01-01

    ABSTRACT Type 5 acid phosphatase (ACP5; also known as tartrate-resistant acid phosphatase or uteroferrin) is a metalloprotein secreted by the endometrial glandular epithelium of pigs, mares, sheep, and water buffalo. In this paper, we describe the phylogenetic distribution of endometrial expression of ACP5 and demonstrate that endometrial expression arose early in evolution (i.e., before divergence of prototherian and therian mammals ∼166 million years ago). To determine expression of ACP5 in the pregnant endometrium, RNA was isolated from rhesus, mouse, rat, dog, sheep, cow, horse, armadillo, opossum, and duck-billed platypus. Results from RT-PCR and RNA-Seq experiments confirmed that ACP5 is expressed in all species examined. ACP5 was also demonstrated immunochemically in endometrium of rhesus, marmoset, sheep, cow, goat, and opossum. Alignment of inferred amino acid sequences shows a high conservation of ACP5 throughout speciation, with species-specific differences most extensive in the N-terminal and C-terminal regions of the protein. Analysis by Selecton indicated that most of the sites in ACP5 are undergoing purifying selection, and no sites undergoing positive selection were found. In conclusion, endometrial expression of ACP5 is a common feature in all orders of mammals and has been subjected to purifying selection. Expression of ACP5 in the uterus predates the divergence of therians and prototherians. ACP5 is an evolutionary conserved gene that likely exerts a common function important for pregnancy in mammals using a wide range of reproductive strategies. PMID:22278982

  6. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase.

    PubMed

    Cheng, Yu-Rong; Sun, Zhi-Jie; Cui, Gu-Zhen; Song, Xiaojin; Cui, Qiu

    2016-11-01

    Developing a strain with high docosahexaenoic acid (DHA) yield and stable fermenting-performance is an imperative way to improve DHA production using Aurantiochytrium sp., a microorganism with two fatty acid synthesis pathways: polyketide synthase (PKS) pathway and Type I fatty acid synthase (FAS) pathway. This study investigated the growth and metabolism response of Aurantiochytrium sp. CGMCC 6208 to two inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan), and proposed a method of screening high DHA yield Aurantiochytrium sp. strains with heavy ion mutagenesis and pre-selection by synergistic usage of cold stress (4°C) and FAS inhibitors (triclosan and isoniazid). Results showed that (1) isoniazid and triclosan have positive effects on improving DHA level of cells; (2) mutants from irradiation dosage of 120Gy yielded more DHA compared with cells from 40Gy, 80Gy treatment and wild type; (3) DHA contents of mutants pre-selected by inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan)at 4°C, were significantly higher than that of wild type; (4) compared to the wild type, the DHA productivity and yield of a mutant (T-99) obtained from Aurantiochytrium sp. CGMCC 6208 by the proposed method increased by 50% from 0.18 to 0.27g/Lh and 30% from 21 to 27g/L, respectively. In conclusion, this study developed a feasible method to screen Aurantiochytrium sp. with high DHA yield by a combination of heavy-ion mutagenesis and mutant-preselection by FAS inhibitors and cold stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Synthesis, crystal structure, catecholase and phenoxazinone synthase activities of a mononuclear cobalt(III) complex containing in situ formed tridentate N-donor Schiff base

    NASA Astrophysics Data System (ADS)

    Maji, Ashis Kumar; Chatterjee, Arnab; Khan, Sumitava; Ghosh, Barindra Kumar; Ghosh, Rajarshi

    2017-10-01

    Synthesis and structural characterization of a mononuclear cobalt(III) Schiff base complex is reported. It crystallizes with monoclinic crystal system with P21/n space group with a = 9.9793(4) Å, b = 28.2907(12) Å and c = 13.1233(6) Å, and β = 97.532(3)°. The compound is active to catecholase and phenoxazinone synthase activities in MeOH, and MeOH and MeCN solvents, respectively at room temperature. Each of the reactions was found to be of first order with reaction rate 8.08 × 10-3 min-1 (MeOH) for the catecholase activity and 1.05 × 10-3 min-1 (MeOH) and 3.82 × 10-3 min-1 (MeCN) for the phenoxazinone synthase activity. The turn over numbers for the catecholase activity is 5.02 × 103 h-1 (MeOH) and for the phenoxazinone synthase activity is 4.59 × 103 h-1 (MeOH) and 5.12 × 103 h-1 (MeCN). Substrate-catalyst adduct was tried to be trapped in each case using mass spectrometry.

  8. Combining CPP-ACP with fluoride: a synergistic remineralization potential of artificially demineralized enamel or not?

    NASA Astrophysics Data System (ADS)

    El-Sayad, I. I.; Sakr, A. K.; Badr, Y. A.

    2008-08-01

    Background and objective: Minimal intervention dentistry (MID) calls for early detection and remineralization of initial demineralization. Laser fluorescence is efficient in detecting changes in mineral tooth content. Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP- ACP) which delivers calcium and phosphate ions to enamel. A new product which also contains fluoride is launched in United States. The remineralizing potential of CPP- ACP per se, or when combined with 0.22% Fl supplied in an oral care gel on artificially demineralised enamel using laser fluorescence was investigated. Methods: Fifteen sound human molars were selected. Mesial surfaces were tested using He-Cd laser beam at 441.5nm with 18mW power as excitation source on a suitable set-up based on Spex 750 M monochromator provided with PMT for detection of collected auto-fluorescence from sound enamel. Mesial surfaces were subjected to demineralization for ten days. The spectra from demineralized enamel were measured. Teeth were then divided according to the remineralizing regimen into three groups: group I recaldent per se, group II recaldent combined with fluoride gel and group III artificial saliva as a positive control. After following these protocols for three weeks, the spectra from remineralized enamel from the three groups were measured. The spectra of enamel auto-fluorescence were recorded and normalized to peak intensity at about 540 nm to compare between spectra from sound, demineralized and remineralized enamel surfaces. Results: A slight red shift was noticed in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group II showed the highest remineralizing potential. Conclusions: Combining fluoride with CPP-ACP had a synergistic effect on enamel remineralization. In addition, laser auto-fluorescence is an accurate technique for assessment of changes in tooth enamel minerals.

  9. Cleavage of the Drosophila seminal protein Acp36DE in mated females enhances its sperm storage activity.

    PubMed

    Avila, Frank W; Wolfner, Mariana F

    2017-08-01

    Sperm storage in the mated female reproductive tract (RT) is required for optimal fertility in numerous species with internal fertilization. In Drosophila melanogaster, sperm storage is dependent on female receipt of seminal fluid proteins (SFPs) during mating. The seminal fluid protein Acp36DE is necessary for the accumulation of sperm into storage. In the female RT, Acp36DE localizes to the anterior mating plug and also to a site in the common oviduct, potentially "corralling" sperm near the entry sites into the storage organs. Genetic studies showed that Acp36DE is also required for a series of conformational changes of the uterus that begin at the onset of mating and are hypothesized to move sperm towards the entry sites of the sperm storage organs. After Acp36DE is transferred to the female RT, the protein is cleaved by the astacin-metalloprotease Semp1. However, the effect of this cleavage on Acp36DE's function in sperm accumulation into storage is unknown. We used mass spectrometry to identify the single cleavage site in Acp36DE. We then mutated this site and tested the effects on sperm storage. Mutations of Acp36DE's cleavage site that slowed or prevented cleavage of the protein slowed the accumulation of sperm into storage, although they did not affect uterine conformational changes in mated females. Moreover, the N-terminal cleavage product of Acp36DE was sufficient to mediate sperm accumulation in storage, and it did so faster than versions of Acp36DE that could not be cleaved or were only cleaved slowly. These results suggest that cleavage of Acp36E may increase the number of bioactive molecules within the female RT, a mechanism similar to that hypothesized for Semp1's other substrate, the seminal fluid protein ovulin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm.

    PubMed

    Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2017-06-21

    The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to

  11. Preliminary calibration of the ACP safeguards neutron counter

    NASA Astrophysics Data System (ADS)

    Lee, T. H.; Kim, H. D.; Yoon, J. S.; Lee, S. Y.; Swinhoe, M.; Menlove, H. O.

    2007-10-01

    The Advanced Spent Fuel Conditioning Process (ACP), a kind of pyroprocess, has been developed at the Korea Atomic Energy Research Institute (KAERI). Since there is no IAEA safeguards criteria for this process, KAERI has developed a neutron coincidence counter to make it possible to perform a material control and accounting (MC&A) for its ACP materials for the purpose of a transparency in the peaceful uses of nuclear materials at KAERI. The test results of the ACP Safeguards Neutron Counter (ASNC) show a satisfactory performance for the Doubles count measurement with a low measurement error for its cylindrical sample cavity. The neutron detection efficiency is about 21% with an error of ±1.32% along the axial direction of the cavity. Using two 252Cf neutron sources, we obtained various parameters for the Singles and Doubles rates for the ASNC. The Singles, Doubles, and Triples rates for a 252Cf point source were obtained by using the MCNPX code and the results for the ft8 cap multiplicity tally option with the values of ɛ, fd, and ft measured with a strong source most closely match the measurement results to within a 1% error. A preliminary calibration curve for the ASNC was generated by using the point model equation relationship between 244Cm and 252Cf and the calibration coefficient for the non-multiplying sample is 2.78×10 5 (Doubles counts/s/g 244Cm). The preliminary calibration curves for the ACP samples were also obtained by using an MCNPX simulation. A neutron multiplication influence on an increase of the Doubles rate for a metal ingot and UO2 powder is clearly observed. These calibration curves will be modified and complemented, when hot calibration samples become available. To verify the validity of this calibration curve, a measurement of spent fuel standards for a known 244Cm mass will be performed in the near future.

  12. In situ effect of CPP-ACP chewing gum upon erosive enamel loss.

    PubMed

    Alencar, Catarina Ribeiro Barros de; Oliveira, Gabriela Cristina de; Magalhães, Ana Carolina; Buzalaf, Marília Afonso Rabelo; Machado, Maria Aparecida de Andrade Moreira; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in situ study investigated the ability of a CPP-ACP chewing gum in preventing erosive enamel loss. Material and Methods: During three experimental crossover phases (one phase per group) of seven days each, eight volunteers wore palatal devices with human enamel blocks. The groups were: GI - Sugar free chewing gum with CPP-ACP; GII - Conventional sugar free chewing gum; and GIII - No chewing gum (control). Erosive challenge was extraorally performed by immersion of the enamel blocks in cola drink (5 min, 4x/day). After each challenge, in groups CPP and No CPP, volunteers chewed one unit of the corresponding chewing gum for 30 minutes. Quantitative analysis of enamel loss was performed by profilometry (µm). Data were analyzed by Repeated-Measures ANOVA and Tukey's test (p<0.05). The use of chewing gum (CPP and No CPP) resulted in lower erosive enamel loss compared with the control group (p<0.05). CPP-ACP chewing gum (CPP) did not improve the protection against erosive enamel loss compared with conventional chewing gum (No CPP) (p>0.05). The CPP-ACP chewing gum was not able to enhance the anti-erosive effect of conventional chewing gum against enamel loss.

  13. USGS tethered ACP platforms: New design means more safety and accuracy

    USGS Publications Warehouse

    Morlock, S.E.; Stewart, J.A.; Rehmel, M.S.

    2004-01-01

    The US Geological Survey has developed an innovative tethered platform that supports an Acoustic Current Profiler (ACP) in making stream-flow measurements (use of the term ACP in this article refers to a class of instruments and not a specific brand name or model). The tethered platform reduces the hazards involved in conventional methods of stream-flow measurement. The use of the platform reduces or eliminates time spent by personnel in streams and boats or on bridges and cableway and stream-flow measurement accuracy is increased.

  14. The effect of CPP-ACP on enamel wear under severe erosive conditions.

    PubMed

    Ranjitkar, Sarbin; Kaidonis, John A; Richards, Lindsay C; Townsend, Grant C

    2009-06-01

    In addition to its role as a remineralizing agent in preventing dental caries, recent evidence has shown that casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) can protect teeth against erosion. The aim of this study was to determine whether CPP-ACP could reduce enamel wear rates under severe erosive conditions simulating heavy attrition and gastric regurgitation. Enamel specimens were subjected to 10,000 wear cycles at a load of 100 N and pH 1.2 in a tooth wear machine. The machine was stopped every 2 min (160 cycles), and CPP-ACP in the form of a paste was applied for 5 min in experimental group 1. A paste with the same formulation but without CPP-ACP was applied in experimental group 2. No paste was applied in the control group. A linear mixed model analysis indicated that the mean wear rates in experimental group 1 (0.44+/-0.05 mm(3) per 1000 cycles) and in experimental group 2 (0.63+/-0.06 mm(3) per 1000 cycles) were significantly lower than that in the control group (0.92+/-0.11 mm(3) per 1000 cycles) (p<0.05). The mean wear rate in experimental group 1 was also lower than that in experimental group 2 (p<0.05). Wear facets in experimental groups 1 and 2 were noted to be smoother and more polished than those in the control group. Both remineralizing and lubricating properties of the paste containing CPP-ACP appear to contribute to wear reduction in enamel. These findings may lead to new strategies for the clinical management of tooth wear.

  15. Structural basis for cyclization specificity of two Azotobacter type III polyketide synthases: a single amino acid substitution reverses their cyclization specificity.

    PubMed

    Satou, Ryutaro; Miyanaga, Akimasa; Ozawa, Hiroki; Funa, Nobutaka; Katsuyama, Yohei; Miyazono, Ken-ichi; Tanokura, Masaru; Ohnishi, Yasuo; Horinouchi, Sueharu

    2013-11-22

    Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.

  16. Recovery and cryopreservation of epididymal sperm from agouti (Dasiprocta aguti) using powdered coconut water (ACP-109c) and Tris extenders.

    PubMed

    Silva, M A; Peixoto, G C X; Santos, E A A; Castelo, T S; Oliveira, M F; Silva, A R

    2011-10-01

    The objective was to compare the use of powdered coconut water (ACP-109c; ACP Biotecnologia, Fortaleza, CE, Brazil) and Tris extenders for recovery and cryopreservation of epididymal sperm from agouti. The caudae epididymus and proximal ductus deferens from 10 sexually mature agoutis were subjected to retrograde washing using ACP-109c (ACP Biotecnologia) or Tris. Epididymal sperm were evaluated for motility, vigor, sperm viability, membrane integrity, and morphology. Samples were centrifuged, and extended in the same diluents plus egg yolk (20%) and glycerol (6%), frozen in liquid nitrogen, and subsequently thawed at 37°C for 1 min, followed by re-evaluation of sperm characteristics. The two extenders were similarly efficient for epididymal recovery, with regard to the number and quality of sperm recovered. However, for both extenders, sperm quality decreased (P < 0.05) after centrifugation and dilution. After sperm cryopreservation and thawing, there were (mean ± SEM) 26.5 ± 2.6% motile sperm with 2.6 ± 0.2 vigor in the ACP-109c (ACP Biotecnologia) group, which was significantly better than 9.7 ± 2.6% motile sperm with 1.2 ± 0.3 vigor in Tris. In conclusion, agouti epididymal sperm were successfully recovered using either ACP-109c (ACP Biotecnologia) or Tris extenders; however, ACP-109c (ACP Biotecnologia) was a significantly better extender for processing and cryopreserving these sperm. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. 40 CFR 300.215 - Title III local emergency response plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... should be closely coordinated with applicable federal ACPs and state emergency response plans. (b... POLLUTION CONTINGENCY PLAN Planning and Preparedness § 300.215 Title III local emergency response plans... are codified at 40 CFR part 355. (a) Each LEPC is to prepare an emergency response plan in accordance...

  18. 40 CFR 300.215 - Title III local emergency response plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... should be closely coordinated with applicable federal ACPs and state emergency response plans. (b... POLLUTION CONTINGENCY PLAN Planning and Preparedness § 300.215 Title III local emergency response plans... are codified at 40 CFR part 355. (a) Each LEPC is to prepare an emergency response plan in accordance...

  19. 40 CFR 300.215 - Title III local emergency response plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... should be closely coordinated with applicable federal ACPs and state emergency response plans. (b... POLLUTION CONTINGENCY PLAN Planning and Preparedness § 300.215 Title III local emergency response plans... are codified at 40 CFR part 355. (a) Each LEPC is to prepare an emergency response plan in accordance...

  20. 40 CFR 300.215 - Title III local emergency response plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... should be closely coordinated with applicable federal ACPs and state emergency response plans. (b... POLLUTION CONTINGENCY PLAN Planning and Preparedness § 300.215 Title III local emergency response plans... are codified at 40 CFR part 355. (a) Each LEPC is to prepare an emergency response plan in accordance...

  1. 40 CFR 300.215 - Title III local emergency response plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... should be closely coordinated with applicable federal ACPs and state emergency response plans. (b... POLLUTION CONTINGENCY PLAN Planning and Preparedness § 300.215 Title III local emergency response plans... are codified at 40 CFR part 355. (a) Each LEPC is to prepare an emergency response plan in accordance...

  2. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    PubMed

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  3. Molecular structure of starches from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Källman, Anna; Myers, Alan M; Seetharaman, Koushik

    2013-10-16

    Molecular structures of starches from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Amylose content with altered structure was higher in the nonwaxy mutants (25.4-30.2%) compared to the wild type maize (21.5%) as revealed by gel permeation chromatography. Superlong chains of the amylopectin component were found in all nonwaxy samples. Unit chain length distribution of amylopectins and their φ,β-limit dextrins (reflecting amylopectin internal structure) from dull1 mutants were also characterized by anion-exchange chromatography after debranching. Deficiency of SSIII led to an increased amount of short chains (DP ≤36 in amylopectin), whereas the content of long chains decreased from 8.4% to between 3.1 and 3.7% in both amylopectin and φ,β-limit dextrins. Moreover, both the external and internal chain lengths decreased, suggesting a difference in their cluster structures. Whereas the molar ratio of A:B-chains was similar in all samples (1.1-1.2), some ratios of chain categories were affected by the absence of SSIII, notably the ratio of "fingerprint" A-chains to "clustered" A-chains. This study highlighted the relationship between SSIII and the internal molecular structure of maize starch.

  4. Remineralization effect of CPP-ACP and fluoride for white spot lesions in vitro.

    PubMed

    Oliveira, Gustavo M S; Ritter, André V; Heymann, Harald O; Swift, Edward; Donovan, Terry; Brock, Guy; Wright, Tim

    2014-12-01

    This in vitro study compared the remineralization effect on white spot lesions of casein phosphopeptide-amorphous calcium phosphate crème, or CPP-ACP (MI Paste™), 1.1% NaF dentifrice containing 5000ppm of fluoride (ControlRX™), or CPP-ACP crème with 900ppm of fluoride (MI Paste Plus™) with that of a control. Artificial white spot lesions were created on smooth enamel surfaces of sound molars using a previously reported demineralization model. Specimens were randomly assigned to four treatments (n=35) with a pH-cycling model over 30 days: Control (no treatment); MI Paste (10% CPP-ACP crème); F5000 (1.1% NaF dentifrice); or MI Paste Plus (10% CPP-ACP plus 900ppm fluoride crème). Products were applied following manufacturers' directions. Changes in mean lesion depth expressed by percent fluorescence loss (ΔF%), and lesion area (mm(2)) from baseline to after treatment were measured with light-induced fluorescence (QLF). Mean values of each parameter were compared between groups (p<0.05). The remineralization pattern for the F5000 group was unique with marked initial remineralization during the first 10 days and little subsequent change. Based on mean lesion area, the F5000 demonstrated greater remineralization than Control, MI Paste and MI Paste Plus groups. Based on mean fluorescence loss, the F5000 group showed improved remineralization relative to MI Paste Plus, but did not differ statistically from the Control at the end of 30 days. The 1.1% NaF dentifrice demonstrated overall greater remineralization ability than 10% CPP-ACP crème. However, the 1.1% NaF dentifrice was only as effective as the Control to reduce fluorescence loss. This study showed that a 1.1% NaF dentifrice (5000ppm) demonstrated greater remineralization ability than the CPP-ACP topical tooth crème and that the addition of fluoride to its formulation seems to enhance remineralization. Saliva also has the ability to exert an important remineralization effect over time. Copyright © 2014

  5. ACP and Citrus: Plant Responses to Psyllid Feeding

    USDA-ARS?s Scientific Manuscript database

    Progress is reported on the Citrus Research Board funded project: 5300-150 Biomarkers for the detection of Liberibacter infection in citrus through H-NMR-based metabolomics. Proton nuclear magnetic resonance (H-NMR) was used to determine the effects of Asian citrus psyllid (ACP) feeding on leaf meta...

  6. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  7. Nitric oxide synthase immunoreactivity in the nematode Trichinella britovi. Evidence for nitric oxide production by the parasite.

    PubMed

    Masetti, Massimo; Locci, Teresa; Cecchettini, Antonella; Lucchesi, Paolo; Magi, Marta; Malvaldi, Gino; Bruschi, Fabrizio

    2004-05-01

    Nitric oxide has been extensively studied as an effector molecule of the host immune response against both protozoa and helminths, but parasites can also produce this molecule, through the action of nitric oxide (NO) synthases or NO synthases-like enzymes. The aim of this study was to verify the possible production of NO by Trichinella britovi L(1) larvae and the enzymes involved in this process. The NO synthase immunoreactivity and putative nitric oxide synthase-activity was analysed using antibodies to mammalian NO synthase III and to nitrotyrosine with immunohistochemistry, gold immunocytochemistry and immunoblot analysis and NADPH-diaphorase histochemistry. Our results show that T. britovi L(1) larvae possess an enzymatic activity capable of producing NO. The localisation of this activity, according to the NADPH-diaphorase histochemistry, is both at the cuticular and the internal level. This localisation is confirmed by nitrotyrosine immunohistochemistry both under optical and electron microscopy. Using the NO synthase III antibody, a similar pattern of labelling was found: in particular, electron microscopy showed a localisation of this immunoreactivity in the cuticle and in the stichocytes, where only the alpha2 granules contained gold particles, mainly concentrated at their periphery. Four polypeptides reacting to the NO synthase III antibody are revealed by Western blotting. Their molecular weight ranged from 38 to 50 kDa. A significant reaction of the anti-nitrotyrosine antibody to polypeptides 95, 60, 48 and 39 kDa from the same sample suggested the presence of different nitrosylated proteins.

  8. The Crystal Structure of the Ivy delta4-16:0-ACP Desaturase Reveals Structural Details of the Oxidized Active Site and Potential Determinants of Regioselectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy,J.; Whittle, E.; Kumaran, D.

    2007-01-01

    The multifunctional acyl-acyl carrier protein (ACP) desaturase from Hedera helix (English ivy) catalyzes the {Delta}{sup 4} desaturation of 16:0-ACP and the{Delta}{sup 9} desaturation of 18:0-ACP and further desaturates{Delta}{sup 9}-16:1 or {Delta}{sup 9}-18:1 to the corresponding {Delta}{sup 4,9} dienes. The crystal structure of the enzyme has been solved to 1.95{angstrom} resolution, and both the iron-iron distance of 3.2{angstrom} and the presence of a {mu}-oxo bridge reveal this to be the only reported structure of a desaturase in the oxidized FeIII-FeIII form. Significant differences are seen between the oxidized active site and the reduced active site of the Ricinus communis (castor) desaturase;more » His{sup 227} coordination to Fe2 is lost, and the side chain of Glu{sup 224}, which bridges the two iron ions in the reduced structure, does not interact with either iron. Although carboxylate shifts have been observed on oxidation of other diiron proteins, this is the first example of the residue moving beyond the coordination range of both iron ions. Comparison of the ivy and castor structures reveal surface amino acids close to the annulus of the substrate-binding cavity and others lining the lower portion of the cavity that are potential determinants of their distinct substrate specificities. We propose a hypothesis that differences in side chain packing explains the apparent paradox that several residues lining the lower portion of the cavity in the ivy desaturase are bulkier than their equivalents in the castor enzyme despite the necessity for the ivy enzyme to accommodate three more carbons beyond the diiron site.« less

  9. [Effect of casein phosphopeptide-amorphouscalcium phosphate (CPP-ACP) treatment on the shear bond strength of orthodontic brackets after tooth bleaching].

    PubMed

    Lu, Jing; Ding, Xiao-jun; Yu, Xiao-ping; Gong, Yi-ming

    2015-10-01

    To evaluate the effect of casein phosphopeptide-amorphouscalcium phosphate (CPP-ACP) treatment on the shear bond strength of orthodontic brackets after tooth bleaching. One hundred extracted human premolars were randomly divided and treated according to 5 groups (n=20) : (1) no treatment; (2) 10% carbamide peroxide bleaching; (3) 38% hydrogen peroxide bleaching; (4)10% carbamide peroxide bleaching and CPP-ACP paste; (5)38% hydrogen peroxide bleaching and CPP-ACP paste. In all groups, the brackets were bonded using a conventional acid-etch and bond system (Transbond XT, 3M Unitek, Monrovia, Calif). The shear bond strength adhesive remnant index (ARI) of the brackets were determined and the data was analyzed by ANOVA and Bonferroni test using SPSS13.0 software package. The use of 10% carbamide peroxide and 38% hydrogen peroxide bleaching significantly decreased the shear bond strength of orthodontic brackets when compared with untreated group (P<0.05). After combination of tooth bleaching and CPP-ACP treatment, group 4 (10% carbamide peroxide bleaching + CPP-ACP) and group 5 (38% hydrogen peroxide bleaching + CPP-ACP) showed higher levels of shear bond strength than group 2 and 3; however, no significant difference was found (P>0.05). The ARI did not show any significant difference before and after CPP-ACP treatment. After tooth bleaching, CPP-ACP treatment have little influence on the shear bond strength of orthodontic brackets.

  10. Local Lymphocytes and Nitric Oxide Synthase in the Uterine Cervical Stroma of Patients with Grade III Cervical Intraepithelial Neoplasia

    PubMed Central

    da Silva, Cléber Sergioda; Michelin, Marcia Antoniazi; Etchebehere, Renata Margarida; Adad, Sheila Jorge; Murta, Eddie Fernando Candido

    2010-01-01

    OBJECTIVES: Precancerous and cancerous cells can trigger an immune response that may limit tumor development and can be used as a prognostic marker. The aims of the present study were to quantify the presence of B and T lymphocytes, macrophages and cells expressing inducible nitric oxide synthase (iNOS) in the cervical stroma of women with grade III cervical intraepithelial neoplasia (CIN III) or in the intratumoral and peritumoral tissue of women with stage I invasive carcinoma. METHODS: Cervical tissue specimens were obtained from 60 women (20 each from control tissues, CIN III and invasive carcinomas). The average ages in the control, CIN III and invasive groups were 43.9 (± 4.3), 35.5 (± 9.5), and 50 (± 11.2) years, respectively. The specimens were immunohistochemically labeled with antibodies to identify T lymphocytes (CD3), cytotoxic lymphocytes (CD8), B lymphocytes (CD20), macrophages (CD68) and iNOS. We evaluated the markers in the stroma above the squamocolumnar junction (control), at the intraepithelial lesion (CIN cases), and in the nfiltrating tumor. Two independent observers performed the immunohistochemical analysis. RESULTS: T lymphocytes, B lymphocytes, macrophages and iNOS were present more frequently (P<0.05) in the stroma of peritumoral invasive tumors compared to the controls and intratumoral invasive cancer samples. CD3+ and CD20+ lymphocytes were present more frequently in CIN III patients compared to samples from patients with intratumoral invasive cancer (P<0.05). CONCLUSION: High numbers of T and B lymphocytes, macrophages and iNOS-expressing cells in the peritumoral stroma of the invasive tumors were observed. Cell migration appeared to be proportional to the progression of the lesion. PMID:20613932

  11. In situ effect of a CPP-ACP chewing gum on enamel erosion associated or not with abrasion.

    PubMed

    de Oliveira, Andressa Feitosa Bezerra; de Oliveira Diniz, Luciana Vilar; Forte, Franklin Delano Soares; Sampaio, Fabio Correia; Ccahuana-Vásquez, Renzo Alberto; Tochukwu Amaechi, Bennett

    2017-01-01

    The purpose of this study is to analyze the in situ effect of a casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) chewing gum on human enamel erosion lesion associated or not with abrasion. A three-way crossover study of 7 days was conducted involving 10 volunteers subjected to the same protocol: (G1) CPP-ACP sugar-free chewing gum, (G2) regular sugar-free chewing gum without CPP-ACP, and (G3) saliva-no chewing gum. An abrasion test was included in each phase. A 3D non-contact profilometry measurement of lesion depth and surface roughness was obtained of sound and eroded surfaces. A salivary calcium concentration was determined for all volunteers. ANOVA followed by Tukey's test were used with a p < 0.05. The enamel depth and the enamel surface roughness of the CPP-ACP gum group were significantly lower than the others (ANOVA, p < 0.05). No significant differences were observed between the treatments when associated with abrasion (p > 0.05). A positive and significant correlation was seen between the lesion depth and enamel surface roughness for GI (r = 0.87, p = 0.00) and GIII (r = 0.79, p = 0.00) groups. The estimated total calcium presented in the saliva after the chewed CPP-ACP gum showed no statistical significance between the mean absorbance values at the different time collections (p > 0.05). It is demonstrated that the incorporation of the CPP-ACP into a sugar-free gum significantly increased the remineralization/protection of eroded enamel surface. The CPP-ACP added to gum may be a suitable alternative vehicle, to deliver calcium ions to saliva and therefore protecting enamel.

  12. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries.

    PubMed

    Chen, Zhen; Cao, Shansong; Wang, Haorong; Li, Yanqiu; Kishen, Anil; Deng, Xuliang; Yang, Xiaoping; Wang, Yinghui; Cong, Changhong; Wang, Huajun; Zhang, Xu

    2015-01-01

    Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID).

  13. Biomimetic Remineralization of Demineralized Dentine Using Scaffold of CMC/ACP Nanocomplexes in an In Vitro Tooth Model of Deep Caries

    PubMed Central

    Chen, Zhen; Cao, Shansong; Wang, Haorong; Li, Yanqiu; Kishen, Anil; Deng, Xuliang; Yang, Xiaoping; Wang, Yinghui; Cong, Changhong; Wang, Huajun; Zhang, Xu

    2015-01-01

    Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID). PMID:25587986

  14. Efficacy of pastes containing CPP-ACP and CPP-ACFP in patients with Sjögren's syndrome.

    PubMed

    Peric, Tamara; Markovic, Dejan; Petrovic, Bojan; Radojevic, Vesna; Todorovic, Tatjana; Radicevic, Biljana Andjelski; Heinemann, Radmila Jancic; Susic, Gordana; Popadic, Aleksandra Peric; Spiric, Vesna Tomic

    2015-12-01

    The purpose of this study was to evaluate efficacy of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and casein phosphopeptide-amorphous calcium fluoride phosphate (CPP-ACFP) containing pastes among individuals with Sjögren's syndrome (SS). Thirty patients were randomised into three groups: CPP-ACP, CPP-ACFP, and 0.05 % NaF to be used two times a day during a 28-day experimental period. Saliva was analysed for flow rate, pH, buffering capacity and mineral concentrations. Dental plaque was examined for pH. Following the formation of artificial carious lesion, participants wore enamel slabs for an in situ remineralisation study. Remineralisation potential was examined using scanning electron microscope (SEM) and energy dispersive spectroscopic (EDS) technique. SE microphotographs were subsequently analysed for area, diameter, perimeter, roundness and the number of enamel defects and percentage of tooth surface affected by defects. At the end of the experimental period, a slight increase of salivary pH could have been observed. No differences in mineral composition of saliva were noted. The use of CPP-ACP and CPP-ACFP contributed to a significant rise of plaque pH. Image analysis revealed excessive reduction of defects' dimensions in the three experimental groups, and a decrease of the number of enamel defects in the CPP-ACP and CPP-ACFP groups. The EDS analysis did not show differences in Ca/P, Ca/O and P/O ratios in any of the treatment groups. CPP-ACP and CPP-ACFP hold promise as remineralising agents for patients with SS. Pastes containing CPP-ACP/CPP-ACFP show enhanced remineralisation potential compared with NaF mouthrinse in patients with SS.

  15. Intravaginal artificial insemination in bitches using frozen/thawed semen after dilution in powdered coconut water (ACP-106c).

    PubMed

    Uchoa, D C; Silva, T F P; Mota Filho, A C; Silva, L D M

    2012-12-01

    The aim of this study was to evaluate powdered coconut water extender (ACP-106c; ACP Serviços Tecnológicos Ltda, ACP Biotecnologia, Fortaleza, Ceará, Brazil) as a diluent for freezing dog semen and the fertility after vaginal insemination of semen frozen therein. Ten ejaculates were collected from five dogs, evaluated fresh, diluted in ACP-106c, 10% egg yolk and 6% glycerol, cooled and frozen. In the first phase of the study, straws with frozen semen were thawed and immediately subjected to the same analysis as the fresh semen and, in addition, to Computer-Assisted Semen Analysis (CASA). In phase 2, 10 bitches that had been subjected to natural breeding during a preceding oestrous cycle were vaginally inseminated with thawed semen that had been re-diluted in ACP-106c. After thawing, a mean of 77% sperm motility was obtained through subjective analysis and 77.3% through CASA. Following artificial insemination, a 60% pregnancy rate was observed, resulting in a 50% parturition rate and a mean litter size of 3.4 (SEM 0.6), with 47.1% males and 52.9% females. ACP-106c can be successfully used for freezing canine semen, and vaginal deposition of such semen yields similar pregnancy rates to those reported in other studies. © 2012 Blackwell Verlag GmbH.

  16. Short-term storage of canine preantral ovarian follicles using a powdered coconut water (ACP)-based medium.

    PubMed

    Lima, G L; Costa, L L M; Cavalcanti, D M L P; Rodrigues, C M F; Freire, F A M; Fontenele-Neto, J D; Silva, A R

    2010-07-01

    The objective was to investigate the use of powdered coconut water (ACP)-based medium for short-term preservation of canine preantral follicles. Pairs of ovaries from mongrel bitches (n=9) were divided into fragments. One ovarian fragment, treated as a fresh control, was immediately fixed for histological analysis, whereas the other six ovarian fragments were stored either in phosphate-buffered saline (PBS; control group) or ACP medium in isothermal Styrofoam boxes containing biological ice packs. The boxes were sealed and opened only after 12, 24, or 36h. After opening each box, the ovarian fragments were submitted to histological analysis. In total, 12,302 preantral follicles were evaluated, with 64.5% primordial, 33.3% primary, and 2.3% secondary follicles. There were multiple oocytes in 1.3% of the follicles analyzed. At 24h, ACP was more efficient in preserving follicular morphology than PBS (P<0.05). Compared with the fresh control group, a significant reduction in the percentage of morphologically normal ovarian follicles was observed for PBS, starting at 24h; however, the decline started only at 36h for the ACP medium. During the experiment, the temperature inside the isothermal boxes increased from 3 to 9 degrees C (P<0.05), despite a constant room temperature. In conclusion, powdered coconut water (ACP) was an appropriate medium for short-term storage of canine preantral ovarian follicles.

  17. Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd-Acp) for Eshcerichia Coli Inactivation in Apple Juice.

    PubMed

    Liao, Xinyu; Li, Jiao; Muhammad, Aliyu Idris; Suo, Yuanjie; Chen, Shiguo; Ye, Xingqian; Liu, Donghong; Ding, Tian

    2018-02-01

    Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD-ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD-ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD-ACP as an alternative to thermal processing for fruit juices in food industry. Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization. © 2018 Institute of Food Technologists®.

  18. Overexpression of the olive acyl carrier protein gene (OeACP1) produces alterations in fatty acid composition of tobacco leaves.

    PubMed

    De Marchis, Francesca; Valeri, Maria Cristina; Pompa, Andrea; Bouveret, Emmanuelle; Alagna, Fiammetta; Grisan, Simone; Stanzione, Vitale; Mariotti, Roberto; Cultrera, Nicolò; Baldoni, Luciana; Bellucci, Michele

    2016-02-01

    Taking into account that fatty acid (FA) biosynthesis plays a crucial role in lipid accumulation in olive (Olea europaea L.) mesocarp, we investigated the effect of olive acyl carrier protein (ACP) on FA composition by overexpressing an olive ACP cDNA in tobacco plants. The OeACP1.1A cDNA was inserted in the nucleus or in the chloroplast DNA of different tobacco plants, resulting in extensive transcription of the transgenes. The transplastomic plants accumulated lower olive ACP levels in comparison to nuclear-transformed plants. Moreover, the phenotype of the former plants was characterized by pale green/white cotyledons with abnormal chloroplasts, delayed germination and reduced growth. We suggest that the transplastomic phenotype was likely caused by inefficient olive ACP mRNA translation in chloroplast stroma. Conversely, total lipids from leaves of nuclear transformants expressing high olive ACP levels showed a significant increase in oleic acid (18:1) and linolenic acid (18:3), and a concomitant significant reduction of hexadecadienoic acid (16:2) and hexadecatrienoic acid (16:3). This implies that in leaves of tobacco transformants, as likely in the mesocarp of olive fruit, olive ACP not only plays a general role in FA synthesis, but seems to be specifically involved in chain length regulation forwarding the elongation to C18 FAs and the subsequent desaturation to 18:1 and 18:3.

  19. Crystal structure of FabZ-ACP complex reveals a dynamic seesaw-like catalytic mechanism of dehydratase in fatty acid biosynthesis.

    PubMed

    Zhang, Lin; Xiao, Jianfeng; Xu, Jianrong; Fu, Tianran; Cao, Zhiwei; Zhu, Liang; Chen, Hong-Zhuan; Shen, Xu; Jiang, Hualiang; Zhang, Liang

    2016-12-01

    Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP 3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS.

  20. Visualizing the chain-flipping mechanism in fatty-acid biosynthesis

    DOE PAGES

    Beld, Joris; Cang, Hu; Burkart, Michael D.

    2014-10-29

    The acyl carrier protein (ACP) from fatty acid synthases sequesters elongating products within its hydrophobic core, but this dynamic mechanism remains poorly understood. In this paper, we exploited solvatochromic pantetheine probes attached to ACP that fluoresce when sequestered. The addition of a catalytic partner lures the cargo out of the ACP and into the active site of the enzyme, thus enhancing fluorescence to reveal the elusive chain-flipping mechanism. This activity was confirmed by the use of a dual solvatochromic cross-linking probe and solution-phase NMR spectroscopy. Finally, the chain-flipping mechanism was visualized by single-molecule fluorescence techniques, thus demonstrating specificity between themore » Escherichia coli ACP and its ketoacyl synthase catalytic partner KASII.« less

  1. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis.

    PubMed

    Xie, Xinqiang; Garg, Ashish; Khosla, Chaitan; Cane, David E

    2017-03-01

    The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR 0 ) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR 0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2- 2 H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP + in the presence of redox-inactive, recombinant NanKR1 0 or NanKR5 0 , from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR7 0 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR 0 -catalyzed isotope exchange of the reversibly generated, transiently formed oxidation product [2- 2 H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR 0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR 0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations.

  2. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis

    PubMed Central

    Xie, Xinqiang; Garg, Ashish; Khosla, Chaitan; Cane, David E.

    2017-01-01

    The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR0) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2-2H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP+ in the presence of redox-inactive, recombinant NanKR10 or NanKR50, from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR70 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR0-catalyzed isotope exchange of the reversibly-generated, transiently-formed oxidation product [2-2H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations. PMID:28157306

  3. Cellular and Molecular Responses of Dunaliella tertiolecta by Expression of a Plant Medium Chain Length Fatty Acid Specific Acyl-ACP Thioesterase

    PubMed Central

    Lin, Huixin; Shen, Hui; Lee, Yuan K.

    2018-01-01

    Metabolic engineering of microalgae to accumulate high levels of medium chain length fatty acids (MCFAs) has met with limited success. Traditional approaches employ single introduction of MCFA specific acyl-ACP thioesterases (TEs), but our current research in transgenic Dunaliella tertiolecta line has highlighted that, there is no single rate-limiting approach that can effectively increase MCFA levels. Here, we explore the accumulation of MCFAs in D. tertiolecta after transgenic expression of myristic acid biased TE (C14TE). We observe that the MCFA levels were negatively correlated to the fatty acid (FA) synthesis genes, ketoacyl-ACP synthase II (KASII), stearoyl-CoA-9-desaturase (Δ9D), and oleoyl-CoA-12-desaturase (Δ12D). To further examine the molecular mechanism of MCFA accumulation in microalgae, we investigate the transcriptomic dynamics of the MCFA producing strain of D. tertiolecta. At the transcript level, enhanced MCFA accumulation primarily involved up-regulation of photosynthetic genes and down-regulation of genes from central carbon metabolic processes, resulting in an overall decrease in carbon precursors for FA synthesis. We additionally observe that MCFA specific peroxisomal β-oxidation gene (ACX3) was greatly enhanced to prevent excessive build-up of unusual MCFA levels. Besides, long chain acyl-CoA synthetase gene (LACS) was down-regulated, likely in attempt to control fatty acyl supply flux to FA synthesis cycle. This article provides a spatial regulation model of unusual FA accumulation in microalgae and a platform for additional metabolic engineering targeting pathways from FA synthesis, FA transport, and peroxisomal β-oxidation to achieve microalgae oils with higher levels of MCFAs. PMID:29670594

  4. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.

    2013-10-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.

  5. Identification and cloning of a type III polyketide synthase required for diffusible pigment biosynthesis in Saccharopolyspora erythraea.

    PubMed

    Cortés, Jesús; Velasco, Javier; Foster, Graham; Blackaby, Andrew P; Rudd, Brian A M; Wilkinson, Barrie

    2002-06-01

    The soluble, diffusible red-brown pigment produced by a Saccharopolyspora erythraea "red variant" has been shown to contain glycosylated and polymerized derivatives of 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). Flaviolin is a spontaneous oxidation product of 1,3,6,8-tetrahydroxynaphthalene (THN), which is biosynthesized in bacteria by a chalcone synthase-like (CS-like) type III polyketide synthase (PKS). A fragment of the gene responsible for THN biosynthesis in S. erythraea E_8-7 was amplified by polymerase chain reaction (PCR) using degenerate primers based on conserved regions of known plant CS and bacterial CS-like genes. From the isolated fragment, a suicide vector was prepared, which was subsequently used to disrupt the red-brown pigment-producing (rpp) locus in S. erythraea, generating a mutant that displayed an albino phenotype. Chromosomal DNA from the albino mutant was subsequently used in a vector-recapture protocol to isolate a plasmid that contained an insert spanning the entire rpp locus. Sequencing of the insert revealed that the disrupted open reading frame (ORF) encodes a CS-like protein displaying 69% sequence identity to the rppA gene of Streptomyces griseus. The S. griseus rppA gene encodes RppA, the first characterized bacterial CS-like protein, which is sufficient in vitro for the synthesis of THN from malonyl-CoA. The rppA disruption mutant and rppA sequence provided a means by which to address the mechanism of diffusible pigment biosynthesis, as well as to investigate any link between this and the modulation of erythromycin A titre, which has been observed for S. erythraea variants.

  6. Composition of clusters and building blocks in amylopectins from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik

    2013-12-18

    Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.

  7. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    PubMed

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Squalene synthase inhibition: a novel target for the management of dyslipidemia.

    PubMed

    Davidson, Michael H

    2007-01-01

    A new class of compounds, known as squalene synthase inhibitors, has recently reached phase III clinical trials and may provide another therapeutic option for clinicians to improve risk management of low-density lipoprotein cholesterol (LDL-C). The clinical need for another LDL-C-lowering therapy is evident by the inability to achieve an LDL-C target of less than 70 mg/dL in the majority of very high-risk patients on statin monotherapy. Human clinical trial data with TAK-475, a novel and potent inhibitor of squalene synthase, have not yet been published.

  9. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress

    PubMed Central

    Hao, Derong; Wang, Hui; Kan, Guizhen; Jin, Hangxia; Yu, Deyue

    2014-01-01

    Phosphorus (P) is essential for all living cells and organisms, and low-P stress is a major factor constraining plant growth and yield worldwide. In plants, P efficiency is a complex quantitative trait involving multiple genes, and the mechanisms underlying P efficiency are largely unknown. Combining linkage analysis, genome-wide and candidate-gene association analyses, and plant transformation, we identified a soybean gene related to P efficiency, determined its favorable haplotypes and developed valuable functional markers. First, six major genomic regions associated with P efficiency were detected by performing genome-wide associations (GWAs) in various environments. A highly significant region located on chromosome 8, qPE8, was identified by both GWAs and linkage mapping and explained 41% of the phenotypic variation. Then, a regional mapping study was performed with 40 surrounding markers in 192 diverse soybean accessions. A strongly associated haplotype (P = 10−7) consisting of the markers Sat_233 and BARC-039899-07603 was identified, and qPE8 was located in a region of approximately 250 kb, which contained a candidate gene GmACP1 that encoded an acid phosphatase. GmACP1 overexpression in soybean hairy roots increased P efficiency by 11–20% relative to the control. A candidate-gene association analysis indicated that six natural GmACP1 polymorphisms explained 33% of the phenotypic variation. The favorable alleles and haplotypes of GmACP1 associated with increased transcript expression correlated with higher enzyme activity. The discovery of the optimal haplotype of GmACP1 will now enable the accurate selection of soybeans with higher P efficiencies and improve our understanding of the molecular mechanisms underlying P efficiency in plants. PMID:24391523

  10. Expression of Cyanobacterial Acyl-ACP Reductase Elevates the Triacylglycerol Level in the Red Alga Cyanidioschyzon merolae.

    PubMed

    Sumiya, Nobuko; Kawase, Yasuko; Hayakawa, Jumpei; Matsuda, Mami; Nakamura, Mami; Era, Atsuko; Tanaka, Kan; Kondo, Akihiko; Hasunuma, Tomohisa; Imamura, Sousuke; Miyagishima, Shin-ya

    2015-10-01

    Nitrogen starvation is known to induce the accumulation of triacylglycerol (TAG) in many microalgae, and potential use of microalgae as a source of biofuel has been explored. However, nitrogen starvation also stops cellular growth. The expression of cyanobacterial acyl-acyl carrier protein (ACP) reductase in the unicellular red alga Cyanidioschyzon merolae chloroplasts resulted in an accumulation of TAG, which led to an increase in the number and size of lipid droplets while maintaining cellular growth. Transcriptome and metabolome analyses showed that the expression of acyl-ACP reductase altered the activities of several metabolic pathways. The activities of enzymes involved in fatty acid synthesis in chloroplasts, such as acetyl-CoA carboxylase and pyruvate dehydrogenase, were up-regulated, while pyruvate decarboxylation in mitochondria and the subsequent consumption of acetyl-CoA by the tricarboxylic acid (TCA) cycle were down-regulated. Aldehyde dehydrogenase, which oxidizes fatty aldehydes to fatty acids, was also up-regulated in the acyl-ACP reductase expresser. This activation was required for the lipid droplet accumulation and metabolic changes observed in the acyl-ACP reductase expresser. Nitrogen starvation also resulted in lipid droplet accumulation in C. merolae, while cell growth ceased as in the case of other algal species. The metabolic changes that occur upon the expression of acyl-ACP reductase are quite different from those caused by nitrogen starvation. Therefore, there should be a method for further increasing the storage lipid level while still maintaining cell growth that is different from the metabolic response to nitrogen starvation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. The effect of CPP-ACP-propolis chewing gum on calcium and phosphate ion release on caries-active subjects’ saliva and the formation of Streptococcus mutans biofilm

    NASA Astrophysics Data System (ADS)

    Hasnamudhia, F.; Bachtiar, E. W.; Sahlan, M.; Soekanto, S. A.

    2017-08-01

    The aim of this study was to analyze the effect of CPP-APP and propolis wax if they are combined in a chewing gum formulation, observed from the calcium and phosphate ion level released by CPP-ACP and the emphasis of Streptococcus mutans mass in the biofilm by propolis wax on caries-active subjects’ saliva. Chewing gum simulation was done in vitro on 25 caries-active subjects’ saliva using five concentrations of chewing gum (0% propolis + 0% CPP-ACP, 0% propolis + CPP-ACP, 2% propolis + CPP-ACP, 4% propolis + CPP-ACP, and 6% propolis + CPP-ACP) and was then tested using an atomic absorption spectrophotometer to analyze calcium ion levels, an ultraviolet-visible spectrophotometer to analyze phosphate ion levels, and a biofilm assay using crystal violet to analyze the decline in biofilm mass. After the chewing simulation, calcium ion levels on saliva+gum eluent increased significantly compared to the saliva control, with the highest calcium level released by CPP-ACP + 2% propolis chewing gum. There was an insignificant phosphate level change between the saliva control and saliva+gum eluent. There was also a significant decline of S. mutans biofilm mass in the saliva+gum eluent, mostly by the CPP-ACP chewing gum and CPP-ACP + 6% propolis. The CPP-ACP-propolis chewing gum simulation generated the largest increase in calcium and phosphate ion level and the largest decline in S. mutans biofilm mass.

  12. An in vitro study on the retentive strength of orthodontic bands cemented with CPP-ACP-containing GIC

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-12-01

    Caries and white spot lesions around orthodontic bands are well known occurrences in fixed orthodontic treatment. There are several methods to overcome these problems. One of these includes modification of the band cement with remineralizing agents such as casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). However, it should be evaluated that the cement modification has no significant negative effects on the retentive strength of the cemented orthodontic bands. In a continuation of our previous studies on the effects of the addition of CPP-ACP on the mechanical properties of luting and lining glass ionomer cement (GIC), this study aimed to investigate the retentive strength of orthodontic bands cemented with CPP-ACP containing GIC. Sixty extracted human pre molars teeth were embedded in acrylic resin and randomly divided into two groups of 30 specimens. In group 1, bands were cemented to the tooth with a GIC. In group 2, CPP-ACP (1.56% w/w) was added to the GIC before cementation. The retentive strength of each groups was determined with a universal testing machine. Further, the amount of cement remaining on the tooth surface was evaluated under a stereomicroscope, and the adhesive remnant index (ARI) score was determined. Results of this study showed that there were no significant differences between the groups in retentive strength and ARI score. In conclusion, modification of GIC with 1.56% w/w CPP-ACP had no negative effects on the retentive strength of the bands so can be used during fixed orthodontic treatment.

  13. 2.0 Angstrom Structure of Prostaglandin H2 Synthase-1 Reconstituted with a Manganese Porphyrin Cofactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta,K.; Selinsky, B.; Loll, P.

    2006-01-01

    Prostaglandin H{sub 2} synthase (EC 1.14.99.1) is a clinically important drug target that catalyzes two key steps in the biosynthesis of the eicosanoid hormones. The enzyme contains spatially distinct cyclooxygenase and peroxidase active sites, both of which require a heme cofactor. Substitution of ferric heme by Mn{sup III} protoporphyrin IX greatly diminishes the peroxidase activity, but has little effect on the cyclooxygenase activity. Here, the 2.0 Angstrom resolution crystal structure of the Mn{sup III} form of ovine prostaglandin H{sub 2} synthase-1 is described (R = 21.8%, R{sub free} = 23.7%). Substitution of Mn{sup III} for Fe{sup III} causes no structuralmore » perturbations in the protein. However, the out-of-plane displacement of the manganese ion with respect to the porphyrin is greater than that of the iron by approximately 0.2 Angstroms. This perturbation may help to explain the altered catalytic properties of the manganese enzyme.« less

  14. Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism.

    PubMed

    Mofid, Mohammad Reza; Finking, Robert; Essen, Lars Oliver; Marahiel, Mohamed A

    2004-04-13

    The activation of apo-peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases (NRPSs), apo-acyl carrier proteins (ACPs) of polyketide synthases (PKSs), and fatty acid synthases (FASs) to their active holo form is accomplished with dedicated 4'-phosphopantetheinyl transferases (PPTases). They catalyze the transfer of the essential prosthetic group 4'-phosphopantetheine (4'-Ppant) from coenzyme A (CoA) to a highly conserved serine residue in all PCPs and ACPs. PPTases, based on sequence and substrate specifity, have been classified into three types: bacterial holo-acyl carrier protein synthase (AcpS), fatty acid synthase of eukaryotes (FAS2) and Sfp, a PPTase of secondary metabolism. The recently solved crystal structures of AcpS and Sfp-type PPTases with CoA revealed a common alpha + beta-fold with a beta(1)alpha(3)beta(2) motif and similarities in CoA binding and polymerization mode. However, it was not possible to discern neither the PCP binding region of Sfp nor the priming reaction mechanism from the Sfp-CoA cocrystal. In this work, we provide a model for the reaction mechanism based on mutational analysis of Sfp that suggests a reaction mechanism in which the highly conserved E151 deprotonates the hydroxyl group of the invariant serine of PCP. That, in turn, acts as a nucleophile to attack the beta-phosphate of CoA. The Sfp mutants K112, E117, and K120 further revealed that the loop region between beta4 and alpha5 (residues T111-S124) in Sfp is the PCP binding region. Also, residues T44, K75, S89, H90, D107, E109, E151, and K155 that have been shown in the Sfp-CoA cocrystal structure to coordinate CoA are now all confirmed by mutational and biochemical analysis.

  15. Distribution of branches in whole starches from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik

    2014-05-21

    An earlier study explored the possibility of analyzing the distribution of branches directly in native, whole starch without isolating the amylopectin component. The aim of this study was to explore if this approach can be extended to include starch mutants. Whole starches from du1 maize mutants deficient in starch synthase III (SSIII) with amylose content of ∼30-40% were characterized and compared with the wild type of the common genetic background W64A. Clusters were produced from whole starch by hydrolysis with α-amylase of Bacillus amyloliquefaciens. Their compositions of building blocks and chains were analyzed further by complete α-amylolysis and by debranching, respectively, whereafter the products were subjected to gel permeation and anion exchange chromatography. The size and structure of the clusters were compared with those of their isolated amylopectin component. Whereas the whole starch of the wild type sample had a branched structure similar to that of its amylopectin component, the results showed that the du1 mutation resulted in more singly branched building blocks in the whole starch compared to the isolated amylopectin. This suggested that amylose and/or intermediate materials in whole du1 starches likely contributed to the composition of branches. This study explored an alternative procedure to characterize the composition of branches in the whole starch without fractionating the components.

  16. Bifunctional cis-Abienol Synthase from Abies balsamea Discovered by Transcriptome Sequencing and Its Implications for Diterpenoid Fragrance Production*

    PubMed Central

    Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A.; Britton, Robert; Bohlmann, Jörg

    2012-01-01

    The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production. PMID:22337889

  17. Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the TPS-B terpene synthase family.

    PubMed

    Sharkey, Thomas D; Gray, Dennis W; Pell, Heather K; Breneman, Steven R; Topper, Lauren

    2013-04-01

    Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus lupulus to produce isoprene. Isoprene synthases and (E)-β-ocimene synthases form a monophyletic group within the Tps-b clade of terpene synthases. No asterid genes fall within this clade. The chemistry of isoprene synthase and ocimene synthase is similar and likely affects the apparent relationships among Tps-b enzymes. The chronology of rosid evolution suggests a Cretaceous origin followed by many losses of isoprene synthase over the course of evolutionary history. The phylogenetic pattern of Tps-b genes indicates that isoprene emission from non-rosid angiosperms likely arose independently. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavaty, Andrei S.; Northwestern University, Chicago, IL 60611; Kim, Youngchang

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holomore » form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.« less

  19. Favoring the birth of female puppies after artificial insemination using chilled semen diluted with powdered coconut water (ACP-106c).

    PubMed

    Uchoa, Daniel Couto; da Silva, Ticiana Franco Pereira; Cardoso, Janaína de Fátima Saraiva; Mota Filho, Antônio Cavalcante; Jucá, Ricardo Parente; Silva, Alexandre Rodrigues; da Silva, Lúcia Daniel Machado

    2012-06-01

    The objective was to determine the effect of powdered coconut water extender (ACP-106c) on the proportion of female puppies born. Twenty French Bulldog bitches were subjected to natural mating (NM) and, during the subsequent two estrus periods, were bred by intravaginal artificial insemination (AI), using chilled semen (from the same males) diluted in Tris-egg yolk (AI-Tris) or ACP-106c (AI-ACP-106c). Fresh semen was cooled to 5 °C and maintained at that temperature for 6 h, rewarmed (37 °C for 30 s), and used for AI. Pregnancy and whelping rates following NM were both 100% and were both 90.0% following AI with either extender. Litter size (mean ± SD) was 5.4 ±1.1, 4.7 ± 2.0, and 5.1 ± 2.0 (P > 0.05) for NM, AI-Tris, and AI-ACP-106c, respectively. Furthermore, for these groups, the number of female vs. male puppies born were 2.6 ± 0.6 vs. 2.8 ± 1.0, 2.2 ± 1.0 vs. 2.5 ± 1.1, and 3.4 ± 1.6 vs. 1.8 ± 1.2 (P < 0.05 for AI-ACP-106c only). In conclusion, our hypothesis was supported; AI of semen in ACP-106c extender resulted in a significantly higher proportion of female puppies. Furthermore, this extender yielded acceptable litter size and rates of pregnancy and whelping. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The Joint Polar Satellite System (JPSS) Program's Algorithm Change Process (ACP): Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Griffin, Ashley

    2017-01-01

    The Joint Polar Satellite System (JPSS) Program Office is the supporting organization for the Suomi National Polar Orbiting Partnership (S-NPP) and JPSS-1 satellites. S-NPP carries the following sensors: VIIRS, CrIS, ATMS, OMPS, and CERES with instruments that ultimately produce over 25 data products that cover the Earths weather, oceans, and atmosphere. A team of scientists and engineers from all over the United States document, monitor and fix errors in operational software code or documentation with the algorithm change process (ACP) to ensure the success of the S-NPP and JPSS 1 missions by maintaining quality and accuracy of the data products the scientific community relies on. This poster will outline the programs algorithm change process (ACP), identify the various users and scientific applications of our operational data products and highlight changes that have been made to the ACP to accommodate operating system upgrades to the JPSS programs Interface Data Processing Segment (IDPS), so that the program is ready for the transition to the 2017 JPSS-1 satellite mission and beyond.

  1. Biosynthesis of t-Butyl in Apratoxin A: Functional Analysis and Architecture of a PKS Loading Module.

    PubMed

    Skiba, Meredith A; Sikkema, Andrew P; Moss, Nathan A; Lowell, Andrew N; Su, Min; Sturgis, Rebecca M; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2018-05-08

    The unusual feature of a t-butyl group is found in several marine-derived natural products including apratoxin A, a Sec61 inhibitor produced by the cyanobacterium Moorea bouillonii PNG 5-198. Here, we determine that the apratoxin A t-butyl group is formed as a pivaloyl acyl carrier protein (ACP) by AprA, the polyketide synthase (PKS) loading module of the apratoxin A biosynthetic pathway. AprA contains an inactive "pseudo" GCN5-related N-acetyltransferase domain (ΨGNAT) flanked by two methyltransferase domains (MT1 and MT2) that differ distinctly in sequence. Structural, biochemical, and precursor incorporation studies reveal that MT2 catalyzes unusually coupled decarboxylation and methylation reactions to transform dimethylmalonyl-ACP, the product of MT1, to pivaloyl-ACP. Further, pivaloyl-ACP synthesis is primed by the fatty acid synthase malonyl acyltransferase (FabD), which compensates for the ΨGNAT and provides the initial acyl-transfer step to form AprA malonyl-ACP. Additionally, images of AprA from negative stain electron microscopy reveal multiple conformations that may facilitate the individual catalytic steps of the multienzyme module.

  2. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases

    PubMed Central

    Li, Mingai; Xu, Jia; Algarra Alarcon, Alberto; Carlin, Silvia; Barbaro, Enrico; Cappellin, Luca; Velikova, Violeta; Vrhovsek, Urska; Loreto, Francesco; Varotto, Claudio

    2017-01-01

    Abstract Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance. PMID:28637270

  3. Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions.

    PubMed

    Cory, Seth A; Van Vranken, Jonathan G; Brignole, Edward J; Patra, Shachin; Winge, Dennis R; Drennan, Catherine L; Rutter, Jared; Barondeau, David P

    2017-07-03

    In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.

  4. Disrupting the Acyl Carrier Protein/SpoT Interaction In Vivo: Identification of ACP Residues Involved in the Interaction and Consequence on Growth

    PubMed Central

    Angelini, Sandra; My, Laetitia; Bouveret, Emmanuelle

    2012-01-01

    In bacteria, Acyl Carrier Protein (ACP) is the central cofactor for fatty acid biosynthesis. It carries the acyl chain in elongation and must therefore interact successively with all the enzymes of this pathway. Yet, ACP also interacts with proteins of diverse unrelated function. Among them, the interaction with SpoT has been proposed to be involved in regulating ppGpp levels in the cell in response to fatty acid synthesis inhibition. In order to better understand this mechanism, we screened for ACP mutants unable to interact with SpoT in vivo by bacterial two-hybrid, but still functional for fatty acid synthesis. The position of the selected mutations indicated that the helix II of ACP is responsible for the interaction with SpoT. This suggested a mechanism of recognition similar to one used for the enzymes of fatty acid synthesis. Consistently, the interactions tested by bacterial two-hybrid of ACP with fatty acid synthesis enzymes were also affected by the mutations that prevented the interaction with SpoT. Yet, interestingly, the corresponding mutant strains were viable, and the phenotypes of one mutant suggested a defect in growth regulation. PMID:22558350

  5. Cobalamin in inflammation III — glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases

    PubMed Central

    Wheatley, Carmen

    2007-01-01

    Several mysteries surround the structure and function of the nitric oxide synthases (NOS). The NOS oxygenase domain structure is unusually open with a large area of solvent that could accommodate an unidentified ligand. The exact mechanism of the two-step five-electron monoxygenation of arginine to NG-hydroxy-L-arginine, thence to citrulline and nitric oxide (NO), is not clear, particularly as arginine/NG-hydroxy-L-arginine is bound at a great distance to the supposed catalytic heme Fe [III], as the anti-stereoisomer. The Return of the Scarlet Pimpernel Paper proposed that cobalamin is a primary indirect regulator of the NOS. An additional direct regulatory effect of the ‘base-off’ dimethylbenzimidazole of glutathionylcobalamin (GSCbl), which may act as a sixth ligand to the heme iron, promote Co-oriented, BH4/BH3 radical catalysed oxidation of L-arginine to NO, and possibly regulate the rate of inducible NOS/NO production by the NOS dimers, is further advanced. The absence of homology between the NOS and methionine synthase/methylmalonyl CoA mutase may enable GSCbl to regulate both sets of enzymes simultaneously by completely separate mechanisms. Thus, cobalamin may exert central control over both pro-and anti-inflammatory systems. PMID:18923642

  6. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases.

    PubMed

    Li, Mingai; Xu, Jia; Algarra Alarcon, Alberto; Carlin, Silvia; Barbaro, Enrico; Cappellin, Luca; Velikova, Violeta; Vrhovsek, Urska; Loreto, Francesco; Varotto, Claudio

    2017-10-01

    Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana

    PubMed Central

    Chang, Ing-Feng

    2013-01-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis. PMID:23943848

  8. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana.

    PubMed

    Huang, Shih-Jhe; Chang, Chia-Lun; Wang, Po-Hsun; Tsai, Min-Chieh; Hsu, Pang-Hung; Chang, Ing-Feng

    2013-11-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis.

  9. Results of Absolute Cavity Pyrgeometer (ACP), InfraRed Integrating Sphere (IRIS), and Atmospheric Emitted Radiance Interferometer (AERI) Comparisons and CIMO Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, Ibrahim M; Dooraghi, Michael R; Sengupta, Manajit

    Presenting results of five comparisons between ACPs and IRISs and the difference between the longwave irradiance measured by the ACPs and IRISs versus the average irradiance measured by the WISG. The process of CIMO recommendation to establish the world reference for measuring the atmospheric longwave irradiance with traceability to the International System of Units (SI) is also presented.

  10. Concentration of Calcium, Phosphate and Fluoride Ions in Microbial Plaque and Saliva after Using CPP-ACP Paste in 6-9 year-old Children

    PubMed Central

    HR, Poureslami; Ra, Hoseinifar; Re, Hoseinifar; H, Sharifi; P, Poureslami

    2016-01-01

    Statement of Problem: Dental caries is one of the most common chronic diseases in children. The balance between demineralization and remineralization of the decayed teeth depends on the calcium and phosphate content of the tooth surface. Therefore, if a product such as casein phospho peptides - amorphous calcium phosphate (CPP- ACP) which can significantly increase the availability of calcium and phosphate in the plaque and saliva should have an anti-caries protective effect. Objectives: The purpose of this study was to evaluate the concentration of calcium, phosphate and fluoride in the plaque and saliva of children before and after applying the CPP-ACP paste. Materials and Methods: A total of 25 children aged between 6-9 years were selected for this clinical trial study. At first, 1 ml of unstimulated saliva was collected and then 1 mg of the plaque sample was collected from the buccal surfaces of the two first primary molars on the upper jaw. In the next step, CPP-ACP paste (GC Corp, Japan) was applied on the tooth surfaces and then the plaque and saliva sampling was performed after 60 minutes. The amount of calcium ions was measured by Ion meter instrument (Metrohm Co, Swiss) and the amounts of phosphate and fluoride ions were measured by Ion Chromatography instrument (Metrohm Co, Swiss). Data were analyzed using paired t-test at a p < 0.05 level of significance. Results: There were statistically significant differences in the calcium and phosphate concentration of the saliva and plaque before and after applying the CPP-ACP paste. There were also statistically significant differences in the fluoride levels of the plaque before and after applying the CPP-ACP paste. However, there were no statistically significant differences in the fluoride levels of the saliva before and after applying the CPP-ACP paste. Conclusions: In this study, the use of the CPP-ACP paste significantly increased the fluoride levels of the plaque and the calcium and phosphate levels of both

  11. Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases*

    PubMed Central

    Jones, Christopher G.; Moniodis, Jessie; Zulak, Katherine G.; Scaffidi, Adrian; Plummer, Julie A.; Ghisalberti, Emilio L.; Barbour, Elizabeth L.; Bohlmann, Jörg

    2011-01-01

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. PMID:21454632

  12. Distribution of Callose Synthase, Cellulose Synthase, and Sucrose Synthase in Tobacco Pollen Tube Is Controlled in Dissimilar Ways by Actin Filaments and Microtubules1[W

    PubMed Central

    Cai, Giampiero; Faleri, Claudia; Del Casino, Cecilia; Emons, Anne Mie C.; Cresti, Mauro

    2011-01-01

    Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules. PMID:21205616

  13. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases.

    PubMed

    Jones, Christopher G; Moniodis, Jessie; Zulak, Katherine G; Scaffidi, Adrian; Plummer, Julie A; Ghisalberti, Emilio L; Barbour, Elizabeth L; Bohlmann, Jörg

    2011-05-20

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    PubMed Central

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID). PMID:28079165

  15. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    NASA Astrophysics Data System (ADS)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  16. Segment swapping aided the evolution of enzyme function: The case of uroporphyrinogen III synthase.

    PubMed

    Szilágyi, András; Györffy, Dániel; Závodszky, Péter

    2017-01-01

    In an earlier study, we showed that two-domain segment-swapped proteins can evolve by domain swapping and fusion, resulting in a protein with two linkers connecting its domains. We proposed that a potential evolutionary advantage of this topology may be the restriction of interdomain motions, which may facilitate domain closure by a hinge-like movement, crucial for the function of many enzymes. Here, we test this hypothesis computationally on uroporphyrinogen III synthase, a two-domain segment-swapped enzyme essential in porphyrin metabolism. To compare the interdomain flexibility between the wild-type, segment-swapped enzyme (having two interdomain linkers) and circular permutants of the same enzyme having only one interdomain linker, we performed geometric and molecular dynamics simulations for these species in their ligand-free and ligand-bound forms. We find that in the ligand-free form, interdomain motions in the wild-type enzyme are significantly more restricted than they would be with only one interdomain linker, while the flexibility difference is negligible in the ligand-bound form. We also estimated the entropy costs of ligand binding associated with the interdomain motions, and find that the change in domain connectivity due to segment swapping results in a reduction of this entropy cost, corresponding to ∼20% of the total ligand binding free energy. In addition, the restriction of interdomain motions may also help the functional domain-closure motion required for catalysis. This suggests that the evolution of the segment-swapped topology facilitated the evolution of enzyme function for this protein by influencing its dynamic properties. Proteins 2016; 85:46-53. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Efficacy of CPP-ACP and CPP-ACPF on enamel remineralization - an in vitro study using scanning electron microscope and DIAGNOdent.

    PubMed

    Jayarajan, Jayanth; Janardhanam, P; Jayakumar, P

    2011-01-01

    Remineralization as a treatment procedure has received a lot of attention both from clinicians as well researchers. The objective of this in vitro study was to find out the efficacy of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and casein phosphopeptide-amorphous calcium phosphate fluoride (CPP-ACPF) in remineralizing enamel surface on which artificial caries lesion had been created. The changes were analyzed using DIAGNOdent (KaVo) and scanning electron microscope (SEM). Ninety maxillary premolars were selected and divided into three groups of 30 teeth each: A (artificial saliva), B (CPP-ACP), and C (CPP-ACPF). All the samples were assessed using DIAGNOdent at the baseline and after demineralization and remineralization. Three samples were randomly selected from each group after remineralization for surface evaluation using SEM. Statistical analysis showed that group B {CPP-ACP (4.1 ± 1.8)} and group C {CPP-ACPF (4.8 ± 1.2)} had a significantly higher amount of remineralization than group A (1.7 ± 0.7). All the three groups showed a statistically significant amount of remineralization. However, because of the added benefit of fluoride (NaF 0.2%), CPP-ACPF (Tooth Mousse-Plus) showed marginally more amount of remineralization than CPP-ACP (Tooth Mousse).

  18. The influence of powdered coconut water (ACP-318®) in in vitro maturation of canine oocytes.

    PubMed

    Silva, A E F; Cavalcante, L F; Rodrigues, B A; Rodrigues, J L

    2010-12-01

    The objective of this study was to determine the influence of powdered coconut water (ACP-318(®)) diluted in high glucose (11.0 mM) TCM199 in the achievement of nuclear in vitro maturation (IVM) of canine oocytes. Cumulus oocyte complexes (COCs) (n = 632) were randomly allocated into three experimental groups named as group 1 (control group), group 2 (5% powdered coconut water) and group 3 (10% powdered coconut water). The percentage of meiotic resumption (MR) (GVBD to MII) was 39.1% (81/207), 50.2% (108/215) and 46.6% (98/210) for groups 1, 2 and 3 respectively (p < 0.05). There were no differences in MR rates among groups 2 and 3. The medium with ACP-318(®) slightly enhanced the nuclear maturation of canine oocytes when a comparison was established with rates of maturation exhibited by oocytes in the experimental group 1 without ACP-318(®) (p < 0.05). The results suggest that oocytes' nuclear morphology integrity and meiosis achievement were positively influenced when exposed to high glucose TCM199 supplemented with 5% powdered coconut water. Further investigation must be performed for a better understanding of powdered coconut water influence in cellular events during IVM of dog oocytes. © 2009 Blackwell Verlag GmbH.

  19. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  20. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  1. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  2. Spondyloenchondrodysplasia Due to Mutations in ACP5: A Comprehensive Survey.

    PubMed

    Briggs, Tracy A; Rice, Gillian I; Adib, Navid; Ades, Lesley; Barete, Stephane; Baskar, Kannan; Baudouin, Veronique; Cebeci, Ayse N; Clapuyt, Philippe; Coman, David; De Somer, Lien; Finezilber, Yael; Frydman, Moshe; Guven, Ayla; Heritier, Sébastien; Karall, Daniela; Kulkarni, Muralidhar L; Lebon, Pierre; Levitt, David; Le Merrer, Martine; Linglart, Agnes; Livingston, John H; Navarro, Vincent; Okenfuss, Ericka; Puel, Anne; Revencu, Nicole; Scholl-Bürgi, Sabine; Vivarelli, Marina; Wouters, Carine; Bader-Meunier, Brigitte; Crow, Yanick J

    2016-04-01

    Spondyloenchondrodysplasia is a rare immuno-osseous dysplasia caused by biallelic mutations in ACP5. We aimed to provide a survey of the skeletal, neurological and immune manifestations of this disease in a cohort of molecularly confirmed cases. We compiled clinical, genetic and serological data from a total of 26 patients from 18 pedigrees, all with biallelic ACP5 mutations. We observed a variability in skeletal, neurological and immune phenotypes, which was sometimes marked even between affected siblings. In total, 22 of 26 patients manifested autoimmune disease, most frequently autoimmune thrombocytopenia and systemic lupus erythematosus. Four patients were considered to demonstrate no clinical autoimmune disease, although two were positive for autoantibodies. In the majority of patients tested we detected upregulated expression of interferon-stimulated genes (ISGs), in keeping with the autoimmune phenotype and the likely immune-regulatory function of the deficient protein tartrate resistant acid phosphatase (TRAP). Two mutation positive patients did not demonstrate an upregulation of ISGs, including one patient with significant autoimmune disease controlled by immunosuppressive therapy. Our data expand the known phenotype of SPENCD. We propose that the OMIM differentiation between spondyloenchondrodysplasia and spondyloenchondrodysplasia with immune dysregulation is no longer appropriate, since the molecular evidence that we provide suggests that these phenotypes represent a continuum of the same disorder. In addition, the absence of an interferon signature following immunomodulatory treatments in a patient with significant autoimmune disease may indicate a therapeutic response important for the immune manifestations of spondyloenchondrodysplasia.

  3. Aromatic Polyketide Synthases (Purification, Characterization, and Antibody Development to Benzalacetone Synthase from Raspberry Fruits).

    PubMed Central

    Borejsza-Wysocki, W.; Hrazdina, G.

    1996-01-01

    p-Hydroxyphenylbutan-2-one, the characteristic aroma compound of raspberries (Rubus idaeus L.), is synthesized from p-coumaryl-coenzyme A and malonyl-coenzyme A in a two-step reaction sequence that is catalyzed by benzalacetone synthase and benzalacetone reductase (W. Borejsza-Wysocki and G. Hrazdina [1994] Phytochemistry 35: 623-628). Benzalacetone synthase condenses one malonate with p-coumarate to form the pathway intermediate p-hydroxyphenylbut-3-ene-2-one (p-hydroxybenzalacetone) in a reaction that is similar to those catalyzed by chalcone and stilbene synthases. We have obtained an enzyme preparation from ripe raspberries that was preferentially enriched in benzalacetone synthase (approximately 170-fold) over chalcone synthase (approximately 14-fold) activity. This preparation was used to characterize benzalacetone synthase and to develop polyclonal antibodies in rabbits. Benzalacetone synthase showed similarity in its molecular properties to chalcone synthase but differed distinctly in its substrate specificity, response to 2-mercaptoethanol and ethylene glycol, and induction in cell-suspension cultures. The product of the enzyme, p-hydroxybenzalacetone, inhibited mycelial growth of the raspberry pathogen Phytophthora fragariae var rubi at 250 [mu]M. We do not know whether the dual activity in the benzalacetone synthase preparation is the result of a bifunctional enzyme or is caused by contamination with chalcone synthase that was also present. The rapid induction of the enzyme in cell-suspension cultures upon addition of yeast extract and the toxicity of its product, p-hydroxybenzalacetone, to phytopathogenic fungi also suggest that the pathway may be part of a plant defense response. PMID:12226219

  4. Results of Second Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, I.; Grobner, J.; Wacker, S.

    The Absolute Cavity Pyrgeometer (ACP) and InfraRed Integrating Sphere radiometer (IRIS) are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are un-windowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The second outdoor comparison between the two designs was held from September 30 to October 11, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of the IRIS was within 1 W/m2 (3 IRISs: PMOD + Australia + Germany). From the first and second comparisons, a differencemore » of 4-6 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG). This presentation includes results from the first and second comparison in an effort to establish the world reference for pyrgeometer calibrations, a key deliverable for the World Meteorological Organization (WMO), and the DOE-ASR.« less

  5. Intrathecal oxotremorine affects formalin-induced behavior and spinal nitric oxide synthase immunoreactivity in rats.

    PubMed

    Przewlocka, B; Mika, J; Capone, F; Machelska, H; Pavone, F

    1999-03-01

    The present research was undertaken to investigate, by behavioral and immunohistochemical methods, the effects of intrathecal (i.th.) injection of the muscarinic agonist oxotremorine on the response to the long-lasting nociceptive stimulus induced by injection of formalin into the rat hind paw. Formalin injection induced a biphasic, pain-induced behavioral response (paw jerks), as well as an increase in the number of nitric oxide (NO) synthase-labeled neurons in laminae I-III, IV, and X, but not in laminae V-VI. Oxotremorine (0.1-10 ng, i.th.) inhibited paw-jerk frequency in both phases of formalin-induced behavior. The immunohistochemical results showed that i.th.-injected oxotremorine differently affected the level of NO synthase in lumbar part of the spinal cord: no change or increase after the dose of 1 ng, and a significant reduction of nitric oxide synthase neurons after the higher dose (10 ng). These results evidenced a role of cholinergic system in the modulation of tonic pain and in nitric oxide synthase expression at the spinal cord level, which further suggests that these two systems could be involved in phenomena induced by long-lasting nociceptive stimulation.

  6. [Advances in isoprene synthase research].

    PubMed

    Gou, Yan; Liu, Zhongchuan; Wang, Ganggang

    2017-11-25

    Isoprene emission can lead to significant consequence for atmospheric chemistry. In addition, isoprene is a chemical compound for various industrial applications. In the organisms, isoprene is produced by isoprene synthase that eliminates the pyrophosphate from the dimethylallyl diphosphate. As a key enzyme of isoprene formation, isoprene synthase plays an important role in the process of natural emission and artificial synthesis of isoprene. So far, isoprene synthase has been found in various plants. Isoprene synthases from different sources are of conservative structural and similar biochemical properties. In this review, the biochemical and structural characteristics of isoprene synthases from different sources were compared, the catalytic mechanism of isoprene synthase was discussed, and the perspective application of the enzyme in bioengineering was proposed.

  7. Functional characterization and expression of GASCL1 and GASCL2, two anther-specific chalcone synthase like enzymes from Gerbera hybrida.

    PubMed

    Kontturi, Juha; Osama, Raisa; Deng, Xianbao; Bashandy, Hany; Albert, Victor A; Teeri, Teemu H

    2017-02-01

    The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule. It is thought that the enzymes responsible for sporopollenin biosynthesis are highly conserved, and thus far, each angiosperm species with a genome sequenced has possessed two ASCL genes, which in Arabidopsis thaliana are PKSA and PKSB. The Gerbera hybrida (gerbera) PKS protein family consists of three chalcone synthases (GCHS1, GCHS3 and GCHS4) and three 2-pyrone synthases (G2PS1, G2PS2 and G2PS3). In previous studies we have demonstrated the functions of chalcone synthases in flavonoid biosynthesis, and the involvement of 2-pyrone synthases in the biosynthesis of antimicrobial compounds found in gerbera. In this study we expanded the gerbera PKS-family by functionally characterizing two gerbera ASCL proteins. In vitro enzymatic studies using purified recombinant proteins showed that both GASCL1 and GASCL2 were able to use medium and long-chain acyl-CoA starters and perform two to three condensation reactions of malonyl-CoA to produce tri- and tetraketide 2-pyrones, usually referred to as alpha-pyrones in sporopollenin literature. Both GASCL1 and GASCL2 genes were expressed only in floral organs, with most expression observed in anthers. In the anthers, transcripts of both genes showed strict tapetum-specific localization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biochemical Characterization and Homology Modeling of Methylbutenol Synthase and Implications for Understanding Hemiterpene Synthase Evolution in Plants*

    PubMed Central

    Gray, Dennis W.; Breneman, Steven R.; Topper, Lauren A.; Sharkey, Thomas D.

    2011-01-01

    2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ∼90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K+, whereas isoprene production is inhibited by K+ such that, at physiologically relevant [K+], little or no isoprene emission should be detected from MBO-emitting trees. The Km of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site. PMID:21504898

  9. Changes in the Concentration of Ions in Saliva and Dental Plaque after Application of CPP-ACP with and without Fluoride among 6-9 Year Old Children.

    PubMed

    Poureslami, H; Hoseinifar, Ra; Khazaeli, P; Hoseinifar, Re; Sharifi, H; Poureslami, P

    2017-03-01

    The casein phospho peptide-amorphous calcium phosphate with or without fluoride (CPP-ACPF and CPP-ACP respectively) are of considerably new materials which are highly recommended for prevention of dental caries. However, there is a shortage in literature on how they affect the ion concentration of saliva or dental plaque. The aim of this study was to evaluate the concentration of calcium, phosphate and fluoride in the plaque and saliva of children with Early Childhood Caries (ECC) after applying the CPP-ACP paste in comparison with the use of CPP-ACPF paste. One ml of un-stimulated saliva of 25 preschool children was collected and then 1 mg of the plaque sample was collected from the buccal surfaces of the two first primary molars on the upper jaw. CPP-ACP as well as CPP-ACPF pastes were applied on the tooth surfaces in two separate steps. In steps, plaque and saliva sampling was performed after 60 minutes. The amount of calcium ions was measured by Atomic Absorption Device and the amount of phosphate and fluoride ions was measured by Ion Chromatography instrument. Data were analyzed using Repeated Measurements ANOVA at a p < 0.05 level of significance. Application of both CPP-ACPF and CPP-ACP significantly increased the concentration of calcium, phosphate, and fluoride in both saliva and dental plaque. Moreover, significantly higher salivary fluoride concentration was seen after application of CPP-ACPF compared to CPP-ACP. No other significant difference was observed between these two materials. CPP-ACPF can be more useful than CPP-ACP in protecting the primary teeth against caries process, especially when there is poor hygiene.

  10. Changes in the Concentration of Ions in Saliva and Dental Plaque after Application of CPP-ACP with and without Fluoride among 6-9 Year Old Children

    PubMed Central

    Poureslami, H.; Hoseinifar, Ra.; Khazaeli, P.; Hoseinifar, Re.; Sharifi, H.; Poureslami, P.

    2017-01-01

    Statement of Problem: The casein phospho peptide-amorphous calcium phosphate with or without fluoride (CPP-ACPF and CPP-ACP respectively) are of considerably new materials which are highly recommended for prevention of dental caries. However, there is a shortage in literature on how they affect the ion concentration of saliva or dental plaque. Objectives: The aim of this study was to evaluate the concentration of calcium, phosphate and fluoride in the plaque and saliva of children with Early Childhood Caries (ECC) after applying the CPP-ACP paste in comparison with the use of CPP-ACPF paste. Materials and Methods: One ml of un-stimulated saliva of 25 preschool children was collected and then 1 mg of the plaque sample was collected from the buccal surfaces of the two first primary molars on the upper jaw. CPP-ACP as well as CPP-ACPF pastes were applied on the tooth surfaces in two separate steps. In steps, plaque and saliva sampling was performed after 60 minutes. The amount of calcium ions was measured by Atomic Absorption Device and the amount of phosphate and fluoride ions was measured by Ion Chromatography instrument. Data were analyzed using Repeated Measurements ANOVA at a p < 0.05 level of significance. Results: Application of both CPP-ACPF and CPP-ACP significantly increased the concentration of calcium, phosphate, and fluoride in both saliva and dental plaque. Moreover, significantly higher salivary fluoride concentration was seen after application of CPP-ACPF compared to CPP-ACP. No other significant difference was observed between these two materials. Conclusions: CPP-ACPF can be more useful than CPP-ACP in protecting the primary teeth against caries process, especially when there is poor hygiene. PMID:28959766

  11. The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer.

    PubMed

    Cathcart, Mary-Clare; Reynolds, John V; O'Byrne, Kenneth J; Pidgeon, Graham P

    2010-04-01

    Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI(2)/TXA(2) ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development. In this review, we discuss the aberrant expression and known functions of both prostacyclin synthase and thromboxane synthase in cancer. We discuss the effects of these enzymes on a range of tumor cell survival pathways, such as tumor cell proliferation, induction of apoptosis, invasion and metastasis, and tumor cell angiogenesis. As downstream signaling pathways of these enzymes have also been implicated in cancer states, we examine the role of downstream effectors of PGIS and TXS activity in tumor growth and progression. Finally, we discuss current therapeutic strategies aimed at targeting these enzymes for the prevention/treatment of cancer.

  12. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.

  13. Transient silencing of the KASII genes is feasible in Nicotiana benthamiana for metabolic engineering of wax ester composition

    PubMed Central

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sitbon, Folke; Sun, Chuanxin

    2015-01-01

    The beta-ketoacyl-ACP synthase II (KASII) is an enzyme in fatty acid biosynthesis, catalyzing the elongation of 16:0-acyl carrier protein (ACP) to 18:0-ACP in plastids. Mutations in KASII genes in higher plants can lead to lethality, which makes it difficult to utilize the gene for lipid metabolic engineering. We demonstrated previously that transient expression of plastid-directed fatty acyl reductases and wax ester synthases could result in different compositions of wax esters. We hypothesized that changing the ratio between C16 (palmitoyl-compounds) and C18 (stearoyl-compounds) in the plastidic acyl-ACP pool by inhibition of KASII expression would change the yield and composition of wax esters via substrate preference of the introduced enzymes. Here, we report that transient inhibition of KASII expression by three different RNAi constructs in leaves of N. benthamiana results in almost complete inhibition of KASII expression. The transient RNAi approach led to a shift of carbon flux from a pool of C18 fatty acids to C16, which significantly increased wax ester production in AtFAR6-containing combinations. The results demonstrate that transient inhibition of KASII in vegetative tissues of higher plants enables metabolic studies towards industrial production of lipids such as wax esters with specific quality and composition. PMID:26063537

  14. Chitin synthase III: synthetic lethal mutants and "stress related" chitin synthesis that bypasses the CSD3/CHS6 localization pathway.

    PubMed

    Osmond, B C; Specht, C A; Robbins, P W

    1999-09-28

    We screened Saccharomyces strains for mutants that are synthetically lethal with deletion of the major chitin synthase gene CHS3. In addition to finding, not surprisingly, that mutations in major cell wall-related genes such as FKS1 (glucan synthase) and mutations in any of the Golgi glycosylation complex genes (MNN9 family) are lethal in combination with chs3Delta, we found that a mutation in Srv2p, a bifunctional regulatory gene, is notably lethal in the chs3 deletion. In extending studies of fks1-chitin synthase 3 interactions, we made the surprising discovery that deletion of CSD3/CHS6, a gene normally required for Chs3p delivery and activity in vivo, was not lethal with fks1 and, in fact, that lack of Csd3p/Chs6p did not decrease the high level of stress-related chitin made in the fks1 mutant. This finding suggests that "stress response" chitin synthesis proceeds through an alternate Chs3p targeting pathway.

  15. Comparison of CPP-ACP, Tri-Calcium Phosphate and Hydroxyapatite on Remineralization of Artificial Caries Like Lesions on Primary Enamel -An in vitro Study.

    PubMed

    Bajaj, Meghna; Poornima, P; Praveen, S; Nagaveni, N B; Roopa, K B; Neena, I E; Bharath, K P

    To compare CPP-ACP, Tri-calcium phosphate and Hydroxyapatite on remineralization of artificial caries like lesions on primary enamel. Ten extracted Primary molars coated with nail varnish, leaving a window of 2×4 mm on buccal and lingual surface were immersed in demineralizing solution for 96 hours and sectioned longitudinally to obtain 40 sections (4 sections per tooth) and were randomly divided into 4 groups (A to D) n=10; Group A: negative control, Group B: CPP-ACP, Group C: Tri-calcium phosphate, Group D: Hydroxyapatite. Sections were subjected to pH cycling for 10 days and were evaluated by polarized light microscope before and after treatment. Intra group comparison of demineralization and remineralization was done by paired t-test. One way ANOVA was used for multiple group comparisons followed by post HOC TUKEY'S Test for group wise comparisons. Remineralization was found more with Group D followed by Group B, C and A. Hydroxyapatite showed better remineralization when compared to CPP-ACP and Tri-calcium phosphate.

  16. Preparation of holo- and malonyl-[acyl-carrier-protein] in a manner suitable for analog development.

    PubMed

    Marcella, Aaron M; Jing, Fuyuan; Barb, Adam W

    2015-11-01

    The fatty acid biosynthetic pathway generates highly reduced carbon based molecules. For this reason fatty acid synthesis is a target of pathway engineering to produce novel specialty or commodity chemicals using renewable techniques to supplant molecules currently derived from petroleum. Malonyl-[acyl carrier protein] (malonyl-ACP) is a key metabolite in the fatty acid pathway and donates two carbon units to the growing fatty acid chain during each step of biosynthesis. Attempts to test engineered fatty acid biosynthesis enzymes in vitro will require malonyl-ACP or malonyl-ACP analogs. Malonyl-ACP is challenging to prepare due to the instability of the carboxylate leaving group and the multiple steps of post-translational modification required to activate ACP. Here we report the expression and purification of holo- and malonyl-ACP from Escherichia coli with high yields (>15 mg per L of expression). The malonyl-ACP is efficiently recognized by the E. coli keto-acyl synthase enzyme, FabH. A FabH assay using malonyl-ACP and a coumarin-based fluorescent reagent is described that provides a high throughput alternative to reported radioactive assays. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Trapping of intermediates with substrate analog HBOCoA in the polymerizations catalyzed by class III polyhydroxybutyrate (PHB) synthase from Allochromatium vinosum.

    PubMed

    Chen, Chao; Cao, Ruikai; Shrestha, Ruben; Ward, Christina; Katz, Benjamin B; Fischer, Christopher J; Tomich, John M; Li, Ping

    2015-05-15

    Polyhydroxybutyrate (PHB) synthases (PhaCs) catalyze the formation of biodegradable PHB polymers that are considered as an ideal alternative to petroleum-based plastics. To provide strong evidence for the preferred mechanistic model involving covalent and noncovalent intermediates, a substrate analog HBOCoA was synthesized chemoenzymatically. Substitution of sulfur in the native substrate HBCoA with an oxygen in HBOCoA enabled detection of (HB)nOCoA (n = 2-6) intermediates when the polymerization was catalyzed by wild-type (wt-)PhaECAv at 5.84 h(-1). This extremely slow rate is due to thermodynamically unfavorable steps that involve the formation of enzyme-bound PHB species (thioesters) from corresponding CoA oxoesters. Synthesized standards (HB)nOCoA (n = 2-3) were found to undergo both reacylation and hydrolysis catalyzed by the synthase. Distribution of the hydrolysis products highlights the importance of the penultimate ester group as previously suggested. Importantly, the reaction between primed synthase [(3)H]-sT-PhaECAv and HBOCoA yielded [(3)H]-sTet-O-CoA at a rate constant faster than 17.4 s(-1), which represents the first example that a substrate analog undergoes PHB chain elongation at a rate close to that of the native substrate (65.0 s(-1)). Therefore, for the first time with a wt-synthase, strong evidence was obtained to support our favored PHB chain elongation model.

  18. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with

  19. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, Andrew; Poust, Sean; Rond, Tristan de

    2015-10-26

    Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design–build–test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS’ first extensionmore » module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to “debug” PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry.« less

  20. chs-4, a class IV chitin synthase gene from Neurospora crassa.

    PubMed

    Din, A B; Specht, C A; Robbins, P W; Yarden, O

    1996-02-05

    In Saccharomyces cerevisiae, most of the cellular chitin is produced by chitin synthase III, which requires the product encoded by the CSD2/CAL1/DIT101/KT12 gene. We have identified, isolated and structurally characterized as CSD2/CAL1/DIT101/KT12 homologue in the filamentous ascomycete Neurospora crassa and have used a "reverse genetics" approach to determine its role in vivo. The yeast gene was used as a heterologous probe for the isolation of a N. crassa gene(designated chs-4) encoding a polypeptide belonging to a class of chitin synthases which we have designated class IV. The predicted polypeptide encoded by this gene is highly similar to those of S. cerevisiae and Candida albicans. N. crassa strains in which chs-4 had been inactivated by the Repeat-Induced point mutation (RIP) process grew and developed in a normal manner under standard growth conditions. However, when grown in the presence of sorbose (a carbon source which induces morphological changes accompanied by elevated chitin content), chitin levels in the chs-4RIP strain were significantly lower than those observed in the wild type. We suggest that CHS4 may serve as an auxiliary enzyme in N. crassa and that, in contrast to yeasts, it is possible that filamentous fungi may have more than one class IV chitin synthase.

  1. Modify washing solutions in the process of deglycerolization in ACP 215 and storage at 4°C in 0.9% sodium chloride in 24h.

    PubMed

    Zhao, Yang; Luo, Guangping; Luo, Hong; Ye, Xin; Rong, Xia; Huang, Kejun

    2010-10-01

    The ACP 215 was a functional closed system for preparing glycerolized and deglycerolized RBCs, CSBT had approved the technique of long term storage glycerolized rare blood lower than -65°C, and then deglycerolized by this machine. From the manual method to use ACP 215, Chinese blood banks chose 9% sodium chloride and 0.9% sodium chloride in deglycerolization process, while the AABB guideline prescribed that 12% sodium chloride and 0.9% sodium chloride-0.2% glucose were acceptable in washing step of ACP 215. In addition, 0.9% sodium chloride was the only solution which was permitted by CSBT to be added into postwash RBCs, while in America many kinds of additive solutions like AS-3 could be added into postwash RBCs and stored at 4°C for 14 days. Changes of washing solutions and preservation solution were much different from the original procedure of ACP 215 approved by the FDA. It was necessary to assess the quality of deglyceroled and postwash RBCs by this modified process in ACP 215 in China. Two-unit whole bloods were collected from each volunteer and preserved in CP2D for anticoagulant. It was then centrifuged to separate the plasma, and suspending RBCs were stored at 4°C in MAP for 6 days. Each unit of RBC was transferred to a 1000-ml PVC plastic bag, an improved procedure including the single-disposable glycerolization set in an automated, functionally closed system (ACP 215, Haemonetics) was used to glycerolize RBC with 40% (wt/vol) glycerol, then frozen at -80°C. Two modified washing solutions of 9% sodium chloride and 0.9% sodium chloride were used to deglycerolize the same RBCs with single disposable deglycerolization set in ACP 215. The deglycerolized RBCs were stored at 4°C in 0.9% sodium chloride for 24h. The freeze-thaw recovery value was 95.3±1.8% (mean±SD); the freeze-thaw-wash recovery value was 82.3±5.94% (mean±SD); the residure glycerol was 6.1±1.66 mg/dl (mean±SD), storage at 4°C in 0.9% sodium chloride within 24h after

  2. Methyl-branched fatty acids, inhibitors of enoyl-ACP reductase with antibacterial activity from Streptomyces sp. A251.

    PubMed

    Zheng, Chang-Ji; Sohn, Mi-Jin; Chi, Seung-Wook; Kim, Won-Gon

    2010-05-01

    Bacterial enoyl-ACP reductase (FabI) has been demonstrated to be a novel antibacterial target. In the course of our screening for FabI inhibitors we isolated two methyl-branched fatty acids from Streptomyces sp. A251. They were identified as 14-methyl-9(Z)-pentadecenoic acid and 15-methyl-9(Z)-hexadecenoic acid by MS and NMR spectral data. These compounds inhibited Staphylococcus aureus FabI with IC50 of 16.0 and 16.3mu M, respectively, while didn't affect FabK, an enoyl-ACP reductase of Streptococcus pneumonia, at 100muM. Consistent with their selective inhibition for FabI, they blocked intracellular fatty acid synthesis as well as the growth of S. aureus, while didn't inhibit the growth of S. pneumonia. Additionally, these compounds showed reduced antibacterial activity against fabI-overexpressing S. aureus compared to the wild-type strain. These results demonstrate that the methyl-branched fatty acids showed antibacterial activity by inhibiting FabI in vivo.

  3. Chitin synthase III: Synthetic lethal mutants and “stress related” chitin synthesis that bypasses the CSD3/CHS6 localization pathway

    PubMed Central

    Osmond, Barbara C.; Specht, Charles A.; Robbins, Phillips W.

    1999-01-01

    We screened Saccharomyces strains for mutants that are synthetically lethal with deletion of the major chitin synthase gene CHS3. In addition to finding, not surprisingly, that mutations in major cell wall-related genes such as FKS1 (glucan synthase) and mutations in any of the Golgi glycosylation complex genes (MNN9 family) are lethal in combination with chs3Δ, we found that a mutation in Srv2p, a bifunctional regulatory gene, is notably lethal in the chs3 deletion. In extending studies of fks1-chitin synthase 3 interactions, we made the surprising discovery that deletion of CSD3/CHS6, a gene normally required for Chs3p delivery and activity in vivo, was not lethal with fks1 and, in fact, that lack of Csd3p/Chs6p did not decrease the high level of stress-related chitin made in the fks1 mutant. This finding suggests that “stress response” chitin synthesis proceeds through an alternate Chs3p targeting pathway. PMID:10500155

  4. Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus aureus.

    PubMed

    Kahlon, Amandeep Kaur; Roy, Sudeep; Sharma, Ashok

    2010-10-01

    Dehydrosqualene synthase of Staphylococcus aureus is involved in the synthesis of golden carotenoid pigment staphyloxanthin. This pigment of S. aureus provides the antioxidant property to this bacterium to survive inside the host cell. Dehydrosqualene synthase (CrtM) is having structural similarity with the human squalene synthase enzyme which is involved in the cholesterol synthesis pathway in humans (Liu et al., 2008). Cholesterol lowering drugs were found to have inhibitory effect on dehydrosqualene synthase enzyme of S. aureus. The present study attempts to focus on squalene synthase inhibitors, lapaquistat acetate and squalestatins reported as cholesterol lowering agents in vitro and in vivo but not studied in context to dehydrosqualene synthase of S. aureus. Mode of binding of lapaquistat acetate and squalestatin analogs on dehydrosqualene synthase (CrtM) enzyme of S. aureus was identified by performing docking analysis with Scigress Explorer Ultra 7.7 docking software. Based on the molecular docking analysis, it was found that the His18, Arg45, Asp48, Asp52, Tyr129, Gln165, Asn168 and Asp172 residues interacted with comparatively high frequency with the inhibitors studied. Comparative docking study with Discovery studio 2.0 also confirmed the involvement of these residues of dehydrosqualene synthase enzyme with the inhibitors studied. This further confirms the importance of these residues in the enzyme function. In silico ADMET analysis was done to predict the ADMET properties of the standard drugs and test compounds. This might provide insights to develop new drugs to target the virulence factor, dehydrosqualene synthase of S. aureus.

  5. The modules of trans-acyltransferase assembly lines redefined with a central acyl carrier protein.

    PubMed

    Vander Wood, Drew A; Keatinge-Clay, Adrian T

    2018-06-01

    Here, the term "module" is redefined for trans-acyltransferase (trans-AT) assembly lines to agree with how its domains cooperate and evolutionarily co-migrate. The key domain in both the polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) modules of assembly lines is the acyl carrier protein (ACP). ACPs not only relay growing acyl chains through the assembly line but also collaborate with enzymes in modules, both in cis and in trans, to add a specific chemical moiety. A ketosynthase (KS) downstream of ACP often plays the role of gatekeeper, ensuring that only a single intermediate generated by the enzymes of a module is passed downstream. Bioinformatic analysis of 526 ACPs from 33 characterized trans-AT assembly lines reveals ACPs from the same module type generally clade together, reflective of the co-evolution of these domains with their cognate enzymes. While KSs downstream of ACPs from the same module type generally also clade together, KSs upstream of ACPs do not-in disagreement with the traditional definition of a module. Beyond nomenclature, the presented analysis impacts our understanding of module function, the evolution of assembly lines, pathway prediction, and assembly line engineering. © 2018 Wiley Periodicals, Inc.

  6. Versatility of acyl-acyl carrier protein synthetases

    DOE PAGES

    Beld, Joris; Finzel, Kara; Burkart, Michael D.

    2014-10-09

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. In this paper, we show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E.more » coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. Finally, in vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms.« less

  7. The CPP-ACP relieved enamel erosion from a carbonated soft beverage: an in vitro AFM and XRD study.

    PubMed

    Wang, C P; Huang, S B; Liu, Y; Li, J Y; Yu, H Y

    2014-03-01

    To investigate the CPP-ACP's effect on enamel against carbonated beverage erosion and explore the potential mechanism. A total of 30 enamel samples were prepared from sound bovine incisors, divided into 3 groups. Samples in the control group were kept in artificial saliva. Specimens' surfaces were smeared with a CPP-ACP agent (Tooth Mousse, TM) for 3 min, rinsed with distilled water for 10s, merged into cola (Coca Cola, CC) for 4 intervals of 2 min, rinsed again for the TM+CC group. In the CC group, specimens were treated solely with cola for 4 intervals (2 min each). The cycles were applied at 0, 12, 24, 36, 48 and 60 h. The surface microhardness (SMH) alterations were measured using a microhardness tester, the surface profiles were analyzed using the atomic force microscope, and the surface crystalline amount (I%) and crystallinity (FWHM) were analyzed using X-ray diffractometer. The SMH were significantly decreased in CC group, showing the largest SMH alteration; the reduction of SMH in TM+CC group was lower than that in CC group, still larger than control. After cycles, the TM+CC group showed rougher surfaces than control, while the CC group had the roughest surfaces. The TM+CC had an I% higher than the CC, and lower than the control. The TM+CC group had a FWHM lower than CC, higher than control. CPP-ACP was able to relieve the erosion on enamel from carbonated beverage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Confluence of structural and chemical biology: plant polyketide synthases as biocatalysts for a bio-based future.

    PubMed

    Stewart, Charles; Vickery, Christopher R; Burkart, Michael D; Noel, Joseph P

    2013-06-01

    Type III plant polyketide synthases (PKSs) biosynthesize a dazzling array of polyphenolic products that serve important roles in both plant and human health. Recent advances in structural characterization of these enzymes and new tools from the field of chemical biology have facilitated exquisite probing of plant PKS iterative catalysis. These tools have also been used to exploit type III PKSs as biocatalysts to generate new chemicals. Going forward, chemical, structural and biochemical analyses will provide an atomic resolution understanding of plant PKSs and will serve as a springboard for bioengineering and scalable production of valuable molecules in vitro, by fermentation and in planta. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Structure of FabH and factors affecting the distribution of branched fatty acids in Micrococcus luteus.

    PubMed

    Pereira, Jose H; Goh, Ee-Been; Keasling, Jay D; Beller, Harry R; Adams, Paul D

    2012-10-01

    Micrococcus luteus is a Gram-positive bacterium that produces iso- and anteiso-branched alkenes by the head-to-head condensation of fatty-acid thioesters [coenzyme A (CoA) or acyl carrier protein (ACP)]; this activity is of interest for the production of advanced biofuels. In an effort to better understand the control of the formation of branched fatty acids in M. luteus, the structure of FabH (MlFabH) was determined. FabH, or β-ketoacyl-ACP synthase III, catalyzes the initial step of fatty-acid biosynthesis: the condensation of malonyl-ACP with an acyl-CoA. Analysis of the MlFabH structure provides insights into its substrate selectivity with regard to length and branching of the acyl-CoA. The most structurally divergent region of FabH is the L9 loop region located at the dimer interface, which is involved in the formation of the acyl-binding channel and thus limits the substrate-channel size. The residue Phe336, which is positioned near the catalytic triad, appears to play a major role in branched-substrate selectivity. In addition to structural studies of MlFabH, transcriptional studies of M. luteus were also performed, focusing on the increase in the ratio of anteiso:iso-branched alkenes that was observed during the transition from early to late stationary phase. Gene-expression microarray analysis identified two genes involved in leucine and isoleucine metabolism that may explain this transition.

  10. Genetic Analysis of Comamonas acidovorans Polyhydroxyalkanoate Synthase and Factors Affecting the Incorporation of 4-Hydroxybutyrate Monomer

    PubMed Central

    Sudesh, Kumar; Fukui, Toshiaki; Doi, Yoshiharu

    1998-01-01

    The polyhydroxyalkanoate (PHA) synthase gene of Comamonas acidovorans DS-17 (phaCCa) was cloned by using the synthase gene of Alcaligenes eutrophus as a heterologous hybridization probe. Complete sequencing of a 4.0-kbp SmaI-HindIII (SH40) subfragment revealed the presence of a 1,893-bp PHA synthase coding region which was followed by a 1,182-bp β-ketothiolase gene (phaACa). Both the translated products of these genes showed significant identity, 51.1 and 74.2%, respectively, to the primary structures of the products of the corresponding genes in A. eutrophus. The arrangement of PHA biosynthesis genes in C. acidovorans was also similar to that in A. eutrophus except that the third gene, phaB, coding for acetoacetyl-coenzyme A reductase, was not found in the region downstream of phaACa. The cloned fragment complemented a PHA-negative mutant of A. eutrophus, PHB−4, resulting in poly-3-hydroxybutyrate accumulation of up to 73% of the dry cell weight when fructose was the carbon source. The heterologous expression enabled the incorporation of 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate monomers. The PHA synthase of C. acidovorans does not appear to show any preference for 4-hydroxybutyryl-coenzyme A as a substrate. This leads to the suggestion that in C. acidovorans, it is the metabolic pathway, and not the specificity of the organism’s PHA synthase, that drives the incorporation of 4HB monomers, resulting in the efficient accumulation of PHA with a high 4HB content. PMID:9726894

  11. Identification of sucrose synthase as an actin-binding protein

    NASA Technical Reports Server (NTRS)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  12. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells.

    PubMed

    Bolduc, Gilles R; Madoff, Lawrence C

    2007-12-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.

  13. Powdered coconut water as a storage medium to preserve the viability of periodontal ligament cells: a laboratory study.

    PubMed

    Moura, C C G; Soares, P B F; Reis, M V P; Dechichi, P; Salgueiro, C C M; Sobral, M H N R; Zanetta Barbosa, D; Soares, C J

    2017-01-01

    To investigate the ability of newly developed powdered coconut water formulas (ACP) with different osmolarities to maintain the viability of periodontal ligament (PDL) cells over time compared with other solutions. Dogs teeth were extracted and stored for two periods, 3 h or 24 h, in the following media: long-shelf life CW (CW), pH-adjusted long-shelf life CW (pH-CW) and powdered CW that was pH and osmolality adjusted (ACP-404-I, 250 mOsm kg -1 H 2 O; pH 7.0; ACP-404-II, 372 mOsm kg -1 H 2 O; pH 7.0; ACP-404-III, 300 mOsm kg -1 H 2 O; pH 7.4). The positive control group (Pc) corresponded to immediate measurement after tooth extraction, and two negative controls (Nc) corresponded to 3 h and 24 h of dry time. PDL cells were extracted, and cell viability analysed by Trypan blue exclusion. Data were analysed statistically using two-way anova followed by the Tukey test and one-way anova followed by the Dunnett test (P < 0.05). At 3 h and 24 h, ACP-404-I had a performance similar to those of ACP-404-II and pH-CW, with significantly higher (P = 0.004) percentages of viable cells than ACP-404-III and CW. The positive control group had a significantly higher (P = 0.002) percentage of viable cells than the negative control groups, CW and ACP-404-III, irrespective of the period evaluated. Powdered coconut water formulas, ACP-404-I and ACP-404-II, preserved viability for up to 24 h. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site.

    PubMed

    Xu, Jinkun; Ai, Ying; Wang, Jianhui; Xu, Jingwei; Zhang, Yongkang; Yang, Dong

    2017-05-01

    S-limonene synthase is a model monoterpene synthase that cyclizes geranyl pyrophosphate (GPP) to form S-limonene. It is a relatively specific enzyme as the majority of its products are composed of limonene. In this study, we converted it to pinene or phellandrene synthases after introducing N345A/L423A/S454A or N345I mutations. Further studies on N345 suggest the polarity of this residue plays a critical role in limonene production by stabilizing the terpinyl cation intermediate. If it is mutated to a non-polar residue, further cyclization or hydride shifts occurs so the carbocation migrates towards the pyrophosphate, leading to the production of pinene or phellandrene. On the other hand, mutant enzymes that still possess a polar residue at this position produce limonene as the major product. N345 is not the only polar residue that may stabilize the terpinyl cation because it is not strictly conserved among limonene synthases across species and there are also several other polar residues in this area. These residues could form a "polar pocket" that may collectively play this stabilizing role. Our study provides important insights into the catalytic mechanism of limonene synthases. Furthermore, it also has wider implications on the evolution of terpene synthases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparing the Effects of Whey Extract and Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) on Enamel Microhardness

    PubMed Central

    Rezvani, Mohammad Bagher; Karimi, Mehrdad; Akhavan Rasoolzade, Raheleh; Haghgoo, Roza

    2015-01-01

    Statement of the Problem With the recent focus of researches on the development of non-invasive treatment modalities, the non-invasive treatment of early carious lesions by remineralization would bring a major advance in the clinical management of these dental defects. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is considered to be effective in tooth remineralization. Purpose The aim of this in-vitro study was to compare the effects of whey and CPP-ACP in increasing the enamel microhardness. Materials and Method Microhardness of 30 sound human permanent premolars was measured before and after 8-minute immersion of samples in Coca-Cola. The teeth were then randomly divided into 3 groups and were immersed in artificial saliva, whey, and tooth mousse for 10 minutes. The changes of microhardness within each group and among the groups were recorded and analyzed using paired t-test. Results The microhardness increased in each group and between the groups; this increase was statistically significant (p= 0.009). Conclusion The effect of whey on increasing the enamel microhardness was more than that of tooth mousse. PMID:25759858

  16. iACP-GAEnsC: Evolutionary genetic algorithm based ensemble classification of anticancer peptides by utilizing hybrid feature space.

    PubMed

    Akbar, Shahid; Hayat, Maqsood; Iqbal, Muhammad; Jan, Mian Ahmad

    2017-06-01

    Cancer is a fatal disease, responsible for one-quarter of all deaths in developed countries. Traditional anticancer therapies such as, chemotherapy and radiation, are highly expensive, susceptible to errors and ineffective techniques. These conventional techniques induce severe side-effects on human cells. Due to perilous impact of cancer, the development of an accurate and highly efficient intelligent computational model is desirable for identification of anticancer peptides. In this paper, evolutionary intelligent genetic algorithm-based ensemble model, 'iACP-GAEnsC', is proposed for the identification of anticancer peptides. In this model, the protein sequences are formulated, using three different discrete feature representation methods, i.e., amphiphilic Pseudo amino acid composition, g-Gap dipeptide composition, and Reduce amino acid alphabet composition. The performance of the extracted feature spaces are investigated separately and then merged to exhibit the significance of hybridization. In addition, the predicted results of individual classifiers are combined together, using optimized genetic algorithm and simple majority technique in order to enhance the true classification rate. It is observed that genetic algorithm-based ensemble classification outperforms than individual classifiers as well as simple majority voting base ensemble. The performance of genetic algorithm-based ensemble classification is highly reported on hybrid feature space, with an accuracy of 96.45%. In comparison to the existing techniques, 'iACP-GAEnsC' model has achieved remarkable improvement in terms of various performance metrics. Based on the simulation results, it is observed that 'iACP-GAEnsC' model might be a leading tool in the field of drug design and proteomics for researchers. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids.

    PubMed

    Schütt, B S; Brummel, M; Schuch, R; Spener, F

    1998-06-01

    To investigate the role of acyl carrier protein (ACP) in determining the fate of the acyl moieties linked to it in the course of de-novo fatty acid biosynthesis in higher plants, we carried out in vitro experiments to reconstitute the fatty acid synthase (FAS) reaction in extracts of spinach (Spinacia oleracea L.) leaves, rape (Brassica napus L.) seeds and Cuphea lanceolata Ait. seeds. The action of two major C. lanceolata ACP isoforms (ACP 1 and ACP 2) compared to ACP from Escherichia coli was monitored by saponification of the corresponding FAS products with subsequent analysis of the liberated fatty acids by high-performance liquid chromatography. In a second approach the preference of the medium-chain acyl-ACP-specific thioesterase (EC 3.1.2.14) of C. lanceolata seeds for the hydrolysis of acyl-ACPs prepared from the three ACP types was investigated. Both ACP isoforms from C. lanceolata seeds supported the synthesis of medium-chain fatty acids in a reconstituted FAS reaction of spinach leaf extracts. Compared to the isoform ACP 1, ACP 2 was more effective in supporting the synthesis of such fatty acids in the FAS reaction of rape seed extracts and caused a higher accumulation of FAS products in all experiments. No preference of the medium-chain thioesterase for one specific ACP isoform was observed. The results indicate that the presence of ACP 2 is essential for the synthesis of decanoic acid in C. lanceolata seeds, and its expression in the phase of accumulation of high levels of this fatty acid provides an additional and highly efficient cofactor for stimulating the FAS reaction.

  18. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  19. A project management approach to an ACPE accreditation self-study.

    PubMed

    Dominelli, Angela; Iwanowicz, Susan L; Bailie, George R; Clarke, David W; McGraw, Patrick S

    2007-04-15

    In preparation for an on-site evaluation and accreditation by the American Council on Pharmaceutical Education (ACPE), the Albany College of Pharmacy employed project management techniques to complete a comprehensive self-study. A project lifecycle approach, including planning, production, and turnover phases, was used by the project's Self-Study Steering Committee. This approach, with minimal disruption to college operations, resulted in the completion of the self-study process on schedule. Throughout the project, the Steering Committee maintained a log of functions that either were executed successfully or in hindsight, could have been improved. To assess the effectiveness of the project management approach to the the self-study process, feedback was obtained from the College community through a poststudy survey. This feedback, coupled with the Steering Committee's data on possible improvements, form the basis for the lessons learned during this self-study process.

  20. Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes

    USGS Publications Warehouse

    Holmes, Dawn E.; Nevin, Kelly P.; O'Neil, Regina A.; Ward, Joy E.; Adams, Lorrie A.; Woodard, Trevor L.; Vrionis, Helen A.; Lovely, Derek R.

    2005-01-01

    The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated environments. Quantitative reverse transcription-PCR studies with mRNA extracted from cultures of Geobacter sulfurreducens grown in chemostats with Fe(III) as the electron acceptor or in batch with electrodes as the electron acceptor indicated that transcript levels of the citrate synthase gene, gltA, increased with increased rates of growth/Fe(III) reduction or current production, whereas the expression of the constitutively expressed housekeeping genes recA, rpoD, and proC remained relatively constant. Analysis of mRNA extracted from groundwater collected from a U(VI)-contaminated site undergoing in situ uranium bioremediation revealed a remarkable correspondence between acetate levels in the groundwater and levels of transcripts of gltA. The expression of gltA was also significantly greater in RNA extracted from groundwater beneath a highway runoff recharge pool that was exposed to calcium magnesium acetate in June, when acetate concentrations were high, than in October, when the levels had significantly decreased. It was also possible to detect gltA transcripts on current-harvesting anodes deployed in freshwater sediments. These results suggest that it is possible to monitor the in situ metabolic rate of Geobacteraceae by tracking the expression of the citrate synthase gene.

  1. Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3-L1 adipocytes.

    PubMed

    Oreña, S J; Torchia, A J; Garofalo, R S

    2000-05-26

    The role of glycogen-synthase kinase 3 (GSK3) in insulin-stimulated glucose transport and glycogen synthase activation was investigated in 3T3-L1 adipocytes. GSK3 protein was clearly present in adipocytes and was found to be more abundant than in muscle and liver cell lines. The selective GSK3 inhibitor, LiCl, stimulated glucose transport and glycogen synthase activity (20 and 65%, respectively, of the maximal (1 microm) insulin response) and potentiated the responses to a submaximal concentration (1 nm) of insulin. LiCl- and insulin-stimulated glucose transport were abolished by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin; however, LiCl stimulation of glycogen synthase was not. In contrast to the rapid stimulation of glucose transport by insulin, transport stimulated by LiCl increased gradually over 3-5 h reaching 40% of the maximal insulin-stimulated level. Both LiCl- and insulin-stimulated glycogen synthase activity were maximal at 25 min. However, insulin-stimulated glycogen synthase activity returned to basal after 2 h, coincident with reactivation of GSK3. After a 2-h exposure to insulin, glycogen synthase was refractory to restimulation with insulin, indicating selective desensitization of this pathway. However, LiCl could partially stimulate glycogen synthase in desensitized cells. Furthermore, coincubation with LiCl during the 2 h exposure to insulin completely blocked desensitization of glycogen synthase activity. In summary, inhibition of GSK3 by LiCl: 1) stimulated glycogen synthase activity directly and independently of PI3-kinase, 2) stimulated glucose transport at a point upstream of PI3-kinase, 3) stimulated glycogen synthase activity in desensitized cells, and 4) prevented desensitization of glycogen synthase due to chronic insulin treatment. These data are consistent with GSK3 playing a central role in the regulation of glycogen synthase activity and a contributing factor in the regulation of glucose transport in 3T3-L1

  2. Deciphering the key residues in Plasmodium falciparum beta-ketoacyl acyl carrier protein reductase responsible for interactions with Plasmodium falciparum acyl carrier protein.

    PubMed

    Karmodiya, Krishanpal; Modak, Rahul; Sahoo, Nirakar; Sajad, Syed; Surolia, Namita

    2008-10-01

    The type II fatty acid synthase (FAS) pathway of Plasmodium falciparum is a validated unique target for developing novel antimalarials, due to its intrinsic differences from the typeI pathway operating in humans. beta-Ketoacyl acyl carrier protein (ACP) reductase (FabG) performs the NADPH-dependent reduction of beta-ketoacyl-ACP to beta-hydroxyacyl-ACP, the first reductive step in the elongation cycle of fatty acid biosynthesis. In this article, we report intensive studies on the direct interactions of Plasmodium FabG and Plasmodium ACP in solution, in the presence and absence of its cofactor, NADPH, by monitoring the change in intrinsic fluorescence of P.falciparum FabG (PfFabG) and by surface plasmon resonance. To address the issue of the importance of the residues involved in strong, specific and stoichiometric binding of PfFabG to P.falciparum ACP (PfACP), we mutated Arg187, Arg190 and Arg230 of PfFabG. The activities of the mutants were assessed using both an ACP-dependent and an ACP-independent assay. The affinities of all the PfFabG mutants for acetoacetyl-ACP (the physiological substrate) were reduced to different extents as compared to wild-type PfFabG, but were equally active in biochemical assays with the substrate analog acetoacetyl-CoA. Kinetic analysis and studies of direct binding between PfFabG and PfACP confirmed the identification of Arg187 and Arg230 as critical residues for the PfFabG-PfACP interactions. Our studies thus reveal the significance of the positively charged/hydrophobic patch located adjacent to the active site cavities of PfFabG for interactions with PfACP.

  3. Intersubunit structure within heterodimers of medium-chain prenyl diphosphate synthases. Formation of a hybrid-type heptaprenyl diphosphate synthase.

    PubMed

    Koike-Takeshita, A; Koyama, T; Ogura, K

    1998-10-01

    Among prenyltransferases that catalyze the sequential condensation of isopentenyl diphosphate with allylic diphosphate to produce prenyl diphosphates with various chain lengths and stereochemistries, medium-chain prenyl diphosphate synthases are exceptional in that they comprise two dissociable heteromeric protein components. These components exist without binding with each other under physiological conditions, and neither of them has any prenyltransferase activity by itself. In order to elucidate the precise molecular mechanism underlying expression of the catalytic function by such a unique two-component system, we examined the possibility of forming a hybrid between two of the components of three different medium-chain prenyl diphosphate synthases, components I and II of heptaprenyl diphosphate synthase from Bacillus subtilis, components I' and II' of heptaprenyl diphosphate synthase from Bacillus stearothermophilus, and components A and B of hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26. As a result, only the hybrid-type combination of component I and component II' gave distinct prenyltransferase activity. The hybrid-type enzyme catalyzed the synthesis of heptaprenyl diphosphate and showed moderate heat stability, which lay between those of the natural enzymes from B. subtilis and B. stearothermophilus. There is no possibility of forming a hybrid between the heptaprenyl and hexaprenyl diphosphate synthases.

  4. Pediatric advance care planning (pACP) for teens with cancer and their families: Design of a dyadic, longitudinal RCCT.

    PubMed

    Curtin, Katherine B; Watson, Anne E; Wang, Jichuan; Okonkwo, Obianuju C; Lyon, Maureen E

    2017-11-01

    Cancer is the leading cause of disease-related death for adolescents and young adults (AYAs) in the United States. Parents of AYAs with life-threatening illnesses have expressed the desire to talk to their children about end of life (EOL) care, yet, like caregivers of adult patients, struggle to initiate this conversation. Building Evidence for Effective Palliative/End of Life Care for Teens with Cancer is a longitudinal, randomized, controlled, single-blinded clinical trial aimed at evaluating the efficacy of FAmily CEntered disease-specific advance care planning (ACP) for teens with cancer (FACE-TC). A total of 130 dyads (260 subjects) composed of AYAs 14-20years old with cancer and their family decision maker (≥18years old) will be recruited from pediatric oncology programs at Akron Children's Hospital and St. Jude Children's Research Hospital. Dyads will be randomized to either the FACE-TC intervention or Treatment as Usual (TAU) control. FACE-TC intervention dyads will complete three 60-minute ACP sessions held at weekly intervals. Follow-up data will be collected at 3, 6, 12, and 18months post-intervention by a blinded research assistant (RA). The effects of FACE-TC on patient-family congruence in treatment preferences, quality of life (QOL), and advance directive completion will be analyzed. FACE-TC is an evidenced-based and patient-centered intervention that considers QOL and EOL care according to the AYA's representation of illness. The family is involved in the ACP process to facilitate shared decision making, increase understanding of the AYA's preferences, and make a commitment to honor the AYA's wishes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Glycogen synthase activation by sugars in isolated hepatocytes.

    PubMed

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  6. A Project Management Approach to an ACPE Accreditation Self-study

    PubMed Central

    Iwanowicz, Susan L.; Bailie, George R.; Clarke, David W.; McGraw, Patrick S.

    2007-01-01

    In preparation for an on-site evaluation and accreditation by the American Council on Pharmaceutical Education (ACPE), the Albany College of Pharmacy employed project management techniques to complete a comprehensive self-study. A project lifecycle approach, including planning, production, and turnover phases, was used by the project's Self-Study Steering Committee. This approach, with minimal disruption to college operations, resulted in the completion of the self-study process on schedule. Throughout the project, the Steering Committee maintained a log of functions that either were executed successfully or in hindsight, could have been improved. To assess the effectiveness of the project management approach to the the self-study process, feedback was obtained from the College community through a poststudy survey. This feedback, coupled with the Steering Committee's data on possible improvements, form the basis for the lessons learned during this self-study process. PMID:17533432

  7. Cryopreservation of collared peccaries (Tayassu tajacu) semen using a powdered coconut water (ACP-116c) based extender plus various concentrations of egg yolk and glycerol.

    PubMed

    Silva, M A; Peixoto, G C X; Lima, G L; Bezerra, J A B; Campos, L B; Paiva, A L C; Paula, V V; Silva, A R

    2012-08-01

    The objective was to determine the effectiveness of a powdered coconut water-based extender (ACP-116c), plus various concentrations of egg-yolk and glycerol, as an alternative for cryopreservation of collared peccary semen. Twelve ejaculates were obtained from captive adult males by electroejaculation, and evaluated for sperm motility, kinetic rating, viability, morphology, and functional membrane integrity. The ejaculates were apportioned into aliquots that were diluted in Tris plus 10% egg yolk and 3% glycerol, or in ACP-116c plus 10 or 20% egg yolk and 1.5 or 3% glycerol. Samples were frozen in liquid nitrogen and, after 1 mo, thawed at 37 °C for 1 min. After thawing, samples were evaluated as reported for fresh semen, and also for sperm membrane integrity (fluorescent probes) and kinematic parameters (computerized analysis). Results were presented as means ± SEM. Freezing and thawing decreased sperm characteristics relative to fresh semen. Overall, ACP-116c plus 20% egg yolk and 3% glycerol provided better (P < 0.05) sperm motility and kinetic rating (48 ± 6.1% and 2.8 ± 0.2, respectively) after thawing than Tris extender (30.4 ± 5.7% and 2.4 ± 0.2). However, there were no differences (P > 0.05) among treatments with regard to the other sperm characteristics. Based on computerized motion analysis, total (26.5 ± 5.9%) and progressive (8.1 ± 2.2%) motility were best preserved (P < 0.05) with the above-mentioned treatment. In conclusion, a coconut water-based extender, ACP-116c, plus 20% egg yolk and 3% glycerol, was effective for cryopreservation of semen from collared peccaries. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Lysosomal Accumulation of SCMAS (Subunit c of Mitochondrial ATP Synthase) in Neurons of the Mouse Model of Mucopolysaccharidosis III B

    PubMed Central

    Ryazantsev, Sergey; Yu, Wei-Hong; Zhao, Hui-Zhi; Neufeld, Elizabeth F.; Ohmi, Kazuhiro

    2007-01-01

    The neurodegenerative disease MPS III B (Sanfilippo syndrome type B) is caused by mutations in the gene encoding the lysosomal enzyme α-N-acetylglucosaminidase, with a resulting block in heparan sulfate degradation. A mouse model with disruption of the Naglu gene allows detailed study of brain pathology. In contrast to somatic cells, which accumulate primarily heparan sulfate, neurons accumulate a number of apparently unrelated metabolites, including subunit c of mitochondrial ATP synthase (SCMAS). SCMAS accumulated from 1 month of age, primarily in the medial entorhinal cortex and layer V of the somatosensory cortex. Its accumulation was not due to the absence of specific proteases. Light microscopy of brain sections of 6 months-old mice showed SCMAS to accumulate in the same areas as glycosaminoglycan and unesterified cholesterol, in the same cells as ubiquitin and GM3 ganglioside, and in the same organelles as Lamp 1 and Lamp 2. Cryo-immuno electron microscopy showed SCMAS to be present in Lamp positive vesicles bounded by a single membrane (lysosomes), in fingerprint-like layered arrays. GM3 ganglioside was found in the same lysosomes, but was not associated with the SCMAS arrays. GM3 ganglioside was also seen in lysosomes of microglia, suggesting phagocytosis of neuronal membranes. Samples used for cryo-EM and further processed by standard EM procedures (osmium tetroxide fixation and plastic embedding) showed the disappearance of the SCMAS fingerprint arrays and appearance in the same location of “zebra bodies”, well known but little understood inclusions in the brain of patients with mucopolysaccharidoses. PMID:17185018

  9. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Ke-Mian; State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193; Chang, Chia-Chun

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthasemore » 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.« less

  10. Discovery and Characterization of the 3-Hydroxyacyl-ACP Dehydratase Component of the Plant Mitochondrial Fatty Acid Synthase System1[OPEN

    PubMed Central

    Okazaki, Yozo; Lithio, Andrew; Jin, Huanan

    2017-01-01

    We report the characterization of the Arabidopsis (Arabidopsis thaliana) 3-hydroxyacyl-acyl carrier protein dehydratase (mtHD) component of the mitochondrial fatty acid synthase (mtFAS) system, encoded by AT5G60335. The mitochondrial localization and catalytic capability of mtHD were demonstrated with a green fluorescent protein transgenesis experiment and by in vivo complementation and in vitro enzymatic assays. RNA interference (RNAi) knockdown lines with reduced mtHD expression exhibit traits typically associated with mtFAS mutants, namely a miniaturized morphological appearance, reduced lipoylation of lipoylated proteins, and altered metabolomes consistent with the reduced catalytic activity of lipoylated enzymes. These alterations are reversed when mthd-rnai mutant plants are grown in a 1% CO2 atmosphere, indicating the link between mtFAS and photorespiratory deficiency due to the reduced lipoylation of glycine decarboxylase. In vivo biochemical feeding experiments illustrate that sucrose and glycolate are the metabolic modulators that mediate the alterations in morphology and lipid accumulation. In addition, both mthd-rnai and mtkas mutants exhibit reduced accumulation of 3-hydroxytetradecanoic acid (i.e. a hallmark of lipid A-like molecules) and abnormal chloroplastic starch granules; these changes are not reversible by the 1% CO2 atmosphere, demonstrating two novel mtFAS functions that are independent of photorespiration. Finally, RNA sequencing analysis revealed that mthd-rnai and mtkas mutants are nearly equivalent to each other in altering the transcriptome, and these analyses further identified genes whose expression is affected by a functional mtFAS system but independent of photorespiratory deficiency. These data demonstrate the nonredundant nature of the mtFAS system, which contributes unique lipid components needed to support plant cell structure and metabolism. PMID:28202596

  11. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli.

    PubMed

    Manandhar, Miglena; Cronan, John E

    2018-01-01

    BioF (8-amino-7-oxononanoate synthase) is a strictly conserved enzyme that catalyzes the first step in assembly of the fused heterocyclic rings of biotin. The BioF acyl chain donor has long been thought to be pimeloyl-CoA. Indeed, in vitro the Escherichia coli and Bacillus sphaericus enzymes have been shown to condense pimeloyl-CoA with l-alanine in a pyridoxal 5'-phosphate-dependent reaction with concomitant CoA release and decarboxylation of l-alanine. However, recent in vivo studies of E. coli and Bacillus subtilis suggested that the BioF proteins of the two bacteria could have different specificities for pimelate thioesters in that E. coli BioF may utilize either pimeloyl coenzyme A (CoA) or the pimelate thioester of the acyl carrier protein (ACP) of fatty acid synthesis. In contrast, B. subtilis BioF seemed likely to be specific for pimeloyl-CoA and unable to utilize pimeloyl-ACP. We now report genetic and in vitro data demonstrating that B. subtilis BioF specifically utilizes pimeloyl-CoA. IMPORTANCE Biotin is an essential vitamin required by mammals and birds because, unlike bacteria, plants, and some fungi, these organisms cannot make biotin. Currently, the biotin included in vitamin tablets and animal feeds is made by chemical synthesis. This is partly because the biosynthetic pathways in bacteria are incompletely understood. This paper defines an enzyme of the Bacillus subtilis pathway and shows that it differs from that of Escherichia coli in the ability to utilize specific precursors. These bacteria have been used in biotin production and these data may aid in making biotin produced by biotechnology commercially competitive with that produced by chemical synthesis. Copyright © 2017 American Society for Microbiology.

  12. A multigene family related to chitin synthase genes of yeast in the opportunistic pathogen Aspergillus fumigatus.

    PubMed

    Mellado, E; Aufauvre-Brown, A; Specht, C A; Robbins, P W; Holden, D W

    1995-02-06

    Two approaches were used to isolate fragments of chitin synthase genes from the opportunistic human pathogen Aspergillus fumigatus. Firstly, regions of amino acid conservation in chitin synthases of Saccharomyces cerevisiae were used to design degenerate primers for amplification of portions of related genes, and secondly, a segment of the S. cerevisiae CSD2 gene was used to screen an A. fumigatus lambda genomic DNA library. the polymerase chain reaction (PCR)-based approach led to the identification of five different genes, designated chsA, chsB, chsC, chsD and chsE. chsA, chsB, and chsC fall into Classes I, II and III of the 'zymogen type' chitin synthases, respectively. The chsD fragment has approximately 35% amino acid sequence identity to both the zymogen type genes and the non-zymogen type CSD2 gene. chsF appears to be a homologue of CSD2, being 80% identical to CSD2 over 100 amino acids. An unexpected finding was the isolation by heterologous hybridization of another gene (chsE), which also has strong sequence similarity (54% identity at the amino acid level over the same region as chsF) to CSD2. Reverse transcriptase-PCR was used to show that each gene is expressed during hyphal growth in submerged cultures.

  13. Crystallization and preliminary X-ray diffraction studies of polyketide synthase-1 (PKS-1) from Cannabis sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, Chiho; Quantum Beam Science Directorate, Japan Atomic Energy Agency; Taura, Futoshi

    Polyketide synthase-1 from C. sativa has been crystallized. The crystal diffracted to 1.55 Å resolution with sufficient quality for further structure determination. Polyketide synthase-1 (PKS-1) is a novel type III polyketide synthase that catalyzes the biosynthesis of hexanoyl triacetic acid lactone in Cannabis sativa (Mexican strain). PKS-1 was overproduced in Escherichia coli, purified and finally crystallized in two different space groups. The crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M calcium acetate and 20%(w/v) polyethylene glycol 3350 diffracted to 1.65 Å resolution and belonged to space group P1, with unit-cell parameters a = 54.3, b =more » 59.3, c = 62.6 Å, α = 69, β = 81, γ = 80°. Another crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M sodium chloride and 20%(w/v) polyethylene glycol 3350 diffracted to 1.55 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 54.3, b = 110, c = 130 Å. These data will enable us to determine the crystal structure of PKS-1.« less

  14. Plasticity and evolution of (+)-3-carene synthase and (-)-sabinene synthase functions of a sitka spruce monoterpene synthase gene family associated with weevil resistance.

    PubMed

    Roach, Christopher R; Hall, Dawn E; Zerbe, Philipp; Bohlmann, Jörg

    2014-08-22

    The monoterpene (+)-3-carene is associated with resistance of Sitka spruce against white pine weevil, a major North American forest insect pest of pine and spruce. High and low levels of (+)-3-carene in, respectively, resistant and susceptible Sitka spruce genotypes are due to variation of (+)-3-carene synthase gene copy number, transcript and protein expression levels, enzyme product profiles, and enzyme catalytic efficiency. A family of multiproduct (+)-3-carene synthase-like genes of Sitka spruce include the three (+)-3-carene synthases, PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and the (-)-sabinene synthase PsTPS-sab. Of these, PsTPS-3car2 is responsible for the relatively higher levels of (+)-3-carene in weevil-resistant trees. Here, we identified features of the PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and PsTPS-sab proteins that determine different product profiles. A series of domain swap and site-directed mutations, supported by structural comparisons, identified the amino acid in position 596 as critical for product profiles dominated by (+)-3-carene in PsTPS-3car1, PsTPS-3car2, and PsTPS-3car3, or (-)-sabinene in PsTPS-sab. A leucine in this position promotes formation of (+)-3-carene, whereas phenylalanine promotes (-)-sabinene. Homology modeling predicts that position 596 directs product profiles through differential stabilization of the reaction intermediate. Kinetic analysis revealed position 596 also plays a role in catalytic efficiency. Mutations of position 596 with different side chain properties resulted in a series of enzymes with different product profiles, further highlighting the inherent plasticity and potential for evolution of alternative product profiles of these monoterpene synthases of conifer defense against insects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    PubMed

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide

  16. Evaluation of the remineralization capacity of CPP-ACP containing fluoride varnish by different quantitative methods

    PubMed Central

    SAVAS, Selcuk; KAVRÌK, Fevzi; KUCUKYÌLMAZ, Ebru

    2016-01-01

    ABSTRACT Objective The aim of this study was to evaluate the efficacy of CPP-ACP containing fluoride varnish for remineralizing white spot lesions (WSLs) with four different quantitative methods. Material and Methods Four windows (3x3 mm) were created on the enamel surfaces of bovine incisor teeth. A control window was covered with nail varnish, and WSLs were created on the other windows (after demineralization, first week and fourth week) in acidified gel system. The test material (MI Varnish) was applied on the demineralized areas, and the treated enamel samples were stored in artificial saliva. At the fourth week, the enamel surfaces were tested by surface microhardness (SMH), quantitative light-induced fluorescence-digital (QLF-D), energy-dispersive spectroscopy (EDS) and laser fluorescence (LF pen). The data were statistically analyzed (α=0.05). Results While the LF pen measurements showed significant differences at baseline, after demineralization, and after the one-week remineralization period (p<0.05), the difference between the 1- and 4-week was not significant (p>0.05). With regards to the SMH and QLF-D analyses, statistically significant differences were found among all the phases (p<0.05). After the 1- and 4-week treatment periods, the calcium (Ca) and phosphate (P) concentrations and Ca/P ratio were higher compared to those of the demineralization surfaces (p<0.05). Conclusion CPP-ACP containing fluoride varnish provides remineralization of WSLs after a single application and seems suitable for clinical use. PMID:27383699

  17. Transcriptional regulation of fatty acid biosynthesis in mycobacteria

    PubMed Central

    Mondino, S.; Gago, G.; Gramajo, H.

    2013-01-01

    SUMMARY The main purpose of our study is to understand how mycobacteria exert control over the biosynthesis of their membrane lipids and find out the key components of the regulatory network that control fatty acid biosynthesis at the transcriptional level. In this paper we describe the identification and purification of FasR, a transcriptional regulator from Mycobacterium sp. that controls the expression of the fatty acid synthase (fas) and the 4-phosphopantetheinyl transferase (acpS) encoding genes, whose products are involved in the fatty acid and mycolic acid biosynthesis pathways. In vitro studies demonstrated that fas and acpS genes are part of the same transcriptional unit and that FasR specifically binds to three conserved operator sequences present in the fas-acpS promoter region (Pfas). The construction and further characterization of a fasR conditional mutant confirmed that FasR is a transcriptional activator of the fas-acpS operon and that this protein is essential for mycobacteria viability. Furthermore, the combined used of Pfas-lacZ fusions in different fasR backgrounds and electrophoretic mobility shift assays experiments, strongly suggested that long-chain acyl-CoAs are the effector molecules that modulate the affinity of FasR for its DNA binding sequences and therefore the expression of the essential fas-acpS operon. PMID:23721164

  18. Differential Expression of Biphenyl Synthase Gene Family Members in Fire-Blight-Infected Apple ‘Holsteiner Cox’ 1[W][OA

    PubMed Central

    Chizzali, Cornelia; Gaid, Mariam M.; Belkheir, Asma K.; Hänsch, Robert; Richter, Klaus; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola; Liu, Benye; Beerhues, Ludger

    2012-01-01

    Fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple (Malus × domestica). The phytoalexins of apple are biphenyls and dibenzofurans, whose carbon skeleton is formed by biphenyl synthase (BIS), a type III polyketide synthase. In the recently published genome sequence of apple ‘Golden Delicious’, nine BIS genes and four BIS gene fragments were detected. The nine genes fall into four subfamilies, referred to as MdBIS1 to MdBIS4. In a phylogenetic tree, the BIS amino acid sequences from apple and Sorbus aucuparia formed an individual cluster within the clade of the functionally diverse type III polyketide synthases. cDNAs encoding MdBIS1 to MdBIS4 were cloned from fire-blight-infected shoots of apple ‘Holsteiner Cox,’ heterologously expressed in Escherichia coli, and functionally analyzed. Benzoyl-coenzyme A and salicoyl-coenzyme A were the preferred starter substrates. In response to inoculation with E. amylovora, the BIS3 gene was expressed in stems of cv Holsteiner Cox, with highest transcript levels in the transition zone between necrotic and healthy tissues. The transition zone was the accumulation site of biphenyl and dibenzofuran phytoalexins. Leaves contained transcripts for BIS2 but failed to form immunodetectable amounts of BIS protein. In cell cultures of apple ‘Cox Orange,’ expression of the BIS1 to BIS3 genes was observed after the addition of an autoclaved E. amylovora suspension. Using immunofluorescence localization under a confocal laser-scanning microscope, the BIS3 protein in the transition zone of stems was detected in the parenchyma of the bark. Dot-shaped immunofluorescence was confined to the junctions between neighboring cortical parenchyma cells. PMID:22158676

  19. Modeling linear and cyclic PKS intermediates through atom replacement.

    PubMed

    Shakya, Gaurav; Rivera, Heriberto; Lee, D John; Jaremko, Matt J; La Clair, James J; Fox, Daniel T; Haushalter, Robert W; Schaub, Andrew J; Bruegger, Joel; Barajas, Jesus F; White, Alexander R; Kaur, Parminder; Gwozdziowski, Emily R; Wong, Fiona; Tsai, Shiou-Chuan; Burkart, Michael D

    2014-12-03

    The mechanistic details of many polyketide synthases (PKSs) remain elusive due to the instability of transient intermediates that are not accessible via conventional methods. Here we report an atom replacement strategy that enables the rapid preparation of polyketone surrogates by selective atom replacement, thereby providing key substrate mimetics for detailed mechanistic evaluations. Polyketone mimetics are positioned on the actinorhodin acyl carrier protein (actACP) to probe the underpinnings of substrate association upon nascent chain elongation and processivity. Protein NMR is used to visualize substrate interaction with the actACP, where a tetraketide substrate is shown not to bind within the protein, while heptaketide and octaketide substrates show strong association between helix II and IV. To examine the later cyclization stages, we extended this strategy to prepare stabilized cyclic intermediates and evaluate their binding by the actACP. Elongated monocyclic mimics show much longer residence time within actACP than shortened analogs. Taken together, these observations suggest ACP-substrate association occurs both before and after ketoreductase action upon the fully elongated polyketone, indicating a key role played by the ACP within PKS timing and processivity. These atom replacement mimetics offer new tools to study protein and substrate interactions and are applicable to a wide variety of PKSs.

  20. Modeling Linear and Cyclic PKS Intermediates through Atom Replacement

    PubMed Central

    2015-01-01

    The mechanistic details of many polyketide synthases (PKSs) remain elusive due to the instability of transient intermediates that are not accessible via conventional methods. Here we report an atom replacement strategy that enables the rapid preparation of polyketone surrogates by selective atom replacement, thereby providing key substrate mimetics for detailed mechanistic evaluations. Polyketone mimetics are positioned on the actinorhodin acyl carrier protein (actACP) to probe the underpinnings of substrate association upon nascent chain elongation and processivity. Protein NMR is used to visualize substrate interaction with the actACP, where a tetraketide substrate is shown not to bind within the protein, while heptaketide and octaketide substrates show strong association between helix II and IV. To examine the later cyclization stages, we extended this strategy to prepare stabilized cyclic intermediates and evaluate their binding by the actACP. Elongated monocyclic mimics show much longer residence time within actACP than shortened analogs. Taken together, these observations suggest ACP-substrate association occurs both before and after ketoreductase action upon the fully elongated polyketone, indicating a key role played by the ACP within PKS timing and processivity. These atom replacement mimetics offer new tools to study protein and substrate interactions and are applicable to a wide variety of PKSs. PMID:25406716

  1. Oral delivery of double-stranded RNAs induces mortality in nymphs and adults of the Asian citrus psyllid, Diaphorina citri.

    PubMed

    Galdeano, Diogo Manzano; Breton, Michèle Claire; Lopes, João Roberto Spotti; Falk, Bryce W; Machado, Marcos Antonio

    2017-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most important citrus pests. ACP is the vector of the phloem-limited bacteria Candidatus Liberibacter americanus and Candidatus Liberibacter asiaticus, the causal agents of the devastating citrus disease huanglongbing (HLB). The management of HLB is based on the use of healthy young plants, eradication of infected plants and chemical control of the vector. RNA interference (RNAi) has proven to be a promising tool to control pests and explore gene functions. Recently, studies have reported that target mRNA knockdown in many insects can be induced through feeding with double-stranded RNA (dsRNA). In the current study, we targeted the cathepsin D, chitin synthase and inhibitor of apoptosis genes of adult and nymph ACP by feeding artificial diets mixed with dsRNAs and Murraya paniculata leaves placed in dsRNAs solutions, respectively. Adult ACP mortality was positively correlated with the amount of dsRNA used. Both nymphs and adult ACP fed dsRNAs exhibited significantly increased mortality over time compared with that of the controls. Moreover, qRT-PCR analysis confirmed the dsRNA-mediated RNAi effects on target mRNAs. These results showed that RNAi can be a powerful tool for gene function studies in ACP and perhaps for HLB control.

  2. PhaM is the physiological activator of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) in Ralstonia eutropha.

    PubMed

    Pfeiffer, Daniel; Jendrossek, Dieter

    2014-01-01

    Poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis in Ralstonia eutropha and other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays of R. eutropha PHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-D-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formation in vitro and in vivo was shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection of de novo-synthesized PHB granules.

  3. Feasibility of hospital-initiated non-facilitator assisted advance care planning documentation for patients with palliative care needs.

    PubMed

    Kok, Maaike; van der Werff, Gertruud F M; Geerling, Jenske I; Ruivenkamp, Jaap; Groothoff, Wies; van der Velden, Annette W G; Thoma, Monique; Talsma, Jaap; Costongs, Louk G P; Gans, Reinold O B; de Graeff, Pauline; Reyners, Anna K L

    2018-05-24

    Advance Care Planning (ACP) and its documentation, accessible to healthcare professionals regardless of where patients are staying, can improve palliative care. ACP is usually performed by trained facilitators. However, ACP conversations would be more tailored to a patient's specific situation if held by a patient's clinical healthcare team. This study assesses the feasibility of ACP by a patient's clinical healthcare team, and analyses the documented information including current and future problems within the palliative care domains. This multicentre study was conducted at the three Groningen Palliative Care Network hospitals in the Netherlands. Patients discharged from hospital with a terminal care indication received an ACP document from clinical staff (non-palliative care trained staff at hospitals I and II; specialist palliative care nurses at hospital III) after they had held ACP conversations. An anonymised copy of this ACP document was analysed. Documentation rates of patient and contact details were investigated, and documentation of current and future problems were analysed both quantitatively and qualitatively. One hundred sixty ACP documents were received between April 2013 and December 2014, with numbers increasing for each consecutive 3-month time period. Advance directives were frequently documented (82%). Documentation rates of current problems in the social (24%), psychological (27%) and spiritual (16%) domains were low compared to physical problems (85%) at hospital I and II, but consistently high (> 85%) at hospital III. Of 545 documented anticipated problems, 92% were physical or care related in nature, 2% social, 5% psychological, and < 1% spiritual. Half of the anticipated non-physical problems originated from hospital III. Hospital-initiated ACP documentation by a patient's clinical healthcare team is feasible: the number of documents received per time period increased throughout the study period, and overall, documentation rates were

  4. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli.

    PubMed

    Lee, Sunhee; Jung, Yeontae; Lee, Seunghan; Lee, Jinwon

    2013-03-01

    Microorganisms have been used for biodiesel (fatty acid methyl ester) production due to their significant environmental and economic benefits. The aim of the present research was to develop new strains of Escherichia coli K-12 MG1655 and to increase the content of long-chain fatty acids by overexpressing essential enzymes that are involved in the fatty acid synthase elongation cycle. In addition, the relationship of β-ketoacyl-acyl carrier protein (ACP) synthase (fabH), β-ketoacyl-ACP reductase (fabG), β-hydroxyacyl-ACP dehydrase (fabZ), and β-enoyl-ACP reductase (fabI) with respect to fatty acid production was investigated. The four enzymes play a unique role in fatty acid biosynthesis and elongation processes. We report the generation of recombinant E. coli strains that produced long-chain fatty acids to amounts twofold over wild type. To verify the results, NAD(+)/NADH ratios and glucose analyses were performed. We also confirmed that FabZ plays an important role in producing unsaturated fatty acids (UFAs) as E. coli SGJS25 (overexpressing the fabZ gene) produced the highest percentage of UFAs (35 % of total long-chain fatty acids), over wild type and other recombinants. Indeed, cis-9-hexadecenoic acid, a major UFA in E. coli SGJS25, was produced at levels 20-fold higher than in wild type after 20 h in culture. The biochemically engineered E. coli presented in this study is expected to be more economical for producing long-chain fatty acids in quality biodiesel production processes.

  5. Unusual features of a recombinant apple alpha-farnesene synthase.

    PubMed

    Green, Sol; Friel, Ellen N; Matich, Adam; Beuning, Lesley L; Cooney, Janine M; Rowan, Daryl D; MacRae, Elspeth

    2007-01-01

    A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.

  6. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases.

    PubMed

    Lohman, Jeremy R; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  7. Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation.

    PubMed

    Huang, Guangrong; Wang, Lihong; Zhou, Qing

    2013-01-01

    Ultraviolet-B (UV-B, 280-320 nm) radiation has seriously affected the growth of plants. Finding the technology/method to alleviate the damage of UV-B radiation has become a frontal topic in the field of environmental science. The pretreatment with rare earth elements (REEs) is an effective method, but the regulation mechanism of REEs is unknown. Here, the regulation effects of lanthanum (La(III)) on nitrogen assimilation in soybean seedlings (Glycine max L.) under ultraviolet-B radiation were investigated to elucidate the regulation mechanism of REEs on plants under UV-B radiation. UV-B radiation led to the inhibition in the activities of the key enzymes (nitrate reductase, glutamine synthetase, glutamate synthase) in the nitrogen assimilation, the decrease in the contents of nitrate and soluble proteins, as well as the increase in the content of amino acid in soybean seedlings. The change degree of UV-B radiation at the high level (0.45 W m(-2)) was higher than that of UV-B radiation at the low level (0.15 W m(-2)). The pretreatment with 20 mg L(-1) La(III) could alleviate the effects of UV-B radiation on the activities of nitrate reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase, promoting amino acid conversion and protein synthesis in soybean seedlings. The regulation effect of La(III) under UV-B radiation at the low level was better than that of UV-B radiation at the high level. The results indicated that the pretreatment with 20 mg L(-1) La(III) could alleviate the inhibition of UV-B radiation on nitrogen assimilation in soybean seedlings.

  8. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  9. Effect of CPP-ACP paste with and without CO2 laser irradiation on demineralized enamel microhardness and bracket shear bond strength

    PubMed Central

    Farhadian, Nasrin; Rezaei-Soufi, Loghman; Jamalian, Seyed Farzad; Farhadian, Maryam; Tamasoki, Shahrzad; Malekshoar, Milad; Javanshir, Bahareh

    2017-01-01

    ABSTRACT Introduction: Many patients seeking orthodontic treatment already have incipient enamel lesions and should be placed under preventive treatments. The aim of this in vitro study was to evaluate the effect of CPP-ACP paste and CO2 laser irradiation on demineralized enamel microhardness and shear bond strength of orthodontic brackets. Methods: Eighty caries-free human premolars were subjected to a demineralization challenge using Streptococcus mutans. After demineralization, the samples were randomly divided into five equal experimental groups: Group 1 (control), the brackets were bonded without any surface treatment; Group 2, the enamel surfaces were treated with CPP-ACP paste for 4 minutes before bonding; Group 3, the teeth were irradiated with CO2 laser beams at a wavelength of 10.6 µm for 20 seconds. The samples in Groups 4 and 5 were treated with CO2 laser either before or through CPP-ACP application. SEM photomicrographs of a tooth from each group were taken to observe the enamel surface. The brackets were bonded to the buccal enamel using a conventional method. Shear bond strength of brackets and ARI scores were measured. Vickers microhardness was measured on the non-bonded enamel surface. Data were analyzed with ANOVA and Tukey test at the p< 0.05 level. Results: The mean shear bond strength and microhardness of the laser group were higher than those in the control group and this difference was statistically significant (p< 0.05). All groups showed a higher percentage of ARI score 4. Conclusion: CO2 laser at a wavelength of 10.6 µm significantly increased demineralized enamel microhardness and enhanced bonding to demineralized enamel. PMID:28902250

  10. Studies of UMP synthase in orotic aciduria fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, M.E.; Jones, M.E.

    UMP synthase catalyzes the final two reactions of de novo pyrimidine biosynthesis in mammals. UMP synthase activities are low in fibroblasts from a patient with hereditary orotic aciduria, but increase 80-100 fold to normal levels when the cells are incubated in the presence of 6-azauridine (6-azaU). Normal fibroblasts exhibit at most a two-fold increase in UMP synthase activities in response to 6-azaU. The increase in mutant cell enzyme activity is accompanied by increased UMP synthase protein in immunoprecipitates from (/sup 3//sub 5/S)-methionine-labeled cell extracts. This 6-azaU-dependent protein is precipitated by several monoclonal antibodies and polyclonal antibody raised against pure humanmore » UMP synthase. UMP synthase from normal and mutant fibroblasts comigrate on SDS gels and are stable for at least 2 1/2 hrs at 37/sup 0/C in the presence of a substrate, OMP. However, in the absence of substrate, at 57/sup 0/C, they have different inactivation patterns. Stability of the enzyme derived from normal cells > that of the enzyme from mutant cells cultured with 6-azaU > that of the enzyme from mutant cells. Southern blots of DNA from normal and mutant cells show identical restriction patterns with five enzymes. These results are consistent with the theory that the low level of UMP synthase in mutant cells reflects an increased susceptibility to proteolytic degradation which can be blocked by administration of 6-azaU to the cells in culture.« less

  11. Identification and characterization of multiple curcumin synthases from the herb Curcuma longa.

    PubMed

    Katsuyama, Yohei; Kita, Tomoko; Horinouchi, Sueharu

    2009-09-03

    Curcuminoids are pharmaceutically important compounds isolated from the herb Curcuma longa. Two additional type III polyketide synthases, named CURS2 and CURS3, that are capable of curcuminoid synthesis were identified and characterized. In vitro analysis revealed that CURS2 preferred feruloyl-CoA as a starter substrate and CURS3 preferred both feruloyl-CoA and p-coumaroyl-CoA. These results suggested that CURS2 synthesizes curcumin or demethoxycurcumin and CURS3 synthesizes curcumin, bisdemethoxycurcumin and demethoxycurcumin. The availability of the substrates and the expression levels of the three different enzymes capable of curcuminoid synthesis with different substrate specificities might influence the composition of curcuminoids in the turmeric and in different cultivars.

  12. Clearing the skies over modular polyketide synthases.

    PubMed

    Sherman, David H; Smith, Janet L

    2006-09-19

    Modular polyketide synthases (PKSs) are large multifunctional proteins that synthesize complex polyketide metabolites in microbial cells. A series of recent studies confirm the close protein structural relationship between catalytic domains in the type I mammalian fatty acid synthase (FAS) and the basic synthase unit of the modular PKS. They also establish a remarkable similarity in the overall organization of the type I FAS and the PKS module. This information provides important new conclusions about catalytic domain architecture, function, and molecular recognition that are essential for future efforts to engineer useful polyketide metabolites with valuable biological activities.

  13. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    PubMed

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.

  14. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase.

    PubMed

    Ahmad, Zulfiqar; Hassan, Sherif S; Azim, Sofiya

    2017-11-20

    For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phytochemicals is based on tradition or word of mouth with few evidence-based studies. Moreover, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become pertinent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of dietary phytochemicals are known to inhibit ATP synthase. Structural modifications of phytochemicals have been shown to increase the inhibitory potency and extent of inhibition. Sitedirected mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can result in selective binding and inhibition of microbial ATP synthase. In this review, the therapeutic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective targeting of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase

    PubMed Central

    Ahmad, Zulfiqar; Hassan, Sherif S.; Azim, Sofiya

    2017-01-01

    For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phy-tochemicals is based on tradition or word of mouth with few evidence-based studies. Moreo-ver, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become perti-nent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of die-tary phytochemicals are known to inhibit ATP synthase. Structural modifications of phyto-chemicals have been shown to increase the inhibitory potency and extent of inhibition. Site-directed mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can re-sult in selective binding and inhibition of microbial ATP synthase. In this review, the therapeu-tic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective target-ing of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. PMID:28831918

  16. X-Ray Cross-Complementing Group 1 and Thymidylate Synthase Polymorphisms Might Predict Response to Chemoradiotherapy in Rectal Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamas, Maria J., E-mail: mlamasd@yahoo.es; Duran, Goretti; Gomez, Antonio

    2012-01-01

    Purpose: 5-Fluorouracil-based chemoradiotherapy before total mesorectal excision is currently the standard treatment of Stage II and III rectal cancer patients. We used known predictive pharmacogenetic biomarkers to identify the responders to preoperative chemoradiotherapy in our series. Methods and Materials: A total of 93 Stage II-III rectal cancer patients were genotyped using peripheral blood samples. The genes analyzed were X-ray cross-complementing group 1 (XRCC1), ERCC1, MTHFR, EGFR, DPYD, and TYMS. The patients were treated with 225 mg/m{sup 2}/d continuous infusion of 5-fluorouracil concomitantly with radiotherapy (50.4 Gy) followed by total mesorectal excision. The outcomes were measured by tumor regression grade (TRG)more » as a major response (TRG 1 and TRG 2) or as a poor response (TRG3, TRG4, and TRG5). Results: The major histopathologic response rate was 47.3%. XRCC1 G/G carriers had a greater probability of response than G/A carriers (odds ratio, 4.18; 95% confidence interval, 1.62-10.74, p = .003) Patients with polymorphisms associated with high expression of thymidylate synthase (2R/3G, 3C/3G, and 3G/3G) showed a greater pathologic response rate compared with carriers of low expression (odds ratio, 2.65; 95% confidence interval, 1.10-6.39, p = .02) No significant differences were seen in the response according to EGFR, ERCC1, MTHFR{sub C}677 and MTHFR{sub A}1298 expression. Conclusions: XRCC1 G/G and thymidylate synthase (2R/3G, 3C/3G, and 3G/3G) are independent factors of a major response. Germline thymidylate synthase and XRCC1 polymorphisms might be useful as predictive markers of rectal tumor response to neoadjuvant chemoradiotherapy with 5-fluorouracil.« less

  17. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A [East Lansing, MI; Itoh, Aya [Tsuruoka, JP

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  18. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  19. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis*

    PubMed Central

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-01

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3–17), helix II (residues 39–53), helix III (residues 60–64), and helix IV (residues 68–78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe45 in helix II and Phe18 in the α1α2 loop and a hydrogen bonding between Ser15 in helix I and Ile20 in the α1α2 loop, resulting in its high thermal stability. Phe45-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser58 in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains. PMID:26631734

  20. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus.

    PubMed

    Tsuge, Takeharu; Hyakutake, Manami; Mizuno, Kouhei

    2015-08-01

    This review highlights the recent investigations of class IV polyhydroxyalkanoate (PHA) synthases, the newest classification of PHA synthases. Class IV synthases are prevalent in organisms of the Bacillus genus and are composed of a catalytic subunit PhaC (approximately 40 kDa), which has a PhaC box sequence ([GS]-X-C-X-[GA]-G) at the active site, and a second subunit PhaR (approximately 20 kDa). The representative PHA-producing Bacillus strains are Bacillus megaterium and Bacillus cereus; the nucleotide sequence of phaC and the genetic organization of the PHA biosynthesis gene locus are somewhat different between these two strains. It is generally considered that class IV synthases favor short-chain-length monomers such as 3-hydroxybutyrate (C4) and 3-hydroxyvalerate (C5) for polymerization, but can polymerize some unusual monomers as minor components. In Escherichia coli expressing PhaRC from B. cereus YB-4, the biosynthesized PHA undergoes synthase-catalyzed alcoholytic cleavage using endogenous and exogenous alcohols. This alcoholysis is thought to be shared among class IV synthases, and this reaction is useful not only for the regulation of PHA molecular weight but also for the modification of the PHA carboxy terminus. The novel properties of class IV synthases will open up the possibility for the design of new PHA materials.

  1. PhaM Is the Physiological Activator of Poly(3-Hydroxybutyrate) (PHB) Synthase (PhaC1) in Ralstonia eutropha

    PubMed Central

    Pfeiffer, Daniel

    2014-01-01

    Poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis in Ralstonia eutropha and other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays of R. eutropha PHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-d-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formation in vitro and in vivo was shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection of de novo-synthesized PHB granules. PMID:24212577

  2. Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa.

    PubMed

    Morita, Hiroyuki; Wanibuchi, Kiyofumi; Nii, Hirohiko; Kato, Ryohei; Sugio, Shigetoshi; Abe, Ikuro

    2010-11-16

    Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C(6)-C(7)-C(6) diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C(6)-C(3) coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H(2)O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C(6)-C(7)-C(6) scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.

  3. Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa

    PubMed Central

    Morita, Hiroyuki; Wanibuchi, Kiyofumi; Nii, Hirohiko; Kato, Ryohei; Sugio, Shigetoshi; Abe, Ikuro

    2010-01-01

    Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C6-C7-C6 diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C6-C3 coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H2O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C6-C7-C6 scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes. PMID:21041675

  4. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha[OPEN

    PubMed Central

    Zhuang, Xun; Jiang, Zuodong; Jia, Qidong; Babbitt, Patricia C.

    2016-01-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. PMID:27650333

  5. The chloroplast ATP synthase features the characteristic redox regulation machinery.

    PubMed

    Hisabori, Toru; Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-11-20

    Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system.

  6. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    PubMed Central

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  7. Cellulose in Cyanobacteria. Origin of Vascular Plant Cellulose Synthase?

    PubMed Central

    Nobles, David R.; Romanovicz, Dwight K.; Brown, R. Malcolm

    2001-01-01

    Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba × Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes. PMID:11598227

  8. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2009-2010 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2010

    2010-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its five staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by Commissioners…

  9. Feedback inhibition of nitric oxide synthase activity by nitric oxide.

    PubMed Central

    Assreuy, J.; Cunha, F. Q.; Liew, F. Y.; Moncada, S.

    1993-01-01

    1. A murine macrophage cell line, J774, expressed nitric oxide (NO) synthase activity in response to interferon-gamma (IFN-gamma, 10 u ml-1) plus lipopolysaccharide (LPS, 10 ng ml-1). The enzyme activity was first detectable 6 h after incubation, peaked at 12 h and became undetectable after 48 h. 2. The decline in the NO synthase activity was not due to inhibition by stable substances secreted by the cells into the culture supernatant. 3. The decline in the NO synthase activity was significantly slowed down in cells cultured in a low L-arginine medium or with added haemoglobin, suggesting that NO may be involved in a feedback inhibitory mechanism. 4. The addition of NO generators, S-nitroso-acetyl-penicillamine (SNAP) or S-nitroso-glutathione (GSNO) markedly inhibited the NO synthase activity in a dose-dependent manner. The effect of NO on the enzyme was not due to the inhibition of de novo protein synthesis. 5. SNAP directly inhibited the inducible NO synthase extracted from activated J774 cells, as well as the constitutive NO synthase extracted from the rat brain. 6. The enzyme activity of J774 cells was not restored after the removal of SNAP by gel filtration, suggesting that NO inhibits NO synthase irreversibly. PMID:7682140

  10. Assessment of White Spot Lesions and In-Vivo Evaluation of the Effect of CPP-ACP on White Spot Lesions in Permanent Molars of Children

    PubMed Central

    Munjal, Deepti; Garg, Shalini; Dhindsa, Abhishek; Sidhu, Gagandeep Kaur

    2016-01-01

    Introduction As hindrance of remineralisation process occurs during orthodontic therapy resulting in decalcification of enamel because number of plaque retention sites increases due to banding and bonding of appliances to teeth. Aim The present analytic study was undertaken to assess the occurrence of white spot lesions in permanent molars of children with and without orthodontic therapy and to evaluate the effect of Casein PhosphoPeptide-Amorphous Calcium Phosphate (CPP-ACP) on white spot lesions in post-orthodontic patients in a given period of time. Materials and Methods The study comprised of examination of 679 first permanent molars which were examined to assess the occurrence of smooth surface white spot lesions in children of 8 to 16 years age group. Group I comprised subjects without any orthodontic treatment and Group II comprised of subjects who had undergone orthodontic therapy. The sample size was calculated using the epi-info6 computer package. Treatment group included 20 post-orthodontic patients examined with at least one white spot lesion within the enamel who received remineralizing cream (GC Tooth Mousse, Recaldent, GC Corporation.) i.e., CPP–ACP cream two times a day for 12 consecutive weeks. Computerized image analysis method was taken to evaluate white spot lesions. These frequency and percentages were compared with chi-square test. For comparison of numeric data, paired t-test was used. Results Of the total 278 (49.6%) first permanent molars showed occurrence of smooth surface white spot lesions out of 560 in Group I and 107 (89.9%) first permanent molars showed presence of white spot lesions out of 119 debanded first permanent molars of children examined in Group II. CPP-ACP therapy group showed reduction in severity of codes which was found to be highly significant after 12 weeks and eight weeks on gingival-third, p-value (<0.001) and significant after eight weeks and four weeks on middle-third according to ICDAS II criteria and

  11. Assessment of White Spot Lesions and In-Vivo Evaluation of the Effect of CPP-ACP on White Spot Lesions in Permanent Molars of Children.

    PubMed

    Munjal, Deepti; Garg, Shalini; Dhindsa, Abhishek; Sidhu, Gagandeep Kaur; Sethi, Harsimran Singh

    2016-05-01

    As hindrance of remineralisation process occurs during orthodontic therapy resulting in decalcification of enamel because number of plaque retention sites increases due to banding and bonding of appliances to teeth. The present analytic study was undertaken to assess the occurrence of white spot lesions in permanent molars of children with and without orthodontic therapy and to evaluate the effect of Casein PhosphoPeptide-Amorphous Calcium Phosphate (CPP-ACP) on white spot lesions in post-orthodontic patients in a given period of time. The study comprised of examination of 679 first permanent molars which were examined to assess the occurrence of smooth surface white spot lesions in children of 8 to 16 years age group. Group I comprised subjects without any orthodontic treatment and Group II comprised of subjects who had undergone orthodontic therapy. The sample size was calculated using the epi-info6 computer package. Treatment group included 20 post-orthodontic patients examined with at least one white spot lesion within the enamel who received remineralizing cream (GC Tooth Mousse, Recaldent, GC Corporation.) i.e., CPP-ACP cream two times a day for 12 consecutive weeks. Computerized image analysis method was taken to evaluate white spot lesions. These frequency and percentages were compared with chi-square test. For comparison of numeric data, paired t-test was used. Of the total 278 (49.6%) first permanent molars showed occurrence of smooth surface white spot lesions out of 560 in Group I and 107 (89.9%) first permanent molars showed presence of white spot lesions out of 119 debanded first permanent molars of children examined in Group II. CPP-ACP therapy group showed reduction in severity of codes which was found to be highly significant after 12 weeks and eight weeks on gingival-third, p-value (<0.001) and significant after eight weeks and four weeks on middle-third according to ICDAS II criteria and computerized image analysis. CPP-ACP therapy minimum for 12

  12. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohman, Jeremy; Ma, Ming; Osipiuk, Jerzy

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representationmore » of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.« less

  13. An Sfp-type PPTase and associated polyketide and nonribosomal peptide synthases in Agrobacterium vitis are essential for induction of tobacco hypersensitive response and grape necrosis.

    PubMed

    Zheng, Desen; Burr, Thomas J

    2013-07-01

    An Sfp-type phosphopantetheinyl transferase (PPTase) encoding gene F-avi5813 in Agrobacterium vitis F2/5 was found to be required for the induction of a tobacco hypersensitive response (HR) and grape necrosis. Sfp-type PPTases are post-translation modification enzymes that activate acyl-carry protein (ACP) domains in polyketide synthases (PKS) and peptidyl-carrier protein (PCP) domains of nonribosomal peptide synthases (NRPS). Mutagenesis of PKS and NRPS genes in A. vitis led to the identification of a PKS gene (F-avi4330) and NRPS gene (F-avi3342) that are both required for HR and necrosis. The gene immediately downstream of F-avi4330 (F-avi4329) encoding a predicted aminotransferase was also found to be required for HR and necrosis. Regulation of F-avi4330 and F-avi3342 by quorum-sensing genes avhR, aviR, and avsR and by a lysR-type regulator, lhnR, was investigated. It was determined that F-avi4330 expression is positively regulated by avhR, aviR, and lhnR and negatively regulated by avsR. F-avi3342 was found to be positively regulated by avhR, aviR, and avsR and negatively regulated by lhnR. Our results suggest that a putative hybrid peptide-polyketide metabolite synthesized by F-avi4330 and F-avi3342 is associated with induction of tobacco HR and grape necrosis. This is the first report that demonstrates that NRPS and PKS play essential roles in conferring the unique ability of A. vitis to elicit a non-host-specific HR and host-specific necrosis.

  14. The Tomato Terpene Synthase Gene Family1[W][OA

    PubMed Central

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  15. The Chloroplast ATP Synthase Features the Characteristic Redox Regulation Machinery

    PubMed Central

    Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-01-01

    Abstract Significance: Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. Recent Advances: The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Critical Issues: Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. Future Directions: The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system. Antioxid. Redox Signal. 19, 1846–1854. PMID:23145525

  16. Isolation and functional effects of monoclonal antibodies binding to thymidylate synthase.

    PubMed

    Jastreboff, M M; Todd, M B; Malech, H L; Bertino, J R

    1985-01-29

    Monoclonal antibodies against electrophoretically pure thymidylate synthase from HeLa cells have been produced. Antibodies (M-TS-4 and M-TS-9) from hybridoma clones were shown by enzyme-linked immunoassay to recognize thymidylate synthase from a variety of human cell lines, but they did not bind to thymidylate synthase from mouse cell lines. The strongest binding of antibodies was observed to enzyme from HeLa cells. These two monoclonal antibodies bind simultaneously to different antigenic sites on thymidylate synthase purified from HeLa cells, as reflected by a high additivity index and results of cross-linked radioimmunoassay. Both monoclonal antibodies inhibit the activity of thymidylate synthase from human cell lines. The strongest inhibition was observed with thymidylate synthase from HeLa cells. Monoclonal antibody M-TS-9 (IgM subclass) decreased the rate of binding of [3H]FdUMP to thymidylate synthase in the presence of 5,10-methylenetetrahydrofolate while M-TS-4 (IgG1) did not change the rate of ternary complex formation. These data indicate that the antibodies recognize different epitopes on the enzyme molecule.

  17. Crystal Structure of the N-terminal Domain of the Group B Streptococcus Alpha C Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auperin,T.; Bolduc, G.; Baron, M.

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis, and meningitis among neonates and an important cause of morbidity among pregnant women and immunocompromised adults. Invasive diseases due to GBS are attributed to the ability of the pathogen to translocate across human epithelial surfaces. The alpha C protein (ACP) has been identified as an invasin that plays a role in internalization and translocation of GBS across epithelial cells. The soluble N-terminal domain of ACP (NtACP) blocks the internalization of GBS. We determined the 1.86-{angstrom} resolution crystal structure of NtACP comprising residues Ser{sup 52} through Leu{sup 225} ofmore » the full-length ACP. NtACP has two domains, an N-terminal {beta}-sandwich and a C-terminal three-helix bundle. Structural and topological alignments reveal that the {beta}-sandwich shares structural elements with the type III fibronectin fold (FnIII), but includes structural elaborations that make it unique. We have identified a potential integrin-binding motif consisting of Lys-Thr-Asp{sup 146}, Arg{sup 110}, and Asp{sup 118}. A similar arrangement of charged residues has been described in other invasins. ACP shows a heparin binding activity that requires NtACP. We propose a possible heparin-binding site, including one surface of the three-helix bundle, and nearby portions of the sandwich and repeat domains. We have validated this prediction using assays of the heparin binding and cell-adhesion properties of engineered fragments of ACP. This is the first crystal structure of a member of the highly conserved Gram-positive surface alpha-like protein family, and it will enable the internalization mechanism of GBS to be dissected at the atomic level.« less

  18. ATP Synthase Diseases of Mitochondrial Genetic Origin

    PubMed Central

    Dautant, Alain; Meier, Thomas; Hahn, Alexander; Tribouillard-Tanvier, Déborah; di Rago, Jean-Paul; Kucharczyk, Roza

    2018-01-01

    Devastating human neuromuscular disorders have been associated to defects in the ATP synthase. This enzyme is found in the inner mitochondrial membrane and catalyzes the last step in oxidative phosphorylation, which provides aerobic eukaryotes with ATP. With the advent of structures of complete ATP synthases, and the availability of genetically approachable systems such as the yeast Saccharomyces cerevisiae, we can begin to understand these molecular machines and their associated defects at the molecular level. In this review, we describe what is known about the clinical syndromes induced by 58 different mutations found in the mitochondrial genes encoding membrane subunits 8 and a of ATP synthase, and evaluate their functional consequences with respect to recently described cryo-EM structures. PMID:29670542

  19. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    PubMed

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. © 2016 Elsevier Inc. All rights reserved.

  20. Leigh Syndrome with Nephropathy and CoQ10 Deficiency Due to decaprenyl diphosphate synthase subunit 2 (PDSS2) Mutations

    PubMed Central

    López, Luis Carlos ; Schuelke, Markus ; Quinzii, Catarina M. ; Kanki, Tomotake ; Rodenburg, Richard J. T. ; Naini, Ali ; DiMauro, Salvatore ; Hirano, Michio 

    2006-01-01

    Coenzyme Q10 (CoQ10) is a vital lipophilic molecule that transfers electrons from mitochondrial respiratory chain complexes I and II to complex III. Deficiency of CoQ10 has been associated with diverse clinical phenotypes, but, in most patients, the molecular cause is unknown. The first defect in a CoQ10 biosynthetic gene, COQ2, was identified in a child with encephalomyopathy and nephrotic syndrome and in a younger sibling with only nephropathy. Here, we describe an infant with severe Leigh syndrome, nephrotic syndrome, and CoQ10 deficiency in muscle and fibroblasts and compound heterozygous mutations in the PDSS2 gene, which encodes a subunit of decaprenyl diphosphate synthase, the first enzyme of the CoQ10 biosynthetic pathway. Biochemical assays with radiolabeled substrates indicated a severe defect in decaprenyl diphosphate synthase in the patient’s fibroblasts. This is the first description of pathogenic mutations in PDSS2 and confirms the molecular and clinical heterogeneity of primary CoQ10 deficiency. PMID:17186472

  1. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2008-2009 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2009

    2009-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a 5-year strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its eight staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by…

  2. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2006-2007 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2007

    2007-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a 5 year strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its eight staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by…

  3. Expanding Access and Increasing Success in Postsecondary Education for Arizonans. The Arizona Commission for Postsecondary Education (ACPE) 2007-2008 Annual Report

    ERIC Educational Resources Information Center

    Arizona Commission for Postsecondary Education, 2008

    2008-01-01

    The work of the Arizona Commission for Postsecondary Education (ACPE) is guided by a 5-year strategic plan. The purpose of the plan is to provide focus for the activity of this small agency and its nine staff members in order to increase productivity and impact in the areas of its statutory authority. The mission and goals were accepted by …

  4. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    PubMed Central

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  5. The Structural Enzymology of Iterative Aromatic Polyketide Synthases: A Critical Comparison with Fatty Acid Synthases.

    PubMed

    Tsai, Shiou-Chuan Sheryl

    2018-06-20

    Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.

  6. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    PubMed Central

    Engprasert, Surang; Taura, Futoshi; Kawamukai, Makoto; Shoyama, Yukihiro

    2004-01-01

    Background Isopentenyl diphosphate (IPP), a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots. PMID:15550168

  7. Hyaluronan synthase 3 mediated oncogenic action through forming inter-regulation loop with tumor necrosis factor alpha in oral cancer

    PubMed Central

    Kuo, Yi-Zih; Fang, Wei-Yu; Huang, Cheng-Chih; Tsai, Sen-Tien; Wang, Yi-Ching; Yang, Chih-Li; Wu, Li-Wha

    2017-01-01

    Hyaluronan (HA) is a major extracellular matrix component. However, its role and mediation in oral cancer remains elusive. Hyaluronan synthase 3 (HAS3), involved in pro-inflammatory short chain HA synthesis, was the predominant synthase in oral cancer cells and tissues. HAS3 overexpression significantly increased oral cancer cell migration, invasion and xenograft tumorigenesis accompanied with the increased expression of tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Conversely, HAS3 depletion abrogated HAS3-mediated stimulation. HAS3 induced oncogenic actions partly through activating EGFR-SRC signaling. HAS3-derived HA release into extracellular milieu enhanced transendothelial monocyte migration and MCP-1 expression, which was attenuated by anti-HAS3 antibodies or a HAS inhibitor, 4-Methylumbelliferone (4-MU). The NF-κB-binding site III at -1692 to -1682 bp upstream from the transcript 1 start site in HAS3 proximal promoter was the most responsive to TNF-α-stimulated transcription. ChIP-qPCR analysis confirmed the highest NF-κB-p65 enrichment on site III. Increased HAS3 mRNA expression was negatively correlated with the overall survival of oral cancer patients. A concomitant increase of TNF-α, a stimulus for HAS3 expression, with HAS3 expression was not only associated with lymph node metastasis but also negated clinical outcome. Together, HAS3 and TNF-α formed an inter-regulation loop to enhance tumorigenesis in oral cancer. PMID:28107185

  8. Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases

    PubMed Central

    Lohman, Jeremy R.; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2015-01-01

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs. PMID:26420866

  9. Imidacloprid soil movement under micro-sprinkler irrigation and soil-drench applications to control Asian citrus psyllid (ACP) and citrus leafminer (CLM).

    PubMed

    Fletcher, Evelyn; Morgan, Kelly T; Qureshi, Jawwad A; Leiva, Jorge A; Nkedi-Kizza, Peter

    2018-01-01

    Imidacloprid (IM) is used to control the Asian Citrus Psyllid (ACP) and citrus leafminer (CLM), which are related to the spread of huanglongbing (HLB or citrus greening) and citrus canker diseases, respectively. In Florida citrus, imidacloprid is mainly soil-drenched around the trees for proper root uptake and translocation into plant canopy to impact ACP and CLM. The objective of this study was to determine the effect of imidacloprid rate, and irrigate amount on concentration of imidacloprid in the soil following drench application to citrus trees in three age classes. The plots were established at the Southwest Florida Research and Education Center, Immokalee, using a randomized complete-block design for three age classes of trees: one-year-old trees (B1), three to five-year-old trees (B2), and eight-year-old trees (B3). The treatments were a combination of two rates each of imidacloprid (1D, 2D) and micro-sprinkling irrigation (1I, 2I). Imidacloprid and bromide (Br-) used as tracer were applied simultaneously. Soil moisture and concentrations of imidacloprid and Br were monitored using soil cores from hand held augers. Soil moisture content (θV) did not differ under two irrigation rates at any given observation day or depth, except following heavy rainfall events. Br- was lost from the observation depths (0-45 cm) about two weeks after soil-drench. Contrarily, imidacloprid persisted for a much longer time (4-8 weeks) at all soil depths, regardless of treatment combinations. The higher retardation of imidacloprid was related to the predominantly unsaturated conditions of the soil (which in turn reduced soil hydraulic conductivities by orders of magnitude), the imidacloprid sorption on soil organic matter, and the citrus root uptake. Findings of this study are important for citrus growers coping with the citrus greening and citrus canker diseases because they suggest that imidacloprid soil drenches can still be an effective control measure of ACP and CLM, and the

  10. Imidacloprid soil movement under micro-sprinkler irrigation and soil-drench applications to control Asian citrus psyllid (ACP) and citrus leafminer (CLM)

    PubMed Central

    Fletcher, Evelyn; Qureshi, Jawwad A.; Leiva, Jorge A.; Nkedi-Kizza, Peter

    2018-01-01

    Imidacloprid (IM) is used to control the Asian Citrus Psyllid (ACP) and citrus leafminer (CLM), which are related to the spread of huanglongbing (HLB or citrus greening) and citrus canker diseases, respectively. In Florida citrus, imidacloprid is mainly soil-drenched around the trees for proper root uptake and translocation into plant canopy to impact ACP and CLM. The objective of this study was to determine the effect of imidacloprid rate, and irrigate amount on concentration of imidacloprid in the soil following drench application to citrus trees in three age classes. The plots were established at the Southwest Florida Research and Education Center, Immokalee, using a randomized complete-block design for three age classes of trees: one-year-old trees (B1), three to five-year-old trees (B2), and eight-year-old trees (B3). The treatments were a combination of two rates each of imidacloprid (1D, 2D) and micro-sprinkling irrigation (1I, 2I). Imidacloprid and bromide (Br-) used as tracer were applied simultaneously. Soil moisture and concentrations of imidacloprid and Br were monitored using soil cores from hand held augers. Soil moisture content (θV) did not differ under two irrigation rates at any given observation day or depth, except following heavy rainfall events. Br- was lost from the observation depths (0–45 cm) about two weeks after soil-drench. Contrarily, imidacloprid persisted for a much longer time (4–8 weeks) at all soil depths, regardless of treatment combinations. The higher retardation of imidacloprid was related to the predominantly unsaturated conditions of the soil (which in turn reduced soil hydraulic conductivities by orders of magnitude), the imidacloprid sorption on soil organic matter, and the citrus root uptake. Findings of this study are important for citrus growers coping with the citrus greening and citrus canker diseases because they suggest that imidacloprid soil drenches can still be an effective control measure of ACP and CLM, and

  11. SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function.

    PubMed

    Li, Man; Li, Yong; Weeks, Olivia; Mijatovic, Vladan; Teumer, Alexander; Huffman, Jennifer E; Tromp, Gerard; Fuchsberger, Christian; Gorski, Mathias; Lyytikäinen, Leo-Pekka; Nutile, Teresa; Sedaghat, Sanaz; Sorice, Rossella; Tin, Adrienne; Yang, Qiong; Ahluwalia, Tarunveer S; Arking, Dan E; Bihlmeyer, Nathan A; Böger, Carsten A; Carroll, Robert J; Chasman, Daniel I; Cornelis, Marilyn C; Dehghan, Abbas; Faul, Jessica D; Feitosa, Mary F; Gambaro, Giovanni; Gasparini, Paolo; Giulianini, Franco; Heid, Iris; Huang, Jinyan; Imboden, Medea; Jackson, Anne U; Jeff, Janina; Jhun, Min A; Katz, Ronit; Kifley, Annette; Kilpeläinen, Tuomas O; Kumar, Ashish; Laakso, Markku; Li-Gao, Ruifang; Lohman, Kurt; Lu, Yingchang; Mägi, Reedik; Malerba, Giovanni; Mihailov, Evelin; Mohlke, Karen L; Mook-Kanamori, Dennis O; Robino, Antonietta; Ruderfer, Douglas; Salvi, Erika; Schick, Ursula M; Schulz, Christina-Alexandra; Smith, Albert V; Smith, Jennifer A; Traglia, Michela; Yerges-Armstrong, Laura M; Zhao, Wei; Goodarzi, Mark O; Kraja, Aldi T; Liu, Chunyu; Wessel, Jennifer; Boerwinkle, Eric; Borecki, Ingrid B; Bork-Jensen, Jette; Bottinger, Erwin P; Braga, Daniele; Brandslund, Ivan; Brody, Jennifer A; Campbell, Archie; Carey, David J; Christensen, Cramer; Coresh, Josef; Crook, Errol; Curhan, Gary C; Cusi, Daniele; de Boer, Ian H; de Vries, Aiko P J; Denny, Joshua C; Devuyst, Olivier; Dreisbach, Albert W; Endlich, Karlhans; Esko, Tõnu; Franco, Oscar H; Fulop, Tibor; Gerhard, Glenn S; Glümer, Charlotte; Gottesman, Omri; Grarup, Niels; Gudnason, Vilmundur; Hansen, Torben; Harris, Tamara B; Hayward, Caroline; Hocking, Lynne; Hofman, Albert; Hu, Frank B; Husemoen, Lise Lotte N; Jackson, Rebecca D; Jørgensen, Torben; Jørgensen, Marit E; Kähönen, Mika; Kardia, Sharon L R; König, Wolfgang; Kooperberg, Charles; Kriebel, Jennifer; Launer, Lenore J; Lauritzen, Torsten; Lehtimäki, Terho; Levy, Daniel; Linksted, Pamela; Linneberg, Allan; Liu, Yongmei; Loos, Ruth J F; Lupo, Antonio; Meisinger, Christine; Melander, Olle; Metspalu, Andres; Mitchell, Paul; Nauck, Matthias; Nürnberg, Peter; Orho-Melander, Marju; Parsa, Afshin; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Porteous, David; Probst-Hensch, Nicole M; Psaty, Bruce M; Qi, Lu; Raitakari, Olli T; Reiner, Alex P; Rettig, Rainer; Ridker, Paul M; Rivadeneira, Fernando; Rossouw, Jacques E; Schmidt, Frank; Siscovick, David; Soranzo, Nicole; Strauch, Konstantin; Toniolo, Daniela; Turner, Stephen T; Uitterlinden, André G; Ulivi, Sheila; Velayutham, Dinesh; Völker, Uwe; Völzke, Henry; Waldenberger, Melanie; Wang, Jie Jin; Weir, David R; Witte, Daniel; Kuivaniemi, Helena; Fox, Caroline S; Franceschini, Nora; Goessling, Wolfram; Köttgen, Anna; Chu, Audrey Y

    2017-03-01

    Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium ( n Stage1 : 111,666; n Stage2 : 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea ( PPM1J , EDEM3, ACP1, SPEG, EYA4, CYP1A1 , and ATXN2L ; P Stage1 <3.7×10 -7 ), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 ( P =5.4×10 -8 by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2 -knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation. Copyright © 2017 by the American Society of Nephrology.

  12. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans*

    PubMed Central

    Mohanty, Soumya; Jobichen, Chacko; Chichili, Vishnu Priyanka Reddy; Velázquez-Campoy, Adrián; Low, Boon Chuan; Hogue, Christopher W. V.; Sivaraman, J.

    2015-01-01

    ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase. PMID:26370083

  13. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production.

    PubMed

    Zou, Huibin; Shi, Mengxun; Zhang, Tongtong; Li, Lei; Li, Liangzhi; Xian, Mo

    2017-10-01

    With the finite supply of petroleum and increasing concern with environmental issues associated with their harvest and processing, the development of more eco-friendly, sustainable alternative biopolymers that can effectively fill the role of petro-polymers has become a major focus. Polyhydroxyalkanoate (PHA) can be naturally produced by many species of bacteria and the PHA synthase is believed to be key enzyme in this natural pathway. Natural PHA synthases are diverse and can affect the properties of the produced PHAs, such as monomer composition, molecular weights, and material properties. Moreover, recent studies have led to major advances in the searching of PHA synthases that display specific properties, as well as engineering efforts that offer more efficient PHA synthases, increased PHA compound production, or even novel biopolyesters which cannot be naturally produced. In this article, we review the updated information of natural PHA synthases and their engineering strategies for improved performance in polyester production. We also speculate future trends on the development of robust PHA synthases and their application in biopolyester production.

  14. Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.).

    PubMed

    Vickers, Claudia E; Possell, Malcolm; Nicholas Hewitt, C; Mullineaux, Philip M

    2010-07-01

    Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-D: -erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.

  15. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paez, David, E-mail: dpaez@santpau.cat; Salazar, Juliana; Pare, Laia

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerasemore » chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5 Prime UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The Asterisk-Operator 3/ Asterisk-Operator 3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in Asterisk-Operator 3/ Asterisk-Operator 3 vs. 35% in Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk-Operator 3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the Asterisk-Operator 3/ Asterisk-Operator 3 patients and 84 months for the Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2

  16. Fatty Aldehydes in Cyanobacteria Are a Metabolically Flexible Precursor for a Diversity of Biofuel Products

    PubMed Central

    Kaiser, Brett K.; Carleton, Michael; Hickman, Jason W.; Miller, Cameron; Lawson, David; Budde, Mark; Warrener, Paul; Paredes, Angel; Mullapudi, Srinivas; Navarro, Patricia; Cross, Fred; Roberts, James M.

    2013-01-01

    We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis. PMID:23505484

  17. Cloning and Characterization of Inducible Nitric Oxide Synthase from Mouse Macrophages

    NASA Astrophysics Data System (ADS)

    Xie, Qiao-Wen; Cho, Hearn J.; Calaycay, Jimmy; Mumford, Richard A.; Swiderek, Kristine M.; Lee, Terry D.; Ding, Aihao; Troso, Tiffany; Nathan, Carl

    1992-04-01

    Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.

  18. Molecular Characterization of Lactobacillus plantarum Genes for β-Ketoacyl-Acyl Carrier Protein Synthase III (fabH) and Acetyl Coenzyme A Carboxylase (accBCDA), Which Are Essential for Fatty Acid Biosynthesis

    PubMed Central

    Kiatpapan, Pornpimon; Kobayashi, Hajime; Sakaguchi, Maki; Ono, Hisayo; Yamashita, Mitsuo; Kaneko, Yoshinobu; Murooka, Yoshikatsu

    2001-01-01

    Genes for subunits of acetyl coenzyme A carboxylase (ACC), which is the enzyme that catalyzes the first step in the synthesis of fatty acids in Lactobacillus plantarum L137, were cloned and characterized. We identified six potential open reading frames, namely, manB, fabH, accB, accC, accD, and accA, in that order. Nucleotide sequence analysis suggested that fabH encoded β-ketoacyl-acyl carrier protein synthase III, that the accB, accC, accD, and accA genes encoded biotin carboxyl carrier protein, biotin carboxylase, and the β and α subunits of carboxyltransferase, respectively, and that these genes were clustered. The organization of acc genes was different from that reported for Escherichia coli, for Bacillus subtilis, and for Pseudomonas aeruginosa. E. coli accB and accD mutations were complemented by the L. plantarum accB and accD genes, respectively. The predicted products of all five genes were confirmed by using the T7 expression system in E. coli. The gene product of accB was biotinylated in E. coli. Northern and primer extension analyses demonstrated that the five genes in L. plantarum were regulated polycistronically in an acc operon. PMID:11133475

  19. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album

    PubMed Central

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P.; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S. Shiva; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems. PMID:25976282

  20. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album.

    PubMed

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S Shiva; Thulasiram, Hirekodathakallu V

    2015-05-15

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.

  1. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  2. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  3. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  4. Oxidation of thymidylate synthase by inorganic compounds.

    PubMed

    Aull, J L; Ivery, T C; Daron, H H

    1984-10-01

    Thymidylate synthase from methotrexate-resistant Lactobacillus casei was rapidly and completely inactivated by low concentrations of permanganate, periodate, or potassium triiodide at 0 degree C. The enzyme was not inactivated to any appreciable extent by iodate, iodide, ferricyanate, iodosobenzoate, or hydrogen peroxide. The inactivation by permanganate was retarded by the substrate 2'-deoxyuridylate and, to a lesser extent, by phosphate. Titration of enzyme activity with permanganate showed that two moles of permanganate were required to completely inactivate one mole of thymidylate synthase.

  5. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    PubMed Central

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  6. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors.

    PubMed

    Lather, Amit; Sharma, Sunil; Khatkar, Anurag

    2018-01-01

    Infections caused by microorganisms are the major cause of death today. The tremendous and improper use of antimicrobial agents leads to antimicrobial resistance. Various currently available antimicrobial drugs are inadequate to control the infections and lead to various adverse drug reactions. Efforts based on computer-aided drug design (CADD) can excavate a large number of databases to generate new, potent hits and minimize the requirement of time as well as money for the discovery of newer antimicrobials. Pharmaceutical sciences also have made development with advances in drug designing concepts. The current research article focuses on the study of various G-6-P synthase inhibitors from literature cited molecular database. Docking analysis was conducted and ADMET data of various molecules was evaluated by Schrodinger Glide and PreADMET software, respectively. Here, the results presented efficacy of various inhibitors towards enzyme G-6-P synthase. Docking scores, binding energy and ADMET data of various molecules showed good inhibitory potential toward G-6-P synthase as compared to standard antibiotics. This novel antimicrobial drug target G-6-P synthase has not so extensively been explored for its application in antimicrobial therapy, so the work done so far proved highly essential. This article has helped the drug researchers and scientists to intensively explore about this wonderful antimicrobial drug target. The Schrodinger, Inc. (New York, USA) software was utilized to carry out the computational calculations and docking studies. The hardware configuration was Intel® core (TM) i5-4210U CPU @ 2.40GHz, RAM memory 4.0 GB under 64-bit window operating system. The ADMET data was calculated by using the PreADMET tool (PreADMET ver. 2.0). All the computational work was completed in the Laboratory for Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D. University, Rohtak, INDIA. Molecular docking studies were carried out to identify the binding

  7. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus

    PubMed Central

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-01-01

    SUMMARY Fungi are a rich source of bioactive secondary metabolites and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared to the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as a α-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes δ-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homolog, but instead was found to catalyze highly specific the synthesis of α-cuprenene. Co-expression of cop6 and the two monooxygenase genes next to it yields oxygenated α-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  8. Chaplain Documentation and the Electronic Medical Record: A Survey of ACPE Residency Programs.

    PubMed

    Tartaglia, Alexander; Dodd-McCue, Diane; Ford, Timothy; Demm, Charles; Hassell, Alma

    2016-01-01

    This study explores the extent to which chaplaincy departments at ACPE-accredited residency programs make use of the electronic medical record (EMR) for documentation and training. Survey data solicited from 219 programs with a 45% response rate and interview findings from 11 centers demonstrate a high level of usage of the EMR as well as an expectation that CPE residents document each patient/family encounter. Centers provided considerable initial training, but less ongoing monitoring of chaplain documentation. Centers used multiple sources to develop documentation tools for the EMR. One center was verified as having created the spiritual assessment component of the documentation tool from a peer reviewed published model. Interviews found intermittent use of the student chart notes for educational purposes. One center verified a structured manner of monitoring chart notes as a performance improvement activity. Findings suggested potential for the development of a standard documentation tool for chaplain charting and training.

  9. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    PubMed

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  10. ATP Synthase: A Molecular Therapeutic Drug Target for Antimicrobial and Antitumor Peptides

    PubMed Central

    Ahmad, Zulfiqar; Okafor, Florence; Azim, Sofiya; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the role of ATP synthase as a molecular drug target for natural and synthetic antimi-crobial/antitumor peptides. We start with an introduction of the universal nature of the ATP synthase enzyme and its role as a biological nanomotor. Significant structural features required for catalytic activity and motor functions of ATP synthase are described. Relevant details regarding the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it a potential drug target with respect to antimicrobial peptides and other inhibitors such as dietary polyphenols, is also reviewed. ATP synthase is known to have about twelve discrete inhibitor binding sites including peptides and other inhibitors located at the interface of α/β subunits on the F1 sector of the enzyme. Molecular interaction of peptides at the β DEELSEED site on ATP synthase is discussed with specific examples. An inhibitory effect of other natural/synthetic inhibitors on ATP is highlighted to explore the therapeutic roles played by peptides and other inhibitors. Lastly, the effect of peptides on the inhibition of the Escherichia coli model system through their action on ATP synthase is presented. PMID:23432591

  11. Sucrose synthase in wild tomato Lycopersicon chmielewskii and tomato fruit sink strength

    Treesearch

    Shi-Jean S. Sung; T. Loboda; S.S. Sung; C.C. Black

    1992-01-01

    Here it is reported that sucrose synthase can be readily measured in growing wild tomato fruits (Lycopersicon chmielewskii) when suitable methods are adopted during fruit extraction. The enzyme also was present in fruit pericarp tissues, in seeds, and in flowers.In mature, nongrowing fruits, sucrose synthase activities approached nil values.Therefore, sucrose synthase...

  12. A second gene for type I signal peptidase in Bradyrhizobium japonicum, sipF, is located near genes involved in RNA processing and cell division.

    PubMed

    Bairl, A; Müller, P

    1998-11-01

    The TnphoA-induced Bradyrhizobium japonicum mutant 184 shows slow growth and aberrant colonization of soybean nodules. Using a DNA fragment adjacent to the transposon insertion site as a probe, a 3.4-kb BglII fragment of B. japonicum 110spc4 DNA was identified and cloned. Sequence analysis indicated that two truncated ORFs and three complete ORFs were encoded on this fragment. A database search revealed homologies to several other prokaryotic proteins: PdxJ (an enzyme involved in vitamin B6 biosynthesis), AcpS (acyl carrier protein synthase), Lep or Sip (prokaryotic type I signal peptidase), RNase III (an endoribonuclease which processes double-stranded rRNA precursors and mRNA) and Era (a GTP-binding protein required for cell division). The mutation in strain 184 was found to lie within the signal peptidase gene, which was designated sipF. Therefore, sipF is located in a region that encodes gene products involved in posttranscriptional and posttranslational processing processes. By complementation of the lep(ts) E. coli mutant strain IT41 it was demonstrated that sipF indeed encodes a functional signal peptidase, and genetic complementation of B. japonicum mutant 184 by a 2.8-kb SalI fragment indicated that sipF is expressed from a promoter located directly upstream of sipF. Using a non-polar kanamycin resistance cassette, a specific sipF mutant was constructed which exhibited defects in symbiosis similar to those of the original mutant 184.

  13. Comparative evaluation of the effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gum on salivary flow rate, pH and buffering capacity in children: An in vivo study.

    PubMed

    Hegde, Rahul J; Thakkar, Janhavi B

    2017-01-01

    This study aimed to compare and evaluate the changes in the salivary flow rate, pH, and buffering capacity before and after chewing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gums in children. Sixty children aged between 8 and 12 years were selected for the study. They were randomly divided into Group 1 (CPP-ACP chewing gum) and Group 2 (xylitol-containing chewing gum) comprising thirty children each. Unstimulated and stimulated saliva samples at 15 and 30 min interval were collected from all children. All the saliva samples were estimated for salivary flow rate, pH, and buffering capacity. Significant increase in salivary flow rate, pH, and buffering capacity from baseline to immediately after spitting the chewing gum was found in both the study groups. No significant difference was found between the two study groups with respect to salivary flow rate and pH. Intergroup comparison indicated a significant increase in salivary buffer capacity in Group 1 when compared to Group 2. Chewing gums containing CPP-ACP and xylitol can significantly increase the physiochemical properties of saliva. These physiochemical properties of saliva have a definite relation with caries activity in children.

  14. Functional reconstitution of cellulose synthase in Escherichia coli.

    PubMed

    Imai, Tomoya; Sun, Shi-Jing; Horikawa, Yoshiki; Wada, Masahisa; Sugiyama, Junji

    2014-11-10

    Cellulose is a high molecular weight polysaccharide of β1 → 4-d-glucan widely distributed in nature-from plant cell walls to extracellular polysaccharide in bacteria. Cellulose synthase, together with other auxiliary subunit(s) in the cell membrane, facilitates the fibrillar assembly of cellulose polymer chains into a microfibril. The gene encoding the catalytic subunit of cellulose synthase is cesA and has been identified in many cellulose-producing organisms. Very few studies, however, have shown that recombinant CesA protein synthesizes cellulose polymer, but the mechanism by which CesA protein synthesizes cellulose microfibrils is not known. Here we show that cellulose-synthesizing activity is successfully reconstituted in Escherichia coli by expressing the bacterial cellulose synthase complex of Gluconacetobacter xylinus: CesA and CesB (formerly BcsA and BcsB, respectively). Cellulose synthase activity was, however, only detected when CesA and CesB were coexpressed with diguanyl cyclase (DGC), which synthesizes cyclic-di-GMP (c-di-GMP), which in turn activates cellulose-synthesizing activity in bacteria. Direct observation by electron microscopy revealed extremely thin fibrillar structures outside E. coli cells, which were removed by cellulase treatment. This fiber structure is not likely to be the native crystallographic form of cellulose I, given that it was converted to cellulose II by a chemical treatment milder than ever described. We thus putatively conclude that this fine fiber is an unprecedented structure of cellulose. Despite the inability of the recombinant enzyme to synthesize the native structure of cellulose, the system described in this study, named "CESEC (CEllulose-Synthesizing E. Coli)", represents a useful tool for functional analyses of cellulose synthase and for seeding new nanomaterials.

  15. [beta]-Glucan Synthesis in the Cotton Fiber (III. Identification of UDP-Glucose-Binding Subunits of [beta]-Glucan Synthases by Photoaffinity Labeling with [[beta]-32P]5[prime]-N3-UDP-Glucose.

    PubMed Central

    Li, L.; Drake, R. R.; Clement, S.; Brown, R. M.

    1993-01-01

    Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed. PMID:12231766

  16. Isolation and structural determination of squalene synthase inhibitor from Prunus mume fruit.

    PubMed

    Choi, Sung-Won; Hur, Nam-Yoon; Ahn, Soon-Cheol; Kim, Dong-Seob; Lee, Jae-Kwon; Kim, Dae-Ok; Park, Seung-Kook; Kim, Byung-Yong; Baik, Moo-Yeol

    2007-12-01

    Squalene synthase plays an important role in the cholesterol biosynthetic pathway. Inhibiting this enzyme in hypercholesterolemia can lower not only plasma cholesterol but also plasma triglyceride levels. A squalene synthase inhibitor was screened from Prunus mume fruit, and then purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. The squalene synthase inhibitor was identified as chlorogenic acid with a molecular mass of 354 Da and a molecular formula of C16H18O9 based on UV spectrophotometry, 1H and 13C NMRs, and mass spectrometry. Chlorogenic acid inhibited the squalene synthase of pig liver with an IC50 level of 100 nM. Since chlorogenic acid was an effective inhibitor against the squalene synthase of an animal source, it may be a potential therapeutic agent for hypercholesterolemia.

  17. Functional Angucycline-Like Antibiotic Gene Cluster in the Terminal Inverted Repeats of the Streptomyces ambofaciens Linear Chromosome

    PubMed Central

    Pang, Xiuhua; Aigle, Bertrand; Girardet, Jean-Michel; Mangenot, Sophie; Pernodet, Jean-Luc; Decaris, Bernard; Leblond, Pierre

    2004-01-01

    Streptomyces ambofaciens has an 8-Mb linear chromosome ending in 200-kb terminal inverted repeats. Analysis of the F6 cosmid overlapping the terminal inverted repeats revealed a locus similar to type II polyketide synthase (PKS) gene clusters. Sequence analysis identified 26 open reading frames, including genes encoding the β-ketoacyl synthase (KS), chain length factor (CLF), and acyl carrier protein (ACP) that make up the minimal PKS. These KS, CLF, and ACP subunits are highly homologous to minimal PKS subunits involved in the biosynthesis of angucycline antibiotics. The genes encoding the KS and ACP subunits are transcribed constitutively but show a remarkable increase in expression after entering transition phase. Five genes, including those encoding the minimal PKS, were replaced by resistance markers to generate single and double mutants (replacement in one and both terminal inverted repeats). Double mutants were unable to produce either diffusible orange pigment or antibacterial activity against Bacillus subtilis. Single mutants showed an intermediate phenotype, suggesting that each copy of the cluster was functional. Transformation of double mutants with a conjugative and integrative form of F6 partially restored both phenotypes. The pigmented and antibacterial compounds were shown to be two distinct molecules produced from the same biosynthetic pathway. High-pressure liquid chromatography analysis of culture extracts from wild-type and double mutants revealed a peak with an associated bioactivity that was absent from the mutants. Two additional genes encoding KS and CLF were present in the cluster. However, disruption of the second KS gene had no effect on either pigment or antibiotic production. PMID:14742212

  18. Heterologous expression of an active chitin synthase from Rhizopus oryzae.

    PubMed

    Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José

    2016-12-01

    Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly. Copyright © 2016. Published by Elsevier Inc.

  19. Arginine 26 and aspartic acid 69 of the regulatory subunit are key residues of subunits interaction of acetohydroxyacid synthase isozyme III from E. coli.

    PubMed

    Zhao, Yuefang; Wen, Xin; Niu, Congwei; Xi, Zhen

    2012-11-05

    Acetohydroxyacid synthase (AHAS), which catalyzes the first step in the biosynthesis of branched-chain amino acids, is composed of catalytic and regulatory subunits. The enzyme exhibits full activity only when the regulatory subunit (RSU) binds to the catalytic subunit (CSU). However, the crystal structure of the holoenzyme has not been reported yet, and the molecular interaction between the CSU and RSU is also unknown. Herein, we introduced a global-surface, site-directed labeling scanning method to determine the potential interaction region of the RSU. This approach relies on the insertion of a bulky fluorescent probe at the designated site on the surface of the RSU to cause a dramatic change in holoenzyme activity by perturbing subunit interaction. Then, the key amino acid residues in the potential interaction regions were identified by site-directed mutagenesis. Compared to the wild-type, the single-point mutants R26A and D69A showed 54 and 64 % activity, respectively, whereas the double mutant (R26A+D69A) gave 14 %, thus suggesting that residues Arg26 and Asp69 are the key residues of subunit interaction with cooperative action. Additionally, the results of GST pull-down assays and pH-dependence experiments suggested that polar interaction is the main force for subunits interaction. A plausible protein-protein interaction model of the holoenzyme of Escherichia coli AHAS III is proposed, based on the mutagenesis and protein docking studies. The protocol established here should be useful for the identification of the molecular interactions between proteins. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  1. Purification and Biochemical Properties of Phytochromobilin Synthase from Etiolated Oat Seedlings1

    PubMed Central

    McDowell, Michael T.; Lagarias, J. Clark

    2001-01-01

    Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (PΦB) for photoactivity. In planta, biliverdin IXα (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme PΦB synthase to yield 3Z-PΦB. Here, we describe the >50,000-fold purification of PΦB synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, PΦB synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s−1, which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat PΦB synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of PΦB synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A Km for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 μm. PΦB synthase has a high affinity for its bilin substrate, with a sub-micromolar Km for BV. PMID:11500553

  2. Discovery of DF-461, a Potent Squalene Synthase Inhibitor

    PubMed Central

    2013-01-01

    We report the development of a new trifluoromethyltriazolobenzoxazepine series of squalene synthase inhibitors. Structure–activity studies and pharmacokinetics optimization on this series led to the identification of compound 23 (DF-461), which exhibited potent squalene synthase inhibitory activity, high hepatic selectivity, excellent rat hepatic cholesterol synthesis inhibitory activity, and plasma lipid lowering efficacy in nonrodent repeated dose studies. PMID:24900587

  3. Inhibition of ATP Synthase by Chlorinated Adenosine Analogue

    PubMed Central

    Chen, Lisa S.; Nowak, Billie J.; Ayres, Mary L.; Krett, Nancy L.; Rosen, Steven T.; Zhang, Shuxing; Gandhi, Varsha

    2009-01-01

    8-Chloroadenosine (8-Cl-Ado) is a ribonucleoside analogue that is currently in clinical trial for chronic lymphocytic leukemia. Based on the decline in cellular ATP pool following 8-Cl-Ado treatment, we hypothesized that 8-Cl-ADP and 8-Cl-ATP may interfere with ATP synthase, a key enzyme in ATP production. Mitochondrial ATP synthase is composed of two major parts; FO intermembrane base and F1 domain, containing α and β subunits. Crystal structures of both α and β subunits that bind to the substrate, ADP, are known in tight binding (αdpβdp) and loose binding (αtpβtp) states. Molecular docking demonstrated that 8-Cl-ADP/8-Cl-ATP occupied similar binding modes as ADP/ATP in the tight and loose binding sites of ATP synthase, respectively, suggesting that the chlorinated nucleotide metabolites may be functional substrates and inhibitors of the enzyme. The computational predictions were consistent with our whole cell biochemical results. Oligomycin, an established pharmacological inhibitor of ATP synthase, decreased both ATP and 8-Cl-ATP formation from exogenous substrates, however, did not affect pyrimidine nucleoside analogue triphosphate accumulation. Synthesis of ATP from ADP was inhibited in cells loaded with 8-Cl-ATP. These biochemical studies are in consent with the computational modeling; in the αtpβtp state 8-Cl-ATP occupies similar binding as ANP, a non-hydrolyzable ATP mimic that is a known inhibitor. Similarly, in the substrate binding site (αdpβdp) 8-Cl-ATP occupies a similar position as ATP mimic ADP-BeF3 −. Collectively, our current work suggests that 8-Cl-ADP may serve as a substrate and the 8-Cl-ATP may be an inhibitor of ATP synthase. PMID:19477165

  4. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation

    PubMed Central

    Teixeira, Felipe K.; Sanchez, Carlos G.; Hurd, Thomas R.; Seifert, Jessica R. K.; Czech, Benjamin; Preall, Jonathan B.; Hannon, Gregory J.; Lehmann, Ruth

    2015-01-01

    The differentiation of stem cells is a tightly regulated process essential for animal development and tissue homeostasis. Through this process, attainment of new identity and function is achieved by marked changes in cellular properties. Intrinsic cellular mechanisms governing stem cell differentiation remain largely unknown, in part because systematic forward genetic approaches to the problem have not been widely used1,2. Analysing genes required for germline stem cell differentiation in the Drosophila ovary, we find that the mitochondrial ATP synthase plays a critical role in this process. Unexpectedly, the ATP synthesizing function of this complex was not necessary for differentiation, as knockdown of other members of the oxidative phosphorylation system did not disrupt the process. Instead, the ATP synthase acted to promote the maturation of mitochondrial cristae during differentiation through dimerization and specific upregulation of the ATP synthase complex. Taken together, our results suggest that ATP synthase-dependent crista maturation is a key developmental process required for differentiation independent of oxidative phosphorylation. PMID:25915123

  5. Combined BTK and PI3Kδ Inhibition with Acalabrutinib and ACP-319 Improves Survival and Tumor Control in CLL Mouse Model.

    PubMed

    Niemann, Carsten U; Mora-Jensen, Helena I; Dadashian, Eman L; Krantz, Fanny; Covey, Todd; Chen, Shih-Shih; Chiorazzi, Nicholas; Izumi, Raquel; Ulrich, Roger; Lannutti, Brian J; Wiestner, Adrian; Herman, Sarah E M

    2017-10-01

    Purpose: Targeting the B-cell receptor (BCR) pathway with inhibitors of Bruton tyrosine kinase (BTK) and PI3Kδ is highly effective for the treatment of chronic lymphocytic leukemia (CLL). However, deep remissions are uncommon, and drug resistance with single-agent therapy can occur. In vitro studies support the effectiveness of combing PI3Kδ and BTK inhibitors. Experimental Design: As CLL proliferation and survival depends on the microenvironment, we used murine models to assess the efficacy of the BTK inhibitor acalabrutinib combined with the PI3Kδ inhibitor ACP-319 in vivo We compared single-agent with combination therapy in TCL1-192 cell-injected mice, a model of aggressive CLL. Results: We found significantly larger reductions in tumor burden in the peripheral blood and spleen of combination-treated mice. Although single-agent therapy improved survival compared with control mice by a few days, combination therapy extended survival by over 2 weeks compared with either single agent. The combination reduced tumor proliferation, NF-κB signaling, and expression of BCL-xL and MCL-1 more potently than single-agent therapy. Conclusions: The combination of acalabrutinib and ACP-319 was superior to single-agent treatment in a murine CLL model, warranting further investigation of this combination in clinical studies. Clin Cancer Res; 23(19); 5814-23. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Phylogeny and Expression Analyses Reveal Important Roles for Plant PKS III Family during the Conquest of Land by Plants and Angiosperm Diversification

    PubMed Central

    Xie, Lulu; Liu, Pingli; Zhu, Zhixin; Zhang, Shifan; Zhang, Shujiang; Li, Fei; Zhang, Hui; Li, Guoliang; Wei, Yunxiao; Sun, Rifei

    2016-01-01

    Polyketide synthases (PKSs) utilize the products of primary metabolism to synthesize a wide array of secondary metabolites in both prokaryotic and eukaryotic organisms. PKSs can be grouped into three distinct classes, types I, II, and III, based on enzyme structure, substrate specificity, and catalytic mechanisms. The type III PKS enzymes function as homodimers, and are the only class of PKS that do not require acyl carrier protein. Plant type III PKS enzymes, also known as chalcone synthase (CHS)-like enzymes, are of particular interest due to their functional diversity. In this study, we mined type III PKS gene sequences from the genomes of six aquatic algae and 25 land plants (1 bryophyte, 1 lycophyte, 2 basal angiosperms, 16 core eudicots, and 5 monocots). PKS III sequences were found relatively conserved in all embryophytes, but not exist in algae. We also examined gene expression patterns by analyzing available transcriptome data, and identified potential cis-regulatory elements in upstream sequences. Phylogenetic trees of dicots angiosperms showed that plant type III PKS proteins fall into three clades. Clade A contains CHS/STS-type enzymes coding genes with diverse transcriptional expression patterns and enzymatic functions, while clade B is further divided into subclades b1 and b2, which consist of anther-specific CHS-like enzymes. Differentiation regions, such as amino acids 196-207 between clades A and B, and predicted positive selected sites within α-helixes in late appeared branches of clade A, account for the major diversification in substrate choice and catalytic reaction. The integrity and location of conserved cis-elements containing MYB and bHLH binding sites can affect transcription levels. Potential binding sites for transcription factors such as WRKY, SPL, or AP2/EREBP may contribute to tissue- or taxon-specific differences in gene expression. Our data shows that gene duplications and functional diversification of plant type III PKS enzymes

  7. The type I fatty acid and polyketide synthases: a tale of two megasynthases

    PubMed Central

    Tsai, Shiou-Chuan

    2008-01-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897

  8. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase.

    PubMed

    Olteanu, Horatiu; Munson, Troy; Banerjee, Ruma

    2002-11-12

    Methionine synthase reductase (MSR) catalyzes the conversion of the inactive form of human methionine synthase to the active state of the enzyme. This reaction is of paramount physiological importance since methionine synthase is an essential enzyme that plays a key role in the methionine and folate cycles. A common polymorphism in human MSR has been identified (66A --> G) that leads to replacement of isoleucine with methionine at residue 22 and has an allele frequency of 0.5. Another polymorphism is 524C --> T, which leads to the substitution of serine 175 with leucine, but its allele frequency is not known. The I22M polymorphism is a genetic determinant for mild hyperhomocysteinemia, a risk factor for cardiovascular disease. In this study, we have examined the kinetic properties of the M22/S175 and I22/S175 and the I22/L175 and I22/S175 pairs of variants. EPR spectra of the semiquinone forms of variants I22/S175 and M22/S175 are indistinguishable and exhibit an isotropic signal at g = 2.00. In addition, the electronic absorption and reduction stoichiometries with NADPH are identical in these variants. Significantly, the variants activate methionine synthase with the same V(max); however, a 3-4-fold higher ratio of MSR to methionine synthase is required to elicit maximal activity with the M22/S175 and I22/L175 variant versus the I22/S175 enzyme. Differences are also observed between the variants in the efficacies of reduction of the artificial electron acceptors: ferricyanide, 2,6-dichloroindophenol, 3-acetylpyridine adenine dinucleotide phosphate, menadione, and the anticancer drug doxorubicin. These results reveal differences in the interactions between the natural and artificial electron acceptors and MSR variants in vitro, which are predicted to result in less efficient reductive repair of methionine synthase in vivo.

  9. Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase

    DOE PAGES

    Wang, Hui; Liu, Li; Lu, Yang; ...

    2015-07-14

    PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.

  10. Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Liu, Li; Lu, Yang

    PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.

  11. Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues

    NASA Astrophysics Data System (ADS)

    Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.

    1991-09-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.

  12. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    PubMed

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively). Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Characterization of a monoterpene synthase from Paeonia lactiflora producing α-pinene as its single product.

    PubMed

    Ma, Xiaohui; Guo, Juan; Ma, Ying; Jin, Baolong; Zhan, Zhilai; Yuan, Yuan; Huang, Luqi

    2016-07-01

    To identify a terpene synthase that catalyzes the conversion of geranyl pyrophosphate (GPP) to α-pinene and is involved in the biosynthesis of paeoniflorin. Two new terpene synthase genes were isolated from the transcriptome data of Peaonia lactiflora. Phylogenetic analysis and sequence characterization revealed that one gene, named PlPIN, encoded a monoterpene synthase that might be involved in the biosynthesis of paeoniflorin. In vitro enzyme assay showed that, in contrast to most monoterpene synthases, PlPIN encoded an α-pinene synthase which converted GPP into α-pinene as a single product. This newly identified α-pinene synthase could be used for improving paeoniflorin accumulation by metabolic engineering or for producing α-pinene via synthetic biology.

  14. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  15. Radiative Dileptonic Decays of B-Meson in the General Two Higgs Doublet Model

    NASA Astrophysics Data System (ADS)

    Erkol, G.; Turan, G.

    2002-05-01

    We investigate the exclusive B → γ ℓ + ℓ - decay in the general two Higgs Doublet Model (model III) including the neutral Higgs boson effects with an emphasis on possible CP-violating effects. For this decay, we analyze the dependencies of the forward-backward asymmetry of the lepton pair, AFB, CP-violating asymmetry, ACP, and the CP-violating asymmetry in forward-backward asymmetry, ACP(AFB), on the model parameters and also on the neutral Higgs boson effects. We have found that AFB˜ 10-1, 10-2, ACP˜ 10-2, 10-1 and ACP(AFB) ˜ 10-2, 10-1 depending on the relative magnitude of the Yukawa couplings bar ξ N,ttU and bar ξ N,bbD in the model III. We also observe that these physical quantities are sensitive to the model parameters and neutral Higgs boson effects are quite sizable for some values of the coupling bar ξ N,τ τ D.

  16. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.

    PubMed

    Degenhardt, Jörg; Köllner, Tobias G; Gershenzon, Jonathan

    2009-01-01

    The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.

  17. A comparative evaluation of APF gel, CPP/ACP paste alone and in combination with carbon dioxide laser on human enamel resistance to acid solubility using atomic absorption spectrometry: an in-vitro study.

    PubMed

    Nozari, Ali; Rafiee, Azade; Dehghan Khalili, Sara; Fekrazad, Reza

    2018-04-01

    The aim of this study was to compare the effects of acidulated phosphate fluoride (APF) gel, calcium phosphopeptide-amorphous calcium phosphate (CPP/ACP) paste alone and in combination with CO2 laser on the resistance of enamel to acid solubility. Ninety enamel sections were obtained from 15 extracted teeth and were randomly assigned to six groups: 1) control group; 2) APF group; 3) CPP-ACP group; 4) CO2 laser group; 5) APF + CO2 group; and 6) CPP-ACP + CO2 group. The specimens were individually demineralized in 0.1 M lactic acid solution with adjusted pH of 4.8 for 24h at 37 ºC. The acid solubility was determined using atomic absorption spectrometry. Statistical analysis was done using one-way ANOVA and Tukey-Kramer post hoc test (P<0.05). The average extent of calcium ion released (ppm) was estimated as follow: group 1: 6.974±1.757, group 2: 5.363±1.383, group 3: 6.962±1.489, group 4: 6.890±1.560, group 5: 4.803±1.080 and group 6: 6.789±1.218. Based on the between-group comparison results, group 2 and group 5 showed significant differences with the other groups. Under the studied conditions, only, the APF group alone and in combination with CO2 laser could decrease enamel acid solubility.

  18. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    PubMed

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  19. Mitochondrial Genome Integrity Mutations Uncouple the Yeast Saccharomyces cerevisiae ATP Synthase*║

    PubMed Central

    Wang, Yamin; Singh, Usha; Mueller, David M.

    2013-01-01

    The mitochondrial ATP synthase is a molecular motor, which couples the flow of rotons with phosphorylation of ADP. Rotation of the central stalk within the core of ATP synthase effects conformational changes in the active sites driving the synthesis of ATP. Mitochondrial genome integrity (mgi) mutations have been previously identified in the α-, β-, and γ-subunits of ATP synthase in yeast Kluyveromyces lactis and trypanosome Trypanosoma brucei. These mutations reverse the lethality of the loss of mitochondrial DNA in petite negative strains. Introduction of the homologous mutations in Saccharomyces cerevisiae results in yeast strains that lose mitochondrial DNA at a high rate and accompanied decreases in the coupling of the ATP synthase. The structure of yeast F1-ATPase reveals that the mgi residues cluster around the γ-subunit and selectively around the collar region of F1. These results indicate that residues within the mgi complementation group are necessary for efficient coupling of ATP synthase, possibly acting as a support to fix the axis of rotation of the central stalk. PMID:17244612

  20. Purification and Characterization of 1-Aminocyclopropane-1-Carboxylate Synthase from Apple Fruits 1

    PubMed Central

    Yip, Wing-Kin; Dong, Jian-Guo; Yang, Shang Fa

    1991-01-01

    1-Aminocyclopropane-1-carboxylate (ACC) synthase, a key enzyme in ethylene biosynthesis, was isolated and partially purified from apple (Malus sylvestris Mill.) fruits. Unlike ACC synthase isolated from other sources, apple ACC synthase is associated with the pellet fraction and can be solubilized in active form with Triton X-100. Following five purification steps, the solubilized enzyme was purified over 5000-fold to a specific activity of 100 micromoles per milligram protein per hour, and its purity was estimated to be 20 to 30%. Using this preparation, specific monoclonal antibodies were raised. Monoclonal antibodies against ACC synthase immunoglobulin were coupled to protein-A agarose to make an immunoaffinity column, which effectively purified the enzyme from a relatively crude enzyme preparation (100 units per milligram protein). As with the tomato enzyme, apple ACC synthase was inactivated and radiolabeled by its substrate S-adenosyl-l-methionine. Apple ACC synthase was identified to be a 48-kilodalton protein based on the observation that it was specifically bound to immunoaffinity column and it was specifically radiolabeled by its substrate S-adenosyl-l-methionine. Images Figure 4 Figure 6 PMID:16667960

  1. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarlymore » low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.« less

  2. Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase.

    PubMed

    Hirooka, Kazutake; Bamba, Takeshi; Fukusaki, Ei-ichiro; Kobayashi, Akio

    2003-03-01

    trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product specificity and the region around the first aspartate-rich motif in trans -prenyl diphosphate synthases characterized so far, we have isolated the cDNA for a member of trans -long-chain prenyl diphosphate synthases from Arabidopsis thaliana. The cDNA was heterologously expressed in Escherichia coli, and the recombinant His(6)-tagged protein was purified and characterized. Product analysis revealed that the cDNA encodes solanesyl diphosphate (C(45)) synthase (At-SPS). At-SPS utilized farnesyl diphosphate (FPP; C(15)) and geranylgeranyl diphosphate (GGPP; C(20)), but did not accept either the C(5) or the C(10) allylic diphosphate as a primer substrate. The Michaelis constants for FPP and GGPP were 5.73 microM and 1.61 microM respectively. We also performed an analysis of the side chains of prenylquinones extracted from the A. thaliana plant, and showed that its major prenylquinones, i.e. plastoquinone and ubiquinone, contain the C(45) prenyl moiety. This suggests that At-SPS might be devoted to the biosynthesis of either or both of the prenylquinone side chains. This is the first established trans -long-chain prenyl diphosphate synthase from a multicellular organism.

  3. Early-onset obesity and paternal 2pter deletion encompassing the ACP1, TMEM18, and MYT1L genes.

    PubMed

    Doco-Fenzy, Martine; Leroy, Camille; Schneider, Anouck; Petit, Florence; Delrue, Marie-Ange; Andrieux, Joris; Perrin-Sabourin, Laurence; Landais, Emilie; Aboura, Azzedine; Puechberty, Jacques; Girard, Manon; Tournaire, Magali; Sanchez, Elodie; Rooryck, Caroline; Ameil, Agnès; Goossens, Michel; Jonveaux, Philippe; Lefort, Geneviève; Taine, Laurence; Cailley, Dorothée; Gaillard, Dominique; Leheup, Bruno; Sarda, Pierre; Geneviève, David

    2014-04-01

    Obesity is a common but highly, clinically, and genetically heterogeneous disease. Deletion of the terminal region of the short arm of chromosome 2 is rare and has been reported in about 13 patients in the literature often associated with a Prader-Willi-like phenotype. We report on five unrelated patients with 2p25 deletion of paternal origin presenting with early-onset obesity, hyperphagia, intellectual deficiency, and behavioural difficulties. Among these patients, three had de novo pure 2pter deletions, one presented with a paternal derivative der(2)t(2;15)(p25.3;q26) with deletion in the 2pter region and the last patient presented with an interstitial 2p25 deletion. The size of the deletions was characterized by SNP array or array-CGH and was confirmed by fluorescence in situ hybridization (FISH) studies. Four patients shared a 2p25.3 deletion with a minimal critical region estimated at 1.97 Mb and encompassing seven genes, namely SH3HYL1, ACP1, TMEMI8, SNTG2, TPO, PXDN, and MYT1L genes. The fifth patient had a smaller interstitial deletion encompassing the TPO, PXDN, and MYT1L genes. Paternal origin of the deletion was determined by genotyping using microsatellite markers. Analysis of the genes encompassed in the deleted region led us to speculate that the ACP1, TMEM18, and/or MYT1L genes might be involved in early-onset obesity. In addition, intellectual deficiency and behavioural troubles can be explained by the heterozygous loss of the SNTG2 and MYT1L genes. Finally, we discuss the parent-of-origin of the deletion.

  4. Functional Identification of Valerena-1,10-diene Synthase, a Terpene Synthase Catalyzing a Unique Chemical Cascade in the Biosynthesis of Biologically Active Sesquiterpenes in Valeriana officinalis*

    PubMed Central

    Yeo, Yun-Soo; Nybo, S. Eric; Chittiboyina, Amar G.; Weerasooriya, Aruna D.; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C. Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A. Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A.; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A.; Coates, Robert M.; Watt, David S.; Chappell, Joe

    2013-01-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [13C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes. PMID:23243312

  5. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis.

    PubMed

    Yeo, Yun-Soo; Nybo, S Eric; Chittiboyina, Amar G; Weerasooriya, Aruna D; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A; Coates, Robert M; Watt, David S; Chappell, Joe

    2013-02-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.

  6. Comparative evaluation of the efficacy of fluoride varnish and casein phosphopeptide – Amorphous calcium phosphate in reducing Streptococcus mutans counts in dental plaque of children: An in vivo study

    PubMed Central

    Chandak, Shweta; Bhondey, Ashish; Bhardwaj, Amit; Pimpale, Jitesh; Chandwani, Manisha

    2016-01-01

    Aim: To assess the comparative efficacy of fluoride varnish and casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) complex visa viz. Streptococcus mutans in plaque, and thereby the role that these two agents could play in the prevention of dental caries. Materials and Methods: A cluster sample of 120 caries inactive individuals belonging to moderate and high caries risk group were selected from 3–5-year-old age group based on the criteria given by Krassee and were randomized to four groups, namely, fluoride varnish – Group I, CPP–ACP complex – Group II, mixture of CPP–ACP complex –Gourp III, and fluoride and routine oral hygiene procedures as control – Group IV. The results thus obtained were analyzed using Statistical Package for the Social Sciences (SPSS) version 16. Results: A statistically significant difference in the pre and post-application scores of S. mutans (P < 0.01) count was observed in all the groups with CPP–ACP plus fluoride group being the most proficient. Conclusion: Materials such as fluoride varnish, CPP–ACP, and CPP–ACP plus fluoride protects the tooth structure, preserving the integrity of primary dentition, with the most encouraging results being with CPP–ACP plus fluoride. PMID:27891308

  7. Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    PubMed Central

    Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia

    2016-01-01

    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance

  8. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase*

    PubMed Central

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.

    2015-01-01

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  9. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    PubMed

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  10. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM.

    PubMed

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-10-06

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.

  11. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM

    PubMed Central

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-01-01

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases. DOI: http://dx.doi.org/10.7554/eLife.10180.001 PMID:26439008

  12. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers

    PubMed Central

    Aros, Danilo; Gonzalez, Veronica; Allemann, Rudolf K.; Müller, Carsten T.; Rosati, Carlo; Rogers, Hilary J.

    2012-01-01

    Native to South America, Alstroemeria flowers are known for their colourful tepals, and Alstroemeria hybrids are an important cut flower. However, in common with many commercial cut flowers, virtually all the commercial Alstroemeria hybrids are not scented. The cultivar ‘Sweet Laura’ is one of very few scented commercial Alstroemeria hybrids. Characterization of the volatile emission profile of these cut flowers revealed three major terpene compounds: (E)-caryophyllene, humulene (also known as α-caryophyllene), an ocimene-like compound, and several minor peaks, one of which was identified as myrcene. The profile is completely different from that of the parental scented species A. caryophyllaea. Volatile emission peaked at anthesis in both scented genotypes, coincident in cv. ‘Sweet Laura’ with the maximal expression of a putative terpene synthase gene AlstroTPS. This gene was preferentially expressed in floral tissues of both cv. ‘Sweet Laura’ and A. caryophyllaea. Characterization of the AlstroTPS gene structure from cv. ‘Sweet Laura’ placed it as a member of the class III terpene synthases, and the predicted 567 amino acid sequence placed it into the subfamily TPS-b. The conserved sequences R28(R)X8W and D321DXXD are the putative Mg2+-binding sites, and in vitro assay of AlstroTPS expressed in Escherichia coli revealed that the encoded enzyme possesses myrcene synthase activity, consistent with a role for AlstroTPS in scent production in Alstroemeria cv. ‘Sweet Laura’ flowers. PMID:22268153

  13. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Fang; Yep, Alejandra; Feng, Lei

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of themore » enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.« less

  14. The Role of Light-Dark Regulation of the Chloroplast ATP Synthase.

    PubMed

    Kohzuma, Kaori; Froehlich, John E; Davis, Geoffry A; Temple, Joshua A; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A; Kramer, David M

    2017-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se . Instead

  15. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    PubMed Central

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; Temple, Joshua A.; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A.; Kramer, David M.

    2017-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  16. Identification and Characterization of Daurichromenic Acid Synthase Active in Anti-HIV Biosynthesis.

    PubMed

    Iijima, Miu; Munakata, Ryosuke; Takahashi, Hironobu; Kenmoku, Hiromichi; Nakagawa, Ryuichi; Kodama, Takeshi; Asakawa, Yoshinori; Abe, Ikuro; Yazaki, Kazufumi; Kurosaki, Fumiya; Taura, Futoshi

    2017-08-01

    Daurichromenic acid (DCA) synthase catalyzes the oxidative cyclization of grifolic acid to produce DCA, an anti-HIV meroterpenoid isolated from Rhododendron dauricum We identified a novel cDNA encoding DCA synthase by transcriptome-based screening from young leaves of R. dauricum The gene coded for a 533-amino acid polypeptide with moderate homologies to flavin adenine dinucleotide oxidases from other plants. The primary structure contained an amino-terminal signal peptide and conserved amino acid residues to form bicovalent linkage to the flavin adenine dinucleotide isoalloxazine ring at histidine-112 and cysteine-175. In addition, the recombinant DCA synthase, purified from the culture supernatant of transgenic Pichia pastoris , exhibited structural and functional properties as a flavoprotein. The reaction mechanism of DCA synthase characterized herein partly shares a similarity with those of cannabinoid synthases from Cannabis sativa , whereas DCA synthase catalyzes a novel cyclization reaction of the farnesyl moiety of a meroterpenoid natural product of plant origin. Moreover, in this study, we present evidence that DCA is biosynthesized and accumulated specifically in the glandular scales, on the surface of R. dauricum plants, based on various analytical studies at the chemical, biochemical, and molecular levels. The extracellular localization of DCA also was confirmed by a confocal microscopic analysis of its autofluorescence. These data highlight the unique feature of DCA: the final step of biosynthesis is completed in apoplastic space, and it is highly accumulated outside the scale cells. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia).

    PubMed

    Landmann, Christian; Fink, Barbara; Festner, Maria; Dregus, Márta; Engel, Karl-Heinz; Schwab, Wilfried

    2007-09-15

    The essential oil of lavender (Lavandula angustifolia) is mainly composed of mono- and sesquiterpenes. Using a homology-based PCR strategy, two monoterpene synthases (LaLIMS and LaLINS) and one sesquiterpene synthase (LaBERS) were cloned from lavender leaves and flowers. LaLIMS catalyzed the formation of (R)-(+)-limonene, terpinolene, (1R,5S)-(+)-camphene, (1R,5R)-(+)-alpha-pinene, beta-myrcene and traces of alpha-phellandrene. The proportions of these products changed significantly when Mn(2+) was supplied as the cofactor instead of Mg(2+). The second enzyme LaLINS produced exclusively (R)-(-)-linalool, the main component of lavender essential oil. LaBERS transformed farnesyl diphosphate and represents the first reported trans-alpha-bergamotene synthase. It accepted geranyl diphosphate with higher affinity than farnesyl diphosphate and also produced monoterpenes, albeit at low rates. LaBERS is probably derived from a parental monoterpene synthase by the loss of the plastidial signal peptide and by broadening its substrate acceptance spectrum. The identification and description of the first terpene synthases from L. angustifolia forms the basis for the biotechnological modification of essential oil composition in lavender.

  18. Producing alpha-olefins using polyketide synthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortman, Jeffrey L.; Katz, Leonard; Steen, Eric J.

    2018-01-02

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an .alpha.-olefin, such as 1-hexene or butadiene. The present invention also provides for a host cell comprising the PKS and when cultured produces the .alpha.-olefin.

  19. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Lei; Singh, Abhishek; Bashline, Logan

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasmamore » membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress.« less

  20. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    PubMed

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... Hyperammonemia due to N-acetylglutamate synthase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (4 links) Children Living with Inherited Metabolic Diseases National Organization for ...

  2. The Sucrose Synthase Gene Family in Chinese Pear (Pyrus bretschneideri Rehd.): Structure, Expression, and Evolution.

    PubMed

    Abdullah, Muhammad; Cao, Yungpeng; Cheng, Xi; Meng, Dandan; Chen, Yu; Shakoor, Awais; Gao, Junshan; Cai, Yongping

    2018-05-11

    Sucrose synthase (SS) is a key enzyme involved in sucrose metabolism that is critical in plant growth and development, and particularly quality of the fruit. Sucrose synthase gene families have been identified and characterized in plants various plants such as tobacco, grape, rice, and Arabidopsis . However, there is still lack of detailed information about sucrose synthase gene in pear. In the present study, we performed a systematic analysis of the pear ( Pyrus bretschneideri Rehd.) genome and reported 30 sucrose synthase genes. Subsequently, gene structure, phylogenetic relationship, chromosomal localization, gene duplications, promoter regions, collinearity, RNA-Seq data and qRT-PCR were conducted on these sucrose synthase genes. The transcript analysis revealed that 10 PbSSs genes (30%) were especially expressed in pear fruit development. Additionally, qRT-PCR analysis verified the RNA-seq data and shown that PbSS30 , PbSS24 , and PbSS15 have a potential role in the pear fruit development stages. This study provides important insights into the evolution of sucrose synthase gene family in pear and will provide assistance for further investigation of sucrose synthase genes functions in the process of fruit development, fruit quality and resistance to environmental stresses.

  3. S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics.

    PubMed

    Módis, Katalin; Ju, YoungJun; Ahmad, Akbar; Untereiner, Ashley A; Altaany, Zaid; Wu, Lingyun; Szabo, Csaba; Wang, Rui

    2016-11-01

    Mammalian cells can utilize hydrogen sulfide (H 2 S) to support mitochondrial respiration. The aim of our study was to explore the potential role of S-sulfhydration (a H 2 S-induced posttranslational modification, also known as S-persulfidation) of the mitochondrial inner membrane protein ATP synthase (F1F0 ATP synthase/Complex V) in the regulation of mitochondrial bioenergetics. Using a biotin switch assay, we have detected S-sulfhydration of the α subunit (ATP5A1) of ATP synthase in response to exposure to H 2 S in vitro. The H 2 S generator compound NaHS induced S-sulfhydration of ATP5A1 in HepG2 and HEK293 cell lysates in a concentration-dependent manner (50-300μM). The activity of immunocaptured mitochondrial ATP synthase enzyme isolated from HepG2 and HEK293 cells was stimulated by NaHS at low concentrations (10-100nM). Site-directed mutagenesis of ATP5A1 in HEK293 cells demonstrated that cysteine residues at positions 244 and 294 are subject to S-sulfhydration. The double mutant ATP synthase protein (C244S/C294S) showed a significantly reduced enzyme activity compared to control and the single-cysteine-mutated recombinant proteins (C244S or C294S). To determine whether endogenous H 2 S plays a role in the basal S-sulfhydration of ATP synthase in vivo, we compared liver tissues harvested from wild-type mice and mice deficient in cystathionine-gamma-lyase (CSE, one of the three principal mammalian H 2 S-producing enzymes). Significantly reduced S-sulfhydration of ATP5A1 was observed in liver homogenates of CSE -/- mice, compared to wild-type mice, suggesting a physiological role for CSE-derived endogenous H 2 S production in the S-sulfhydration of ATP synthase. Various forms of critical illness (including burn injury) upregulate H 2 S-producing enzymes and stimulate H 2 S biosynthesis. In liver tissues collected from mice subjected to burn injury, we detected an increased S-sulfhydration of ATP5A1 at the early time points post-burn. At later time points

  4. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase.

    PubMed

    Lassmann, G; Curtis, J; Liermann, B; Mason, R P; Eling, T E

    1993-01-01

    Using ESR spectroscopy, the ability of enzyme inhibitors to quench protein-derived tyrosyl radicals was studied in two different enzymes, prostaglandin H synthase and ribonucleotide reductase. The prostaglandin H synthase inhibitors indomethacin, eugenol, and MK-410 effectively prevent the formation of tyrosyl radicals during the oxidation of arachidonic acid by prostaglandin H synthase from ram seminal vesicles. A direct reaction with preformed tyrosyl radicals was observed only with eugenol. The other prostaglandin H synthase inhibitors were ineffective. The ribonucleotide reductase inhibitors hydroxyurea and 4-hydroxyanisole, which effectively inactivate the tyrosyl radical in the active site of ribonucleotide reductase present in tumor cells, exhibit a different reactivity with tyrosyl radicals formed by prostaglandin H synthase. Hydroxyurea quenches preformed tyrosyl radicals in prostaglandin H synthase weakly, whereas 4-hydroxyanisole does not quench tyrosyl radicals in prostaglandin H synthase at all. Eugenol, which quenches preformed prostaglandin H synthase-derived tyrosyl radicals, also quenches the tyrosyl radical in ribonucleotide reductase. The results suggest that the reactivity of protein-linked tyrosyl radicals in ribonucleotide reductase and those formed during prostaglandin H synthase catalysis are very different and have unrelated roles in enzyme catalysis.

  5. Effectiveness of varnish with CPP-ACP in prevention of caries lesions around orthodontic brackets: an OCT evaluation.

    PubMed

    Pithon, Matheus M; Dos Santos, Mariana J; Andrade, Camilla S S; Leão Filho, Jorge César B; Braz, Ana Karla S; de Araujo, Renato E; Tanaka, Orlando M; Fidalgo, Tatiana K S; Dos Santos, Adrielle M; Maia, Lucianne C

    2015-04-01

    To evaluate the in vitro efficiency of applying varnish containing casein phosphopeptide (CPP) and amorphous calcium phosphate (ACP) in prevention of caries lesions around orthodontic brackets. For this purpose, brackets were bonded to the vestibular surface of bovine incisors, and eight groups were formed (n = 15) according to exposure of oral hygiene substances and enamel varnish: 1 (control) brushing only performed, 2 (control) brushing + use of mouth wash with fluoride, 3 Duraphat varnish application only (Colgate-Palmolive Ind. E Com. Ltda, São Paulo, SP, Brazil), 4 Duraphat + brushing, 5 Duraphat + brushing + mouth wash, 6 MI Varnish application (GC America, USA), 7 MI + brushing, and 8 MI + brushing + mouth wash. The experimental groups alternated between pH cycling and the procedures described and were kept in an oven at temperature of 37°C. Both brushing and immersion in solutions was performed in a time interval of 1 minute, followed by washing in deionized water three times a day for 28 days of experimentation. Afterwards, evaluation by optical coherence tomography (OCT) of the special type (Ganymede OCT/Thorlabs, Newton, USA) was performed. In each group, a scanning exam of the white spot lesion area (around the region where brackets were bonded) and depth measurement of caries lesions were performed. Groups 1 and 3 were shown to differ statistically from groups 5, 6, 7, and 8 (p = 0.000). MI Varnish was shown to be more effective in diminishing caries lesion depth, compared with Duraphat, irrespective of being associated with brushing and mouth wash, or not. The major limitation of this study is that it is a study in which demineralization was obtained with the use of chemical products, and did not occur due to the presence of Streptococcus mutans and its acid byproducts. Application CPP-ACP-containing varnish irrespective of being associated with brushing and mouthwash, or not, reduced depth of caries lesions around orthodontic brackets. © The

  6. Kinetics of Nitrite Reduction and Peroxynitrite Formation by Ferrous Heme in Human Cystathionine β-Synthase*

    PubMed Central

    Carballal, Sebastián; Cuevasanta, Ernesto; Yadav, Pramod K.; Gherasim, Carmen; Ballou, David P.; Alvarez, Beatriz; Banerjee, Ruma

    2016-01-01

    Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO•), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2 to Fe(III)-CBS, forming superoxide radical anion (O2˙̄). In this study, we describe the kinetics of nitrite (NO2−) reduction by Fe(II)-CBS to form Fe(II)NO•-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO•-CBS by O2 showed complex kinetic behavior and led to peroxynitrite (ONOO−) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO• and peroxynitrite. PMID:26867575

  7. Impact of different temperatures on survival and energy metabolism in the Asian citrus psyllid, Diaphorina citri Kuwayama.

    PubMed

    El-Shesheny, Ibrahim; Hijaz, Faraj; El-Hawary, Ibrahim; Mesbah, Ibrahim; Killiny, Nabil

    2016-02-01

    Temperature influences the life history and metabolic parameters of insects. Asian citrus psyllid (ACP), Diaphorina citri is a tropical and subtropical pest. ACP invaded new regions around the world and threatened the citrus industry as a vector for Huanglongbing (HLB) disease. ACP is widely distributed and can survive high (up to 45 °C) and low temperatures (as low as -6 °C). The precise mechanism of temperature tolerance in ACP is poorly understood. We investigated adult survival, cellular energy balance, gene expression, and nucleotide and sugar-nucleotide changes under the effect of different temperature regimes (0 °C to 45 °C with 5 °C intervals). The optimum temperatures for survival were 20 and 25 °C. Low temperatures of 0 °C and 5 °C caused 50% mortality after 2 and 4 days respectively, while one day at high temperature (40 °C and 45 °C) caused more than 95% mortality. The lowest quantity of ATP (3.69 ± 1.6 ng/insect) and the maximum ATPase enzyme activities (57.43 ± 7.6 μU/insect) were observed at 25 °C. Correlation between ATP quantities and ATPase activity was negative. Gene expression of hsp 70, V-type proton ATPase catalytic subunit A and ATP synthase α subunit matched these results. Twenty-four nucleotides and sugar-nucleotides were quantified using HPLC in ACP adults maintained at low, high, and optimum temperatures. The nucleotide profiles were different among treatments. The ratios between AMP:ATP and ADP:ATP were significantly decreased and positively correlated to adults survival, whereas the adenylate energy charge was increased in response to low and high temperatures. Exploring energy metabolic regulation in relation with adult survival might help in understanding the physiological basis of how ACP tolerates newly invaded regions. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The Maize Gene terpene synthase 1 Encodes a Sesquiterpene Synthase Catalyzing the Formation of (E)-β-Farnesene, (E)-Nerolidol, and (E,E)-Farnesol after Herbivore Damage1

    PubMed Central

    Schnee, Christiane; Köllner, Tobias G.; Gershenzon, Jonathan; Degenhardt, Jörg

    2002-01-01

    Maize (Zea mays) emits a mixture of volatile compounds upon attack by the Egyptian cotton leafworm (Spodoptera littoralis). These substances, primarily mono- and sesquiterpenes, are used by parasitic wasps to locate the lepidopteran larvae, which are their natural hosts. This interaction among plant, lepidopteran larvae, and hymenopteran parasitoids benefits the plant and has been termed indirect defense. The committed step in the biosynthesis of the different skeletal types of mono- and sesquiterpenes is catalyzed by terpene synthases, a class of enzymes that forms a large variety of mono- and sesquiterpene products from prenyl diphosphate precursors. We isolated a terpene synthase gene, terpene synthase 1 (tps1), from maize that exhibits only a low degree of sequence identity to previously identified terpene synthases. Upon expression in a bacterial system, the encoded enzyme produced the acyclic sesquiterpenes, (E)-β-farnesene, (E,E)-farnesol, and (3R)-(E)-nerolidol, the last an intermediate in the formation of (3E)-4,8-dimethyl-1,3,7-nonatriene. Both (E)-β-farnesene and (3E)-4,8-dimethyl-1,3,7-nonatriene are prominent compounds of the maize volatile blend that is emitted after herbivore damage. The biochemical characteristics of the encoded enzyme are similar to those of terpene synthases from both gymnosperms and dicotyledonous angiosperms, suggesting that catalysis involves a similar electrophilic reaction mechanism. The transcript level of tps1 in the maize cv B73 was elevated after herbivory, mechanical damage, and treatment with elicitors. In contrast, the increase in the transcript level of the tps1 gene or gene homolog in the maize cv Delprim after herbivory was less pronounced, suggesting that the regulation of terpene synthase expression may vary among maize varieties. PMID:12481088

  9. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    DOE PAGES

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; ...

    2017-07-24

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  10. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  11. Interactions of citrate synthases from osmoconforming and osmoregulating animals with salt: possible signs of molecular eco-adaptation?

    PubMed

    Sarkissian, I V

    1977-01-01

    This study considers differential sensitivity of citrate synthase (citrate oxaloacetatelyase [CoA acetylating]) EC 4.1.3.7. from an osmoconforming animal (sea anemone) and an osmoregulating animal (the pig) to salt. Attention is drawn to the fact that the osmoconforming sea anemone is in essence a sessile creature while the pig is readily mobile and able to change its ionic environment at will. It had been shown earlier that citrate synthase from another osmoconformer (oyster) is also not sensitive to ionic strength while citrate synthase from osmoregulating white shrimp is sensitive to increasing levels of salt. However, these enzymes are characteristically regulated by ATP and alpha-ketoglutarate. Both forms of citrate synthase are denatured by 6 M guanidine hydrochloride and are aided by salt levels in their refolding but the rate and extent of refolding of the osmoconformer citrate synthase are greater than those of the osmoregulator citrate synthase. Catalytic activity of both forms of citrate synthase is inhibited by incubation in distilled water; osmoconformer citrate synthase was inhibited completely in 7 h while osmoregulator citrate synthase was inhibited only 60% in this time and 80% after 22 h in distilled water. The eco-adaptive and evolutionary implications of these findings are discussed.

  12. Insights into the surface topology of polyhydroxyalkanoate synthase: self-assembly of functionalized inclusions.

    PubMed

    Hooks, David O; Rehm, Bernd H A

    2015-10-01

    The polyhydroxyalkanoate (PHA) synthase catalyzes the synthesis of PHA and remains attached to the hydrophobic PHA inclusions it creates. Although this feature is actively exploited to generate functionalized biobeads via protein engineering, little is known about the structure of the PHA synthase. Here, the surface topology of Ralstonia eutropha PHA synthase was probed to inform rational protein engineering toward the production of functionalized PHA beads. Surface-exposed residues were detected by conjugating biotin to inclusion-bound PHA synthase and identifying the biotin-conjugated lysine and cysteine residues using peptide fingerprinting analysis. The identified sites (K77, K90, K139, C382, C459, and K518) were investigated as insertion sites for the generation of new protein fusions. Insertions of FLAG epitopes into exposed sites K77, K90, K139, and K518 were tolerated, retaining >65 % of in vivo activity. Sites K90, K139, and K518 were also tested by insertion of the immunoglobulin G (IgG)-binding domain (ZZ), successfully producing PHA inclusions able to bind human IgG in vitro. Although simultaneous insertions of the ZZ domain into two sites was permissive, insertion at all three lysine sites inactivated the synthase. The K90/K139 double ZZ insertion had the optimum IgG-binding capacity of 16 mg IgG/g wet PHA beads and could selectively purify the IgG fraction from human serum. Overall, this study identified surface-exposed flexible regions of the PHA synthase which either tolerate protein/peptide insertions or are critical for protein function. This further elucidates the structure and function of PHA synthase and provides new opportunities for generating functionalized PHA biobeads.

  13. Exploring the Influence of Domain Architecture on the Catalytic Function of Diterpene Synthases.

    PubMed

    Pemberton, Travis A; Chen, Mengbin; Harris, Golda G; Chou, Wayne K W; Duan, Lian; Köksal, Mustafa; Genshaft, Alex S; Cane, David E; Christianson, David W

    2017-04-11

    Terpenoid synthases catalyze isoprenoid cyclization reactions underlying the generation of more than 80,000 natural products. Such dramatic chemodiversity belies the fact that these enzymes generally consist of only three domain folds designated as α, β, and γ. Catalysis by class I terpenoid synthases occurs exclusively in the α domain, which is found with α, αα, αβ, and αβγ domain architectures. Here, we explore the influence of domain architecture on catalysis by taxadiene synthase from Taxus brevifolia (TbTS, αβγ), fusicoccadiene synthase from Phomopsis amygdali (PaFS, (αα) 6 ), and ophiobolin F synthase from Aspergillus clavatus (AcOS, αα). We show that the cyclization fidelity and catalytic efficiency of the α domain of TbTS are severely compromised by deletion of the βγ domains; however, retention of the β domain preserves significant cyclization fidelity. In PaFS, we previously demonstrated that one α domain similarly influences catalysis by the other α domain [ Chen , M. , Chou , W. K. W. , Toyomasu , T. , Cane , D. E. , and Christianson , D. W. ( 2016 ) ACS Chem. Biol. 11 , 889 - 899 ]. Here, we show that the hexameric quaternary structure of PaFS enables cluster channeling. We also show that the α domains of PaFS and AcOS can be swapped so as to make functional chimeric αα synthases. Notably, both cyclization fidelity and catalytic efficiency are altered in all chimeric synthases. Twelve newly formed and uncharacterized C 20 diterpene products and three C 25 sesterterpene products are generated by these chimeras. Thus, engineered αβγ and αα terpenoid cyclases promise to generate chemodiversity in the greater family of terpenoid natural products.

  14. Lessons from 455 Fusarium polyketide synthases

    USDA-ARS?s Scientific Manuscript database

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  15. Bisabosquals, novel squalene synthase inhibitors. I. Taxonomy, fermentation, isolation and biological activities.

    PubMed

    Minagawa, K; Kouzuki, S; Nomura, K; Yamaguchi, T; Kawamura, Y; Matsushima, K; Tani, H; Ishii, K; Tanimoto, T; Kamigauchi, T

    2001-11-01

    In the course of screening for yeast squalene synthase inhibitors, bisabosqual A was isolated from the culture broth of Stachybotrys sp. RF-7260. The related compounds bisabosquals B, C and D were also isolated from Stachybotrys ruwenzoriensis RF-6853. Bisabosquals inhibited squalene synthases. IC50 values of bisabosqual A against the microsomal squalene synthases from Saccharomyces cerevisiae, Candida albicans, HepG2 cell and rat liver were 0.43, 0.25, 0.95 and 2.5 microg/ml, respectively. Bisabosqual C exhibited inhibitory activities similar to bisabosqual A. Bisabosqual A showed broad spectrum antifungal activity in vitro.

  16. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. 5-Fluoroindole Resistance Identifies Tryptophan Synthase Beta Subunit Mutants in Arabidopsis Thaliana

    PubMed Central

    Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.

    1995-01-01

    A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295

  18. Resistance Phenotypes Mediated by Aminoacyl-Phosphatidylglycerol Synthases

    PubMed Central

    Arendt, Wiebke; Hebecker, Stefanie; Jäger, Sonja; Nimtz, Manfred

    2012-01-01

    The specific aminoacylation of the phospholipid phosphatidylglycerol (PG) with alanine or with lysine catalyzed by aminoacyl-phosphatidylglycerol synthases (aaPGS) was shown to render various organisms less susceptible to antibacterial agents. This study makes use of Pseudomonas aeruginosa chimeric mutant strains producing lysyl-phosphatidylglycerol (L-PG) instead of the naturally occurring alanyl-phosphatidylglycerol (A-PG) to study the resulting impact on bacterial resistance. Consequences of such artificial phospholipid composition were studied in the presence of an overall of seven antimicrobials (β-lactams, a lipopeptide antibiotic, cationic antimicrobial peptides [CAMPs]) to quantitatively assess the effect of A-PG substitution (with L-PG, L-PG and A-PG, increased A-PG levels). For the employed Gram-negative P. aeruginosa model system, an exclusive charge repulsion mechanism does not explain the attenuated antimicrobial susceptibility due to PG modification. Additionally, the specificity of nine orthologous aaPGS enzymes was experimentally determined. The newly characterized protein sequences allowed for the establishment of a significant group of A-PG synthase sequences which were bioinformatically compared to the related group of L-PG synthesizing enzymes. The analysis revealed a diverse origin for the evolution of A-PG and L-PG synthases, as the specificity of an individual enzyme is not reflected in terms of a characteristic sequence motif. This finding is relevant for future development of potential aaPGS inhibitors. PMID:22267511

  19. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua

    PubMed Central

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography–mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant–environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  20. Functional analysis of the Brassica napus L. phytoene synthase (PSY) gene family.

    PubMed

    López-Emparán, Ada; Quezada-Martinez, Daniela; Zúñiga-Bustos, Matías; Cifuentes, Víctor; Iñiguez-Luy, Federico; Federico, María Laura

    2014-01-01

    Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three "Arabidopsis-like" subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of oilseeds

  1. Functional Analysis of the Brassica napus L. Phytoene Synthase (PSY) Gene Family

    PubMed Central

    López-Emparán, Ada; Quezada-Martinez, Daniela; Zúñiga-Bustos, Matías; Cifuentes, Víctor; Iñiguez-Luy, Federico; Federico, María Laura

    2014-01-01

    Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three “Arabidopsis-like” subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of

  2. Molecular cloning and characterization of drimenol synthase from valerian plant (Valeriana officinalis).

    PubMed

    Kwon, Moonhyuk; Cochrane, Stephen A; Vederas, John C; Ro, Dae-Kyun

    2014-12-20

    Drimenol, a sesquiterpene alcohol, and its derivatives display diverse bio-activities in nature. However, a drimenol synthase gene has yet to be identified. We identified a new sesquiterpene synthase cDNA (VoTPS3) in valerian plant (Valeriana officinalis). Purification and NMR analyses of the VoTPS3-produced terpene, and characterization of the VoTPS3 enzyme confirmed that VoTPS3 synthesizes (-)-drimenol. In feeding assays, possible reaction intermediates, farnesol and drimenyl diphosphate, could not be converted to drimenol, suggesting that the intermediate remains tightly bound to VoTPS3 during catalysis. A mechanistic consideration of (-)-drimenol synthesis suggests that drimenol synthase is likely to use a protonation-initiated cyclization, which is rare for sesquiterpene synthases. VoTPS3 can be used to produce (-)-drimenol, from which useful drimane-type terpenes can be synthesized. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Alcoholytic Cleavage of Polyhydroxyalkanoate Chains by Class IV Synthases Induced by Endogenous and Exogenous Ethanol

    PubMed Central

    Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Abe, Hideki

    2014-01-01

    Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature. PMID:24334666

  4. Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila.

    PubMed

    Sawyer, Eric M; Brunner, Elizabeth C; Hwang, Yihharn; Ivey, Lauren E; Brown, Olivia; Bannon, Megan; Akrobetu, Dennis; Sheaffer, Kelsey E; Morgan, Oshauna; Field, Conroy O; Suresh, Nishita; Gordon, M Grace; Gunnell, E Taylor; Regruto, Lindsay A; Wood, Cricket G; Fuller, Margaret T; Hales, Karen G

    2017-03-23

    In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.

  5. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  6. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... Testing (1 link) Genetic Testing Registry: Amish infantile epilepsy syndrome Other Diagnosis and Management Resources (2 links) ...

  7. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit.

    PubMed

    Yang, Xiaotang; Song, Jun; Du, Lina; Forney, Charles; Campbell-Palmer, Leslie; Fillmore, Sherry; Wismer, Paul; Zhang, Zhaoqi

    2016-03-01

    The effects of ethylene and 1-methylcyclopropene (1-MCP) on apple fruit volatile biosynthesis and gene expression were investigated. Statistical analysis identified 17 genes that changed significantly in response to ethylene and 1-MCP treatments. Genes encoding branched-chain amino acid aminotransferase (BCAT), aromatic amino acid aminotransferase (ArAT) and amino acid decarboxylases (AADC) were up-regulated during ripening and further enhanced by ethylene treatment. Genes related to fatty acid synthesis and metabolism, including acyl-carrier-proteins (ACPs), malonyl-CoA:ACP transacylase (MCAT), acyl-ACP-desaturase (ACPD), lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC2), β-oxidation, acyl-CoA synthetase (ACS), enoyl-CoA hydratase (ECHD), acyl-CoA dehydrogenase (ACAD), and alcohol acyltransferases (AATs) also increased during ripening and in response to ethylene treatment. Allene oxide synthase (AOS), alcohol dehydrogenase 1 (ADH1), 3-ketoacyl-CoA thiolase and branched-chain amino acid aminotransferase 2 (BCAT2) decreased in ethylene-treated fruit. Treatment with 1-MCP and ethylene generally produced opposite effects on related genes, which provides evidence that regulation of these genes is ethylene dependent. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Producing dicarboxylic acids using polyketide synthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  9. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    PubMed

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  10. Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial Peptides

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented. PMID:20586714

  11. ATP Synthase, a Target for Dementia and Aging?

    PubMed

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2018-02-01

    Advancing age is the biggest risk factor for development for the major life-threatening diseases in industrialized nations accounting for >90% of deaths. Alzheimer's dementia (AD) is among the most devastating. Currently approved therapies fail to slow progression of the disease, providing only modest improvements in memory. Recently reported work describes mechanistic studies of J147, a promising therapeutic molecule previously shown to rescue the severe cognitive deficits exhibited by aged, transgenic AD mice. Apparently, J147 targets the mitochondrial alpha-F1-ATP synthase (ATP5A). Modest inhibition of the ATP synthase modulates intracellular calcium to activate AMP-activated protein kinase to inhibit mammalian target of rapamycin, a known mechanism of lifespan extension from worms to mammals.

  12. Interaction of Constitutive Nitric Oxide Synthases with Cyclooxygenases in Regulation of Bicarbonate Secretion in the Gastric Mucosa.

    PubMed

    Zolotarev, V A; Andreeva, Yu V; Vershinina, E; Khropycheva, R P

    2017-05-01

    Neuronal NO synthase blocker 7-nitroindazole suppressed bicarbonate secretion in rat gastric mucosa induced by mild local irritation with 1 M NaCl (pH 2.0). Non-selective blocker of neuronal and endothelial synthases, Nω-nitro-L-arginine (L-NNA), did not affect HCO 3 - production, but inhibited secretion after pretreatment with omeprazole. Non-selective cyclooxygenase blocker indomethacin inhibited HCO 3 - production under conditions of normal synthase activity and in the presence of L-NNA, but was ineffective when co-administered with 7-nitroindazole. It was concluded that neuronal and endothelial synthases are involved in different mechanisms of regulation of HCO 3 - secretion in the gastric mucosa induced by mild irritation. Activation of neuronal synthase stimulated HCO 3 - production, which is mediated mainly through activation of cyclooxygenase. Theoretically, activation of endothelial synthase should suppress HCO 3 - production. The effect of endothelial synthase depends on acid secretion in the stomach and bicarbonate concentration in the submucosa, as it was demonstrated in experiments with intravenous NaHCO 3 infusion.

  13. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia.

    PubMed

    Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W

    2012-06-01

    Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.

  14. The Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS.

    PubMed

    von Wettstein-Knowles, Penny

    2017-07-10

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c , -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols.

  15. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    PubMed Central

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B.

    2015-01-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. PMID:25969557

  16. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    PubMed Central

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  17. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice

    PubMed Central

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer’s disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD. PMID:27834780

  18. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice.

    PubMed

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.

  19. Expression and Activity of Nitric Oxide Synthase Isoforms in Methamphetamine-Induced Striatal Dopamine Toxicity

    PubMed Central

    Friend, Danielle M.; Son, Jong H.; Keefe, Kristen A.

    2013-01-01

    Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7–30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH. Acute administration of methamphetamine on postnatal day 90 (Saline:METH and METH:METH) increased nitric oxide production, as evidenced by increased protein nitration. Methamphetamine did not, however, change the expression of endothelial or inducible isoforms of nitric oxide synthase, nor did it change the number of cells positive for neuronal nitric oxide synthase mRNA expression or the amount of neuronal nitric oxide synthase mRNA per cell. However, nitric oxide synthase activity in striatal interneurons was increased in the Saline:METH and METH:METH animals. These data suggest that increased nitric oxide production after a neurotoxic regimen of methamphetamine results from increased nitric oxide synthase activity, rather than an induction of mRNA, and that constitutively expressed neuronal nitric oxide synthase is the most likely source of nitric oxide after methamphetamine administration. Of interest, animals rendered resistant to further methamphetamine-induced dopamine depletions still show equivalent degrees of methamphetamine-induced nitric oxide production, suggesting that nitric oxide production alone in response to methamphetamine is not sufficient to induce acute neurotoxic injury. PMID:23230214

  20. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase.

    PubMed

    Bunney, T D; van Walraven, H S; de Boer, A H

    2001-03-27

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our understanding of regulatory mechanisms is still rather preliminary. Here we report a role for 14-3-3 proteins in the regulation of ATP synthases. These 14-3-3 proteins are highly conserved phosphoserine/phosphothreonine-binding proteins that regulate a wide range of enzymes in plants, animals, and yeast. Recently, the presence of 14-3-3 proteins in chloroplasts was illustrated, and we show here that plant mitochondria harbor 14-3-3s within the inner mitochondrial-membrane compartment. There, the 14-3-3 proteins were found to be associated with the ATP synthases, in a phosphorylation-dependent manner, through direct interaction with the F(1) beta-subunit. The activity of the ATP synthases in both organelles is drastically reduced by recombinant 14-3-3. The rapid reduction in chloroplast ATPase activity during dark adaptation was prevented by a phosphopeptide containing the 14-3-3 interaction motif, demonstrating a role for endogenous 14-3-3 in the down-regulation of the CF(o)F(1) activity. We conclude that regulation of the ATP synthases by 14-3-3 represents a mechanism for plant adaptation to environmental changes such as light/dark transitions, anoxia in roots, and fluctuations in nutrient supply.

  1. Conformational stability and thermodynamic characterization of homotetrameric Plasmodium falciparum beta-ketoacyl-ACP reductase.

    PubMed

    Karmodiya, Krishanpal; Sajad, Syed; Sinha, Sharmistha; Maity, Koustav; Suguna, Kaza; Surolia, Namita

    2007-07-01

    The conformational stability of the homotetrameric Plasmodium falciparum beta-ketoacyl-ACP reductase (FabG) was determined by guanidinium chloride-induced isothermal and thermal denaturation. The reversible unfolding transitions were monitored by intrinsic fluorescence, circular dichroism (CD) spectroscopy and by measuring the enzyme activity of FabG. The denaturation profiles were analyzed to obtain the thermodynamic parameters associated with unfolding of the protein. The data confirm the simple A(4) <--> 4A model of unfolding, based on the corroboration of CD data by fluorescence transition and similar Delta G estimation for denaturation curves obtained at four different concentration of the FabG. Denaturation is well described by the linear extrapolation model for denaturant-protein interactions. In addition, the conformational stability (Delta G(s)) as well as the Delta C(p) for the protein unfolding is quite high, 22.68 kcal/mole and 5.83 kcal/(mole K), respectively, which may be a reflection of the relatively large size of the tetrameric molecule (Mr 120, 000) and a large buried hydrophobic core in the folded protein. This study provides a prototype for determining conformational stability of other members of the short-chain alcohol dehydrogenase/reductase superfamily of proteins to which PfFabG belongs.

  2. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula).

    PubMed

    Adal, Ayelign M; Sarker, Lukman S; Malli, Radesh P N; Liang, Ping; Mahmoud, Soheil S

    2018-06-09

    Using RNA-Seq, we cloned and characterized a unique monoterpene synthase responsible for the formation of a scent-determining S-linalool constituent of lavender oils from Lavandula × intermedia. Several species of Lavandula produce essential oils (EOs) consisting mainly of monoterpenes including linalool, one of the most abundant and scent-determining oil constituents. Although R-linalool dominates the EOs of lavenders, varying amounts (depending on the species) of the S-linalool enantiomer can also be found in these plants. Despite its relatively low abundance, S-linalool contributes a sweet, pleasant scent and is an important constituent of lavender EOs. While several terpene synthase genes including R-linalool synthase have been cloned from lavenders many important terpene synthases including S-linalool synthase have not been described from these plants. In this study, we employed RNA-Seq and other complementary sequencing data to clone and functionally characterize the sparsely expressed S-linalool synthase cDNA (LiS-LINS) from Lavandula × intermedia. Recombinant LiS-LINS catalyzed the conversion of the universal monoterpene precursor geranyl diphosphate to S-linalool as the sole product. Intriguingly, LiS-LINS exhibited very low (~ 30%) sequence similarity to other Lavandula terpene synthases, including R-linalool synthase. However, the predicted 3D structure of this protein, including the composition and arrangement of amino acids at the active site, is highly homologous to known terpene synthase proteins. LiS-LINS transcripts were detected in flowers, but were much less abundant than those corresponding to LiR-LINS, paralleling enantiomeric composition of linalool in L. × intermedia oils. These data indicate that production of S-linalool is at least partially controlled at the level of transcription from LiS-LINS. The cloned LiS-LINS cDNA may be used to enhance oil composition in lavenders and other plants through metabolic engineering.

  3. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) hasmore » been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.« less

  4. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae).

    PubMed

    Aschenbrenner, Anna-Katharina; Kwon, Moonhyuk; Conrad, Jürgen; Ro, Dae-Kyun; Spring, Otmar

    2016-04-01

    Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Inhibition of neuronal nitric oxide synthase in ovine model of acute lung injury*

    PubMed Central

    Enkhbaatar, Perenlei; Connelly, Rhykka; Wang, Jianpu; Nakano, Yoshimitsu; Lange, Matthias; Hamahata, Atsumori; Horvath, Eszter; Szabo, Csaba; Jaroch, Stefan; Hölscher, Peter; Hillmann, Margrit; Traber, Lillian D.; Schmalstieg, Frank C.; Herndon, David N.; Traber, Daniel L.

    2013-01-01

    Objective Acute respiratory distress syndrome/acute lung injury is a serious complication of burn patients with concomitant smoke inhalation injury. Nitric oxide has been shown to play a major role in pulmonary dysfunction from thermal damage. In this study, we have tested the hypothesis that inhibition of neuronal nitric oxide synthase could ameliorate the severity of acute lung injury using our well-established ovine model of cutaneous burn and smoke inhalation. Design Prospective, randomized, controlled, experimental animals study. Setting Investigational intensive care unit at university hospital. Subjects Adult female sheep Interventions Female sheep (n = 16) were surgically prepared for the study. Seven days after surgery, all sheep were randomly allocated into three study groups: sham (noninjured, nontreated, n = 6); control (injured, treated with saline, n = 6); and neuronal nitric oxide synthase (injured, treated with specific neuronal nitric oxide synthase inhibitor, ZK 234238 (n = 4). Control and neuronal nitric oxide synthase groups were given a cutaneous burn (40% of total body surface, third degree) and insufflated with cotton smoke (48 breaths, <40°C) under halothane anesthesia. Animals in sham group received fake injury also under halothane anesthesia. After injury or fake injury procedure, all sheep were placed on ventilators and resuscitated with lactated Ringer's solution. Neuronal nitric oxide synthase group was administered with continuous infusion of ZK 234238 started 1 hr postinjury with a dose of 100 μg/kg/hr. Sham and control groups received same amount of saline. Measurements and Main Results Cardiopulmonary hemodynamics monitored during the 24-hr experimental time period was stable in the sham group. Control sheep developed multiple signs of acute lung injury. This pathophysiology included decreased pulmonary gas exchange and lung compliance, increased pulmonary edema, and inflammatory indices, such as interleukin-8. Treatment of

  6. A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F1 moiety from the Escherichia coli ATP Synthase

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Hochstein, Lawrence I.

    1989-01-01

    A purified ATPase associated with membranes from Halobacterium saccharovorum was compared with the F sub 1 moiety from the Escherichia coli ATP Synthase. The halobacterial enzyme was composed of two major (I and II) and two minor subunits (III and IV), whose molecular masses were 87 kDa, 60 kDa, 29 kDa, and 20 kDa, respectively. The isoelectric points of these subunits ranged from 4.1 to 4.8, which in the case of the subunits I and II was consistent with the presence of an excess of acidic amino acids (20 to 22 Mol percent). Peptide mapping of sodium dodecylsulfate-denatured subunits I and II showed no relationship between the primary structures of the individual halobacterial subunits or similarities to the subunits of the F sub 1 ATPase (EC 3.6.1.34) from E. coli. Trypsin inactivation of the halobacterial ATPase was accompanied by the partial degradation of the major subunits. This observation, taken in conjunction with molecular masses of the subunits and the native enzyme, was consistent with the previously proposed stoichiometry of 2:2:1:1. These results suggest that H. saccharovorum, and possibly, Halobacteria in general, possess an ATPase which is unlike the ubiquitous F sub o F sub 1 - ATP Synthase.

  7. The Saccharomyces cerevisiae DPM1 gene encoding dolichol-phosphate-mannose synthase is able to complement a glycosylation-defective mammalian cell line.

    PubMed Central

    Beck, P J; Orlean, P; Albright, C; Robbins, P W; Gething, M J; Sambrook, J F

    1990-01-01

    The Saccharomyces cerevisiae DPM1 gene product, dolichol-phosphate-mannose (Dol-P-Man) synthase, is involved in the coupled processes of synthesis and membrane translocation of Dol-P-Man. Dol-P-Man is the lipid-linked sugar donor of the last four mannose residues that are added to the core oligosaccharide transferred to protein during N-linked glycosylation in the endoplasmic reticulum. We present evidence that the S. cerevisiae gene DPM1, when stably transfected into a mutant Chinese hamster ovary cell line, B4-2-1, is able to correct the glycosylation defect of the cells. Evidence for complementation includes (i) fluorescence-activated cell sorter analysis of differential lectin binding to cell surface glycoproteins, (ii) restoration of Dol-P-Man synthase enzymatic activity in crude cell lysates, (iii) isolation and high-performance liquid chromatography fractionation of the lipid-linked oligosaccharides synthesized in the transfected and control cell lines, and (iv) the restoration of endoglycosidase H sensitivity to the oligosaccharides transferred to a specific glycoprotein synthesized in the DPM1 CHO transfectants. Indirect immunofluorescence with a primary antibody directed against the DPM1 protein shows a reticular staining pattern of protein localization in transfected hamster and monkey cell lines. Images PMID:2201896

  8. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica.

    PubMed

    Maluf, Mirian Perez; da Silva, Carla Cristina; de Oliveira, Michelle de Paula Abreu; Tavares, Aline Gomes; Silvarolla, Maria Bernadete; Guerreiro, Oliveiro

    2009-10-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  9. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    PubMed Central

    2009-01-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence. PMID:21637458

  10. Isolation and characterization of beta-glucan synthase: A potential biochemical regulator of gravistimulated differential cell wall loosening

    NASA Technical Reports Server (NTRS)

    Kuzmanoff, K. M.

    1984-01-01

    In plants, gravity stimulates differential growth in the upper and lower halves of horizontally oriented organs. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the activity of Golgi-localized Beta-1,4-glucan synthase, an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. The primary objective is to determine if auxin induces de novo formation of Golgi glucan synthase and increases the level of this glucan synthase mRNA. This shall be accomplished by (a) preparation of a monoclonal antibody to the synthase, (b) isolation, and characterization of the glucan synthase, and (c) examination for cross reactivity between the antibody and translation products of auxin induced mRNAs in pea tissue. The antibody will also be used to localize the glucan synthase in upper and lower halves of pea stem tissue before, during and after the response to gravity.

  11. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    PubMed

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Twisting and subunit rotation in single FOF1-ATP synthase

    PubMed Central

    Sielaff, Hendrik; Börsch, Michael

    2013-01-01

    FOF1-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecule Förster resonance energy transfer. Here we review recent developments of approaches to monitor the step size of subunit rotation and the transient elastic energy storage mechanism in single FOF1-ATP synthases. PMID:23267178

  13. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

    PubMed Central

    Yi, Young-Su

    2017-01-01

    Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively. PMID:28461777

  14. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38.

    PubMed

    Yi, Young-Su; Kim, Mi-Yeon; Cho, Jae Youl

    2017-05-01

    Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively.

  15. Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in non-insulin dependent diabetes mellitus.

    PubMed Central

    Thorburn, A W; Gumbiner, B; Bulacan, F; Brechtel, G; Henry, R R

    1991-01-01

    To define the mechanisms of impaired muscle glycogen synthase and reduced glycogen formation in non-insulin dependent diabetes mellitus (NIDDM), glycogen synthase activity was kinetically analyzed during the basal state and three glucose clamp studies (insulin approximately equal to 300, 700, and 33,400 pmol/liter) in eight matched nonobese NIDDM and eight control subjects. Muscle glycogen content was measured in the basal state and following clamps at insulin levels of 33,400 pmol/liter. NIDDM subjects had glucose uptake matched to controls in each clamp by raising serum glucose to 15-20 mmol/liter. The insulin concentration required to half-maximally activate glycogen synthase (ED50) was approximately fourfold greater for NIDDM than control subjects (1,004 +/- 264 vs. 257 +/- 110 pmol/liter, P less than 0.02) but the maximal insulin effect was similar. Total glycogen synthase activity was reduced approximately 38% and glycogen content was approximately 30% lower in NIDDM. A positive correlation was present between glycogen content and glycogen synthase activity (r = 0.51, P less than 0.01). In summary, defects in muscle glycogen synthase activity and reduced glycogen content are present in NIDDM. NIDDM subjects also have less total glycogen synthase activity consistent with reduced functional mass of the enzyme. These findings and the correlation between glycogen synthase activity and glycogen content support the theory that multiple defects in glycogen synthase activity combine to cause reduced glycogen formation in NIDDM. PMID:1899428

  16. Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi

    Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 Mmore » sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.« less

  17. Reprogramming the Chemodiversity of Terpenoid Cyclization by Remolding the Active Site Contour of epi-Isozizaene Synthase

    PubMed Central

    2015-01-01

    The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311

  18. Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin

    PubMed Central

    Liu, Tiangang; Lin, Xin; Zhou, Xiufen; Deng, Zixin; Cane, David E.

    2008-01-01

    Summary The polyketide backbone of the polyether ionophore antibiotic nanchangmycin (1) is assembled by a modular polyketide synthase in Streptomyces nanchangensis NS3226. The ACP-bound polyketide is thought to undergo a cascade of oxidative cyclizations to generate the characteristic polyether. Deletion of the glycosyl transferase gene nanG5 resulted in accumulation of the corresponding nanchangmycin aglycone (6). The discrete thioesterase NanE exhibited a nearly 17-fold preference for hydrolysis of 4, the N-acetylcysteamine (SNAC) thioester of nanchangmycin, over 7, the corresponding SNAC derivative of the aglycone, consistent with NanE-catalyzed hydrolysis of ACP-bound nanchangmycin being the final step in the biosynthetic pathway. Site directed mutagenesis established that Ser96, His261, and Asp120, the proposed components of the NanE catalytic triad, were all essential for thioesterase activity, while Trp97 was shown to influence the preference for polyether over polyketide substrates. PMID:18482697

  19. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.

    PubMed

    Cheng, Jiujun; Charles, Trevor C

    2016-09-01

    Bacterially produced biodegradable polyhydroxyalkanoates (PHAs) with versatile properties can be achieved using different PHA synthases (PhaCs). This work aims to expand the diversity of known PhaCs via functional metagenomics and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis-deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either class I, class II, or unclassified PHA synthases, and many did not have close sequence matches to known PhaCs. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of short-chain-length (SCL) and medium-chain-length (MCL) PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics and their use for the production of a variety of PHA polymer and copolymer mixtures.

  20. Gene cloning and overexpression of a geranylgeranyl diphosphate synthase of an extremely thermophilic bacterium, Thermus thermophilus.

    PubMed

    Ohto, C; Ishida, C; Koike-Takeshita, A; Yokoyama, K; Muramatsu, M; Nishino, T; Obata, S

    1999-02-01

    A geranylgeranyl diphosphate (GGPP) synthase gene of an extremely thermophilic bacterium, Thermus thermophilus, was cloned and sequenced. T. thermophilus GGPP synthase, overexpressed in Escherichia coli cells as a glutathione S-transferase fusion protein, was purified and characterized. The fusion protein, retaining thermostability, formed a homodimer, and showed higher specific activity than did a partially purified thermostable enzyme previously reported. Optimal reaction conditions and kinetic parameters were also examined. The deduced amino acid sequence indicated that T. thermophilus GGPP synthase was excluded from the group of bacterial type GGPP synthases and lacked the insertion amino acid residues in the first aspartate-rich motif as do archaeal and eukaryotic short-chain prenyltransferases.

  1. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings.

    PubMed

    Huang, Guangrong; Wang, Lihong; Sun, Zhaoguo; Li, Xiaodong; Zhou, Qing; Huang, Xiaohua

    2015-02-01

    Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.

  2. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    USDA-ARS?s Scientific Manuscript database

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  3. Sesquiterpene furan compound CJ-01, a novel chitin synthase 2 inhibitor from Chloranthus japonicus SIEB.

    PubMed

    Yim, Nam Hui; Hwang, Eui Il; Yun, Bong Sik; Park, Ki Duk; Moon, Jae Sun; Lee, Sang Han; Sung, Nack Do; Kim, Sung Uk

    2008-05-01

    A novel sesquiterpene furan compound CJ-01 was isolated from the methanol extract of the whole plant of Chloranthus japonicus SIEB. by monitoring the inhibitory activity of chitin synthase 2 from Saccharomyces cerevisiae. Based on spectroscopic analysis, the structure of compound CJ-01 was determined as 3,4,8a-trimethyl-4a,7,8,8a-tetrahydro-4a-naphto[2,3-b]furan-9-one. The compound inhibited chitin synthase 2 of Saccharomyces cerevisiae in a dose-dependent manner with an IC50 of 39.6 microg/ml, whereas it exhibited no inhibitory activities against chitin synthase 1 and 3 of S. cerevisiae up to 280 microg/ml. CJ-01 has 1.7-fold stronger inhibitory activity than polyoxin D (IC50=70 microg/ml), a well-known chitin synthase inhibitor. These results indicate that the compound is a specific inhibitor of chitin synthase 2 from S. cerevisiae. In addition, CJ-01 showed antifungal activities against various human and phytopathogenic fungi. Therefore, the compound might be an interesting lead to develop effective antifungal agents.

  4. Starch phosphorylation in potato tubers is influenced by allelic variation in the genes encoding glucan water dikinase, starch branching enzymes I and II, and starch synthase III

    PubMed Central

    Carpenter, Margaret A.; Joyce, Nigel I.; Genet, Russell A.; Cooper, Rebecca D.; Murray, Sarah R.; Noble, Alasdair D.; Butler, Ruth C.; Timmerman-Vaughan, Gail M.

    2015-01-01

    Starch phosphorylation is an important aspect of plant metabolism due to its role in starch degradation. Moreover, the degree of phosphorylation of starch determines its physicochemical properties and is therefore relevant for industrial uses of starch. Currently, starch is chemically phosphorylated to increase viscosity and paste stability. Potato cultivars with elevated starch phosphorylation would make this process unnecessary, thereby bestowing economic and environmental benefits. Starch phosphorylation is a complex trait which has been previously shown by antisense gene repression to be influenced by a number of genes including those involved in starch synthesis and degradation. We have used an association mapping approach to discover genetic markers associated with the degree of starch phosphorylation. A diverse collection of 193 potato lines was grown in replicated field trials, and the levels of starch phosphorylation at the C6 and C3 positions of the glucosyl residues were determined by mass spectrometry of hydrolyzed starch from tubers. In addition, the potato lines were genotyped by amplicon sequencing and microsatellite analysis, focusing on candidate genes known to be involved in starch synthesis. As potato is an autotetraploid, genotyping included determination of allele dosage. Significant associations (p < 0.001) were found with SNPs in the glucan water dikinase (GWD), starch branching enzyme I (SBEI) and the starch synthase III (SSIII) genes, and with a SSR allele in the SBEII gene. SNPs in the GWD gene were associated with C6 phosphorylation, whereas polymorphisms in the SBEI and SBEII genes were associated with both C6 and C3 phosphorylation and the SNP in the SSIII gene was associated with C3 phosphorylation. These allelic variants have potential as genetic markers for starch phosphorylation in potato. PMID:25806042

  5. Energy transduction in the F1 motor of ATP synthase.

    PubMed

    Wang, H; Oster, G

    1998-11-19

    ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central 'shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.

  6. Energy transduction in the F1 motor of ATP synthase

    NASA Astrophysics Data System (ADS)

    Wang, Hongyun; Oster, George

    1998-11-01

    ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis, after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central `shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.

  7. Regulation of expression, activity and localization of fungal chitin synthases

    PubMed Central

    Rogg, Luise E.; Fortwendel, Jarrod R.; Juvvadi, Praveen R.; Steinbach, William J.

    2013-01-01

    The fungal cell wall represents an attractive target for pharmacologic inhibition, as many of the components are fungal-specific. Though targeted inhibition of β-glucan synthesis is effective treatment for certain fungal infections, the ability of the cell wall to dynamically compensate via the cell wall integrity pathway may limit overall efficacy. To date, chitin synthesis inhibitors have not been successfully deployed in the clinical setting. Fungal chitin synthesis is a complex and highly regulated process. Regulation of chitin synthesis occurs on multiple levels, thus targeting of these regulatory pathways may represent an exciting alternative approach. A variety of signaling pathways have been implicated in chitin synthase regulation, at both transcriptional and post-transcriptional levels. Recent research suggests that localization of chitin synthases likely represents a major regulatory mechanism. However, much of the regulatory machinery is not necessarily shared among different chitin synthases. Thus, an in depth understanding of the precise roles of each protein in cell wall maintenance and repair will be essential to identifying the most likely therapeutic targets. PMID:21526913

  8. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii

    PubMed Central

    Sutton, Kristin A.; Breen, Jennifer; Russo, Thomas A.; Schultz, L. Wayne; Umland, Timothy C.

    2016-01-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301–Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate. PMID:26919521

  9. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii.

    PubMed

    Sutton, Kristin A; Breen, Jennifer; Russo, Thomas A; Schultz, L Wayne; Umland, Timothy C

    2016-03-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate.

  10. SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartwig, S.; Frister, T.; Alemdar, S.

    2015-03-20

    An uncharacterized plant cDNA coding for a polypeptide presumably having sesquiterpene synthase activity, was expressed in soluble and active form. Two expression strategies were evaluated in Escherichia coli. The enzyme was fused to a highly soluble SUMO domain, in addition to being produced in an unfused form by a cold-shock expression system. Yields up to ∼325 mg/L{sup −1} were achieved in batch cultivations. The 6x-His-tagged enzyme was purified employing an Ni{sup 2+}-IMAC-based procedure. Identity of the protein was established by Western Blot analysis as well as peptide mass fingerprinting. A molecular mass of 64 kDa and an isoelectric point of pImore » 4.95 were determined by 2D gel electrophoresis. Cleavage of the fusion domain was possible by digestion with specific SUMO protease. The synthase was active in Mg{sup 2+} containing buffer and catalyzed the production of (+)-zizaene (syn. khusimene), a precursor of khusimol, from farnesyl diphosphate. Product identity was confirmed by GC–MS and comparison of retention indices. Enzyme kinetics were determined by measuring initial reaction rates for the product, using varying substrate concentrations. By assuming a Michaelis–Menten model, kinetic parameters of K{sub M} = 1.111 μM (±0.113), v{sub max} = 0.3245 μM min{sup −1} (±0.0035), k{sub cat} = 2.95 min{sup −1}, as well as a catalytic efficiency k{sub cat}/K{sub M} = 4.43 × 10{sup 4} M{sup −1} s{sup −1} were calculated. Fusion to a SUMO moiety can substantially increase soluble expression levels of certain hard to express terpene synthases in E. coli. The kinetic data determined for the recombinant synthase are comparable to other described plant sesquiterpene synthases and in the typical range of enzymes belonging to the secondary metabolism. This leaves potential for optimizing catalytic parameters through methods like directed evolution. - Highlights: • Uncharacterized (+)-zizaene synthase from C. zizanoides was

  11. Molecular cloning and functional characterization of psoralen synthase, the first committed monooxygenase of furanocoumarin biosynthesis.

    PubMed

    Larbat, Romain; Kellner, Sandra; Specker, Silvia; Hehn, Alain; Gontier, Eric; Hans, Joachim; Bourgaud, Frederic; Matern, Ulrich

    2007-01-05

    Ammi majus L. accumulates linear furanocoumarins by cytochrome P450 (CYP)-dependent conversion of 6-prenylumbelliferone via (+)-marmesin to psoralen. Relevant activities, i.e. psoralen synthase, are induced rapidly from negligible background levels upon elicitation of A. majus cultures with transient maxima at 9-10 h and were recovered in labile microsomes. Expressed sequence tags were cloned from elicited Ammi cells by a nested DD-RT-PCR strategy with CYP-specific primers, and full-size cDNAs were generated from those fragments correlated in abundance with the induction profile of furanocoumarin-specific activities. One of these cDNAs representing a transcript of maximal abundance at 4 h of elicitation was assigned CYP71AJ1. Functional expression in Escherichia coli or yeast cells initially failed but was accomplished eventually in yeast cells after swapping the N-terminal membrane anchor domain with that of CYP73A1. The recombinant enzyme was identified as psoralen synthase with narrow substrate specificity for (+)-marmesin. Psoralen synthase catalyzes a unique carbon-chain cleavage reaction concomitantly releasing acetone by syn-elimination. Related plants, i.e. Heracleum mantegazzianum, are known to produce both linear and angular furanocoumarins by analogous conversion of 8-prenylumbelliferone via (+)-columbianetin to angelicin, and it was suggested that angelicin synthase has evolved from psoralen synthase. However, (+)-columbianetin failed as substrate but competitively inhibited psoralen synthase activity. Analogy modeling and docked solutions defined the conditions for high affinity substrate binding and predicted the minimal requirements to accommodate (+)-columbianetin in the active site cavity. The studies suggested that several point mutations are necessary to pave the road toward angelicin synthase evolution.

  12. Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase

    PubMed Central

    Balakrishna, Asha Manikkoth; Seelert, Holger; Marx, Sven-Hendric; Dencher, Norbert A.; Grüber, Gerhard

    2014-01-01

    In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector. Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å. PMID:27919036

  13. Pharmacy Residency School-wide Match Rates and Modifiable Predictors in ACPE-accredited Colleges and Schools of Pharmacy

    PubMed Central

    Whittaker, Alana; Shan, Guogen

    2017-01-01

    Objective. To analyze the modifiable predictors of institution-wide residency match rates. Methods. This was a retrospective analysis of colleges and schools of pharmacy data and school-wide PGY-1 pharmacy residency match rates for 2013 through 2015. Independent variables included NAPLEX passing rates, history of ACPE probation, NIH funding, academic health center affiliation, dual-degree availability, program length, admit-to-applicant ratio, class size, tuition, student-driven research, clinically focused academic tracks, residency affiliation, U.S. News & World Report rankings, and minority enrollment. Results. In a repeated measures model, predictors of match results were NAPLEX pass rate, class size, academic health center affiliation, admit-to-applicant ratio, U.S. News & World Report rankings, and minority enrollment. Conclusion. Indicators of student achievement, college/school reputation, affiliations, and class demographics were significant predictors of institution-wide residency match rates. Further research is needed to understand how changes in these factors may influence overall match rates. PMID:29367773

  14. Pharmacy Residency School-wide Match Rates and Modifiable Predictors in ACPE-accredited Colleges and Schools of Pharmacy.

    PubMed

    Whittaker, Alana; Smith, Katherine P; Shan, Guogen

    2017-12-01

    Objective. To analyze the modifiable predictors of institution-wide residency match rates. Methods. This was a retrospective analysis of colleges and schools of pharmacy data and school-wide PGY-1 pharmacy residency match rates for 2013 through 2015. Independent variables included NAPLEX passing rates, history of ACPE probation, NIH funding, academic health center affiliation, dual-degree availability, program length, admit-to-applicant ratio, class size, tuition, student-driven research, clinically focused academic tracks, residency affiliation, U.S. News & World Report rankings, and minority enrollment. Results. In a repeated measures model, predictors of match results were NAPLEX pass rate, class size, academic health center affiliation, admit-to-applicant ratio, U.S. News & World Report rankings, and minority enrollment. Conclusion. Indicators of student achievement, college/school reputation, affiliations, and class demographics were significant predictors of institution-wide residency match rates. Further research is needed to understand how changes in these factors may influence overall match rates.

  15. Members of WRKY Group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum).

    PubMed

    Huang, Ying; Li, Meng-Yao; Wu, Peng; Xu, Zhi-Sheng; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2016-10-07

    Transmitted by the whitefly Bemisia tabaci, tomato yellow leaf curly virus (TYLCV) has posed serious threats to plant growth and development. Plant innate immune systems against various threats involve WRKY Group III transcription factors (TFs). This group participates as a major component of biological processes in plants. In this study, 6 WRKY Group III TFs (SolyWRKY41, SolyWRKY42, SolyWRKY53, SolyWRKY54, SolyWRKY80, and SolyWRKY81) were identified, and these TFs responded to TYLCV infection. Subcellular localization analysis indicated that SolyWRKY41 and SolyWRKY54 were nuclear proteins in vivo. Many elements, including W-box, were found in the promoter region of Group III TFs. Interaction network analysis revealed that Group III TFs could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK) and isochorismate synthase (ICS), to respond to biotic and abiotic stresses. Positive and negative expression patterns showed that WRKY Group III genes could also respond to TYLCV infection in tomato. The DNA content of TYLCV resistant lines after SolyWRKY41 and SolyWRKY54 were subjected to virus-induced gene silencing (VIGS) was lower than that of the control lines. In the present study, 6 WRKY Group III TFs in tomato were identified to respond to TYLCV infection. Quantitative real-time-polymerase chain reaction (RT-qPCR) and VIGS analyses demonstrated that Group III genes served as positive and negative regulators in tomato-TYLCV interaction. WRKY Group III TFs could interact with other proteins by binding to cis elements existing in the promoter regions of other genes to regulate pathogen-related gene expression.

  16. Magnetic Nature of the CrIII-LnIII Interactions in [CrIII2LnIII3] Clusters with Slow Magnetic Relaxation.

    PubMed

    Zhao, Xiao-Qing; Xiang, Shuo; Wang, Jin; Bao, Dong-Xu; Li, Yun-Chun

    2018-02-01

    Two 3 d -4 f hetero-metal pentanuclear complexes with the formula {[Cr III 2 Ln III 3 L 10 (OH) 6 (H 2 O) 2 ]Et 3 NH} [Ln=Tb ( 1 ), Dy ( 2 ); HL=pivalic acid, Et 3 N=triethylamine] have been produced. The metal core of each cluster is made up of a trigonal bipyramid with three Ln III ions (plane) and two Cr III ions (above and below) held together by six μ 3 -OH bridges. Also reported with this series is the diamagnetic Cr III -Y III analogue ( 3 ). Fortunately, we successfully prepared Al III -Ln III analogues with the formula {[Al III 2 Ln III 3 L 10 (OH) 6 (H 2 O) 2 ]Et 3 NH⋅H 2 O} [Ln=Tb ( 4 ), Dy ( 5 )], containing diamagnetic Al III ions, which can be used to evaluate the Cr III -Ln III magnetic nature through a diamagnetic substitution method. Subsequently, static (dc) magnetic susceptibility studies reveal dominant ferromagnetic interactions between Cr III and Ln III ions. Dynamic (ac) magnetic susceptibility studies show frequency-dependent out-of-phase ( χ '') signals for [Cr III 2 Tb III 3 ] ( 1 ), [Cr III 2 Dy III 3 ] ( 2 ), and [Al III 2 Dy III 3 ] ( 5 ), which are derived from the single-ion behavior of Ln III ions and/or the Cr III -Ln III ferromagnetic interactions.

  17. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis

    PubMed Central

    Begley, Darren W.; Edwards, Thomas E.; Raymond, Amy C.; Smith, Eric R.; Hartley, Robert C.; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D.; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research. PMID:21904052

  18. Native granule associated short chain length polyhydroxyalkanoate synthase from a marine derived Bacillus sp. NQ-11/A2.

    PubMed

    Prabhu, Nimali N; Santimano, Maria Celisa; Mavinkurve, Suneela; Bhosle, Saroj N; Garg, Sandeep

    2010-01-01

    A rapidly growing marine derived Bacillus sp. strain NQ-11/A2, identified as Bacillus megaterium, accumulated 61% polyhydroxyalkanoate by weight. Diverse carbon sources served as substrates for the accumulation of short chain length polyhydroxyalkanoate. Three to nine granules either single or attached as buds could be isolated intact from each cell. Maximum activity of polyhydroxyalkanoate synthase was associated with the granules. Granule-bound polyhydroxyalkanoate synthase had a K(m) of 7.1 x 10(-5) M for DL-beta-hydroxybutyryl-CoA. Temperature and pH optima for maximum activity were 30 degrees C and 7.0, respectively. Sodium ions were required for granule-bound polyhydroxyalkanoate synthase activity and inhibited by potassium. Granule-bound polyhydroxyalkanoate synthase was apparently covalently bound to the polyhydroxyalkanoate-core of the granules and affected by the chaotropic reagent urea. Detergents inhibited the granule-bound polyhydroxyalkanoate synthase drastically whilst glycerol and bovine serum albumin stabilized the synthase.

  19. Acetohydroxy acid synthase is a target for leucine containing peptide toxicity in Escherichia coli.

    PubMed Central

    Gollop, N; Tavori, H; Barak, Z

    1982-01-01

    Acetohydroxy acid synthase from a mutant resistant to leucine-containing peptides was insensitive to leucine inhibition. It is concluded that acetohydroxy acid synthase is a target for the toxicity of the high concentrations of leucine brought into Escherichia coli K-12 by leucine-containing peptides. PMID:7033214

  20. Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N-­acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N-acetylglutamate synthase

    PubMed Central

    Shi, Dashuang; Caldovic, Ljubica; Jin, Zhongmin; Yu, Xiaolin; Qu, Qiuhao; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel

    2006-01-01

    A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6222, with unit-cell parameters a = b = 134.60, c = 192.11 Å, and diffract to about 3.0 Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method. PMID:17142901

  1. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning.

    PubMed

    Formentini, Laura; Pereira, Marta P; Sánchez-Cenizo, Laura; Santacatterina, Fulvio; Lucas, José J; Navarro, Carmen; Martínez-Serrano, Alberto; Cuezva, José M

    2014-04-01

    A key transducer in energy conservation and signaling cell death is the mitochondrial H(+)-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H(+)-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H(+)-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid-induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl-xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H(+)-ATP synthase as a target to prevent neuronal cell death.

  2. Acute electroacupuncture inhibits nitric oxide synthase expression in the spinal cord of neuropathic rats.

    PubMed

    Cha, Myeoung Hoon; Bai, Sun Joon; Lee, Kyung Hee; Cho, Zang Hee; Kim, Young-Bo; Lee, Hye-Jung; Lee, Bae Hwan

    2010-02-01

    To examine the effects of electroacupuncture stimulation on behavioral changes and neuronal nitric oxide synthase expression in the rat spinal cord after nerve injury. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to neuropathic surgery by tightly ligating and cutting the left tibial and sural nerves. Behavioral responses to mechanical stimulation were tested for 2 weeks post-operatively. At the end of behavioral testing, electroacupuncture stimulation was applied to ST36 (Choksamni) and SP9 (Eumleungcheon) acupoints. Immunocytochemical staining was performed to investigate changes in the expression of neuronal nitric oxide synthase-immunoreactive neurons in the L4-5 spinal cord. Mechanical allodynia was observed by nerve injury. The mechanical allodynia was decreased after electroacupuncture stimulation. Neuronal nitric oxide synthase expression was also decreased in L4-5 spinal cord by electroacupuncture treatment. These results suggest that electroacupuncture relieves mechanical allodynia in the neuropathic rats possibly by the inhibition of neuronal nitric oxide synthase expression in the spinal cord.

  3. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    PubMed

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  4. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus

    DOE PAGES

    Wang, Hui; Lu, Yang; Liu, Li; ...

    2014-09-06

    Here we evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a K i value of 0.01 nM and a residence time of 750 min on the enzyme target in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU’s in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in bothmore » healthy and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [ 11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ~1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo.« less

  5. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Lu, Yang; Liu, Li

    Here we evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a K i value of 0.01 nM and a residence time of 750 min on the enzyme target in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU’s in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in bothmore » healthy and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [ 11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ~1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo.« less

  6. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Esposito, Davide; Donnarumma, Erminia; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity.

  7. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity. PMID:26368121

  8. Genetic-deletion of Cyclooxygenase-2 Downstream Prostacyclin Synthase Suppresses Inflammatory Reactions but Facilitates Carcinogenesis, unlike Deletion of Microsomal Prostaglandin E Synthase-1.

    PubMed

    Sasaki, Yuka; Kamiyama, Shuhei; Kamiyama, Azusa; Matsumoto, Konomi; Akatsu, Moe; Nakatani, Yoshihito; Kuwata, Hiroshi; Ishikawa, Yukio; Ishii, Toshiharu; Yokoyama, Chieko; Hara, Shuntaro

    2015-11-27

    Prostacyclin synthase (PGIS) and microsomal prostaglandin E synthase-1 (mPGES-1) are prostaglandin (PG) terminal synthases that function downstream of inducible cyclooxygenase (COX)-2 in the PGI2 and PGE2 biosynthetic pathways, respectively. mPGES-1 has been shown to be involved in various COX-2-related diseases such as inflammatory diseases and cancers, but it is not yet known how PGIS is involved in these COX-2-related diseases. Here, to clarify the pathophysiological role of PGIS, we investigated the phenotypes of PGIS and mPGES-1 individual knockout (KO) or double KO (DKO) mice. The results indicate that a thioglycollate-induced exudation of leukocytes into the peritoneal cavity was suppressed by the genetic-deletion of PGIS. In the PGIS KO mice, lipopolysaccharide-primed pain nociception (as assessed by the acetic acid-induced writhing reaction) was also reduced. Both of these reactions were suppressed more effectively in the PGIS/mPGES-1 DKO mice than in the PGIS KO mice. On the other hand, unlike mPGES-1 deficiency (which suppressed azoxymethane-induced colon carcinogenesis), PGIS deficiency up-regulated both aberrant crypt foci formation at the early stage of carcinogenesis and polyp formation at the late stage. These results indicate that PGIS and mPGES-1 cooperatively exacerbate inflammatory reactions but have opposing effects on carcinogenesis, and that PGIS-derived PGI2 has anti-carcinogenic effects.

  9. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase.

    PubMed

    Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco

    2016-05-01

    (-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.

  10. Protein modelling of triterpene synthase genes from mangrove plants using Phyre2 and Swiss-model

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.; Sulistiyono, N.; Hayati, R.; Sumardi; Oku, H.; Baba, S.; Sagami, H.

    2018-03-01

    Molecular cloning of five oxidosqualene cyclases (OSC) genes from Bruguiera gymnorrhiza, Kandelia candel, and Rhizophora stylosa had previously been cloned, characterized, and encoded mono and -multi triterpene synthases. The present study analyzed protein modelling of triterpene synthase genes from mangrove using Phyre2 and Swiss-model. The diversity was noted within protein modelling of triterpene synthases using Phyre2 from sequence identity (38-43%) and residue (696-703). RsM2 was distinguishable from others for template structure; it used lanosterol synthase as a template (PDB ID: w6j.1.A). By contrast, other genes used human lanosterol synthase (1w6k.1.A). The predicted bind sites were correlated with the product of triterpene synthase, the product of BgbAS was β-amyrin, while RsM1 contained a significant amount of β-amyrin. Similarly BgLUS and KcMS, both main products was lupeol, on the other hand, RsM2 with the outcome of taraxerol. Homology modelling revealed that 696 residues of BgbAS, BgLUS, RsM1, and RsM2 (91-92% of the amino acid sequence) had been modelled with 100% confidence by the single highest scoring template using Phyre2. This coverage was higher than Swiss-model (85-90%). The present study suggested that molecular cloning of triterpene genes provides useful tools for studying the protein modelling related regulation of isoprenoids biosynthesis in mangrove forests.

  11. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  12. Homocysteine threshold value based on cystathionine beta synthase and paraoxonase 1 activities in mice.

    PubMed

    Hamelet, J; Aït-Yahya-Graison, E; Matulewicz, E; Noll, C; Badel-Chagnon, A; Camproux, A-C; Demuth, K; Paul, J-L; Delabar, J M; Janel, N

    2007-12-01

    Hyperhomocysteinaemia is a metabolic disorder associated with the development of premature atherosclerosis. Among the determinants which predispose to premature thromboembolic and atherothrombotic events, serum activity of paraoxonase 1, mainly synthesized in the liver, has been shown to be a predictor of cardiovascular disease and to be negatively correlated with serum homocysteine levels in human. Even though treatments of hyperhomocysteinaemic patients ongoing cardiovascular complications are commonly used, it still remains unclear above which homocysteine level a preventive therapy should be started. In order to establish a threshold of plasma homocysteine concentration we have analyzed the hepatic cystathionine beta synthase and paraoxonase 1 activities in a moderate to intermediate murine model of hyperhomocysteinaemia. Using wild type and heterozygous cystathionine beta synthase deficient mice fed a methionine enriched diet or a control diet, we first studied the link between cystathionine beta synthase and paraoxonase 1 activities and plasma homocysteine concentration. Among the animals used in this study, we observed a negative correlation between plasma homocysteine level and cystathionine beta synthase activity (rho=-0.52, P=0.0008) or paraoxonase 1 activity (rho=-0.49, P=0.002). Starting from these results, a homocysteine cut-off value of 15 microm has been found for both cystathionine beta synthase (P=0.0003) and paraoxonase 1 (P=0.0007) activities. Our results suggest that both cystathionine beta synthase and paraoxonase 1 activities are significantly decreased in mice with a plasma homocysteine value greater than 15 microm. In an attempt to set up preventive treatment for cardiovascular disease our results indicate that treatments should be started from 15 microm of plasma homocysteine.

  13. Measurements of canine aqueous humor inflammatory mediators and the effect of carprofen following anterior chamber paracentesis.

    PubMed

    Pinard, Chantale L; Gauvin, Dominique; Moreau, Maxim; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Troncy, Eric

    2011-09-01

    Phase I: To evaluate levels of prostaglandin E(2) (PGE(2) ), nitrites and nitrates (NO(x) ), tumor necrosis factor-alpha (TNF-α) and expression of inducible cyclo-oxygenase (COX-2), nitric oxide synthase (NOS-2), and matrix metalloproteinases (MMP-3 and -9) in canine aqueous humor following repeated anterior chamber paracenteses (ACP). Phase II: to evaluate the effect of carprofen on PGE(2) , NO(x) , and TNF-α in canine aqueous humor following ACP. Four beagles in phase I and 8 beagles in phase II. Phase I: ACP was performed at time (T) 0, 4 and 8 h. Phase II: A randomized, placebo-controlled cross-over design with four dogs per group where carprofen was given 4.4 mg/kg/day on day (D) 1, 2 and 3. ACP was performed at T0 and T1.5 on D3. Statistical analysis was performed with repeated measures anova and post hoc Tukey-Kramer multiple-comparison procedure. In phase II, TNF-α level was analyzed with a Wilcoxon signed-rank test. Phase I: PGE(2) significantly increased (P < 0.0001) to plateau at T4. NO(X) was decreased at T4 (P < 0.06), but increased at T8 (P < 0.0001). COX-2 showed detectable expression only at T8. TNF-α, NOS-2, MMP-3 and -9 were undetectable at all time points. Phase II: At T1.5, PGE(2) was significantly elevated in both groups but was lower in the carprofen group (P = 0.037). NO(x) and TNF-α did not statistically increase in either group. Following ACP, significant increases in PGE(2) levels confirmed inflammation characterized by a rise of COX-2. The NO(x) pathway took longer to induce as compared with PGE(2) . Carprofen decreased PGE(2) levels and could help control intraocular inflammation. © 2011 American College of Veterinary Ophthalmologists.

  14. 40 CFR 300.310 - Phase III-Containment, countermeasures, cleanup, and disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... spread of the oil and mitigate its effects. The ACP prepared under § 300.210(c) should be consulted for... or mitigate its effects. Of the numerous chemical or physical methods that may be used, the chosen... recycling (reprocessing) being the most preferred, and other alternatives preferred based on priorities for...

  15. 40 CFR 300.310 - Phase III-Containment, countermeasures, cleanup, and disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... spread of the oil and mitigate its effects. The ACP prepared under § 300.210(c) should be consulted for... or mitigate its effects. Of the numerous chemical or physical methods that may be used, the chosen... recycling (reprocessing) being the most preferred, and other alternatives preferred based on priorities for...

  16. 40 CFR 300.310 - Phase III-Containment, countermeasures, cleanup, and disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... spread of the oil and mitigate its effects. The ACP prepared under § 300.210(c) should be consulted for... or mitigate its effects. Of the numerous chemical or physical methods that may be used, the chosen... recycling (reprocessing) being the most preferred, and other alternatives preferred based on priorities for...

  17. 40 CFR 300.310 - Phase III-Containment, countermeasures, cleanup, and disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... spread of the oil and mitigate its effects. The ACP prepared under § 300.210(c) should be consulted for... or mitigate its effects. Of the numerous chemical or physical methods that may be used, the chosen... recycling (reprocessing) being the most preferred, and other alternatives preferred based on priorities for...

  18. 40 CFR 300.310 - Phase III-Containment, countermeasures, cleanup, and disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... spread of the oil and mitigate its effects. The ACP prepared under § 300.210(c) should be consulted for... or mitigate its effects. Of the numerous chemical or physical methods that may be used, the chosen... recycling (reprocessing) being the most preferred, and other alternatives preferred based on priorities for...

  19. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions.

    PubMed

    Liang, Jing; Han, Qian; Ding, Haizhen; Li, Jianyong

    2017-12-01

    In available insect genomes, there are several L-3,4-dihydroxyphenylalanine (L-dopa) decarboxylase (DDC)-like or aromatic amino acid decarboxylase (AAAD) sequences. This contrasts to those of mammals whose genomes contain only one DDC. Our previous experiments established that two DDC-like proteins from Drosophila actually mediate a complicated decarboxylation-oxidative deamination process of dopa in the presence of oxygen, leading to the formation of 3,4-dihydroxyphenylacetaldehyde (DHPA), CO 2 , NH 3, and H 2 O 2 . This contrasts to the typical DDC-catalyzed reaction, which produces CO 2 and dopamine. These DDC-like proteins were arbitrarily named DHPA synthases based on their critical role in insect soft cuticle formation. Establishment of reactions catalyzed by these AAAD-like proteins solved a puzzle that perplexed researchers for years, but to tell a true DHPA synthase from a DDC in the insect AAAD family remains problematic due to high sequence similarity. In this study, we performed extensive structural and biochemical comparisons between DHPA synthase and DDC. These comparisons identified several target residues potentially dictating DDC-catalyzed and DHPA synthase-catalyzed reactions, respectively. Comparison of DHPA synthase homology models with crystal structures of typical DDC proteins, particularly residues in the active sites, provided further insights for the roles these identified target residues play. Subsequent site-directed mutagenesis of the tentative target residues and activity evaluations of their corresponding mutants determined that active site His192 and Asn192 are essential signature residues for DDC- and DHPA synthase-catalyzed reactions, respectively. Oxygen is required in DHPA synthase-mediated process and this oxidizing agent is reduced to H 2 O 2 in the process. Biochemical assessment established that H 2 O 2 , formed in DHPA synthase-mediated process, can be reused as oxidizing agent and this active oxygen species is reduced to H 2

  20. Binding Isotope Effects for para-Aminobenzoic Acid with Dihydropteroate Synthase from Staphylococcus aureus and Plasmodium falciparum.

    PubMed

    Stratton, Christopher F; Namanja-Magliano, Hilda A; Cameron, Scott A; Schramm, Vern L

    2015-10-16

    Dihydropteroate synthase is a key enzyme in folate biosynthesis and is the target of the sulfonamide class of antimicrobials. Equilibrium binding isotope effects and density functional theory calculations indicate that the substrate binding sites for para-aminobenzoic acid on the dihydropteroate synthase enzymes from Staphylococcus aureus and Plasmodium falciparum present distinct chemical environments. Specifically, we show that para-aminobenzoic acid occupies a more sterically constrained vibrational environment when bound to dihydropteroate synthase from P. falciparum relative to that of S. aureus. Deletion of a nonhomologous, parasite-specific insert from the plasmodial dihydropteroate synthase abrogated the binding of para-aminobenzoic acid. The loop specific to P. falciparum is important for effective substrate binding and therefore plays a role in modulating the chemical environment at the substrate binding site.

  1. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Impact of drought stress on specialised metabolism: Biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis).

    PubMed

    Radwan, Alzahraa; Kleinwächter, Maik; Selmar, Dirk

    2017-09-01

    In previous experiments, we demonstrated that the amount of monoterpenes in sage is increased massively by drought stress. Our current study is aimed to elucidate whether this increase is due, at least in part, to elevated activity of the monoterpene synthases responsible for the biosynthesis of essential oils in sage. Accordingly, the transcription rates of the monoterpene synthases were analyzed. Salvia officinalis plants were cultivated under moderate drought stress. The concentrations of monoterpenes as well as the expression of the monoterpene synthases were analyzed. The amount of monoterpenes massively increased in response to drought stress; it doubled after just two days of drought stress. The observed changes in monoterpene content mostly match with the patterns of monoterpene synthase expressions. The expression of bornyl diphosphate synthase was strongly up-regulated; its maximum level was reached after two days. Sabinene synthase increased gradually and reached a maximum after two weeks. In contrast, the transcript level of cineole synthase continuously declined. This study revealed that the stress related increase of biosynthesis is not only due to a "passive" shift caused by the stress related over-reduced status, but also is due - at least in part-to an "active" up-regulation of the enzymes involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    USDA-ARS?s Scientific Manuscript database

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  4. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysismore » of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.« less

  5. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenitzer, Veronika; Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg; Eichner, Norbert

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report themore » heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.« less

  6. Identification of a new binding site in E. coli FabH using Molecular dynamics simulations: validation by computational alanine mutagenesis and docking studies.

    PubMed

    Ramamoorthy, Divya; Turos, Edward; Guida, Wayne C

    2013-05-24

    FabH (Fatty acid biosynthesis, enzyme H, also referred to as β-ketoacyl-ACP-synthase III) is a key condensing enzyme in the type II fatty acid synthesis (FAS) system. The FAS pathway in bacteria is essential for growth and survival and vastly differs from the human FAS pathway. Enzymes involved in this pathway have arisen as promising biomolecular targets for discovery of new antibacterial drugs. However, currently there are no clinical drugs that selectively target FabH, and known inhibitors of FabH all act within the active site. FabH exerts its catalytic function as a dimer, which could potentially be exploited in developing new strategies for inhibitor design. The aim of this study was to elucidate structural details of the dimer interface region by means of computational modeling, including molecular dynamics (MD) simulations, in order to derive information for the structure-based design of new FabH inhibitors. The dimer interface region was analyzed by MD simulations, trajectory snapshots were collected for further analyses, and docking studies were performed with potential small molecule disruptors. Alanine mutation and docking studies strongly suggest that the dimer interface could be a potential target for anti-infection drug discovery.

  7. Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species.

    PubMed

    Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing

    2016-03-01

    Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR.

    PubMed

    Chin, Randall M; Fu, Xudong; Pai, Melody Y; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S; Monsalve, Gabriela C; Hu, Eileen; Whelan, Stephen A; Wang, Jennifer X; Jung, Gwanghyun; Solis, Gregory M; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S; Godwin, Hilary A; Chang, Helena R; Faull, Kym F; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R; Clarke, Catherine F; Teitell, Michael A; Petrascheck, Michael; Reue, Karen; Jung, Michael E; Frand, Alison R; Huang, Jing

    2014-06-19

    Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing

  9. Studies on the Expression of Sesquiterpene Synthases Using Promoter-β-Glucuronidase Fusions in Transgenic Artemisia annua L

    PubMed Central

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E.

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production. PMID:24278301

  10. Circulation of Pneumocystis dihydropteroate synthase mutants in France.

    PubMed

    Le Gal, Solène; Damiani, Céline; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Quinio, Dorothée; Moalic, Elodie; Saliou, Philippe; Berthou, Christian; Le Meur, Yann; Totet, Anne; Nevez, Gilles

    2012-10-01

    Data on the prevalence of Pneumocystis jirovecii (P. jirovecii) dihydropteroate synthase (DHPS) mutants in France are still limited. In this study, mutant prevalence in the Brest region (western France) was determined. Archival pulmonary specimens from 85 patients infected with P. jirovecii and admitted to our institution (University Hospital, Brest) from October 2007 to February 2010 were retrospectively typed at the DHPS locus using a polymerase chain reaction-restriction fragment length polymorphism assay. Type identification was successful in 66 of 85 patients. Sixty-four patients were infected with a wild type, whereas mutants were found in 2 patients (2/66, 3%). Medical chart analysis revealed that these 2 patients usually lived in Paris. Another patient usually lived on the French Riviera, whereas 63 patients were from the city of Brest. Thus, the corrected prevalence of mutants in patients who effectively lived in our geographic area was 0% (0/63). Taking into account that i) Paris is characterized by a high prevalence of mutants from 18.5% to 40%, ii) infection diagnoses were performed in the 2 Parisians during their vacation <30 days, iii) infection incubation is assumed to last about 2 months, the results provide evidence of mutant circulation from Paris to Brest through infected vacationers. The study shows that the usual city of patient residence, rather than the city of infection diagnosis, is a predictor of mutants and that P. jirovecii infections involving mutants do not represent a public health issue in western France. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Divergent Mechanistic Routes for the Formation of gem-Dimethyl Groups in the Biosynthesis of Complex Polyketides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poust, S; Phelan, RM; Deng, K

    The gem-dimethyl groups in polyketide-derived natural products add steric bulk and, accordingly, lend increased stability to medicinal compounds, however, our ability to rationally incorporate this functional group in modified natural products is limited. In order to characterize the mechanism of gem-dimethyl group formation, with a goal toward engineering of novel compounds containing this moiety, the gem-dimethyl group producing polyketide synthase (PKS) modules of yersiniabactin and epothilone were characterized using mass spectrometry. The work demonstrated, contrary to the canonical understanding of reaction order in PKSs, that methylation can precede condensation in gem-dimethyl group producing PKS modules. Experiments showed that both PKSsmore » are able to use dimethylmalonyl acyl carrier protein (ACP) as an extender unit. Interestingly, for epothilone module8, use of dimethylmalonyl-ACP appeared to be the sole route to form a gem-dimethylated product, while the yersiniabactin PKS could methylate before or after ketosynthase condensation.« less

  12. Orotic aciduria and uridine monophosphate synthase: a reappraisal.

    PubMed

    Bailey, C J

    2009-12-01

    Three subtypes of hereditary orotic aciduria are described in the literature, all related to deficiencies in uridine monophosphate synthase, the multifunctional enzyme that contains both orotate: pyrophosphoryl transferase and orotidine monophosphate decarboxylase activities. The type of enzyme defect present in the subtypes has been re-examined by steady-state modelling of the relative outputs of the three enzymic products, uridine monophosphate, urinary orotic acid and urinary orotidine. It is shown that the ratio of urinary outputs of orotidine to orotate provides a means of testing for particular forms of enzyme defect. It is confirmed that the type I defect is caused by loss of uridine monophosphate synthase activity. Cells and tissue of type I cases have a residual amount of activity that is qualitatively unchanged: the relative rates of the transferase and decarboxylase do not differ from those of wild-type enzyme. The single claimed case of type II, thought to be due to specific inactivation of orotidine monophosphate decarboxylase, is shown to have a product spectrum inconsistent with that claim. It is proposed that this type II form does not differ sufficiently to be accepted as separate from type I. The third subtype, hereditary orotic aciduria without megaloblastic anaemia, occurs in two cases. It has the product spectrum expected of a defect in orotidine monophosphate decarboxylase. This form is the only one that appears to have a qualitatively different uridine monophosphate synthase. The possibility that orotidine monophosphate may control flux through the pyrimidine biosynthesis pathway in hereditary orotic aciduria is discussed.

  13. Crystallization of Δ1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    PubMed Central

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi; Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota; Shoyama, Yukihiro; Morimoto, Satoshi

    2005-01-01

    Δ1-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å3 Da−1 assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively. PMID:16511162

  14. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    PubMed Central

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; De Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-01-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65–74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase. PMID:27874020

  15. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    NASA Astrophysics Data System (ADS)

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; de Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-11-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.

  16. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    PubMed Central

    2016-01-01

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs. PMID:27490479

  17. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase.

    PubMed

    Rudolf, Jeffrey D; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  18. Sucrose Synthase Expression during Cold Acclimation in Wheat 1

    PubMed Central

    Crespi, Martin D.; Zabaleta, Eduardo J.; Pontis, Horacio G.; Salerno, Graciela L.

    1991-01-01

    When wheat (Triticum aestivum) seedlings are exposed to a cold temperature (2-4°C) above 0°C, sucrose accumulates and sucrose synthase activity increases. The effect of a cold period on the level of sucrose synthase (SS) was investigated. Using antibodies against wheat germ SS, Western blots studies showed that the amount of the SS peptide increased during 14 days in the cold, when plants were moved from 23°C to 4°C. The level of SS diminished when plants were moved back to 23°C. Northern blots of poly(A)+ RNA, confirmed a five- to sixfold induction of SS in wheat leaves during cold acclimation. These results indicate that SS is involved in the plant response to a chilling stress. ImagesFigure 1Figure 2Figure 3 PMID:16668270

  19. Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus.

    PubMed

    Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T

    2017-01-01

    Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.

  20. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    PubMed

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  1. Hypotensive effect of agmatine, arginine metabolite, is affected by NO synthase.

    PubMed

    Gerová, M; Török, J

    2004-01-01

    The metabolites of arginine were recently shown to be involved in cardiovascular control. The study addresses the general cardiovascular response of anaesthetized rats to agmatine, a decarboxylated arginine. The relation between two arginine metabolic pathways governed by arginine decarboxylase and nitric oxide synthase was investigated. Intravenous administration of agmatine 30 and 60 microM/0.1 ml saline elicited remarkable hypotension of 42.6+/-4.6 and 70.9+/-6.5 mm Hg, respectively. The hypotension was characterized by long duration with half-time of return 171.6+/-2.9 and 229.2+/-3.8 s, respectively. The time of total blood pressure BP recovery was about 10 min. Dose-dependent relaxation to agmatine was also found in aorta rings in vitro. Both doses of agmatine administered 60-180 min after NO synthase inhibition L-NAME 40 mg/kg i.v. caused greater hypotension 59.0+/-7.6 and 95.8 8.8 mm Hg P<0.01 both compared to animals with intact NO synthase, but this was accompanied by a significant shortening of the half-time of BP return. If agmatine was administered to hypertensive NO-deficient rats treated with 40 mg/kg/day L-NAME for 4 weeks, similar significant enhancement of hypotension was observed at both agmatine doses, again with a significant shortening of half-time of BP return. It can be summarized that the long-lasting hypotension elicited by agmatine was amplified after acute or chronic NO synthase inhibition, indicating a feedback relation between the two metabolic pathways of arginine.

  2. Structural Characteristics and Function of a New Kind of Thermostable Trehalose Synthase from Thermobaculum terrenum.

    PubMed

    Wang, Junqing; Ren, Xudong; Wang, Ruiming; Su, Jing; Wang, Feng

    2017-09-06

    Trehalose has important applications in the food industry and pharmaceutical manufacturing. The thermostable enzyme trehalose synthase from Thermobaculum terrenum (TtTS) catalyzes the reversible interconversion of maltose and trehalose. Here, we investigated the structural characteristics of TtTS in complex with the inhibitor TriS. TtTS exhibits the typical three domain glycoside hydrolase family 13 structure. The catalytic cleft consists of Asp202-Glu244-Asp310 and various conserved substrate-binding residues. However, among trehalose synthases, TtTS demonstrates obvious thermal stability. TtTS has more polar (charged) amino acids distributed on its protein structure surface and more aromatic amino acids buried within than other mesophilic trehalose synthases. Furthermore, TtTS structural analysis revealed four potential metal ion-binding sites rather than the two in a homologous structure. These factors may render TtTS relatively more thermostable among mesophilic trehalose synthases. The detailed thermophilic enzyme structure provided herein may provide guidance for further protein engineering in the design of stabilized enzymes.

  3. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2010-07-01

    An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

  4. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  5. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  6. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Chris R.; Scieble, Wolf

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS genemore » can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.« less

  7. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    PubMed

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Overexpression of an archaeal geranylgeranyl diphosphate synthase in Escherichia coli cells.

    PubMed

    Ohto, C; Nakane, H; Hemmi, H; Ohnuma, S; Obata, S; Nishino, T

    1998-06-01

    An archaeal geranylgeranyl diphosphate synthase was overexpressed in Escherichia coli cells as fusion proteins. These fusion proteins retained their thermostability and had higher specific activity than did a partially purified native enzyme Previously reported. We purified 24.3 mg of MBP (maltose-binding protein)-fusion protein and 5.4 mg of GST (glutathione S-transferase)-fusion protein from a one-liter culture of E. coli. The MBP-fusion proteins existed in dimer, tetramer, octamer, or dodecamer form, and their product specificities were altered according to the oligomerization. The MBP-fusion protein has protease-sensitive sites in the portion corresponding to geranylgeranyl diphosphate synthase.

  9. Biosynthesis of Lipoic Acid in Arabidopsis: Cloning and Characterization of the cDNA for Lipoic Acid Synthase1

    PubMed Central

    Yasuno, Rie; Wada, Hajime

    1998-01-01

    Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide. PMID:9808738

  10. Effect of inhibition of glycogen synthase kinase-3 on cardiac hypertrophy during acute pressure overload.

    PubMed

    Tateishi, Atsushi; Matsushita, Masayuki; Asai, Tomohiro; Masuda, Zenichi; Kuriyama, Mitsuhito; Kanki, Kazushige; Ishino, Kozo; Kawada, Masaaki; Sano, Shunji; Matsui, Hideki

    2010-06-01

    A large number of diverse signaling molecules in cell and animal models participate in the stimulus-response pathway through which the hypertrophic growth of the myocardium is controlled. However, the mechanisms of signaling pathway including the influence of lithium, which is known as an inhibitor of glycogen synthase kinase-3beta, in pressure overload hypertrophy remain unclear. The aim of our study was to determine whether glycogen synthase kinase-3beta inhibition by lithium has acute effects on the myocyte growth mechanism in a pressure overload rat model. First, we created a rat model of acute pressure overload cardiac hypertrophy by abdominal aortic banding. Protein expression time courses for beta-catenin, glycogen synthase kinase-3beta, and phosphoserine9-glycogen synthase kinase-3beta were then examined. The rats were divided into four groups: normal rats with or without lithium administration and pressure-overloaded rats with or without lithium administration. Two days after surgery, Western blot analysis of beta-catenin, echo-cardiographic evaluation, left ventricular (LV) weight, and LV atrial natriuretic peptide mRNA levels were evaluated. We observed an increase in the level of glycogen synthase kinase-3beta phosphorylation on Ser 9. A significant enhancement of LV heart weight (P < 0.05) and interventricular septum and posterior wall thickness (P < 0.05) with pressure-overloaded hypertrophy in animals treated with lithium were also observed. Atrial natriuretic peptide mRNA levels were significantly increased with pressure overload hypertrophy in animals treated with lithium. We have shown in an animal model that inhibition of glycogen synthase kinase-3beta by lithium has an additive effect on pressure overload cardiac hypertrophy.

  11. Promotion of beta-glucan synthase activity in corn microsomal membranes by calcium and protein phosphorylation

    NASA Technical Reports Server (NTRS)

    Paliyath, G.; Poovaiah, B. W.

    1988-01-01

    Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.

  12. Glyphosate Inhibition of 5-Enolpyruvylshikimate 3-Phosphate Synthase from Suspension-Cultured Cells of Nicotiana silvestris.

    PubMed

    Rubin, J L; Gaines, C G; Jensen, R A

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg. et Comes with glyphosate (N-[phosphonomethyl]glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK(a) values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO(-)CH(2)NH(2) (+)CH(2)PO(3) (2-), and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K(i) = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K(i)' = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an [enzyme:shikimate-3-P] complex and ultimately forms the dead-end complex of [enzyme:shikimate-3-P:glyphosate].

  13. Pre-treating dentin with chlorhexadine and CPP-ACP: self-etching and universal adhesive systems

    PubMed Central

    dos Santos, Ricardo Alves; de Lima, Eliane Alves; Montes, Marcos Antônio Japiassu Resende; Braz, Rodivan

    2016-01-01

    Abstract Objective: The aim of the present study was to compare the effect of pre-treating dentin with chlorhexidine, at concentrations of 0.2% and 2%, and remineralizing paste containing CPP-ACP (MI Paste – GC) on the bond strength of adhesive systems. Material and methods: In total, 80 slides of dentin were used. These slides were 2 mm thick and were obtained from bovine incisors. Standard cavities were created using diamond bur number 3131. In the control groups, a Scotchbond Universal Adhesive (SUA) self-etching adhesive system of 3M ESPE and a Clearfil SE Bond (CSE) adhesive system of Kuraray were applied, following the manufacturer’s instructions. In the other groups, dentin was pretreated with chlorhexidine (0.2% and 2%) for 1 min and with MI Paste for 3 min. The cavities were restored with Z350 XT resin (3M ESPE). After 24 h of storage, the push-out test was applied at a speed of 0.5 mm/min. Results: The different dentin pretreatment techniques did not affect the intra-adhesive bond strength. There was a difference between treatment with MI Paste and chlorhexidine 0.2% in favor of the SUA, with values of 15.22 and 20.25 Mpa, respectively. Conclusions: The different pretreatment methods did not alter the immediate bond strength to dentin. Differences were only recorded when comparing the adhesives. PMID:28642915

  14. Pre-treating dentin with chlorhexadine and CPP-ACP: self-etching and universal adhesive systems.

    PubMed

    Dos Santos, Ricardo Alves; de Lima, Eliane Alves; Montes, Marcos Antônio Japiassu Resende; Braz, Rodivan

    2016-12-01

    Objective: The aim of the present study was to compare the effect of pre-treating dentin with chlorhexidine, at concentrations of 0.2% and 2%, and remineralizing paste containing CPP-ACP (MI Paste - GC) on the bond strength of adhesive systems. Material and methods: In total, 80 slides of dentin were used. These slides were 2 mm thick and were obtained from bovine incisors. Standard cavities were created using diamond bur number 3131. In the control groups, a Scotchbond Universal Adhesive (SUA) self-etching adhesive system of 3M ESPE and a Clearfil SE Bond (CSE) adhesive system of Kuraray were applied, following the manufacturer's instructions. In the other groups, dentin was pretreated with chlorhexidine (0.2% and 2%) for 1 min and with MI Paste for 3 min. The cavities were restored with Z350 XT resin (3M ESPE). After 24 h of storage, the push-out test was applied at a speed of 0.5 mm/min. Results: The different dentin pretreatment techniques did not affect the intra-adhesive bond strength. There was a difference between treatment with MI Paste and chlorhexidine 0.2% in favor of the SUA, with values of 15.22 and 20.25 Mpa, respectively. Conclusions: The different pretreatment methods did not alter the immediate bond strength to dentin. Differences were only recorded when comparing the adhesives.

  15. Cloning and characterization of chsD, a chitin synthase-like gene of Aspergillus fumigatus.

    PubMed

    Mellado, E; Specht, C A; Robbins, P W; Holden, D W

    1996-09-15

    A chitin synthase-like gene (chsD) was isolated from an Aspergillus fumigatus genomic DNA library. Comparisons with the predicted amino acid sequence from chsD reveals low but significant similarity to chitin synthases, to other N-acetylglucosaminyltransferases (NodC from Rhizopus spp., HasA from Streptococcus spp. and DG42 from vertebrates. A chsD- mutant strain constructed by gene disruption has a 20% reduction in total mycelial chitin content; however, no differences between the wild-type strain and the chsD- strain were found with respect to morphology, chitin synthase activity or virulence in a neutropenic murine model of aspergillosis. The results show that the chsD product has an important but inessential role in the synthesis of chitin in A. fumigatus.

  16. Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1

    PubMed Central

    2017-01-01

    Mast syndrome (SPG21) is an autosomal-recessive complicated form of hereditary spastic paraplegia characterized by dementia, thin corpus callosum, white matter abnormalities, and cerebellar and extrapyramidal signs in addition to spastic paraparesis. A nucleotide insertion resulting in premature truncation of the SPG21 gene product acidic cluster protein 33 (ACP33)/maspardin underlies this disorder, likely causing loss of protein function. However, little is known about the function of maspardin. Here, we report that maspardin localizes prominently to cytoplasm as well as to membranes, possibly at trans-Golgi network/late endosomal compartments. Immunoprecipitation of maspardin with identification of coprecipitating proteins by mass spectrometry revealed the aldehyde dehydrogenase ALDH16A1 as an interacting protein. This interaction was confirmed using overexpressed proteins as well as by fusion protein pull down experiments, and these proteins colocalized in cells. Further studies of the function of ALDH16A1 and the role of the maspardin–ALDH16A1 interaction in neuronal cells may clarify the cellular pathogenesis of Mast syndrome. PMID:19184135

  17. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression

    PubMed Central

    Kim, Sun-Hee; Hashimoto, Yuuri; Cho, Sung-Nam; Roszik, Jason; Milton, Denái R.; Dal, Fulya; Kim, Sangwon F.; Menter, David G.; Yang, Peiying; Ekmekcioglu, Suhendan; Grimm, Elizabeth A.

    2016-01-01

    Summary COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy. PMID:26801201

  18. Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases

    PubMed Central

    Keeling, Christopher I.; Chiu, Christine C.; Aw, Tidiane; Li, Maria; Henderson, Hannah; Tittiger, Claus; Weng, Hong-Biao; Blomquist, Gary J.; Bohlmann, Joerg

    2013-01-01

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive pest of western North American pine forests. Adult males produce frontalin, an eight-carbon antiaggregation pheromone, via the mevalonate pathway, as part of several pheromones that initiate and modulate the mass attack of host trees. Frontalin acts as a pheromone, attractant, or kairomone in most Dendroctonus species, other insects, and even elephants. 6-Methylhept-6-en-2-one, a frontalin precursor, is hypothesized to originate from 10-carbon geranyl diphosphate (GPP), 15-carbon farnesyl diphosphate (FPP), or 20-carbon geranylgeranyl diphosphate (GGPP) via a dioxygenase- or cytochrome P450-mediated carbon–carbon bond cleavage. To investigate the role of isoprenyl diphosphate synthases in pheromone biosynthesis, we characterized a bifunctional GPP/FPP synthase and a GGPP synthase in the mountain pine beetle. The ratio of GPP to FPP produced by the GPP/FPP synthase was highly dependent on the ratio of the substrates isopentenyl diphosphate and dimethylallyl diphosphate used in the assay. Transcript levels in various tissues and life stages suggested that GGPP rather than GPP or FPP is used as a precursor to frontalin. Reduction of transcript levels by RNA interference of the isoprenyl diphosphate synthases identified GGPP synthase as having the largest effect on frontalin production, suggesting that frontalin is derived from a 20-carbon isoprenoid precursor rather than from the 10- or 15-carbon precursors. PMID:24167290

  19. Effects of conditioners on microshear bond strength to enamel after carbamide peroxide bleaching and/or casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) treatment.

    PubMed

    Adebayo, O A; Burrow, M F; Tyas, M J

    2007-11-01

    To evaluate (a) the enamel microshear bond strength (MSBS) of a universal adhesive and (b) the effects of conditioning with a self-etching primer adhesive with/without prior bleaching and/or casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) application. Thirty-five molars were cut into four sections, assigned randomly to four groups (no treatment; 16% carbamide peroxide bleaching; CPP-ACP-containing paste (Tooth Mousse, TM); bleaching and TM) and treated accordingly. Specimens were divided into two for bonding with either a self-etching primer (Clearfil SE Bond, CSE) or a total-etch adhesive (Single Bond, SB). Specimens for CSE bonding were subdivided for one of four preconditioning treatments (no conditioning; 30-40% phosphoric acid (PA); 15% EDTA; 20% polyacrylic acid conditioner (Cavity conditioner, CC) and treated. The adhesives were applied and resin composite bonded to the enamel using microtubes (internal diameter 0.75mm). Bonds were stressed in shear until failure, mean MSBS calculated and data analysed using ANOVA with Tukey's HSD test (alpha=0.05). The modes of bond failure were assessed and classified. Two-way ANOVA revealed significant differences between treatments (P<0.0001), conditioners (P<0.0001) and a significant interaction between treatments and conditioners (P=0.001). One-way ANOVA revealed no significant differences in MSBS following any of the treatments for SB; following TM application for CSE without preconditioning; and significant differences in MSBS following bleaching with and without TM application for CSE. With preconditioning, applying PA before CSE post-bleaching and either PA or CC before CSE post-TM application, resulted in significant differences in MSBS (P<0.05). The use of conditioners prior to bonding with the self-etching primer adhesive system on treated enamel may significantly improve bond strengths.

  20. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment.

    PubMed

    Ma, Zhan; Cao, Manlin; Liu, Yiwen; He, Yiqing; Wang, Yingzhi; Yang, Cuixia; Wang, Wenjuan; Du, Yan; Zhou, Muqing; Gao, Feng

    2010-08-01

    F1Fo-ATP synthase was originally thought to exclusively locate in the inner membrane of the mitochondria. However, recent studies prove the existence of ectopic F1Fo-ATP synthase on the outside of the cell membrane. Ectopic ATP synthase was proposed as a marker for tumor target therapy. Nevertheless, the protein transport mechanism of the ectopic ATP synthase is still unclear. The specificity of the ectopic ATP synthase, with regard to tumors, is questioned because of its widespread expression. In the current study, we constructed green fluorescent protein-ATP5B fusion protein and introduced it into HepG2 cells to study the localization of the ATP synthase. The expression of ATP5B was analyzed in six cell lines with different 'malignancies'. These cells were cultured in both normal and tumor-like acidic and hypoxic conditions. The results suggested that the ectopic expression of ATP synthase is a consequence of translocation from the mitochondria. The expression and catalytic activity of ectopic ATP synthase were similar on the surface of malignant cells as on the surface of less malignant cells. Interestingly, the expression of ectopic ATP synthase was not up-regulated in tumor-like acidic and hypoxic microenvironments. However, the catalytic activity of ectopic ATP synthase was up-regulated in tumor-like microenvironments. Therefore, the specificity of ectopic ATP synthase for tumor target therapy relies on the high level of catalytic activity that is observed in acidic and hypoxic microenvironments in tumor tissues.

  1. Umchs5, a gene coding for a class IV chitin synthase in Ustilago maydis.

    PubMed

    Xoconostle-Cázares, B; Specht, C A; Robbins, P W; Liu, Y; León, C; Ruiz-Herrera, J

    1997-12-01

    A fragment corresponding to a conserved region of a fifth gene coding for chitin synthase in the plant pathogenic fungus Ustilago maydis was amplified by means of the polymerase chain reaction (PCR). The amplified fragment was utilized as a probe for the identification of the whole gene in a genomic library of the fungus. The predicted gene product of Umchs5 has highest similarity with class IV chitin synthases encoded by the CHS3 genes from Saccharomyces cerevisiae and Candida albicans, chs-4 from Neurospora crassa, and chsE from Aspergillus nidulans. Umchs5 null mutants were constructed by substitution of most of the coding sequence with the hygromycin B resistance cassette. Mutants displayed significant reduction in growth rate, chitin content, and chitin synthase activity, specially in the mycelial form. Virulence to corn plantules was also reduced in the mutants. PCR was also used to obtain a fragment of a sixth chitin synthase, Umchs6. It is suggested that multigenic control of chitin synthesis in U. maydis operates as a protection mechanism for fungal viability in which the loss of one activity is partially compensated by the remaining enzymes. Copyright 1997 Academic Press.

  2. The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex

    PubMed Central

    Gay, Darren C.; Wagner, Drew T.; Meinke, Jessica L.; Zogzas, Charles E.; Gay, Glen R.; Keatinge-Clay, Adrian T.

    2016-01-01

    Polyketides such as the clinically-valuable antibacterial agent mupirocin are constructed by architecturally-sophisticated assembly lines known as trans-acyltransferase polyketide synthases. Organelle-sized megacomplexes composed of several copies of trans-acyltransferase polyketide synthase assembly lines have been observed by others through transmission electron microscopy to be located at the Bacillus subtilis plasma membrane, where the synthesis and export of the antibacterial polyketide bacillaene takes place. In this work we analyze ten crystal structures of trans-acyltransferase polyketide synthases ketosynthase domains, seven of which are reported here for the first time, to characterize a motif capable of zippering assembly lines into a megacomplex. While each of the three-helix LINKS (Laterally-INteracting Ketosynthase Sequence) motifs is observed to similarly dock with a spatially-reversed copy of itself through hydrophobic and ionic interactions, the amino acid sequences of this motif are not conserved. Such a code is appropriate for mediating homotypic contacts between assembly lines to ensure the ordered self-assembly of a noncovalent, yet tightly-knit, enzymatic network. LINKS-mediated lateral interactions would also have the effect of bolstering the vertical association of the polypeptides that comprise a polyketide synthase assembly line. PMID:26724270

  3. The effect of subacromial injections of autologous conditioned plasma versus cortisone for the treatment of symptomatic partial rotator cuff tears.

    PubMed

    von Wehren, Lutz; Blanke, Fabian; Todorov, Atanas; Heisterbach, Patricia; Sailer, Jannis; Majewski, Martin

    2016-12-01

    Rotator cuff tears are one of the most common causes of shoulder malfunction and pain, which lead to a significant reduction in the quality of life. This present study investigated the effects of subacromial platelet-rich plasma injections [i.e. autologous conditioned plasma (ACP) injections] as compared to standard subacromial cortisone injection therapy in 50 patients with partial rotator cuff tears. Before injection, and 6 weeks, 12 weeks and 6 months thereafter, the patients were assessed by the Constant-Murley score (CMS), the American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form (ASES), the simple shoulder test (SST) and a pain visual analogue scale (VAS). An MRI was also performed before and 6 months after injection. Both patient groups had statistically significant better shoulder score outcomes over time. ASES, SST and CMS outcomes after 12 versus 6 weeks were better in the ACP group as compared to the cortisone group. VAS, ASES and CMS outcomes after 12 weeks versus baseline in the ACP group were better as compared to the cortisone group. There was a statistically significant difference between ACP group and cortisone group 12 weeks after injection regarding VAS, ASES, SST and CMS in favour of the ACP group. The MRI showed an improvement in grade of tendinopathy in both groups, however, without statistically significant differences between the two groups. Compared with cortisone injections, ACP injections show earlier benefit as compared to cortisone injections although a statistically significant difference after 6 months could not be found. Therefore, subacromial ACP injections are a good alternative to subacromial cortisone injections, especially in patients with contraindication to cortisone. Therapeutic study, Level III.

  4. Caries-Preventive Effect of NaF, NaF plus TCP, NaF plus CPP-ACP, and SDF Varnishes on Sound Dentin and Artificial Dentin Caries in vitro.

    PubMed

    Wierichs, Richard J; Stausberg, Sabrina; Lausch, Julian; Meyer-Lueckel, Hendrik; Esteves-Oliveira, Marcella

    2018-01-01

    The aim of this study was to compare the caries-preventive effect of different fluoride varnishes on sound dentin as well as on artificial dentin caries-like lesions. Bovine dentin specimens (n = 220) with one sound surface (ST) and one artificial caries lesion (DT) were prepared and randomly allocated to 11 groups. The interventions before pH cycling were as follows: application of a varnish containing NaF (22,600 ppm F-; Duraphat [NaF0/NaF1]), NaF plus tricalcium phosphate (22,600 ppm F-; Clinpro White Varnish Mint [TCP0/TCP1]), NaF plus casein phosphopeptide-stabilized amorphous calcium phosphate complexes (CPP-ACP; 22,600 ppm F-; MI Varnish [CPP0/CPP1]), or silver diamine fluoride (SDF; 35,400 ppm F-; Cariestop 30% [SDF0/SDF1]) and no intervention (NNB/N0/N1). During pH cycling (14 days, 6 × 120 min demineralization/day) half of the specimens in each group were brushed (10 s; 2 times/day) with either fluoride-free ("0"; e.g., TCP0) or 1,100 ppm F- ("1"; e.g., TCP1) dentifrice slurry. In another subgroup, the specimens were pH cycled but not brushed (NNB). Differences in integrated mineral loss (ΔΔZ), lesion depth (ΔLD), and colorimetric values (ΔΔE) were calculated between the values after initial demineralization and those after pH cycling, using transversal microradiography and photographic images. After pH cycling, no discoloration could be observed. Furthermore, NNB, N0, and N1 showed significantly increased ΔZDT/LDDT and ΔZST/LDST values, indicating further demineralization. In contrast, CPP0, CPP1, SDF0, and SDF1 showed significantly decreased ΔZDT/LDDT values, indicating remineralization (p ≤ 0.004; paired t test). CPP0, CPP1, SDF0, and SDF1 showed significantly higher changes in ΔΔZDT/ΔLDDT and ΔΔZST/ΔLDST than NNB, N0, and N1 (p < 0.001; Bonferroni post hoc test). In conclusion, under the conditions chosen, all fluoride varnishes prevented further demineralization. However, only NaF plus CPP-ACP and SDF could remineralize artificial

  5. Structure of the ent -Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolf, Jeffrey D.; Dong, Liao-Bin; Cao, Hongnan

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterialmore » origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.« less

  6. Macromolecular organization of ATP synthase and complex I in whole mitochondria

    PubMed Central

    Davies, Karen M.; Strauss, Mike; Daum, Bertram; Kief, Jan H.; Osiewacz, Heinz D.; Rycovska, Adriana; Zickermann, Volker; Kühlbrandt, Werner

    2011-01-01

    We used electron cryotomography to study the molecular arrangement of large respiratory chain complexes in mitochondria from bovine heart, potato, and three types of fungi. Long rows of ATP synthase dimers were observed in intact mitochondria and cristae membrane fragments of all species that were examined. The dimer rows were found exclusively on tightly curved cristae edges. The distance between dimers along the rows varied, but within the dimer the distance between F1 heads was constant. The angle between monomers in the dimer was 70° or above. Complex I appeared as L-shaped densities in tomograms of reconstituted proteoliposomes. Similar densities were observed in flat membrane regions of mitochondrial membranes from all species except Saccharomyces cerevisiae and identified as complex I by quantum-dot labeling. The arrangement of respiratory chain proton pumps on flat cristae membranes and ATP synthase dimer rows along cristae edges was conserved in all species investigated. We propose that the supramolecular organization of respiratory chain complexes as proton sources and ATP synthase rows as proton sinks in the mitochondrial cristae ensures optimal conditions for efficient ATP synthesis. PMID:21836051

  7. 40 CFR 174.533 - Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Glycine max Herbicide-Resistant... Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from the requirement of a tolerance. Residues of Glycine max herbicide-resistant acetolactate synthase (GM-HRA) enzyme...

  8. 40 CFR 174.533 - Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Glycine max Herbicide-Resistant... Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from the requirement of a tolerance. Residues of Glycine max herbicide-resistant acetolactate synthase (GM-HRA) enzyme...

  9. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.

    PubMed

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.

  10. Contribution of extracellular ATP on the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation.

    PubMed

    Kita, Toshiyuki; Arakaki, Naokatu

    2015-01-01

    Cell-surface F1F0-ATP synthase was involved in the cell signaling mediating various biological functions. Recently, we found that cell-surface F1F0-ATP synthase plays a role on intracellular triacylglycerol accumulation in adipocytes, and yet, the underlying mechanisms remained largely unknown. In this study, we investigated the role of extracellular ATP on the intracellular triacylglycerol accumulation. We demonstrated that significant amounts of ATP were produced extracellularly by cultured 3T3-L1 adipocytes and that the antibodies against α and β subunits of F1F0-ATP synthase inhibited the extracellular ATP production. Piceatannol, a F1F0-ATP synthase inhibitor, and apyrase, an enzyme which degrades extracellular ATP, suppressed triacylglycerol accumulation. The selective P2Y1 receptor antagonist MRS2500 significantly inhibited triacylglycerol accumulation, whereas the selective P2X receptor antagonist NF279 has less effect. The present results indicate that cell-surface F1F0-ATP synthase on adipocytes is functional in extracellular ATP production and that the extracellular ATP produced contributes, at least in part, to the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation in adipocytes through P2Y1 receptor.

  11. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds.

    PubMed

    Kim, Hae Jin; Silva, Jillian E; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B

    2015-07-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Toward production of jet fuel functionality in oilseeds: Identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    DOE PAGES

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; ...

    2015-05-11

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs ( CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seedsmore » and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Here, Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs ( CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seedsmore » and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Here, Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.« less

  14. Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production

    PubMed Central

    2013-01-01

    Background Polyketides are one of the most important classes of secondary metabolites and usually make good drugs. Currently, heterologous production of fungal polyketides for developing a high potential industrial application system with high production capacity and pharmacutical feasibility was still at its infancy. Pichia pastoris is a highly successful system for the high production of a variety of heterologous proteins. In this work, we aim to develop a P. pastoris based in vivo fungal polyketide production system for first time and evaluate its feasibility for future industrial application. Results A recombinant P. pastoris GS115-NpgA-ATX with Aspergillus nidulans phosphopantetheinyl transferase (PPtase) gene npgA and Aspergillus terrus 6-methylsalicylic acid (6-MSA) synthase (6-MSAS) gene atX was constructed. A specific compound was isolated and idenified as 6-MSA by HPLC, LC-MS and NMR. Transcription of both genes were detected. In 5-L bioreactor, the GS115-NpgA-ATX grew well and produced 6-MSA quickly until reached a high value of 2.2 g/L by methanol induction for 20 hours. Thereafter, the cells turned to death ascribing to high concentration of antimicrobial 6-MSA. The distribution of 6-MSA changed that during early and late induction phase it existed more in supernatant while during intermediate stage it mainly located intracellular. Different from 6-MSA production strain, recombinant M. purpureus pksCT expression strains for citrinin intermediate production, no matter PksCT located in cytoplasm or in peroxisomes, did not produce any specfic compound. However, both npgA and pksCT transcripted effectively in cells and western blot analysis proved the expression of PPtase. Then the PPTase was expressed and purified, marked by fluorescent probes, and reacted with purified ACP domain and its mutant ACPm of PksCT. Fluoresence was only observed in ACP but not ACPm, indicating that the PPTase worked well with ACP to make it bioactive holo-ACP. Thus, some

  15. Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production.

    PubMed

    Gao, Limei; Cai, Menghao; Shen, Wei; Xiao, Siwei; Zhou, Xiangshan; Zhang, Yuanxing

    2013-09-08

    Polyketides are one of the most important classes of secondary metabolites and usually make good drugs. Currently, heterologous production of fungal polyketides for developing a high potential industrial application system with high production capacity and pharmaceutical feasibility was still at its infancy. Pichia pastoris is a highly successful system for the high production of a variety of heterologous proteins. In this work, we aim to develop a P. pastoris based in vivo fungal polyketide production system for first time and evaluate its feasibility for future industrial application. A recombinant P. pastoris GS115-NpgA-ATX with Aspergillus nidulans phosphopantetheinyl transferase (PPtase) gene npgA and Aspergillus terrus 6-methylsalicylic acid (6-MSA) synthase (6-MSAS) gene atX was constructed. A specific compound was isolated and identified as 6-MSA by HPLC, LC-MS and NMR. Transcription of both genes were detected. In 5-L bioreactor, the GS115-NpgA-ATX grew well and produced 6-MSA quickly until reached a high value of 2.2 g/L by methanol induction for 20 hours. Thereafter, the cells turned to death ascribing to high concentration of antimicrobial 6-MSA. The distribution of 6-MSA changed that during early and late induction phase it existed more in supernatant while during intermediate stage it mainly located intracellular. Different from 6-MSA production strain, recombinant M. purpureus pksCT expression strains for citrinin intermediate production, no matter PksCT located in cytoplasm or in peroxisomes, did not produce any specific compound. However, both npgA and pksCT transcripted effectively in cells and western blot analysis proved the expression of PPtase. Then the PPTase was expressed and purified, marked by fluorescent probes, and reacted with purified ACP domain and its mutant ACPm of PksCT. Fluoresence was only observed in ACP but not ACPm, indicating that the PPTase worked well with ACP to make it bioactive holo-ACP. Thus, some other factors may

  16. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus × domestica.

    PubMed

    Brendolise, Cyril; Yauk, Yar-Khing; Eberhard, Ellen D; Wang, Mindy; Chagne, David; Andre, Christelle; Greenwood, David R; Beuning, Lesley L

    2011-07-01

    The pentacyclic triterpenes, in particular ursolic acid and oleanolic acid and their derivatives, exist abundantly in the plant kingdom, where they are well known for their anti-inflammatory, antitumour and antimicrobial properties. α-Amyrin and β-amyrin are the precursors of ursolic and oleanolic acids, respectively, formed by concerted cyclization of squalene epoxide by a complex synthase reaction. We identified three full-length expressed sequence tag sequences in cDNA libraries constructed from apple (Malus × domestica 'Royal Gala') that were likely to encode triterpene synthases. Two of these expressed sequence tag sequences were essentially identical (> 99% amino acid similarity; MdOSC1 and MdOSC3). MdOSC1 and MdOSC2 were expressed by transient expression in Nicotiana benthamiana leaves and by expression in the yeast Pichia methanolica. The resulting products were analysed by GC and GC-MS. MdOSC1 was shown to be a mixed amyrin synthase (a 5 : 1 ratio of α-amyrin to β-amyrin). MdOSC1 is the only triterpene synthase so far identified in which the level of α-amyrin produced is > 80% of the total product and is, therefore, primarily an α-amyrin synthase. No product was evident for MdOSC2 when expressed either transiently or in yeast, suggesting that this putative triterpene synthase is either encoded by a pseudogene or does not express well in these systems. Transcript expression analysis in Royal Gala indicated that the genes are mostly expressed in apple peel, and that the MdOSC2 expression level was much lower than that of MdOSC1 and MdOSC3 in all the tissues tested. Amyrin content analysis was undertaken by LC-MS, and demonstrated that levels and ratios differ between tissues, but that the true consequence of synthase activity is reflected in the ursolic/oleanolic acid content and in further triterpenoids derived from them. Phylogenetic analysis placed the three triterpene synthase sequences with other triterpene synthases that encoded either

  17. Adaptive responses of GLUT-4 and citrate synthase in fast-twitch muscle of voluntary running rats

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Halseth, A. E.

    1995-01-01

    Glucose transporter (GLUT-4) protein, hexokinase, and citrate synthase (proteins involved in oxidative energy production from blood glucose catabolism) increase in response to chronically elevated neuromuscular activity. It is currently unclear whether these proteins increase in a coordinated manner in response to this stimulus. Therefore, voluntary wheel running (WR) was used to chronically overload the fast-twitch rat plantaris muscle and the myocardium, and the early time courses of adaptative responses of GLUT-4 protein and the activities of hexokinase and citrate synthase were characterized and compared. Plantaris hexokinase activity increased 51% after just 1 wk of WR, whereas GLUT-4 and citrate synthase were increased by 51 and 40%, respectively, only after 2 wk of WR. All three variables remained comparably elevated (+50-64%) through 4 wk of WR. Despite the overload of the myocardium with this protocol, no substantial elevations in these variables were observed. These findings are consistent with a coordinated upregulation of GLUT-4 and citrate synthase in the fast-twitch plantaris, but not in the myocardium, in response to this increased neuromuscular activity. Regulation of hexokinase in fast-twitch muscle appears to be uncoupled from regulation of GLUT-4 and citrate synthase, as increases in the former are detectable well before increases in the latter.

  18. The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes.

    PubMed

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T; Galway, Moira E; Mansfield, Shawn D; Hocart, Charles H; Wasteneys, Geoffrey O

    2013-05-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature.

  19. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria×ananassa)

    PubMed Central

    Hanhineva, Kati; Kokko, Harri; Siljanen, Henri; Rogachev, Ilana; Aharoni, Asaph; Kärenlampi, Sirpa O.

    2009-01-01

    The gene encoding stilbene synthase is frequently used to modify plant secondary metabolism with the aim of producing the self-defence phytoalexin resveratrol. In this study, strawberry (Fragaria×ananassa) was transformed with the NS-Vitis3 gene encoding stilbene synthase from frost grape (Vitis riparia) under the control of the cauliflower mosaic virus 35S and the floral filament-specific fil1 promoters. Changes in leaf metabolites were investigated with UPLC-qTOF-MS (ultra performance liquid chromatography-quadrupole time of flight mass spectrometry) profiling, and increased accumulation of cinnamate, coumarate, and ferulate derivatives concomitantly with a decrease in the levels of flavonols was observed, while the anticipated resveratrol or its derivatives were not detected. The changed metabolite profile suggested that chalcone synthase was down-regulated by the genetic modification; this was verified by decreased chalcone synthase transcript levels. Changes in the levels of phenolic compounds led to increased susceptibility of the transgenic strawberry to grey mould fungus. PMID:19443619

  20. Characterization of a recombinant type II 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Helicobacter pylori.

    PubMed

    Webby, Celia J; Patchett, Mark L; Parker, Emily J

    2005-08-15

    DAH7P (3-Deoxy-D-arabino-heptulosonate 7-phosphate) synthase catalyses the condensation reaction between phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) as the first committed step in the biosynthesis of aromatic compounds in plants and micro-organisms. Previous work has identified two families of DAH7P synthases based on sequence similarity and molecular mass, with the majority of the mechanistic and structural studies being carried out on the type I paralogues from Escherichia coli. Whereas a number of organisms possess genes encoding both type I and type II DAH7P synthases, the pathogen Helicobacter pylori has only a single, type II, enzyme. Recombinant DAH7P synthase from H. pylori was partially solubilized by co-expression with chaperonins GroEL/GroES in E. coli, and purified to homogeneity. The enzyme reaction follows an ordered sequential mechanism with the following kinetic parameters: K(m) (PEP), 3 microM; K(m) (E4P), 6 microM; and kcat, 3.3 s(-1). The enzyme reaction involves interaction of the si face of PEP with the re face of E4P. H. pylori DAH7P synthase is not inhibited by phenylalanine, tyrosine, tryptophan or chorismate. EDTA inactivates the enzyme, and activity is restored by a range of bivalent metal ions, including (in order of decreasing effectiveness) Co2+, Mn2+, Ca2+, Mg2+, Cu2+ and Zn2+. Analysis of type II DAH7P synthase sequences reveals several highly conserved motifs, and comparison with the type I enzymes suggests that catalysis by these two enzyme types occurs on a similar active-site scaffold and that the two DAH7P synthase families may indeed be distantly related.