ERIC Educational Resources Information Center
Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen
2012-01-01
Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…
Luna-Lario, P; Ojeda, N; Tirapu-Ustarroz, J; Pena, J
2016-06-16
To analyze the impact of acquired brain injury towards the community integration (professional career, disability, and dependence) in a sample of people affected by vascular, traumatic and tumor etiology acquired brain damage, over a two year time period after the original injury, and also to examine what sociodemographic variables, premorbid and injury related clinical data can predict the level of the person's integration into the community. 106 adults sample suffering from acquired brain injury who were attended by the Neuropsychology and Neuropsychiatry Department at Hospital of Navarra (Spain) affected by memory deficit as their main sequel. Differences among groups have been analyzed by using t by Student, chi squared and U by Mann-Whitney tests. 19% and 29% of the participants who were actively working before the injury got back their previous status within one and two years time respectively. 45% of the total sample were recognized disabled and 17% dependant. No relationship between sociodemographic and clinical variables and functional parameters observed were found. Acquired brain damage presents a high intensity impact on affected person's life trajectory. Nevertheless, in Spain, its consequences at sociolaboral adjustment over the the two years following the damage through functional parameters analyzed with official governmental means over a vascular, traumatic and tumor etiology sample had never been studied before.
Creativity, brain, and art: biological and neurological considerations.
Zaidel, Dahlia W
2014-01-01
Creativity is commonly thought of as a positive advance for society that transcends the status quo knowledge. Humans display an inordinate capacity for it in a broad range of activities, with art being only one. Most work on creativity's neural substrates measures general creativity, and that is done with laboratory tasks, whereas specific creativity in art is gleaned from acquired brain damage, largely in observing established visual artists, and some in visual de novo artists (became artists after the damage). The verb "to create" has been erroneously equated with creativity; creativity, in the classic sense, does not appear to be enhanced following brain damage, regardless of etiology. The turning to communication through art in lieu of language deficits reflects a biological survival strategy. Creativity in art, and in other domains, is most likely dependent on intact and healthy knowledge and semantic conceptual systems, which are represented in several pathways in the cortex. It is adversely affected when these systems are dysfunctional, for congenital reasons (savant autism) or because of acquired brain damage (stroke, dementia, Parkinson's), whereas inherent artistic talent and skill appear less affected. Clues to the neural substrates of general creativity and specific art creativity can be gleaned from considering that art is produced spontaneously mainly by humans, that there are unique neuroanatomical and neurofunctional organizations in the human brain, and that there are biological antecedents of innovation in animals.
Creativity, brain, and art: biological and neurological considerations
Zaidel, Dahlia W.
2014-01-01
Creativity is commonly thought of as a positive advance for society that transcends the status quo knowledge. Humans display an inordinate capacity for it in a broad range of activities, with art being only one. Most work on creativity’s neural substrates measures general creativity, and that is done with laboratory tasks, whereas specific creativity in art is gleaned from acquired brain damage, largely in observing established visual artists, and some in visual de novo artists (became artists after the damage). The verb “to create” has been erroneously equated with creativity; creativity, in the classic sense, does not appear to be enhanced following brain damage, regardless of etiology. The turning to communication through art in lieu of language deficits reflects a biological survival strategy. Creativity in art, and in other domains, is most likely dependent on intact and healthy knowledge and semantic conceptual systems, which are represented in several pathways in the cortex. It is adversely affected when these systems are dysfunctional, for congenital reasons (savant autism) or because of acquired brain damage (stroke, dementia, Parkinson’s), whereas inherent artistic talent and skill appear less affected. Clues to the neural substrates of general creativity and specific art creativity can be gleaned from considering that art is produced spontaneously mainly by humans, that there are unique neuroanatomical and neurofunctional organizations in the human brain, and that there are biological antecedents of innovation in animals. PMID:24917807
Rehabilitation of discourse impairments after acquired brain injury
Gindri, Gigiane; Pagliarin, Karina Carlesso; Casarin, Fabíola Schwengber; Branco, Laura Damiani; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz
2014-01-01
Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion All but one article found that patient performance improved following participation in a discourse rehabilitation program. PMID:29213880
Grammatical Complexity in Letters Written by People with Acquired Brain Impairment
ERIC Educational Resources Information Center
Mortensen, Lynne
2005-01-01
This study investigated written language in the form of personal and formal letters written by 10 people who sustained a stroke and 10 people who sustained traumatic brain injury, and compared their performance with 15 non brain-damaged people. In order to explore the writing skills of these individuals from a sociocultural perspective, a…
Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius
2015-01-01
Background and Purpose Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions regarding if AOS emerges from a unique pattern of brain damage or as a sub-element of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Methods Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The Apraxia of Speech Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with AOS and/or aphasia. Localized brain damage was identified using structural MRI, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS and/or aphasia, and brain damage. Results The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS and/or aphasia were associated with damage to the temporal lobe and the inferior pre-central frontal regions. Conclusion AOS likely occurs in conjunction with aphasia due to the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. PMID:25908457
Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius
2015-06-01
Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions on whether AOS emerges from a unique pattern of brain damage or as a subelement of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The AOS Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with both AOS and aphasia. Localized brain damage was identified using structural magnetic resonance imaging, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS or aphasia, and brain damage. The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS or aphasia were associated with damage to the temporal lobe and the inferior precentral frontal regions. AOS likely occurs in conjunction with aphasia because of the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. © 2015 American Heart Association, Inc.
ERIC Educational Resources Information Center
Staudt, Martin; Ticini, Luca F.; Grodd, Wolfgang; Krageloh-Mann, Ingeborg; Karnath, Hans-Otto
2008-01-01
Early periventricular brain lesions can not only cause cerebral palsy, but can also induce a reorganization of language. Here, we asked whether these different functional consequences can be attributed to topographically distinct portions of the periventricular white matter damage. Eight patients with pre- and perinatally acquired left-sided…
Function and Dysfunction of Prefrontal Brain Circuitry in Alcoholic Korsakoff’s Syndrome
Oscar-Berman, Marlene
2013-01-01
The signature symptom of alcohol-induced persisting amnestic disorder, more commonly referred to as alcoholic Korsakoff’s syndrome (KS), is anterograde amnesia, or memory loss for recent events, and until the mid 20th Century, the putative brain damage was considered to be in diencephalic and medial temporal lobe structures. Overall intelligence, as measured by standardized IQ tests, usually remains intact. Preservation of IQ occurs because memories formed before the onset of prolonged heavy drinking — the types of information and abilities tapped by intelligence tests — remain relatively well preserved compared with memories recently acquired. However, clinical and experimental evidence has shown that neurobehavioral dysfunction in alcoholic patients with KS does include nonmnemonic abilities, and further brain damage involves extensive frontal and limbic circuitries. Among the abnormalities are confabulation, disruption of elements of executive functioning and cognitive control, and emotional impairments. Here, we discuss the relationship between neurobehavioral impairments in KS and alcoholism-related brain damage. More specifically, we examine the role of damage to prefrontal brain systems in the neuropsychological profile of alcoholic KS. PMID:22538385
ERIC Educational Resources Information Center
Waldie, Karen E.; Hausmann, Markus
2010-01-01
Visual line bisection is a reliable and valid laterality task that is typically used with patients with acquired brain damage to assess right hemisphere functioning. Neurologically normal individuals tend to bisect lines to the left of the objective midline whereas those with right parietal damage bisect lines to the right. In this study children…
Significance of the Feuerstein approach in neurocognitive rehabilitation.
Lebeer, Jo
2016-06-18
The theory of Structural Cognitive Modifiability and Mediated Learning Experience of Reuven Feuerstein states that individuals with brain impairment, because of congenital or acquired origin, may substantially and structurally improve their cognitive functioning, by a systematic intervention based on a specific, criteria-based type of interaction ("mediated learning"). Three application systems are based on it: a dynamic-interactive assessment of learning capacity and processes of learning, the LPAD (Learning Propensity Assessment Device); a cognitive intervention program called "Instrumental Enrichment Program", which trains cognitive, metacognitive and executive functions; and a program, which is oriented at working in context, Shaping Modifying Environments. These programs have been applied in widely different target groups: from children and young adults with learning and developmental disabilities, at risk of school failure, or having failed at school, because of socio-economic disadvantage or congenital neurological impairment; disadvantaged youngsters and adults in vocational training, to elderly people at the beginning of a dementia process. Experience with cognitive rehabilitation of children and adults with acquired brain damage, has been relatively recent, first in the Feuerstein Institute's Brain Injury Unit in Jerusalem, later in other centers in different parts of the world; therefore scientific data are scarce. The purpose of this paper is to examine how the Feuerstein-approach fits into the goals and proposed approaches of cognitive rehabilitation, and to explore its relevance for assessment and intervention in individuals with congenital or acquired brain damage. The methodology of the Feuerstein approach consists of four pillars: dynamic assessment, cognitive activation, mediated learning and shaping a modifying environment. The criteria of mediated learning experience are explained with specific reference to people with acquired brain injury. The procedure of learning propensity assessment device uses visuo-spatial and verbal tasks known from neuropsychological assessment (such as Rey's complex figure drawing), as well as a in a pre-test - brief intervention - post-test format. Cognitive activation is done in various ways: a paper-and-pencil relatively content-free program called "instrumental enrichment", with transfer of learned principles into daily life situations, followed by metacognitive feedback. Four case histories of acquired brain damage are analyzed: a 19 year old man with extensive post-astrocytoma frontotemporal brain lesions; a 19 year old man with bilateral frontal and right temporal and parieto-occipital parenchymatous destruction after a traumatic brain injury; a 24 year old man with hemispherectomy for intractable epilepsy because of Sturge-Weber syndrome; and a 30-year old man with left porencephalic cyst after cerebral hemorrhage. Structural cognitive improvement could be demonstrated in positive change scores in visuo-spatial memory, associative and verbal memory, abstract thinking, and organizing tasks, even more than 10 years post-TBI. In some cases a rise in IQ has been documented. Improvement in daily life functioning and academic skills (re)learning has also been seen. Though impossible to claim scientific evidence, the case histories nevertheless suggest the importance of interactive assessment in designing intervention programs which have sufficient intensity, frequency, duration and consistency of mediation; furthermore, an essential ingredient is the ecological approach which requires working with the patient and the whole network around; a firm "belief system" or that modifiability is possible even with severe brain damage and many years after the injury; a cognitive, metacognitive and executive approach, and a quality of interaction according to criteria of mediated learning. They suggest that Feuerstein approach may offer interesting perspectives to cognitive rehabilitation. More extensive research is needed to provide a broader scientific evidence base.
Stuttering Due To Ischemic Stroke
Sahin, Huseyin Alparslan; Krespi, Yakup; Yilmaz, Ahmet; Coban, Oguzhan
2005-01-01
Acquired stuttering is a disorder of the fluency of speech. The mechanism underlying stuttering is unknown. It may occur after bilateral and unilateral cortical or subcortical brain damage. We report two cases who had stuttering resulting from left parietal infarction. PMID:16082078
Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.
Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H
2017-01-01
Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p < 0.001). The RBD group was significantly less able than the LBD group to recognize sadness (p = 0.047) and neutrality (p = 0.015). Negative correlations were found between age and MEB scores for all groups, particularly the NC and RBD groups. Our findings indicated that stroke affecting the auditory cerebrum can cause acquired amusia with greater severity in RBD than LBD. These results supported the "valence hypothesis" of right hemisphere dominance in processing negative emotions.
Impaired holistic processing of unfamiliar individual faces in acquired prosopagnosia.
Ramon, Meike; Busigny, Thomas; Rossion, Bruno
2010-03-01
Prosopagnosia is an impairment at individualizing faces that classically follows brain damage. Several studies have reported observations supporting an impairment of holistic/configural face processing in acquired prosopagnosia. However, this issue may require more compelling evidence as the cases reported were generally patients suffering from integrative visual agnosia, and the sensitivity of the paradigms used to measure holistic/configural face processing in normal individuals remains unclear. Here we tested a well-characterized case of acquired prosopagnosia (PS) with no object recognition impairment, in five behavioral experiments (whole/part and composite face paradigms with unfamiliar faces). In all experiments, for normal observers we found that processing of a given facial feature was affected by the location and identity of the other features in a whole face configuration. In contrast, the patient's results over these experiments indicate that she encodes local facial information independently of the other features embedded in the whole facial context. These observations and a survey of the literature indicate that abnormal holistic processing of the individual face may be a characteristic hallmark of prosopagnosia following brain damage, perhaps with various degrees of severity. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Sihvonen, Aleksi J; Särkämö, Teppo; Ripollés, Pablo; Leo, Vera; Saunavaara, Jani; Parkkola, Riitta; Rodríguez-Fornells, Antoni; Soinila, Seppo
2017-09-12
Brain damage causing acquired amusia disrupts the functional music processing system, creating a unique opportunity to investigate the critical neural architectures of musical processing in the brain. In this longitudinal fMRI study of stroke patients (N = 41) with a 6-month follow-up, we used natural vocal music (sung with lyrics) and instrumental music stimuli to uncover brain activation and functional network connectivity changes associated with acquired amusia and its recovery. In the acute stage, amusic patients exhibited decreased activation in right superior temporal areas compared to non-amusic patients during instrumental music listening. During the follow-up, the activation deficits expanded to comprise a wide-spread bilateral frontal, temporal, and parietal network. The amusics showed less activation deficits to vocal music, suggesting preserved processing of singing in the amusic brain. Compared to non-recovered amusics, recovered amusics showed increased activation to instrumental music in bilateral frontoparietal areas at 3 months and in right middle and inferior frontal areas at 6 months. Amusia recovery was also associated with increased functional connectivity in right and left frontoparietal attention networks to instrumental music. Overall, our findings reveal the dynamic nature of deficient activation and connectivity patterns in acquired amusia and highlight the role of dorsal networks in amusia recovery.
Paulig, M; Böttger, S; Sommer, M; Prosiegel, M
1998-12-01
Depersonalization after brain damage is still only rarely reported and poorly understood. We describe three patients between the ages of 21 and 25 who experienced depersonalization and derealization for periods of 6 weeks to 4 months, two after traumatic brain injury, the third after surgical and radiation treatment of a pineocytoma. Each one believed to be living in a nightmare and thought about committing suicide in order to wake up. One patient developed symptoms as described in Cotard delusion. Aspects of neuroanatomy, psychodynamics, and anthropology are discussed with reference to the literature. Frontal and temporal lesions seem only to play a facilitating role but not to be a necessary condition. There is evidence for additional influence of psychological and premorbid personality factors. Summarizing the current state of information we consider depersonalization with the experience of being in a dream or being dead as a heuristic reaction to brain damage. Similar models have already been discussed in neuropsychological disorders as for instance reduplicative paramnesias, neglect, and anosognosia.
Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma
Lötsch, Jörn; Ultsch, Alfred; Eckhardt, Maren; Huart, Caroline; Rombaux, Philippe; Hummel, Thomas
2016-01-01
The presence of cerebral lesions in patients with neurosensory alterations provides a unique window into brain function. Using a fuzzy logic based combination of morphological information about 27 olfactory-eloquent brain regions acquired with four different brain imaging techniques, patterns of brain damage were analyzed in 127 patients who displayed anosmia, i.e., complete loss of the sense of smell (n = 81), or other and mechanistically still incompletely understood olfactory dysfunctions including parosmia, i.e., distorted perceptions of olfactory stimuli (n = 50), or phantosmia, i.e., olfactory hallucinations (n = 22). A higher prevalence of parosmia, and as a tendency also phantosmia, was observed in subjects with medium overall brain damage. Further analysis showed a lower frequency of lesions in the right temporal lobe in patients with parosmia than in patients without parosmia. This negative direction of the differences was unique for parosmia. In anosmia, and also in phantosmia, lesions were more frequent in patients displaying the respective symptoms than in those without these dysfunctions. In anosmic patients, lesions in the right olfactory bulb region were much more frequent than in patients with preserved sense of smell, whereas a higher frequency of carriers of lesions in the left frontal lobe was observed for phantosmia. We conclude that anosmia, and phantosmia, are the result of lost function in relevant brain areas whereas parosmia is more complex, requiring damaged and intact brain regions at the same time. PMID:26937377
Autism Spectrum Disorders (ASD) in Blind Children: Very High Prevalence, Potentially Better Outlook
ERIC Educational Resources Information Center
Jure, Rubin; Pogonza, Ramón; Rapin, Isabelle
2016-01-01
Autism spectrum disorders affected 19 of 38 unselected children at a school for the blind in Cordoba, Argentina. Autism was linked to total congenital blindness, not blindness' etiology, acquired or incomplete blindness, sex, overt brain damage, or socioeconomic status. Autism "recovery," had occurred in 4 verbal children. Congenital…
Speed of perceptual grouping in acquired brain injury.
Kurylo, Daniel D; Larkin, Gabriella Brick; Waxman, Richard; Bukhari, Farhan
2014-09-01
Evidence exists that damage to white matter connections may contribute to reduced speed of information processing in traumatic brain injury and stroke. Damage to such axonal projections suggests a particular vulnerability to functions requiring integration across cortical sites. To test this prediction, measurements were made of perceptual grouping, which requires integration of stimulus components. A group of traumatic brain injury and cerebral vascular accident patients and a group of age-matched healthy control subjects viewed arrays of dots and indicated the pattern into which stimuli were perceptually grouped. Psychophysical measurements were made of perceptual grouping as well as processing speed. The patient group showed elevated grouping thresholds as well as extended processing time. In addition, most patients showed progressive slowing of processing speed across levels of difficulty, suggesting reduced resources to accommodate increased demands on grouping. These results support the prediction that brain injury results in a particular vulnerability to functions requiring integration of information across the cortex, which may result from dysfunction of long-range axonal connection.
Pastore, Valentina; Colombo, Katia; Maestroni, Deborah; Galbiati, Susanna; Villa, Federica; Recla, Monica; Locatelli, Federica; Strazzer, Sandra
2015-01-01
This study aims to describe psychological problems, self-esteem difficulties and body dissatisfaction in a sample of adolescents with acquired brain lesions and to compare them with an age- and gender-matched control group. In an experimental design, the psychological profile of 26 adolescents with brain lesions of traumatic or vascular aetiology, aged 12-18 years, was compared with that of 18 typically-developing subjects. Moreover, within the clinical group, patients with TBI were compared with patients with vascular lesions. The psychological and adaptive profile of the adolescents was assessed by a specific protocol, including CBCL, VABS, RSES, EDI-2 and BES. Adolescents with brain lesions showed more marked psychological problems than their healthy peers; they also presented with a greater impairment of adaptive skills and a lower self-esteem. No significant differences were found between patients with traumatic lesions and patients with vascular lesions. Adolescents with acquired brain lesions were at higher risk to develop psychological and behavioural difficulties. Furthermore, in the clinical sample, some variables such as the long hospitalization and isolation from family and peers were associated to a greater psychological burden than the aetiology of the brain damage.
Steele, C A; Powell, J L; Kemp, G J; Halford, J C G; Wilding, J P; Harrold, J A; Kumar, S V D; Cuthbertson, D J; Cross, A A; Javadpour, M; MacFarlane, I A; Stancak, A A; Daousi, C
2015-09-01
Obesity is common following hypothalamic damage due to tumours. Homeostatic and non-homeostatic brain centres control appetite and energy balance but their interaction in the presence of hypothalamic damage remains unknown. We hypothesized that abnormal appetite in obese patients with hypothalamic damage results from aberrant brain processing of food stimuli. We sought to establish differences in activation of brain food motivation and reward neurocircuitry in patients with hypothalamic obesity (HO) compared with patients with hypothalamic damage whose weight had remained stable. In a cross-sectional study at a University Clinical Research Centre, we studied 9 patients with HO, 10 age-matched obese controls, 7 patients who remained weight-stable following hypothalamic insult (HWS) and 10 non-obese controls. Functional magnetic resonance imaging was performed in the fasted state, 1 h and 3 h after a test meal, while subjects were presented with images of high-calorie foods, low-calorie foods and non-food objects. Insulin, glucagon-like peptide-1, Peptide YY and ghrelin were measured throughout the experiment, and appetite ratings were recorded. Mean neural activation in the posterior insula and lingual gyrus (brain areas linked to food motivation and reward value of food) in HWS were significantly lower than in the other three groups (P=0.001). A significant negative correlation was found between insulin levels and posterior insula activation (P=0.002). Neural pathways associated with food motivation and reward-related behaviour, and the influence of insulin on their activation may be involved in the pathophysiology of HO.
ERIC Educational Resources Information Center
Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B. L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.
2010-01-01
Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In…
Shoemaker, Ritchie C; House, Dennis; Ryan, James C
2014-01-01
Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.
Salas Riquelme, Christian E.; Radovic, Darinka; Castro, Osvaldo; Turnbull, Oliver H.
2015-01-01
The study of emotional changes after brain injury has contributed enormously to the understanding of the neural basis of emotion. However, little attention has been placed on the methods used to elicit emotional responses in people with brain damage. Of particular interest are subjects with right hemisphere [RH] cortical lesions, who have been described as presenting impairment in emotional processing. In this article, an internal and external mood induction procedure [MIP] was used to trigger positive and negative emotions, in a sample of 10 participants with RH damage, and 15 healthy controls. Emotional experience was registered by using a self-report questionnaire. As observed in previous studies, internal and external MIPs were equally effective in eliciting the target emotion, but the internal procedure generated higher levels of intensity. Remarkably, participants with RH lesions were equally able to experience both positive and negative affect. The results are discussed in relation to the role of the RH in the capacity to experience negative emotions. PMID:25762951
Salas Riquelme, Christian E; Radovic, Darinka; Castro, Osvaldo; Turnbull, Oliver H
2015-01-01
The study of emotional changes after brain injury has contributed enormously to the understanding of the neural basis of emotion. However, little attention has been placed on the methods used to elicit emotional responses in people with brain damage. Of particular interest are subjects with right hemisphere [RH] cortical lesions, who have been described as presenting impairment in emotional processing. In this article, an internal and external mood induction procedure [MIP] was used to trigger positive and negative emotions, in a sample of 10 participants with RH damage, and 15 healthy controls. Emotional experience was registered by using a self-report questionnaire. As observed in previous studies, internal and external MIPs were equally effective in eliciting the target emotion, but the internal procedure generated higher levels of intensity. Remarkably, participants with RH lesions were equally able to experience both positive and negative affect. The results are discussed in relation to the role of the RH in the capacity to experience negative emotions.
Immoral behaviour following brain damage: A review.
Roberts, Stefanie; Henry, Julie D; Molenberghs, Pascal
2018-04-16
Despite the apparent sociability of human kind, immoral behaviour is ever present in society. The term 'immoral behaviour' represents a complex array of conduct, ranging from insensitivity to topics of conversation through to violent assault and murder. To better understand the neuroscience of immoral behaviour, this review investigates two clinical populations that commonly present with changes in moral behaviour - behavioural-variant frontotemporal dementia and acquired brain injuries. Based on evidence from these groups, it is argued that rather than a single underlying cause, immoral behaviour can result from three distinct types of cognitive failure: (1) problems understanding others; (2) difficulties controlling behaviour; or (3) deficits in the capacity to make appropriate emotional contributions. Each of these failures is associated with damage to different brain regions. A more nuanced approach to the neuroscience of immoral behaviour has important implications for our understanding of immoral behaviour in a wide range of clinical groups, as well as human society more broadly. © 2018 The British Psychological Society.
Functionality predictors in acquired brain damage.
Huertas Hoyas, E; Pedrero Pérez, E J; Águila Maturana, A M; García López-Alberca, S; González Alted, C
2015-01-01
Most individuals who have survived an acquired brain injury present consequences affecting the sensorimotor, cognitive, affective or behavioural components. These deficits affect the proper performance of daily living activities. The aim of this study is to identify functional differences between individuals with unilateral acquired brain injury using functional independence, capacity, and performance of daily activities. Descriptive cross-sectional design with a sample of 58 people, with right-sided injury (n=14 TBI; n=15 stroke) or left-sided injury (n = 14 TBI, n = 15 stroke), right handed, and with a mean age of 47 years and time since onset of 4 ± 3.65 years. The functional assessment/functional independence measure (FIM/FAM) and the International Classification of Functioning (ICF) were used for the study. The data showed significant differences (P<.000), and a large size effect (dr=0.78) in the cross-sectional estimates, and point to fewer restrictions for patients with a lesion on their right side. The major differences were in the variables 'speaking' and 'receiving spoken messages' (ICF variables), and 'Expression', 'Writing' and 'intelligible speech' (FIM/FAM variables). In the linear regression analysis, the results showed that only 4 FIM/FAM variables, taken together, predict 44% of the ICF variance, which measures the ability of the individual, and up to 52% of the ICF, which measures the individual's performance. Gait alone predicts a 28% of the variance. It seems that individuals with acquired brain injury in the left hemisphere display important differences regarding functional and communication variables. The motor aspects are an important prognostic factor in functional rehabilitation. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
Perin, Cecilia; Meroni, Roberto; Rega, Vincenzo; Braghetto, Giacomo; Cerri, Cesare Giuseppe
2017-10-01
Introduction Tracheostomy weaning in patients who suffered a severe acquired brain injury is often a challenge and decannulation failures are not uncommon. Objective Our study objective is to describe the decannulation failure rate in patients undergoing rehabilitation following a severe acquired brain injury (sABI); to describe the factors associated with a successful tube weaning. Methods We conduct a retrospective analysis of charts, consecutively retrieved considering a 3-year window. Variables analyzed were: age, sex, body mass index (BMI), Glasgow Coma Scale (GCS), cause of hospitalization (stroke, trauma, cardiac arrest), date of the pathological event, gap between the index event and the first day of hospitalization, duration of Neurorehabilitation Ward hospitalization, comorbidities, chest morphological alteration, kind of tracheostomy tube used (overall dimension, cap, fenestration), SpO2, presentation and quantification of pulmonary secretion, maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP), respiratory frequency and pattern, cardiac frequency, presence of spontaneous cough, cough strength, and blood gas analysis. Results We analyzed 45 tracheostomised sABI patients following stroke, trauma, or cardiac arrest. The weaning success percentage was higher in Head Trauma patients and in patients presenting positive spontaneous cough. Failures seem to be associated with presence of secretions and anoxic brain damage. GCS seemed not related to the decannulation outcome. Conclusions Parameters that could be used as positive predictors of weaning are: mean expiratory pressure, presence of spontaneous cough, and cough strength. Provoked cough and GCS were not predictive of weaning success.
Biervoye, Aurélie; Dricot, Laurence; Ivanoiu, Adrian
2016-01-01
Efficient social interactions require taking into account other people’s mental states such as their beliefs, intentions or emotions. Recent studies have shown that in some social situations at least, we do spontaneously take into account others’ mental states. The extent to which we have dedicated brain areas for such spontaneous perspective taking is however still unclear. Here, we report two brain-damaged patients whose common lesions were almost exclusively in the left posterior temporoparietal junction (TPJp) and who both showed the same striking and distinctive theory of mind (ToM) deficit. More specifically, they had an inability to take into account someone else’s belief unless they were explicitly instructed to tell what that other person thinks or what that person will do. These patients offer a unique insight into the causal link between a specific subregion of the TPJ and a specific cognitive facet of ToM. PMID:27317925
Fernandez, Elizabeth; Bergado Rosado, Jorge A.; Rodriguez Perez, Daymi; Salazar Santana, Sonia; Torres Aguilar, Maydane; Bringas, Maria Luisa
2017-01-01
Many training programs have been designed using modern software to restore the impaired cognitive functions in patients with acquired brain damage (ABD). The objective of this study was to evaluate the effectiveness of a computer-based training program of attention and memory in patients with ABD, using a two-armed parallel group design, where the experimental group (n = 50) received cognitive stimulation using RehaCom software, and the control group (n = 30) received the standard cognitive stimulation (non-computerized) for eight weeks. In order to assess the possible cognitive changes after the treatment, a post-pre experimental design was employed using the following neuropsychological tests: Wechsler Memory Scale (WMS) and Trail Making test A and B. The effectiveness of the training procedure was statistically significant (p < 0.05) when it established the comparison between the performance in these scales, before and after the training period, in each patient and between the two groups. The training group had statistically significant (p < 0.001) changes in focused attention (Trail A), two subtests (digit span and logical memory), and the overall score of WMS. Finally, we discuss the advantages of computerized training rehabilitation and further directions of this line of work. PMID:29301194
Sroubek, J; Hort, J; Komárek, V; Langmeier, M; Brozek, G
2001-01-01
The effect of Cavalheiro's pilocarpine model of epileptogenesis upon conditioned taste aversion (CTA), an important example of nondeclarative memory, was studied in adult Long Evans rats. Deterioration of CTA was studied during the silent period between pilocarpine-induced status epilepticus (SE) and delayed spontaneous recurrent seizures. SE was elicited by i.p. injection of pilocarpine (320 mg/kg ) and interrupted after 2 hours by clonazepame (1 mg/kg i.p.). Peripheral cholinergic symptoms were suppressed by methylscopolamine (1 mg/kg i.p.), administered together with pilocarpine. CTA was formed against the salty taste of isotonic LiCl. In the experiment of CTA acquisition, the CTA was formed and tested during the silent period after SE. In the experiment of CTA retrieval, the CTA was acquired before SE and the retrieval itself was tested during the silent period. Retrieval of CTA acquired before SE was impaired more than the retrieval of CTA formed during the silent period. Our findings indicate that epileptic seizures can disrupt even non-declarative memory but that CTA formed by the damaged brain can use its better preserved parts for memory trace formation. Ketamine (50 mg/kg i.p.) applied 2 min after the onset of pilocarpine-induced status epilepticus protected memory deterioration.
The Encephalopathy of Prematurity: One Pediatric Neuropathologist’s Perspective
Kinney, Hannah C.
2010-01-01
A major challenge in understanding brain injury in the premature brain is the establishment of the precise human neuropathology at the cellular and molecular levels, as such knowledge is the foundation upon which the elucidation of the cause(s), scientific experimentation, and therapies in the field is by necessity based. In this essay, I provide my perspective as a pediatric neuropathologist upon pathologic studies in the developing human brain itself, including a review of past, present, and future aspects. My focus is upon the path that has brought us to the current recognition that preterm brain injury is a complex of white and gray matter damage that results in the modification of key developmental pathways during a critical period, which in turn defines the adverse clinical outcomes as important as the primary insult itself. The evolution of this recognition, as well as the introduction of the term “encephalopathy of prematurity” for the complex of gray and white matter damage because of acquired and developmental mechanisms, is discussed. Our enhanced understanding of the fundamental neuropathology of the human preterm brain should bring us closer to more effective therapy as the need to prevent and treat injury to developing oligodendrocytes and neurons in combination is appreciated. PMID:19945652
Exploring social cognition in patients with apathy following acquired brain damage.
Njomboro, Progress; Humphreys, Glyn W; Deb, Shoumitro
2014-01-23
Research on cognition in apathy has largely focused on executive functions. To the best of our knowledge, no studies have investigated the relationship between apathy symptoms and processes involved in social cognition. Apathy symptoms include attenuated emotional behaviour, low social engagement and social withdrawal, all of which may be linked to underlying socio-cognitive deficits. We compared patients with brain damage who also had apathy symptoms against similar patients with brain damage but without apathy symptoms. Both patient groups were also compared against normal controls on key socio-cognitive measures involving moral reasoning, social awareness related to making judgements between normative and non-normative behaviour, Theory of Mind processing, and the perception of facial expressions of emotion. We also controlled for the likely effects of executive deficits and depressive symptoms on these comparisons. Our results indicated that patients with apathy were distinctively impaired in making moral reasoning decisions and in judging the social appropriateness of behaviour. Deficits in Theory of Mind and perception of facial expressions of emotion did not distinguish patients with apathy from those without apathy. Our findings point to a possible socio-cognitive profile for apathy symptoms and provide initial insights into how socio-cognitive deficits in patients with apathy may affect social functioning.
Leek, E Charles; d'Avossa, Giovanni; Tainturier, Marie-Josèphe; Roberts, Daniel J; Yuen, Sung Lai; Hu, Mo; Rafal, Robert
2012-01-01
This study examines how brain damage can affect the cognitive processes that support the integration of sensory input and prior knowledge during shape perception. It is based on the first detailed study of acquired ventral simultanagnosia, which was found in a patient (M.T.) with posterior occipitotemporal lesions encompassing V4 bilaterally. Despite showing normal object recognition for single items in both accuracy and response times (RTs), and intact low-level vision assessed across an extensive battery of tests, M.T. was impaired in object identification with overlapping figures displays. Task performance was modulated by familiarity: Unlike controls, M.T. was faster with overlapping displays of abstract shapes than with overlapping displays of common objects. His performance with overlapping common object displays was also influenced by both the semantic relatedness and visual similarity of the display items. These findings challenge claims that visual perception is driven solely by feedforward mechanisms and show how brain damage can selectively impair high-level perceptual processes supporting the integration of stored knowledge and visual sensory input.
[Memory and brain--neurobiological correlates of memory disturbances].
Calabrese, P; Markowitsch, H J
2003-04-01
A differentiation of memory is possible on the basis of chronological and contents-related aspects. Furthermore, it is possible to make process-specific subdivisions (encoding, transfer, consolidation, retrieval). The time-related division on the one hand refers to the general differentiation into short-term and long-term memory, and, on the other, to that between anterograde and retrograde memory ("new" and "old memory"; measured from a given time point, usually that when brain damage occurred). Anterograde memory means the successful encoding and storing of new information; retrograde the ability to retrieve successfully acquired and/or stored information. On the contents-based level, memory can be divided into five basic long-term systems--episodic memory, the knowledge system, perceptual, procedural and the priming form of memory. Neural correlates for these divisions are discussed with special emphasis of the episodic and the knowledge systems, based both on normal individuals and brain-damaged subjects. It is argued that structures of the limbic system are important for encoding of information and for its transfer into long-term memory. For this, two independent, but interacting memory circuits are proposed--one of them controlling and integrating primarily the emotional, and the other primarily the cognitive components of newly incoming information. For information storage principally neocortical structures are regarded as important and for the recall of information from the episodic and semantic memory systems the combined action of portions of prefrontal and anterior temporal regions is regarded as essential. Within this fronto-temporal agglomerate, a moderate hemispheric-specificity is assumed to exist with the right-hemispheric combination being mainly engaged in episodic memory retrieval and the left-hemispheric in that of semantic information. Evidence for this specialization comes from the results from focally brain-damaged patients as well as from that functional brain imaging in normal human subjects. Comparing results from imaging studies in memory disturbed patients with brain damage and from patients with a psychiatric diagnosis (e. g., psychogenic amnesia) revealed that both patient groups demonstrate comparable metabolic changes on the brain level. It can therefore be concluded that in neurological patients distinct, identifiable tissue damage is existent, while in psychiatric patients changes in the brain's biochemistry (release of stress hormones, and transmitters) constitute the physiological bases for the memory disturbances.
In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging.
Barrio, Jorge R; Small, Gary W; Wong, Koon-Pong; Huang, Sung-Cheng; Liu, Jie; Merrill, David A; Giza, Christopher C; Fitzsimmons, Robert P; Omalu, Bennet; Bailes, Julian; Kepe, Vladimir
2015-04-21
Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer's dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE.
In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging
Barrio, Jorge R.; Small, Gary W.; Wong, Koon-Pong; Huang, Sung-Cheng; Liu, Jie; Merrill, David A.; Giza, Christopher C.; Fitzsimmons, Robert P.; Omalu, Bennet; Bailes, Julian; Kepe, Vladimir
2015-01-01
Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer’s dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE. PMID:25848027
What is known about sexual health after pediatric acquired brain injury: A scoping review.
Simpson, Grahame; Simons-Coghill, Martine; Bates, Annerley; Gan, Caron
2017-01-01
Positive sexual development is a core task in the transition from childhood/adolescence to adulthood. Little is known about the extent of research addressing this topic after acquired brain injury (ABI). To identify publications (1980 to 2016) addressing positive sexual health among children/adolescents with ABI. A scoping review. A search conducted using OVID and PubMed databases yielded 2021 citations with 28 publications meeting the inclusion criteria (six reviews, one expert account, 19 observational and two intervention studies). Teenagers with ABI reported poorer body image, feeling less sexually or physically attractive than sex and age matched non brain-damaged controls. The one study with findings on sexual orientation, reported 15% of adolescents with ABI identified as lesbian, gay or bisexual. Precocious puberty was a rare outcome from ABI, but the most common focus of the publications (14/28). Finally, two case studies (genital touching and classroom masturbation respectively) found that behavioral interventions were an effective means of extinguishing inappropriate sexual behaviour after childhood ABI. Sexual health is a neglected area of research in post-ABI care for children/adolescents. A better understanding of the needs and challenges will help rehabilitation professionals and parents provide more informed and effective supports.
Solov'eva, A D; Vorob'eva, O V; Loseva, M M; Khaspekova, N B; Fedorova, V I; Musaeva, Z A; Filatova, E G
1994-01-01
The epidemiological survey covered 2000 city schoolchildren. They ranged in age from 7 to 15 years. Hypothalamic deficiency (HD) was detected in 5% of the examinees. Clinical and physiological findings on HD children are provided. They were found to have the history of hereditary or natal damage evidencing the acquired nature of the disease. Special emphasis is placed on HD manifestations in prepubertal and pubertal age. The authors show defective regulation of nonspecific brain systems in the form of predominant activation of the septohippocampal system and relative insufficiency of the brain stem mesencephalic reticular formation. Activation of cerebral ergotropic vegetative mechanisms combines with peripheral vegetative failure (sympathetic and parasympathetic), probably, of congenital origin.
Van Belle, Goedele; Busigny, Thomas; Lefèvre, Philippe; Joubert, Sven; Felician, Olivier; Gentile, Francesco; Rossion, Bruno
2011-09-01
Gaze-contingency is a method traditionally used to investigate the perceptual span in reading by selectively revealing/masking a portion of the visual field in real time. Introducing this approach in face perception research showed that the performance pattern of a brain-damaged patient with acquired prosopagnosia (PS) in a face matching task was reversed, as compared to normal observers: the patient showed almost no further decrease of performance when only one facial part (eye, mouth, nose, etc.) was available at a time (foveal window condition, forcing part-based analysis), but a very large impairment when the fixated part was selectively masked (mask condition, promoting holistic perception) (Van Belle, De Graef, Verfaillie, Busigny, & Rossion, 2010a; Van Belle, De Graef, Verfaillie, Rossion, & Lefèvre, 2010b). Here we tested the same manipulation in a recently reported case of pure prosopagnosia (GG) with unilateral right hemisphere damage (Busigny, Joubert, Felician, Ceccaldi, & Rossion, 2010). Contrary to normal observers, GG was also significantly more impaired with a mask than with a window, demonstrating impairment with holistic face perception. Together with our previous study, these observations support a generalized account of acquired prosopagnosia as a critical impairment of holistic (individual) face perception, implying that this function is a key element of normal human face recognition. Furthermore, the similar behavioral pattern of the two patients despite different lesion localizations supports a distributed network view of the neural face processing structures, suggesting that the key function of human face processing, namely holistic perception of individual faces, requires the activity of several brain areas of the right hemisphere and their mutual connectivity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin
2017-10-01
Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.
Improved two-photon imaging of living neurons in brain tissue through temporal gating
Gautam, Vini; Drury, Jack; Choy, Julian M. C.; Stricker, Christian; Bachor, Hans-A.; Daria, Vincent R.
2015-01-01
We optimize two-photon imaging of living neurons in brain tissue by temporally gating an incident laser to reduce the photon flux while optimizing the maximum fluorescence signal from the acquired images. Temporal gating produces a bunch of ~10 femtosecond pulses and the fluorescence signal is improved by increasing the bunch-pulse energy. Gating is achieved using an acousto-optic modulator with a variable gating frequency determined as integral multiples of the imaging sampling frequency. We hypothesize that reducing the photon flux minimizes the photo-damage to the cells. Our results, however, show that despite producing a high fluorescence signal, cell viability is compromised when the gating and sampling frequencies are equal (or effectively one bunch-pulse per pixel). We found an optimum gating frequency range that maintains the viability of the cells while preserving a pre-set fluorescence signal of the acquired two-photon images. The neurons are imaged while under whole-cell patch, and the cell viability is monitored as a change in the membrane’s input resistance. PMID:26504651
Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.
Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon
2017-06-01
A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P < 0.0001) for epilepsy, while diffused pathology is associated with a lower risk. Early treatments with either isoflurane anaesthesia or losartan prevented early microvascular damage and late epilepsy. We suggest quantitative assessment of blood-brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mishra, Pramod K; Li, Qun; Munoz, Luis E; Mares, Chris A; Morris, Elizabeth G; Teale, Judy M; Cardona, Astrid E
2016-06-01
Neurocysticercosis (NCC) is one of the most common helminth parasitic diseases of the central nervous system (CNS) and the leading cause of acquired epilepsy worldwide. NCC is caused by the presence of the metacestode larvae of the tapeworm Taenia solium within brain tissues. NCC patients exhibit a long asymptomatic phase followed by a phase of symptoms including increased intra-cranial pressure and seizures. While the asymptomatic phase is attributed to the immunosuppressive capabilities of viable T. solium parasites, release of antigens by dying organisms induce strong immune responses and associated symptoms. Previous studies in T. solium-infected pigs have shown that the inflammatory response consists of various leukocyte populations including eosinophils, macrophages, and T cells among others. Because the role of eosinophils within the brain has not been investigated during NCC, we examined parasite burden, disease susceptibility and the composition of the inflammatory reaction in the brains of infected wild type (WT) and eosinophil-deficient mice (ΔdblGATA) using a murine model of NCC in which mice were infected intracranially with Mesocestoides corti, a cestode parasite related to T. solium. In WT mice, we observed a time-dependent induction of eosinophil recruitment in infected mice, contrasting with an overall reduced leukocyte infiltration in ΔdblGATA brains. Although, ΔdblGATA mice exhibited an increased parasite burden, reduced tissue damage and less disease susceptibility was observed when compared to infected WT mice. Cellular infiltrates in infected ΔdblGATA mice were comprised of more mast cells, and αβ T cells, which correlated with an abundant CD8+ T cell response and reduced CD4+ Th1 and Th2 responses. Thus, our data suggest that enhanced inflammatory response in WT mice appears detrimental and associates with increased disease susceptibility, despite the reduced parasite burden in the CNS. Overall reduced leukocyte infiltration due to absence of eosinophils correlates with attenuated tissue damage and longer survival of ΔdblGATA mice. Therefore, our study suggests that approaches to clear NCC will require strategies to tightly control the host immune response while eradicating the parasite with minimal damage to brain tissue.
Mishra, Pramod K.; Li, Qun; Munoz, Luis E.; Mares, Chris A.; Morris, Elizabeth G.; Teale, Judy M.; Cardona, Astrid E.
2016-01-01
Neurocysticercosis (NCC) is one of the most common helminth parasitic diseases of the central nervous system (CNS) and the leading cause of acquired epilepsy worldwide. NCC is caused by the presence of the metacestode larvae of the tapeworm Taenia solium within brain tissues. NCC patients exhibit a long asymptomatic phase followed by a phase of symptoms including increased intra-cranial pressure and seizures. While the asymptomatic phase is attributed to the immunosuppressive capabilities of viable T. solium parasites, release of antigens by dying organisms induce strong immune responses and associated symptoms. Previous studies in T. solium-infected pigs have shown that the inflammatory response consists of various leukocyte populations including eosinophils, macrophages, and T cells among others. Because the role of eosinophils within the brain has not been investigated during NCC, we examined parasite burden, disease susceptibility and the composition of the inflammatory reaction in the brains of infected wild type (WT) and eosinophil-deficient mice (ΔdblGATA) using a murine model of NCC in which mice were infected intracranially with Mesocestoides corti, a cestode parasite related to T. solium. In WT mice, we observed a time-dependent induction of eosinophil recruitment in infected mice, contrasting with an overall reduced leukocyte infiltration in ΔdblGATA brains. Although, ΔdblGATA mice exhibited an increased parasite burden, reduced tissue damage and less disease susceptibility was observed when compared to infected WT mice. Cellular infiltrates in infected ΔdblGATA mice were comprised of more mast cells, and αβ T cells, which correlated with an abundant CD8+ T cell response and reduced CD4+ Th1 and Th2 responses. Thus, our data suggest that enhanced inflammatory response in WT mice appears detrimental and associates with increased disease susceptibility, despite the reduced parasite burden in the CNS. Overall reduced leukocyte infiltration due to absence of eosinophils correlates with attenuated tissue damage and longer survival of ΔdblGATA mice. Therefore, our study suggests that approaches to clear NCC will require strategies to tightly control the host immune response while eradicating the parasite with minimal damage to brain tissue. PMID:27332553
The effect of adult-acquired hippocampal damage on memory retrieval: an fMRI study.
Maguire, Eleanor A; Frith, Christopher D; Rudge, Peter; Cipolotti, Lisa
2005-08-01
Bilateral hippocampal pathology typically results in significant memory problems. Despite apparently similar structural damage, patients with such lesions can differ in the pattern of impairment and preservation of memory functions. Previously, an fMRI study of a developmental amnesic patient whose anoxic hippocampal damage was incurred perinatally revealed his residual hippocampal tissue to be active during memory retrieval. This hippocampal activity was apparent during the retrieval of personal and general facts relative to a control task. In this study, we used a similar fMRI paradigm to investigate whether residual hippocampal activation was present also in patient VC with adult-acquired anoxic hippocampal pathology. VC's performance and reaction times on the experimental personal and general fact tasks were comparable to age-matched control subjects. However, in contrast to the elderly control sample and the previous developmental amnesic patient, his residual hippocampal tissue did not show activation changes during the experimental tasks. This finding indicates that patient VC's successful retrieval of personal and general facts was achieved without a significant hippocampal contribution. It further suggests that the hippocampal activation observed in the elderly controls and previous developmental amnesic patient was not necessary for successful task performance. The reason for this difference in hippocampal responsivity between VC and the developmental amnesic patient remains to be determined. We speculate that it may relate to the age at which hippocampal damage occurred reflecting plasticity within the developing brain, or to cognitive differences between VC, the developmental amnesic patient, and the control subjects.
Fluoxetine for persistent developmental stuttering.
Kumar, Amardeep; Balan, Sabish
2007-01-01
Stuttering is a disturbance in the normal fluency and time patterning of speech. Developmental stuttering (DS), with or without associated psychiatric illness, is the most common form and includes all cases with gradual onset in childhood that are not the result of acquired brain damage. Persistent developmental stuttering (PDS) is DS that has not undergone spontaneous or speech therapy-induced remission. Adults in speech therapy behavioral programs will often show regression and even total relapse if they stop practicing. This case report deals with a patient of PDS who responded significantly to treatment with fluoxetine.
Prenatal enrichment and recovery from perinatal cortical damage: effects of maternal complex housing
Gibb, Robbin L.; Gonzalez, Claudia L. R.; Kolb, Bryan
2014-01-01
Birth is a particularly vulnerable time for acquiring brain injury. Unfortunately, very few treatments are available for those affected. Here we explore the effectiveness of prenatal intervention in an animal model of early brain damage. We used a complex housing paradigm as a form of prenatal enrichment. Six nulliparous dams and one male rat were placed in complex housing (condomom group) for 12 h per day until the dams' delivered their pups. At parturition the dams were left in their home (standard) cages with their pups. Four dams were housed in standard cages (cagemom group) throughout pregnancy and with their pups until weaning. At postnatal day 3 (P3) infants of both groups received frontal cortex removals or sham surgery. Behavioral testing began on P60 and included the Morris water task and a skilled reaching task. Brains were processed for Golgi analyses. Complex housing of the mother had a significant effect on the behavior of their pups. Control animals from the condomom group outperformed those of the cagemom group in the water task. Condomom animals with lesions performed better than their cagemom cohorts in both the water task and in skilled reaching. Condomom animals showed an increase in cortical thickness at anterior planes and thalamic area at both anterior and posterior regions. Golgi analyses revealed an increase in spine density. These results suggest that prenatal enrichment alters brain organization in manner that is prophylactic for perinatal brain injury. This result could have significant implications for the prenatal management of infants expected to be at risk for difficult birth. PMID:25009478
Itoh, Kouichi; Inamine, Moriyoshi; Oshima, Wataru; Kotani, Masaharu; Chiba, Yoichi; Ueno, Masaki; Ishihara, Yasuhiro
2015-05-22
The management of status epilepticus (SE) is important to prevent mortality and the development of post-SE symptomatic epilepsy. Acquired epilepsy after an initial brain insult by SE can be experimentally reproduced in the murine model of SE induced by pilocarpine. In the present study, we evaluated the possibility of treatment with a high-dose of levetiracetam in this model. Repeated treatment with high-dose levetiracetam after termination of SE by diazepam significantly prevented the incidence of spontaneous recurrent seizures and mortality for at least 28 days. To determine the brain alterations after SE, magnetic resonance imaging was performed. Both T2-weighted imaging and diffusion-weighted imaging showed changes in the limbic regions. These changes in the limbic regions demonstrated the development of cytotoxic edema three hours after SE, followed by the development of vasogenic edema two days after SE. In the pilocarpine-SE model, the incidence of spontaneous recurrent seizures after SE was strongly associated with neuronal damage within a few hours to days after SE by the development of vasogenic edema via the breakdown of the blood-brain barrier in the limbic regions. High-dose levetiracetam significantly suppressed the parameters in the limbic areas. These data indicate that repeated treatment with high-dose levetiracetam for at least two days after SE termination by diazepam is important for controlling the neuronal damage by preventing brain edema. Therefore, these findings suggest that early treatment with high-dose levetiracetam after SE termination by diazepam may protect against adverse sequelae via the inhibition of neurotoxicity induced by brain edema events. Copyright © 2015 Elsevier B.V. All rights reserved.
Brain aging in the canine: a diet enriched in antioxidants reduces cognitive dysfunction.
Cotman, Carl W; Head, Elizabeth; Muggenburg, Bruce A; Zicker, S; Milgram, Norton W
2002-01-01
Animal models that simulate various aspects of human brain aging are an essential step in the development of interventions to manage cognitive dysfunction in the elderly. Over the past several years we have been studying cognition and neuropathology in the aged-canine (dog). Like humans, canines naturally accumulate deposits of beta-amyloid (Abeta) in the brain with age. Further, canines and humans share the same Abeta sequence and also first show deposits of the longer Abeta1-42 species followed by the deposition of Abeta1-40. Aged canines like humans also show increased oxidative damage. As a function of age, canines show impaired learning and memory on tasks similar to those used in aged primates and humans. The extent of Abeta deposition correlates with the severity of cognitive dysfunction in canines. To test the hypothesis that a cascade of mechanisms centered on oxidative damage and Abeta results in cognitive dysfunction we have evaluated the cognitive effects of an antioxidant diet in aged canines. The diet resulted in a significant improvement in the ability of aged but not young animals to acquire progressively more difficult learning tasks (e.g. oddity discrimination learning). The canine represent a higher animal model to study the earliest declines in the cognitive continuum that includes age associated memory impairments (AAMI) and mild cognitive impairment (MCI) observed in human aging. Thus, studies in the canine model suggest that oxidative damage impairs cognitive function and that antioxidant treatment can result in significant improvements, supporting the need for further human studies. Copyright 2002 Elsevier Science Inc.
Moustafa, Ahmed A.; Keri, Szabolcs; Herzallah, Mohammad M.; Myers, Catherine E.; Gluck, Mark A.
2010-01-01
Building on our previous neurocomputational models of basal ganglia and hippocampal-region function (and their modulation by dopamine and acetylcholine, respectively), we show here how an integration of these models can inform our understanding of the interaction between the basal ganglia and hippocampal region in associative learning and transfer generalization across various patient populations. As a common test bed for exploring interactions between these brain regions and neuromodulators, we focus on the acquired equivalence task, an associative learning paradigm in which stimuli that have been associated with the same outcome acquire a functional similarity such that subsequent generalization between these stimuli increases. This task has been used to test cognitive dysfunction in various patient populations with damages to the hippocampal region and basal ganglia, including studies of patients with Parkinson’s disease (PD), schizophrenia, basal forebrain amnesia, and hippocampal atrophy. Simulation results show that damage to the hippocampal region—as in patients with hippocampal atrophy (HA), hypoxia, mild Alzheimer’s (AD), or schizophrenia—leads to intact associative learning but impaired transfer generalization performance. Moreover, the model demonstrates how PD and anterior communicating artery (ACoA) aneurysm—two very different brain disorders that affect different neural mechanisms—can have similar effects on acquired equivalence performance. In particular, the model shows that simulating a loss of dopamine function in the basal ganglia module (as in PD) leads to slow acquisition learning but intact transfer generalization. Similarly, the model shows that simulating the loss of acetylcholine in the hippocampal region (as in ACoA aneurysm) also results in slower acquisition learning. We argue from this that changes in associative learning of stimulus-action pathways (in the basal ganglia) or changes in the learning of stimulus representations (in the hippocampal region) can have similar functional effects. PMID:20728258
Immunohistochemical study of Metallothionein in patients with temporal lobe epilepsy.
Juárez-Rebollar, Daniel; Alonso-Vanegas, Mario; Nava-Ruíz, Concepción; Buentello-García, Masao; Yescas-Gómez, Petra; Díaz-Ruíz, Araceli; Rios, Camilo; Méndez-Armenta, Marisela
2017-05-01
Epilepsy is characterized by spontaneous recurrent seizures and temporal lobe epilepsy (TLE) is the most common serious neurological example of acquired and frequent epilepsy. Oxidative stress is recognized as playing a contributing role in several neurological disorders, and most recently have been implicated in acquired epilepsies. The MTs occur in several brain regions and may serve as neuroprotective proteins against reactive oxygen species causing oxidative damage and stress. The main aim of this work was to describe the immunohistochemical localization of MT in the specimens derived from the patients affected by TLE. Histopathological examination showed NeuN, GFAP and MT immunopositive cells that were analyzed for determinate in hippocampal and parietal cortex samples. An increase in the reactive gliosis associated with increased MT expression was observed in patients with TLE. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chinn, Nancy Resendes
2009-01-01
College students with acquired brain injuries face unique challenges. The likelihood of individuals with acquired brain injury experiencing isolation, lack of social support, and diminished self-esteem, along with cognitive impairments, is well documented in the literature. This article presents an overview of a community college's club for…
NASA Astrophysics Data System (ADS)
Bechara, Antoine; Tranel, Daniel; Damasio, Hanna; Adolphs, Ralph; Rockland, Charles; Damasio, Antonio R.
1995-08-01
A patient with selective bilateral damage to the amygdala did not acquire conditioned autonomic responses to visual or auditory stimuli but did acquire the declarative facts about which visual or auditory stimuli were paired with the unconditioned stimulus. By contrast, a patient with selective bilateral damage to the hippocampus failed to acquire the facts but did acquire the conditioning. Finally, a patient with bilateral damage to both amygdala and hippocampal formation acquired neither the conditioning nor the facts. These findings demonstrate a double dissociation of conditioning and declarative knowledge relative to the human amygdala and hippocampus.
Brand, Matthias; Eggers, Carsten; Reinhold, Nadine; Fujiwara, Esther; Kessler, Josef; Heiss, Wolf-Dieter; Markowitsch, Hans J
2009-10-30
Dissociative amnesia is a condition usually characterized by severely impaired retrograde memory functioning in the absence of structural brain damage. Recent case studies nevertheless found functional brain changes in patients suffering from autobiographical-episodic memory loss in the cause of dissociative amnesia. Functional changes were demonstrated in both resting state and memory retrieval conditions. In addition, some but not all cases also showed other neuropsychological impairments beyond retrograde memory deficits. However, there is no group study available that examined potential functional brain abnormalities and accompanying neuropsychological deteriorations in larger samples of patients with dissociative retrograde amnesia. We report functional imaging and neuropsychological data acquired in 14 patients with dissociative amnesia following stressful or traumatic events. All patients suffered from autobiographical memory loss. In addition, approximately half of the patients had deficits in anterograde memory and executive functioning. Accompanying functional brain changes were measured by [18F]fluorodeoxyglucose positron emission tomography (FDG-PET). Regional glucose utilization of the patients was compared with that of 19 healthy subjects, matched for age and gender. We found significantly decreased glucose utilization in the right inferolateral prefrontal cortex in the patients. Hypometabolism in this brain region, known to be involved in retrieval of autobiographical memories and self-referential processing, may be a functional brain correlate of dissociative amnesia.
Comprehension of Idioms in Turkish Aphasic Participants.
Aydin, Burcu; Barin, Muzaffer; Yagiz, Oktay
2017-12-01
Brain damaged participants offer an opportunity to evaluate the cognitive and linguistic processes and make assumptions about how the brain works. Cognitive linguists have been investigating the underlying mechanisms of idiom comprehension to unravel the ongoing debate on hemispheric specialization in figurative language comprehension. The aim of this study is to evaluate and compare the comprehension of idiomatic expressions in left brain damaged (LBD) aphasic, right brain damaged (RBD) and healthy control participants. Idiom comprehension in eleven LBD aphasic participants, ten RBD participants and eleven healthy control participants were assessed with three tasks: String to Picture Matching Task, Literal Sentence Comprehension Task and Oral Idiom Definition Task. The results of the tasks showed that in overall idiom comprehension category, the left brain-damaged aphasic participants interpret idioms more literally compared to right brain-damaged participants. What is more, there is a significant difference in opaque idiom comprehension implying that left brain-damaged aphasic participants perform worse compared to right brain-damaged participants. On the other hand, there is no statistically significant difference in scores of transparent idiom comprehension between the left brain-damaged aphasic and right brain-damaged participants. This result also contribute to the idea that while figurative processing system is damaged in LBD aphasics, the literal comprehension mechanism is spared to some extent. The results of this study support the view that idiom comprehension sites are mainly left lateralized. Furthermore, the results of this study are in consistence with the Giora's Graded Salience Hypothesis.
Zheng, Xiangren; Sun, Yan; Ke, Lulu; Ouyang, Wei; Zhang, Zigui
2016-04-01
This study investigated the molecular mechanism of brain impairment induced by drinking fluoridated water and selenium intervention. Results showed that the learning and memory of rats in NaF group significantly decreased. Moreover, the number of apoptotic cells, the expression levels of Cytc mRNA and protein, and the expression levels of Caspase-9 and Caspase-3 mRNA significantly increased; by contrast, Caspase-9 and Caspase-3 protein levels significantly decreased. Compared with the NaF group, the mRNA levels of Cytc and Caspase-9, as well as the protein levels of Cytc in NaF+Se group, significantly decreased. Conversely, the protein levels of Caspase-3 and Caspase-9, as well as the mRNA levels of Caspase-3, significantly increased. Thus, the mitochondrial CytC-Caspase-9-Caspase-3 apoptosis pathway in the hippocampus was one of the mechanisms leading to fluorosis-induced brain damage. Furthermore, the Cytc signaling molecules were possibly the key target molecules in fluorosis-induced apoptosis, and selenium could alleviate fluorosis-induced brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.
Low-dose x-ray tomography through a deep convolutional neural network
Yang, Xiaogang; De Andrade, Vincent; Scullin, William; ...
2018-02-07
Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less
Low-dose x-ray tomography through a deep convolutional neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaogang; De Andrade, Vincent; Scullin, William
Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less
ERIC Educational Resources Information Center
Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando
2010-01-01
Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…
Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I
2015-01-01
The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.
Antioxidant gene therapy against neuronal cell death
Navarro-Yepes, Juliana; Zavala-Flores, Laura; Annadurai, Anandhan; Wang, Fang; Skotak, Maciej; Chandra, Namas; Li, Ming; Pappa, Aglaia; Martinez-Fong, Daniel; Razo, Luz Maria Del; Quintanilla-Vega, Betzabet; Franco, Rodrigo
2014-01-01
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy. PMID:24333264
Reduced striatal dopamine transporters in people with internet addiction disorder.
Hou, Haifeng; Jia, Shaowe; Hu, Shu; Fan, Rong; Sun, Wen; Sun, Taotao; Zhang, Hong
2012-01-01
In recent years, internet addiction disorder (IAD) has become more prevalent worldwide and the recognition of its devastating impact on the users and society has rapidly increased. However, the neurobiological mechanism of IAD has not bee fully expressed. The present study was designed to determine if the striatal dopamine transporter (DAT) levels measured by (99m)Tc-TRODAT-1 single photon emission computed tomography (SPECT) brain scans were altered in individuals with IAD. SPECT brain scans were acquired on 5 male IAD subjects and 9 healthy age-matched controls. The volume (V) and weight (W) of bilateral corpus striatum as well as the (99m)Tc-TRODAT-1 uptake ratio of corpus striatum/the whole brain (Ra) were calculated using mathematical models. It was displayed that DAT expression level of striatum was significantly decreased and the V, W, and Ra were greatly reduced in the individuals with IAD compared to controls. Taken together, these results suggest that IAD may cause serious damages to the brain and the neuroimaging findings further illustrate IAD is associated with dysfunctions in the dopaminergic brain systems. Our findings also support the claim that IAD may share similar neurobiological abnormalities with other addictive disorders.
Telecommunications technology in cognitive rehabilitation.
Caltagirone, Carlo; Zannino, Gian Daniele
2008-01-01
Cognitive disorders are a common long-term consequence of many forms of acquired neurological damage of different aetiology. The already high prevalence of diseases causing cognitive deficits (in particular stroke) is expected to increase in the near future, leading to a greater need for cognitive rehabilitation. The impact of cognitive impairment on daily functioning may be even greater than that of physical limitations in affected patients, contributing to the high cost of brain disorders. New technologies, including telerehabilitation, may provide an effective response to this challenge, allowing increased access to rehabilitation services as well as reduced care costs for individuals needing cognitive rehabilitation.
Hemispheric processing of vocal emblem sounds.
Neumann-Werth, Yael; Levy, Erika S; Obler, Loraine K
2013-01-01
Vocal emblems, such as shh and brr, are speech sounds that have linguistic and nonlinguistic features; thus, it is unclear how they are processed in the brain. Five adult dextral individuals with left-brain damage and moderate-severe Wernicke's aphasia, five adult dextral individuals with right-brain damage, and five Controls participated in two tasks: (1) matching vocal emblems to photographs ('picture task') and (2) matching vocal emblems to verbal translations ('phrase task'). Cross-group statistical analyses on items on which the Controls performed at ceiling revealed lower accuracy by the group with left-brain damage (than by Controls) on both tasks, and lower accuracy by the group with right-brain damage (than by Controls) on the picture task. Additionally, the group with left-brain damage performed significantly less accurately than the group with right-brain damage on the phrase task only. Findings suggest that comprehension of vocal emblems recruits more left- than right-hemisphere processing.
Doi, Kunio
2011-01-01
It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.
Mapping the functional connectome traits of levels of consciousness.
Amico, Enrico; Marinazzo, Daniele; Di Perri, Carol; Heine, Lizette; Annen, Jitka; Martial, Charlotte; Dzemidzic, Mario; Kirsch, Murielle; Bonhomme, Vincent; Laureys, Steven; Goñi, Joaquín
2017-03-01
Examining task-free functional connectivity (FC) in the human brain offers insights on how spontaneous integration and segregation of information relate to human cognition, and how this organization may be altered in different conditions, and neurological disorders. This is particularly relevant for patients in disorders of consciousness (DOC) following severe acquired brain damage and coma, one of the most devastating conditions in modern medical care. We present a novel data-driven methodology, connICA, which implements Independent Component Analysis (ICA) for the extraction of robust independent FC patterns (FC-traits) from a set of individual functional connectomes, without imposing any a priori data stratification into groups. We here apply connICA to investigate associations between network traits derived from task-free FC and cognitive/clinical features that define levels of consciousness. Three main independent FC-traits were identified and linked to consciousness-related clinical features. The first one represents the functional configuration of a "resting" human brain, and it is associated to a sedative (sevoflurane), the overall effect of the pathology and the level of arousal. The second FC-trait reflects the disconnection of the visual and sensory-motor connectivity patterns. It also relates to the time since the insult and to the ability of communicating with the external environment. The third FC-trait isolates the connectivity pattern encompassing the fronto-parietal and the default-mode network areas as well as the interaction between left and right hemispheres, which are also associated to the awareness of the self and its surroundings. Each FC-trait represents a distinct functional process with a role in the degradation of conscious states of functional brain networks, shedding further light on the functional sub-circuits that get disrupted in severe brain-damage. Copyright © 2017. Published by Elsevier Inc.
Word Finding in Children and Adolescents with a History of Brain Injury.
ERIC Educational Resources Information Center
Dennis, Maureen
1992-01-01
Word finding in relation to brain injury is discussed for children and adolescents with unilateral congenital malformations of the brain, early hydrocephalus, childhood-acquired left hemisphere stroke, and acquired traumatic head injury. Studies examining the recovery of word-finding deficits after brain injury are discussed, along with…
Remote semantic memory is impoverished in hippocampal amnesia
Klooster, Nathaniel B.; Duff, Melissa C.
2015-01-01
The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. PMID:26474741
Remote semantic memory is impoverished in hippocampal amnesia.
Klooster, Nathaniel B; Duff, Melissa C
2015-12-01
The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Migliaccio, Raffaella; Agosta, Federica; Toba, Monica N; Samri, Dalila; Corlier, Fabian; de Souza, Leonardo C; Chupin, Marie; Sharman, Michael; Gorno-Tempini, Maria L; Dubois, Bruno; Filippi, Massimo; Bartolomeo, Paolo
2012-01-01
Posterior cortical atrophy (PCA) is rare neurodegenerative dementia, clinically characterized by a progressive decline in higher-visual object and space processing. After a brief review of the literature on the neuroimaging in PCA, here we present a study of the brain structural connectivity in a patient with PCA and progressive isolated visual and visuo-motor signs. Clinical and cognitive data were acquired in a 58-years-old patient (woman, right-handed, disease duration 18 months). Brain structural and diffusion tensor (DT) magnetic resonance imaging (MRI) were obtained. A voxel-based morphometry (VBM) study was performed to explore the pattern of gray matter (GM) atrophy, and a fully automatic segmentation was assessed to obtain the hippocampal volumes. DT MRI-based tractography was used to assess the integrity of long-range white matter (WM) pathways in the patient and in six sex- and age-matched healthy subjects. This PCA patient had a clinical syndrome characterized by left visual neglect, optic ataxia, and left limb apraxia, as well as mild visuo-spatial episodic memory impairment. VBM study showed bilateral posterior GM atrophy with right predominance; DT MRI tractography demonstrated WM damage to the right hemisphere only, including the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus, as compared to age-matched controls. The homologous left-hemisphere tracts were spared. No difference was found between left and right hippocampal volumes. These data suggest that selective visuo-spatial deficits typical of PCA might not result from cortical damage alone, but by a right-lateralized network-level dysfunction including WM damage along the major visual pathways. Copyright © 2011 Elsevier Srl. All rights reserved.
Ceccarelli, Antonia; Rocca, Maria A; Valsasina, Paola; Rodegher, Mariaemma; Pagani, Elisabetta; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo
2009-09-01
The purpose of this study is to define the topographical distribution of gray matter (GM) and white matter (WM) damage in patients with primary progressive multiple sclerosis (PPMS), using a multiparametric MR-based approach. Using a 3 Tesla scanner, dual-echo, 3D fast-field echo (FFE), and diffusion tensor (DT) MRI scans were acquired from 18 PPMS patients and 17 matched healthy volunteers. An optimized voxel-based (VB) analysis was used to investigate the patterns of regional GM density changes and to quantify GM and WM diffusivity alterations of the entire brain. In PPMS patients, GM atrophy was found in the thalami and the right insula, while mean diffusivity (MD) changes involved several cortical-subcortical structures in all cerebral lobes and the cerebellum. An overlap between decreased WM fractional anisotropy (FA) and increased WM MD was found in the corpus callosum, the cingulate gyrus, the left short temporal fibers, the right short frontal fibers, the optic radiations, and the middle cerebellar peduncles. Selective MD increase, not associated with FA decrease, was found in the internal capsules, the corticospinal tracts, the superior longitudinal fasciculi, the fronto-occipital fasciculi, and the right cerebral peduncle. A discrepancy was found between regional WM diffusivity changes and focal lesions because several areas had DT MRI abnormalities but did not harbor T2-visible lesions. Our study allowed to detect tissue damage in brain areas associated with motor and cognitive functions, which are known to be impaired in PPMS patients. Combining regional measures derived from different MR modalities may be a valuable tool to improve our understanding of PPMS pathophysiology. 2009 Wiley-Liss, Inc.
Salazar, Katterine; Martínez, Fernando; Pérez-Martín, Margarita; Cifuentes, Manuel; Trigueros, Laura; Ferrada, Luciano; Espinoza, Francisca; Saldivia, Natalia; Bertinat, Romina; Forman, Katherine; Oviedo, María José; López-Gambero, Antonio J; Bonansco, Christian; Bongarzone, Ernesto R; Nualart, Francisco
2017-09-23
Ascorbic acid (AA), the reduced form of vitamin C, acts as a neuroprotector by eliminating free radicals in the brain. Sodium/vitamin C co-transporter isoform 2 (SVCT2) mediates uptake of AA by neurons. It has been reported that SVCT2 mRNA is induced in astrocytes under ischemic damage, suggesting that its expression is enhanced in pathological conditions. However, it remains to be established if SVCT expression is altered in the presence of reactive astrogliosis generated by different brain pathologies. In the present work, we demonstrate that SVCT2 expression is increased in astrocytes present at sites of neuroinflammation induced by intracerebroventricular injection of a GFP-adenovirus or the microbial enzyme, neuraminidase. A similar result was observed at 5 and 10 days after damage in a model of traumatic injury and in the hippocampus and cerebral cortex in the in vivo kindling model of epilepsy. Furthermore, we defined that cortical astrocytes maintained in culture for long periods acquire markers of reactive gliosis and express SVCT2, in a similar way as previously observed in situ. Finally, by means of second harmonic generation and 2-photon fluorescence imaging, we analyzed brain necropsied material from patients with Alzheimer's disease (AD), which presented with an accumulation of amyloid plaques. Strikingly, although AD is characterized by focalized astrogliosis surrounding amyloid plaques, SVCT2 expression at the astroglial level was not detected. We conclude that SVCT2 is heterogeneously induced in reactive astrogliosis generated in different pathologies affecting the central nervous system (CNS).
Mathematical modelling of blood-brain barrier failure and edema
NASA Astrophysics Data System (ADS)
Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain
2015-11-01
Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.
Gelech, Jan; Bayly, Melanie; Desjardins, Michel
2017-04-10
Despite common experiences of identity damage, decline, and deterioration, many brain injury survivors succeed in reconstructing robust identities in the wake of injury. Yet, while this accomplishment greatly benefits survivors' quality of life, little is known about how positive identity work might be facilitated or enhanced in therapeutic institutions. Drawing on data from a women's self-help group, we argue that an egalitarian, reflective, strength-focused, and gender-segregated environment can provide female ABI (acquired brain injury) survivors with a fertile scene for identity enhancement and offer unique opportunities for collective identity development. Sociolinguistic interactional analysis revealed four types of positive identity work undertaken within the group: constructing competent selves; tempering the threat of loss and impairment; resisting infantilisation and delegitimisation; and asserting a collective gender identity. This identity work was facilitated by specific programme attributes and activities and contributed to the global project of decentring disability and destigmatising impairments and losses. We call for increased attention to identity issues in brain injury rehabilitation and argue that gender-segregated programming can provide a unique space for female survivors to construct empowering individual and collective identities after injury.
Evaluation and Education of Children with Brain Damage.
ERIC Educational Resources Information Center
Bortner, Morton, Ed.
Ten papers consider brain damaged children. Brain damage is considered as an educational category, and the following aspects of evaluation are treated: disorders of oral communication, hearing impairment, psychological deficit, psychiatric factors, and neurological considerations. Educational strategies discussed include the educational methods of…
The number processing and calculation system: evidence from cognitive neuropsychology.
Salguero-Alcañiz, M P; Alameda-Bailén, J R
2015-04-01
Cognitive neuropsychology focuses on the concepts of dissociation and double dissociation. The performance of number processing and calculation tasks by patients with acquired brain injury can be used to characterise the way in which the healthy cognitive system manipulates number symbols and quantities. The objective of this study is to determine the components of the numerical processing and calculation system. Participants consisted of 6 patients with acquired brain injuries in different cerebral localisations. We used Batería de evaluación del procesamiento numérico y el cálculo, a battery assessing number processing and calculation. Data was analysed using the difference in proportions test. Quantitative numerical knowledge is independent from number transcoding, qualitative numerical knowledge, and calculation. Recodification is independent from qualitative numerical knowledge and calculation. Quantitative numerical knowledge and calculation are also independent functions. The number processing and calculation system comprises at least 4 components that operate independently: quantitative numerical knowledge, number transcoding, qualitative numerical knowledge, and calculation. Therefore, each one may be damaged selectively without affecting the functioning of another. According to the main models of number processing and calculation, each component has different characteristics and cerebral localisations. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Interhemispheric and Intrahemispheric Control of Emotion: A Focus on Unilateral Brain Damage.
ERIC Educational Resources Information Center
Borod, Joan C.
1992-01-01
Discusses neocortical contributions to emotional processing. Examines parameters critical to neuropsychological study of emotion: interhemispheric and intrahemispheric factors, processing mode, and communication channel. Describes neuropsychological theories of emotion. Reviews studies of right-brain-damaged, left-brain-damaged, and normal adults,…
Behavior Management for Children and Adolescents with Acquired Brain Injury
ERIC Educational Resources Information Center
Slifer, Keith J.; Amari, Adrianna
2009-01-01
Behavioral problems such as disinhibition, irritability, restlessness, distractibility, and aggression are common after acquired brain injury (ABI). The persistence and severity of these problems impair the brain-injured individual's reintegration into family, school, and community life. Since the early 1980s, behavior analysis and therapy have…
Bartolomeo, Paolo; Thiebaut de Schotten, Michel
2016-12-01
Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Model of music cognition and amusia.
García-Casares, N; Berthier Torres, M L; Froudist Walsh, S; González-Santos, P
2013-04-01
The study of the neural networks involved in music processing has received less attention than work researching the brain's language networks. For the last two decades there has been a growing interest in discovering the functional mechanisms of the musical brain and understanding those disorders in which brain regions linked with perception and production of music are damaged. Congenital and acquired musical deficits in their various forms (perception, execution, music-memory) are grouped together under the generic term amusia. In this selective review we present the "cutting edge" studies on the cognitive and neural processes implicated in music and the various forms of amusia. Musical processing requires a large cortico-subcortical network which is distributed throughout both cerebral hemispheres and the cerebellum. The analysis of healthy subjects using functional neuroimaging and examination of selective deficits (e.g., tone, rhythm, timbre, melodic contours) in patients will improve our knowledge of the mechanisms involved in musical processing and the latter's relationship with other cognitive processes. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Neural basis of bilingual language control.
Calabria, Marco; Costa, Albert; Green, David W; Abutalebi, Jubin
2018-06-19
Acquiring and speaking a second language increases demand on the processes of language control for bilingual as compared to monolingual speakers. Language control for bilingual speakers involves the ability to keep the two languages separated to avoid interference and to select one language or the other in a given conversational context. This ability is what we refer with the term "bilingual language control" (BLC). It is now well established that the architecture of this complex system of language control encompasses brain networks involving cortical and subcortical structures, each responsible for different cognitive processes such as goal maintenance, conflict monitoring, interference suppression, and selective response inhibition. Furthermore, advances have been made in determining the overlap between the BLC and the nonlinguistic executive control networks, under the hypothesis that the BLC processes are just an instantiation of a more domain-general control system. Here, we review the current knowledge about the neural basis of these control systems. Results from brain imaging studies of healthy adults and on the performance of bilingual individuals with brain damage are discussed. © 2018 New York Academy of Sciences.
Applications of the Morris water maze in translational traumatic brain injury research.
Tucker, Laura B; Velosky, Alexander G; McCabe, Joseph T
2018-05-01
Acquired traumatic brain injury (TBI) is frequently accompanied by persistent cognitive symptoms, including executive function disruptions and memory deficits. The Morris Water Maze (MWM) is the most widely-employed laboratory behavioral test for assessing cognitive deficits in rodents after experimental TBI. Numerous protocols exist for performing the test, which has shown great robustness in detecting learning and memory deficits in rodents after infliction of TBI. We review applications of the MWM for the study of cognitive deficits following TBI in pre-clinical studies, describing multiple ways in which the test can be employed to examine specific aspects of learning and memory. Emphasis is placed on dependent measures that are available and important controls that must be considered in the context of TBI. Finally, caution is given regarding interpretation of deficits as being indicative of dysfunction of a single brain region (hippocampus), as experimental models of TBI most often result in more diffuse damage that disrupts multiple neural pathways and larger functional networks that participate in complex behaviors required in MWM performance. Published by Elsevier Ltd.
Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness.
Vollmayr, B; Faust, H; Lewicka, S; Henn, F A
2001-07-01
Stress-induced elevation of glucocorticoids is accompanied by structural changes and neuronal damage in certain brain areas. This includes reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus which can be prevented by chronic electroconvulsive seizures and antidepressant drug treatment. In the last years we have bred two strains of rats, one which reacts with congenital helplessness to stress (cLH), and one which congenitally does not acquire helplessness when stressed (cNLH). After being selectively bred for more than 40 generations these strains have lost their behavioural plasticity including their sensitivity to antidepressant treatment. We show here that in cLH rats, acute immobilization stress does not induce a reduction of BDNF expression in the hippocampus which is observed in Sprague--Dawley and cNLH rats. All animals tested exhibited elevated corticosterone levels when stressed, an indication, that in cLH rats regulation of BDNF expression in the hippocampal formation is uncoupled from corticosterone increase induced through stress. This may explain the lack of adaptive responses in this strain.
Aggressive behaviour of inpatients with acquired brain injury.
Visscher, Ada J M; van Meijel, Berno; Stolker, Joost J; Wiersma, Jan; Nijman, Henk
2011-12-01
To study the prevalence, nature and determinants of aggression among inpatients with acquired brain injury. Patients with acquired brain injury often have difficulty in controlling their aggressive impulses. A prospective observational study design. By means of the Staff Observation Aggression Scale-Revised, the prevalence, nature and severity of aggressive behaviour of inpatients with acquired brain injury was assessed on a neuropsychiatric treatment ward with 45 beds. Additional data on patient-related variables were gathered from the patients' files. In total, 388 aggressive incidents were recorded over 17 weeks. Of a total of 57 patients included, 24 (42%) patients had engaged in aggressive behaviour on one or more occasions. A relatively small proportion of patients (n=8; 14%) was found to be responsible for the majority of incidents (n=332; 86%). The vast majority of aggression incidents (n=270; 70%) were directly preceded by interactions between patients and nursing staff. In line with this, most incidents occurred at times of high contact intensity. Aggressive behaviour was associated with male gender, length of stay at the ward, legal status and hypoxia as the cause of brain injury. Aggression was found to be highly prevalent among inpatients with acquired brain injury. The results suggest that for the prevention of aggression on the ward, it may be highly effective to develop individually tailored interventions for the subgroup with serious aggression problems. Insight into the frequency, nature and determinants of aggressive behaviour in inpatients with acquired brain injury provides nurses with tools for the prevention and treatment of aggressive behaviour. © 2011 Blackwell Publishing Ltd.
Fellows, Lesley K
2006-04-01
Ventromedial frontal lobe (VMF) damage is associated with impaired decision making. Recent efforts to understand the functions of this brain region have focused on its role in tracking reward, punishment and risk. However, decision making is complex, and frontal lobe damage might be expected to affect it at other levels. This study used process-tracing techniques to explore the effect of VMF damage on multi-attribute decision making under certainty. Thirteen subjects with focal VMF damage were compared with 11 subjects with frontal damage that spared the VMF and 21 demographically matched healthy control subjects. Participants chose rental apartments in a standard information board task drawn from the literature on normal decision making. VMF subjects performed the decision making task in a way that differed markedly from all other groups, favouring an 'alternative-based' information acquisition strategy (i.e. they organized their information search around individual apartments). In contrast, both healthy control subjects and subjects with damage predominantly involving dorsal and/or lateral prefrontal cortex pursued primarily 'attribute-based' search strategies (in which information was acquired about categories such as rent and noise level across several apartments). This difference in the pattern of information acquisition argues for systematic differences in the underlying decision heuristics and strategies employed by subjects with VMF damage, which in turn may affect the quality of their choices. These findings suggest that the processes supported by ventral and medial prefrontal cortex need to be conceptualized more broadly, to account for changes in decision making under conditions of certainty, as well as uncertainty, following damage to these areas.
Abbas, Kausar; Shenk, Trey E; Poole, Victoria N; Breedlove, Evan L; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M; Robinson, Meghan E
2015-03-01
Long-term neurological damage as a result of head trauma while playing sports is a major concern for football athletes today. Repetitive concussions have been linked to many neurological disorders. Recently, it has been reported that repetitive subconcussive events can be a significant source of accrued damage. Since football athletes can experience hundreds of subconcussive hits during a single season, it is of utmost importance to understand their effect on brain health in the short and long term. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was used to study changes in the default mode network (DMN) after repetitive subconcussive mild traumatic brain injury. Twenty-two high school American football athletes, clinically asymptomatic, were scanned using the rs-fMRI for a single season. Baseline scans were acquired before the start of the season, and follow-up scans were obtained during and after the season to track the potential changes in the DMN as a result of experienced trauma. Ten noncollision-sport athletes were scanned over two sessions as controls. Overall, football athletes had significantly different functional connectivity measures than controls for most of the year. The presence of this deviation of football athletes from their healthy peers even before the start of the season suggests a neurological change that has accumulated over the years of playing the sport. Football athletes also demonstrate short-term changes relative to their own baseline at the start of the season. Football athletes exhibited hyperconnectivity in the DMN compared to controls for most of the sessions, which indicates that, despite the absence of symptoms typically associated with concussion, the repetitive trauma accrued produced long-term brain changes compared to their healthy peers.
Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain
NASA Astrophysics Data System (ADS)
Ramesh, Govindarajan; Wu, Honglu
Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.
Support Network Responses to Acquired Brain Injury
ERIC Educational Resources Information Center
Chleboun, Steffany; Hux, Karen
2011-01-01
Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…
Computer-Aided Relearning Activity Patterns for People with Acquired Brain Injury
ERIC Educational Resources Information Center
Montero, Francisco; Lopez-Jaquero, Victor; Navarro, Elena; Sanchez, Enriqueta
2011-01-01
People with disabilities constitute a collective that requires continuous and customized attention, since their conditions or abilities are affected with respect to specific standards. People with "Acquired Brain Injury" (ABI), or those who have suffered brain injury at some stage after birth, belong to this collective. The treatment these people…
Students with Acquired Brain Injury. The School's Response.
ERIC Educational Resources Information Center
Glang, Ann, Ed.; Singer, George H. S., Ed.; Todis, Bonnie, Ed.
Designed for educators, this book focuses on educational issues relating to students with acquired brain injury (ABI), and describes approaches that have been effective in improving the school experiences of students with brain injury. Section 1 provides an introduction to issues related to ABI in children and youth and includes: "An Overview of…
Outcomes of intrathecal baclofen therapy in patients with cerebral palsy and acquired brain injury
Yoon, Young Kwon; Lee, Kil Chan; Cho, Han Eol; Chae, Minji; Chang, Jin Woo; Chang, Won Seok; Cho, Sung-Rae
2017-01-01
Abstract Intrathecal baclofen (ITB) has been known to reduce spasticity which did not respond to oral medications and botulinum toxin treatment. However, few results have been reported comparing the effects of ITB therapy in patients with cerebral palsy (CP) and acquired brain injury. This study aimed to investigate beneficial and adverse effects of ITB bolus injection and pump therapy in patients with CP and to compare outcomes to patients with acquired brain injury such as traumatic brain injury and hypoxic brain injury. ITB test trials were performed in 37 patients (19 CP and 18 acquired brain injury). Based on ambulatory function, CP patients were divided into 2 groups: 11 patients with nonambulatory CP and 8 patients with ambulatory CP. Change of spasticity was evaluated using the Modified Ashworth Scale. Additional positive or negative effects were also evaluated after ITB bolus injection. In patients who received ITB pump implantation, outcomes of spasticity, subjective satisfaction and adverse events were evaluated until 12 months post-treatment. After ITB bolus injection, 32 patients (86.5%) (CP 84.2% versus acquired brain injury 88.9%) showed a positive response of reducing spasticity. However, 8 patients with CP had negative adverse effects. Particularly, 3 ambulatory CP patients showed standing impairment and 1 ambulatory CP patient showed impaired gait pattern such as foot drop because of excessive reduction of lower extremity muscle tone. Ambulatory CP patients received ITB pump implantation less than patients with acquired brain injury after ITB test trials (P = .003 by a chi-squared test). After the pump implantation, spasticity was significantly reduced within 1 month and the effect maintained for 12 months. Seventeen patients or their caregivers (73.9%) were very satisfied, whereas 5 patients (21.7%) suffered from adverse events showed no subjective satisfaction. In conclusion, ITB therapy was effective in reducing spasticity in patients with CP and acquired brain injury. Before ITB pump implantation, it seems necessary to perform the ITB bolus injection to verify beneficial effects and adverse effects especially in ambulatory CP. PMID:28834868
Deng, Qingqing; Chang, Yanqun; Cheng, Xiaomao; Luo, Xingang; Zhang, Jing; Tang, Xiaoyuan
2018-05-01
Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O 2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD. Copyright © 2018 Elsevier Inc. All rights reserved.
Sex Differences in the Effects of Unilateral Brain Damage on Intelligence
NASA Astrophysics Data System (ADS)
Inglis, James; Lawson, J. S.
1981-05-01
A sexual dimorphism in the functional asymmetry of the damaged human brain is reflected in a test-specific laterality effect in male but not in female patients. This sex difference explains some contradictions concerning the effects of unilateral brain damage on intelligence in studies in which the influence of sex was overlooked.
Nurmikko, Arto V.; Donoghue, John P.; Hochberg, Leigh R.; Patterson, William R.; Song, Yoon-Kyu; Bull, Christopher W.; Borton, David A.; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan
2011-01-01
Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature’s amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic “brain-interfaces” within the body, a point of special emphasis of this paper. PMID:21654935
The inverse problem in electroencephalography using the bidomain model of electrical activity.
Lopez Rincon, Alejandro; Shimoda, Shingo
2016-12-01
Acquiring information about the distribution of electrical sources in the brain from electroencephalography (EEG) data remains a significant challenge. An accurate solution would provide an understanding of the inner mechanisms of the electrical activity in the brain and information about damaged tissue. In this paper, we present a methodology for reconstructing brain electrical activity from EEG data by using the bidomain formulation. The bidomain model considers continuous active neural tissue coupled with a nonlinear cell model. Using this technique, we aim to find the brain sources that give rise to the scalp potential recorded by EEG measurements taking into account a non-static reconstruction. We simulate electrical sources in the brain volume and compare the reconstruction to the minimum norm estimates (MNEs) and low resolution electrical tomography (LORETA) results. Then, with the EEG dataset from the EEG Motor Movement/Imagery Database of the Physiobank, we identify the reaction to visual stimuli by calculating the time between stimulus presentation and the spike in electrical activity. Finally, we compare the activation in the brain with the registered activation using the LinkRbrain platform. Our methodology shows an improved reconstruction of the electrical activity and source localization in comparison with MNE and LORETA. For the Motor Movement/Imagery Database, the reconstruction is consistent with the expected position and time delay generated by the stimuli. Thus, this methodology is a suitable option for continuously reconstructing brain potentials. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Kieffer-Kristensen, Rikke; Teasdale, Thomas W; Bilenberg, Niels
2011-01-01
The effect of parental brain injury on children has been relatively little investigated. This study examines post-traumatic stress symptoms (PSS) and psychological functioning in children with a parent with an acquired brain injury. The participants were 35 patients with acquired brain injury, their spouses and children aged 7-14 years recruited from out-patient brain injury rehabilitation units across Denmark. Children self-reported psychological functioning using the Becks Youth Inventory (BYI) and Child Impact of Events revised (CRIES) measuring PSS symptoms. Emotional and behavioural problems among the children were also identified by the parents using the Achenbach's Child Behaviour Checklist (CBCL). A matched control group, consisting of 20 children of parents suffering from diabetes, was recruited from the National Danish Diabetes Register. Post-traumatic stress symptoms above cut-off score (<30) were found (CRIES) in 46% of the children in the brain injury group compared to 10% in the diabetes group. The parents in the brain injury group reported more emotional and behavioural problems in their children when compared to published norms (CBCL). When parents have acquired brain injury, their children appear to be at a substantial risk for developing post-traumatic stress symptoms. These results indicate the need for a child-centred family support service to reduce the risk of children being traumatized by parental brain injury, with a special focus on the relational changes within the family.
Brain damage in fatal non-missile head injury without high intracranial pressure.
Graham, D I; Lawrence, A E; Adams, J H; Doyle, D; McLellan, D R
1988-01-01
As part of a comprehensive study of brain damage in 635 fatal non-missile head injuries, the type and prevalence of brain damage occurring in the absence of high intracranial pressure were analysed. Of 71 such cases, 53 sustained their injury as a result of a road traffic accident; only 25 experienced a lucid interval. Thirty eight had a fractured skull, a mean total contusion index of 12.9 and diffuse axonal injury in 29: severe to moderate ischaemic damage was present in the cerebral cortex in 25, brain swelling in 13, and acute bacterial meningitis in nine. The prevalence and range of brain damage that may occur in the absence of high intracranial pressure are important to forensic pathologists in the medicolegal interpretation of cases of fatal head injury. PMID:3343378
Cognitive Rehabilitation of Episodic Memory Disorders: From Theory to Practice
Ptak, Radek; der Linden, Martial Van; Schnider, Armin
2010-01-01
Memory disorders are among the most frequent and most debilitating cognitive impairments following acquired brain damage. Cognitive remediation strategies attempt to restore lost memory capacity, provide compensatory techniques or teach the use of external memory aids. Memory rehabilitation has strongly been influenced by memory theory, and the interaction between both has stimulated the development of techniques such as spaced retrieval, vanishing cues or errorless learning. These techniques partly rely on implicit memory and therefore enable even patients with dense amnesia to acquire new information. However, knowledge acquired in this way is often strongly domain-specific and inflexible. In addition, individual patients with amnesia respond differently to distinct interventions. The factors underlying these differences have not yet been identified. Behavioral management of memory failures therefore often relies on a careful description of environmental factors and measurement of associated behavioral disorders such as unawareness of memory failures. The current evidence suggests that patients with less severe disorders benefit from self-management techniques and mnemonics whereas rehabilitation of severely amnesic patients should focus on behavior management, the transmission of domain-specific knowledge through implicit memory processes and the compensation for memory deficits with memory aids. PMID:20700383
Eidenmüller, S; Randerath, J; Goldenberg, G; Li, Y; Hermsdörfer, J
2014-08-01
The scaling of our finger forces according to the properties of manipulated objects is an elementary prerequisite of skilled motor behavior. Lesions of the motor-dominant left brain may impair several aspects of motor planning. For example, limb-apraxia, a tool-use disorder after left brain damage is thought to be caused by deficient recall or integration of tool-use knowledge into an action plan. The aim of the present study was to investigate whether left brain damage affects anticipatory force scaling when lifting everyday objects. We examined 26 stroke patients with unilateral brain damage (16 with left brain damage, ten with right brain damage) and 21 healthy control subjects. Limb apraxia was assessed by testing pantomime of familiar tool-use and imitation of meaningless hand postures. Participants grasped and lifted twelve randomly presented everyday objects. Grip force was measured with help of sensors fixed on thumb, index and middle-finger. The maximum rate of grip force was determined to quantify the precision of anticipation of object properties. Regression analysis yielded clear deficits of anticipation in the group of patients with left brain damage, while the comparison of patient with right brain damage with their respective control group did not reveal comparable deficits. Lesion-analyses indicate that brain structures typically associated with a tool-use network in the left hemisphere play an essential role for anticipatory grip force scaling, especially the left inferior frontal gyrus (IFG) and the premotor cortex (PMC). Furthermore, significant correlations of impaired anticipation with limb apraxia scores suggest shared representations. However, the presence of dissociations, implicates also independent processes. Overall, our findings suggest that the left hemisphere is engaged in anticipatory grip force scaling for lifting everyday objects. The underlying neural substrate is not restricted to a single region or stream; instead it may rely on the intact functioning of a left hemisphere network that may overlap with the left hemisphere dominant tool-use network. Copyright © 2014 Elsevier Ltd. All rights reserved.
Narrative discourse in children with early focal brain injury.
Reilly, J S; Bates, E A; Marchman, V A
1998-02-15
Children with early brain damage, unlike adult stroke victims, often go on to develop nearly normal language. However, the route and extent of their linguistic development are still unclear, as is the relationship between lesion site and patterns of delay and recovery. Here we address these questions by examining narratives from children with early brain damage. Thirty children (ages 3:7-10:10) with pre- or perinatal unilateral focal brain damage and their matched controls participated in a storytelling task. Analyses focused on linguistic proficiency and narrative competence. Overall, children with brain damage scored significantly lower than their age-matched controls on both linguistic (morphological and syntactic) indices and those targeting broader narrative qualities. Rather than indicating that children with brain damage fully catch up, these data suggest that deficits in linguistic abilities reassert themselves as children face new linguistic challenges. Interestingly, after age 5, site of lesion does not appear to be a significant factor and the delays we have witnessed do not map onto the lesion profiles observed in adults with analogous brain injuries.
Neglect severity after left and right brain damage.
Suchan, Julia; Rorden, Chris; Karnath, Hans-Otto
2012-05-01
While unilateral spatial neglect after left brain damage is undoubtedly less common than spatial neglect after a right hemisphere lesion, it is also assumed to be less severe. Here we directly test this latter hypothesis using a continuous measure of neglect severity: the so-called Center of Cancellation (CoC). Rorden and Karnath (2010) recently validated this index for right brain damaged neglect patients. A first aim of the present study was to evaluate this new measure for spatial neglect after left brain damage. In a group of 48 left-sided stroke patients with and without neglect, a score greater than -0.086 on the Bells Test and greater than -0.024 on the Letter Cancellation Task turned out to indicate neglect behavior for acute left brain damaged patients. A second aim was to directly compare the severity of spatial neglect after left versus right brain injury by using the new CoC measure. While neglect is less frequent following left than right hemisphere injury, we found that when this symptom occurs it is of similar severity in acute left brain injury as in patients after acute right brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.
BRAIN DAMAGE IN CHILDREN, THE BIOLOGICAL AND SOCIAL ASPECTS.
ERIC Educational Resources Information Center
BIRCH, HERBERT G., ED.
PAPERS AND DISCUSSION SUMMARIES ARE PRESENTED FROM A CONFERENCE ON THE BIOLOGICAL AND SOCIAL PROBLEMS OF CHILDHOOD BRAIN DAMAGE, HELD AT THE CHILDREN'S HOSPITAL OF PHILADELPHIA IN NOVEMBER 1962. A VARIETY OF DISCIPLINES IS REPRESENTED, AND THE FOLLOWING TOPICS ARE CONSIDERED--(1) "THE PROBLEM OF 'BRAIN DAMAGE' IN CHILDREN" BY HERBERT G. BIRCH, (2)…
Brain and Cognitive-Behavioural Development after Asphyxia at Term Birth
ERIC Educational Resources Information Center
de Haan, Michelle; Wyatt, John S.; Roth, Simon; Vargha-Khadem, Faraneh; Gadian, David; Mishkin, Mortimer
2006-01-01
Perinatal asphyxia occurs in approximately 1-6 per 1000 live full-term births. Different patterns of brain damage can result, though the relation of these patterns to long-term cognitive-behavioural outcome remains under investigation. The hippocampus is one brain region that can be damaged (typically not in isolation), and this site of damage has…
Diabetic aggravation of stroke and animal models
Rehni, Ashish K.; Liu, Allen; Perez-Pinzon, Miguel A.; Dave, Kunjan R.
2017-01-01
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage. PMID:28274862
Categorization skills and recall in brain damaged children: a multiple case study.
Mello, Claudia Berlim de; Muszkat, Mauro; Xavier, Gilberto Fernando; Bueno, Orlando Francisco Amodeo
2009-09-01
During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.
Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza
2017-09-01
Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.
Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan
2010-01-01
Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.
Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication.
Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Yassen, Noha N; Khadrawy, Yasser A; El-Toukhy, Safinaz Ebrahim; Sleem, Amany A
2016-12-01
To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute malathion exposure. Rats were received intraperitoneal (i.p.) injection of malathion 150 mg/kg along with citric acid (200 or 400 mg/kg, orally), atropine (1 mg/kg, i.p.) or citric acid 200 mg/kg + atropine 1 mg/kg and euthanized 4 h later. Malathion resulted in increased lipid peroxidation (malondialdehyde) and nitric oxide concentrations accompanied with a decrease in brain reduced glutathione, glutathione peroxidase (GPx) activity, total antioxidant capacity (TAC) and glucose concentrations. Paraoxonase-1, acetylcholinesterase (AChE) and butyrylcholinesterase activities decreased in brain as well. Liver aspartate aminotransferase and alanine aminotransferase activities were raised. The comet assay showed increased DNA damage of peripheral blood lymphocytes. Histological damage and increased expression of inducible nitric oxide synthase (iNOS) were observed in brain and liver. Citric acid resulted in decreased brain lipid peroxidation and nitric oxide. Meanwhile, glutathione, GPx activity, TAC capacity and brain glucose level increased. Brain AChE increased but PON1 and butyrylcholinesterase activities decreased by citric acid. Liver enzymes, the percentage of damaged blood lymphocytes, histopathological alterations and iNOS expression in brain and liver was decreased by citric acid. Meanwhile, rats treated with atropine showed decreased brain MDA, nitrite but increased GPx activity, TAC, AChE and glucose. The drug also decreased DNA damage of peripheral blood lymphocytes, histopathological alterations and iNOS expression in brain and liver. The study demonstrates a beneficial effect for citric acid upon brain oxidative stress, neuronal injury, liver and DNA damage due to acute malathion exposure. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Soroker, N.; Kasher, A.; Giora, R.; Batori, G.; Corn, C.; Gil, M.; Zaidel, E.
2005-01-01
We examined the effect of localized brain lesions on processing of the basic speech acts (BSAs) of question, assertion, request, and command. Both left and right cerebral damage produced significant deficits relative to normal controls, and left brain damaged patients performed worse than patients with right-sided lesions. This finding argues…
Functional vision in children with perinatal brain damage.
Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški
2014-09-01
Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.
Altered neural activity and emotions following right middle cerebral artery stroke.
Paradiso, Sergio; Anderson, Beth M; Boles Ponto, Laura L; Tranel, Daniel; Robinson, Robert G
2011-01-01
Stroke of the right MCA is common. Such strokes often have consequences for emotional experience, but these can be subtle. In such cases diagnosis is difficult because emotional awareness (limiting reporting of emotional changes) may be affected. The present study sought to clarify the mechanisms of altered emotion experience after right MCA stroke. It was predicted that after right MCA stroke the anterior cingulate cortex (ACC), a brain region concerned with emotional awareness, would show reduced neural activity. Brain activity during presentation of emotional stimuli was measured in 6 patients with stable stroke, and in 12 age- and sex-matched nonlesion comparisons using positron emission tomography and the [(15)O]H(2)O autoradiographic method. MCA stroke was associated with weaker pleasant experience and decreased activity ipsilaterally in the ACC. Other regions involved in emotional processing including thalamus, dorsal and medial prefrontal cortex showed reduced activity ipsilaterally. Dorsal and medial prefrontal cortex, association visual cortex and cerebellum showed reduced activity contralaterally. Experience from unpleasant stimuli was unaltered and was associated with decreased activity only in the left midbrain. Right MCA stroke may reduce experience of pleasant emotions by altering brain activity in limbic and paralimbic regions distant from the area of direct damage, in addition to changes due to direct tissue damage to insula and basal ganglia. The knowledge acquired in this study begins to explain the mechanisms underlying emotional changes following right MCA stroke. Recognizing these changes may improve diagnoses, management and rehabilitation of right MCA stroke victims. Copyright © 2011 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury
Østergaard, Leif; Engedal, Thorbjørn S; Aamand, Rasmus; Mikkelsen, Ronni; Iversen, Nina K; Anzabi, Maryam; Næss-Schmidt, Erhard T; Drasbek, Kim R; Bay, Vibeke; Blicher, Jakob U; Tietze, Anna; Mikkelsen, Irene K; Hansen, Brian; Jespersen, Sune N; Juul, Niels; Sørensen, Jens CH; Rasmussen, Mads
2014-01-01
Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of ‘classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions. PMID:25052556
Whyte, Ellen; Skidmore, Elizabeth; Aizenstein, Howard; Ricker, Joseph; Butters, Meryl
2015-01-01
Cognitive impairment is a common sequela in acquired brain injury and one that predicts rehabilitation outcomes. There is emerging evidence that impairments in cognitive functions can be manipulated by both pharmacologic and nonpharmacologic interventions to improve rehabilitation outcomes. By using stroke as a model for acquired brain injury, we review the evidence that links cognitive impairment to poor rehabilitation outcomes and discuss possible mechanisms to explain this association. Furthermore, we examine nascent promising research that suggests that interventions that target cognitive impairments can lead to better rehabilitation outcomes. PMID:21703580
Liu-Shuang, Joan; Torfs, Katrien; Rossion, Bruno
2016-03-01
One of the most striking pieces of evidence for a specialised face processing system in humans is acquired prosopagnosia, i.e. the inability to individualise faces following brain damage. However, a sensitive and objective non-behavioural marker for this deficit is difficult to provide with standard event-related potentials (ERPs), such as the well-known face-related N170 component reported and investigated in-depth by our late distinguished colleague Shlomo Bentin. Here we demonstrate that fast periodic visual stimulation (FPVS) in electrophysiology can quantify face individualisation impairment in acquired prosopagnosia. In Experiment 1 (Liu-Shuang et al., 2014), identical faces were presented at a rate of 5.88 Hz (i.e., ≈ 6 images/s, SOA=170 ms, 1 fixation per image), with different faces appearing every 5th face (5.88 Hz/5=1.18 Hz). Responses of interest were identified at these predetermined frequencies (i.e., objectively) in the EEG frequency-domain data. A well-studied case of acquired prosopagnosia (PS) and a group of age- and gender-matched controls completed only 4 × 1-min stimulation sequences, with an orthogonal fixation cross task. Contrarily to controls, PS did not show face individualisation responses at 1.18 Hz, in line with her prosopagnosia. However, her response at 5.88 Hz, reflecting general visual processing, was within the normal range. In Experiment 2 (Rossion et al., 2015), we presented natural (i.e., unsegmented) images of objects at 5.88 Hz, with face images shown every 5th image (1.18 Hz). In accordance with her preserved ability to categorise a face as a face, and despite extensive brain lesions potentially affecting the overall EEG signal-to-noise ratio, PS showed 1.18 Hz face-selective responses within the normal range. Collectively, these findings show that fast periodic visual stimulation provides objective and sensitive electrophysiological markers of preserved and impaired face processing abilities in the neuropsychological population. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guilmette, T J; Temple, R O; Kennedy, M L; Weiler, M D; Ruffolo, L F; Dufresne, E
2005-11-01
To determine the influence of victim/plaintiff sex, occupation and intoxication status at the time of injury on potential jurors' judgement about the presence of brain damage in mild traumatic brain injury (MTBI). Survey. One of eight scenarios describing a MTBI from a motor vehicle accident was presented to 460 participants at a Department of Motor Vehicles. Victim sex, occupation (accountant or cafeteria worker) and alcohol intoxication status at the time of injury (sober or intoxicated) were manipulated across eight scenarios. Participants rated whether the victim's complaints at 6 months post-injury were the result of brain damage. Ratings were influenced by victim occupation and intoxication status (chi2>5.3, p<0.03), but not the sex of the victim. The occupational and intoxication status of MTBI victims may influence potential jurors' decision about the presence of brain damage.
ERIC Educational Resources Information Center
Singer, George H. S.; Nixon, Charles
This report describes a qualitative study of the experiences and perceptions of parents of children with severe acquired brain injury (ABI) and summarizes the experiences of several parents during the first year following their child's traumatic brain injury. Twenty-five parents participated in a day-long focus group, in lengthy structured…
Predictors of Outcome following Acquired Brain Injury in Children
ERIC Educational Resources Information Center
Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.
2009-01-01
Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…
Acquired pit of the optic nerve: a risk factor for progression of glaucoma.
Ugurlu, S; Weitzman, M; Nduaguba, C; Caprioli, J
1998-04-01
To examine acquired pit of the optic nerve as a risk factor for progression of glaucoma. In a retrospective longitudinal study, 25 open-angle glaucoma patients with acquired pit of the optic nerve were compared with a group of 24 open-angle glaucoma patients without acquired pit of the optic nerve. The patients were matched for age, mean intraocular pressure, baseline ratio of neuroretinal rim area to disk area, visual field damage, and duration of follow-up. Serial optic disk photographs and visual fields of both groups were evaluated by three independent observers for glaucomatous progression. Of 46 acquired pits of the optic nerve in 37 eyes of 25 patients, 36 pits were located inferiorly (76%) and 11 superiorly (24%; P < .001). Progression of optic disk damage occurred in 16 patients (64%) in the group with acquired pit and in three patients (12.5%) in the group without acquired pit (P < .001). Progression of visual field loss occurred in 14 patients (56%) in the group with acquired pit and in six (25%) in the group without pit (P=.04). Bilateral acquired pit of the optic nerve was present in 12 patients (48%). Disk hemorrhages were observed more frequently in the group with acquired pit (10 eyes, 40%) compared with the group without pit (two eyes, 8%; P=.02). Among patients with glaucoma, patients with acquired pit of the optic nerve represent a subgroup who are at increased risk for progressive optic disk damage and visual field loss.
Traumatic Brain Injury as a Cause of Behavior Disorders.
ERIC Educational Resources Information Center
Nordlund, Marcia R.
There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…
Experience-Dependent Neural Plasticity in the Adult Damaged Brain
ERIC Educational Resources Information Center
Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.
2011-01-01
Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…
Rowland, Jared A; Stapleton-Kotloski, Jennifer R; Dobbins, Dorothy L; Rogers, Emily; Godwin, Dwayne W; Taber, Katherine H
2018-05-01
Cross-sectional and longitudinal studies in active duty and veteran cohorts have both demonstrated that deployment-acquired traumatic brain injury (TBI) is an independent risk factor for developing post-traumatic stress disorder (PTSD), beyond confounds such as combat exposure, physical injury, predeployment TBI, and pre-deployment psychiatric symptoms. This study investigated how resting-state brain networks differ between individuals who developed PTSD and those who did not following deployment-acquired TBI. Participants included postdeployment veterans with deployment-acquired TBI history both with and without current PTSD diagnosis. Graph metrics, including small-worldness, clustering coefficient, and modularity, were calculated from individually constructed whole-brain networks based on 5-min eyes-open resting-state magnetoencephalography (MEG) recordings. Analyses were adjusted for age and premorbid IQ. Results demonstrated that participants with current PTSD displayed higher levels of small-worldness, F(1,12) = 5.364, p < 0.039, partial eta squared = 0.309, and Cohen's d = 0.972, and clustering coefficient, F(1, 12) = 12.204, p < 0.004, partial eta squared = 0.504, and Cohen's d = 0.905, than participants without current PTSD. There were no between-group differences in modularity or the number of modules present. These findings are consistent with a hyperconnectivity hypothesis of the effect of TBI history on functional networks rather than a disconnection hypothesis, demonstrating increased levels of clustering coefficient rather than a decrease as might be expected; however, these results do not account for potential changes in brain structure. These results demonstrate the potential pathological sequelae of changes in functional brain networks following deployment-acquired TBI and represent potential neurobiological changes associated with deployment-acquired TBI that may increase the risk of subsequently developing PTSD.
In Vivo Fiber-Optic Raman Mapping Of Metastases In Mouse Brains
NASA Astrophysics Data System (ADS)
Stelling, A.; Kirsch, M.; Steiner, G.; Krafft, C.; Schackert, G.; Salzer, R.
2010-08-01
Vibrational spectroscopy, in particular Raman spectroscopy, has potential applications in the field of in vivo diagnostics. Raman and FT-IR spectroscopy analyze the complete biochemical information at any given pixel within the visual field. Here we demonstrate the feasibility of performing Raman spectroscopic measurements on living mice brains using a fiber-optic probe with a nominal spatial resolution of 60 μm. The objectives of this study were to 1) evaluate preclinical models, namely murine brain slices containing experimental tumors, 2) optimize the preparation of pristine brain tissue to obtain reference information, to 3) optimize the conditions for introducing a fiber-optic probe to acquire Raman maps in vivo, and 4) to transfer results obtained from human brain tumors to an animal model. Disseminated brain metastases of malignant melanomas were induced by injecting tumor cells into the carotid artery of mice. The procedure mimicked hematogenous tumor spread in one brain hemisphere while the other hemisphere remained tumor free. Three series of sections were prepared consecutively from whole mouse brains: pristine, 2-mm thick sections for Raman mapping and dried, thin sections for FT-IR imaging, hematoxylin and eosin-stained thin sections for histopathological assessment. Raman maps were collected serially using a spectrometer coupled to a fiber-optic probe. FT-IR images were recorded using a spectrometer with a multi-channel detector. The FT-IR images and the Raman maps were evaluated by multivariate data analysis. The results obtained from the thin section studies were employed to guide measurements of murine brains in vivo. Raman maps with an acquisition time of over an hour could be performed on the living animals. No damage to the tissue was observed.
Bonakdarpour, B.; Parrish, T.B.; Thompson, C.K.
2007-01-01
Functional MRI is based on changes in cerebral microvasculature triggered by increased neuronal oxidative metabolism. This change in blood flow follows a pattern known as the hemodynamic response function (HRF), which typically peaks 4–6 s following stimulus delivery. However, in the presence of cerebrovascular disease the HRF may not follow this normal pattern, due to either the temporal signal to noise (tSNR) ratio or delays in the HRF, which may result in misinterpretation or underestimation of fMRI signal. The present study examined the HRF and SNR in five individuals with aphasia resulting from stroke and four unimpaired participants using a lexical decision task and a long trial event-related design. T1-weighted images were acquired using an MP-RAGE sequence and BOLD T2*-weighted images were acquired using Echo Planar Imaging to measure time to peak (TTP) in the HRF. Data were analyzed using Brain Voyager in four anatomic regions known to be involved in language processing: Broca’s area and the posterior perisylvian network (PPN) (including Wernicke’s area, the angular and supramarginal gyri) and right hemisphere homologues of these regions. The occipital area also was examined as a control region. Analyses showed that the TTP in three out of five patients in the left perisylvian area was increased significantly as compared to normal individuals and the left primary visual cortex in the same patients. In two other patients no significant delays were detected. We also found that the SNR for BOLD signal detection may by insufficient in damaged areas. These findings indicate that obtaining physiologic (TTP) and quality assurance (tSNR) information is essential for studying activation patterns in brain-damaged patients in order to avoid errors in interpretation of the data. An example of one such misinterpretation and the need for alternative data analysis strategies is discussed. PMID:17467297
Bonakdarpour, B; Parrish, T B; Thompson, C K
2007-06-01
Functional MRI is based on changes in cerebral microvasculature triggered by increased neuronal oxidative metabolism. This change in blood flow follows a pattern known as the hemodynamic response function (HRF), which typically peaks 4-6 s following stimulus delivery. However, in the presence of cerebrovascular disease the HRF may not follow this normal pattern, due to either the temporal signal to noise (tSNR) ratio or delays in the HRF, which may result in misinterpretation or underestimation of fMRI signal. The present study examined the HRF and SNR in five individuals with aphasia resulting from stroke and four unimpaired participants using a lexical decision task and a long trial event-related design. T1-weighted images were acquired using an MP-RAGE sequence and BOLD T2*-weighted images were acquired using Echo Planar Imaging to measure time to peak (TTP) in the HRF. Data were analyzed using Brain Voyager in four anatomic regions known to be involved in language processing: Broca's area and the posterior perisylvian network (PPN) (including Wernicke's area, the angular and supramarginal gyri) and right hemisphere homologues of these regions. The occipital area also was examined as a control region. Analyses showed that the TTP in three out of five patients in the left perisylvian area was increased significantly as compared to normal individuals and the left primary visual cortex in the same patients. In two other patients no significant delays were detected. We also found that the SNR for BOLD signal detection may by insufficient in damaged areas. These findings indicate that obtaining physiologic (TTP) and quality assurance (tSNR) information is essential for studying activation patterns in brain-damaged patients in order to avoid errors in interpretation of the data. An example of one such misinterpretation and the need for alternative data analysis strategies is discussed.
García-García, Luis; Fernández de la Rosa, Rubén; Delgado, Mercedes; Silván, Ágata; Bascuñana, Pablo; Bankstahl, Jens P; Gomez, Francisca; Pozo, Miguel A
2018-02-01
Intracerebral administration of the potassium channel blocker 4-aminopyridine (4-AP) triggers neuronal depolarization and intense acute seizure activity followed by neuronal damage. We have recently shown that, in the lithium-pilocarpine rat model of status epilepticus (SE), a single administration of metyrapone, an inhibitor of the 11β-hydroxylase enzyme, had protective properties of preventive nature against signs of brain damage and neuroinflammation. Herein, our aim was to investigate to which extent, pretreatment with metyrapone (150 mg/kg, i.p.) was also able to prevent eventual changes in the acute brain metabolism and short-term neuronal damage induced by intrahippocampal injection of 4-AP (7 μg/5 μl). To this end, regional brain metabolism was assessed by 2-deoxy-2-[ 18 F]fluoro-d-glucose ([ 18 F]FDG) positron emission tomography (PET) during the ictal period. Three days later, markers of neuronal death and hippocampal integrity and apoptosis (Nissl staining, NeuN and active caspase-3 immunohistochemistry), neurodegeneration (Fluoro-Jade C labeling), astrogliosis (glial fibrillary acidic protein (GFAP) immunohistochemistry) and microglia-mediated neuroinflammation (in vitro [ 18 F]GE180 autoradiography) were evaluated. 4-AP administration acutely triggered marked brain hypermetabolism within and around the site of injection as well as short-term signs of brain damage and inflammation. Most important, metyrapone pretreatment was able to reduce ictal hypermetabolism as well as all the markers of brain damage except microglia-mediated neuroinflammation. Overall, our study corroborates the neuroprotective effects of metyrapone against multiple signs of brain damage caused by seizures triggered by 4-AP. Ultimately, our data add up to the consistent protective effect of metyrapone pretreatment reported in other models of neurological disorders of different etiology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Serag, Ahmed; Wilkinson, Alastair G.; Telford, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Anblagan, Devasuda; Macnaught, Gillian; Semple, Scott I.; Boardman, James P.
2017-01-01
Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation. The method performed well on brain MRI data acquired from 179 individuals, analyzed in three age groups: newborns (38–42 weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years). As the method can learn from partially labeled datasets, it can be used to segment large-scale datasets efficiently. It could also be applied to different populations and imaging modalities across the life course. PMID:28163680
Cognitive Rehabilitation for Children with Acquired Brain Injury
ERIC Educational Resources Information Center
Slomine, Beth; Locascio, Gianna
2009-01-01
Cognitive deficits are frequent consequences of acquired brain injury (ABI) and often require intervention. We review the theoretical and empirical literature on cognitive rehabilitation in a variety of treatment domains including attention, memory, unilateral neglect, speech and language, executive functioning, and family involvement/education.…
Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy.
Savard, Alexandre; Lavoie, Karine; Brochu, Marie-Elsa; Grbic, Djordje; Lepage, Martin; Gris, Denis; Sebire, Guillaume
2013-09-05
Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes. An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns. LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology. In rat pups at a neurodevelopmental age corresponding to full-term human newborns, a systemic pre-exposure to a pathogen component amplified HI-induced mortality and morbidities that are relevant to human pathology. Neuronal cells were the first cells to produce IL-1β in LPS + HI-exposed full-term brains. Such IL-1β production might be responsible for neuronal self-injuries via well-described neurotoxic mechanisms such as IL-1β-induced nitric oxide production, or IL-1β-dependent exacerbation of excitotoxic damage.
Choi, Soyoung; Bush, Adam M; Borzage, Matthew T; Joshi, Anand A; Mack, William J; Coates, Thomas D; Leahy, Richard M; Wood, John C
2017-01-01
Sickle cell disease (SCD) is a life-threatening genetic condition. Patients suffer from chronic systemic and cerebral vascular disease that leads to early and cumulative neurological damage. Few studies have quantified the effects of this disease on brain morphometry and even fewer efforts have been devoted to older patients despite the progressive nature of the disease. This study quantifies global and regional brain volumes in adolescent and young adult patients with SCD and racially matched controls with the aim of distinguishing between age related changes associated with normal brain maturation and damage from sickle cell disease. T1 weighted images were acquired on 33 clinically asymptomatic SCD patients (age = 21.3 ± 7.8; F = 18, M = 15) and 32 racially matched control subjects (age = 24.4 ± 7.5; F = 22, M = 10). Exclusion criteria included pregnancy, previous overt stroke, acute chest, or pain crisis hospitalization within one month. All brain volume comparisons were corrected for age and sex. Globally, grey matter volume was not different but white matter volume was 8.1% lower (p = 0.0056) in the right hemisphere and 6.8% (p = 0.0068) in the left hemisphere in SCD patients compared with controls. Multivariate analysis retained hemoglobin (β = 0.33; p = 0.0036), sex (β = 0.35; p = 0.0017) and mean platelet volume (β = 0.27; p = 0.016) as significant factors in the final prediction model for white matter volume for a combined r 2 of 0.37 (p < 0.0001). Lower white matter volume was confined to phylogenetically younger brain regions in the anterior and middle cerebral artery distributions. Our findings suggest that there are diffuse white matter abnormalities in SCD patients, especially in the frontal, parietal and temporal lobes, that are associated with low hemoglobin levels and mean platelet volume. The pattern of brain loss suggests chronic microvascular insufficiency and tissue hypoxia as the causal mechanism. However, longitudinal studies of global and regional brain morphometry can help us give further insights on the pathophysiology of SCD in the brain.
Systems approach to the study of brain damage in the very preterm newborn
Leviton, Alan; Gressens, Pierre; Wolkenhauer, Olaf; Dammann, Olaf
2015-01-01
Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn. PMID:25926780
Hadders-Algra, Mijna
2001-01-01
The Neuronal Group Selection Theory (NGST) could offer new insights into the mechanisms directing motor disorders, such as cerebral palsy and developmental coordination disorder. According to NGST, normal motor development is characterized by two phases of variability. Variation is not at random but determined by criteria set by genetic information. Development starts with the phase of primary variability,during which variation in motor behavior is not geared to external conditions. At function-specific ages secondary variability starts, during which motor performance can be adapted to specific situations. In both forms, of variability, selection on the basis of afferent information plays a significant role. From the NGST point of view, children with pre- or perinatally acquired brain damage, such as children with cerebral palsy and part of the children with developmental coordination disorder, suffer from stereotyped motor behavior, produced by a limited repertoire or primary (sub)cortical neuronal networks. These children also have roblems in selecting the most efficient neuronal activity, due to deficits in the processing of sensory information. Therefore, NGST suggests that intervention in these children at early age should aim at an enlargement of the primary neuronal networks. With increasing age, the emphasis of intervention could shift to the provision of ample opportunities for active practice, which might form a compensation for the impaired selection. PMID:11530887
Suh, J Y; Shim, Woo H; Cho, Gyunggoo; Fan, Xiang; Kwon, Seon J; Kim, Jeong K; Dai, George; Wang, Xiaoying; Kim, Young R
2015-01-01
Vasoreactivity to hypercapnia has been used for assessing cerebrovascular tone and control altered by ischemic stroke. Despite the high prognostic potential, traits of hypercapnia-induced hemodynamic changes have not been fully characterized in relation with baseline vascular states and brain tissue damage. To monitor cerebrovascular responses, T2- and T2*-weighted magnetic resonance imaging (MRI) images were acquired alternatively using spin- and gradient-echo echo plannar imaging (GESE EPI) sequence with 5% CO2 gas inhalation in normal (n=5) and acute stroke rats (n=10). Dynamic relative changes in cerebrovascular volume (CBV), microvascular volume (MVV), and vascular size index (VSI) were assessed from regions of interest (ROIs) delineated by the percent decrease of apparent diffusion coefficient (ADC). The baseline CBV was not affected by middle cerebral artery occlusion (MCAO) whereas the baseline MVV in ischemic areas was significantly lower than that in the rest of the brain and correlated with ADC. Vasoreactivity to hypercapnic challenge was considerably attenuated in the entire ipsilesional hemisphere including normal ADC regions, in which unsolicited, spreading depression-associated increases of CBV and MVV were observed. The lesion-dependent inhomogeneity in baseline MVV indicates the effective perfusion reserve for accurately delineating the true ischemic damage while the cascade of neuronal depolarization is probably responsible for the hemispherically lateralized changes in overall neurovascular physiology. PMID:25690471
Suh, J Y; Shim, Woo H; Cho, Gyunggoo; Fan, Xiang; Kwon, Seon J; Kim, Jeong K; Dai, George; Wang, Xiaoying; Kim, Young R
2015-06-01
Vasoreactivity to hypercapnia has been used for assessing cerebrovascular tone and control altered by ischemic stroke. Despite the high prognostic potential, traits of hypercapnia-induced hemodynamic changes have not been fully characterized in relation with baseline vascular states and brain tissue damage. To monitor cerebrovascular responses, T2- and T2*-weighted magnetic resonance imaging (MRI) images were acquired alternatively using spin- and gradient-echo echo plannar imaging (GESE EPI) sequence with 5% CO2 gas inhalation in normal (n=5) and acute stroke rats (n=10). Dynamic relative changes in cerebrovascular volume (CBV), microvascular volume (MVV), and vascular size index (VSI) were assessed from regions of interest (ROIs) delineated by the percent decrease of apparent diffusion coefficient (ADC). The baseline CBV was not affected by middle cerebral artery occlusion (MCAO) whereas the baseline MVV in ischemic areas was significantly lower than that in the rest of the brain and correlated with ADC. Vasoreactivity to hypercapnic challenge was considerably attenuated in the entire ipsilesional hemisphere including normal ADC regions, in which unsolicited, spreading depression-associated increases of CBV and MVV were observed. The lesion-dependent inhomogeneity in baseline MVV indicates the effective perfusion reserve for accurately delineating the true ischemic damage while the cascade of neuronal depolarization is probably responsible for the hemispherically lateralized changes in overall neurovascular physiology.
Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage
NASA Astrophysics Data System (ADS)
Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.
2014-12-01
In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.
Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage
NASA Astrophysics Data System (ADS)
Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.
2015-12-01
In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.
Vidoni, Eric D; Boyd, Lara A
2007-09-01
Two major memory and learning systems operate in the brain: one for facts and ideas (ie, the declarative or explicit system), one for habits and behaviors (ie, the procedural or implicit system). Broadly speaking these two memory systems can operate either in concert or entirely independently of one another during the performance and learning of skilled motor behaviors. This Special Issue article has two parts. In the first, we present a review of implicit motor skill learning that is largely centered on the interactions between declarative and procedural learning and memory. Because distinct neuroanatomical substrates support unique aspects of learning and memory and thus focal injury can cause impairments that are dependent on lesion location, we also broadly consider which brain regions mediate implicit and explicit learning and memory. In the second part of this article, the interactive nature of these two memory systems is illustrated by the presentation of new data that reveal that both learning implicitly and acquiring explicit knowledge through physical practice lead to motor sequence learning. In our new data, we discovered that for healthy individuals use of the implicit versus explicit memory system differently affected variability of performance during acquisition practice; variability was higher early in practice for the implicit group and later in practice for the acquired explicit group. Despite the difference in performance variability, by retention both groups demonstrated comparable change in tracking accuracy and thus, motor sequence learning. Clinicians should be aware of the potential effects of implicit and explicit interactions when designing rehabilitation interventions, particularly when delivering explicit instructions before task practice, working with individuals with focal brain damage, and/or adjusting therapeutic parameters based on acquisition performance variability.
Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions
ERIC Educational Resources Information Center
Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi
2009-01-01
The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…
Group Treatment in Acquired Brain Injury Rehabilitation
ERIC Educational Resources Information Center
Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard
2011-01-01
The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…
Exploring the Use of Cognitive Intervention for Children with Acquired Brain Injury
ERIC Educational Resources Information Center
Missiuna, Cheryl; DeMatteo, Carol; Hanna, Steven; Mandich, Angela; Law, Mary; Mahoney, William; Scott, Louise
2010-01-01
Introduction: Children with acquired brain injury (ABI) often experience cognitive, motor, and psychosocial deficits that affect participation in everyday activities. Cognitive Orientation to Daily Occupational Performance (CO-OP) is an individualized treatment that teaches cognitive strategies necessary to support successful performance.…
Mapping connectivity damage in the case of Phineas Gage.
Van Horn, John Darrell; Irimia, Andrei; Torgerson, Carinna M; Chambers, Micah C; Kikinis, Ron; Toga, Arthur W
2012-01-01
White matter (WM) mapping of the human brain using neuroimaging techniques has gained considerable interest in the neuroscience community. Using diffusion weighted (DWI) and magnetic resonance imaging (MRI), WM fiber pathways between brain regions may be systematically assessed to make inferences concerning their role in normal brain function, influence on behavior, as well as concerning the consequences of network-level brain damage. In this paper, we investigate the detailed connectomics in a noted example of severe traumatic brain injury (TBI) which has proved important to and controversial in the history of neuroscience. We model the WM damage in the notable case of Phineas P. Gage, in whom a "tamping iron" was accidentally shot through his skull and brain, resulting in profound behavioral changes. The specific effects of this injury on Mr. Gage's WM connectivity have not previously been considered in detail. Using computed tomography (CT) image data of the Gage skull in conjunction with modern anatomical MRI and diffusion imaging data obtained in contemporary right handed male subjects (aged 25-36), we computationally simulate the passage of the iron through the skull on the basis of reported and observed skull fiducial landmarks and assess the extent of cortical gray matter (GM) and WM damage. Specifically, we find that while considerable damage was, indeed, localized to the left frontal cortex, the impact on measures of network connectedness between directly affected and other brain areas was profound, widespread, and a probable contributor to both the reported acute as well as long-term behavioral changes. Yet, while significantly affecting several likely network hubs, damage to Mr. Gage's WM network may not have been more severe than expected from that of a similarly sized "average" brain lesion. These results provide new insight into the remarkable brain injury experienced by this noteworthy patient.
Acquired dysgraphia in adults following right or left-hemisphere stroke
Rodrigues, Jaqueline de Carvalho; da Fontoura, Denise Ren; de Salles, Jerusa Fumagalli
2014-01-01
Objective This study aimed to assess the strengths and difficulties in word and pseudoword writing in adults with left- and right-hemisphere strokes, and discuss the profiles of acquired dysgraphia in these individuals. Methods The profiles of six adults with acquired dysgraphia in left- or right-hemisphere strokes were investigated by comparing their performance on word and pseudoword writing tasks against that of neurologically healthy adults. A case series analysis was performed on the patients whose impairments on the task were indicative of acquired dysgraphia. Results Two patients were diagnosed with lexical dysgraphia (one with left hemisphere damage, and the other with right hemisphere damage), one with phonological dysgraphia, another patient with peripheral dysgraphia, one patient with mixed dysgraphia and the last with dysgraphia due to damage to the graphemic buffer. The latter patients all had left-hemisphere damage (LHD). The patterns of impairment observed in each patient were discussed based on the dual-route model of writing. Conclusion The fact that most patients had LHD rather than right-hemisphere damage (RHD) highlights the importance of the former structure for word processing. However, the fact that lexical dysgraphia was also diagnosed in a patient with RHD suggests that these individuals may develop writing impairments due to damage to the lexical route, leading to heavier reliance on phonological processing. Our results are of significant importance to the planning of writing interventions in neuropsychology. PMID:29213909
Kim, Junhwan; Lampe, Joshua W.; Yin, Tai; Shinozaki, Koichiro; Becker, Lance B.
2015-01-01
Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a moderate increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation. PMID:26160279
Kim, Junhwan; Lampe, Joshua W; Yin, Tai; Shinozaki, Koichiro; Becker, Lance B
2015-10-01
Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a substantial increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation.
Music therapy for acquired brain injury.
Bradt, Joke; Magee, Wendy L; Dileo, Cheryl; Wheeler, Barbara L; McGilloway, Emer
2010-07-07
Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, sensory processing and emotional disturbances. This may severely reduce a survivor's quality of life. Music therapy has been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions and sensory perceptions. A systematic review is needed to gauge the efficacy of music therapy as a rehabilitation intervention for people with ABI. To examine the effects of music therapy with standard care versus standard care alone or standard care combined with other therapies on gait, upper extremity function, communication, mood and emotions, social skills, pain, behavioral outcomes, activities of daily living and adverse events. We searched the Cochrane Stroke Group Trials Register (February 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 2, 2009), MEDLINE (July 2009), EMBASE (August 2009), CINAHL (March 2010), PsycINFO (July 2009), LILACS (August 2009), AMED (August 2009) and Science Citation Index (August 2009). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted experts and music therapy associations. There was no language restriction. Randomized and quasi-randomized controlled trials that compared music therapy interventions and standard care with standard care alone or combined with other therapies for people older than 16 years of age who had acquired brain damage of a non-degenerative nature and were participating in treatment programs offered in hospital, outpatient or community settings. Two review authors independently assessed methodological quality and extracted data. We present results using mean differences (using post-test scores) as all outcomes were measured with the same scale. We included seven studies (184 participants). The results suggest that rhythmic auditory stimulation (RAS) may be beneficial for improving gait parameters in stroke patients, including gait velocity, cadence, stride length and gait symmetry. These results were based on two studies that received a low risk of bias score. There were insufficient data to examine the effect of music therapy on other outcomes. RAS may be beneficial for gait improvement in people with stroke. These results are encouraging, but more RCTs are needed before recommendations can be made for clinical practice. More research is needed to examine the effects of music therapy on other outcomes in people with ABI.
Fonseca, Rochele Paz; Fachel, Jandyra Maria Guimarães; Chaves, Márcia Lorena Fagundes; Liedtke, Francéia Veiga; Parente, Maria Alice de Mattos Pimenta
2007-01-01
Right-brain-damaged individuals may present discursive, pragmatic, lexical-semantic and/or prosodic disorders. To verify the effect of right hemisphere damage on communication processing evaluated by the Brazilian version of the Protocole Montréal d'Évaluation de la Communication (Montreal Communication Evaluation Battery) - Bateria Montreal de Avaliação da Comunicação, Bateria MAC, in Portuguese. A clinical group of 29 right-brain-damaged participants and a control group of 58 non-brain-damaged adults formed the sample. A questionnaire on sociocultural and health aspects, together with the Brazilian MAC Battery was administered. Significant differences between the clinical and control groups were observed in the following MAC Battery tasks: conversational discourse, unconstrained, semantic and orthographic verbal fluency, linguistic prosody repetition, emotional prosody comprehension, repetition and production. Moreover, the clinical group was less homogeneous than the control group. A right-brain-damage effect was identified directly, on three communication processes: discursive, lexical-semantic and prosodic processes, and indirectly, on pragmatic process.
What cues do nurses use to predict aggression in people with acquired brain injury?
Pryor, Julie
2005-04-01
There is a paucity of research on the frequent and repeated episodes of aggression and violence experienced by nurses when working with people who have an acquired brain injury. The purpose of this study was to bring this issue into focus by identifying the cues nurses use to predict aggression in people with acquired brain injury. Twenty-eight nurses from 10 different inpatient brain injury rehabilitation units in Australia participated in the study. Participants were interviewed using the Critical Decision Method on a one to one basis for up to one and one half hours on two consecutive days. Transcripts of the interviews were analysed using thematic analysis. Results revealed that nurses identified five groups of cues that predict aggression in a patient: (1) what a patient is saying; (2) changes in a patient's voice; (3) changes in a patient's face; (4) changes in a patient's behavior; and (5) a patient's emotions. Nurses reported using multiple cues to predict aggression and highlighted the importance of personal knowledge of the patient in conjunction with identified cues when predicting aggression. Nurses caring for patients with acquired brain injury can predict many episodes of aggression, though not all, by identifying cues from the patient.
Ambient particulate matter (PM) damages biological targets through oxidative stress (OS) pathways. Several reports indicate that the brain is one of those targets. Since microglia (brain macrophage) are critical to OS-mediated neurodegeneration, their response to concentrated amb...
[Proceeding memory in Alzheimer's disease].
Arroyo-Anlló, Eva Ma; Chamorro-Sánchez, Jorge; Díaz-Marta, Juan Poveda; Gil, Roger
2013-01-01
Procedural learning can acquire or develop skills through performance and repetition of a task unconsciously or unintentionally. Procedural skills are considered as the cornerstone in the neuropsychological rehabilitation to promote the autonomy of patients with brain damage, as those with Alzheimer's disease. This review presents data about procedural skills in Alzheimer's disease. Over the past three decades, we have found 40 articles studying various procedural skills in the Alzheimer's disease: motor, perceptual-motor, cognitive, perceptual-cognitive and those developed through serial reaction-time paradigm. We analyzed every study evaluating a procedural skill, indicating the used task and preservation or no preservation of procedural learning. Overall, most of the papers published describe conservation of learning procedures or relatively conserved in Alzheimer's disease, which could be used to promote patient autonomy.
Neuropsychological outcome after traumatic temporal lobe damage.
Formisano, R; Schmidhuber-Eiler, B; Saltuari, L; Cigany, E; Birbamer, G; Gerstenbrand, F
1991-01-01
The most frequent sequelae after severe brain injury include changes in personality traits, disturbances of emotional behaviour and impairment of cognitive functions. In particular, emotional changes and/or verbal and non verbal dysfunctions were found in patients with bilateral or unilateral temporal lobe lesions. The aim of our study is to correlate the localization of the brain damage after severe brain injury, in particular of the temporal lobe, with the cognitive impairment and the emotional and behavioural changes resulting from these lesions. The patients with right temporal lobe lesions showed significantly better scores in verbal intelligence and verbal memory in comparison with patients with left temporal lobe lesions and those with other focal brain lesions or diffuse brain damage. In contradistinction, study of the personality and the emotional changes (MMPI and FAF) failed to demonstrate pathological scores in the 3 groups with different CT lesions, without any significant difference being found between the groups with temporal lesions and those with other focal brain lesions or diffuse brain damage. The severity of the brain injury and the prolongation of the disturbance of consciousness could, in our patients, account for prevalence of congnitive impairment on personality and emotional changes.
An eye movement based reading intervention in lexical and segmental readers with acquired dyslexia.
Ablinger, Irene; von Heyden, Kerstin; Vorstius, Christian; Halm, Katja; Huber, Walter; Radach, Ralph
2014-01-01
Due to their brain damage, aphasic patients with acquired dyslexia often rely to a greater extent on lexical or segmental reading procedures. Thus, therapy intervention is mostly targeted on the more impaired reading strategy. In the present work we introduce a novel therapy approach based on real-time measurement of patients' eye movements as they attempt to read words. More specifically, an eye movement contingent technique of stepwise letter de-masking was used to support sequential reading, whereas fixation-dependent initial masking of non-central letters stimulated a lexical (parallel) reading strategy. Four lexical and four segmental readers with acquired central dyslexia received our intensive reading intervention. All participants showed remarkable improvements as evident in reduced total reading time, a reduced number of fixations per word and improved reading accuracy. Both types of intervention led to item-specific training effects in all subjects. A generalisation to untrained items was only found in segmental readers after the lexical training. Eye movement analyses were also used to compare word processing before and after therapy, indicating that all patients, with one exclusion, maintained their preferred reading strategy. However, in several cases the balance between sequential and lexical processing became less extreme, indicating a more effective individual interplay of both word processing routes.
Singing ability after right and left sided brain damage. A research note.
Kinsella, G; Prior, M R; Murray, G
1988-03-01
Capacity to sing following brain damage was investigated in a series of 15 right sided and 15 left sided lesioned subjects and 15 normal control subjects. All subjects were asked to sing the same well-known song and performance was judged by independent expert musicians using criteria of ability to pitch the melody, accurately produce the rhythm, and overall quality of the production. There was a lack of support for differential effect of right and left cerebral damage on pitch and rhythm aspects of singing, but a generalized effect of brain damage was found.
McGrath, Joanna
2004-11-01
This paper compares the situation of the person with acquired brain injury to that of the people of Israel in the sixth century BCE (before the current era) during the period of exile in Babylon. Both situations are characterized by traumatic multiple losses, and a struggle to regain a sense of identity: personal, national or spiritual. Evidence from the literature on both brain injury rehabilitation and from the Hebrew Scriptures indicates that models of restoration of function and transformation of suffering have been applied to both situations. The relative strengths and weaknesses of these models are considered, and it is argued that models of transformation of suffering have much to offer, especially in the longer term psychotherapeutic rehabilitation of people with acquired brain injury, when restoration of function has reached its limits.
Busigny, Thomas; Van Belle, Goedele; Jemel, Boutheina; Hosein, Anthony; Joubert, Sven; Rossion, Bruno
2014-04-01
Recent studies have provided solid evidence for pure cases of prosopagnosia following brain damage. The patients reported so far have posterior lesions encompassing either or both the right inferior occipital cortex and fusiform gyrus, and exhibit a critical impairment in generating a sufficiently detailed holistic percept to individualize faces. Here, we extended these observations to include the prosopagnosic patient LR (Bukach, Bub, Gauthier, & Tarr, 2006), whose damage is restricted to the anterior region of the right temporal lobe. First, we report that LR is able to discriminate parametrically defined individual exemplars of nonface object categories as accurately and quickly as typical observers, which suggests that the visual similarity account of prosopagnosia does not explain his impairments. Then, we show that LR does not present with the typical face inversion effect, whole-part advantage, or composite face effect and, therefore, has impaired holistic perception of individual faces. Moreover, the patient is more impaired at matching faces when the facial part he fixates is masked than when it is selectively revealed by means of gaze contingency. Altogether these observations support the view that the nature of the critical face impairment does not differ qualitatively across patients with acquired prosopagnosia, regardless of the localization of brain damage: all these patients appear to be impaired to some extent at what constitutes the heart of our visual expertise with faces, namely holistic perception at a sufficiently fine-grained level of resolution to discriminate exemplars of the face class efficiently. This conclusion raises issues regarding the existing criteria for diagnosis/classification of patients as cases of apperceptive or associative prosopagnosia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pascual-Lozano, A M; Martínez-Bisbal, M C; Boscá-Blasco, I; Valero-Merino, C; Coret-Ferrer, F; Martí-Bonmatí, L; Martínez-Granados, B; Celda, B; Casanova-Estruch, B
To evaluate the relationship between the total brain T2-hyperintense lesion volume (TBT2LV) and the axonal damage in the normal-appearing white matter of brainstem measured by 1H-MRS in a group of early relapsing-remitting multiple sclerosis patients. 40 relapsing-remitting multiple sclerosis patients and ten sex- and age-matched healthy subjects were prospectively studied for two years. T2-weighted MR and 1H-MRS imaging were acquired at time of recruitment and at year two. The TBT2LV was calculated with a semiautomatic program; N-acetylaspartate (NAA), creatine (Cr) and choline (Cho) resonances areas were integrated with jMRUI program and the ratios were calculated for four volume elements that represented the brainstem. At basal study we obtained an axonal loss (as a decrement of NAA/ Cho ratio) in the group of patients compared with controls (p = 0.017); this axonal loss increased at the second year of the follow-up for patients (NAA/Cho decrease, p = 0.004, and NAA/Cr decrease, p = 0.002) meanwhile control subjects had no significant metabolic changes. Higher lesion load was correlated with a poor clinical outcome, being the correlation between the basal TBT2LV and the Expanded Disability Status Scale at second year (r = 0.299; p = 0.05). Besides, axonal loss was not homogeneous for all multiple sclerosis patients, being stronger in the subgroup of patients with high basal TBT2LV (p = 0.043; ANOVA). Our data suggest that axonal damage is early in multiple sclerosis and higher in patients high basal TBT2LV, suggesting a possible relationship between these two phenomena.
Brain-Heart Interaction: Cardiac Complications After Stroke.
Chen, Zhili; Venkat, Poornima; Seyfried, Don; Chopp, Michael; Yan, Tao; Chen, Jieli
2017-08-04
Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed. © 2017 American Heart Association, Inc.
Harness, B Z; Bental, E; Carmon, A
1976-03-01
Cognition and performance of patients with localized and diffuse brain damage was evaluated through the application of objective perceptual testing. A series of visual perceptual and verbal tests, memory tests, as well as reaction time tasks were administered to the patients by logic programming equipment. In order to avoid a bias due to communicative disorders, all responses were motor, and achievement was scored in terms of correct identification and latencies of response. Previously established norms based on a large sample of non-brain-damaged hospitalized patients served to standardize the performance of the brain-damaged patient since preliminary results showed that age and educational level constitute an important variable affecting performance of the control group. The achievement of brain-damaged patients, corrected for these factors, was impaired significantly in all tests with respect to both recognition and speed of performance. Lateralized effects of brain damage were not significantly demonstrated. However, when the performance was analyzed with respect to the locus of visual input, it was found that patients with right hemispheric lesions showed impairment mainly on perception of figurative material, and that this deficit was more apparent in the left visual field. Conversely, patients with left hemispheric lesions tended to show impairment on perception of visually presented verbal material when the input was delivered to the right visual field.
Kadri, Yamina; Nciri, Riadh; Brahmi, Noura; Saidi, Saber; Harrath, Abdel Halim; Alwasel, Saleh; Aldahmash, Waleed; El Feki, Abdelfatteh; Allagui, Mohamed Salah
2018-05-07
Cerium chloride (CeCl 3 ) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl 3 , 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl 3 -treated mice. In addition, CeCl 3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl 3 -treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl 3 -induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl 3 -damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl 3 -induced damage in the brain.
Spinelli, Edoardo G; Caso, Francesca; Agosta, Federica; Gambina, Giuseppe; Magnani, Giuseppe; Canu, Elisa; Blasi, Valeria; Perani, Daniela; Comi, Giancarlo; Falini, Andrea; Gorno-Tempini, Maria Luisa; Filippi, Massimo
2015-10-01
Crossed aphasia has been reported mainly as post-stroke aphasia resulting from brain damage ipsilateral to the dominant right hand. Here, we described a case of a crossed nonfluent/agrammatic primary progressive aphasia (nfvPPA), who developed a corticobasal syndrome (CBS). We collected clinical, cognitive, and neuroimaging data for four consecutive years from a 55-year-old right-handed lady (JV) presenting with speech disturbances. 18-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) and DaT-scan with (123)I-Ioflupane were obtained. Functional MRI (fMRI) during a verb naming task was acquired to characterize patterns of language lateralization. Diffusion tensor MRI was used to evaluate white matter damage within the language network. At onset, JV presented with prominent speech output impairment and right frontal atrophy. After 3 years, language deficits worsened, with the occurrence of a mild agrammatism. The patient also developed a left-sided mild extrapyramidal bradykinetic-rigid syndrome. The clinical picture was suggestive of nfvPPA with mild left-sided extrapyramidal syndrome. At this time, voxel-wise SPM analyses of (18)F-FDG PET and structural MRI showed right greater than left frontal hypometabolism and damage, which included the Broca's area. DaT-scan showed a reduced uptake in the right striatum. FMRI during naming task demonstrated bilateral language activations, and tractography showed right superior longitudinal fasciculus (SLF) involvement. Over the following year, JV became mute and developed frank left-sided motor signs and symptoms, evolving into a CBS clinical picture. Brain atrophy worsened in frontal areas bilaterally, and extended to temporo-parietal regions, still with a right-sided asymmetry. Tractography showed an extension of damage to the left SLF and right inferior longitudinal fasciculus. We report a case of crossed nfvPPA followed longitudinally and studied with advanced neuroimaging techniques. The results highlight a complex interaction between individual premorbid developmental differences and the clinical phenotype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuan; Fujigaki, Yoshihide, E-mail: yf0516@hama-med.ac.j; Sakakima, Masanori
Animals recovered from acute renal failure are resistant to subsequent insult. We investigated whether rats recovered from mild proximal tubule (PT) injury without renal dysfunction (subclinical renal damage) acquire the same resistance. Rats 14 days after recovering from subclinical renal damage, which was induced by 0.2 mg/kg of uranyl acetate (UA) (sub-toxic dose), were rechallenged with 4 mg/kg of UA (nephrotoxic dose). Fate of PT cells and renal function were examined in response to nephrotoxic dose of UA. All divided cells after sub-toxic dose of UA insult were labeled with bromodeoxyuridine (BrdU) for 14 days then the number of PTmore » cells with or without BrdU-labeling was counted following nephrotoxic dose of UA insult. Rats recovered from subclinical renal damage gained resistance to nephrotoxic dose of UA with reduced renal dysfunction, less severity of peak damage (necrotic and TUNEL+ apoptotic cells) and accelerated PT cell proliferation, but with earlier peak of PT damage. The decrease in number of PT cells in the early phase of rechallenge injury with nephrotoxic UA was more in rats pretreated with sub-toxic dose of UA than vehicle pretreated rats. The exaggerated loss of PT cells was mainly caused by the exaggerated loss of BrdU+ divided cells. In contrast, accelerated cell proliferation in rats recovered from sub-toxic dose of UA was observed mainly in BrdU- non-divided cells. The findings suggest that rats recovered from subclinical renal damage showed partial acquired resistance to nephrotoxic insult. Accelerated recovery with increased proliferative activity of non-divided PT cells after subclinical renal damage may mainly contribute to acquired resistance.« less
Comprehensive 3D Model of Shock Wave-Brain Interactions in Blast-Induced Traumatic Brain Injuries
2009-10-01
waves can cause brain damage by other mechanisms including excess pressure (leading to contusions), excess strain (leading to subdural ... hematomas and/or diffuse axonal injuries), and, in particular, cavitation effects (leading to subcellular damage). This project aims at the development of a
Assessment of MRI Parameters as Imaging Biomarkers for Radiation Necrosis in the Rat Brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Silun; Tryggestad, Erik; Zhou Tingting
Purpose: Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T{sub 1}, T{sub 2}, apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Methods and Materials: Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 Multiplication-Sign 10 mm{sup 2}) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at {approx}25 weeks' postradiation. The MRI signals of necroticmore » cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. Results: ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T{sub 1}, T{sub 2}, MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T{sub 1}, T{sub 2}, MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. Conclusion: ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores.« less
Long-term disability progression in primary progressive multiple sclerosis: a 15-year study.
Rocca, Maria A; Sormani, Maria Pia; Rovaris, Marco; Caputo, Domenico; Ghezzi, Angelo; Montanari, Enrico; Bertolotto, Antonio; Laroni, Alice; Bergamaschi, Roberto; Martinelli, Vittorio; Comi, Giancarlo; Filippi, Massimo
2017-11-01
Prognostic markers of primary progressive multiple sclerosis evolution are needed. We investigated the added value of magnetic resonance imaging measures of brain and cervical cord damage in predicting long-term clinical worsening of primary progressive multiple sclerosis compared to simple clinical assessment. In 54 patients, conventional and diffusion tensor brain scans and cervical cord T1-weighted scans were acquired at baseline and after 15 months. Clinical evaluation was performed after 5 and 15 years in 49 patients. Lesion load, brain and cord atrophy, mean diffusivity and fractional anisotropy values from the brain normal-appearing white matter and grey matter were obtained. Using linear regression models, we screened the clinical and imaging variables as independent predictors of 15-year disability change (measured on the expanded disability status scale). At 15 years, 90% of the patients had disability progression. Integrating clinical and imaging variables at 15 months predicted disability changes at 15 years better than clinical factors at 5 years (R2 = 61% versus R2 = 57%). The model predicted long-term disability change with a precision within one point in 38 of 49 patients (77.6%). Integration of clinical and imaging measures allows identification of primary progressive multiple sclerosis patients at risk of long-term disease progression 4 years earlier than when using clinical assessment alone. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Colciaghi, Francesca; Finardi, Adele; Nobili, Paola; Locatelli, Denise; Spigolon, Giada; Battaglia, Giorgio Stefano
2014-01-01
Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.
Assessment of MRI parameters as imaging biomarkers for radiation necrosis in the rat brain.
Wang, Silun; Tryggestad, Erik; Zhou, Tingting; Armour, Michael; Wen, Zhibo; Fu, De-Xue; Ford, Eric; van Zijl, Peter C M; Zhou, Jinyuan
2012-07-01
Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T(1), T(2), apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 × 10 mm(2)) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at ~25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T(1), T(2), MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T(1), T(2), MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores. Copyright © 2012 Elsevier Inc. All rights reserved.
Boyd, Roslyn N; Baque, Emmah; Piovesana, Adina; Ross, Stephanie; Ziviani, Jenny; Sakzewski, Leanne; Barber, Lee; Lloyd, Owen; McKinlay, Lynne; Whittingham, Koa; Smith, Anthony C; Rose, Stephen; Fiori, Simona; Cunnington, Ross; Ware, Robert; Lewis, Melinda; Comans, Tracy A; Scuffham, Paul A
2015-08-19
Acquired brain injury (ABI) refers to multiple disabilities arising from damage to the brain acquired after birth. Children with an ABI may experience physical, cognitive, social and emotional-behavioural impairments which can impact their ability to participate in activities of daily living (ADL). Recent developments in technology have led to the emergence of internet-delivered therapy programs. "Move it to improve it" (Mitii™) is a web-based multi-modal therapy that comprises upper limb (UL) and cognitive training within the context of meaningful physical activity. The proposed study aims to compare the efficacy of Mitii™ to usual care to improve ADL motor and processing skills, gross motor capacity, UL and executive functioning in a randomised waitlist controlled trial. Sixty independently ambulant children (30 in each group) at least 12 months post ABI will be recruited to participate in this trial. Children will be matched in pairs at baseline and randomly allocated to receive either 20 weeks of Mitii™ training (30 min per day, six days a week, with a potential total dose of 60 h) immediately, or be waitlisted for 20 weeks. Outcomes will be assessed at baseline, immediately post-intervention and at 20 weeks post-intervention. The primary outcomes will be the Assessment of Motor and Process Skills and 30 s repetition maximum of functional strength exercises (sit-to-stand, step-ups and half kneel to stand). Measures of body structure and functions, activity, participation and quality of life will assess the efficacy of Mitii™ across all domains of the International Classification of Functioning, Disability and Health framework. A subset of children will undertake three tesla (3T) magnetic resonance imaging scans to evaluate functional neurovascular changes, structural imaging, diffusion imaging and resting state functional connectivity before and after intervention. Mitii™ provides an alternative approach to deliver intensive therapy for children with an ABI in the convenience of the home environment. If Mitii™ is found to be effective, it may offer an accessible and inexpensive intervention option to increase therapy dose. ANZCTR12613000403730.
Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury
Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.
2009-01-01
Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795
de Jong, L.W.; Wang, Y.; White, L.R.; Yu, B.; van Buchem, M.A.; Launer, L.J.
2012-01-01
Striatal degeneration may contribute to cognitive impairment in older people. Here, we examine the relation of degeneration of the striatum and substructures to cognitive decline and dementia in subjects with a wide range of cognitive function. Data are from the prospective community-based Honolulu Asia Aging Study of Japanese American men born 1900–1919. Brain MRI (1.5T) was acquired on a stratified sub-sample (n=477) that included four groups defined by cognitive status relative to the scan date: subjects without dementia (n=347), subjects identified as demented 2–3 years prior to brain scanning (n=30), at the time of scanning (n=58), and 3–5 years after scanning (n=42). Volumes of the striatum, including the accumbens, putamen, and caudate nucleus were automatically estimated from T1 MR images. Global cognitive function was measured with the CASI, at four exams spanning an 8 year interval. Trajectories of cognitive decline were estimated for each quartile of striatal volume using mixed models, controlling for demographic variables, measures of cerebro-vascular damage, global brain atrophy, and hippocampal volume. Diagnosis of dementia before, during, and after brain scanning was associated with smaller volumes of n. accumbens and putamen, but not with caudate nucleus volume. Subjects in the lowest quartile of n. accumbens, both in the total sample and in the subjects not diagnosed with dementia during the study, had a significantly (p < 0.0001) steeper decline in cognitive performance compared to those in the highest quartile. In conclusion, volumes of the n. accumbens and putamen are closely associated with the occurrence of dementia and n. accumbens volume predicts cognitive decline in older people. These associations were found independent of the magnitude of other pivotal markers of cognitive decline, i.e. cerebro-vascular damage and hippocampal volume. The present study suggests a role for the ventral striatum in the development of clinical dementia. PMID:21075480
Schulz, Christian M; Burden, Amanda; Posner, Karen L; Mincer, Shawn L; Steadman, Randolph; Wagner, Klaus J; Domino, Karen B
2017-08-01
Situational awareness errors may play an important role in the genesis of patient harm. The authors examined closed anesthesia malpractice claims for death or brain damage to determine the frequency and type of situational awareness errors. Surgical and procedural anesthesia death and brain damage claims in the Anesthesia Closed Claims Project database were analyzed. Situational awareness error was defined as failure to perceive relevant clinical information, failure to comprehend the meaning of available information, or failure to project, anticipate, or plan. Patient and case characteristics, primary damaging events, and anesthesia payments in claims with situational awareness errors were compared to other death and brain damage claims from 2002 to 2013. Anesthesiologist situational awareness errors contributed to death or brain damage in 198 of 266 claims (74%). Respiratory system damaging events were more common in claims with situational awareness errors (56%) than other claims (21%, P < 0.001). The most common specific respiratory events in error claims were inadequate oxygenation or ventilation (24%), difficult intubation (11%), and aspiration (10%). Payments were made in 85% of situational awareness error claims compared to 46% in other claims (P = 0.001), with no significant difference in payment size. Among 198 claims with anesthesia situational awareness error, perception errors were most common (42%), whereas comprehension errors (29%) and projection errors (29%) were relatively less common. Situational awareness error definitions were operationalized for reliable application to real-world anesthesia cases. Situational awareness errors may have contributed to catastrophic outcomes in three quarters of recent anesthesia malpractice claims.Situational awareness errors resulting in death or brain damage remain prevalent causes of malpractice claims in the 21st century.
Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl
2016-09-01
Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.
Lannin, Natasha A; Hoffmann, Tammy
2018-01-01
Objectives Rehabilitation clinical practice guidelines (CPGs) contain recommendation statements aimed at optimising care for adults with stroke and other brain injury. The aim of this study was to determine the quality, scope and consistency of CPG recommendations for rehabilitation covering the acquired brain injury populations. Design Systematic review. Interventions Included CPGs contained recommendations for inpatient rehabilitation or community rehabilitation for adults with an acquired brain injury diagnosis (stroke, traumatic or other non-progressive acquired brain impairments). Electronic databases (n=2), guideline organisations (n=4) and websites of professional societies (n=17) were searched up to November 2017. Two independent reviewers used the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument, and textual syntheses were used to appraise and compare recommendations. Results From 427 papers screened, 20 guidelines met the inclusion criteria. Only three guidelines were rated high (>75%) across all domains of AGREE-II; highest rated domains were ‘scope and purpose’ (85.1, SD 18.3) and ‘clarity’ (76.2%, SD 20.5). Recommendations for assessment and for motor therapies were most commonly reported, however, varied in the level of detail across guidelines. Conclusion Rehabilitation CPGs were consistent in scope, suggesting little difference in rehabilitation approaches between vascular and traumatic brain injury. There was, however, variability in included studies and methodological quality. PROSPERO registration number CRD42016026936. PMID:29490958
Sun, Jie; Sun, Xianting; Zhang, Ningnannan; Wang, Qiuhui; Cai, Huanhuan; Qi, Yuan; Li, Ting; Qin, Wen; Yu, Chunshui
2017-09-01
According to aquaporin-4 antibody (AQP4-Ab), neuromyelitis optica (NMO) can be divided into seropositive and seronegative subgroups. The purpose of this study was to a) compare the distribution of spinal cord and brain magnetic resonance imaging (MRI) lesions between seropositive and seronegative NMO patients; b) explore occult brain damage in seropositive and seronegative NMO patients; and c) explore the contribution of visible lesions to occult grey and white matter damage in seropositive and seronegative NMO patients. Twenty-two AQP4-Ab seropositive and 14 seronegative NMO patients and 30 healthy controls were included in the study. Two neuroradiologists independently measured the brain lesion volume (BLV) and the length of spinal cord lesion (LSCL) and recorded the region of brain lesions. The normal-appearing grey matter volume (NAGM-GMV) and white matter fractional anisotropy (NAWM-FA) were calculated for each subject to evaluate occult brain damage. The seropositive patients displayed more extensive damage in the spinal cord than the seronegative patients, and the seronegative group had a higher proportion of patients with brainstem lesions (28.57%) than the seropositive group (4.55%, P=0.064). Both NMO subgroups exhibited reduced NAGM-GMV and NAWM-FA compared with the healthy controls. NAGM-GMV was negatively correlated with LSCL in the seropositive group (r s =-0.444, P=0.044) and with BLV in the seronegative group (r s =-0.768, P=0.002). NAWM-FA was also negatively correlated with BLV in the seropositive group (r s =-0.682, P<0.001). Our findings suggest that the occult brain damage in these two NMO subgroups may be due to different mechanisms, which need to be further clarified. Copyright © 2017 Elsevier B.V. All rights reserved.
Magnetic resonance imaging (MRI): A review of genetic damage investigations.
Vijayalaxmi; Fatahi, Mahsa; Speck, Oliver
2015-01-01
Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic medical imaging technique widely used to acquire detailed information about anatomy and function of different organs in the body, in both health and disease. It utilizes electromagnetic fields of three different frequency bands: static magnetic field (SMF), time-varying gradient magnetic fields (GMF) in the kHz range and pulsed radiofrequency fields (RF) in the MHz range. There have been some investigations examining the extent of genetic damage following exposure of bacterial and human cells to all three frequency bands of electromagnetic fields, as used during MRI: the rationale for these studies is the well documented evidence of positive correlation between significantly increased genetic damage and carcinogenesis. Overall, the published data were not sufficiently informative and useful because of the small sample size, inappropriate comparison of experimental groups, etc. Besides, when an increased damage was observed in MRI-exposed cells, the fate of such lesions was not further explored from multiple 'down-stream' events. This review provides: (i) information on the basic principles used in MRI technology, (ii) detailed experimental protocols, results and critical comments on the genetic damage investigations thus far conducted using MRI equipment and, (iii) a discussion on several gaps in knowledge in the current scientific literature on MRI. Comprehensive, international, multi-centered collaborative studies, using a common and widely used MRI exposure protocol (cardiac or brain scan) incorporating several genetic/epigenetic damage end-points as well as epidemiological investigations, in large number of individuals/patients are warranted to reduce and perhaps, eliminate uncertainties raised in genetic damage investigations in cells exposed in vitro and in vivo to MRI. Copyright © 2015 Elsevier B.V. All rights reserved.
Shi, Hong; Wang, Hai-Lian; Pu, Hong-Jian; Shi, Ye-Jie; Zhang, Jia; Zhang, Wen-Ting; Wang, Guo-Hua; Hu, Xiao-Ming; Leak, Rehana K; Chen, Jun; Gao, Yan-Qin
2015-04-01
Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced long-term brain damage. Ethyl pyruvate (EP) has shown neuroprotection in several models of acute brain injury. The present study therefore investigated the potential beneficial effect of EP on long-term outcomes after TBI and the underlying mechanisms. Male adult rats were subjected to unilateral controlled cortical impact injury. EP was injected intraperitoneally 15 min after TBI and again at 12, 24, 36, 48, and 60 h after TBI. Neurological deficits, blood-brain barrier (BBB) integrity, and neuroinflammation were assessed. Ethyl pyruvate improved sensorimotor and cognitive functions and ameliorated brain tissue damage up to 28 day post-TBI. BBB breach and brain edema were attenuated by EP at 48 h after TBI. EP suppressed matrix metalloproteinase (MMP)-9 production from peripheral neutrophils and reduced the number of MMP-9-overproducing neutrophils in the spleen, and therefore mitigated MMP-9-mediated BBB breakdown. Moreover, EP exerted potent antiinflammatory effects in cultured microglia and inhibited the elevation of inflammatory mediators in the brain after TBI. Ethyl pyruvate confers long-term neuroprotection against TBI, possibly through breaking the vicious cycle among MMP-9-mediated BBB disruption, neuroinflammation, and long-lasting brain damage. © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Levac, Danielle; Miller, Patricia; Missiuna, Cheryl
2012-01-01
Little is known about how therapists promote learning of functional motor skills for children with acquired brain injuries. This study explores physiotherapists' description of these interventions in comparison to virtual reality (VR) video game-based therapy. Six physiotherapists employed at a children's rehabilitation center participated in…
Behavioral Treatment for Pathological Gambling in Persons with Acquired Brain Injury
ERIC Educational Resources Information Center
Guercio, John M.; Johnson, Taylor; Dixon, Mark R.
2012-01-01
The present investigation examined a behavior-analytic clinical treatment package designed to reduce the pathological gambling of 3 individuals with acquired brain injury. A prior history of pathological gambling of each patient was assessed via caregiver report, psychological testing, and direct observation of gambling behavior. Using an 8-week…
ERIC Educational Resources Information Center
Fraas, Michael; Balz, Magdalen A.
2008-01-01
In addition to the impaired ability to effectively communicate, adults with acquired brain injury (ABI) also experience high incidences of depression, social isolation, and decreased quality of life. Expressive writing programs have been shown to be effective in alleviating these concomitant impairments in other populations including incarcerated…
Interviewing Children with Acquired Brain Injury (ABI)
ERIC Educational Resources Information Center
Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona
2009-01-01
Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…
ERIC Educational Resources Information Center
Ledbetter, Alexander K.
2017-01-01
People with acquired brain injury (ABI) present with impairments in working memory and executive functions, and these cognitive deficits contribute to difficulty self-regulating the production of expository writing. Cognitive processes involved in carrying out complex writing tasks include planning, generating text, and reviewing or revising text…
Fukuda, Miho; Yamauchi, Hiroshi; Yamamoto, Hitoshi; Aminaka, Masahito; Murakami, Hiroshi; Kamiyama, Noriko; Miyamoto, Yusaku; Koitabashi, Yasushi
2008-02-01
Urinary and cerebrospinal fluid (CSF) levels of 8-hydroxydeoxyguanosine (8-OHdG) were examined to estimate the relevance of oxidative stress in children with brain damage. Urinary 8-OHdG levels were measured in 51 children with various forms of central nervous system (CNS) disorders (status epilepticus [SE], hypoxic-ischemic encephalopathy [HIE], CNS infections and chronic epilepsy) and these levels were compared with those in 51 healthy children. CSF 8-OHdG levels were measured in 25 children with brain damage and in 19 control subjects. In addition, urinary and CSF levels of 8-OHdG were compared between the children with brain damage and healthy children. Finally, the relationship between urinary and CSF levels of 8-OHdG was determined in 12 children that provided both urinary and CSF samples. Our results showed that urinary 8-OHdG levels in children with HIE and CNS infections were higher than those of controls (Steel test; p < 0.05 and p < 0.05, respectively) and that CSF 8-OHdG levels were higher in children with SE, HIE, and CNS infections than in control subjects (Steel test; p < 0.01, 0.05 and 0.05, respectively). In addition, a positive correlation between the levels of urinary and CSF 8-OHdG was noted in the 12 children that provided both CSF and urinary samples (Spearman's rank correlation; rho = 0.82, p < 0.01). Further, we observed changes in the urinary 8-OHdG in a patient with HHV-6 encephalopathy, and found that the changes correlated well with the patient's clinical condition. These results suggest that oxidative stress is strongly related to acute brain damage in children, and that 8-OHdG is a useful marker of brain damage. Therefore, repeated measurements of urinary 8-OHdG may be helpful in estimating the extent of brain damage.
Raja Beharelle, Anjali; Griffa, Alessandra; Hagmann, Patric; Solodkin, Ana; McIntosh, Anthony R.; Small, Steven L.; Deco, Gustavo
2015-01-01
Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere “take over” their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children. PMID:26063923
Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.
Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J
2018-05-03
People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.
Wattanathorn, Jintanaporn; Jittiwat, Jinatta; Tongun, Terdthai; Muchimapura, Supaporn; Ingkaninan, Kornkanok
2011-01-01
Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia. PMID:21197427
A neurologist's reflections on boxing. V. Conclude remarks.
Unterharnscheidt, F
1995-01-01
Clinical and morphological publications have shown convincingly, that participation in boxing leads to a severe permanent brain damage. The extent of the brain damage is correlated to the number of bouts fought, which correspondents in a certain way how many blows against his head a boxer received and to his weight class. The intensity of a boxing blow of a heavyweight is much more severe than those achieved by boxers of lighter weight classes. The permanent brain damage in a boxer, the amateur and the professional boxer, manifests itself in several clinical syndromes in which the pyramidal, the extrapyramidal and the cerebellar systems are involved. A traumatic Parkinsonism, in its complete or abortive form, develops as the result of the numerous boxing blows a boxer sustains in his boxing career. Especially lateral parts of the substantia nigra are affected and reveal at macroscopical and microscopical examination a severe loss of pigmented neurons. Melanin pigment is visible free in the tissue and/or is phagozytosed in macrophages and glial cells. The traumatic Parkinson syndrome, often only in an abortive form, is combined in a boxer with additional clinical and morphological findings due to traumatic lesions in other areas of the brain. It is not as pure as in a patient with a Parkinson syndrome sui generis. The permanent brain damage in a boxer is diffuse, involving all areas of the brain. Especially involved are the large neurons of different layers of the cerebral cortex, the neurons of the Ammons horn formation, the Purkinje cells of the cerebellum. In place of destroyed and lost neurons, proliferation of glial elements, especially astroglial cells, has occurred. The defects are first replaced by protoplasmatic astroglial elements, and later by fibrillary astroglia. The destroyed neurons are replaced by glial scar tissue, which cannot perform the functions of the lost neurons. It is a process which is called partial necrosis of brain tissue. There is no reparation or restitution of the destroyed neural tissue of the brain. What is destroyed remains so, a restitution ad integrum does not occur. As the result of the diffuse loss of neurons in the brain a cerebral atrophy exists. The septum pellucidum, which consists of two thin lamellae, and is small or very small in a normal brain, forms a Cavum septi pellucidi, which is considerably enlarged. The walls of this structure, especially in its dorsal parts are considerably thinned; they show fenestrations and are, in dorsal parts no longer detectable, so that a direct connection between the two lateral ventricles exists. The clinically and morphologically existing permanent brain damage is the result of the boxing activity. Diagnostically, processes of another origin, such as alcoholism, luetic processes, other forms of dementia, etc. can undoubtedly be excluded. A permanent brain damage develops in professional and amateur boxers. The objection, which are voiced by members of the different Amateur Boxing Association, that such permanent brain damage in amateur boxers today no longer exists, after stricter protective measurements were introduced, is not tenable. Individuals who represent today the opinion, that a permanent brain damage or punch drunkenness in boxers does not occur, are not familiar with the pertinent medical literature. The argument, the injury quotient in boxing is lower than in all other athletic activities is not sound, since the statistics show only the inconsequential injuries of boxers, as lesions of the skin of the face, injuries of the hand, fractures, etc. but not the much more important and severe permanent brain damage, which is not taken into consideration in these so-called statistics. Besides of the permanent brain damage of former boxers as the result of the repeated and numerous blows against their head, severe permanent damage of the eyes and the hearing organ exists.
Corticobulbar tract changes as predictors of dysarthria in childhood brain injury.
Liégeois, Frédérique; Tournier, Jacques-Donald; Pigdon, Lauren; Connelly, Alan; Morgan, Angela T
2013-03-05
To identify corticobulbar tract changes that may predict chronic dysarthria in young people who have sustained a traumatic brain injury (TBI) in childhood using diffusion MRI tractography. We collected diffusion-weighted MRI data from 49 participants. We compared 17 young people (mean age 17 years, 10 months; on average 8 years postinjury) with chronic dysarthria who sustained a TBI in childhood (range 3-16 years) with 2 control groups matched for age and sex: 1 group of young people who sustained a traumatic injury but had no subsequent dysarthria (n = 15), and 1 group of typically developing individuals (n = 17). We performed tractography from spherical seed regions within the precentral gyrus white matter to track: 1) the hand-related corticospinal tract; 2) the dorsal corticobulbar tract, thought to correspond to the lips/larynx motor representation; and 3) the ventral corticobulbar tract, corresponding to the tongue representation. Despite widespread white matter damage, radial (perpendicular) diffusivity within the left dorsal corticobulbar tract was the best predictor of the presence of dysarthria after TBI. Diffusion metrics in this tract also predicted speech and oromotor performance across the whole group of TBI participants, with additional significant contributions from ventral speech tract volume in the right hemisphere. An intact left dorsal corticobulbar tract seems crucial to the normal execution of speech long term after acquired injury. Examining the speech-related motor pathways using diffusion-weighted MRI tractography offers a promising prognostic tool for people with acquired, developmental, or degenerative neurologic conditions likely to affect speech.
Vas, Adám; Shchukin, Yevgeni; Karrenbauer, Virginija D; Cselényi, Zsolt; Kostulas, Kosta; Hillert, Jan; Savic, Ivanka; Takano, Akihiro; Halldin, Christer; Gulyás, Balázs
2008-01-15
With the purpose of demonstrating the use of positron emission tomography (PET) and radiolabelled glia markers to indicate regional cerebral damage, we measured with PET in four young multiplex sclerosis (MS) patients in two consecutive measurements the global and regional brain uptake as well as regional distribution and binding potential (BP) of [(11)C]vinpocetine and [(11)C]PK11195. Both ligands showed increased uptake and BP in the regions of local brain damage. However, regional BP values for [(11)C]vinpocetine were markedly higher than those for [(11)C]PK11195. This feature of the former radioligand may be related to its high brain uptake and marked affinity to the peripheral benzodiazepine receptor binding sites (PBBS), characteristic for glia cells. As local brain traumas entail reactive glia accumulation in and around the site of the damage, the present findings may indicate that [(11)C]vinpocetine marks the place or boundaries of local brain damage by binding to the PBBS present in glia cells, which, in turn, accumulate in the region of the damage. The present findings (i) confirm earlier observations with [(11)C]PK11195 as a potential glia marker in PET studies and (ii) support the working hypothesis that [(11)C]vinpocetine is a potentially useful PET marker of regional and global brain damage resulting in glia accumulation locally or globally in the human brain. The comparative analysis of the two ligands indicate that [(11)C]vinpocetine shows a number of characteristics favourable in comparison with [(11)C]PK11195.
... cause inflammation in the brain, including the cerebellum multiple sclerosis, in which damage to the insulating membrane (myelin) ... cause inflammation in the brain, including the cerebellum multiple sclerosis, in which damage to the insulating membrane (myelin) ...
The structural basis of moderate disability after traumatic brain damage
Adams, J; Graham, D; Jennett, B
2001-01-01
The objective was to discover the nature of brain damage in survivors of head injury who are left with moderate disability. Macroscopic and microscopic examination was carried out on the brains of 20 persons who had died long after a head injury that had been treated in a neurosurgical unit. All had become independent but had various disabilities (moderate disability on the Glasgow outcome scale) Most deaths had been sudden, which had led to their referral from forensic pathologists. Post-traumatic epilepsy was a feature in 75%. An intracranial haematoma had been evacuated in 75%, and in 11 of the 15 with epilepsy. Diffuse axonal injury was found in six patients, five of the mildest type (grade 1) and one of grade 2. No patient had diffuse thalamic damage but one had a small focal ischaemic lesion in the thalamus. No patient had severe ischaemic brain damage, but three had moderate lesions which were bilateral in only one. No patient had severe cortical contusions. In conclusion, the dominant lesion was focal damage from an evacuated intracranial haematoma. Severe diffuse damage was not found, with diffuse axonal injury only mild and thalamic damage in only one patient. PMID:11561038
Fonseca, Rochele Paz; Fachel, Jandyra Maria Guimarães; Chaves, Márcia Lorena Fagundes; Liedtke, Francéia Veiga; Parente, Maria Alice de Mattos Pimenta
2007-01-01
Right-brain-damaged individuals may present discursive, pragmatic, lexical-semantic and/or prosodic disorders. Objective To verify the effect of right hemisphere damage on communication processing evaluated by the Brazilian version of the Protocole Montréal d’Évaluation de la Communication (Montreal Communication Evaluation Battery) – Bateria Montreal de Avaliação da Comunicação, Bateria MAC, in Portuguese. Methods A clinical group of 29 right-brain-damaged participants and a control group of 58 non-brain-damaged adults formed the sample. A questionnaire on sociocultural and health aspects, together with the Brazilian MAC Battery was administered. Results Significant differences between the clinical and control groups were observed in the following MAC Battery tasks: conversational discourse, unconstrained, semantic and orthographic verbal fluency, linguistic prosody repetition, emotional prosody comprehension, repetition and production. Moreover, the clinical group was less homogeneous than the control group. Conclusions A right-brain-damage effect was identified directly, on three communication processes: discursive, lexical-semantic and prosodic processes, and indirectly, on pragmatic process. PMID:29213400
Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage.
Scott, Gregory; Hellyer, Peter J; Ramlackhansingh, Anil F; Brooks, David J; Matthews, Paul M; Sharp, David J
2015-12-01
Traumatic brain injury can trigger chronic neuroinflammation, which may predispose to neurodegeneration. Animal models and human pathological studies demonstrate persistent inflammation in the thalamus associated with axonal injury, but this relationship has never been shown in vivo. Using [(11)C]-PK11195 positron emission tomography, a marker of microglial activation, we previously demonstrated thalamic inflammation up to 17 years after traumatic brain injury. Here, we use diffusion MRI to estimate axonal injury and show that thalamic inflammation is correlated with thalamo-cortical tract damage. These findings support a link between axonal damage and persistent inflammation after brain injury.
Laser treatments of deep-seated brain lesions
NASA Astrophysics Data System (ADS)
Ward, Helen A.
1997-06-01
The five year survival rate of deep-seated malignant brain tumors after surgery/radiotherapy is virtually 100 percent mortality. Special problems include: (1) Lesions often present late. (2) Position: lesion overlies vital structures, so complete surgical/radiotherapy lesion destruction can damage vital brain-stem functions. (3) Difficulty in differentiating normal brain form malignant lesions. This study aimed to use the unique properties of the laser: (a) to minimize damage during surgical removal of deep-seated brain lesions by operating via fine optic fibers; and (b) to employ the propensity of certain lasers for absorption of dyes and absorption and induction of fluorescence in some brain substances, to differentiate borders of malignant and normal brain, for more complete tumor removal. In the method a fine laser endoscopic technique was devised for removal of brain lesions. The results of this technique, were found to minimize and accurately predict the extent of thermal damage and shock waves to within 1-2mm of the surgical laser beam. Thereby it eliminated the 'popcorn' effect.
The Use of Computers and Video Games in Brain Damage Therapy.
ERIC Educational Resources Information Center
Lorimer, David
The use of computer assisted therapy (CAT) in the rehabilitation of individuals with brain damage is examined. Hardware considerations are explored, and the variety of software programs available for brain injury rehabilitation is discussed. Structured testing and treatment programs in time measurement, memory, and direction finding are described,…
Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere
ERIC Educational Resources Information Center
Ross, Elliott D.; Monnot, Marilee
2008-01-01
Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…
Childhood Aphasia and Brain Damage: Volume II, Differential Diagnosis.
ERIC Educational Resources Information Center
Rappaport, Sheldon R., Ed.
Addressing itself to factors leading to the misdiagnosis of the brain damaged child and the aphasic child, the Pathway School's Second Annual Institute considered the differences between the following: the aphasic and the aphasoid child; the sensory aphasic and the deaf child; the psychotic and the psychotic aphasic child; childhood brain damage…
Should Individuals Who Possess Only One Brain Be Allowed To Box?
ERIC Educational Resources Information Center
Brady, Don
This paper questions the acceptance of injuries obtained while participating in sport and in particular, the relationship between participation in boxing and brain injury/damage identified in boxers. A review of the literature indicates research findings support the tenet that brain damage found in boxers is cumulative and is directly related to…
Inferencing Processes after Right Hemisphere Brain Damage: Effects of Contextual Bias
ERIC Educational Resources Information Center
Blake, Margaret Lehman
2009-01-01
Purpose: Comprehension deficits associated with right hemisphere brain damage (RHD) have been attributed to an inability to use context, but there is little direct evidence to support the claim. This study evaluated the effect of varying contextual bias on predictive inferencing by adults with RHD. Method: Fourteen adults with no brain damage…
Pessoa, Daniella Tavares; da Silva, Eva Luana Almeida; Costa, Edbhergue Ventura Lola; Nogueira, Romildo Albuquerque
2017-11-01
Western diets are high in saturated fat and low in omega-3. Certain animals cannot produce omega-3 from their own lipids, making it necessary for it to be acquired from the diet. However, omega-3s are important components of the plasma membrane, and altering their proportions can promote physical and chemical alterations in the membranes, which may modify neuronal excitability. These alterations occur in healthy individuals, as well as in patients with epilepsy who are more sensitive to changes in brain electrical activity. This study evaluated the effect of a diet supplemented with omega-3 on the basal brain electrical activity both before and during status epilepticus in rats. To evaluate the brain electrical activity, we recorded electrocorticograms (ECoG) of animals both with and without omega-3 supplementation before and during status epilepticus induced by pilocarpine. Calculation of the average brain wave power by a power spectrum revealed that omega-3 supplementation reduced the average power of the delta wave by 20% and increased the average power of the beta wave by 45%. These effects were exacerbated when status epilepticus was induced in the animals supplemented with omega-3. The animals with and without omega-3 supplementation exhibited increases in basal brain electrical activities during status epilepticus. The two groups showed hyperactivity, but no significant difference between them was noted. Even though the brain activity levels observed during status epilepticus were similar between the two groups, neuron damage to the animals supplemented with omega-3 was more slight, revealing the neuroprotective effect of the omega-3. Copyright © 2017 Elsevier B.V. All rights reserved.
Gramegna, L L; Pisano, A; Testa, C; Manners, D N; D'Angelo, R; Boschetti, E; Giancola, F; Pironi, L; Caporali, L; Capristo, M; Valentino, M L; Plazzi, G; Casali, C; Dotti, M T; Cenacchi, G; Hirano, M; Giordano, C; Parchi, P; Rinaldi, R; De Giorgio, R; Lodi, R; Carelli, V; Tonon, C
2018-01-18
Mitochondrial neurogastrointestinal encephalopathy is a rare disorder due to recessive mutations in the thymidine phosphorylase gene, encoding thymidine phosphorylase protein required for mitochondrial DNA replication. Clinical manifestations include gastrointestinal dysmotility and diffuse asymptomatic leukoencephalopathy. This study aimed to elucidate the mechanisms underlying brain leukoencephalopathy in patients with mitochondrial neurogastrointestinal encephalopathy by correlating multimodal neuroradiologic features to postmortem pathology. Seven patients underwent brain MR imaging, including single-voxel proton MR spectroscopy and diffusion imaging. Absolute concentrations of metabolites calculated by acquiring unsuppressed water spectra at multiple TEs, along with diffusion metrics based on the tensor model, were compared with those of healthy controls using unpaired t tests in multiple white matters regions. Brain postmortem histologic, immunohistochemical, and molecular analyses were performed in 1 patient. All patients showed bilateral and nearly symmetric cerebral white matter hyperintensities on T2-weighted images, extending to the cerebellar white matter and brain stem in 4. White matter, N -acetylaspartate, creatine, and choline concentrations were significantly reduced compared with those in controls, with a prominent increase in the radial water diffusivity component. At postmortem examination, severe fibrosis of brain vessel smooth muscle was evident, along with mitochondrial DNA replication depletion in brain and vascular smooth-muscle and endothelial cells, without neuronal loss, myelin damage, or gliosis. Prominent periependymal cytochrome C oxidase deficiency was also observed. Vascular functional and histologic alterations account for leukoencephalopathy in mitochondrial neurogastrointestinal encephalopathy. Thymidine toxicity and mitochondrial DNA replication depletion may induce microangiopathy and blood-brain-barrier dysfunction, leading to increased water content in the white matter. Periependymal cytochrome C oxidase deficiency could explain prominent periventricular impairment. © 2018 by American Journal of Neuroradiology.
Carnevale, Lorenzo; D'Angelosante, Valentina; Landolfi, Alessandro; Grillea, Giovanni; Selvetella, Giulio; Storto, Marianna; Lembo, Giuseppe; Carnevale, Daniela
2018-06-12
Hypertension is one of the main risk factor for dementia. The subtle damage provoked by chronic high blood pressure in the brain is usually evidenced by conventional magnetic resonance imaging (MRI), in terms of white matter (WM) hyperintensities or cerebral atrophy. However, it is clear that by the time brain damage is visible, it may be too late hampering neurodegeneration. Aim of this study was to characterize a signature of early brain damage induced by hypertension, before the neurodegenerative injury manifests. This work was conducted on hypertensive and normotensive subjects with no sign of structural damage at conventional neuroimaging and no diagnosis of dementia revealed by neuropsychological assessment. All individuals underwent cardiological clinical examination in order to define the hypertensive status and the related target organ damage. Additionally, patients were subjected to DTI-MRI scan to identify microstructural damage of WM by probabilistic fiber-tracking. To gain insights in the neurocognitive profile of patients a specific battery of tests was administered. As primary outcome of the study we aimed at finding any specific signature of fiber-tracts alterations in hypertensive patients, associated with an impairment of the related cognitive functions. Hypertensive patients showed significant alterations in three specific WM fiber-tracts: the anterior thalamic radiation, the superior longitudinal fasciculus and the forceps minor. Hypertensive patients also scored significantly worse in the cognitive domains ascribable to brain regions connected through those WM fiber-tracts, showing decreased performances in executive functions, processing speed, memory, and paired associative learning tasks. Overall, WM fiber-tracking on MRI evidenced an early signature of damage in hypertensive patients when otherwise undetectable by conventional neuroimaging. In perspective, this approach could allow identifying those patients that are in initial stages of brain damage and could benefit of therapies aimed at limiting the transition to dementia and neurodegeneration.
Shimada, Yoshiaki; Shimura, Hideki; Tanaka, Ryota; Yamashiro, Kazuo; Koike, Masato; Uchiyama, Yasuo; Urabe, Takao; Hattori, Nobutaka
2018-01-01
Loss of integrity of the blood-brain barrier (BBB) in ischemic stroke victims initiates a devastating cascade of events causing brain damage. Maintaining the BBB is important to preserve brain function in ischemic stroke. Unfortunately, recombinant tissue plasminogen activator (tPA), the only effective fibrinolytic treatment at the acute stage of ischemic stroke, also injures the BBB and increases the risk of brain edema and secondary hemorrhagic transformation. Thus, it is important to identify compounds that maintain BBB integrity in the face of ischemic injury in patients with stroke. We previously demonstrated that intravenously injected phosphorylated recombinant heat shock protein 27 (prHSP27) protects the brains of mice with transient middle cerebral artery occlusion (tMCAO), an animal stroke-model. Here, we determined whether prHSP27, in addition to attenuating brain injury, also decreases BBB damage in hyperglycemic tMCAO mice that had received tPA. After induction of hyperglycemia and tMCAO, we examined 4 treatment groups: 1) bovine serum albumin (BSA), 2) prHSP27, 3) tPA, 4) tPA plus prHSP27. We examined the effects of prHSP27 by comparing the BSA and prHSP27 groups and the tPA and tPA plus prHSP27 groups. Twenty-four hours after injection, prHSP27 reduced infarct volume, brain swelling, neurological deficits, the loss of microvessel proteins and endothelial cell walls, and mortality. It also reduced the rates of hemorrhagic transformation, extravasation of endogenous IgG, and MMP-9 activity, signs of BBB damage. Therefore, prHSP27 injection attenuated brain damage and preserved the BBB in tPA-injected, hyperglycemic tMCAO experimental stroke-model mice, in which the BBB is even more severely damaged than in simple tMCAO mice. The attenuation of brain damage and BBB disruption in the presence of tPA suggests the effectiveness of prHSP27 and tPA as a combination therapy. prHSP27 may be a novel therapeutic agent for ischemic stroke patients whose BBBs are injured following tPA injections.
He, De-Hua; Zhang, Liang-Min; Lin, Li-Ming; Ning, Ruo-Bing; Wang, Hua-Jun; Xu, Chang-Sheng; Lin, Jin-Xiu
2014-02-01
Prehypertension has been associated with adverse cerebrovascular events and brain damage. The aims of this study were to investigate ⅰ) whether short‑ and long-term treatments with losartan or amlodipine for prehypertension were able to prevent blood pressure (BP)-linked brain damage, and ⅱ) whether there is a difference in the effectiveness of treatment with losartan and amlodipine in protecting BP-linked brain damage. In the present study, prehypertensive treatment with losartan and amlodipine (6 and 16 weeks treatment with each drug) was performed on 4-week‑old stroke-prone spontaneously hypertensive rats (SHRSP). The results showed that long-term (16 weeks) treatment with losartan is the most effective in lowering systolic blood pressure in the long term (up to 40 weeks follow-up). Additionally, compared with the amlodipine treatment groups, the short‑ and long-term losartan treatments protected SHRSP from stroke and improved their brains structurally and functionally more effectively, with the long-term treatment having more benefits. Mechanistically, the short‑ and long-term treatments with losartan reduced the activity of the local renin-angiotensin-aldosterone system (RAAS) in a time-dependent manner and more effectively than their respective counterpart amlodipine treatment group mainly by decreasing AT1R levels and increasing AT2R levels in the cerebral cortex. By contrast, the amlodipine treatment groups inhibited brain cell apoptosis more effectively as compared with the losartan treatment groups mainly through the suppression of local oxidative stress. Taken together, the results suggest that long-term losartan treatment for prehypertension effectively protects SHRSP from stroke-induced brain damage, and this protection is associated with reduced local RAAS activity than with brain cell apoptosis. Thus, the AT1R receptor blocker losartan is a good candidate drug that may be used in the clinic for long-term treatment on prehypertensive populations in order to prevent BP-linked brain damage.
Pregnancy Complications: Umbilical Cord Abnormalities
... before and during delivery, which may contribute to cerebral palsy and other forms of brain damage References Cruikshank, ... before and during delivery, which may contribute to cerebral palsy and other forms of brain damage References Cruikshank, ...
Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei
2018-06-01
Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chung, Charlie S Y; Pollock, Alex; Campbell, Tanya; Durward, Brian R; Hagen, Suzanne
2013-04-30
Executive functions are the controlling mechanisms of the brain and include the processes of planning, initiation, organisation, inhibition, problem solving, self monitoring and error correction. They are essential for goal-oriented behaviour and responding to new and novel situations. A high number of people with acquired brain injury, including around 75% of stroke survivors, will experience executive dysfunction. Executive dysfunction reduces capacity to regain independence in activities of daily living (ADL), particularly when alternative movement strategies are necessary to compensate for limb weakness. Improving executive function may lead to increased independence with ADL. There are various cognitive rehabilitation strategies for training executive function used within clinical practice and it is necessary to determine the effectiveness of these interventions. To determine the effects of cognitive rehabilitation on executive dysfunction for adults with stroke or other non-progressive acquired brain injuries. We searched the Cochrane Stroke Group Trials Register (August 2012), the Cochrane Central Register of Controlled Trials (The Cochrane Library, August 2012), MEDLINE (1950 to August 2012), EMBASE (1980 to August 2012), CINAHL (1982 to August 2012), PsycINFO (1806 to August 2012), AMED (1985 to August 2012) and 11 additional databases. We also searched reference lists and trials registers, handsearched journals and conference proceedings, and contacted experts. We included randomised trials in adults after non-progressive acquired brain injury, where the intervention was specifically targeted at improving cognition including separable executive function data (restorative interventions), where the intervention was aimed at training participants in methods to compensate for lost executive function (compensative interventions) or where the intervention involved the training in the use of an adaptive technique for improving independence with ADL (adaptive interventions). The primary outcome was global executive function and the secondary outcomes were specific components of executive function, working memory, ADL, extended ADL, quality of life and participation in vocational activities. We included studies in which the comparison intervention was no treatment, a placebo intervention (i.e. a rehabilitation intervention that should not impact on executive function), standard care or another cognitive rehabilitation intervention. Two review authors independently screened abstracts, extracted data and appraised trials. We undertook an assessment of methodological quality for allocation concealment, blinding of outcome assessors, method of dealing with missing data and other potential sources of bias. Nineteen studies (907 participants) met the inclusion criteria for this review. We included 13 studies (770 participants) in meta-analyses (417 traumatic brain injury, 304 stroke, 49 other acquired brain injury) reducing to 660 participants once non-included intervention groups were removed from three and four group studies. We were unable to obtain data from the remaining six studies. Three studies (134 participants) compared cognitive rehabilitation with sensorimotor therapy. None reported our primary outcome; data from one study was available relating to secondary outcomes including concept formation and ADL. Six studies (333 participants) compared cognitive rehabilitation with no treatment or placebo. None reported our primary outcome; data from four studies demonstrated no statistically significant effect of cognitive rehabilitation on secondary outcomes. Ten studies (448 participants) compared two different cognitive rehabilitation approaches. Two studies (82 participants) reported the primary outcome; no statistically significant effect was found. Data from eight studies demonstrated no statistically significant effect on the secondary outcomes. We explored the effect of restorative interventions (10 studies, 468 participants) and compensative interventions (four studies, 128 participants) and found no statistically significant effect compared with other interventions. We identified insufficient high-quality evidence to reach any generalised conclusions about the effect of cognitive rehabilitation on executive function, or other secondary outcome measures. Further high-quality research comparing cognitive rehabilitation with no intervention, placebo or sensorimotor interventions is recommended.
ERIC Educational Resources Information Center
Kamath, Trishna; Pfeifer, Megan; Banerjee-Guenette, Priyanka; Hunter, Theresa; Ito, Julia; Salbach, Nancy M.; Wright, Virginia; Levac, Danielle
2012-01-01
Purpose: To evaluate reliability and feasibility of the Motor Learning Strategy Rating Instrument (MLSRI) in children with acquired brain injury (ABI). The MLSRI quantifies the extent to which motor learning strategies (MLS) are used within physiotherapy (PT) interventions. Methods: PT sessions conducted by ABI team physiotherapists with a…
ERIC Educational Resources Information Center
Degeneffe, Charles Edmund; Green, Richard; Jones, Clair
2016-01-01
Purpose: The study aimed to understand how use and satisfaction with services following discharge from an acquired brain injury (ABI) acute-care facility related to family caregiver outcomes. Methods: A correlational and descriptive study design was used. Nineteen primary family caregivers of persons recently discharged from an ABI acute-care…
ERIC Educational Resources Information Center
Venville, Annie; Mealings, Margaret; Ennals, Priscilla; Oates, Jennifer; Fossey, Ellie; Douglas, Jacinta; Bigby, Christine
2016-01-01
Students with invisible disabilities such as mental illness or acquired brain injury (ABI) experience multiple barriers that reduce their likelihood of postsecondary course completion. The present study conducted a systematic search of research reporting interventions for students experiencing mental illness or ABI to participate in postsecondary…
A Review of Family Intervention Guidelines for Pediatric Acquired Brain Injuries
ERIC Educational Resources Information Center
Cole, Wesley R.; Paulos, Stephanie K.; Cole, Carolyn A. S.; Tankard, Carol
2009-01-01
Pediatric acquired brain injury (BI) not only affects the child with the injury, but also greatly impacts their family. Studies suggest there are higher rates of caregiver and sibling psychological distress after a child in the family has sustained a BI. Also, family functioning after BI impacts the child's recovery. In reviewing the literature,…
Where Have They All Gone?: Classroom Attention Patterns after Acquired Brain Injury
ERIC Educational Resources Information Center
Rees, Siân A.
2016-01-01
Certain groups of pupils who have sustained an Acquired Brain Injury (ABI) have a different pattern of attention within the classroom which interferes with learning and social interactions. The delineation of these groups is suggested. By looking in detail at the classroom behaviour of eight pupils, a common account for classroom behaviour…
Spoken Persuasive Discourse Abilities of Adolescents with Acquired Brain Injury
ERIC Educational Resources Information Center
Moran, Catherine; Kirk, Cecilia; Powell, Emma
2012-01-01
Purpose: The aim of this study was to examine the performance of adolescents with acquired brain injury (ABI) during a spoken persuasive discourse task. Persuasive discourse is frequently used in social and academic settings and is of importance in the study of adolescent language. Method: Participants included 8 adolescents with ABI and 8 peers…
ERIC Educational Resources Information Center
Goyal, Anita; Keightley, Michelle L.
2008-01-01
Adolescents with acquired brain injuries suffer from social and community withdrawal that result in isolation from their peer groups. The review highlights the evidence of effectiveness of expressive art interventions in the form of theatre for populations with difficulties in physical, emotional, cognitive, or social functioning. A systematic…
Morgan, Angela T; Masterton, Richard; Pigdon, Lauren; Connelly, Alan; Liégeois, Frédérique J
2013-02-01
Severe and persistent speech disorder, dysarthria, may be present for life after brain injury in childhood, yet the neural correlates of this chronic disorder remain elusive. Although abundant literature is available on language reorganization after lesions in childhood, little is known about the capacity of motor speech networks to reorganize after injury. Here, we examine the structural and functional neural correlates associated with chronic dysarthria after childhood-onset traumatic brain injury. Forty-nine participants aged 12 years 3 months to 24 years 11 months were recruited to the study: (i) a group with chronic dysarthria (n = 17); matched for age and sex with two control groups of (ii) healthy control subjects (n = 17); and (iii) individuals without dysarthria after traumatic brain injury (n = 15). A high-resolution 3D T(1)-weighted whole-brain data set was acquired for voxel-based morphometry analyses of group differences in grey matter. Functional magnetic resonance imaging was used to localize activation associated with speaking single words (baseline: listening to words). Group differences on voxel-based morphometry revealed widespread grey matter reductions in the dysarthric group compared with healthy control subjects, including in numerous speech motor regions bilaterally, such as the cerebellum, the basal ganglia and primary motor cortex representation of the articulators. Relative to the non-dysarthric traumatic brain injury group, individuals with dysarthria showed reduced grey matter bilaterally in the ventral sensorimotor cortex, but this reduction was concomitant with increased functional activation only in the left-hemisphere cluster during speech. Finally, increased recruitment of Broca's area (Brodmann area 45, pars triangularis) but not its right homologue, correlated with better speech outcome, suggesting that this 'higher-level' area may be more critically involved with production when associated motor speech regions are damaged. We suggest that the bilateral morphological abnormalities within cortical speech networks in childhood prevented reorganization of speech function from the left- to right-hemisphere. Rather, functional reorganization involved over-recruitment of left-hemisphere motor regions, a reorganization method that was only partly relatively effective, given the presence of persisting yet mild speech deficits. The bilateral structural abnormalities found to limit functional reorganization here, may also be critical to poor speech prognosis for populations with congenital, degenerative or acquired neurological disorders throughout the lifespan.
Brogaard, Berit
2013-01-01
Though synesthesia research has seen a huge growth in recent decades, and tremendous progress has been made in terms of understanding the mechanism and cause of synesthesia, we are still left mostly in the dark when it comes to the mechanistic commonalities (if any) among developmental, acquired and drug-induced synesthesia. We know that many forms of synesthesia involve aberrant structural or functional brain connectivity. Proposed mechanisms include direct projection and disinhibited feedback mechanisms, in which information from two otherwise structurally or functionally separate brain regions mix. We also know that synesthesia sometimes runs in families. However, it is unclear what causes its onset. Studies of psychedelic drugs, such as psilocybin, LSD and mescaline, reveal that exposure to these drugs can induce synesthesia. One neurotransmitter suspected to be central to the perceptual changes is serotonin. Excessive serotonin in the brain may cause many of the characteristics of psychedelic intoxication. Excessive serotonin levels may also play a role in synesthesia acquired after brain injury. In brain injury sudden cell death floods local brain regions with serotonin and glutamate. This neurotransmitter flooding could perhaps result in unusual feature binding. Finally, developmental synesthesia that occurs in individuals with autism may be a result of alterations in the serotonergic system, leading to a blockage of regular gating mechanisms. I conclude on these grounds that one commonality among at least some cases of acquired, developmental and drug-induced synesthesia may be the presence of excessive levels of serotonin, which increases the excitability and connectedness of sensory brain regions.
Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H
2016-06-01
There have been a few reports about the effects of chronic stroke on auditory temporal processing abilities and no reports regarding the effects of brain damage lateralization on these abilities. Our study was performed on 2 groups of chronic stroke patients to compare the effects of hemispheric lateralization of brain damage and of age on auditory temporal processing. Seventy persons with normal hearing, including 25 normal controls, 25 stroke patients with damage to the right brain, and 20 stroke patients with damage to the left brain, without aphasia and with an age range of 31-71 years were studied. A gap-in-noise (GIN) test and a duration pattern test (DPT) were conducted for each participant. Significant differences were found between the 3 groups for GIN threshold, overall GIN percent score, and DPT percent score in both ears (P ≤ .001). For all stroke patients, performance in both GIN and DPT was poorer in the ear contralateral to the damaged hemisphere, which was significant in DPT and in 2 measures of GIN (P ≤ .046). Advanced age had a negative relationship with temporal processing abilities for all 3 groups. In cases of confirmed left- or right-side stroke involving auditory cerebrum damage, poorer auditory temporal processing is associated with the ear contralateral to the damaged cerebral hemisphere. Replication of our results and the use of GIN and DPT tests for the early diagnosis of auditory processing deficits and for monitoring the effects of aural rehabilitation interventions are recommended. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Episodic memory, semantic memory, and amnesia.
Squire, L R; Zola, S M
1998-01-01
Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.
Perceptual Asymmetry for Chimeric Stimuli in Children with Early Unilateral Brain Damage
ERIC Educational Resources Information Center
Bava, Sunita; Ballantyne, Angela O.; May, Susanne J.; Trauner, Doris A.
2005-01-01
The present study used a chimeric stimuli task to assess the magnitude of the left-hemispace bias in children with congenital unilateral brain damage (n=46) as compared to typically developing matched controls (n=46). As would be expected, controls exhibited a significant left-hemispace bias. In the presence of left hemisphere (LH) damage, the…
Adhikari, Mohit H; Raja Beharelle, Anjali; Griffa, Alessandra; Hagmann, Patric; Solodkin, Ana; McIntosh, Anthony R; Small, Steven L; Deco, Gustavo
2015-06-10
Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children. Copyright © 2015 the authors 0270-6474/15/358914-11$15.00/0.
Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A.; Pappan, Kirk L.; Lampe, Joshua W.; Becker, Lance B.
2014-01-01
Background Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. Method A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. Results After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. Conclusion The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage. PMID:25383962
Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A; Pappan, Kirk L; Lampe, Joshua W; Becker, Lance B
2014-01-01
Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.
Xu, Shi-Wen; Yao, Hai-Dong; Zhang, Jian; Zhang, Zi-Wei; Wang, Jin-Tao; Zhang, Jiu-Li; Jiang, Zhi-Hui
2013-02-01
Dietary selenium (Se) deficiency can influence the function of the brain. Our objective was to investigate the effects of Se deficiency on oxidative damage and calcium (Ca) homeostasis in brain of chicken. In the present study, 1-day-old chickens were fed either a commercial diet (as control group) with 0.15 mg/kg Se or a Se-deficient diet (as L group) with 0.033 mg/kg Se for 75 days. Then, brain injury biomarkers were examined, including histological analysis, ultrastructure assay, and apoptosis assay. We also examined the effect of Se deficiency on the Se-containing antioxidative enzyme glutathione peroxidase (GSH-Px), the level of glutathione (GSH), and the Ca homeostasis in brain of chicken. The results showed that the levels of Se and GSH and activity of GSH-Px are seriously reduced by 33.8-96 % (P < 0.001), 24.51-27.84 % (P < 0.001), and 20.70-64.24 % (P < 0.01), respectively. In the present study, we also perform histological analysis and ultrastructure assay and find that Se deficiency caused disorganized histological structure, damage to the mitochondria, fusion of nuclear membrane and nucleus shrinkage, higher apoptosis rate (P < 0.001), and increase of Ca homeostasis (P < 0.05 or P < 0.01 or P < 0.001) in the brain of chicken. In conclusion, the results demonstrated that Se deficiency induced oxidative damage and disbalance of Ca homeostasis in the brain of chicken. Similar to mammals, chickens brain is also extremely susceptible to oxidative damage and selenium deficiency.
Processing verbal morphology in patients with congenital left-hemispheric brain lesions.
Knecht, Marion; Lidzba, Karen
2016-01-01
The goal of this study was to test whether children, teenagers and adults with congenital left-hemispheric brain lesions master the regularities of German verbal inflectional morphology. Thirteen patients and 35 controls without brain damage participated in three experiments. A grammaticality judgment task, a participle inflection task and a nonce-verb inflection task revealed significant differences between patients and controls. In addition, a main effect of verb type could be observed as patients and controls made more mistakes with irregular than with regular verbs. The findings indicate that the congenitally damaged brain not only has difficulties with complex syntactic structures during language development, as reported by earlier studies, but also has persistent deficits on the morphological level. These observations suggest that the plasticity of the developing brain cannot fully compensate for congenital brain damage which affects regions associated with language functions. Copyright © 2016 Elsevier Inc. All rights reserved.
[Disorders of emotional control in schizophrenia and unilateral brain damage].
Kucharska-Pietura, K; Kopacz, G
2001-01-01
Although, emotions play a crucial role in schizophrenia, the changes in emotional dimension still remain controversial. The aim of our work was: 1) to compare the disorders of emotional control between the examined groups: S--non-chronic schizophrenic patients (n = 50), CS--chronic schizophrenic patients (n = 50), N--healthy controls (n = 50), R--right brain-damaged patients (n = 30), and L--left brain-damaged patients (n = 30), 2) to assess a level of impairment of emotional control, its relation to lateralised hemisphere damage and chronicity of schizophrenic process. All psychiatric subjects were diagnosed as paranoid schizophrenics according to DSM-IV criteria and were scored on the PANSS scale after four weeks of neuroleptic treatment. Brain-damaged patients were included if they experienced single-episode cerebrovascular accidents causing right or left hemisphere damage (confirmed in CT scan reports). The neurological patients were examined at least 3 weeks after the onset of cerebrovascular episode. Emotional control was assessed using Brzeziński Questionnaire of Emotional Control aimed at the evaluation of: 1) control in perception and interpretation of emotive situation, 2) emotional arousal, 3) emotional-rational motivation, and 4) acting caused by emotions. Our results revealed significantly greater impairment of emotional control in schizophrenics (chronic schizophrenics, in particular) compared to healthy volunteers. Chronicity of the schizophrenic process seemed to intensify emotional control impairment. Interestingly, no significant qualitative and quantitative differences in emotional control mechanism between unilateral brain-damaged patients and the control group were found.
Bisicchia, Elisa; Sasso, Valeria; Catanzaro, Giuseppina; Leuti, Alessandro; Besharat, Zein Mersini; Chiacchiarini, Martina; Molinari, Marco; Ferretti, Elisabetta; Viscomi, Maria Teresa; Chiurchiù, Valerio
2018-01-22
Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.
Gunn, Sarah; Burgess, Gerald H; Maltby, John
2018-04-30
To explore the factor structure of the UK Functional Independence Measure and Functional Assessment Measure (FIM+FAM) among focal and diffuse acquired brain injury patients. Criterion standard. A National Health Service acute acquired brain injury inpatient rehabilitation hospital. Referred sample of N=447 adults admitted for inpatient treatment following an acquired brain injury significant enough to justify intensive inpatient neurorehabilitation INTERVENTION: Not applicable. Functional Independence Measure and Functional Assessment Measure. Exploratory factor analysis suggested a 2-factor structure to FIM+FAM scores, among both focal-proximate and diffuse-proximate acquired brain injury aetiologies. Confirmatory factor analysis suggested a 3-factor bifactor structure presented the best fit of the FIM+FAM score data across both aetiologies. However, across both analyses, a convergence was found towards a general factor, demonstrated by high correlations between factors in the exploratory factor analysis, and by a general factor explaining the majority of the variance in scores on confirmatory factor analysis. Our findings suggested that although factors describing specific functional domains can be derived from FIM+FAM item scores, there is a convergence towards a single factor describing overall functioning. This single factor informs the specific group factors (eg, motor, psychosocial, and communication function) after brain injury. Further research into the comparative value of the general and group factors as evaluative/prognostic measures is indicated. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
New concept of the pathogenesis and therapeutic orientation of acquired communicating hydrocephalus.
Xu, Hao
2016-09-01
Hydrocephalus is a common medical condition characterized by abnormalities in the secretion, circulation and absorption of cerebrospinal fluid (CSF), resulting in ventricle dilatation. For the communicating hydrocephalus, without etiological treatment, its pathogenesis has been considered as a research emphasis. Many factors can damage the CSF system and trigger communicating hydrocephalus, including tumor surgery and hydrocephalus neurological diseases, such as brain trauma, infection, ICH and SAH. But according to our clinical experience, a big proportion of patients do not develop hydrocephalus. That is because the absorbing ability of CSF can compensate within a certain range. If the damage exceeds that range, hydrocephalus will occur. Once it occurs, it is not likely to be reversed, so a shunt surgery is always needed. Therefore, we believe that our orientation could transform the treatment of patient who has already showed hydrocephalus symptoms to the prevention of the occurrence in the patient with high risk of hydrocephalus. Based on the hypothesis above, we first divide the process of hydrocephalus into three stages and we believe that hydrocephalus are possible be reversed or halted in stage 1 and 2. The new concept of the pathogenesis in hydrocephalus will enrich our understanding and provide new insights to the therapeutic orientation. In conclusion, the future research direction should be the prevention of hydrocephalus, which should take a long period from the immediate occurrence of brain injury to several months or even years after the injury.
Dental management in dysphagia syndrome patients with previously acquired brain damages
Bramanti, Ennio; Arcuri, Claudio; Cecchetti, Francesco; Cervino, Gabriele; Nucera, Riccardo; Cicciù, Marco
2012-01-01
Dysphagia is defined as difficulty in swallowing food (semi-solid or solid), liquid, or both. Difficulty in swallowing affects approximately 7% of population, with risk incidence increasing with age. There are many disorder conditions predisposing to dysphagia such as mechanical strokes or esophageal diseases even if neurological diseases represent the principal one. Cerebrovascular pathology is today the leading cause of death in developing countries, and it occurs most frequently in individuals who are at least 60 years old. Swallowing disorders related to a stroke event are common occurrences. The incidence ranging is estimated from 18% to 81% in the acute phase and with a prevalence of 12% among such patients. Cerebral, cerebellar, or brain stem strokes can influence swallowing physiology while cerebral lesions can interrupt voluntary control of mastication and bolus transport during the oral phase. Among the most frequent complications of dysphagia are increased mortality and pulmonary risks such as aspiration pneumonia, dehydration, malnutrition, and long-term hospitalization. This review article discusses the epidemiology of dysphagia, the normal swallowing process, pathophysiology, signs and symptoms, diagnostics, and dental management of patients affected. PMID:23162574
Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones.
Salford, Leif G; Brun, Arne E; Eberhardt, Jacob L; Malmgren, Lars; Persson, Bertil R R
2003-06-01
The possible risks of radio-frequency electromagnetic fields for the human body is a growing concern for our society. We have previously shown that weak pulsed microwaves give rise to a significant leakage of albumin through the blood-brain barrier. In this study we investigated whether a pathologic leakage across the blood-brain barrier might be combined with damage to the neurons. Three groups each of eight rats were exposed for 2 hr to Global System for Mobile Communications (GSM) mobile phone electromagnetic fields of different strengths. We found highly significant (p< 0.002) evidence for neuronal damage in the cortex, hippocampus, and basal ganglia in the brains of exposed rats.
A Method for Whole Brain Ex Vivo Magnetic Resonance Imaging with Minimal Susceptibility Artifacts
Shatil, Anwar S.; Matsuda, Kant M.; Figley, Chase R.
2016-01-01
Magnetic resonance imaging (MRI) is a non-destructive technique that is capable of localizing pathologies and assessing other anatomical features (e.g., tissue volume, microstructure, and white matter connectivity) in postmortem, ex vivo human brains. However, when brains are removed from the skull and cerebrospinal fluid (i.e., their normal in vivo magnetic environment), air bubbles and air–tissue interfaces typically cause magnetic susceptibility artifacts that severely degrade the quality of ex vivo MRI data. In this report, we describe a relatively simple and cost-effective experimental setup for acquiring artifact-free ex vivo brain images using a clinical MRI system with standard hardware. In particular, we outline the necessary steps, from collecting an ex vivo human brain to the MRI scanner setup, and have also described changing the formalin (as might be necessary in longitudinal postmortem studies). Finally, we share some representative ex vivo MRI images that have been acquired using the proposed setup in order to demonstrate the efficacy of this approach. We hope that this protocol will provide both clinicians and researchers with a straight-forward and cost-effective solution for acquiring ex vivo MRI data from whole postmortem human brains. PMID:27965620
Fraas, Michael; Balz, Magdalen A
2008-03-01
In addition to the impaired ability to effectively communicate, adults with acquired brain injury (ABI) also experience high incidences of depression, social isolation, and decreased quality of life. Expressive writing programs have been shown to be effective in alleviating these concomitant impairments in other populations including incarcerated inmates (Lane, Writing as a road to self-discovery, F & W, Cincinnati 1993). In addition, computer applications such as email have been suggested as an effective means of improving communication and social isolation in adults with brain injury (Sohlberg et al. [2003]. Brain Injury, 17(7), 609-629). This investigation examines the effects of on-line expressive journal writing on the communication, emotional status, social integration and quality of life of individuals with brain injury.
Systemic Prenatal Insults Disrupt Telencephalon Development
Robinson, Shenandoah
2006-01-01
Infants born prematurely are prone to chronic neurologic deficits including cerebral palsy (CP), epilepsy, cognitive delay, behavioral problems, and neurosensory impairments. In affected children, imaging and neuropathological findings demonstrate significant damage to white matter. The extent of cortical damage has been less obvious. Advances in the understanding of telencephalon development provide insights into how systemic intrauterine insults affect the developing white matter, subplate and cortex, and lead to multiple neurologic impairments. In addition to white matter oligodendrocytes and axons, other elements at risk for perinatal brain injury include subplate neurons, GABAergic neurons migrating through white matter and subplate, and afferents of maturing neurotransmitter systems. Common insults including hypoxia-ischemia and infection often affect the developing brain differently than the mature brain, and insults precipitate a cascade of damage to multiple neural lineages. Insights from development can identify potential targets for therapies to repair the damaged neonatal brain before it has matured. PMID:16061421
ERIC Educational Resources Information Center
Ball, Heather; Howe, Julia
2013-01-01
This study explores the process of reintegration into school for children with an acquired brain injury (ABI) and considers the role of the educational psychologist (EP) in supporting these children. Interviews were conducted with a range of professionals in two specialist settings: a specialist rehabilitation centre and a children's hospital with…
ERIC Educational Resources Information Center
Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Belardinelli, Marta Olivetti; Buonocunto, Francesca; Sacco, Valentina; Navarro, Jorge; Lanzilotti, Crocifissa; De Tommaso, Marina; Megna, Marisa; Badagliacca, Francesco
2012-01-01
These two studies extended the evidence on the use of technology-based intervention packages to promote adaptive behavior in persons with acquired brain injury and multiple disabilities. Study I involved five participants in a minimally conscious state who were provided with intervention packages based on specific arrangements of optic, tilt, or…
ERIC Educational Resources Information Center
Boonstra, Anne M.; Reneman, Michiel F.; Stewart, Roy E.; Balk, Gerlof A.
2012-01-01
The aim of this study was to determine the reliability and discriminant validity of the Dutch version of the life satisfaction questionnaire (Lisat-9 DV) to assess patients with an acquired brain injury. The reliability study used a test-retest design, and the validity study used a cross-sectional design. The setting was the general rehabilitation…
Thinking Allowed: Use of Egocentric Speech after Acquired Brain Injury (ABI)
ERIC Educational Resources Information Center
Rees, Sian A.; Skidmore, David
2011-01-01
This paper explores the use of thinking aloud made by young people who have sustained a severe acquired brain injury (ABI). The phenomenon is compared with the concepts of egocentric speech and inner speech before the form of thinking aloud by pupils with ABI is examined. It is suggested that by using thinking aloud, this group of pupils is able…
ERIC Educational Resources Information Center
Degeneffe, Charles Edmund; Fullerton, Nicole
2015-01-01
Purpose: This article examines how the Republic of Ireland conceptualizes disability, specifically acquired brain injury (ABI); how it meets the needs of people with ABI; and its similarities and difference with the U.S. system of ABI professional care, policy, and services. The article provides ideas for improvements and innovations toward ABI…
ERIC Educational Resources Information Center
Dixon, Mark R.; Falcomata, Terry S.
2004-01-01
The purpose of this study was to increase self-control and engagement in a physical therapy task (head holding) for a man with acquired traumatic brain injury. Once impulsivity was observed (i.e., repeated impulsive choices), an experimental condition was introduced that consisted of choices between a small immediate reinforcer, a large…
ERIC Educational Resources Information Center
Ross, Kimberley A.; Dorris, Liam; McMillan, Tom
2011-01-01
Aim: It is now generally accepted that paediatric acquired brain injury (ABI) can have an impact on a child's cognitive, social, and behavioural functioning. However, the lack of guidelines on effective interventions for the affected children and their families, particularly beyond the acute recovery phase, can limit access to effective support.…
Klein, H C; Krop-Van Gastel, W; Go, K G; Korf, J
1993-02-01
The development of irreversible brain damage during repetitive periods of hypoxia and normoxia was studied in anaesthetized rats with unilateral occlusion of the carotid artery (modified Levine model). Rats were exposed to 10 min hypoxia and normoxia until severe damage developed. As indices of damage, whole striatal tissue impedance (reflecting cellular water uptake), sodium/potassium contents (due to exchange with blood). Evans Blue staining (blood-brain barrier [BBB] integrity) and silver staining (increased in irreversibly damaged neurons) were used. A substantial decrease in blood pressure was observed during the hypoxic periods possibly producing severe ischaemia. Irreversibly increased impedance, massive changes in silver staining, accumulation of whole tissue Na and loss of K occurred only after a minimum of two periods of hypoxia, but there was no disruption of the BBB. Microscopic examination of tissue sections revealed that cell death was selective with reversible impedance changes, but became massive and non-specific after irreversible increase of the impedance. The development of brain infarcts could, however, not be predicted from measurements of physiological parameters in the blood. We suggest that the development of cerebral infarction during repetitive periods of hypoxia may serve as a model for the development of brain damage in a variety of clinical conditions. Furthermore, the present model allows the screening of potential therapeutic measuring of the prevention and treatment of both infarction and selective cell death.
S100 B: A new concept in neurocritical care
Rezaei, Omidvar; Pakdaman, Hossein; Gharehgozli, Kurosh; Simani, Leila; Vahedian-Azimi, Amir; Asaadi, Sina; Sahraei, Zahra; Hajiesmaeili, Mohammadreza
2017-01-01
After brain injuries, concentrations of some brain markers such as S100B protein in serum and cerebrospinal fluid (CSF) are correlated with the severity and outcome of brain damage. To perform an updated review of S100B roles in human neurocritical care domain, an electronic literature search was carried among articles published in English prior to March 2017. They were retrieved from PubMed, Scopus, EMBSCO, CINAHL, ISC and the Cochrane Library using keywords including “brain”, “neurobiochemical marker”, “neurocritical care”, and “S100B protein”. The integrative review included 48 studies until March 2017. S100B protein can be considered as a marker for blood brain barrier damage. The marker has an important role in the development and recovery of normal central nervous system (CNS) after injury. In addition to extra cerebral sources of S100B, the marker is principally built in the astroglial and Schwann cells. The neurobiochemical marker, S100B, has a pathognomonic role in the diagnosis of a broad spectrum of brain damage including traumatic brain injury (TBI), brain tumor, and stroke. Moreover, a potential predicting role for the neurobiochemical marker has been presumed in the efficiency of brain damage treatment and prognosis. However further animal and human studies are required before widespread routine clinical introduction of S100 protein. PMID:28761630
Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach.
Stampanoni Bassi, Mario; Gilio, Luana; Buttari, Fabio; Maffei, Pierpaolo; Marfia, Girolama A; Restivo, Domenico A; Centonze, Diego; Iezzi, Ennio
2017-01-01
Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.
Assessment of genotoxic effects of flumorph by the comet assay in mice organs.
Zhang, T; Zhao, Q; Zhang, Y; Ning, J
2014-03-01
The present study investigated the genotoxic effects of flumorph in various organs (brain, liver, spleen, kidney and sperm) of mice. The DNA damage, measured as comet tail length (µm), was determined using the alkaline comet assay. The comet assay is a sensitive assay for the detection of genotoxicity caused by flumorph using mice as a model. Statistically significant increases in comet assay for both dose-dependent and duration-dependent DNA damage were observed in all the organs assessed. The organs exhibited the maximum DNA damage in 96 h at 54 mg/kg body weight. Brain showed maximum DNA damage followed by spleen > kidney > liver > sperm. Our data demonstrated that flumorph had induced systemic genotoxicity in mammals as it caused DNA damage in all tested vital organs, especially in brain and spleen.
Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.
Yamakami, I; Yamaura, A; Isobe, K
1993-01-01
To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.
Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid
Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R.; Masliah, Eliezer; Lipton, Stuart A.
2015-01-01
Cyanide is a life threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species (ROS). This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain-barrier to upregulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human induced pluripotent stem cell (hiPSC)-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino (NSA) mouse model of cyanide poisoning that simulates damage observed in the human brain. PMID:25692407
Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes
2014-01-01
Background Lysophosphatidic acid (LPA) is a bioactive phospholipid with a potentially causative role in neurotrauma. Blocking LPA signaling with the LPA-directed monoclonal antibody B3/Lpathomab is neuroprotective in the mouse spinal cord following injury. Findings Here we investigated the use of this agent in treatment of secondary brain damage consequent to traumatic brain injury (TBI). LPA was elevated in cerebrospinal fluid (CSF) of patients with TBI compared to controls. LPA levels were also elevated in a mouse controlled cortical impact (CCI) model of TBI and B3 significantly reduced lesion volume by both histological and MRI assessments. Diminished tissue damage coincided with lower brain IL-6 levels and improvement in functional outcomes. Conclusions This study presents a novel therapeutic approach for the treatment of TBI by blocking extracellular LPA signaling to minimize secondary brain damage and neurological dysfunction. PMID:24576351
Neural Stability, Sparing, and Behavioral Recovery Following Brain Damage
ERIC Educational Resources Information Center
LeVere, T. E.
1975-01-01
The present article discusses the possibility that behavioral recovery following brain damage is not dependent on the functional reorganization of neural tissue but is rather the result of the continued normal operation of spared neural mechanisms. (Editor)
Dessens, Arianne B; van Herwerden, Michael C; Aarsen, Femke K; Birnie, Erwin; Catsman-Berrevoets, Coriene E
2016-08-01
The survival of childhood brain tumors has improved in the past 30 years, but acquired brain injury due to damage caused by tumor invasion and side effects of different treatment modalities frequently occurs. This study focused on residual impairments, health-related quality of life (HRQoL), and emotional and behavioral problems in 2 cohorts of survivors diagnosed and treated for various types of brain tumors. Survivors in the 2004 cohort visited the Erasmus Medical Centre for standardized follow-up between 2003 and 2004, and in the 2014 cohort, between 2012 and 2014. Data of neurologically impairments of all children were extracted from medical records. Parents and survivors filled out questionnaires on quality of life and emotional and behavioral problems. In both cohorts, approximately 55% of the survivors displayed neurologic impairments. In comparison with the healthy reference group, a reduced parent-reported quality of life was found on the Motor, Cognition, and Autonomy (Cohort 2004) scales. Comparison between the cohorts showed that parents in the 2004 cohort reported a higher HRQoL on the Motor and Cognitive functioning scales. In the 2014 cohort, children reported less negative emotions than healthy children. No increase in emotional or behavioral problems were reported by children in both cohorts, whereas parents reported problems in social functioning and isolation related to a delay in emotional development. Children surviving brain tumor treatment have a reduced quality of life. The authors therefore recommend regular screening of HRQoL and emotional and behavioral problems and referral to specific aftercare.
PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI
Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris
2015-01-01
Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238
Predicting aphasia type from brain damage measured with structural MRI.
Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris
2015-12-01
Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
MR-guided transcranial brain HIFU in small animal models
Larrat, Benoît; Pernot, Mathieu; Aubry, Jean-François; Dervishi, Elvis; Sinkus, Ralph; Seilhean, Danielle; Marie, Yannick; Boch, Anne-Laure; Fink, Mathias; Tanter, Mickaël
2010-01-01
Recent studies have demonstrated the feasibility of transcranial High Intensity Focused Ultrasound (HIFU) therapy in the brain using adaptive focusing techniques. However, the complexity of the procedures imposes to provide an accurate targeting, monitoring and control of this emerging therapeutic modality in order to ensure the safety of the treatment and avoid potential damaging effects of ultrasound on healthy tissues. For these purposes, a complete workflow and setup for HIFU treatment under Magnetic Resonance (MR) guidance is proposed and implemented in rats. For the first time, tissue displacements induced by the acoustic radiation force are detected in vivo in brain tissues and measured quantitatively using motion-sensitive MR sequences. Such a valuable target control prior to treatment assesses the quality of the focusing pattern in situ and enables to estimate the acoustic intensity at focus. This MR-Acoustic radiation force imaging is then correlated with conventional MR-Thermometry sequences which are used to follow the temperature changes during the HIFU therapeutic session. Last, pre and post treatment Magnetic Resonance Elastography (MRE) datasets are acquired and evaluated as a new potential way to non invasively control the stiffness changes due to the presence of thermal necrosis. As a proof of concept, MRguided HIFU is performed in vitro in turkey breast samples and in vivo in transcranial rat brain experiments. The experiments are conducted using a dedicated MR compatible HIFU setup in a high field MRI scanner (7T). Results obtained on rats confirmed that both the MR localization of the US focal point and the pre and post HIFU measurement of the tissue stiffness, together with temperature control during HIFU are feasible and valuable techniques for an efficient monitoring of HIFU in the brain. Brain elasticity appears to be more sensitive to the presence of oedema than to tissue necrosis. PMID:20019400
BERMAN, Deborah R; LIU, YiQing; BARKS, John; MOZURKEWICH, Ellen
2010-01-01
Objective Lipopolysaccharide (LPS) pretreatment potentiates HI injury. We hypothesized that docosahexaenoic acid (DHA) pretreatment would improve function and reduce brain damage in this rat model of perinatal brain injury and inflammation. Study Design Seven-day-old Wistar rats were divided into 3 groups. One received intraperitoneal (IP) DHA 1 mg/kg and LPS 0.1mg/kg. The second received 25% Albumin and LPS. The third received normal saline (NS). Injections were given 2.5 hours prior to right carotid ligation, followed by 90 minutes 8% O2. Rats underwent sensorimotor testing and brain damage assessment on P14. Results DHA pretreatment improved forepaw placing compared to albumin/LPS. (Mean±SD successes/10 trials: 8.57±1.7 DHA/LPS vs 6.72±2.2 Albumin/LPS, p<.0009). There were no significant differences in brain damage among groups. Conclusions Inflammatory stimulation before HI resulted in poorer function than HI alone. Although DHA pretreatment had no impact on brain damage, it significantly improved function in neonatal rats exposed to LPS and HI. PMID:19254588
Bogdanova, Yelena; Yee, Megan K; Ho, Vivian T; Cicerone, Keith D
Comprehensive review of the use of computerized treatment as a rehabilitation tool for attention and executive function in adults (aged 18 years or older) who suffered an acquired brain injury. Systematic review of empirical research. Two reviewers independently assessed articles using the methodological quality criteria of Cicerone et al. Data extracted included sample size, diagnosis, intervention information, treatment schedule, assessment methods, and outcome measures. A literature review (PubMed, EMBASE, Ovid, Cochrane, PsychINFO, CINAHL) generated a total of 4931 publications. Twenty-eight studies using computerized cognitive interventions targeting attention and executive functions were included in this review. In 23 studies, significant improvements in attention and executive function subsequent to training were reported; in the remaining 5, promising trends were observed. Preliminary evidence suggests improvements in cognitive function following computerized rehabilitation for acquired brain injury populations including traumatic brain injury and stroke. Further studies are needed to address methodological issues (eg, small sample size, inadequate control groups) and to inform development of guidelines and standardized protocols.
Clinician perspectives on decision-making capacity after acquired brain injury.
Mukherjee, Debjani; McDonough, Carol
2006-01-01
Acquired brain injury frequently alters an individual's ability to make health care decisions based on a clear understanding of the situation and options. This exploratory study investigated the ways health care providers address issues of decisionmaking capacity (DMC) on a daily, functional basis. 33 clinicians providing rehabilitation services to persons with acquired brain injury participated in 1 of 5 semi-structured focus groups. All 33 participants, representing 8 different occupations, agreed that DMC determinations affected their practice every day. Participants underscored a multidimensional rather than a unitary definition of DMC, with an emphasis on fluctuating capacities due to the injury. Important concerns were for the safety of the person with brain injury, the health care provider, and community members. Other themes included rehabilitation team involvement, family context, and professional socialization. Clinical determinations of DMC are context dependent and are affected by the abilities of the individual and the substance and consequences of the decision being made and include the concepts of regaining trust and reclaiming capacity.
[Intrauterine infection and the preterm brain: dimensions of aetiology research].
Dammann, O
2006-02-01
Perinatal brain damage has a diverse and complex aetiology. Over the past decades, much progress has been made in this research field. In this article, I offer a discussion of seven dimensions of aetiological perinatal brain damage research: (1) hypoxia-ischaemia vs. inflammation; (2) "classic" vs. "remote" intrauterine infection; (3) focal vs. diffuse white matter damage; (4) maternal vs. foetal inflammatory response; (5) clinical vs. experimental data; (6) bacterial vs. viral infection; and (7) preterm vs. term delivery. Despite these complexities, it is hoped that obstetricians, neonatologists, and neuropaediatricians will agree on a perinatal neuroprotective strategy in the near future.
ERIC Educational Resources Information Center
Griffiths, Gina G.
2013-01-01
Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI.…
Eghdam, Aboozar; Hamidi, Ulrika; Bartfai, Aniko; Koch, Sabine
2017-01-01
This study was conducted as a social network analysis of a Facebook group for Swedish speaking persons (1310 members) with perceived brain fatigue after an illness or injury to the brain to address the lack of research examining social media and the potential value of on-line support for persons with mild acquired cognitive impairment.
Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I
2012-12-21
The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.
Bilirubin and its oxidation products damage brain white matter
Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch
2014-01-01
Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671
Gu, Aihua; Ji, Guixiang; Yan, Lifeng; Zhou, Yong
2013-12-01
The developing brain is particularly vulnerable to oxidative DNA damage, which may be the cause of most major congenital mental anomalies. The repair enzyme ogg1 initiates the highly conserved base-excision repair pathway. However, its function in the embryonic brain is largely unknown. This study is the first to validate the function of ogg1 during brain development using zebrafish embryos. Ogg1 was found to be highly expressed in the brain throughout early embryonic development, with particularly enrichment observed in the midbrain. The lack of ogg1 causes severe brain defects including changes in brain volume and integrity, destruction of the midbrain-hindbrain boundary, and balance and motor impairment, while overexpression of ogg1 can partially rescue these defects. Multiple cellular and molecular events were involved in the manifestation of brain defects due primarily to the lack of ogg1. These included (1) increased apoptosis; (2) decreased proliferation; and (3) aberrant axon distribution and extension from the inner surface towards the outer layers. The results of a microarray analysis showed that the expression of genes involved in cell cycle checkpoint, apoptosis, and neurogenesis were significantly changed in response to ogg1 knockdown. Cmyb was the key downstream gene that responses to DNA damage caused by ogg1 deficiency. Notably, the recruitment of ogg1 mRNA can alleviate the effects on the brain due to neural DNA damage. In summary, we introduce here that ogg1 is fundamentally required for protecting the developing brain, which may be helpful in understanding the aetiology of congenital brain deficits. Copyright © 2013 Elsevier B.V. All rights reserved.
Jiménez-Castro, Mónica B; Meroño, Noelia; Mendes-Braz, Mariana; Gracia-Sancho, Jordi; Martínez-Carreres, Laia; Cornide-Petronio, Maria Eugenia; Casillas-Ramirez, Araní; Rodés, Juan; Peralta, Carmen
2015-01-01
Most liver grafts undergoing transplantation derive from brain dead donors, which may also show hepatic steatosis, being both characteristic risk factors in liver transplantation. Ischemic preconditioning shows benefits when applied in non-brain dead clinical situations like hepatectomies, whereas it has been less promising in the transplantation from brain dead patients. This study examined how brain death affects preconditioned steatotic and non-steatotic liver grafts undergoing transplantation. Steatotic and non-steatotic grafts from non-brain dead and brain dead-donors were cold stored for 6h and then transplanted. After 2, 4, and 16 h of reperfusion, hepatic damage was analysed. In addition, two therapeutic strategies, ischemic preconditioning and/or acetylcholine pre-treatment, and their underlying mechanisms were characterized. Preconditioning benefits in non-brain dead donors were associated with nitric oxide and acetylcholine generation. In brain dead donors, preconditioning generated nitric oxide but did not promote acetylcholine upregulation, and this resulted in inflammation and damage. Acetylcholine treatment in brain dead donors, through PKC, increased antioxidants and reduced lipid peroxidation, nitrotyrosines and neutrophil accumulation, altogether protecting against damage. The combination of acetylcholine and preconditioning conferred stronger protection against damage, oxidative stress and neutrophil accumulation than acetylcholine treatment alone. These superior beneficial effects were due to a selective preconditioning-mediated generation of nitric oxide and regulation of PPAR and TLR4 pathways, which were not observed when acetylcholine was administered alone. Our findings propose the combination of acetylcholine+preconditioning as a feasible and highly protective strategy to reduce the adverse effects of brain death and to ultimately improve liver graft quality. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Semmel, Melvyn I.; And Others
Methods to evaluate central hearing deficiencies and to localize brain damage are reviewed beginning with Bocca who showed that patients with temporal lobe tumors made significantly lower discrimination scores in the ear opposite the tumor when speech signals were distorted. Tests were devised to attempt to pinpoint brain damage on the basis of…
Sunderaraman, Preeti; Cosentino, Stephanie; Lindgren, Karen; James, Angela; Schultheis, Maria
2018-03-29
Primarily, to investigate the association between informant report and objective performance on specific financial capacity (FC) tasks by adults with chronic, moderate to severe acquired brain injury, and to examine the nature of misestimates by the informants. Cross-sectional design. A postacute, community-based rehabilitation center. Data were obtained from 22 chronic acquired brain injury (CABI) adults, mean age of 46.6 years (SD = 8.67), mean years of education of 13.45 years (SD = 2.15), with moderate to severe acquired brain injury (86% had traumatic brain injury), with a mean postinjury period of 17.14 years (SD = 9.5). Whereas the CABI adults completed the Financial Competence Assessment Inventory interview-a combination of self-report and performance-based assessment, 22 informants completed a specifically designed parallel version of the interview. Pearson correlations and 1-sample t tests based on the discrepancy scores between informant report and CABI group's performance were used. The CABI group's performance was not associated with its informant's perceptions. One-sample t tests revealed that informants both underestimated and overestimated CABI group's performance. Results indicate lack of correspondence between self- and informant ratings. Further investigation revealed that misestimations by informants occurred in contrary directions with CABI adults' performance being inaccurately rated. These findings raise critical issues related to assuming that the informant report can be used as a "gold standard" for collecting functional data related to financial management, and the idea that obtaining objective data on financial tasks may represent a more valid method of assessing financial competency in adults with brain injury.
Törnbom, Karin; Sunnerhagen, Katharina S; Danielsson, Anna
2017-01-01
Physical activity has been established as being highly beneficial for health after stroke. There are considerable global efforts to find rehabilitation programs that encourage increased physical activity for persons with stroke. However, many persons with stroke or acquired brain injury do not reach recommended levels of physical activity and increased knowledge about why is needed. We aimed to explore views and experiences of physical activity and walking among persons with stroke or acquired brain injury. A qualitative study was conducted, among persons with stroke (n = 8) or acquired brain injury (n = 2) from a rehabilitation unit at Sahlgrenska University Hospital in Sweden. Semi-structured in-depth interviews were held about perceptions and experiences of walking and physical activity in general. Data were analyzed using qualitative content analysis, with categories that were determined inductively. Physical activity in general and walking ability more specifically were considered very important by the participants. However, physical activity was, regardless of exercising habits pre-injury, associated with different kinds of negative feelings and experiences. Commonly reported internal barriers in the current study were; fatigue, fear of falling or getting hurt in traffic, lack of motivation and depression. Reported external barriers were mostly related to walking, for example; bad weather, uneven ground, lack of company or noisy or too busy surroundings. Persons with stroke or acquired brain injury found it difficult to engage in and sustain an eligible level of physical activity. Understanding individual concerns about motivators and barriers surrounding physical activity may facilitate the work of forming tailor-made rehabilitation for these groups, so that the levels of physical activity and walking can increase.
Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin
2017-01-01
Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Hogrefe, Katharina; Rein, Robert; Skomroch, Harald; Lausberg, Hedda
2016-12-01
Persons with brain damage show deviant patterns of co-speech hand movement behaviour in comparison to healthy speakers. It has been claimed by several authors that gesture and speech rely on a single production mechanism that depends on the same neurological substrate while others claim that both modalities are closely related but separate production channels. Thus, findings so far are contradictory and there is a lack of studies that systematically analyse the full range of hand movements that accompany speech in the condition of brain damage. In the present study, we aimed to fill this gap by comparing hand movement behaviour in persons with unilateral brain damage to the left and the right hemisphere and a matched control group of healthy persons. For hand movement coding, we applied Module I of NEUROGES, an objective and reliable analysis system that enables to analyse the full repertoire of hand movements independent of speech, which makes it specifically suited for the examination of persons with aphasia. The main results of our study show a decreased use of communicative conceptual gestures in persons with damage to the right hemisphere and an increased use of these gestures in persons with left brain damage and aphasia. These results not only suggest that the production of gesture and speech do not rely on the same neurological substrate but also underline the important role of right hemisphere functioning for gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Docosahexaenoic acid augments hypothermic neuroprotection in a neonatal rat asphyxia model.
Berman, Deborah R; Mozurkewich, Ellen; Liu, Yiqing; Shangguan, Yu; Barks, John D; Silverstein, Faye S
2013-01-01
In neonatal rats, early post-hypoxia-ischemia (HI) administration of the omega-3 fatty acid docosahexaenoic acid (DHA) improves sensorimotor function, but does not attenuate brain damage. To determine if DHA administration in addition to hypothermia, now standard care for neonatal asphyxial brain injury, attenuates post-HI damage and sensorimotor deficits. Seven-day-old (P7) rats underwent right carotid ligation followed by 90 min of 8% O2 exposure. Fifteen minutes later, pups received injections of DHA 2.5 mg/kg (complexed to 25% albumin) or equal volumes of albumin. After a 1-hour recovery, pups were cooled (3 h, 30°C). Sensorimotor and pathology outcomes were initially evaluated on P14. In subsequent experiments, sensorimotor function was evaluated on P14, P21, and P28; histopathology was assessed on P28. At P14, left forepaw function scores (normal: 20/20) were near normal in DHA + hypothermia-treated animals (mean ± SD 19.7 ± 0.7 DHA + hypothermia vs. 12.7 ± 3.5 albumin + hypothermia, p < 0.0001) and brain damage was reduced (mean ± SD right hemisphere damage 38 ± 17% with DHA + hypothermia vs. 56 ± 15% with albumin + hypothermia, p = 0.003). Substantial improvements on three sensorimotor function measures and reduced brain damage were evident up to P28. Unlike post-HI treatment with DHA alone, treatment with DHA + hypothermia produced both sustained functional improvement and reduced brain damage after neonatal HI. Copyright © 2013 S. Karger AG, Basel.
Blicher, Jakob Udby; Nielsen, Jørgen Feldbaek
2008-01-01
To identify predictors of outcome, epilepsy, spasticity and depression one year after severe acquired brain injury. Retrospective cohort study. A consecutive sample of 165 patients with severe acquired brain injury admitted for inpatient rehabilitation during a 18-month time period, was contacted and offered home visits one-year after brain injury. Of the 165 patients 12 did not participate. The cohort included patients with different etiologies primarily traumatic brain injury (65), stroke (25) and subarachnoid hemorrhage (34). Functional independent measure (FIM) was measured at admission at rehabilitation unit and at follow-up. At follow-up the presence of epilepsy, spasticity, and depression was evaluated. Using multiple logistic regression a short length of stay at acute hospital (LOS1) (P=0.004), a high FIM score at admission (P<0.001), and low age (P=0.003), were all predictors of good outcome. No difference was found between etiologies (P=0.077). The presence of spasticity was predicted by low FIM score (P< 0.001), longer LOS1 (P< 0.036), etiology (P< 0.001), and lower age (P=0.001). Depression was predicted by higher age (P=0.035). Age, functional status, and length of acute hospital stay are associated with outcome one year after brain injury. The functional outcome was not correlated to etiology.
Wogensen, Elise; Malá, Hana
2015-01-01
The objective of the present paper is to review the current status of exercise as a tool to promote cognitive rehabilitation after acquired brain injury (ABI) in animal model-based research. Searches were conducted on the PubMed, Scopus, and psycINFO databases in February 2014. Search strings used were: exercise (and) animal model (or) rodent (or) rat (and) traumatic brain injury (or) cerebral ischemia (or) brain irradiation. Studies were selected if they were (1) in English, (2) used adult animals subjected to acquired brain injury, (3) used exercise as an intervention tool after inflicted injury, (4) used exercise paradigms demanding movement of all extremities, (5) had exercise intervention effects that could be distinguished from other potential intervention effects, and (6) contained at least one measure of cognitive and/or emotional function. Out of 2308 hits, 22 publications fulfilled the criteria. The studies were examined relative to cognitive effects associated with three themes: exercise type (forced or voluntary), timing of exercise (early or late), and dose-related factors (intensity, duration, etc.). The studies indicate that exercise in many cases can promote cognitive recovery after brain injury. However, the optimal parameters to ensure cognitive rehabilitation efficacy still elude us, due to considerable methodological variations between studies. PMID:26509085
Gold, Mark S.; Kobeissy, Firas H.; Wang, Kevin K.W.; Merlo, Lisa J.; Bruijnzeel, Adriaan W.; Krasnova, Irina N.; Cadet, Jean Lud
2009-01-01
The use of methamphetamine (METH) is a growing public health problem because its abuse is associated with long-term biochemical and structural effects on the human brain. Neurodegeneration is often observed in humans as a result of mechanical injuries (e.g. traumatic brain injury, TBI) and ischemic damage (strokes). In this review, we discuss recent findings documenting the fact that the psychostimulant drug, METH, can cause neuronal damage in several brain regions. The accumulated evidence from our laboratories and those of other investigators indicates that acute administration of METH leads to activation of calpain and caspase proteolytic systems. These systems are also involved in causing neuronal damage secondary to traumatic and ischemic brain injuries. Protease activation is accompanied by proteolysis of endogenous neuronal structural proteins (αII-spectrin and MAP-tau protein) evidenced by the appearance of their breakdown products after these injuries. When taken together, these observations suggest that METH exposure, like TBI, can cause substantial damage to the brain by causing both apoptotic and necrotic cell death in the brains of METH addicts who use large doses of the drug during their lifetimes. Finally, because METH abuse is accompanied by functional and structural changes in the brain similar to those in TBI, METH addicts might experience greater benefit if their treatment involved greater emphasis on rehabilitation in conjunction with the use of potential neuroprotective pharmacological agents such as calpain and caspase inhibitors similar to those used in TBI. PMID:19345341
Rowell, Arleen M; Faruqui, Rafey A
2010-01-01
Morbid hunger or persistent hyperphagia is a relatively rare but potentially life threatening complication of acquired brain injury (ABI). This paper presents findings from an observational case study of patients with hyperphagia receiving inpatient neurobehavioural rehabilitation following their acquired brain injury. The case study has utilized dietetic and medical records of identified patients to confirm the persistent and serious nature of this presentation in order to extract important management principles. The findings confirmed that hyperphagia or morbid hunger posed potentially life-threatening health risks to the patient, primarily around weight control and fluid balance, and risks of aggression towards professional and family carers. Pharmacological or behaviour modification interventions were only partially successful in management of this presentation. The study identified a high need for environmental and cue exposure control in management of this condition.
Shiha, Ahmed A; de la Rosa, Rubén Fernández; Delgado, Mercedes; Pozo, Miguel A; García-García, Luis
2017-01-01
Epilepsy is a central disorder associated with neuronal damage and brain hypometabolism. It has been reported that antidepressant drugs show anticonvulsant and neuroprotective effects in different animal models of seizures and epilepsy. The purpose of this study was to investigate the eventual short-term brain impairment induced by a single low convulsant dose of the potassium channel blocker 4-aminopyridine (4-AP) and the eventual neuroprotective effects exerted by fluoxetine, a prototypical selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI). In vivo 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) and several histological assessments were carried out in adult male rats after i.p. administration of 3 mg/kg 4-AP for evaluating eventual brain metabolism impairment and signs of hippocampal damage. We also evaluated the effects of a short-term fluoxetine treatment (10 mg/kg, i.p. for 7 days) in this seizure model. [18F]FDG PET analysis revealed no changes in the regional brain metabolism on day 3 after 4-AP injection. The histological assessments revealed signs of damage in the hippocampus, a brain area usually affected by seizures. Thus, reactive gliosis and a significant increase in the expression of caspase-9 were found in the aforementioned brain area. By contrast, we observed no signs of neurodegeneration or neuronal death. Regarding the effects of fluoxetine, this SSRI showed beneficial neurologic effects, since it significantly increased the seizure latency time and reduced the abovementioned 4-AP-induced hippocampal damage markers. Overall, our results point to SSRIs and eventually endogenous 5-HT as neuroprotective agents against convulsant-induced hippocampal damage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zabel, Matthew; Nackenoff, Alex; Kirsch, Wolff M; Harrison, Fiona E; Perry, George; Schrag, Matthew
2018-02-01
Oxidative stress and decreased cellular responsiveness to oxidative stress are thought to influence brain aging and Alzheimer's disease, but the specific patterns of oxidative damage and the underlying mechanism leading to this damage are not definitively known. The objective of this study was to define the pattern of changes in oxidative-stress related markers by brain region in human Alzheimer's disease and mild cognitive impairment brain tissue. Observational case-control studies were identified from systematic queries of PubMed, ISI Web of Science and Scopus databases and studies were evaluated with appropriate quality measures. The data was used to construct a region-by-region meta-analysis of malondialdehyde, 4-hydroxynonenal, protein carbonylation, 8-hydroxyguanine levels and superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase activities. We also evaluated ascorbic acid, tocopherol, uric acid and glutathione levels. The analysis was complicated in several cases by publication bias and/or outlier data. We found that malondialdehyde levels were slightly increased in the temporal and occipital lobes and hippocampus, but this analysis was significantly impacted by publication bias. 4-hydroxynonenal levels were unchanged in every brain region. There was no change in 8-hydroxyguanine level in any brain region and protein carbonylation levels were unchanged except for a slight increase in the occipital lobe. Superoxide dismutase, glutathione peroxidase and reductase and catalase activities were not decreased in any brain region. There was limited data reporting non-enzymatic antioxidant levels in Alzheimer's disease brain, although glutathione and tocopherol levels appear to be unchanged. Minimal quantitative data is available from brain tissue from patients with mild cognitive impairment. While there is modest evidence supporting minor regional changes in markers of oxidative damage, this analysis fails to identify a consistent pattern of pro-oxidative changes and accumulation of oxidative damage in bulk tissue analysis in the setting of Alzheimer's disease, as has been widely reported. Copyright © 2017 Elsevier Inc. All rights reserved.
Matos, Gabriela; Ribeiro, Daniel A; Alvarenga, Tathiana A; Hirotsu, Camila; Scorza, Fulvio A; Le Sueur-Maluf, Luciana; Noguti, Juliana; Cavalheiro, Esper A; Tufik, Sergio; Andersen, Monica L
2012-05-02
The interaction between sleep deprivation and epilepsy has been well described in electrophysiological studies, but the mechanisms underlying this association remain unclear. The present study evaluated the effects of sleep deprivation on locomotor activity and genetic damage in the brains of rats treated with saline or pilocarpine-induced status epilepticus (SE). After 50 days of pilocarpine or saline treatment, both groups were assigned randomly to total sleep deprivation (TSD) for 6 h, paradoxical sleep deprivation (PSD) for 24 h, or be kept in their home cages. Locomotor activity was assessed with the open field test followed by resection of brain for quantification of genetic damage by the single cell gel electrophoresis (comet) assay. Status epilepticus induced significant hyperactivity in the open field test and caused genetic damage in the brain. Sleep deprivation procedures (TSD and PSD) did not affect locomotor activity in epileptic or healthy rats, but resulted in significant DNA damage in brain cells. Although PSD had this effect in both vehicle and epileptic groups, TSD caused DNA damage only in epileptic rats. In conclusion, our results revealed that, despite a lack of behavioral effects of sleep deprivation, TSD and PSD induced genetic damage in rats submitted to pilocarpine-induced SE. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Are endogenous sex hormones related to DNA damage in paradoxically sleep-deprived female rats?
Andersen, Monica L; Ribeiro, Daniel A; Alvarenga, Tathiana A; Silva, Andressa; Araujo, Paula; Zager, Adriano; Tenorio, Neuli M; Tufik, Sergio
2010-02-01
The aim of this investigation was to evaluate overall DNA damage induced by experimental paradoxical sleep deprivation (PSD) in estrous-cycling and ovariectomized female rats to examine possible hormonal involvement during DNA damage. Intact rats in different phases of the estrous cycle (proestrus, estrus, and diestrus) or ovariectomized female Wistar rats were subjected to PSD by the single platform technique for 96 h or were maintained for the equivalent period as controls in home-cages. After this period, peripheral blood and tissues (brain, liver, and heart) were collected to evaluate genetic damage using the single cell gel (comet) assay. The results showed that PSD caused extensive genotoxic effects in brain cells, as evident by increased DNA migration rates in rats exposed to PSD for 96 h when compared to negative control. This was observed for all phases of the estrous cycle indistinctly. In ovariectomized rats, PSD also led to DNA damage in brain cells. No significant statistically differences were detected in peripheral blood, the liver or heart for all groups analyzed. In conclusion, our data are consistent with the notion that genetic damage in the form of DNA breakage in brain cells induced by sleep deprivation overrides the effects related to endogenous female sex hormones. Copyright 2009 Elsevier Inc. All rights reserved.
Chen, Yun; Huang, Wei; Constantini, Shlomi
2013-01-01
After exposure of the human body to blast, kinetic energy of the blast shock waves might be transferred into hydraulic energy in the cardiovascular system to cause a rapid physical movement or displacement of blood (a volumetric blood surge). The volumetric blood surge moves through blood vessels from the high-pressure body cavity to the low-pressure cranial cavity, causing damage to tiny cerebral blood vessels and the blood-brain barrier (BBB). Large-scale cerebrovascular insults and BBB damage that occur globally throughout the brain may be the main causes of non-impact, blast-induced brain injuries, including the spectrum of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD). The volumetric blood surge may be a major contributor not only to blast-induced brain injuries resulting from physical trauma, but may also be the trigger to psychiatric disorders resulting from emotional and psychological trauma. Clinical imaging technologies, which are able to detect tiny cerebrovascular insults, changes in blood flow, and cerebral edema, may help diagnose both TBI and PTSD in the victims exposed to blasts. Potentially, prompt medical treatment aiming at prevention of secondary neuronal damage may slow down or even block the cascade of events that lead to progressive neuronal damage and subsequent long-term neurological and psychiatric impairment.
Ayoade, Folusakin; Todd, John; Al-Delfi, Firas; King, John
2017-10-01
Toxoplasmosis is an important cause of enhancing brain lesions in patients with acquired immunodeficiency syndrome (AIDS), and it is typically associated with low CD4-lymphocyte counts. Extensive toxoplasma encephalitis when the CD4-lymphocyte count is above 100 cells/µl is unusual. Cavitary lung lesions are also not typically associated with toxoplasmosis. Here, we present a case of toxoplasmosis associated with extensive brain masses and cavitary lung lesions, both of which improved with directed toxoplasmosis therapy, in an AIDS patient with a CD4 cell count of 120 cells/µl.
Nantes, Julia C; Proulx, Sébastien; Zhong, Jidan; Holmes, Scott A; Narayanan, Sridar; Brown, Robert A; Hoge, Richard D; Koski, Lisa
2017-08-15
Converging areas of research have implicated glutamate and γ-aminobutyric acid (GABA) as key players in neuronal signalling and other central functions. Further research is needed, however, to identify microstructural and behavioral links to regional variability in levels of these neurometabolites, particularly in the presence of demyelinating disease. Thus, we sought to investigate the extent to which regional glutamate and GABA levels are related to a neuroimaging marker of microstructural damage and to motor and cognitive performance. Twenty-one healthy volunteers and 47 people with multiple sclerosis (all right-handed) participated in this study. Motor and cognitive abilities were assessed with standard tests used in the study of multiple sclerosis. Proton magnetic resonance spectroscopy data were acquired from sensorimotor and parietal regions of the brains' left cerebral hemisphere using a MEGA-PRESS sequence. Our analysis protocol for the spectroscopy data was designed to account for confounding factors that could contaminate the measurement of neurometabolite levels due to disease, such as the macromolecule signal, partial volume effects, and relaxation effects. Glutamate levels in both regions of interest were lower in people with multiple sclerosis. In the sensorimotor (though not the parietal) region, GABA concentration was higher in the multiple sclerosis group compared to controls. Lower magnetization transfer ratio within grey and white matter regions from which spectroscopy data were acquired was linked to neurometabolite levels. When adjusting for age, normalized brain volume, MTR, total N-acetylaspartate level, and glutamate level, significant relationships were found between lower sensorimotor GABA level and worse performance on several tests, including one of upper limb motor function. This work highlights important methodological considerations relevant to analysis of spectroscopy data, particularly in the afflicted human brain. These findings support that regional neurotransmitter levels are linked to local microstructural integrity and specific behavioral abilities that can be affected in diseases such as multiple sclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Holland, J M; Fuller, G B; Barth, C E
1982-01-01
Examined the performance of 64 children on the Minnesota Percepto-Diagnostic test (MPD) who were diagnosed as either Brain-Damaged (BD) or emotionally impaired Non-Brain-Damaged (NBD). There were 31 children in the NBD group and 33 in the BD group. The MPD T-score and Actuarial Table significantly differentiated between the two groups. Seventy-four percent of the combined BD-NBD groups were identified correctly. Additional discriminant analysis on this sample yielded combined BD-NBD groups classification rates that ranged from 77% with the MPD variables Separation of Circle-Diamond (SPCD), Distortion of Circle-Diamond (DCD) and Distortion of Dots (DD) to 83% with the WISC-R three IQ scores plus the MPD T-score, SPCD and DD. The MPD T-score and Actuarial Table (MPD Two-Step Diagnosis) appeared to generalize to other populations more readily than discriminant analysis formulae, which tend to be sensitive to the samples from which they are derived.
Monceviciūte-Eringiene, E
2005-01-01
In the present review, a new theory that the mechanisms of general evolutionary persistent resistance to damaging factors are closely related to the development of tumour cells is introduced. Evolutionary resistance and its variability have an immense power to drive and control the process of carcinogenesis and the success of microbial and antitumour chemotherapy. First, this phenomenon of adaptation is characteristic of microbial cells whose resistance to antibiotics and other chemotherapeutic drugs is manifested through ATP-dependent transmembrane transporters. The structure and function of some multidrug transporters of resistance are conserved from microorganisms to mammals. When somatic cells are exposed to carcinogens and develop into tumour cells, they also acquire resistance to the toxic effects of carcinogens through these same transmembrane transporters (P-glycoprotein, glutathione S-transferases and other products of evolutionary resistance-related genes arisen for detoxification and exportation of cytotoxic xenobiotics and drugs). Cancerous cells acquire a persistent evolutionary resistance to chemotherapy drugs or irradiation through the same ATP-dependent transporters encountered in prokaryotic and eukaryotic cells. The mechanism of acquired resistance of cells to damaging factors, which becomes manifested during tumorigenic process formation, is a general biological law of primary significance in carcinogenesis. This resistance can be called malignant as, once formed, it does not disappear, as does also a clone of malignant cells. In tumorous cells, the mutagenic processes, morphological and functional modifications are a mechanism of secondary significance in carcinogenesis, contributing to formation of damage-resistant cells. This mechanism characterizes the processes of simplification arising in damage-resistant cells. Such cells acquire parasitic features. To survive under unfavourable conditions, they get adapted as if returning down the evolutionary stairs back to a more primitive stage of atavistic regression, which is characteristic of primitive forms of existence. Therefore they cease obeying the growth-regulating mechanisms in the organism and acquire the potential of unlimited division and accelerated growth (metastases) as do unicellular organisms or their forms resistant to damaging factors in the environment and in the host organism. Thus, cancer is a natural self-protective response of the damaged cells to the biological, physical and chemical damage and oxidative stress. This response has been developed in the process of evolution under the impact of the general biological Darwinian law of nature--to survive through variability and adaptation to the changed environmental conditions. Thus, malignization is the consequence of an evolutionary variety of the general biological resistance of cells to damage and stress in order to survive.
Yin, Ziying; Sui, Yi; Trzasko, Joshua D; Rossman, Phillip J; Manduca, Armando; Ehman, Richard L; Huston, John
2018-05-17
To introduce newly developed MR elastography (MRE)-based dual-saturation imaging and dual-sensitivity motion encoding schemes to directly measure in vivo skull-brain motion, and to study the skull-brain coupling in volunteers with these approaches. Six volunteers were scanned with a high-performance compact 3T-MRI scanner. The skull-brain MRE images were obtained with a dual-saturation imaging where the skull and brain motion were acquired with fat- and water-suppression scans, respectively. A dual-sensitivity motion encoding scheme was applied to estimate the heavily wrapped phase in skull by the simultaneous acquisition of both low- and high-sensitivity phase during a single MRE exam. The low-sensitivity phase was used to guide unwrapping of the high-sensitivity phase. The amplitude and temporal phase delay of the rigid-body motion between the skull and brain was measured, and the skull-brain interface was visualized by slip interface imaging (SII). Both skull and brain motion can be successfully acquired and unwrapped. The skull-brain motion analysis demonstrated the motion transmission from the skull to the brain is attenuated in amplitude and delayed. However, this attenuation (%) and delay (rad) were considerably greater with rotation (59 ± 7%, 0.68 ± 0.14 rad) than with translation (92 ± 5%, 0.04 ± 0.02 rad). With SII the skull-brain slip interface was not completely evident, and the slip pattern was spatially heterogeneous. This study provides a framework for acquiring in vivo voxel-based skull and brain displacement using MRE that can be used to characterize the skull-brain coupling system for understanding of mechanical brain protection mechanisms, which has potential to facilitate risk management for future injury. © 2018 International Society for Magnetic Resonance in Medicine.
O'Neil-Pirozzi, Therese M; Lorenz, Laura S; Demore-Taber, Michelle; Samayoa, Sindi
2015-01-01
Brain injury survivors experience many transitions post-injury and it is important that they experience these in the most supportive and integrative ways possible. This study provided a group of chronic brain injury survivors the opportunity to share their insights and experience of residential transition and to suggest strategies to help maximize the transition experience and outcomes. This study used a qualitative design that consisted of semi-structured interviews. Twenty-one adults with chronic acquired brain injury residing in community-based supported group houses answered a series of scripted questions. Interviews were recorded and participant statements were transcribed and coded according to prospectively developed transition themes. Participants discussed positive and negative insights and experiences regarding residential transitions. Themes of balance between support and independence, life purpose and transition to more or less structure were frequently addressed. Participants suggested caregiver-targeted strategies to facilitate successful transitions before, during and after a move. The insights and suggestions shared by this group of chronic acquired brain injury survivors add to already existing knowledge of post-injury residential transitions and strategies professional caregivers may use to maximize the ease and success of the survivor's transitional experience.
James, Andrew I W; Young, Andrew W
2013-01-01
To explore the relationships between verbal aggression, physical aggression and inappropriate sexual behaviour following acquired brain injury. Multivariate statistical modelling of observed verbal aggression, physical aggression and inappropriate sexual behaviour utilizing demographic, pre-morbid, injury-related and neurocognitive predictors. Clinical records of 152 participants with acquired brain injury were reviewed, providing an important data set as disordered behaviours had been recorded at the time of occurrence with the Brain Injury Rehabilitation Trust (BIRT) Aggression Rating Scale and complementary measures of inappropriate sexual behaviour. Three behavioural components (verbal aggression, physical aggression and inappropriate sexual behaviour) were identified and subjected to separate logistical regression modelling in a sub-set of 77 participants. Successful modelling was achieved for both verbal and physical aggression (correctly classifying 74% and 65% of participants, respectively), with use of psychotropic medication and poorer verbal function increasing the odds of aggression occurring. Pre-morbid history of aggression predicted verbal but not physical aggression. No variables predicted inappropriate sexual behaviour. Verbal aggression, physical aggression and inappropriate sexual behaviour following acquired brain injury appear to reflect separate clinical phenomena rather than general behavioural dysregulation. Clinical markers that indicate an increased risk of post-injury aggression were not related to inappropriate sexual behaviour.
Families living with acquired brain injury: a multiple family group experience.
Charles, Nella; Butera-Prinzi, Franca; Perlesz, Amaryll
2007-01-01
Although the use of multifamily group work is well established within the mental health field, it remains an underutilised method of treatment for families affected by brain injury. This paper reports on a pilot project exploring multifamily group work with families with a parent with an acquired brain injury. Six families met for a total of 12 sessions over a period of 6 months, with session themes informed by the Bouverie Family tasks model of adaptation post-ABI. The project was evaluated using qualitative and quantitative research methods, with pre, post group and 3 month follow up measures of individual, couple and family functioning. Parents reported generally reduced levels of personal distress at follow up but continuing high levels of marital and family dysfunction. Children were generally reported to be well functioning, although parents were particularly concerned about the impact of family disruption and violence on their children. Families were unequivocally positive about their participation in the group with benefits including reduced feelings of shame and isolation, provision of mutual support, increased understanding of brain injury, sharing of difficult experiences and movement from blame to compassion. Further research is warranted on the specific applications of multifamily group work with acquired brain injury.
Car Accident Reconstruction and Head Injury Correlation
NASA Astrophysics Data System (ADS)
Chawla, A.; Grover, V.; Mukherjee, S.; Hassan, A. M.
2013-04-01
Estimation of brain damage remains an elusive issue and controlled tests leading to brain damage cannot be carried out on volunteers. This study reconstructs real-world car accidents to estimate the kinematics of the head impact. This data is to be used to estimate the head injury measures through computer simulations and then correlate reported skull as well as brain damage to impact measures; whence validating the head FE model (Willinger, IJCrash 8:605-617, 2003). In this study, two crash cases were reconstructed. Injury correlation was successful in one of these cases in that the injuries to the brain of one of the car drivers could be correlated in terms of type, location and severity when compared with the tolerance limits of relevant injury parameters (Willinger, IJCrash 8:605-617, 2003).
Tonga Cyclone Damage Mapped by NASA's ARIA Team
2018-02-21
The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory created this Damage Proxy Map (DPM) of Tongatapu, the main island of Tonga, following the landfall of Cyclone Gita, a Category 4 storm that hit Tonga on Feb. 12-13, 2018. The map depicts areas that are likely damaged from the storm, shown by red and yellow pixels. The map was produced by comparing two pairs of interferometric synthetic aperture radar (InSAR) images from the COSMO-SkyMed satellites, operated by the Italian Space Agency (ASI). The pre- and post-cyclone images were acquired on Jan. 19 and Feb. 13, 2018, respectively. The later image was acquired just 4-1/2 hours after the peak damage by the cyclone. The map covers the entire island of Tongatapu (the 25-by-25-mile, or 40-by-40 kilometer SAR image footprint indicated with the large red polygon). Each pixel measures about 98 feet (30 meters) across. The color variation from yellow to red indicates increasingly more significant ground surface change. Preliminary validation of the SAR data was done by comparing them with high-resolution optical imagery acquired by DigitalGlobe. This Damage Proxy Map should be used as guidance to identify damaged areas and may be less reliable over vegetated and flooded areas. https://photojournal.jpl.nasa.gov/catalog/PIA22257
Rabuffetti, Marco; Farina, Elisabetta; Alberoni, Margherita; Pellegatta, Daniele; Appollonio, Ildebrando; Affanni, Paola; Forni, Marco; Ferrarin, Maurizio
2012-01-01
Cognitive assessment in a clinical setting is generally made by pencil-and-paper tests, while computer-based tests enable the measurement and the extraction of additional performance indexes. Previous studies have demonstrated that in a research context exploration deficits occur also in patients without evidence of unilateral neglect at pencil-and-paper tests. The objective of this study is to apply a touchscreen-based cancellation test, feasible also in a clinical context, to large groups of control subjects and unilaterally brain-damaged patients, with and without unilateral spatial neglect (USN), in order to assess disturbances of the exploratory skills. A computerized cancellation test on a touchscreen interface was used for assessing the performance of 119 neurologically unimpaired control subjects and 193 patients with unilateral right or left hemispheric brain damage, either with or without USN. A set of performance indexes were defined including Latency, Proximity, Crossings and their spatial lateral gradients, and Preferred Search Direction. Classic outcome scores were computed as well. Results show statistically significant differences among groups (assumed p<0.05). Right-brain-damaged patients with USN were significantly slower (median latency per detected item was 1.18 s) and less efficient (about 13 search-path crossings) in the search than controls (median latency 0.64 s; about 3 crossings). Their preferred search direction (53.6% downward, 36.7% leftward) was different from the one in control patients (88.2% downward, 2.1% leftward). Right-brain-damaged patients without USN showed a significantly abnormal behavior (median latency 0.84 s, about 5 crossings, 83.3% downward and 9.1% leftward direction) situated half way between controls and right-brain-damaged patients with USN. Left-brain-damaged patients without USN were significantly slower and less efficient than controls (latency 1.19 s, about 7 crossings), preserving a normal preferred search direction (93.7% downward). Therefore, the proposed touchscreen-based assessment had evidenced disorders in spatial exploration also in patients without clinically diagnosed USN. PMID:22347489
Judo as a possible cause of anoxic brain damage. A case report.
Owens, R G; Ghadiali, E J
1991-12-01
The rules of judo provide for strangulation techniques in which the blood supply to the brain is blocked by pressure on the carotid arteries; such techniques produce anoxia and possible unconsciousness if the victim fails to submit. A case is presented of a patient with signs of anoxic brain damage, with psychometric investigation showing memory disturbance consistent with a left temporal lobe lesion. This patient had been frequently strangled during his career as a judo player; it is suggested that such frequent strangulation was the cause of the damage. Such an observation indicates the need for caution in the use of such techniques.
Sociopathic behavior and dementia.
Cipriani, Gabriele; Borin, Gemma; Vedovello, Marcella; Di Fiorino, Andrea; Nuti, Angelo
2013-06-01
The maintenance of appropriate social behavior is a very complex process with many contributing factors. Social and moral judgments rely on the proper functioning of neural circuits concerned with complex cognitive and emotional processes. Damage to these systems may lead to distinct social behavior abnormalities. When patients present with dysmoral behavior for the first time, as a change from a prior pervasive pattern of behavior, clinicians need to consider a possible, causative brain disorder. The aim is to explore sociopathy as a manifestation of dementia. We searched electronic databases and key journals for original research and review articles on sociopathy in demented patients using the search terms "sociopathy, acquired sociopathy, sociopathic behavior, dementia, and personality". In conclusion, dementia onset may be heralded by changes in personality including alteration in social interpersonal behavior, personal regulation, and empathy. The sociopathy of dementia differs from antisocial/psychopathic personality disorders.
Casanova, Fernando; Carney, Paul R; Sarntinoranont, Malisa
2014-11-30
Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in tissue damage which can promote flowback along the needle track and improper targeting. The goal of this study was to evaluate friction stress (calculated from needle insertion force) as a measure of tissue contact and damage during needle insertion for varying insertion speeds. Forces and surface dimpling during needle insertion were measured in rat brain in vivo. Needle retraction forces were used to calculate friction stresses. These measures were compared to track damage from a previous study. Differences between brain tissues and soft hydrogels were evaluated for varying insertion speeds: 0.2, 2, and 10mm/s. In brain tissue, average insertion force and surface dimpling increased with increasing insertion speed. Average friction stress along the needle-tissue interface decreased with insertion speed (from 0.58 ± 0.27 to 0.16 ± 0.08 kPa). Friction stress varied between brain regions: cortex (0.227 ± 0.27 kPa), external capsule (0.222 ± 0.19 kPa), and CPu (0.383 ± 0.30 kPa). Hydrogels exhibited opposite trends for dimpling and friction stress with insertion speed. Previously, increasing needle damage with insertion speed has been measured with histological methods. Friction stress appears to decrease with increasing tissue damage and decreasing tissue contact, providing the potential for in vivo and real time evaluation along the needle track. Force derived friction stress decreased with increasing insertion speed and was smaller within white matter regions. Hydrogels exhibited opposite trends to brain tissue. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhu, Wei; Gao, Yufeng; Wan, Jieru; Lan, Xi; Han, Xiaoning; Zhu, Shanshan; Zang, Weidong; Chen, Xuemei; Ziai, Wendy; Hanley, Daniel F; Russo, Scott J; Jorge, Ricardo E; Wang, Jian
2018-03-01
Intracerebral hemorrhage (ICH) is a detrimental type of stroke. Mouse models of ICH, induced by collagenase or blood infusion, commonly target striatum, but not other brain sites such as ventricular system, cortex, and hippocampus. Few studies have systemically investigated brain damage and neurobehavioral deficits that develop in animal models of ICH in these areas of the right hemisphere. Therefore, we evaluated the brain damage and neurobehavioral dysfunction associated with right hemispheric ICH in ventricle, cortex, hippocampus, and striatum. The ICH model was induced by autologous whole blood or collagenase VII-S (0.075 units in 0.5 µl saline) injection. At different time points after ICH induction, mice were assessed for brain tissue damage and neurobehavioral deficits. Sham control mice were used for comparison. We found that ICH location influenced features of brain damage, microglia/macrophage activation, and behavioral deficits. Furthermore, the 24-point neurologic deficit scoring system was most sensitive for evaluating locomotor abnormalities in all four models, especially on days 1, 3, and 7 post-ICH. The wire-hanging test was useful for evaluating locomotor abnormalities in models of striatal, intraventricular, and cortical ICH. The cylinder test identified locomotor abnormalities only in the striatal ICH model. The novel object recognition test was effective for evaluating recognition memory dysfunction in all models except for striatal ICH. The tail suspension test, forced swim test, and sucrose preference test were effective for evaluating emotional abnormality in all four models but did not correlate with severity of brain damage. These results will help to inform future preclinical studies of ICH outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.
Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...
NASA Technical Reports Server (NTRS)
Waring, W.
1974-01-01
Two neurological disorders, cerebral palsy, and traumatic brain damage as from an accident, are considered. The discussion covers the incidence of disabilities, their characteristics, and what is now being done to deal with them, particularly in reference to areas in which the capabilities of the engineer can be effectively applied.
Brain hemorrhage after electrical burn injury: Case report and probable mechanism.
Axayacalt, Gutierrez Aceves Guillermo; Alejandro, Ceja Espinosa; Marcos, Rios Alanis; Inocencio, Ruiz Flores Milton; Alfredo, Herrera Gonzalez Jose
2016-01-01
High-voltage electric injury may induce lesion in different organs. In addition to the local tissue damage, electrical injuries may lead to neurological deficits, musculoskeletal damage, and cardiovascular injury. Severe vascular damage may occur making the blood vessels involved prone to thrombosis and spontaneous rupture. Here, we present the case of a 39-year-old male who suffered an electrical burn with high tension wire causing intracranial bleeding. He presented with an electrical burn in the parietal area (entry zone) and the left forearm (exit zone). The head tomography scan revealed an intraparenchimatous bleeding in the left parietal area. In this case, the electric way was the scalp, cranial bone, blood vessels and brain, upper limb muscle, and skin. The damage was different according to the dielectric property in each tissue. The injury was in the scalp, cerebral blood vessel, skeletal muscle, and upper limb skin. The main damage was in brain's blood vessels because of the dielectric and geometric features that lead to bleeding, high temperature, and gas delivering. This is a report of a patient with an electric brain injury that can be useful to elucidate the behavior of the high voltage electrical current flow into the nervous system.
Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication.
Ruban, Angela; Mohar, Boaz; Jona, Ghil; Teichberg, Vivian I
2014-02-01
Organophosphate-induced brain damage is an irreversible neuronal injury, likely because there is no pharmacological treatment to prevent or block secondary damage processes. The presence of free glutamate (Glu) in the brain has a substantial role in the propagation and maintenance of organophosphate-induced seizures, thus contributing to the secondary brain damage. This report describes for the first time the ability of blood glutamate scavengers (BGS) oxaloacetic acid in combination with glutamate oxaloacetate transaminase to reduce the neuronal damage in an animal model of paraoxon (PO) intoxication. Our method causes a rapid decrease of blood Glu levels and creates a gradient that leads to the efflux of the excess brain Glu into the blood, thus reducing neurotoxicity. We demonstrated that BGS treatment significantly prevented the peripheral benzodiazepine receptor (PBR) density elevation, after PO exposure. Furthermore, we showed that BGS was able to rescue neurons in the piriform cortex of the treated rats. In conclusion, these results suggest that treatment with BGS has a neuroprotective effect in the PO intoxication. This is the first time that this approach is used in PO intoxication and it may be of high clinical significance for the future treatment of the secondary neurologic damage post organophosphates exposure.
Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication
Ruban, Angela; Mohar, Boaz; Jona, Ghil; Teichberg, Vivian I
2014-01-01
Organophosphate-induced brain damage is an irreversible neuronal injury, likely because there is no pharmacological treatment to prevent or block secondary damage processes. The presence of free glutamate (Glu) in the brain has a substantial role in the propagation and maintenance of organophosphate-induced seizures, thus contributing to the secondary brain damage. This report describes for the first time the ability of blood glutamate scavengers (BGS) oxaloacetic acid in combination with glutamate oxaloacetate transaminase to reduce the neuronal damage in an animal model of paraoxon (PO) intoxication. Our method causes a rapid decrease of blood Glu levels and creates a gradient that leads to the efflux of the excess brain Glu into the blood, thus reducing neurotoxicity. We demonstrated that BGS treatment significantly prevented the peripheral benzodiazepine receptor (PBR) density elevation, after PO exposure. Furthermore, we showed that BGS was able to rescue neurons in the piriform cortex of the treated rats. In conclusion, these results suggest that treatment with BGS has a neuroprotective effect in the PO intoxication. This is the first time that this approach is used in PO intoxication and it may be of high clinical significance for the future treatment of the secondary neurologic damage post organophosphates exposure. PMID:24149933
2013-01-01
Background The pathological features of the common neurodegenerative conditions, Alzheimer’s disease (AD), Parkinson’s disease and multiple sclerosis are all known to be associated with iron dysregulation in regions of the brain where the specific pathology is most highly expressed. Iron accumulates in cortical plaques and neurofibrillary tangles in AD where it participates in redox cycling and causes oxidative damage to neurons. To understand these abnormalities in the distribution of iron the expression of proteins that maintain systemic iron balance was investigated in human AD brains and in the APP-transgenic (APP-tg) mouse. Results Protein levels of hepcidin, the iron-homeostatic peptide, and ferroportin, the iron exporter, were significantly reduced in hippocampal lysates from AD brains. By histochemistry, hepcidin and ferroportin were widely distributed in the normal human brain and co-localised in neurons and astrocytes suggesting a role in regulating iron release. In AD brains, hepcidin expression was reduced and restricted to the neuropil, blood vessels and damaged neurons. In the APP-tg mouse immunoreactivity for ferritin light-chain, the iron storage isoform, was initially distributed throughout the brain and as the disease progressed accumulated in the core of amyloid plaques. In human and mouse tissues, extensive AD pathology with amyloid plaques and severe vascular damage with loss of pericytes and endothelial disruption was seen. In AD brains, hepcidin and ferroportin were associated with haem-positive granular deposits in the region of damaged blood vessels. Conclusion Our results suggest that the reduction in ferroportin levels are likely associated with cerebral ischaemia, inflammation, the loss of neurons due to the well-characterised protein misfolding, senile plaque formation and possibly the ageing process itself. The reasons for the reduction in hepcidin levels are less clear but future investigation could examine circulating levels of the peptide in AD and a possible reduction in the passage of hepcidin across damaged vascular endothelium. Imbalance in the levels and distribution of ferritin light-chain further indicate a failure to utilize and release iron by damaged and degenerating neurons. PMID:24252754
Kim, Yong Wook; Kim, Hyoung Seop; An, Young-Sil; Im, Sang Hee
2010-10-01
Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury. We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scale. Statistical analysis was performed using statistical parametric mapping. Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (P(corrected) < 0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (P(corrected) < 0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (P(uncorrected) < 0.005). Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism in patients with permanent vegetative state after acquired brain injury.
Baghcheghi, Yousef; Salmani, Hossein; Beheshti, Farimah; Hosseini, Mahmoud
2017-01-01
The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments. PMID:28584813
Fluorescent Pressure Response of Protein-Nanocluster Polymer Composites
2016-05-01
composites as pressure sensitive indicators of brain damage. The PNC composites are made up of protein coated gold nanoclusters and a styrene- ethylene ...styrene- ethylene /butylene-styrene (SEBS):mineral oil composites that were developed as a brain tissue surrogate at ARL. Finally, we would like to...allowing us to use solid samples and create a model for brain damage. To this end, we used styrene- ethylene /butylene-styrene (SEBS) as the matrix to
Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS.
Longoni, Giulia; Rocca, Maria A; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo
2015-01-01
The hippocampus has a critical role in episodic memory and visuospatial learning and consolidation. We assessed the patterns of whole and regional hippocampal atrophy in a large group of multiple sclerosis (MS) patients, and their correlations with neuropsychological impairment. From 103 MS patients and 28 healthy controls (HC), brain dual-echo and high-resolution 3D T1-weighted images were acquired using a 3.0-Tesla scanner. All patients underwent a neuropsychological assessment of hippocampal-related cognitive functions, including Paired Associate Word Learning, Short Story, delayed recall of Rey-Osterrieth Complex Figure and Paced Auditory Serial Attention tests. The hippocampi were manually segmented and volumes derived. Regional atrophy distribution was assessed using a radial mapping analysis. Correlations between hippocampal atrophy and clinical, neuropsychological and MRI metrics were also evaluated. Hippocampal volume was reduced in MS patients vs HC (p < 0.001 for both right and hippocampus). In MS patients, radial atrophy affected CA1 subfield and subiculum of posterior hippocampus, bilaterally. The dentate hilus (DG:H) of the right hippocampal head was also affected. Regional hippocampal atrophy correlated with brain T2 and T1 lesion volumes, while no correlation was found with disability. Damage to the CA1 and subiculum was significantly correlated to the performances at hippocampal-targeted neuropsychological tests. These results show that hippocampal subregions have a different vulnerability to MS-related damage, with a relative sparing of the head of the left hippocampus. The assessment of regional hippocampal atrophy may help explain deficits of specific cognitive functions in MS patients, including memory and visuospatial abilities.
ERIC Educational Resources Information Center
Anaby, Dana; Law, Mary; Hanna, Steven; DeMatteo, Carol
2012-01-01
Aim: The purpose of this study was (1) to examine the changes in participation rates over 1 year among children and adolescents after acquired brain injury and (2) to explore the effect of child and family factors on these changes. Method: The participation levels of 136 children and young people (88 males; 48 females; age range 4y 11mo-17y 6mo;…
Duff, Melissa C.; Mutlu, Bilge; Byom, Lindsey; Turkstra, Lyn S.
2014-01-01
Considerable effort has been directed at understanding the nature of the communicative deficits observed in individuals with acquired brain injuries. Yet several theoretical, methodological, and clinical challenges remain. In this article, we examine distributed cognition as a framework for understanding interaction among communication partners, interaction of communication and cognition, and interaction with the environments and contexts of everyday language use. We review the basic principles of distributed cognition and the implications for applying this approach to the study of discourse in individuals with cognitive-communication disorders. We also review a range of protocols and findings from our research that highlight how the distributed cognition approach might offer a deeper understanding of communicative mechanisms and deficits in individuals with cognitive communication impairments. The advantages and implications of distributed cognition as a framework for studying discourse in adults with acquired brain injury are discussed. PMID:22362323
Traumatic Brain Injury: Effects on the Endocrine System
Fact Sheet BTrarainumInajutircy: Effects on the Endocrine System What is traumatic brain injury? Traumatic brain injury, also called TBI, is sudden damage to the brain. It happens when the head hits ...
Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...
Can Herpes Simplex Virus Encephalitis Cause Aphasia?
ERIC Educational Resources Information Center
Naude, H.; Pretorius, E.
2003-01-01
Aphasia implies the loss or impairment of language caused by brain damage. The key to understanding the nature of aphasic symptoms is the neuro-anatomical site of brain damage, and not the causative agent. However, because "Herpes simplex" virus (HSV) encephalitis infection usually affects the frontal and temporal lobes, subcortical…
Clinical Relevance of Discourse Characteristics after Right Hemisphere Brain Damage
ERIC Educational Resources Information Center
Blake, Margaret Lehman
2006-01-01
Purpose: Discourse characteristics of adults with right hemisphere brain damage are similar to those reported for healthy older adults, prompting the question of whether changes are due to neurological lesions or normal aging processes. The clinical relevance of potential differences across groups was examined through ratings by speech-language…
Perspectives on Treatment for Communication Deficits Associated with Right Hemisphere Brain Damage
ERIC Educational Resources Information Center
Blake, Margaret Lehman
2007-01-01
Purpose: To describe the current treatment research for communication (prosodic, discourse, and pragmatic) deficits associated with right hemisphere brain damage and to provide suggestions for treatment selection given the paucity of evidence specifically for this population. Method: The discussion covers (a) clinical decision processes and…
Cognitive Development in Children with Brain Damage.
ERIC Educational Resources Information Center
Bortner, Morton
Presented is a report on a cross-sectional and longitudinal study concerned with the course of intellectual development in 210 children (6-12 years old) educationally designated as brain damaged (learning disabled and/or behavior problems) and assigned to special school placement. The report is divided into four sections which focus on…
Conversation after Right Hemisphere Brain Damage: Motivations for Applying Conversation Analysis
ERIC Educational Resources Information Center
Barnes, Scott; Armstrong, Elizabeth
2010-01-01
Despite the well documented pragmatic deficits that can arise subsequent to Right Hemisphere Brain Damage (RHBD), few researchers have directly studied everyday conversations involving people with RHBD. In recent years, researchers have begun applying Conversation Analysis (CA) to the everyday talk of people with aphasia. This research programme…
He, Xiao-Fei; Lan, Yue; Zhang, Qun; Liu, Dong-Xu; Wang, Qinmei; Liang, Feng-Ying; Zeng, Jin-Sheng; Xu, Guang-Qing; Pei, Zhong
2016-08-01
Cerebral microbleeds are strongly linked to cognitive dysfunction in the elderly. Iron accumulation plays an important role in the pathogenesis of intracranial hemorrhage. Deferoxamine (DFX), a metal chelator, removes iron overload and protects against brain damage in intracranial hemorrhage. In this study, the protective effects of DFX against microhemorrhage were examined in mice. C57BL6 and Thy-1 green fluorescent protein transgenic mice were subjected to perforating artery microhemorrhages on the right posterior parietal cortex using two-photon laser irradiation. DFX (100 mg/kg) was administered 6 h after microhemorrhage induction, followed by every 12 h for three consecutive days. The water maze task was conducted 7 days after induction of microhemorrhages, followed by measurement of blood-brain barrier permeability, iron deposition, microglial activation, and dendritic damage. Laser-induced multiple microbleeds in the right parietal cortex clearly led to spatial memory disruption, iron deposits, microglial activation, and dendritic damage, which were significantly attenuated by DFX, supporting the targeting of iron overload as a therapeutic option and the significant potential of DFX in microhemorrhage treatment. Irons accumulation after intracranial hemorrhage induced a serious secondary damage to the brain. We proposed that irons accumulation after parietal microhemorrhages impaired spatial cognition. After parietal multiple microhemorrhages, increased irons and ferritin contents induced blood-brain barrier disruption, microglial activation, and further induced dendrites loss, eventually impaired the water maze, deferoxamine treatment protected from these damages. © 2016 International Society for Neurochemistry.
Sanches, E F; Arteni, N S; Scherer, E B; Kolling, J; Nicola, F; Willborn, S; Wyse, A T S; Netto, C A
2013-04-24
Hypoxia-ischemia on 3-day-old rats (HIP3) allows the investigation of HI damage in the immature brain. HIP3 is characterized for neurological disabilities caused by white matter injury. This study investigates the relationship between animals' sex and injured hemisphere on HIP3 consequences. Male and female Wistar rats had their right or left common carotid artery occluded under halotane anesthesia and exposed to 8% O2 for 1.5 h. Control rats received sham surgery and exposure to 1.5 h of room air in isolation of their mothers. Sex and injured hemisphere influence in Na+/K+ -ATPase activity 24h after lesion: females and the right brain hemispheres showed decreased enzymatic activity after HIP3. Cognitive impairment was observed in step-down inhibitory avoidance, in which females HIP3 left injured were the most damaged. Histological analysis showed a trend to white matter damage in females left injured without hemispherical nor hippocampal volume decrease in HIP3 rats at postnatal day 21. However, at PND90, hemisphere and sex effects were noted in hemispherical volume and myelination: left brain hemisphere and the females evidenced higher histological damage. Our results points to an increased resistance of male rats and right brain hemisphere to support the impairment caused in Na+/K+ -ATPase activity early after HIP3, and evidencing more discrete behavioral impairments and histological damage at adulthood. Present data adds new evidence of distinct effects of brain lateralization and sex vulnerability on biochemical, behavioral and histological parameters after hypoxia-ischemia. Copyright © 2013 Elsevier B.V. All rights reserved.
Relationship between orientation to a blast and pressure wave propagation inside the rat brain.
Chavko, Mikulas; Watanabe, Tomas; Adeeb, Saleena; Lankasky, Jason; Ahlers, Stephen T; McCarron, Richard M
2011-01-30
Exposure to a blast wave generated during an explosion may result in brain damage and related neurological impairments. Several mechanisms by which the primary blast wave can damage the brain have been proposed, including: (1) a direct effect of the shock wave on the brain causing tissue damage by skull flexure and propagation of stress and shear forces; and (2) an indirect transfer of kinetic energy from the blast, through large blood vessels and cerebrospinal fluid (CSF), to the central nervous system. To address a basic question related to the mechanisms of blast brain injury, pressure was measured inside the brains of rats exposed to a low level of blast (~35kPa), while positioned in three different orientations with respect to the primary blast wave; head facing blast, right side exposed to blast and head facing away from blast. Data show different patterns and durations of the pressure traces inside the brain, depending on the rat orientation to blast. Frontal exposures (head facing blast) resulted in pressure traces of higher amplitude and longer duration, suggesting direct transmission and reflection of the pressure inside the brain (dynamic pressure transfer). The pattern of the pressure wave inside the brain in the head facing away from blast exposures assumes contribution of the static pressure, similar to hydrodynamic pressure to the pressure wave inside the brain. Published by Elsevier B.V.
Solana, Javier; Cáceres, César; García-Molina, Alberto; Opisso, Eloy; Roig, Teresa; Tormos, José M; Gómez, Enrique J
2015-01-01
Cognitive rehabilitation aims to remediate or alleviate the cognitive deficits appearing after an episode of acquired brain injury (ABI). The purpose of this work is to describe the telerehabilitation platform called Guttmann Neuropersonal Trainer (GNPT) which provides new strategies for cognitive rehabilitation, improving efficiency and access to treatments, and to increase knowledge generation from the process. A cognitive rehabilitation process has been modeled to design and develop the system, which allows neuropsychologists to configure and schedule rehabilitation sessions, consisting of set of personalized computerized cognitive exercises grounded on neuroscience and plasticity principles. It provides remote continuous monitoring of patient's performance, by an asynchronous communication strategy. An automatic knowledge extraction method has been used to implement a decision support system, improving treatment customization. GNPT has been implemented in 27 rehabilitation centers and in 83 patients' homes, facilitating the access to the treatment. In total, 1660 patients have been treated. Usability and cost analysis methodologies have been applied to measure the efficiency in real clinical environments. The usability evaluation reveals a system usability score higher than 70 for all target users. The cost efficiency study results show a relation of 1-20 compared to face-to-face rehabilitation. GNPT enables brain-damaged patients to continue and further extend rehabilitation beyond the hospital, improving the efficiency of the rehabilitation process. It allows customized therapeutic plans, providing information to further development of clinical practice guidelines.
Sleep loss and acute drug abuse can induce DNA damage in multiple organs of mice.
Alvarenga, T A; Ribeiro, D A; Araujo, P; Hirotsu, C; Mazaro-Costa, R; Costa, J L; Battisti, M C; Tufik, S; Andersen, M L
2011-09-01
The purpose of the present study was to characterize the genetic damage induced by paradoxical sleep deprivation (PSD) in combination with cocaine or ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in multiple organs of male mice using the single cell gel (comet) assay. C57BL/6J mice were submitted to PSD by the platform technique for 72 hours, followed by drug administration and evaluation of DNA damage in peripheral blood, liver and brain tissues. Cocaine was able to induce genetic damage in the blood, brain and liver cells of sleep-deprived mice at the majority of the doses evaluated. Ecstasy also induced increased DNA migration in peripheral blood cells for all concentrations tested. Analysis of damaged cells by the tail moment data suggests that ecstasy is a genotoxic chemical at the highest concentrations tested, inducing damage in liver or brain cells after sleep deprivation in mice. Taken together, our results suggest that cocaine and ecstasy/MDMA act as potent genotoxins in multiple organs of mice when associated with sleep loss.
Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno
2011-01-01
Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect. PMID:22275889
Brain and cognitive-behavioural development after asphyxia at term birth.
de Haan, Michelle; Wyatt, John S; Roth, Simon; Vargha-Khadem, Faraneh; Gadian, David; Mishkin, Mortimer
2006-07-01
Perinatal asphyxia occurs in approximately 1-6 per 1000 live full-term births. Different patterns of brain damage can result, though the relation of these patterns to long-term cognitive-behavioural outcome remains under investigation. The hippocampus is one brain region that can be damaged (typically not in isolation), and this site of damage has been implicated in two different long-term outcomes, cognitive memory impairment and the psychiatric disorder schizophrenia. Factors in addition to the acute episode of asphyxia likely contribute to these specific outcomes, making prediction difficult. Future studies that better document long-term cognitive-behavioural outcome, quantitatively identify patterns of brain injury over development and consider additional variables that may modulate the impact of asphyxia on cognitive and behavioural function will forward the goals of predicting long-term outcome and understanding the mechanisms by which it unfolds.
Detaching from the negative by reappraisal: the role of right superior frontal gyrus (BA9/32)
Falquez, Rosalux; Couto, Blas; Ibanez, Agustin; Freitag, Martin T.; Berger, Moritz; Arens, Elisabeth A.; Lang, Simone; Barnow, Sven
2014-01-01
The ability to reappraise the emotional impact of events is related to long-term mental health. Self-focused reappraisal (REAPPself), i.e., reducing the personal relevance of the negative events, has been previously associated with neural activity in regions near right medial prefrontal cortex, but rarely investigated among brain-damaged individuals. Thus, we aimed to examine the REAPPself ability of brain-damaged patients and healthy controls considering structural atrophies and gray matter intensities, respectively. Twenty patients with well-defined cortex lesions due to an acquired circumscribed tumor or cyst and 23 healthy controls performed a REAPPself task, in which they had to either observe negative stimuli or decrease emotional responding by REAPPself. Next, they rated the impact of negative arousal and valence. REAPPself ability scores were calculated by subtracting the negative picture ratings after applying REAPPself from the ratings of the observing condition. The scores of the patients were included in a voxel-based lesion-symptom mapping (VLSM) analysis to identify deficit related areas (ROI). Then, a ROI group-wise comparison was performed. Additionally, a whole-brain voxel-based-morphometry (VBM) analysis was run, in which healthy participant's REAPPself ability scores were correlated with gray matter intensities. Results showed that (1) regions in the right superior frontal gyrus (SFG), comprising the right dorsolateral prefrontal cortex (BA9) and the right dorsal anterior cingulate cortex (BA32), were associated with patient's impaired down-regulation of arousal, (2) a lesion in the depicted ROI occasioned significant REAPPself impairments, (3) REAPPself ability of controls was linked with increased gray matter intensities in the ROI regions. Our findings show for the first time that the neural integrity and the structural volume of right SFG regions (BA9/32) might be indispensable for REAPPself. Implications for neurofeedback research are discussed. PMID:24847230
Impaired behavior on real-world tasks following damage to the ventromedial prefrontal cortex.
Tranel, Daniel; Hathaway-Nepple, Julie; Anderson, Steven W
2007-04-01
Patients with damage to the ventromedial prefrontal cortices (VMPC) commonly manifest blatant behavioral navigation defects in the real world, but it has been difficult to measure these impairments in the clinic or laboratory. Using a set of "strategy application" tasks, which were designed by Shallice and Burgess (1991) to be ecologically valid for detecting executive dysfunction, we investigated the hypothesis that VMPC damage would be associated with defective performance on such tasks, whereas damage outside the VMPC region would not. A group of 9 patients with bilateral VMPC damage was contrasted with comparison groups of participants with (a) prefrontal brain damage outside the VMPC region (n = 8); (b) nonprefrontal brain damage (n = 17); and (c) no brain damage (n = 20). We found support for the hypothesis: VMPC patients had more impaired performances on the strategy application tasks, especially on a Multiple Errands Test that required patients to execute a series of unstructured tasks in a real-world setting (shopping mall). The results are consistent with the notion that efficacious behavioral navigation is dependent on the VMPC region. However, the strategy application tasks were relatively time consuming and effortful, and their diagnostic yield over and above conventional executive functioning tests may not be sufficient to warrant their inclusion in standard clinical assessment.
Impaired behavior on real-world tasks following damage to the ventromedial prefrontal cortex
Tranel, Daniel; Hathaway-Nepple, Julie; Anderson, Steven W.
2008-01-01
Patients with damage to the ventromedial prefrontal cortices (VMPC) commonly manifest blatant behavioral navigation defects in the real world, but it has been difficult to measure these impairments in the clinic or laboratory. Using a set of “strategy application” tasks, which were designed by Shallice and Burgess (1991) to be ecologically valid for detecting executive dysfunction, we investigated the hypothesis that VMPC damage would be associated with defective performance on such tasks, whereas damage outside the VMPC region would not. A group of 9 patients with bilateral VMPC damage was contrasted with comparison groups of participants with (a) prefrontal brain damage outside the VMPC region (n=8); (b) nonprefrontal brain damage (n=17); and (c) no brain damage (n=20). We found support for the hypothesis: VMPC patients had more impaired performances on the strategy application tasks, especially on a Multiple Errands Test that required patients to execute a series of unstructured tasks in a real-world setting (shopping mall). The results are consistent with the notion that efficacious behavioral navigation is dependent on the VMPC region. However, the strategy application tasks were relatively time consuming and effortful, and their diagnostic yield over and above conventional executive functioning tests may not be sufficient to warrant their inclusion in standard clinical assessment. PMID:17454352
Fully Passive Wireless Acquisition of Neuropotentials
NASA Astrophysics Data System (ADS)
Schwerdt, Helen N.
The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely passive neurorecording processes that transpire in the absence of formal integrated power sources or powering schemes along with any active circuitry. These radar-like wireless backscattering mechanisms are used to conceive of fully passive neurorecording operations of an implantable microsystem. The fully passive device potentially manifests inherent advantages over current wireless implantable and wired recording systems: negligible heat dissipation to reduce risks of brain tissue damage and minimal circuitry for long term reliability as a chronic implant. Fully passive neurorecording operations are realized via intrinsic nonlinear mixing properties of the varactor diode. These mixing and recording operations are directly activated by wirelessly interrogating the fully passive device with a microwave carrier signal. This fundamental carrier signal, acquired by the implant antenna, mixes through the varactor diode along with the internal targeted neuropotential brain signals to produce higher frequency harmonics containing the targeted neuropotential signals. These harmonics are backscattered wirelessly to the external interrogator that retrieves and recovers the original neuropotential brain signal. The passive approach removes the need for internal power sources and may alleviate heat trauma and reliability issues that limit practical implementation of existing implantable neurorecorders.
Bouchat, Joanna; Couturier, Bruno; Marneffe, Catherine; Gankam-Kengne, Fabrice; Balau, Benoît; De Swert, Kathleen; Brion, Jean-Pierre; Poncelet, Luc; Gilloteaux, Jacques; Nicaise, Charles
2018-03-01
The osmotic demyelination syndrome (ODS) is a non-primary inflammatory disorder of the central nervous system myelin that is often associated with a precipitous rise of serum sodium concentration. To investigate the physiopathology of ODS in vivo, we generated a novel murine model based on the abrupt correction of chronic hyponatremia. Accordingly, ODS mice developed impairments in brainstem auditory evoked potentials and in grip strength. At 24 hr post-correction, oligodendrocyte markers (APC and Cx47) were downregulated, prior to any detectable demyelination. Oligodendrocytopathy was temporally and spatially correlated with the loss of astrocyte markers (ALDH1L1 and Cx43), and both with the brain areas that will develop demyelination. Oligodendrocytopathy and astrocytopathy were confirmed at the ultrastructural level and culminated with necroptotic cell death, as demonstrated by pMLKL immunoreactivity. At 48 hr post-correction, ODS brains contained pathognomonic demyelinating lesions in the pons, mesencephalon, thalamus and cortical regions. These damages were accompanied by blood-brain barrier (BBB) leakages. Expression levels of IL-1β, FasL, TNFRSF6 and LIF factors were significantly upregulated in the ODS lesions. Quiescent microglial cells type A acquired an activated type B morphology within 24 hr post-correction, and reached type D at 48 hr. In conclusion, this murine model of ODS reproduces the CNS demyelination observed in human pathology and indicates ambiguous causes that is regional vulnerability of oligodendrocytes and astrocytes, while it discards BBB disruption as a primary cause of demyelination. This study also raises new queries about the glial heterogeneity in susceptible brain regions as well as about the early microglial activation associated with ODS. © 2017 Wiley Periodicals, Inc.
Depboylu, Candan; Weihe, Eberhard; Eiden, Lee E
2012-01-01
The simian immunodeficiency virus (SIV) macaque model resembles human immunodeficiency virus-acquired immunodeficiency syndrome (AIDS) and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenase isotypes 1 and 2 (COX1 and COX2) in the brains of SIV-infected macaques with or without encephalitis and antiretroviral therapy and uninfected controls.Cyclooxygenase isotype 1, but not COX2, was coexpressed with markers of cholinergic phenotype, that is, choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human, brain. Cyclooxygenase isotype 1 was decreased in basal forebrain neurons in macaques with AIDS versus uninfected and asymptomatic SIV-infected macaques. The VAChT-positive fiber density was reduced in frontal, parietal, and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2',3'-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results further imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent irreversible brain damage.
Nutrition and the brain: what advice should we give?
Cooper, James K
2014-09-01
The knowledge base of nutrition and the brain is steadily expanding. Much of the research is aimed at ways to protect the brain from damage. In adults, the major causes of brain damage are aging and dementia. The most prominent dementia, and the condition that grabs the most public attention, is Alzheimer's disease. The assumption in the field is that possibly some change in nutrition could protect the brain and prevent, delay, or minimize Alzheimer's disease damage. Presented here is a framework for understanding the implications of this research. There is a gap between publishing research results and change in public nutrition behavior. Several influencing elements intervene. These include regulatory agencies and all the organizations and people who advise the public, all with their own perspectives. In considering what advice to give, advisors may consider effectiveness, research model, persuasiveness, and risks, among other factors. Advice about nutrition and Alzheimer's disease today requires several caveats. Copyright © 2014 Elsevier Inc. All rights reserved.
Inflammatory Responses in Brain Ischemia
Kawabori, Masahito; Yenari, Midori A.
2017-01-01
Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke. PMID:25666795
[Developmental neurotoxicity of industrial chemicals].
Labie, Dominique
2007-10-01
"A Silent Pandemic : Industrial Chemicals Are Impairing the Brain Development of Children Worldwide" Fetal and early childhood exposures to industrial chemicals in the environment can damage the developing brain and can lead to neurodevelopmental disorders (NDDs)--autism, attention deficit disorder (ADHD), and mental retardation. In a new review study, published in The Lancet, Philip Grandjean and Philip Landrigan from the Harvard School of Public Health systematically examined publicly available data on chemical toxicity in order to identify the industrial chemicals that are the most likely to damage the developing brain. The researchers found that 202 industrial chemicals have the capacity to damage the human brain, and they conclude that chemical pollution may have harmed the brains of millions of children worldwide. The authors conclude further that the toxic effects of industrial chemicals on children have generally been overlooked. In North Amercia, the commission for environmental cooperation, and in European Union the DEVNERTOX projects had reached to the same conclusions. We analyse this review and discuss these rather pessimistic conclusions.
Time, Memory, and Consciousness a View from the Brain
NASA Astrophysics Data System (ADS)
Markowitsch, Hans J.
2005-10-01
Memory can be defined as mental time traveling. Seen in this way, memory provides the glue which combines different time episodes and leads to a coherent view of one's own person. The importance of time becomes apparent in a neuroscientific comparison of animals and human beings. All kinds of animals have biorhythms -- times when they sleep, prefer or avoid sex, or move to warmer places. Mammalian brains have a number of time sensitive structures damage to which alters a subject's behavior to his or her environment. For human beings, damage to certain brain regions may alter the sense of time and consciousness of time in quite different ways. Furthermore, brain damage, drugs, or psychiatric disturbances may lead to an impaired perception of time, sometimes leading to major positive or negative accelerations in time perception. An impaired time perception alters consciousness and awareness of oneself. A proper synchronized action of time perception, brain activation, memory processing, and autonoetic (self-aware) consciousness provides the bases of an integrated personality.
Jones, Taryn M; Dean, Catherine M; Hush, Julia M; Dear, Blake F; Titov, Nickolai
2015-04-19
Individuals living with acquired brain injury, typically caused by stroke or trauma, are far less likely to achieve recommended levels of physical activity for optimal health and well-being. With a growing number of people living with chronic disease and disability globally, self-management programs are seen as integral to the management of these conditions and the prevention of secondary health conditions. However, to date, there has been no systematic review of the literature examining the efficacy of self-management programs specifically on physical activity in individuals with acquired brain injury, whether delivered face-to-face or remotely. Therefore, the purpose of this review is to evaluate the efficacy of self-management programs in increasing physical activity levels in adults living in the community following acquired brain injury. The efficacy of remote versus face-to-face delivery was also examined. A systematic review of the literature was conducted. Electronic databases were searched. Two independent reviewers screened all studies for eligibility, assessed risk of bias, and extracted relevant data. Five studies met the inclusion criteria for this review. Studies were widely heterogeneous with respect to program content and delivery characteristics and outcomes, although all programs utilized behavioral change principles. Four of the five studies examined interventions in which physical activity was a component of a multifaceted intervention, where the depth to which physical activity specific content was covered, and the extent to which skills were taught and practiced, could not be clearly established. Three studies showed favorable physical activity outcomes following self-management interventions for stroke; however, risk of bias was high, and overall efficacy remains unclear. Although not used in isolation from face-to-face delivery, remote delivery via telephone was the predominant form of delivery in two studies with support for its inclusion in self-management programs for individuals following stroke. The efficacy of self-management programs in increasing physical activity levels in community-dwelling adults following acquired brain injury (ABI) is still unknown. Research into the efficacy of self-management programs specifically aimed at improving physical activity in adults living in the community following acquired brain injury is needed. The efficacy of remote delivery methods also warrants further investigation. PROSPERO CRD42013006748.
Sokolowska, P; Passemard, S; Mok, A; Schwendimann, L; Gozes, I; Gressens, P
2011-01-26
Activity-dependent neuroprotective protein (ADNP) was shown to be essential for embryogenesis and brain development while NAP, an active motif of ADNP, is neuroprotective in a broad range of neurodegenerative disorders. In the present study, we examined the protective potential of ADNP/NAP in a mouse model of excitotoxic brain lesion mimicking brain damage associated with cerebral palsy. We demonstrated that NAP had a potent neuroprotective effect against ibotenate-induced excitotoxic damage in the cortical plate and the white matter of P5 mice, and moderate against brain lesions of P0 mice. In contrast, endogenous ADNP appears not to be involved in the response to excitotoxic challenge in the studied model. Our findings further show that NAP reduced the number of apoptotic neurons through activation of PI-3K/Akt pathway in the cortical plate or both PI-3K/Akt and MAPK/MEK1 kinases in the white matter. In addition, NAP prevented ibotenate-induced loss of pre-oligodendrocytes without affecting the number of astrocytes or activated microglia around the site of injection. These findings indicate that protective actions of NAP are mediated by triggering transduction pathways that are crucial for neuronal and oligodendroglial survival, thus, NAP might be a promising therapeutic agent for treating developing brain damage. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Self-amplification of nigral degeneration in Parkinson's disease: a hypothesis.
Ionov, Ilya D
2008-12-01
This review analyzes current evidence regarding possible mechanisms of nigral damage in idiopathic Parkinson's disease (iPD). In normal brain, a specific interplay among the blood-brain barrier (BBB), substantia nigra (SN), and locus coeruleus (LC) creates the condition for a self-accelerating damage to the SN. Three vicious circles involving SN-BBB, LC-SN-BBB, and histamine-BBB-SN interactions are described. In iPD, a self-accelerating loss of nigral cells can be triggered by brain hypoperfusion and by an increased blood histamine level. iPD-associated factors such as decreased CSF levels of substance P, somatostatin, and glutamate can aggravate the vicious-circle-induced damage to the SN.
Kutlay, Sehim; Kuçukdeveci, Ayse A; Elhan, Atilla H; Yavuzer, Gunes; Tennant, Alan
2007-02-28
Assessment of cognitive impairment with a valid cognitive screening tool is essential in neurorehabilitation. The aim of this study was to test the reliability and validity of the Turkish-adapted version of the Middlesex Elderly Assessment of Mental State (MEAMS) among acquired brain injury patients in Turkey. Some 155 patients with acquired brain injury admitted for rehabilitation were assessed by the adapted version of MEAMS at admission and discharge. Reliability was tested by internal consistency, intra-class correlation coefficient (ICC) and person separation index; internal construct validity by Rasch analysis; external construct validity by associations with physical and cognitive disability (FIM); and responsiveness by Effect Size. Reliability was found to be good with Cronbach's alpha of 0.82 at both admission and discharge; and likewise an ICC of 0.80. Person separation index was 0.813. Internal construct validity was good by fit of the data to the Rasch model (mean item fit -0.178; SD 1.019). Items were substantially free of differential item functioning. External construct validity was confirmed by expected associations with physical and cognitive disability. Effect size was 0.42 compared with 0.22 for cognitive FIM. The reliability and validity of the Turkish version of MEAMS as a cognitive impairment screening tool in acquired brain injury has been demonstrated.
The timing of language learning shapes brain structure associated with articulation.
Berken, Jonathan A; Gracco, Vincent L; Chen, Jen-Kai; Klein, Denise
2016-09-01
We compared the brain structure of highly proficient simultaneous (two languages from birth) and sequential (second language after age 5) bilinguals, who differed only in their degree of native-like accent, to determine how the brain develops when a skill is acquired from birth versus later in life. For the simultaneous bilinguals, gray matter density was increased in the left putamen, as well as in the left posterior insula, right dorsolateral prefrontal cortex, and left and right occipital cortex. For the sequential bilinguals, gray matter density was increased in the bilateral premotor cortex. Sequential bilinguals with better accents also showed greater gray matter density in the left putamen, and in several additional brain regions important for sensorimotor integration and speech-motor control. Our findings suggest that second language learning results in enhanced brain structure of specific brain areas, which depends on whether two languages are learned simultaneously or sequentially, and on the extent to which native-like proficiency is acquired.
Brain Damage in School Age Children.
ERIC Educational Resources Information Center
Haywood, H. Carl, Ed.
The product of a professional workshop, 10 papers discuss brain damage. An introduction to clinical neuropsychology is presented by H. Carl Haywood. A section on neurological foundations includes papers on the organization of the central nervous system by Jack T. Tapp and Lance L. Simpson, on epilepsy by Angela T. Folsom, and on organic language…
The Effects of Brain Damage on Visual Functioning in Children.
ERIC Educational Resources Information Center
Alexander, P. K.
1990-01-01
The review of research concluded that, although brain damage affects visual functioning, the prognosis for good functional vision after remedial intervention is better than previously thought. Although electrodiagnostic testing was found to be valuable, use of a combination of tests is recommended to obtain the most complete picture of brain…
Childs, Charmaine; Hiltunen, Yrjö; Vidyasagar, Rishma; Kauppinen, Risto A
2007-01-01
Proton magnetic resonance spectroscopy ((1)H MRS) was used to determine brain temperature in healthy volunteers. Partially water-suppressed (1)H MRS data sets were acquired at 3T from four different gray matter (GM)/white matter (WM) volumes. Brain temperatures were determined from the chemical-shift difference between the CH(3) of N-acetyl aspartate (NAA) at 2.01 ppm and water. Brain temperatures in (1)H MRS voxels of 2 x 2 x 2 cm(3) showed no substantial heterogeneity. The volume-averaged temperature from single-voxel spectroscopy was compared with body temperatures obtained from the oral cavity, tympanum, and temporal artery regions. The mean brain parenchyma temperature was 0.5 degrees C cooler than readings obtained from three extra-brain sites (P < 0.01). (1)H MRS imaging (MRSI) data were acquired from a slice encompassing the single-voxel volumes to assess the ability of spectroscopic imaging to determine regional brain temperature within the imaging slice. Brain temperature away from the center of the brain determined by MRSI differed from that obtained by single-voxel MRS in the same brain region, possibly due to a poor line width (LW) in MRSI. The data are discussed in the light of proposed brain-body temperature gradients and the use of (1)H MRSI to monitor brain temperature in pathologies, such as brain trauma.
van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim
2013-10-01
Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.
Loring, David W; Larrabee, Glenn J
2006-06-01
The Halstead-Reitan Battery has been instrumental in the development of neuropsychological practice in the United States. Although Reitan administered both the Wechsler-Bellevue Intelligence Scale and Halstead's test battery when evaluating Halstead's theory of biologic intelligence, the relative sensitivity of each test battery to brain damage continues to be an area of controversy. Because Reitan did not perform direct parametric analysis to contrast group performances, we reanalyze Reitan's original validation data from both Halstead (Reitan, 1955) and Wechsler batteries (Reitan, 1959a) and calculate effect sizes and probability levels using traditional parametric approaches. Eight of the 10 tests comprising Halstead's original Impairment Index, as well as the Impairment Index itself, statistically differentiated patients with unequivocal brain damage from controls. In addition, 13 of 14 Wechsler measures including Full-Scale IQ also differed statistically between groups (Brain Damage Full-Scale IQ = 96.2; Control Group Full Scale IQ = 112.6). We suggest that differences in the statistical properties of each battery (e.g., raw scores vs. standardized scores) likely contribute to classification characteristics including test sensitivity and specificity.
Monophasic demyelination reduces brain growth in children
Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S.; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E. Ann; Narayanan, Sridar; Arnold, Douglas L.; Verhey, Leonard H.; Banwell, Brenda; Collins, D. Louis
2017-01-01
Objective: To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. Methods: We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Results: Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Conclusions: Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. PMID:28381515
Monophasic demyelination reduces brain growth in children.
Aubert-Broche, Bérengère; Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E Ann; Narayanan, Sridar; Arnold, Douglas L; Verhey, Leonard H; Banwell, Brenda; Collins, D Louis
2017-05-02
To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. © 2017 American Academy of Neurology.
Blennow, K; Jonsson, M; Andreasen, N; Rosengren, L; Wallin, A; Hellström, P A; Zetterberg, H
2011-04-01
Psychiatric and neurological symptoms are common among soldiers exposed to blast without suffering a direct head injury. It is not known whether such symptoms are direct consequences of blast overpressure. To examine if repeated detonating explosions or firing if of heavy weapons is associated with neurochemical evidence of brain damage. Three controlled experimental studies. In the first, army officers were exposed to repeated firing of a FH77B howitzer or a bazooka. Cerebrospinal fluid (CSF) was taken post-exposure to measure biomarkers for brain damage. In the second, officers were exposed for up to 150 blasts by firing a bazooka, and in the third to 100 charges of detonating explosives of 180 dB. Serial serum samples were taken after exposure. Results were compared with a control group consisting of 19 unexposed age-matched healthy volunteers. The CSF biomarkers for neuronal/axonal damage (tau and neurofilament protein), glial cell injury (GFAP and S-100b), blood-brain barrier damage (CSF/serum albumin ratio) and hemorrhages (hemoglobin and bilirubin) and the serum GFAP and S-100b showed normal and stable levels in all exposed officers. Repeated exposure to high-impact blast does not result in any neurochemical evidence of brain damage. These findings are of importance for soldiers regularly exposed to high-impact blast when firing artillery shells or other types of heavy weapons. © 2010 John Wiley & Sons A/S.
The ELGAN study of the brain and related disorders in extremely low gestational age newborns.
O'Shea, T M; Allred, E N; Dammann, O; Hirtz, D; Kuban, K C K; Paneth, N; Leviton, A
2009-11-01
Extremely low gestational age newborns (ELGANs) are at increased risk for structural and functional brain abnormalities. To identify factors that contribute to brain damage in ELGANs. Multi-center cohort study. We enrolled 1506 ELGANs born before 28 weeks gestation at 14 sites; 1201 (80%) survived to 2 years corrected age. Information about exposures and characteristics was collected by maternal interview, from chart review, microbiologic and histological examination of placentas, and measurement of proteins in umbilical cord and early postnatal blood spots. Indicators of white matter damage, i.e. ventriculomegaly and echolucent lesions, on protocol cranial ultrasound scans; head circumference and developmental outcomes at 24 months adjusted age, i.e., cerebral palsy, mental and motor scales of the Bayley Scales of Infant Development, and a screen for autism spectrum disorders. ELGAN Study publications thus far provide evidence that the following are associated with ultrasongraphically detected white matter damage, cerebral palsy, or both: preterm delivery attributed to preterm labor, prelabor premature rupture of membranes, or cervical insufficiency; recovery of microorganisms in the placenta parenchyma, including species categorized as human skin microflora; histological evidence of placental inflammation; lower gestational age at delivery; greater neonatal illness severity; severe chronic lung disease; neonatal bacteremia; and necrotizing enterocolitis. In addition to supporting a potential role for many previously identified antecedents of brain damage in ELGANs, our study is the first to provide strong evidence that brain damage in extremely preterm infants is associated with microorganisms in placenta parenchyma.
Hamid, Asmah; Ibrahim, Farah Wahida; Ming, Teoh Hooi; Nasrom, Mohd Nazir; Eusoff, Norelina; Husain, Khairana; Abdul Latif, Mazlyzam
2018-03-20
Zingiber zerumbet (L.) Smith belongs to the Zingiberaceae family that is widely distributed throughout the tropics, particularly in Southeast Asia. It is locally known as 'Lempoyang' and traditionally used to treat fever, constipation and to relieve pain. It is also known to possess antioxidant and anti-inflammatory activities. Based on these antioxidant and anti-inflammatory activities, this study was conducted to investigate the effects of ethyl-acetate extract of Z. zerumbet rhizomes against ethanol-induced brain damage in male Wistar rats. Twenty-four male Wistar rats were divided into four groups which consist of normal, 1.8 g/kg ethanol (40% v/v), 200 mg/kg Z. zerumbet extract plus ethanol and 400 mg/kg Z. zerumbet plus ethanol. The extract of Z. zerumbet was given once daily by oral gavage, 30 min prior to ethanol exposure via intraperitoneal route for 14 consecutive days. The rats were then sacrificed. Blood and brain homogenate were subjected to biochemical tests and part of the brain tissue was sectioned for histological analysis. Treatment with ethyl-acetate Z. zerumbet extract at 200 mg/kg and 400 mg/kg significantly reduced the level of malondialdehyde (MDA) and protein carbonyl (p < 0.05) in the brain homogenate. Both doses of extracts also significantly increased the level of serum superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities as well as glutathione (GSH) level (p < 0.05). However, administration of ethyl-acetate Z. zerumbet extract at 400 mg/kg showed better protective effects on the ethanol-induced brain damage as shown with higher levels of SOD, CAT, GPx and GSH in the brain homogenate as compared to 200 mg/kg dose. Histological observation of the cerebellum and cerebral cortex showed that the extract prevented the loss of Purkinje cells and retained the number and the shape of the cells. Ethyl-acetate extract of Z. zerumbet has protective effects against ethanol-induced brain damage and this is mediated through its antioxidant properties. Z. zerumbet extract protects against ethanol-induced brain damage via its antioxidant properties.
Discourse Impairments Following Right Hemisphere Brain Damage: A Critical Review
Johns, Clinton L.; Tooley, Kristen M.; Traxler, Matthew J.
2015-01-01
Right hemisphere brain damage (RHD) rarely causes aphasias marked by clear and widespread failures of comprehension or extreme difficulty producing fluent speech. Nonetheless, subtle language comprehension deficits can occur following unilateral RHD. In this article, we review the empirical record on discourse function following right hemisphere damage, as well as relevant work on non-brain damaged individuals that focuses on right hemisphere function. The review is divided into four sections that focus on discourse processing, inferencing, humor, and non-literal language. While the exact role that the right hemisphere plays in language processing, and the exact way that the two cerebral hemispheres coordinate their linguistic processes are still open to debate, our review suggests that the right hemisphere plays a critical role in managing inferred or implied information by maintaining relevant information and/or suppressing irrelevant information. Deficits in one or both of these mechanisms may account for discourse deficits following RHD. PMID:26085839
Spain, Aisling; Daumas, Stephanie; Lifshitz, Jonathan; Rhodes, Jonathan; Andrews, Peter J D; Horsburgh, Karen; Fowler, Jill H
2010-08-01
Mild traumatic brain injury (TBI) accounts for up to 80% of clinical TBI and can result in cognitive impairment and white matter damage that may develop and persist over several years. Clinically relevant models of mild TBI for investigation of neurobiological changes and the development of therapeutic strategies are poorly developed. In this study we investigated the temporal profile of axonal and somal injury that may contribute to cognitive impairments in a mouse model of mild TBI. Neuronal perikaryal damage (hematoxylin and eosin and Fluoro-Jade C), myelin integrity (myelin basic protein and myelin-associated glycoprotein), and axonal damage (amyloid precursor protein), were evaluated by immunohistochemistry at 4 h, 24 h, 72 h, 4 weeks, and 6 weeks after mild lateral fluid percussion brain injury (0.9 atm; righting time 167 +/- 15 sec). At 3 weeks post-injury spatial reference learning and memory were tested in the Morris water maze (MWM). Levels of damage to neuronal cell bodies were comparable in the brain-injured and sham groups. Myelin integrity was minimally altered following injury. Clear alterations in axonal damage were observed at various time points after injury. Axonal damage was localized to the cingulum at 4 h post-injury. At 4 and 6 weeks post-injury, axonal damage was evident in the external capsule, and was seen at 6 weeks in the dorsal thalamic nuclei. At 3 weeks post-injury, injured mice showed an impaired ability to learn the water maze task, suggesting injury-induced alterations in search strategy learning. The evolving localization of axonal damage points to ongoing degeneration after injury that is concomitant with a deficit in learning.
Sitzlar, M.A.; Mora, M.A.; Fleming, J.G.W.; Bazer, F.W.; Bickham, J.W.; Matson, C.W.
2009-01-01
Cliff swallows (Petrochelidon pyrrhonota) and cave swallows (P. fulva) were sampled during the breeding season at several locations in the Rio Grande, Texas, to evaluate the potential effects of environmental contaminants on P450 aromatase activity in brain and gonads and DNA damage in blood cells. The tritiated water-release aromatase assay was used to measure aromatase activity and flow cytometry was used to measure DNA damage in nucleated blood cells. There were no significant differences in brain and gonadal aromatase activities or in estimates of DNA damage (HPCV values) among cave swallow colonies from the Lower Rio Grande Valley (LRGV) and Somerville. However, both brain and gonadal aromatase activities were significantly higher (P < 0.05) in male cliff swallows from Laredo than in those from Somerville. Also, DNA damage estimates were significantly higher (P < 0.05) in cliff swallows (males and females combined) from Laredo than in those from Somerville. Contaminants of current high use in the LRGV, such as atrazine, and some of the highly persistent organochlorines, such as toxaphene and DDE, could be potentially associated with modulation of aromatase activity in avian tissues. Previous studies have indicated possible DNA damage in cliff swallows. We did not observe any differences in aromatase activity or DNA damage in cave swallows that could be associated with contaminant exposure. Also, the differences in aromatase activity and DNA damage between male cliff swallows from Laredo and Somerville could not be explained by contaminants measured at each site in previous studies. Our study provides baseline information on brain and gonadal aromatase activity in swallows that could be useful in future studies. ?? 2008 Springer Science+Business Media, LLC.
Le Berre, Anne-Pascale; Pitel, Anne-Lise; Chanraud, Sandra; Beaunieux, Hélène; Eustache, Francis; Martinot, Jean-Luc; Reynaud, Michel; Martelli, Catherine; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V.
2015-01-01
Alcohol consumption patterns and recognition of health outcomes related to hazardous drinking vary widely internationally, raising the question whether these national differences are reflected in brain damage observed in alcoholism. This retrospective analysis assessed variability of alcoholism's effects on brain cerebrospinal fluid (CSF) and white matter volumes between France and the United States (U.S.). MRI data from two French sites (Caen and Orsay) and a U.S. laboratory (SRI/Stanford University) were acquired on 1.5T imaging systems in 287 controls, 165 uncomplicated alcoholics (ALC), and 26 alcoholics with Korsakoff's Syndrome (KS). All data were analyzed at the U.S. site using atlas-based parcellation. Results revealed graded CSF volume enlargement from ALC to KS and white matter volume deficits in KS only. In ALC from France but not the U.S., CSF and white matter volumes correlated with lifetime alcohol consumption, alcoholism duration, and length of sobriety. MRI highlighted CSF volume enlargement in both ALC and KS, serving as a basis for an ex vacuo process to explain correlated gray matter shrinkage. By contrast, MRI provided a sensitive in vivo biomarker of white matter volume shrinkage in KS only, suggesting a specific process sensitive to mechanisms contributing to Wernicke's encephalopathy, the precursor of KS. Identified structural brain abnormalities may provide biomarkers underlying alcoholism's heterogeneity in and among nations and suggest a substrate of gray matter tissue shrinkage. Proposed are hypotheses for national differences in interpreting whether the severity of sequelae observe a graded phenomenon or a continuum from uncomplicated alcoholism to alcoholism complicated by KS. PMID:26157376
NASA Astrophysics Data System (ADS)
Rajaram, Ajay; St. Lawrence, Keith; Diop, Mamadou
2017-02-01
In Canada, 8% of births occur prematurely. Preterm infants weighing less than 1500g are at a high risk of neurodevelopmental impairment: 5-10% develop major disabilities such as cerebral palsy and 40-50% show other cognitive and behavioural deficits. The brain is vulnerable to periods of low cerebral blood flow (CBF) that can impair energy metabolism and cause tissue damage. There is, therefore, a need for an efficient neuromonitoring system to alert the neonatal intensive care team to clinically significant changes in CBF and metabolism, before injury occurs. Optical technologies offer safe, non-invasive, and cost-effective methods for neuromonitoring. Cerebral oxygen saturation (ScO2) can be measured by exploiting the absorption properties of hemoglobin though Near-Infrared Spectroscopy (NIRS), and Diffuse Correlation Spectroscopy (DCS) can monitor CBF by tracking red blood cells. These measures can be combined to describe metabolism, a key indicator of tissue viability. In this study we present the development and testing of a hybrid broadband NIRS/DCS neuromonitor. This system is novel in its ability to simultaneously acquire broadband NIRS and DCS signals, providing a truly real-time measure of metabolism. Narrow bandpass and notch filters have been incorporated to diminish light contamination between the two modalities, preferentially filtering out each source from the opposing detector, allowing for an accurate measure of ScO2, CBF, and metabolism. With a broadband NIRS/DCS system, a real-time measure of CBF and metabolism within the developing brain can aid clinicians in monitoring events that precede brain injury, ultimately leading to better clinical outcomes.
DNA damage in the oligodendrocyte lineage and its role in brain aging.
Tse, Kai-Hei; Herrup, Karl
2017-01-01
Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lusch, Bethany; Weholt, Jake; Maia, Pedro D; Kutz, J Nathan
2018-06-01
The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated. Copyright © 2018 Elsevier Inc. All rights reserved.
Oxidative Burst of Circulating Neutrophils Following Traumatic Brain Injury in Human
Liao, Yiliu; Liu, Peng; Guo, Fangyuan; Zhang, Zhi-Yuan; Zhang, Zhiren
2013-01-01
Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage. PMID:23894384
Purcell, Jeremy J.; Rapp, Brenda
2013-01-01
Previous research has shown that damage to the neural substrates of orthographic processing can lead to functional reorganization during reading (Tsapkini et al., 2011); in this research we ask if the same is true for spelling. To examine the functional reorganization of spelling networks we present a novel three-stage Individual Peak Probability Comparison (IPPC) analysis approach for comparing the activation patterns obtained during fMRI of spelling in a single brain-damaged individual with dysgraphia to those obtained in a set of non-impaired control participants. The first analysis stage characterizes the convergence in activations across non-impaired control participants by applying a technique typically used for characterizing activations across studies: Activation Likelihood Estimate (ALE) (Turkeltaub et al., 2002). This method was used to identify locations that have a high likelihood of yielding activation peaks in the non-impaired participants. The second stage provides a characterization of the degree to which the brain-damaged individual's activations correspond to the group pattern identified in Stage 1. This involves performing a Mahalanobis distance statistics analysis (Tsapkini et al., 2011) that compares each of a control group's peak activation locations to the nearest peak generated by the brain-damaged individual. The third stage evaluates the extent to which the brain-damaged individual's peaks are atypical relative to the range of individual variation among the control participants. This IPPC analysis allows for a quantifiable, statistically sound method for comparing an individual's activation pattern to the patterns observed in a control group and, thus, provides a valuable tool for identifying functional reorganization in a brain-damaged individual with impaired spelling. Furthermore, this approach can be applied more generally to compare any individual's activation pattern with that of a set of other individuals. PMID:24399981
Driving safety after brain damage: follow-up of twenty-two patients with matched controls.
Katz, R T; Golden, R S; Butter, J; Tepper, D; Rothke, S; Holmes, J; Sahgal, V
1990-02-01
Driving after brain damage is a vital issue, considering the large number of patients who suffer from cerebrovascular and traumatic encephalopathy. The ability to operate a motor vehicle is an integral part of independence for most adults and so should be preserved whenever possible. The physician may estimate a patient's ability to drive safely based on his own examination, the evaluation of a neuropsychologist, and a comprehensive driving evaluation--testing, driving simulation, behind-the-wheel observation--with a driving specialist. This study sought to evaluate the ability of brain-damaged individuals to operate a motor vehicle safely at follow-up. These patients had been evaluated (by a physician, a neuropsychologist, and a driving specialist) and were judged able to operate a motor vehicle safely after their cognitive insult. Twenty-two brain-damaged patients who were evaluated at our institution were successfully followed up to five years (mean interval of 2.67 years). Patients were interviewed by telephone. Their driving safely was compared with a control group consisting of a close friend or spouse of each patient. Statistical analysis revealed no difference between patient and control groups in the type of driving, the incidence of speeding tickets, near accidents, and accidents, and the cost of vehicle damage when accidents occurred. The patient group was further divided into those who had, and those who had not experienced driving difficulties so that initial neuropsychologic testing could be compared. No significant differences were noted in any aspect of the neuropsychologic test battery. We conclude that selected brain-damaged patients who have passed a comprehensive driving assessment as outlined were as fit to drive as were their normal matched controls.(ABSTRACT TRUNCATED AT 250 WORDS)
Gong, Hui; Xu, Dongli; Yuan, Jing; Li, Xiangning; Guo, Congdi; Peng, Jie; Li, Yuxin; Schwarz, Lindsay A.; Li, Anan; Hu, Bihe; Xiong, Benyi; Sun, Qingtao; Zhang, Yalun; Liu, Jiepeng; Zhong, Qiuyuan; Xu, Tonghui; Zeng, Shaoqun; Luo, Qingming
2016-01-01
The precise annotation and accurate identification of neural structures are prerequisites for studying mammalian brain function. The orientation of neurons and neural circuits is usually determined by mapping brain images to coarse axial-sampling planar reference atlases. However, individual differences at the cellular level likely lead to position errors and an inability to orient neural projections at single-cell resolution. Here, we present a high-throughput precision imaging method that can acquire a co-localized brain-wide data set of both fluorescent-labelled neurons and counterstained cell bodies at a voxel size of 0.32 × 0.32 × 2.0 μm in 3 days for a single mouse brain. We acquire mouse whole-brain imaging data sets of multiple types of neurons and projections with anatomical annotation at single-neuron resolution. The results show that the simultaneous acquisition of labelled neural structures and cytoarchitecture reference in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. PMID:27374071
Postural abnormalities and contraversive pushing following right hemisphere brain damage.
Lafosse, C; Kerckhofs, E; Vereeck, L; Troch, M; Van Hoydonck, G; Moeremans, M; Sneyers, C; Broeckx, J; Dereymaeker, L
2007-06-01
We investigated the presence of postural abnormalities in a consecutive sample of stroke patients, with either left or right brain damage, in relation to their perceived body position in space. The presence or absence of posture-related symptoms was judged by two trained therapists and subsequently analysed by hierarchical classes analysis (HICLAS). The subject classes resulting from the HICLAS model were further validated with respect to posture-related measurements, such as centre of gravity position and head position, as well as measurements related to the postural body scheme, such as the perception of postural and visual verticality. The results of the classification analysis clearly demonstrated a relation between the presence of right brain damage and abnormalities in body geometry. The HICLAS model revealed three classes of subjects: The first class contained almost all the patients without neglect and without any signs of contraversive pushing. They were mainly characterised by a normal body axis in any position. The second class were all neglect patients but predominantly without any contraversive pushing. The third class contained right brain damaged patients, all showing neglect and mostly exhibiting contraversive pushing. The patients in the third class showed a clear resistance to bringing the weight over to the ipsilesional side when the therapist attempted to make the subject achieve a vertical posture across the midline. The clear correspondence between abnormalities of the observed body geometry and the tilt of the subjective postural and visual vertical suggests that a patient's postural body geometry is characterised by leaning towards the side of space where he/she feels aligned with an altered postural body scheme. The presence of contraversive pushing after right brain damage points in to a spatial higher-order processing deficit underlying the higher frequency and severity of the axial postural abnormalities found after right brain lesions.
Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Madaras, Eric I.
2016-01-01
Large area nondestructive evaluation (NDE) inspections are required for fatigue testing of composite structures to track damage initiation and growth. Of particular interest is the progression of damage leading to ultimate failure to validate damage progression models. In this work, passive thermography and acoustic emission NDE were used to track damage growth up to failure of a composite three-stringer panel. Fourteen acoustic emission sensors were placed on the composite panel. The signals from the array were acquired simultaneously and allowed for acoustic emission location. In addition, real time thermal data of the composite structure were acquired during loading. Details are presented on the mapping of the acoustic emission locations directly onto the thermal imagery to confirm areas of damage growth leading to ultimate failure. This required synchronizing the acoustic emission and thermal data with the applied loading. In addition, processing of the thermal imagery which included contrast enhancement, removal of optical barrel distortion and correction of angular rotation before mapping the acoustic event locations are discussed.
The influence of sleep deprivation and obesity on DNA damage in female Zucker rats.
Tenorio, Neuli M; Ribeiro, Daniel A; Alvarenga, Tathiana A; Fracalossi, Ana Carolina C; Carlin, Viviane; Hirotsu, Camila; Tufik, Sergio; Andersen, Monica L
2013-01-01
The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group). The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.
Cerebral Palsy: A Lifelong Challenge Asks for Early Intervention
Panteliadis, Christos P; Hagel, Christian; Karch, Dieter; Heinemann, Karl
2015-01-01
One of the oldest and probably well-known examples of cerebral palsy is the mummy of the Pharaoh Siptah about 1196–1190 B.C., and a letter from Hippocrates (460–390 B.C.). Cerebral palsy (CP) is one of the most common congenital or acquired neurological impairments in paediatric patients, and refers to a group of children with motor disability and related functional defects. The visible core of CP is characterized by abnormal coordination of movements and/or muscle tone which manifest very early in the development. Resulting from pre- or perinatal brain damage CP is not a progressive condition per se. However, without systematic medical and physiotherapeutic support the dystonia leads to muscle contractions and to deterioration of the handicap. Here we review the three general spastic manifestations of CP hemiplegia, diplegia and tetraplegia, describe the diagnostic procedures and delineate a time schedule for an early intervention. PMID:26191093
In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience.
Monfils, Marie-H; Plautz, Erik J; Kleim, Jeffrey A
2005-10-01
Motor skill acquisition occurs through modification and organization of muscle synergies into effective movement sequences. The learning process is reflected neurophysiologically as a reorganization of movement representations within the primary motor cortex, suggesting that the motor map is a motor engram. However, the specific neural mechanisms underlying map plasticity are unknown. Here the authors review evidence that 1) motor map topography reflects the capacity for skilled movement, 2) motor skill learning induces reorganization of motor maps in a manner that reflects the kinematics of acquired skilled movement, 3) map plasticity is supported by a reorganization of cortical microcircuitry involving changes in synaptic efficacy, and 4) motor map integrity and topography are influenced by various neurochemical signals that coordinate changes in cortical circuitry to encode motor experience. Finally, the role of motor map plasticity in recovery of motor function after brain damage is discussed.
Glushakova, Olena Y; Johnson, Danny; Hayes, Ronald L
2014-07-01
Traumatic brain injury (TBI) is a significant risk factor for chronic traumatic encephalopathy (CTE), Alzheimer's disease (AD), and Parkinson's disease (PD). Cerebral microbleeds, focal inflammation, and white matter damage are associated with many neurological and neurodegenerative disorders including CTE, AD, PD, vascular dementia, stroke, and TBI. This study evaluates microvascular abnormalities observed at acute and chronic stages following TBI in rats, and examines pathological processes associated with these abnormalities. TBI in adult rats was induced by controlled cortical impact (CCI) of two magnitudes. Brain pathology was assessed in white matter of the corpus callosum for 24 h to 3 months following injury using immunohistochemistry (IHC). TBI resulted in focal microbleeds that were related to the magnitude of injury. At the lower magnitude of injury, microbleeds gradually increased over the 3 month duration of the study. IHC revealed TBI-induced focal abnormalities including blood-brain barrier (BBB) damage (IgG), endothelial damage (intercellular adhesion molecule 1 [ICAM-1]), activation of reactive microglia (ionized calcium binding adaptor molecule 1 [Iba1]), gliosis (glial fibrillary acidic protein [GFAP]) and macrophage-mediated inflammation (cluster of differentiation 68 [CD68]), all showing different temporal profiles. At chronic stages (up to 3 months), apparent myelin loss (Luxol fast blue) and scattered deposition of microbleeds were observed. Microbleeds were surrounded by glial scars and co-localized with CD68 and IgG puncta stainings, suggesting that localized BBB breakdown and inflammation were associated with vascular damage. Our results indicate that evolving white matter degeneration following experimental TBI is associated with significantly delayed microvascular damage and focal microbleeds that are temporally and regionally associated with development of punctate BBB breakdown and progressive inflammatory responses. Increased understanding of mechanisms underlying delayed microvascular damage following TBI could provide novel insights into chronic pathological responses to TBI and potential common mechanisms underlying TBI and neurodegenerative diseases.
ERIC Educational Resources Information Center
Blake, Margaret Lehman; Frymark, Tobi; Venedictov, Rebecca
2013-01-01
Purpose: The purpose of this review is to evaluate and summarize the research evidence related to the treatment of individuals with right hemisphere communication disorders. Method: A comprehensive search of the literature using key words related to right hemisphere brain damage and communication treatment was conducted in 27 databases (e.g.,…
ERIC Educational Resources Information Center
Tompkins, Connie A.; Fassbinder, Wiltrud; Blake, Margaret Lehman; Baumgaertner, Annette; Jayaram, Nandini
2004-01-01
ourse comprehensionEvidence conflicts as to whether adults with right hemisphere brain damage (RHD) generate inferences during text comprehension. M. Beeman (1993) reported that adults with RHD fail to activate the lexical-semantic bases of routine bridging inferences, which are necessary for comprehension. But other evidence indicates that adults…
Perception of Lexical Stress by Brain-Damaged Individuals: Effects on Lexical-Semantic Activation
ERIC Educational Resources Information Center
Shah, Amee P.; Baum, Shari R.
2006-01-01
A semantic priming, lexical-decision study was conducted to examine the ability of left- and right-brain damaged individuals to perceive lexical-stress cues and map them onto lexical-semantic representations. Correctly and incorrectly stressed primes were paired with related and unrelated target words to tap implicit processing of lexical prosody.…
ERIC Educational Resources Information Center
Kleim, Jeffrey A.; Jones, Theresa A.
2008-01-01
Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…
NASA Astrophysics Data System (ADS)
Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric
2018-02-01
High resolution imaging of whole rodent brains using serial OCT scanners is a promising method to investigate microstructural changes in tissue related to the evolution of neuropathologies. Although micron to sub-micron sampling resolution can be obtained by using high numerical aperture objectives and dynamic focusing, such an imaging system is not adapted to whole brain imaging. This is due to the large amount of data it generates and the significant computational resources required for reconstructing such volumes. To address this limitation, a dual resolution serial OCT scanner was developed. The optical setup consists in a swept-source OCT made of two sample and reference arms, each arm being coupled with different microscope objectives (3X / 40X). Motorized flip mirrors were used to switch between each OCT arm, thus allowing low and high resolution acquisitions within the same sample. The low resolution OCT volumes acquired with the 3X arm were stitched together, providing a 3D map of the whole mouse brain. This brain can be registered to an OCT brain template to enable neurological structures localization. The high resolution volumes acquired with the 40X arm were also stitched together to create local high resolution 3D maps of the tissue microstructure. The 40X data can be acquired at any arbitrary location in the sample, thus limiting storage-heavy high resolution data to application restricted to specific regions of interest. By providing dual-resolution OCT data, this setup can be used to validate diffusion MRI with tissue microstructure derived metrics measured at any location in ex vivo brains.
Ge, Xintong; Li, Wenzhu; Huang, Shan; Yin, Zhenyu; Xu, Xin; Chen, Fanglian; Kong, Xiaodong; Wang, Haichen; Zhang, Jianning; Lei, Ping
2018-06-07
Pyroptosis is a highly specific type of inflammatory programmed cell death that different from necrosis or apoptosis. It is initiated by cellular detection of acute damage via recognizing pathogen-associated molecular patterns (PAMPs) by NOD-like receptors (NLRs) or AIM2-like receptor (AIM2). NLRs and AIM2 could trigger the formation of a multi-protein complex, known as inflammasome. It also contains apoptotic speck-containing protein (ASC) and pro-Caspase-1, and could process the signals to induce a cascade of inflammatory response. Recently, growing evidence showed that inflammasome-mediated pyroptosis is involved in the pathogenesis of traumatic brain injury (TBI). However, less attention has been paid to their particular roles in regulating blood-brain barrier (BBB) damage, the central pathological change in secondary brain damage of TBI. Thus, we designed this research to explore the impact and mechanism of NLRs and AIM2 inflammasome-mediated pyroptosis in BBB after TBI. We employed the controlled cortical impact (CCI) mice model and manipulated the severity of pyroptosis in BBB using Caspase-1 inhibitor, Ac-YVAD-cmk. We found that TBI led to NLRs and AIM2 inflammasome-mediated pyroptosis in brain microvascular endothelial cells (BMVECs) from injured cerebral cortex. Ac-YVAD-cmk treatment inhibited pyroptosis in injured BMVECs by suppressing the expression of essential inflammasome subunit - Caspase-1 and pivotal downstream pro-inflammatory cytokines (IL-1β and IL-18), as well as hindering GSDMD cleavage and ASC oligomerization. In addition, inhibiting pyroptosis could alleviate TBI-induced BBB leakage, brain edema, loss of tight junction proteins, and the inflammatory response in injured BMVECs. These effects contributed to improving the neurological outcome of CCI mice. In conclusion, NLRs and AIM2 inflammasome-mediated pyroptosis could aggravate BBB damage after TBI. Targeting and controlling pyroptosis in injured BBB would be a promising therapeutic strategy for TBI in the future. Copyright © 2018. Published by Elsevier B.V.
Blast induced mild traumatic brain injury/concussion: A physical analysis
NASA Astrophysics Data System (ADS)
Kucherov, Yan; Hubler, Graham K.; DePalma, Ralph G.
2012-11-01
Currently, a consensus exists that low intensity non-impact blast wave exposure leads to mild traumatic brain injury (mTBI). Considerable interest in this "invisible injury" has developed in the past few years but a disconnect remains between the biomedical outcomes and possible physical mechanisms causing mTBI. Here, we show that a shock wave travelling through the brain excites a phonon continuum that decays into specific acoustic waves with intensity exceeding brain tissue strength. Damage may occur within the period of the phonon wave, measured in tens to hundreds of nanometers, which makes the damage difficult to detect using conventional modalities.
Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y
2011-05-01
To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.
Neuroprotective Role of a Brain-Enriched Tyrosine Phosphatase, STEP, in Focal Cerebral Ischemia
Deb, Ishani; Manhas, Namratta; Poddar, Ranjana; Rajagopal, Sathyanarayanan; Allan, Andrea M.; Lombroso, Paul J.; Rosenberg, Gary A.; Candelario-Jalil, Eduardo
2013-01-01
The striatal-enriched phosphatase (STEP) is a component of the NMDA-receptor-mediated excitotoxic signaling pathway, which plays a key role in ischemic brain injury. Using neuronal cultures and a rat model of ischemic stroke, we show that STEP plays an initial role in neuroprotection, during the insult, by disrupting the p38 MAPK pathway. Degradation of active STEP during reperfusion precedes ischemic brain damage and is associated with secondary activation of p38 MAPK. Application of a cell-permeable STEP-derived peptide that is resistant to degradation and binds to p38 MAPK protects cultured neurons from hypoxia-reoxygenation injury and reduces ischemic brain damage when injected up to 6 h after the insult. Conversely, genetic deletion of STEP in mice leads to sustained p38 MAPK activation and exacerbates brain injury and neurological deficits after ischemia. Administration of the STEP-derived peptide at the onset of reperfusion not only prevents the sustained p38 MAPK activation but also reduces ischemic brain damage in STEP KO mice. The findings indicate a neuroprotective role of STEP and suggest a potential role of the STEP-derived peptide in stroke therapy. PMID:24198371
Wippel, Carolin; Maurer, Jana; Förtsch, Christina; Hupp, Sabrina; Bohl, Alexandra; Ma, Jiangtao; Mitchell, Timothy J.; Bunkowski, Stephanie; Brück, Wolfgang; Nau, Roland; Iliev, Asparouh I.
2013-01-01
Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage. PMID:23785278
Song, Xiao-Jie; Han, Wei; He, Rong; Li, Tian-Yi; Xie, Ling-Ling; Cheng, Li; Chen, Heng-Sheng; Jiang, Li
2018-03-01
Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs' differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.
Stereotypic movement disorder after acquired brain injury.
McGrath, Cynthia M; Kennedy, Richard E; Hoye, Wayne; Yablon, Stuart A
2002-05-01
Stereotypic movement disorder (SMD) consists of repetitive, non-functional motor behaviour that interferes with daily living or causes injury to the person. It is most often described in patients with mental retardation. However, recent evidence indicates that this condition is common among otherwise normal individuals. This case study describes a patient with new-onset SMD occurring after subdural haematoma and brain injury. SMD has rarely been reported after acquired brain injury, and none have documented successful treatment. The current psychiatric literature regarding neurochemistry, neuroanatomy, and treatment of SMD are reviewed with particular application to one patient. Treatment options include serotonin re-uptake inhibitors, opioid antagonists and dopamine antagonists. SMD has been under-appreciated in intellectually normal individuals, and may also be unrecognized after brain injury. Further investigation is needed in this area, which may benefit other individuals with SMD as well.
József, Knoll
2007-10-01
This paper is a brief interpretation of the theory (J. Knoll: The Brain and Its Self, Springer, 2005) the main message of which is that the appearance of the mammalian brain with the ability to acquire drives ensured the development of social life, and eventually led to the evolution of the human society. In the mammalian brain capable to acquire drives, untrained cortical neurons (Group 1) possess the potentiality to change their functional state in response to practice, training, or experience in three consecutive stages, namely, by getting involved in (a) an extinguishable conditioned reflex (ECR) (Group 2), (b) an inextinguishable conditioned reflex (ICR) (Group 3), or (c)an acquired drive (Group 4). The activity of the cortical neurons belonging to Group 3 and 4 is inseparable from conscious perception. In any moment of life self is the sum of those cortical neurons that have already changed their functional significance and belong to Group 3 or 4. Metaphorically, every human being is born with a telencephalon that resembles a book with over 100 billion empty pages (untrained, naive cortical neurons, Group 1), and with the capacity to inscribe as much as possible in this book throughout life. Whenever a drive is acquired, chains of ICRs are fixed, neurons responsible for emotions are also coupled to the integral whole, thus cognitive/volitional consciousness is necessarily inseparable from an affective state of consciousness. Cortical neurons belonging to Group 3 or 4 continuously synthesize their specific enhancer substance within their capacity. This means that even in the vigilant resting state (leisure), in the absence of a dominant drive, as well as in the non-vigilant resting state (sleeping), the cortical neurons representing the totality of the already fixed ICRs and acquired drives are permanently under the influence of their specific enhancer substance. Although the level of this permanent, undulating activation remains low, it is unpredictable as to when any group of cortical neurons will be influenced by enhancer substances on the level already inseparable from conscious perception. Thus, as the totality of the cortical neurons belonging to Group 3 or 4 works continuously on an unconscious level, there is a steadily operating, chaotic background noise in the human telencephalon. Even in the active state ("fight or flight" behavior, goal-seeking), when the actually dominant drive determines the rational goal to be reached, the noise is suppressed, but cannot cease to exist. But it never endangers the function of the actually dominant innate or acquired drive. From this situation it follows that the rational brain activity is necessarily amalgamated with an irrational brain activity and we live through every moment of our life experiencing the totality of order and chaos in our brain. Human society the maintenance of which has always required the proper manipulation of the brain of its members still finds itself in a state of development. It seeks its final equilibrium: namely, that state in which behavioral modification induced by the home/school/society triad will be based, from birth until death, on the exact knowledge of the natural laws that keep the brain and its self going. In this way, members of the community will understand that simultaneity of order and chaos in their brain is the physiological reality that determines human activity, and will consciously try to find the acquired drives that optimally fit their natural endowments. For the time being those who have been lucky enough to acquire the best fitting drives in due time, in the early uphill period of life, have had fair chances for success and happiness. In contrast, those who for any reason have missed this opportunity will remain frustrated and look for 'ersatz'. It seems reasonable to conclude that order and chaos are of equal importance in our brain. Without the ability to adapt ourselves to the concrete (science), we would not be able to survive; without the ability which allows detachment from the concrete and explorations in the infinite (art), life would not be worth living. Thus, the human society, this most sophisticated form of organized life on earth is still in trial and error phase of its development. It seeks to outgrow the myth-directed era of its history and come to its final state, the reason-directed human society.
NASA Astrophysics Data System (ADS)
Chaudhary, Ujwal; Thompson, Bryant; Gonzalez, Jean; Jung, Young-Jin; Davis, Jennifer; Gonzalez, Patricia; Rice, Kyle; Bloyer, Martha; Elbaum, Leonard; Godavarty, Anuradha
2013-03-01
Cerebral palsy (CP) is a term that describes a group of motor impairment syndromes secondary to genetic and/or acquired disorders of the developing brain. In the current study, NIRS and motion capture were used simultaneously to correlate the brain's planning and execution activity during and with arm movement in healthy individual. The prefrontal region of the brain is non-invasively imaged using a custom built continuous-wave based near infrared spectroscopy (NIRS) system. The kinematics of the arm movement during the studies is recorded using an infrared based motion capture system, Qualisys. During the study, the subjects (over 18 years) performed 30 sec of arm movement followed by 30 sec rest for 5 times, both with their dominant and non-dominant arm. The optical signal acquired from NIRS system was processed to elucidate the activation and lateralization in the prefrontal region of participants. The preliminary results show difference, in terms of change in optical response, between task and rest in healthy adults. Currently simultaneous NIRS imaging and kinematics data are acquired in healthy individual and individual with CP in order to correlate brain activity to arm movement in real-time. The study has significant implication in elucidating the evolution in the functional activity of the brain as the physical movement of the arm evolves using NIRS. Hence the study has potential in augmenting the designing of training and hence rehabilitation regime for individuals with CP via kinematic monitoring and imaging brain activity.
Cortisol Excess and the Brain.
Resmini, Eugenia; Santos, Alicia; Webb, Susan M
2016-01-01
Until the last decade, little was known about the effects of chronic hypercortisolism on the brain. In the last few years, new data have arisen thanks to advances in imaging techniques; therefore, it is now possible to investigate brain activity in vivo. Memory impairments are present in patients with Cushing's syndrome (CS) and are related to hippocampal damage; functional dysfunctions would precede structural abnormalities as detected by brain imaging. Earlier diagnosis and rapid normalization of hypercortisolism could stop the progression of hippocampal damage and memory impairments. Impairments of executive functions (including decision-making) and other functions such as visuoconstructive skills, language, motor functions and information processing speed are also present in CS patients. There is controversy concerning the reversibility of brain impairment. It seems that longer disease duration and older age are associated with less recovery of brain functioning. Conversely, earlier diagnosis and rapid normalization of hypercortisolism appear to stop progression of brain damage and functional impairments. Moreover, brain tissue functioning and neuroplasticity can be influenced by many factors. Currently available studies appear to be complementary, evaluating the same phenomenon from different points of view, but are often not directly comparable. Finally, CS patients have a high prevalence of psychopathology, such as depression and anxiety which do not completely revert after cure. Thus, psychological or psychiatric evaluation could be recommended in CS patients, so that treatment may be prescribed if required. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Martínez, Darwin; Mahalingam, Jamuna J.; Soddu, Andrea; Franco, Hugo; Lepore, Natasha; Laureys, Steven; Gómez, Francisco
2015-01-01
Disorders of consciousness (DOC) are a consequence of a variety of severe brain injuries. DOC commonly results in anatomical brain modifications, which can affect cortical and sub-cortical brain structures. Postmortem studies suggest that severity of brain damage correlates with level of impairment in DOC. In-vivo studies in neuroimaging mainly focus in alterations on single structures. Recent evidence suggests that rather than one, multiple brain regions can be simultaneously affected by this condition. In other words, DOC may be linked to an underlying cerebral network of structural damage. Recently, geometrical spatial relationships among key sub-cortical brain regions, such as left and right thalamus and brain stem, have been used for the characterization of this network. This approach is strongly supported on automatic segmentation processes, which aim to extract regions of interests without human intervention. Nevertheless, patients with DOC usually present massive structural brain changes. Therefore, segmentation methods may highly influence the characterization of the underlying cerebral network structure. In this work, we evaluate the level of characterization obtained by using the spatial relationships as descriptor of a sub-cortical cerebral network (left and right thalamus) in patients with DOC, when different segmentation approaches are used (FSL, Free-surfer and manual segmentation). Our results suggest that segmentation process may play a critical role for the construction of robust and reliable structural characterization of DOC conditions.
Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R
2016-09-29
Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.
[Acquired brain injury: a proposal for its definition, diagnostic criteria and classification].
Castellanos-Pinedo, Fernando; Cid-Gala, Manuel; Duque, Pablo; Ramirez-Moreno, José M; Zurdo-Hernández, José M
2012-03-16
Acquired brain injury is a heterogeneous clinical concept that goes beyond the limits of the classical medical view, which tends to define processes and diseases on the grounds of a single causation. Although in the medical literature it appears fundamentally associated to traumatic brain injury, there are many other causes and management is similar in all of them, during the post-acute and chronic phases, as regards the measures to be taken concerning rehabilitation and attention to dependence. Yet, despite being an important health issue, today we do not have a set of diagnostic criteria or a classification for this condition. This is a serious handicap when it comes to carrying out epidemiological studies, designing specific care programmes and comparing results among different programmes and centres. Accordingly, the Extremadura Acquired Brain Injury Health Care Plan working group has drawn up these proposed diagnostic criteria, definition and classification. The proposal is intended to be essentially practical, its main purpose being to allow correct identification of the cases that must be attended to and to optimise the use of neurorehabilitation and attention to dependence resources, thereby ensuring attention is provided on a fair basis.
Falland-Cheung, Lisa; Piccione, Neil; Zhao, Tianqi; Lazarjan, Milad Soltanipour; Hanlin, Suzanne; Jermy, Mark; Waddell, J Neil
2016-06-01
Routine forensic research into in vitro skin/skull/brain ballistic blood backspatter behavior has traditionally used gelatin at a 1:10 Water:Powder (W:P) ratio by volume as a brain simulant. A limitation of gelatin is its high elasticity compared to brain tissue. Therefore this study investigated the use of dental alginate and agar impression materials as a brain simulant for ballistic testing. Fresh deer brain, alginate (W:P ratio 91.5:8.5) and agar (W:P ratio 81:19) specimens (n=10) (11×22×33mm) were placed in transparent Perspex boxes of the same internal dimensions prior to shooting with a 0.22inch caliber high velocity air gun. Quantitative analysis to establish kinetic energy loss, vertical displacement elastic behavior and qualitative analysis to establish elasticity behavior was done via high-speed camera footage (SA5, Photron, Japan) using Photron Fastcam Viewer software (Version 3.5.1, Photron, Japan) and visual observation. Damage mechanisms and behavior were qualitatively established by observation of the materials during and after shooting. The qualitative analysis found that of the two simulant materials tested, agar behaved more like brain in terms of damage and showed similar mechanical response to brain during the passage of the projectile, in terms of energy absorption and vertical velocity displacement. In conclusion agar showed a mechanical and subsequent damage response that was similar to brain compared to alginate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Neurosurgical patties: adhesion and damage mitigation.
Stratton-Powell, Ashley A; Anderson, Ian A; Timothy, Jake; Kapur, Nikil; Culmer, Peter
2015-07-01
Neurosurgical patties are textile pads used during most neurosurgical operations to protect tissues, manage the fluid environment, control hemostasis, and aid tissue manipulation. Recent research has suggested that, contrary to their aim, patties adhere to brain tissue and cause damage during removal. This study aimed to characterize and quantify the degree of and consequences resulting from adhesion between neurosurgical patties and brain tissue. Using a customized peel apparatus, the authors performed 90° peel tests on 5 patty products: Policot, Telfa, Americot, Delicot, and Ray-Cot (n = 247) from American Surgical Company. They tested 4 conditions: wet patty on glass (control), wet patty on wet brain peeled at 5 mm/sec (wet), dry patty on wet brain peeled at 5 mm/sec (dry), and wet patty on wet brain peeled at 20 mm/sec (speed). The interaction between patty and tissue was analyzed using peel-force traces and pre-peel histological analysis. Adhesion strength differed between patty products (p < 0.001) and conditions (p < 0.001). Adhesion strength was greatest for Delicot patties under wet (2.22 mN/mm) and dry (9.88 mN/mm) conditions. For all patties, damage at the patty-tissue interface was proportional to the degree of fiber contact. When patties were irrigated, mechanical adhesion was reduced by up to 550% compared with dry usage. For all patty products, mechanical (destructive) and liquid-mediated (nondestructive) adhesion caused damage to neural tissue. The greatest adhesion occurred with Delicot patties. To mitigate patty adhesion and neural tissue damage, surgeons should consider regular irrigation to be essential during neurosurgical procedures.
Sutterer, Matthew J.; Bruss, Joel; Boes, Aaron D.; Voss, Michelle W.; Bechara, Antoine; Tranel, Daniel
2016-01-01
Studies of patients with brain damage have highlighted a broad neural network of limbic and prefrontal areas as important for adaptive decision-making. However, some patients with damage outside these regions have impaired decision-making behavior, and the behavioral impairments observed in these cases are often attributed to the general variability in behavior following brain damage, rather than a deficit in a specific brain-behavior relationship. A novel approach, lesion-derived network mapping, uses healthy subject resting-state functional connectivity (RSFC) data to infer the areas that would be connected with each patient’s lesion area in healthy adults. Here, we used this approach to investigate whether there was a systematic pattern of connectivity associated with decision-making performance in patients with focal damage in areas not classically associated with decision-making. These patients were categorized a priori into “impaired” or “unimpaired” groups based on their performance on the Iowa Gambling Task (IGT). Lesion-derived network maps based on the impaired patients showed overlap in somatosensory, motor and insula cortices, to a greater extent than patients who showed unimpaired IGT performance. Akin to the classic concept of “diaschisis” (von Monakow, 1914), this focus on the remote effects that focal damage can have on large-scale distributed brain networks has the potential to inform not only differences in decision-making behavior, but also other cognitive functions or neurological syndromes where a distinct phenotype has eluded neuroanatomical classification and brain-behavior relationships appear highly heterogeneous. PMID:26994344
Emoto, Miho C; Sato-Akaba, Hideo; Hirata, Hiroshi; Fujii, Hirotada G
2014-09-01
Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood-brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.
Low-Cost, Full-Field Surface Profiling Tool for Mechanical Damage Evaluation
DOT National Transportation Integrated Search
2010-03-03
In this project, Intelligent Optical Systems (IOS) developed an inexpensive, full-field, surfaceprofiling tool for mechanical damage evaluation based on the processing of a single digital image. Little operator training is required for acquiring the ...
Targeting Microglia to Prevent Post-Traumatic Epilepsy
2012-07-01
long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation. Eur J Neurosci 22 :317-330...attenuating damaging effects of hyperexcitability in the brain induced by inflammation resulting from glial cell immune responses to trauma. We are...damaging effects of hyperexcitability in the brain induced by inflammation resulting from glial cell immune responses to trauma. We are exploring two
Poor Hand-Pointing to Sounds in Right Brain-Damaged Patients: Not Just a Problem of Spatial-Hearing
ERIC Educational Resources Information Center
Pavani, Francesco; Farne, Alessandro; Ladavas, Elisabetta
2005-01-01
We asked 22 right brain-damaged (RBD) patients and 11 elderly healthy controls to perform hand-pointing movements to free-field unseen sounds, while modulating two non-auditory variables: the initial position of the responding hand (left, centre or right) and the presence or absence of task-irrelevant ambient vision. RBD patients suffering from…
Musical deficits and cortical thickness in people with schizophrenia.
Fujito, Ryosuke; Minese, Masayoshi; Hatada, Sanae; Kamimura, Naoto; Morinobu, Shigeru; Lang, Donna J; Honer, William G; Sawada, Ken
2018-02-14
Investigation of acquired amusia caused by brain damage suggested that cortical lesions of the right hemisphere contributed to musical deficits. We previously reported reduced musical ability in schizophrenia; these deficits were correlated with clinical manifestations such as cognitive dysfunction and negative symptoms. However, the neural substrate underlying the musical disability in schizophrenia remains unclear. We investigated the relationship between musical deficits and cortical thickness in patients with schizophrenia using structural MRI. We recruited 24 patients (13 males; age mean=45.9years old), and 22 controls (14 males, age mean=43.5years old). Musical ability was assessed with the Montreal Battery for Evaluation of Amusia (MBEA), cognitive function with the Brief Assessment of Cognition in Schizophrenia (BACS) and clinical features of illness with the Positive and Negative Syndrome Scale (PANSS). MRI Images were acquired and processed using FreeSurfer. Surface-based analysis showed that thinner cortex in left temporal and inferior frontal region was associated with lower musical ability in schizophrenia. In contrast, in controls thicker cortex in the left supramarginal region was correlated with lower musical ability. These results shed light on the clinical pathology underlying the associations of musical ability, cognitive dysfunction and negative symptoms in patients with schizophrenia. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Kaur, Shamsherjit; Singh, Satinderpal; Chahal, Karan Singh; Prakash, Atish
2014-11-01
Organophosphates (OP) are highly toxic compounds that cause cholinergic neuronal excitotoxicity and dysfunction by irreversible inhibition of acetylcholinesterase, resulting in delayed brain damage. This delayed secondary neuronal destruction, which arises primarily in the cholinergic areas of the brain that contain dense accumulations of cholinergic neurons and the majority of cholinergic projection, could be largely responsible for persistent profound neuropsychiatric and neurological impairments such as memory, cognitive, mental, emotional, motor, and sensory deficits in the victims of OP poisoning. The therapeutic strategies for reducing neuronal brain damage must adopt a multifunctional approach to the various steps of brain deterioration: (i) standard treatment with atropine and related anticholinergic compounds; (ii) anti-excitotoxic therapies to prevent cerebral edema, blockage of calcium influx, inhibition of apoptosis, and allow for the control of seizure; (iii) neuroprotection by aid of antioxidants and N-methyl-d-aspartate (NMDA) antagonists (multifunctional drug therapy), to inhibit/limit the secondary neuronal damage; and (iv) therapies targeting chronic neuropsychiatric and neurological symptoms. These neuroprotective strategies may prevent secondary neuronal damage in both early and late stages of OP poisoning, and thus may be a beneficial approach to treating the neuropsychological and neuronal impairments resulting from OP toxicity.
Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B.L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.
2009-01-01
Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we use an event-related design, which allowed us to isolate trial related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single-subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. PMID:19819000
Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L
2010-08-01
Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. 2009 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Matthew; Hooker, Brian S.; Herbert, Martha
We review evidence to support the model that autism may begin when a maternal environmental, infectious, or autoantibody insult causes inflammation which increases reactive oxygen species (ROS) production in the fetus, leading to fetal DNA damage (nuclear and mitochondrial), and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations), producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with DNA damage may generate additional ROS which will activate the innate immune system leading to more ROS production. Such a mechanism would self-sustainmore » and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Neurons may have acquired receptors for these inflammatory signals to inhibit neuronal signaling as a protection from excitotoxic damage during various pathologic insults (e.g., infection). In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.« less
Krynetskiy, Evgeny; Krynetskaia, Natalia; Rihawi, Diana; Wieczerzak, Katarzyna; Ciummo, Victoria; Walker, Ellen
2013-01-01
Aims Chemotherapy-associated cognitive impairment often follows cancer chemotherapy. We explored chemotherapy-induced DNA damage in the brain cells of mice treated with 5-fluorouracil (5FU), an antineoplastic agent, to correlate the extent of DNA damage to behavioral functioning in an autoshaping-operant mouse model of chemotherapy-induced learning and memory deficits (Foley et al. 2008). Main methods Male, Swiss-Webster mice were injected once with saline or 75 mg/kg 5FU at 0, 12, and 24 h and weighed every 24 h. Twenty-four h after the last injection, the mice were tested in a two-day acquisition and retention of a novel response task for food reinforcement. Murine brain cells were analyzed for the presence of single- and double-strand DNA breaks by the single cell gel electrophoresis assay (the Comet assay). Key findings We detected significant differences (p<0.0001) for all DNA damage characteristics (DNA “comet” tail shape, migration pattern, tail moment and Olive moments) between control mice cohort and 5FU-treated mice cohort: tail length – 119 vs. 153; tail moment – 101 vs. 136; olive moment – 60 vs. 82, correspondingly. We found a positive correlation between increased response rates (r=0.52, p<0.05) and increased rate of errors (r=0.51, p<0.05), and DNA damage on day 1. For all 15 mice (saline-treated and 5FU-treated mice), we found negative correlations between DNA damage and weight (r=−0.75, p<0.02). Significance Our results indicate that chemotherapy-induced DNA damage changes the physiological status of the brain cells and may provide insights to the mechanisms for cognitive impairment after cancer chemotherapy. PMID:23567806
The right hemisphere in esthetic perception.
Bromberger, Bianca; Sternschein, Rebecca; Widick, Page; Smith, William; Chatterjee, Anjan
2011-01-01
Little about the neuropsychology of art perception and evaluation is known. Most neuropsychological approaches to art have focused on art production and have been anecdotal and qualitative. The field is in desperate need of quantitative methods if it is to advance. Here, we combine a quantitative approach to the assessment of art with modern voxel-lesion-symptom-mapping methods to determine brain-behavior relationships in art perception. We hypothesized that perception of different attributes of art are likely to be disrupted by damage to different regions of the brain. Twenty participants with right hemisphere damage were given the Assessment of Art Attributes, which is designed to quantify judgments of descriptive attributes of visual art. Each participant rated 24 paintings on 6 conceptual attributes (depictive accuracy, abstractness, emotion, symbolism, realism, and animacy) and 6 perceptual attributes (depth, color temperature, color saturation, balance, stroke, and simplicity) and their interest in and preference for these paintings. Deviation scores were obtained for each brain-damaged participant for each attribute based on correlations with group average ratings from 30 age-matched healthy participants. Right hemisphere damage affected participants' judgments of abstractness, accuracy, and stroke quality. Damage to areas within different parts of the frontal parietal and lateral temporal cortices produced deviation in judgments in four of six conceptual attributes (abstractness, symbolism, realism, and animacy). Of the formal attributes, only depth was affected by inferior prefrontal damage. No areas of brain damage were associated with deviations in interestingness or preference judgments. The perception of conceptual and formal attributes in artwork may in part dissociate from each other and from evaluative judgments. More generally, this approach demonstrates the feasibility of quantitative approaches to the neuropsychology of art.
Krynetskiy, Evgeny; Krynetskaia, Natalia; Rihawi, Diana; Wieczerzak, Katarzyna; Ciummo, Victoria; Walker, Ellen
2013-10-17
Chemotherapy-associated cognitive impairment often follows cancer chemotherapy. We explored chemotherapy-induced DNA damage in the brain cells of mice treated with 5-fluorouracil (5FU), an antineoplastic agent, to correlate the extent of DNA damage to behavioral functioning in an autoshaping-operant mouse model of chemotherapy-induced learning and memory deficits (Foley et al., 2008). Male, Swiss-Webster mice were injected once with saline or 75 mg/kg 5FU at 0, 12, and 24h and weighed every 24h. Twenty-four h after the last injection, the mice were tested in a two-day acquisition and the retention of a novel response task for food reinforcement. Murine brain cells were analyzed for the presence of single- and double-strand DNA breaks by the single cell gel electrophoresis assay (the Comet assay). We detected significant differences (p<0.0001) for all DNA damage characteristics (DNA "comet" tail shape, migration pattern, tail moment and olive moments) between control mice cohort and 5FU-treated mice cohort: tail length - 119 vs. 153; tail moment - 101 vs. 136; olive moment - 60 vs. 82, correspondingly. We found a positive correlation between increased response rates (r=0.52, p<0.05) and increased rate of errors (r=0.51, p<0.05), and DNA damage on day 1. For all 15 mice (saline-treated and 5FU-treated mice), we found negative correlations between DNA damage and weight (r=-0.75, p<0.02). Our results indicate that chemotherapy-induced DNA damage changes the physiological status of the brain cells and may provide insights to the mechanisms for cognitive impairment after cancer chemotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.
Cox, Vincent Cm; Schepers, Vera Pm; Ketelaar, Marjolijn; van Heugten, Caroline M; Visser-Meily, Johanna Ma
2018-02-16
Support programs for partners of patients with acquired brain injury are necessary since these partners experience several unfavorable consequences of caregiving, such as a high burden, emotional distress, and poor quality of life. Evidence-based support strategies that can be included in these support programs are psychoeducation, skill building, problem solving, and improving feelings of mastery. A promising approach would seem to be to combine web-based support with face-to-face consultations, creating a blended care intervention. This paper outlines the protocol of a randomized controlled trial to evaluate the CARE4Carer blended care intervention for partners of patients with acquired brain injury. A multicenter two-arm randomized controlled trial will be conducted. A total of 120 partners of patients with acquired brain injury will be recruited from five rehabilitation centers in the Netherlands. The blended care intervention consists of a nine-session web-based support program and two face-to-face consultations with a social worker. Themes that will be addressed are: giving partners insight into their own situation, including possible pitfalls and strengths, learning how to cope with the situation, getting a grip on thoughts and feelings, finding a better balance in the care for the patient with acquired brain injury, thinking about other possible care options, taking care of oneself, and communication. The intervention lasts 20 weeks and the control group will receive usual care. The outcome measures will be assessed at baseline and at 24- and 40-week follow-up. The primary outcome is caregiver mastery. Secondary outcome measures are strain, burden, family functioning, emotional functioning, coping, quality of life, participation, and social network. The effect of the intervention on the primary and secondary outcome measures will be determined. Additional a process evaluation will be conducted. The findings of this study will be used to improve the care for partners of patients with acquired brain injury. Barriers and facilitators that emerge from the process evaluation will be used in the nationwide implementation of the intervention. Dutch Trial Register NTR6197; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6197 (Archived by WebCite at http://www.webcitation.org/6xHBAxx0y). ©Vincent CM Cox, Vera PM Schepers, Marjolijn Ketelaar, Caroline M van Heugten, Johanna MA Visser-Meily. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 16.02.2018.
The Lateralizer: A Tool for Students to Explore the Divided Brain
ERIC Educational Resources Information Center
Motz, Benjamin A.; James, Karin H.; Busey, Thomas A.
2012-01-01
Despite a profusion of popular misinformation about the left brain and right brain, there are functional differences between the left and right cerebral hemispheres in humans. Evidence from split-brain patients, individuals with unilateral brain damage, and neuroimaging studies suggest that each hemisphere may be specialized for certain cognitive…
Mangiferin decreases inflammation and oxidative damage in rat brain after stress.
Márquez, Lucía; García-Bueno, Borja; Madrigal, José L M; Leza, Juan C
2012-09-01
Stress exposure elicits neuroinflammation and oxidative damage in brain, and stress-related neurological and neuropsychiatric diseases have been associated with cell damage and death. Mangiferin (MAG) is a polyphenolic compound abundant in the stem bark of Mangifera indica L. with antioxidant and anti-inflammatory properties in different experimental settings. In this study, the capacity of MAG to prevent neuroinflammation and brain oxidative damage induced by stress exposure was investigated. Young-adult male Wistar rats immobilized during 6 h were administered by oral gavage with increasing doses of MAG (15, 30, and 60 mg/Kg), respectively, 7 days before stress. Prior treatment with MAG prevented all of the following stress-induced effects: (1) increase in glucocorticoids (GCs) and interleukin-1β (IL-1β) plasma levels, (2) loss of redox balance and reduction in catalase brain levels, (3) increase in pro-inflammatory mediators, such as tumor necrosis factor alpha TNF-α and its receptor TNF-R1, nuclear factor-kappa B (NF-κB) and synthesis enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), (4) increase in lipid peroxidation. These multifaceted protective effects suggest that MAG administration could be a new therapeutic strategy in neurological/neuropsychiatric pathologies in which hypothalamic/pituitary/adrenal (HPA) stress axis dysregulation, neuroinflammation, and oxidative damage take place in their pathophysiology.
Repeat neurobehavioral study of borderline personality disorder.
van Reekum, R; Links, P S; Finlayson, M A; Boyle, M; Boiago, I; Ostrander, L A; Moustacalis, E
1996-01-01
Previous research has tentatively identified a large subgroup of patients with borderline personality disorder (BPD) with histories of developmental or acquired brain insults. Similarly, these studies have demonstrated a possible biological correlation between the severity of BPD and the number of previous brain insults. The possibility of frontal system cognitive dysfunction in BPD has been raised. This single-blind, case-control study of BPD showed that 13 of 24 subjects with BPD had suffered a brain insult. Correlations between neurodevelopmental/acquired brain injury score and the diagnostic interview for borderline (DIB) score (r = 0.47), and between frontal system cognitive functioning and DIB score (r = -0.37) were seen. Neurocognitive testing and comparison with a cohort of subjects with traumatic brain injury (TBI) showed a pattern of similar cognitive functioning between the 2 groups, with the only differences on individual tests being in the direction of worse functioning in the group with BPD on 2 tasks. These results support the hypotheses described above. The main limitation reflects the low numbers of subjects. PMID:8580113
Lubrini, G; Martín-Montes, A; Díez-Ascaso, O; Díez-Tejedor, E
2018-04-01
Our conception of the mind-brain relationship has evolved from the traditional idea of dualism to current evidence that mental functions result from brain activity. This paradigm shift, combined with recent advances in neuroimaging, has led to a novel definition of brain functioning in terms of structural and functional connectivity. The purpose of this literature review is to describe the relationship between connectivity, brain lesions, cerebral plasticity, and functional recovery. Assuming that brain function results from the organisation of the entire brain in networks, brain dysfunction would be a consequence of altered brain network connectivity. According to this approach, cognitive and behavioural impairment following brain damage result from disrupted functional organisation of brain networks. However, the dynamic and versatile nature of these circuits makes recovering brain function possible. Cerebral plasticity allows for functional reorganisation leading to recovery, whether spontaneous or resulting from cognitive therapy, after brain disease. Current knowledge of brain connectivity and cerebral plasticity provides new insights into normal brain functioning, the mechanisms of brain damage, and functional recovery, which in turn serve as the foundations of cognitive therapy. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar
2013-01-01
Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433
Cellular senescence in honey bee brain is largely independent of chronological age
Seehuus, Siri-Christine; Krekling, Trygve; Amdam, Gro V.
2008-01-01
Accumulation of oxidative stress-induced damage in brain tissue plays an important role in the pathogenesis of normal aging and neurodegenerative diseases. Neuronal oxidative damage typically increases with age in humans, and also in the invertebrate and vertebrate model species most commonly used in aging research. By use of quantitative immunohistochemistry and Western blot, we show that this aspect of brain senescence is largely decoupled from chronological age in the honey bee (Apis mellifera). The bee is a eusocial insect characterized by the presence of a reproductive queen caste and a caste of functionally sterile female workers that performs various alloparental tasks such as nursing and foraging. We studied patterns of oxidative nitration and carbonylation damage in the brain of worker bees that performed nurse tasks as 8- and 200-day-olds and foraging tasks as 20- and 200-day-olds. In addition, we examined 180-day-old diutinus bees, a stress-resistant temporal worker form that survives unfavorable periods. Our results indicate that nitration damage occurs only at low levels in vivo, but that a 60-kDa protein from honey bee brain is selectively nitrated by peroxynitrite in vitro. Oxidative carbonylation is present at varying levels in the visual and chemosensory neuropiles of worker bees, and this inter-individual variation is better explained by social role than by chronological age. PMID:17052880
Workshops: Extend Learning beyond Your Presentation with These Brain-Friendly Strategies
ERIC Educational Resources Information Center
Tate, Marcia L.
2009-01-01
Whether one is perusing the brain research, learning-style theory or proven professional development practices, there are strategies that, by their very nature, take advantage of the way brains acquire information. While these strategies facilitate instruction for K-12 students, they work equally well for adult learners. This article outlines 10…
Lee, Chao Yu; Wang, Liang-Fei; Wu, Chun-Hu; Ke, Chia-Hua; Chen, Szu-Fu
2014-01-01
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect. PMID:25546475
Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.
Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan
2015-02-05
Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.
Naruse, Tomofumi; Tokuhisa, Mitsuko; Yanamoto, Souichi; Sakamoto, Yuki; Okuyama, Kohei; Tsuchihashi, Hiroki; Umeda, Masahiro
2018-05-01
Long-term cetuximab treatment can lead to acquired resistance, and tumor progression and/or new lesions often occur. The present report describes a case of lower gingival squamous cell carcinoma with brain metastasis during long-term cetuximab treatment in a 60-year-old man, including findings of an immunohistochemical study. The resected primary tumors, biopsy of the lung metastasis before administration of cetuximab, and brain metastasis specimens mediated by cetuximab were immunohistochemically examined. Histologically, the metastatic brain lesion showed hyperkeratinizing tumor cells with deeply stained irregular nuclei with necrotizing tumor cells, and a decrease in cell density was exhibited in part of the tumor nest. Moreover, the brain lesion was less malignant compared with the primary tumor and metastatic lung lesions. Immunohistochemically, the metastatic brain lesions showed low expression of epidermal growth factor receptor (EGFR) and high expression of N-cadherin compared with the primary tumor and metastatic lung lesions. These results suggest that acquired resistance to cetuximab may be associated with low EGFR expression and increased epithelial-to-mesenchymal transition potential.
... brain problems) brain damage (from cut-off oxygen flow to the brain) In addition, because nitrites are misused for sexual pleasure and performance, they can lead to unsafe sexual practices or other risky behavior. This increases the chance of getting or spreading ...
In situ FTIR microspectroscopy of extravasated blood-damaged brain tissue
NASA Astrophysics Data System (ADS)
Wetzel, David L.; Le Vine, Steven M.
1994-01-01
Fourier transform infrared (FT-IR) microspectroscopy enables the collection of infrared spectra from microscopic regions of tissue sections. The objectives of this study were to utilize FT-IR microspectroscopy to analyze the spatial distribution of chemical changes that result from the extravasation of blood into the brain and to determine if products of free radical damage are associated with the damaged areas. An animal model that involves the injection of blood into the white matter of rat brains was used. Maps depicting the relative concentrations of chemical functional groups of lesioned sites and surrounding areas were made. Significant decreases were observed for CH2, C equals O, P equals O, and HO-C-H functional groups at the lesioned site and penumbra regions compared to the neighboring normal tissue areas.
The osmotic/calcium stress theory of brain damage: are free radicals involved?
Pazdernik, T L; Layton, M; Nelson, S R; Samson, F E
1992-01-01
This overview presents data showing that glucose use increases and that excitatory amino acids (i.e., glutamate, aspartate), taurine and ascorbate increase in the extracellular fluid during seizures. During the cellular hyperactive state taurine appears to serve as an osmoregulator and ascorbate may serve as either an antioxidant or as a pro-oxidant. Finally, a unifying hypothesis is given for seizure-induced brain damage. This unifying hypothesis states that during seizures there is a release of excitatory amino acids which act on glutamatergic receptors, increasing neuronal activity and thereby increasing glucose use. This hyperactivity of cells causes an influx of calcium (i.e., calcium stress) and water movements (i.e., osmotic stress) into the cells that culminate in brain damage mediated by reactive oxygen species.
Interpreting and Utilising Intersubject Variability in Brain Function.
Seghier, Mohamed L; Price, Cathy J
2018-06-01
We consider between-subject variance in brain function as data rather than noise. We describe variability as a natural output of a noisy plastic system (the brain) where each subject embodies a particular parameterisation of that system. In this context, variability becomes an opportunity to: (i) better characterise typical versus atypical brain functions; (ii) reveal the different cognitive strategies and processing networks that can sustain similar tasks; and (iii) predict recovery capacity after brain damage by taking into account both damaged and spared processing pathways. This has many ramifications for understanding individual learning preferences and explaining the wide differences in human abilities and disabilities. Understanding variability boosts the translational potential of neuroimaging findings, in particular in clinical and educational neuroscience. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Harazin, András; Bocsik, Alexandra; Barna, Lilla; Kincses, András; Váradi, Judit; Fenyvesi, Ferenc; Tubak, Vilmos; Deli, Maria A; Vecsernyés, Miklós
2018-01-01
The blood-brain barrier (BBB), an interface between the systemic circulation and the nervous system, can be a target of cytokines in inflammatory conditions. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induce damage in brain endothelial cells and BBB dysfunction which contribute to neuronal injury. The neuroprotective effects of α-melanocyte stimulating hormone (α-MSH) were investigated in experimental models, but there are no data related to the BBB. Based on our recent study, in which α-MSH reduced barrier dysfunction in human intestinal epithelial cells induced by TNF-α and IL-1β, we hypothesized a protective effect of α-MSH on brain endothelial cells. We examined the effect of these two pro-inflammatory cytokines, and the neuropeptide α-MSH on a culture model of the BBB, primary rat brain endothelial cells co-cultured with rat brain pericytes and glial cells. We demonstrated the expression of melanocortin-1 receptor in isolated rat brain microvessels and cultured brain endothelial cells by RT-PCR and immunohistochemistry. TNF-α and IL-1β induced cell damage, measured by impedance and MTT assay, which was attenuated by α-MSH (1 and 10 pM). The peptide inhibited the cytokine-induced increase in brain endothelial permeability, and restored the morphological changes in cellular junctions visualized by immunostaining for claudin-5 and β-catenin. Elevated production of reactive oxygen species and the nuclear translocation of NF-κB were also reduced by α-MSH in brain endothelial cells stimulated by cytokines. We demonstrated for the first time the direct beneficial effect of α-MSH on cultured brain endothelial cells, indicating that this neurohormone may be protective at the BBB.
Coimbra, Raul; Conroy, Carol; Hoyt, David B; Pacyna, Sharon; May, MarSue; Erwin, Steve; Tominaga, Gail; Kennedy, Frank; Sise, Michael; Velky, Tom
2008-07-01
In spite of improvements in motor vehicle safety systems and crashworthiness, motor vehicle crashes remain one of the leading causes of brain injury. The purpose of this study was to determine if the damage distribution across the frontal plane affected brain injury severity of occupants in frontal impacts. Occupants in "head on" frontal impacts with a Principal Direction of Force (PDOF) equal to 11, 12, or 1o'clock who sustained serious brain injury were identified using the Crash Injury Research Engineering Network (CIREN) database. Impacts were further classified based on the damage distribution across the frontal plane as distributed, offset, and extreme offset (corner). Overall, there was no significant difference for brain injury severity (based on Glasgow Coma Scale<9, or brain injury AIS>2) comparing occupants in the different impact categories. For occupants in distributed frontal impacts, safety belt use was protective (odds ratio (OR)=0.61) and intrusion at the occupant's seat position was four times more likely to result in severe (Glasgow Coma Scale (GCS)<9) brain injury (OR=4.35). For occupants in offset frontal impacts, again safety belt use was protective against severe brain injury (OR=0.25). Possibly due to the small number of brain-injured occupants in corner impacts, safety belts did not significantly protect against increased brain injury severity during corner impacts. This study supports the importance of safety belt use to decrease brain injury severity for occupants in distributed and offset frontal crashes. It also illustrates how studying "real world" crashes may provide useful information on occupant injuries under impact circumstances not currently covered by crash testing.
Barna, Lilla; Kincses, András; Váradi, Judit; Fenyvesi, Ferenc; Tubak, Vilmos
2018-01-01
The blood–brain barrier (BBB), an interface between the systemic circulation and the nervous system, can be a target of cytokines in inflammatory conditions. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induce damage in brain endothelial cells and BBB dysfunction which contribute to neuronal injury. The neuroprotective effects of α-melanocyte stimulating hormone (α-MSH) were investigated in experimental models, but there are no data related to the BBB. Based on our recent study, in which α-MSH reduced barrier dysfunction in human intestinal epithelial cells induced by TNF-α and IL-1β, we hypothesized a protective effect of α-MSH on brain endothelial cells. We examined the effect of these two pro-inflammatory cytokines, and the neuropeptide α-MSH on a culture model of the BBB, primary rat brain endothelial cells co-cultured with rat brain pericytes and glial cells. We demonstrated the expression of melanocortin-1 receptor in isolated rat brain microvessels and cultured brain endothelial cells by RT-PCR and immunohistochemistry. TNF-α and IL-1β induced cell damage, measured by impedance and MTT assay, which was attenuated by α-MSH (1 and 10 pM). The peptide inhibited the cytokine-induced increase in brain endothelial permeability, and restored the morphological changes in cellular junctions visualized by immunostaining for claudin-5 and β-catenin. Elevated production of reactive oxygen species and the nuclear translocation of NF-κB were also reduced by α-MSH in brain endothelial cells stimulated by cytokines. We demonstrated for the first time the direct beneficial effect of α-MSH on cultured brain endothelial cells, indicating that this neurohormone may be protective at the BBB. PMID:29780671
A case of acquired port wine stain: an association with repeated sunburn?
Seremet, Sila; Benar, Elif B; Afsar, Fatma Sule; Calli, Aylin; Ulusarac, Ozlem
2016-10-01
Unlike congenital port wine stain (PWS), an acquired PWS is a rare vascular lesion that develops later in life. Although solar damage is associated with acquired PWS, there is no reported case of acquired PWS after sunburn in the literature. We report a case of a 54-year-old man diagnosed with acquired PWS possibly caused by repeated sunburn. We recommended laser treatment to our patient; however, the patient did not chose to receive any treatment. Our case demonstrates a possible rare occurrence of an acquired PWS after sunburn with larger lesions and more diffuse distribution. For this reason, our case differs from other acquired PWS cases. © 2016 The International Society of Dermatology.
Statistical Methods for Magnetic Resonance Image Analysis with Applications to Multiple Sclerosis
NASA Astrophysics Data System (ADS)
Pomann, Gina-Maria
Multiple sclerosis (MS) is an immune-mediated neurological disease that causes disability and morbidity. In patients with MS, the accumulation of lesions in the white matter of the brain is associated with disease progression and worse clinical outcomes. In the first part of the dissertation, we present methodology to study to compare the brain anatomy between patients with MS and controls. A nonparametric testing procedure is proposed for testing the null hypothesis that two samples of curves observed at discrete grids and with noise have the same underlying distribution. We propose to decompose the curves using functional principal component analysis of an appropriate mixture process, which we refer to as marginal functional principal component analysis. This approach reduces the dimension of the testing problem in a way that enables the use of traditional nonparametric univariate testing procedures. The procedure is computationally efficient and accommodates different sampling designs. Numerical studies are presented to validate the size and power properties of the test in many realistic scenarios. In these cases, the proposed test is more powerful than its primary competitor. The proposed methodology is illustrated on a state-of-the art diffusion tensor imaging study, where the objective is to compare white matter tract profiles in healthy individuals and MS patients. In the second part of the thesis, we present methods to study the behavior of MS in the white matter of the brain. Breakdown of the blood-brain barrier in newer lesions is indicative of more active disease-related processes and is a primary outcome considered in clinical trials of treatments for MS. Such abnormalities in active MS lesions are evaluated in vivo using contrast-enhanced structural magnetic resonance imaging (MRI), during which patients receive an intravenous infusion of a costly magnetic contrast agent. In some instances, the contrast agents can have toxic effects. Recently, local image regression techniques have been shown to have modest performance for assessing the integrity of the blood-brain barrier based on imaging without contrast agents. These models have centered on the problem of cross-sectional classification in which patients are imaged at a single study visit and pre-contrast images are used to predict post-contrast imaging. In this paper, we extend these methods to incorporate historical imaging information, and we find the proposed model to exhibit improved performance. We further develop scan-stratified case-control sampling techniques that reduce the computational burden of local image regression models while respecting the low proportion of the brain that exhibits abnormal vascular permeability. In the third part of this thesis, we present methods to evaluate tissue damage in patients with MS. We propose a lag functional linear model to predict a functional response using multiple functional predictors observed at discrete grids with noise. Two procedures are proposed to estimate the regression parameter functions; 1) a semi-local smoothing approach using generalized cross-validation; and 2) a global smoothing approach using a restricted maximum likelihood framework. Numerical studies are presented to analyze predictive accuracy in many realistic scenarios. We find that the global smoothing approach results in higher predictive accuracy than the semi-local approach. The methods are employed to estimate a measure of tissue damage in patients with MS. In patients with MS, the myelin sheaths around the axons of the neurons in the brain and spinal cord are damaged. The model facilitates the use of commonly acquired imaging modalities to estimate a measure of tissue damage within lesions. The proposed model outperforms the cross-sectional models that do not account for temporal patterns of lesional development and repair.
Bashir, Shahid; Mizrahi, Ilan; Weaver, Kayleen; Fregni, Felipe; Pascual-Leone, Alvaro
2013-01-01
Despite intensive efforts towards the improvement of outcomes after acquired brain injury functional recovery is often limited. One reasons is the challenge in assessing and guiding plasticity after brain injury. In this context, Transcranial Magnetic Stimulation (TMS) - a noninvasive tool of brain stimulation - could play a major role. TMS has shown to be a reliable tool to measure plastic changes in the motor cortex associated with interventions in the motor system; such as motor training and motor cortex stimulation. In addition, as illustrated by the experience in promoting recovery from stroke, TMS a promising therapeutic tool to minimize motor, speech, cognitive, and mood deficits. In this review, we will focus on stroke to discuss how TMS can provide insights into the mechanisms of neurological recovery, and can be used for measurement and modulation of plasticity after an acquired brain insult. PMID:21172687
Franke, Silvia I R; Molz, Patrícia; Mai, Camila; Ellwanger, Joel H; Zenkner, Fernanda F; Horta, Jorge A; Prá, Daniel
2018-04-16
We evaluated the influence of hesperidin and vitamin C (VitC) on glycemic parameters, lipid profile, and DNA damage in male Wistar rats treated with sucrose overload. Rats were divided into six experimental groups: I-water control; II-sucrose control; III-hesperidin control; IV-VitC control; V-co-treatment of sucrose plus hesperidin; VI-co-treatment of sucrose plus VitC. We measured the levels of triglycerides, total cholesterol, HDL-c, LDL-c, fasting glucose, and glycated hemoglobin (A1C). DNA damage was evaluated in blood and brain cells using the comet assay and the micronucleus test was used to evaluate chromosomal damages in the rat bone marrow. Co-treatment with VitC, but not with hesperidin, normalized the serum glucose. No effect of co-treatments was observed on A1C. The co-treatment with VitC or hesperidin did not influence the lipid profile (p>0.05). Rats co-treated with hesperidin had a significantly lower DNA damage level in blood (p<0.05) and brain (p<0.05). Rats treated with VitC only, but not those co-treated with VitC plus sucrose, had significantly higher DNA damage in brain (p<0.05). No significant differences were observed in the results of micronucleus test (p>0.05). Hesperidin and VitC showed different effects on sucrose and DNA damage levels. While VitC lowered the serum glucose, hesperidin reduced the DNA damage.
Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.
Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B
2015-09-01
White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.
Yamamoto, Hiro-aki; Mohanan, Parayanthala V
2003-07-20
The effects of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA (mtDNA) damage and seizures induced by kainic acid were examined both in vivo and in vitro. An intraperitoneal (ip) injection of kainic acid (45 mg/kg) produced broad-spectrum limbic and severe sustained seizures in all of the treated mice. The seizures were abolished when alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg) was injected intraperitoneally in the animals 1 min before kainic acid administration. In addition, the administration of kainic acid caused damage to mtDNA in brain frontal and middle cortex of mice. These effects were completely abolished by the ip preinjection of alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg). In vitro exposure of kainic acid (0.25, 0.5 or 1.0 mM) to brain homogenate inflicted damage to mtDNA in a concentration-dependent manner. The damage of mtDNA induced by 1.0 mM kainic acid was attenuated by the co-treatment with alpha-ketoglutarate (2.5 or 5.0 mM) or oxaloacetate (0.75 or 1.0 mM). Furthermore, in vivo and in vitro exposure of kainic acid elicited an increase in lipid peroxidation. However, the increased lipid peroxidation was completely inhibited by cotreatment of alpha-ketoglutarate or oxaloacetate. These results suggest that alpha-keto acids such as alpha-ketoglutarate and oxaloacetate play a role in the inhibition of seizures and subsequent mtDNA damage induced by the excitotoxic/neurotoxic agent, kainic acid.
[Physical activity: positive impact on brain plasticity].
Achiron, Anat; Kalron, Alon
2008-03-01
The central nervous system has a unique capability of plasticity that enables a single neuron or a group of neurons to undergo functional and constructional changes that are important to learning processes and for compensation of brain damage. The current review aims to summarize recent data related to the effects of physical activity on brain plasticity. In the last decade it was reported that physical activity can affect and manipulate neuronal connections, synaptic activity and adaptation to new neuronal environment following brain injury. One of the most significant neurotrophic factors that is critical for synaptic re-organization and is influenced by physical activity is brain-derived neurotrophic factor (BDNF). The frequency of physical activity and the intensity of exercises are of importance to brain remodeling, support neuronal survival and positively affect rehabilitation therapy. Physical activity should be employed as a tool to improve neural function in healthy subjects and in patients suffering from neurological damage.
Neuroanatomy and neuropathology associated with Korsakoff's syndrome.
Kril, Jillian J; Harper, Clive G
2012-06-01
Although the neuropathology of Korsakoff's syndrome (KS) was first described well over a century ago and the characteristic brain pathology does not pose a diagnostic challenge to pathologists, there is still controversy over the neuroanatomical substrate of the distinctive memory impairment in these patients. Cohort studies of KS suggest a central role for the mammillary bodies and mediodorsal thalamus, and quantitative studies suggest additional damage to the anterior thalamus is required. Rare cases of KS caused by pathologies other than those of nutritional origin provide support for the role of the anterior thalamus and mammillary bodies. Taken together the evidence to date shows that damage to the thalamus and hypothalamus is required, in particular the anterior thalamic nucleus and the medial mammillary nucleus of the hypothalamus. As these nuclei form part of wider memory circuits, damage to the inter-connecting white matter tracts can also result in a similar deficit as direct damage to the nuclei. Although these nuclei and their connections appear to be the primary site of damage, input from other brain regions within the circuits, such as the frontal cortex and hippocampus, or more distant regions, including the cerebellum and amygdala, may have a modulatory role on memory function. Further studies to confirm the precise site(s) and extend of brain damage necessary for the memory impairment of KS are required.
Wu, Yuan-Ting; Adnan, Ashfaq
2017-07-13
The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.
ERIC Educational Resources Information Center
Braun, M.; Traue, H.C.; Frisch, S.; Deighton, R.M.; Kessler, H.
2005-01-01
The aim of this study was to investigate the effect of a stroke event on people's ability to recognize basic emotions. In particular, the hypothesis that right brain-damaged (RBD) patients would show less of emotion recognition ability compared with left brain-damaged (LBD) patients and healthy controls, was tested. To investigate this the FEEL…
Selective Targeting of Brain Tumors with Gold Nanoparticle-Induced Radiosensitization
Joh, Daniel Y.; Sun, Lova; Stangl, Melissa; Al Zaki, Ajlan; Murty, Surya; Santoiemma, Phillip P.; Davis, James J.; Baumann, Brian C.; Alonso-Basanta, Michelle; Bhang, Dongha; Kao, Gary D.; Tsourkas, Andrew; Dorsey, Jay F.
2013-01-01
Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ∼1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature. PMID:23638079
Visual cortex activity predicts subjective experience after reading books with colored letters.
Colizoli, Olympia; Murre, Jaap M J; Scholte, H Steven; van Es, Daniel M; Knapen, Tomas; Rouw, Romke
2016-07-29
One of the most astonishing properties of synesthesia is that the evoked concurrent experiences are perceptual. Is it possible to acquire similar effects after learning cross-modal associations that resemble synesthetic mappings? In this study, we examine whether brain activation in early visual areas can be directly related to letter-color associations acquired by training. Non-synesthetes read specially prepared books with colored letters for several weeks and were scanned using functional magnetic resonance imaging. If the acquired letter-color associations were visual in nature, then brain activation in visual cortex while viewing the trained black letters (compared to untrained black letters) should predict the strength of the associations, the quality of the color experience, or the vividness of visual mental imagery. Results showed that training-related activation of area V4 was correlated with differences in reported subjective color experience. Trainees who were classified as having stronger 'associator' types of color experiences also had more negative activation for trained compared to untrained achromatic letters in area V4. In contrast, the strength of the acquired associations (measured as the Stroop effect) was not reliably reflected in visual cortex activity. The reported vividness of visual mental imagery was related to veridical color activation in early visual cortex, but not to the acquired color associations. We show for the first time that subjective experience related to a synesthesia-training paradigm was reflected in visual brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress.
Özevren, Hüseyin; İrtegün, Sevgi; Deveci, Engin; Aşır, Fırat; Pektanç, Gülsüm; Deveci, Şenay
2017-10-01
Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum ( G. lucidum ) polysaccharides (GLPs) on brain injury in brain-traumatized rats. Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum , trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.
Huong, Nguyen Thi Thu; Murakami, Yukihisa; Tohda, Michihisa; Watanabe, Hiroshi; Matsumoto, Kinzo
2005-08-01
Stressors with a physical factor such as immobilization, electric foot shock, cold swim, etc., have been shown to produce oxidative damage to membrane lipids in the brain. In this study, we investigated the effect of protracted social isolation stress on lipid peroxidation activity in the mouse brain and elucidated the protective effect of majonoside-R2, a major saponin component of Vietnamese ginseng, in mice exposed to social isolation stress. Thiobarbituric acid reactive substance levels, one of the end products of lipid peroxidation reaction, were increased in the brains of mice subjected to 6-8 weeks of social isolation stress. Measurements of nitric oxide (NO) metabolites (NO(x)(-)) also revealed a significant increase of NO production in the brains of socially isolated mice. Moreover, the depletion of brain glutathione content, an endogenous antioxidant, in socially isolated animals occurred in association with the rise in lipid peroxidation. The intraperitoneal administration of majonoside-R2 (10-50 mg/kg) had no effect on thiobarbituric acid reactive substances (TBARS), NO, or glutathione levels in the brains of group-housed control mice but it significantly suppressed the increase in TBARS and NO levels and the decrease in glutathione levels caused by social isolation stress. These results suggest that mice subjected to 6-8 weeks of social isolation stress produces oxidative damage in the brain partly via enhancement of NO production, and that majonoside-R2 exerts a protective effect by modulating NO and glutathione systems in the brain.
Is it juvenile myoclonic epilepsy?
Gelisse, P; Genton, P; Raybaud, C; Thomas, P; Bartolomei, F; Dravet, C
2000-03-01
A 21-year old man with marked developmental delay was referred for the diagnosis of myoclonic jerks (MJ), which were sometimes responsible for sudden falls without loss of consciousness, that had begun 2 years before, and for a recent generalized tonic-clonic seizure preceded by a cluster of MJ. Physical examination revealed a small stature, bilateral pyramidal signs, severe mental retardation, and retinis pigmentosa. Etiological factors for this encephalopathy were not found (muscle and skin biopsies, karyotype and extensive blood chemistry). Waking interictal EEG showed a normal background activity and generalized poly-spike-and wave (PSW) discharges. Photic stimulation disclosed a marked photoparoxysmal response, sometimes associated with myoclonic jerks. Three spontaneous jerks accompanied by a burst of generalized PSW were recorded on awakening from a nap. The MRI disclosed wide ventricles, a thin corpus callosum, brainstem atrophy and a so-called "redundant gyration"; these changes were evocative of acquired perinatal damage. Juvenile myoclonic epilepsy (JME) was diagnosed and valproate was started resulting in complete control of seizures. During a 5-year follow-up, the patient has remained seizure-free and the EEG consistently normal. In our opinion, JME can be diagnosed in very uncommon settings, including patients with significant brain damage, as long as all the other criteria for the diagnosis are present.
Thiele, Kristina; Quinting, Jana Marie; Stenneken, Prisca
2016-09-01
The investigation of word generation performance is an accepted, widely used, and well-established method for examining cognitive, language, or communication impairment due to brain damage. The performance measure traditionally applied in the investigation of word generation is the number of correct responses. Previous studies, however, have suggested that this measure does not capture all potentially relevant aspects of word generation performance and hence its underlying processes, so that its analytical and explanatory power of word generation performance might be rather limited. Therefore, additional qualitative or quantitative performance measures have been introduced to gain information that goes beyond the deficit and allows for therapeutic implications. We undertook a systematic review and meta-analysis of original research that focused on the application of additional measures of word generation performance in adult clinical populations with acquired brain injury. Word generation tasks are an integral part of many different tests, but only few use additional performance measures in addition to the number of correct responses in the analysis of word generation performance. Additional measures, which showed increased or similar diagnostic utility relative to the traditional performance measure, regarded clustering and switching, error types, and temporal characteristics. The potential of additional performance measures is not yet fully exhausted in patients with brain injury. The temporal measure of response latencies in particular is not adequately represented, though it may be a reliable measure especially for identifying subtle impairments. Unfortunately, there is no general consensus as of yet on which additional measures are best suited to characterizing word generation performance. Further research is needed to specify the additional parameters that are best qualified for identifying and characterizing impaired word generation performance.
Hughes, Emer J.; Hutter, Jana; Price, Anthony N.; Hajnal, Joseph V.
2017-01-01
Purpose To introduce a methodology for the reconstruction of multi‐shot, multi‐slice magnetic resonance imaging able to cope with both within‐plane and through‐plane rigid motion and to describe its application in structural brain imaging. Theory and Methods The method alternates between motion estimation and reconstruction using a common objective function for both. Estimates of three‐dimensional motion states for each shot and slice are gradually refined by improving on the fit of current reconstructions to the partial k‐space information from multiple coils. Overlapped slices and super‐resolution allow recovery of through‐plane motion and outlier rejection discards artifacted shots. The method is applied to T 2 and T 1 brain scans acquired in different views. Results The procedure has greatly diminished artifacts in a database of 1883 neonatal image volumes, as assessed by image quality metrics and visual inspection. Examples showing the ability to correct for motion and robustness against damaged shots are provided. Combination of motion corrected reconstructions for different views has shown further artifact suppression and resolution recovery. Conclusion The proposed method addresses the problem of rigid motion in multi‐shot multi‐slice anatomical brain scans. Tests on a large collection of potentially corrupted datasets have shown a remarkable image quality improvement. Magn Reson Med 79:1365–1376, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28626962
Kavcic, Voyko; Triplett, Regina L.; Das, Anasuya; Martin, Tim; Huxlin, Krystel R.
2015-01-01
Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision. PMID:25575450
Teaching Sport Skills to Brain-Injury Students: An Example in Swimming
ERIC Educational Resources Information Center
Driver, Simon; Kelly, Luke
2005-01-01
The number of people who experience a brain injury increases every year, and 40 percent of all cases involve children (Hill, 1999). In fact, this high rate has led brain injury to become the most commonly acquired disability among children (Bigge, Best, & Heller, 2001), leading to a variety of primary disabilities that affect cognition,…
Clapp, Ned E.; Hively, Lee M.
1997-01-01
Methods and apparatus automatically detect alertness in humans by monitoring and analyzing brain wave signals. Steps include: acquiring the brain wave (EEG or MEG) data from the subject, digitizing the data, separating artifact data from raw data, and comparing trends in f-data to alertness indicators, providing notification of inadequate alertness.
Geurtsen, Gert J; van Heugten, Caroline M; Martina, Juan D; Rietveld, Antonius C; Meijer, Ron; Geurts, Alexander C
2011-05-01
To examine the effects of a residential community reintegration program on independent living, societal participation, emotional well-being, and quality of life in patients with chronic acquired brain injury and psychosocial problems hampering societal participation. A prospective cohort study with a 3-month waiting list control period and 1-year follow up. A tertiary rehabilitation center for acquired brain injury. Patients (N=70) with acquired brain injury (46 men; mean age, 25.1y; mean time post-onset, 5.2y; at follow up n=67). A structured residential treatment program was offered directed at improving independence in domestic life, work, leisure time, and social interactions. Community Integration Questionnaire (CIQ), Employability Rating Scale, living situation, school, work situation, work hours, Center for Epidemiological Studies Depression Scale, EuroQOL quality of life scale (2 scales), World Health Organization Quality of Life Scale Abbreviated (WHOQOL-BREF; 5 scales), and the Global Assessment of Functioning (GAF) scale. There was an overall significant time effect for all outcome measures (multiple analysis of variance T(2)=26.16; F(36,557) 134.9; P=.000). There was no spontaneous recovery during the waiting-list period. The effect sizes for the CIQ, Employability Rating Scale, work hours, and GAF were large (partial η(2)=0.25, 0.35, 0.22, and 0.72, respectively). The effect sizes were moderate for 7 of the 8 emotional well-being and quality of life (sub)scales (partial η(2)=0.11-0.20). The WHOQOL-BREF environment subscale showed a small effect size (partial η(2)=0.05). Living independently rose from 25.4% before treatment to 72.4% after treatment and was still 65.7% at follow up. This study shows that a residential community reintegration program leads to significant and relevant improvements of independent living, societal participation, emotional well-being, and quality of life in patients with chronic acquired brain injury and psychosocial problems hampering societal participation. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
de Sousa, Davide G; Harvey, Lisa A; Dorsch, Simone; Leung, Joan; Harris, Whitney
2016-10-01
Does 4 weeks of active functional electrical stimulation (FES) cycling in addition to usual care improve mobility and strength more than usual care alone in people with a sub-acute acquired brain injury caused by stroke or trauma? Multi centre, randomised, controlled trial. Forty patients from three Sydney hospitals with recently acquired brain injury and a mean composite strength score in the affected lower limb of 7 (SD 5) out of 20 points. Participants in the experimental group received an incremental, progressive, FES cycling program five times a week over a 4-week period. All participants received usual care. Outcome measures were taken at baseline and at 4 weeks. Primary outcomes were mobility and strength of the knee extensors of the affected lower limb. Mobility was measured with three mobility items of the Functional Independence Measure and strength was measured with a hand-held dynamometer. Secondary outcomes were strength of the knee extensors of the unaffected lower limb, strength of key muscles of the affected lower limb and spasticity of the affected plantar flexors. All but one participant completed the study. The mean between-group differences for mobility and strength of the knee extensors of the affected lower limb were -0.3/21 points (95% CI -3.2 to 2.7) and 7.5 Nm (95% CI -5.1 to 20.2), where positive values favoured the experimental group. The only secondary outcome that suggested a possible treatment effect was strength of key muscles of the affected lower limb with a mean between-group difference of 3.0/20 points (95% CI 1.3 to 4.8). Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear. ACTRN12612001163897. [de Sousa DG, Harvey LA, Dorsch S, Leung J, Harris W (2016) Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear: a randomised controlled trial.Journal of Physiotherapy62: 203-208]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Gagnon, Jean; Simpson, Grahame Kenneth; Kelly, Glenn; Godbout, Denis; Ouellette, Michel; Drolet, Jacques
2016-01-01
To develop a French version of the Overt Behaviour Scale (OBS) and examine some of its psychometric properties. The scale was adapted and validated according to standard guidelines for cross-cultural adaptation of questionnaires (Échelle des comportements observables; ÉCO). The reliability and construct validity of the ÉCO were studied among 29 inpatients and outpatients who sustained an acquired brain injury. The instruments were administered by 12 clinicians located at eight rehabilitation centres and the local brain injury association. The ÉCO provided behaviour profile descriptives much like the original scale. It showed excellent reliability and good convergent and divergent validity, as reflected by significant associations with other measures that contained similar behavioural items and by the absence of signification correlations with broader constructs such as physical and cognitive abilities. This study provides evidence that the ÉCO behaves much like the original OBS, has promising initial findings with respect to reliability and validity and is a valuable research and clinical instrument to assess the severity and typology of challenging behaviour after an acquired brain injury and to monitor the evolution of behaviours after intervention in French and bilingual communities.
Van Bost, Gunther; Van Damme, Stefaan; Crombez, Geert
2017-01-01
An acquired brain injury (ABI) is a challenge for an individual's quality of life (QOL). In several chronic illnesses acceptance has been found to be associated with a better health-related quality of life. This study investigated whether this relationship is also found in patients with ABI. We also explored the impact of the perceived ability to live according to one's own values (life-values-match). A total of 68 individuals (18-65 years of age) with an acquired brain injury completed a battery of questionnaires. The relations between health-related QOL (SF-36) and disease specific QOL (EBIQ; European Brain Injury Questionnaire), and personal values (Schwartz Values Inventory) and acceptance (ICQ; Illness Cognitions Questionnaire) were investigated. An additional question measured the life-values-match. Rehabilitation professionals reported the extent of impairment involved. Acceptance was positively associated with mental aspects of health-related QOL and the EBIQ Core Scale, after demographic variables and the extent of impairment were introduced in the regression. In a post hoc analysis we found that the life-values-match mediated the relationship between acceptance and mental aspects of QOL. In patients with an ABI, promoting acceptance may be useful to protect QOL. Strengthening the life-values-match may be a way to accomplish this.
Malec, James F
2004-12-01
To evaluate the internal consistency, interrater agreement, concurrent validity, and floor and ceiling effects of the 8-item Participation Index (M2PI) of the Mayo-Portland Adaptability Inventory (MPAI). M2PI data derived from MPAIs completed independently by the people with acquired brain injury undergoing evaluation, their significant others, and rehabilitation staff were submitted to Rasch Facets analysis to determine the internal consistency of each independent rater group and of composite measures that combined rater groups. Correlations with the full-scale MPAI were examined to assess concurrent validity, as was interrater agreement. Outpatient rehabilitation in academic physical medicine and rehabilitation department. People with acquired brain injury (N=134) consecutively seen for evaluation, significant others, and evaluating staff. Not applicable. The MPAI and M2PI. The M2PI showed satisfactory internal consistency, concurrent validity, interrater agreement, and minimal floor and ceiling effects, although evidence of rater bias was also apparent. Composite indices showed more desirable psychometric properties than ratings by individual rater groups. The M2PI, particularly in composite indices and with attention to rater biases, provides an outcome measure with satisfactory psychometric qualities and the potential to represent the varying perspectives of people with acquired brain injury, significant others, and rehabilitation staff.
Lykkesfeldt, Jens; Morgan, Evan; Christen, Stephan; Skovgaard, Lene Theil; Moos, Torben
2007-01-01
Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.
Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E
2014-08-21
Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc. All rights reserved.
Ichiyama, Takashi; Matsushige, Takeshi; Siba, Peter; Suarkia, Dagwin; Takasu, Toshiaki; Miki, Kenji; Furukawa, Susumu
2008-05-01
To investigate the brain inflammation and damage in subacute sclerosing panencephalitis (SSPE), the cerebrospinal fluid (CSF) concentrations of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were determined in SSPE patients. CSF MMP-9 and TIMP-1 levels were measured in 23 patients with SSPE in Papua New Guinea by ELISA. CSF MMP-9 levels and MMP-9/TIMP-1 ratios of SSPE patients were significantly higher than controls (p<0.001 and p=0.005, respectively). There were no significant differences in CSF TIMP-1 levels between SSPE patients and controls. Previous studies suggested that CSF MMP-9 levels reflect inflammatory damage to the brain. Our findings suggest that the MMP-9 level in CSF is an indicator of inflammatory damage to the brain in SSPE.
Causes, effects and connectivity changes in MS-related cognitive decline.
Rimkus, Carolina de Medeiros; Steenwijk, Martijn D; Barkhof, Frederik
2016-01-01
Cognitive decline is a frequent but undervalued aspect of multiple sclerosis (MS). Currently, it remains unclear what the strongest determinants of cognitive dysfunction are, with grey matter damage most directly related to cognitive impairment. Multi-parametric studies seem to indicate that individual factors of MS-pathology are highly interdependent causes of grey matter atrophy and permanent brain damage. They are associated with intermediate functional effects (e.g. in functional MRI) representing a balance between disconnection and (mal) adaptive connectivity changes. Therefore, a more comprehensive MRI approach is warranted, aiming to link structural changes with functional brain organization. To better understand the disconnection syndromes and cognitive decline in MS, this paper reviews the associations between MRI metrics and cognitive performance, by discussing the interactions between multiple facets of MS pathology as determinants of brain damage and how they affect network efficiency.
Leizerowitz, Gil; Katz-Leurer, Michal
2017-01-01
To assess feasibility, test-retest reliability and validity of the Four Square Step Test (FSST) in typically developed children (TD), and children with cerebral palsy (CP) and acquired brain injury (ABI). 30 TD children, 20 with CP and 12 with ABI participated in the study. The FSST while sitting and standing, the Timed Up and Go (TUG) and the balance subtest of the Bruininks-Oseretsky Test (BOT-2) were assessed. Each child attempted the FSST twice within 1 week. The scores for the FSST were assigned according to the original test: two successes in four trials, and according to a more lenient test, one success in four trials. The original form of the FSST is not feasible for children with CP or ABI. In TD children the lenient version is feasible (93%) and has moderate stability (Interclass correlation, ICC = 0.723), with a significant, positive correlation with the TUG (r s = 0.56). In children with CP the lenient test is feasible (80%), stable (r s = 0.83) and negatively correlates with the BOT-2 (r s =-0.69). In children with ABI the test is less feasible (67%) and neither stable nor valid. The lenient form of the FSST is feasible, reliable and valid in TD children and children with CP.
Gobbi, C; Rocca, M A; Riccitelli, G; Pagani, E; Messina, R; Preziosa, P; Colombo, B; Rodegher, M; Falini, A; Comi, G; Filippi, M
2014-02-01
Involvement of selected central nervous system (CNS) regions has been associated with depression and fatigue in MS. We assessed whether specific regional patterns of lesion distribution and atrophy of the gray (GM) and white matter (WM) are associated with these symptoms in MS. Brain dual-echo and 3D T1-weighted images were acquired from 123 MS patients (69 depressed (D), 54 non-depressed (nD), 64 fatigued, 59 non-fatigued) and 90 controls. Lesion distribution, GM and WM atrophy were estimated using VBM and SPM8. Gender, age, disease duration and conventional MRI characteristics did not differ between D-MS and nD-MS patients. Fatigued patients experienced higher EDSS and depression than non-fatigued ones. Lesion distribution and WM atrophy were not related to depression and fatigue. Atrophy of regions in the frontal, parietal and occipital lobes had a combined effect on depression and fatigue. Atrophy of the left middle frontal gyrus and right inferior frontal gyrus were selectively related to depression. No specific pattern of GM atrophy was found to be related to fatigue. Depression in MS is linked to atrophy of cortical regions located in the bilateral frontal lobes. A distributed pattern of GM atrophy contributes to the concomitant presence of depression and fatigue in these patients.
Mechanisms of chemoresistance to alkylating agents in malignant glioma.
Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang
2008-05-15
Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.
Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy.
Moruno-Manchon, Jose F; Uzor, Ndidi-Ese; Kesler, Shelli R; Wefel, Jeffrey S; Townley, Debra M; Nagaraja, Archana Sidalaghatta; Pradeep, Sunila; Mangala, Lingegowda S; Sood, Anil K; Tsvetkov, Andrey S
2018-01-01
Doxorubicin, a commonly used anti-neoplastic agent, causes severe neurotoxicity. Doxorubicin promotes thinning of the brain cortex and accelerates brain aging, leading to cognitive impairment. Oxidative stress induced by doxorubicin contributes to cellular damage. In addition to mitochondria, peroxisomes also generate reactive oxygen species (ROS) and promote cell senescence. Here, we investigated if doxorubicin affects peroxisomal homeostasis in neurons. We demonstrate that the number of peroxisomes is increased in doxorubicin-treated neurons and in the brains of mice which underwent doxorubicin-based chemotherapy. Pexophagy, the specific autophagy of peroxisomes, is downregulated in neurons, and peroxisomes produce more ROS. 2-hydroxypropyl-β-cyclodextrin (HPβCD), an activator of the transcription factor TFEB, which regulates expression of genes involved in autophagy and lysosome function, mitigates damage of pexophagy and decreases ROS production induced by doxorubicin. We conclude that peroxisome-associated oxidative stress induced by doxorubicin may contribute to neurotoxicity, cognitive dysfunction, and accelerated brain aging in cancer patients and survivors. Peroxisomes might be a valuable new target for mitigating neuronal damage caused by chemotherapy drugs and for slowing down brain aging in general. Copyright © 2017 Elsevier Inc. All rights reserved.
Ghosh, Somnath; Canugovi, Chandrika; Yoon, Jeong Seon; Wilson, David M.; Croteau, Deborah L.; Mattson, Mark P.; Bohr, Vilhelm A.
2017-01-01
Oxidative DNA damage is mainly repaired by base excision repair (BER). Previously, our lab showed that mice lacking the BER glycosylases Ogg1 or Neil1 recover more poorly from focal ischemic stroke than wild-type mice. Here, a mouse model was used to investigate whether loss of one of the two alleles of Xrcc1, which encodes a non-enzymatic scaffold protein required for BER, alters recovery from stroke. Ischemia and reperfusion caused higher brain damage and lower functional recovery in Xrcc1+/− mice than in wild-type mice. Additionally, a greater percentage of Xrcc1+/− mice died as a result of the stroke. Brain samples from human individuals who died of stroke and individuals who died of non-neurological causes were assayed for various steps of BER. Significant losses of thymine glycol incision, abasic endonuclease incision and single nucleotide incorporation activities were identified, as well as lower expression of XRCC1 and NEIL1 proteins in stroke brains compared to controls. Together, these results suggest that impaired BER is a risk factor in ischemic brain injury and contributes to its recovery. PMID:25971543
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel
Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. Inmore » all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.« less
Pathophysiology, Diagnosis, and Treatment of Radiation Necrosis in the Brain
MIYATAKE, Shin-Ichi; NONOGUCHI, Noasuke; FURUSE, Motomasa; YORITSUNE, Erina; MIYATA, Tomo; KAWABATA, Shinji; KUROIWA, Toshihiko
2015-01-01
New radiation modalities have made it possible to prolong the survival of individuals with malignant brain tumors, but symptomatic radiation necrosis becomes a serious problem that can negatively affect a patient’s quality of life through severe and lifelong effects. Here we review the relevant literature and introduce our original concept of the pathophysiology of brain radiation necrosis following the treatment of brain, head, and neck tumors. Regarding the pathophysiology of radiation necrosis, we introduce two major hypotheses: glial cell damage or vascular damage. For the differential diagnosis of radiation necrosis and tumor recurrence, we focus on the role of positron emission tomography. Finally, in accord with our hypothesis regarding the pathophysiology, we describe the promising effects of the anti-vascular endothelial growth factor antibody bevacizumab on symptomatic radiation necrosis in the brain. PMID:25744350
Ilic, S; Drmic, D; Zarkovic, K; Kolenc, D; Coric, M; Brcic, L; Klicek, R; Radic, B; Sever, M; Djuzel, V; Ivica, M; Boban Blagaic, A; Zoricic, Z; Anic, T; Zoricic, I; Djidic, S; Romic, Z; Seiwerth, S; Sikiric, P
2010-04-01
We focused on stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419, an anti-ulcer peptide efficient in inflammatory bowel disease trials (PL 14736), no toxicity reported) because of its hepatoprotective effects. We investigate a particular aspect of the sudden onset of encephalopathy with extreme paracetamol overdose (5 g/kg intraperitoneally) so far not reported: rapidly induced progressive hepatic encephalopathy with generalized convulsions in rats. BPC 157 therapy (10 microg, 10 ng, 10 pg/kg, intraperitoneally or intragastrically) was effective (microg-ng range) against paracetamol toxicity, given in early (BPC 157 immediately after paracetamol, prophylactically) or advanced stage (BPC 157 at 3 hours after paracetamol, therapeutically). At 25 min post-paracetamol increased ALT, AST and ammonium serum values precede liver lesion while in several brain areas, significant damage became apparent, accompanied by generalized convulsions. Through the next 5 hour seizure period and thereafter, the brain damage, liver damage enzyme values and hyperammonemia increased, particularly throughout the 3-24 h post-paracetamol period. BPC 157 demonstrated clinical (no convulsions (prophylactic application) or convulsions rapidly disappeared (therapeutic effect within 25 min)), microscopical (markedly less liver and brain lesions) and biochemical (enzyme and ammonium serum levels decreased) counteraction. Both, the prophylactic and therapeutic benefits (intraperitoneally and intragastrically) clearly imply BPC 157 (microg-ng range) as a highly effective paracetamol antidote even against highly advanced damaging processes induced by an extreme paracetamol over-dose.
The 2100MHz radiofrequency radiation of a 3G-mobile phone and the DNA oxidative damage in brain.
Sahin, Duygu; Ozgur, Elcin; Guler, Goknur; Tomruk, Arın; Unlu, Ilhan; Sepici-Dinçel, Aylin; Seyhan, Nesrin
2016-09-01
We aimed to evaluate the effect of 2100MHz radiofrequency radiation emitted by a generator, simulating a 3G-mobile phone on the brain of rats during 10 and 40 days of exposure. The female rats were randomly divided into four groups. Group I; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 2 weeks, group II; control 10 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 2 weeks, group III; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 8 weeks and group IV; control 40 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 8 weeks. After the genomic DNA content of brain was extracted, oxidative DNA damage (8-hydroxy-2'deoxyguanosine, pg/mL) and malondialdehyde (MDA, nmoL/g tissue) levels were determined. Our main finding was the increased oxidative DNA damage to brain after 10 days of exposure with the decreased oxidative DNA damage following 40 days of exposure compared to their control groups. Besides decreased lipid peroxidation end product, MDA, was observed after 40 days of exposure. The measured decreased quantities of damage during the 40 days of exposure could be the means of adapted and increased DNA repair mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Natural and accelerated recovery from brain damage: experimental and theoretical approaches.
Andersen, Richard A; Schieber, Marc H; Thakor, Nitish; Loeb, Gerald E
2012-03-01
The goal of the Caltech group is to gain insight into the processes that occur within the primate nervous system during dexterous reaching and grasping and to see whether natural recovery from local brain damage can be accelerated by artificial means. We will create computational models of the nervous system embodying this insight and explain a variety of clinically observed neurological deficits in human subjects using these models.
ERIC Educational Resources Information Center
Liang, Jie; van Heuven, Vincent J.
2004-01-01
We present an acoustic study of segmental and prosodic properties of words produced by a female speaker of Chinese with left-hemisphere brain damage. We measured the location of the point vowels /a, e, @?, i, y, o, u/ and determined their separation in the vowel plane, and their perceptual distinctivity. Similarly, the acoustic properties of the…
Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage.
Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Ruiz, Asier; Chara, Juan C; Pérez-Samartín, Alberto; Marambaud, Philippe; Matute, Carlos
2018-06-01
Overactivation of purinergic receptors during cerebral ischemia results in a massive release of neurotransmitters, including adenosine triphosphate (ATP), to the extracellular space which leads to cell death. Some hypothetical pathways of ATP release are large ion channels, such as calcium homeostasis modulator 1 (CALHM1), a membrane ion channel that can permeate ATP. Since this transmitter contributes to postischemic brain damage, we hypothesized that CALHM1 activation may be a relevant target to attenuate stroke injury. Here, we analyzed the contribution of CALHM1 to postanoxic depolarization after ischemia in cultured neurons and in cortical slices. We observed that the onset of postanoxic currents in neurons in those preparations was delayed after its blockade with ruthenium red or silencing of Calhm1 gene by short hairpin RNA, as well as in slices from CALHM1 knockout mice. Subsequently, we used transient middle cerebral artery occlusion and found that ruthenium red, a blocker of CALHM1, or the lack of CALHM1, substantially attenuated the motor symptoms and reduced significantly the infarct volume. These results show that CALHM1 channels mediate postanoxic depolarization in neurons and brain damage after ischemia. Therefore, targeting CALHM1 may have a high therapeutic potential for treating brain damage after ischemia.
Neurologic continuum of care: Evidence-based model of a post-hospital system of care.
Lewis, Frank D; Horn, Gordon J
2015-01-01
There is increasing need for a well-organized continuum of post-hospital rehabilitative care to reduce long term disability resulting from acquired brain injury. This study examined the effectiveness of four levels of post-hospital care (active neurorehabilitation, neurobehavioral intensive, day treatment, and supported living) and the functional variables most important to their success. Participants were 1276 adults with acquired brain injury who were being treated in one of the four program levels. A Repeated Measures MANOVA was used to evaluate change from admission to discharge on the Mayo Portland Adaptability Inventory-4 T-scores. Regression analyses were used to identify predictors of outcome. Statistical improvement on the MPAI-4 was observed at each program level. Self-care and Initiation were the strongest predictors of outcome. The results support the effectiveness of a continuum of care for acquired brain injury individuals beyond hospitalization and acute in-hospital rehabilitation. It is particularly noteworthy that reduction in disability was achieved for all levels of programming even with participants whose onset to admission exceeded 7 years post-injury.
Huang, Sheng-Yang; Tai, Shih-Huang; Chang, Che-Chao; Tu, Yi-Fang; Chang, Chih-Han; Lee, E-Jian
2018-04-01
In the present study, the neuroprotective potential of magnolol against ischemia-reperfusion brain injury was examined via in vivo and in vitro experiments. Magnolol exhibited strong radical scavenging and antioxidant activity, and significantly inhibited the production of interleukin‑6, tumor necrosis factor‑a and nitrite/nitrate (NOX) in lipopolysaccharide-stimulated BV2 and RAW 264.7 cells when applied at concentrations of 10 and 50 µM, respectively. Magnolol (100 µM) also significantly attenuated oxygen‑glucose deprivation‑induced damage in neonatal rat hippocampal slice cultures, when administered up to 4 h following the insult. In a rat model of stable ischemia, compared with a vehicle‑treated ischemic control, pretreatment with magnolol (0.01‑1 mg/kg, intravenously) significantly reduced brain infarction following ischemic stroke, and post‑treatment with magnolol (1 mg/kg) remained effective and significantly reduced infarction when administered 2 h following the onset of ischemia. Additionally, magnolol (0.3 and 1 mg/kg) significantly reduced the accumulation of superoxide anions at the border zones of infarction and reduced oxidative damage in the ischemic brain. This was assessed by measuring the levels of NOX, malondialdehyde and myeloperoxidase, the ratio of glutathione/oxidized glutathione and the immunoreactions of 8‑hydroxy‑2'‑deoxyguanosine and 4‑hydroxynonenal. Thus, magnolol was revealed to protect against ischemia‑reperfusion brain damage. This may be partly attributed to its antioxidant, radical scavenging and anti‑inflammatory effects.
Reitan, Ralph M; Wolfson, Deborah
2004-03-01
This study explores the use of the Progressive Figures Test as an instrument for broad initial screening of children in the 6- through 8-year age range with respect to the possible need for more definitive neuropsychological evaluation. Considering earlier results obtained in comparison of brain-damaged and control children [Clinical Neuropsychology: Current Applications, Hemisphere Publishing Corp., Washington, DC, 1974, p. 53; Proceedings of the Conference on Minimal Brain Dysfunction, New York Academy of Sciences, New York, 1973, p. 65], the Progressive Figures Test seemed potentially useful as a first step in determining whether a comprehensive neuropsychological evaluation is indicated. In this investigation, three groups were studied: (1) children with definitive evidence of brain damage or disease who, when compared with normal controls, help to establish the limits of neuropsychological functioning, (2) a group of children who had normal neurological examinations but also had academic problems of significant concern to both parents and teachers, and (3) a normal control group. Statistically significant differences were present in comparing each pair of groups, with the brain-damaged children performing most poorly and the controls performing best. Score distributions for the three groups make it possible to identify a score-range that represented a borderline or "gray" area and to suggest a cutting score that identified children whose academic problems might have a neurological basis and for whom additional neuropsychological evaluation appeared to be indicated.
Damage assessment in a sandwich panel based on full-field vibration measurements
NASA Astrophysics Data System (ADS)
Seguel, F.; Meruane, V.
2018-03-01
Different studies have demonstrated that vibration characteristics are sensitive to debonding in composite structures. Nevertheless, one of the main restrictions of vibration measurements is the number of degrees of freedom that can be acquired simultaneously, which restricts the size of the damage that can be identified. Recent studies have shown that it is possible to use high-speed three-dimensional (3-D) digital image correlation (DIC) techniques for full-field vibration measurements. With this technique, it is possible to take measurements at thousands of points on the surface of a structure with a single snapshot. The present article investigates the application of full-field vibration measurements in the debonding assessment of an aluminium honeycomb sandwich panel. Experimental data from an aluminium honeycomb panel containing different damage scenarios is acquired by a high-speed 3-D DIC system; four methodologies to compute damage indices are evaluated: mode shape curvatures, uniform load surface, modal strain energy and gapped smoothing.
NASA Technical Reports Server (NTRS)
1977-01-01
A transducer originally used to measure air pressure in aircraft wind tunnel tests is the basis for a development important in diagnosis and treatment of certain types of brain damage. A totally implantable device, tbe intracranial pressure monitor measures and reports brain pressure by telemetry.
[Quantitative evaluation of visual gnosis in children with focal brain lesions].
Pencheva, S; Zaprianova, L
1983-01-01
Bearing in mind the opinion of many authors on a great plasticity and interchangeability of the brain cortical functional systems in children the authors have carried out an experiment with 40 children with focal damages of the brain hemispheres, in 20 of whom the right, and in the other 20 the left hemisphere was affected. Use was made of the method of visual gnosis quantitative assessment in the modification of Pencheva and Mavlov (1975). In the children with the focal damages, more or less marked disturbances of the visual gnosis were revealed, however, no statistically significant relationship between the disturbances and the brain side were disclosed. The agnostic disorders were equally frequent in the children of both groups.
Sivan, Manoj; Neumann, Vera; Kent, Ruth; Stroud, Amanda; Bhakta, Bipinchandra B
2010-02-01
To systematically review the effectiveness of medications used to improve attention in people with non-progressive acquired brain injury. A systematic review. MEDLINE, EMBASE, CINALH, PUBMED and PsychINFO databases were used to identify studies published between 1987 and 2008 meeting the following criteria: studies with subjects older than 18 years; diagnosis of new onset or previous acquired brain injury; medication given to improve attention and use of outcome to measure attention. Studies involving subjects in low arousal states or with neurogenerative conditions were excluded. The studies were categorized into three evidence levels: I - Randomized controlled trials; II - Prospective studies, controlled trials with methodological limitations; and III - Retrospective studies, clinical case series. Forty-seven articles were identified on initial search. Twenty-six met the pre-specified criteria. Five articles were assessed as meeting the level I evidence criteria, 12 were level II studies and 9 were level III studies. Methylphenidate can improve information processing speed but not all attention aspects in some people after traumatic brain injury. There is weak evidence for use of dopamine agonists to improve neglect/inattention after stroke. There is little evidence on the frequency of adverse effects and long-term functional benefits. Although there is lack of robust evidence to recommend the routine use of medication to improve attention after traumatic brain injury and stroke, the existing evidence indicates potential for benefit in some patents and therefore further research is warranted.
Kelly, Glenn; Simpson, Grahame K; Brown, Suzanne; Kremer, Peter; Gillett, Lauren
2017-05-23
The objectives were to test the properties, via a psychometric study, of the Overt Behaviour Scale-Self-Report (OBS-SR), a version of the OBS-Adult Scale developed to provide a client perspective on challenging behaviours after acquired brain injury. Study sample 1 consisted of 37 patients with primary brain tumour (PBT) and a family-member informant. Sample 2 consisted of 34 clients with other acquired brain injury (mixed brain injury, MBI) and a service-provider informant. Participants completed the OBS-SR (at two time points), and the Awareness Questionnaire (AQ) and Mayo Portland Adaptability Inventory-III (MPAI-III) once; informants completed the OBS-Adult and AQ once only. PBT-informant dyads displayed "good" levels of agreement (ICC 2,k = .74; OBS-SR global index). Although MBI-informant dyads displayed no agreement (ICC 2,k = .22; OBS-SR global index), the sub-group (17/29) rated by clinicians as having moderate to good levels of awareness displayed "fair" agreement (ICC 2,k = .58; OBS-SR global index). Convergent/divergent validity was demonstrated by significant correlations between OBS-SR subscales and MPAI-III subscales with behavioural content (coefficients in the range .36 -.61). Scores had good reliability across one week (ICC 2,k = .69). The OBS-SR took approximately 15 minutes to complete. It was concluded that the OBS-SR demonstrated acceptable reliability and validity, providing a useful resource in understanding clients' perspectives about their behaviour.
... support and help with the care of a child with hydrocephalus who has serious brain damage. ... such as meningitis or encephalitis Intellectual impairment Nerve damage (decrease in movement, sensation, function) Physical disabilities
Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert
2016-03-01
Several different pathologies, including many neurodegenerative disorders, affect the energy metabolism of the brain. Glutamate, a neurotransmitter in the brain, can be used as a biomarker to monitor these metabolic processes. One method that is capable of quantifying glutamate concentration reliably in several regions of the brain is TE-averaged (1) H spectroscopic imaging. However, this type of method requires the acquisition of multiple TE lines, resulting in long scan durations. The goal of this experiment was to use non-uniform sampling, compressed sensing reconstruction and an echo planar readout gradient to reduce the scan time by a factor of eight to acquire TE-averaged spectra in three spatial dimensions. Simulation of glutamate and glutamine showed that the 2.2-2.4 ppm spectral region contained 95% glutamate signal using the TE-averaged method. Peak integration of this spectral range and home-developed, prior-knowledge-based fitting were used for quantitation. Gray matter brain phantom measurements were acquired on a Siemens 3 T Trio scanner. Non-uniform sampling was applied retrospectively to these phantom measurements and quantitative results of glutamate with respect to creatine 3.0 (Glu/Cr) ratios showed a coefficient of variance of 16% for peak integration and 9% for peak fitting using eight-fold acceleration. In vivo scans of the human brain were acquired as well and five different brain regions were quantified using the prior-knowledge-based algorithm. Glu/Cr ratios from these regions agreed with previously reported results in the literature. The method described here, called accelerated TE-averaged echo planar spectroscopic imaging (TEA-EPSI), is a significant methodological advancement and may be a useful tool for categorizing glutamate changes in pathologies where affected brain regions are not known a priori. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Kano, Yasuhiro; Kodaira, Minori; Ushiki, Atsuhito; Kosaka, Makoto; Yamada, Mitsunori; Shingu, Kunihiko; Nishihara, Hiroshi; Hanaoka, Masayuki; Sekijima, Yoshiki
2017-09-15
A 49-year-old man presented with gradually progressive aphasia one month after being diagnosed with acquired immunodeficiency syndrome (AIDS). Brain magnetic resonance imaging showed multiple brain lesions with punctate and linear enhancement. A polymerase chain reaction detected Epstein-Barr virus (EBV) in the patient's cerebrospinal fluid. A diagnosis of isolated central nervous system lymphomatoid granulomatosis (CNS-LYG) was made based on the brain biopsy findings. The complete remission of CNS-LYG was achieved by anti-retroviral therapy (ART) alone. In the present case, the development of AIDS-associated CNS-LYG was considered to have been initiated by the reactivation of EBV in the CNS under immunosuppressive conditions. The patient's condition improved with the reconstitution of the patient's immune system.
Wii-habilitation as balance therapy for children with acquired brain injury.
Tatla, Sandy K; Radomski, Anna; Cheung, Jessica; Maron, Melissa; Jarus, Tal
2014-02-01
To evaluate the effectiveness of the Nintendo Wii compared to traditional balance therapy in improving balance, motivation, and functional ability in children undergoing acute rehabilitation after brain injury. A non-concurrent, randomized multiple baseline single-subject research design was used with three participants. Data were analyzed by visual inspection of trend lines. Daily Wii balance training was equally motivating to traditional balance therapy for two participants and more motivating for one participant. While improvements in dynamic balance were observed, the results for static balance remain inconclusive. All participants demonstrated improvements in functional ability. Wii balance therapy is a safe, feasible, and motivating intervention for children undergoing acute rehabilitation after an acquired brain injury. Further research to examine the effectiveness of Wii balance therapy in this population is warranted.
Christie, Kimberly J.; Turnley, Ann M.
2012-01-01
Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation. PMID:23346046
Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity
Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.
2016-01-01
Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149
Nucleus accumbens invulnerability to methamphetamine neurotoxicity.
Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M
2011-01-01
Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.
Distinct effects of acute and chronic sleep loss on DNA damage in rats.
Andersen, M L; Ribeiro, D A; Bergamaschi, C T; Alvarenga, T A; Silva, A; Zager, A; Campos, R R; Tufik, S
2009-04-30
The aim of this investigation was to evaluate genetic damage induced in male rats by experimental sleep loss for short-term (24 and 96 h) and long-term (21 days) intervals, as well as their respective recovery periods in peripheral blood, brain, liver and heart tissue by the single cell gel (comet) assay. Rats were paradoxically deprived of sleep (PSD) by the platform technique for 24 or 96 h, or chronically sleep-restricted (SR) for 21 days. We also sought to verify the time course of their recovery after 24 h of rebound sleep. The results showed DNA damage in blood cells of rats submitted to PSD for 96 h. Brain tissue showed extensive genotoxic damage in PSD rats (both 24 and 96 h), though the effect was more pronounced in the 96 h group. Rats allowed to recover from the PSD-96 h and SR-21 days treatments showed DNA damage as compared to negative controls. Liver and heart did not display any genotoxicity activity. Corticosterone concentrations were increased after PSD (24 and 96 h) relative to control rats, whereas these levels were unaffected in the SR group. Collectively, these findings reveal that sleep loss was able to induce genetic damage in blood and brain cells, especially following acute exposure. Since DNA damage is an important step in events leading to genomic instability, this study represents a relevant contribution to the understanding of the potential health risks associated with sleep deprivation.
Diaz-Cañestro, Candela; Merlini, Mario; Bonetti, Nicole R; Liberale, Luca; Wüst, Patricia; Briand-Schumacher, Sylvie; Klohs, Jan; Costantino, Sara; Miranda, Melroy; Schoedon-Geiser, Gabriele; Kullak-Ublick, Gerd A; Akhmedov, Alexander; Paneni, Francesco; Beer, Jürg H; Lüscher, Thomas F; Camici, Giovanni G
2018-06-01
In acute ischemic stroke (AIS) patients, impaired blood-brain barrier (BBB) integrity is associated with hemorrhagic transformation and worsened outcome. Yet, the mechanisms underlying these relationships are poorly understood and consequently therapeutic strategies are lacking. This study sought to determine whether SIRT5 contributes to BBB damage following I/R brain injury. SIRT5 knockout (SIRT5 -/- ) and wild type (WT) mice underwent transient middle cerebral artery (MCA) occlusion (tMCAO) followed by 48h of reperfusion. Genetic deletion of SIRT5 decreased infarct size, improved neurological function and blunted systemic inflammation following stroke. Similar effects were also achieved by in vivo SIRT5 silencing. Immunohistochemical analysis revealed decreased BBB leakage and degradation of the tight junction protein occludin in SIRT5 -/- mice exposed to tMCAO as compared to WT. In primary human brain microvascular endothelial cells (HBMVECs) exposed to hypoxia/reoxygenation (H/R), SIRT5 silencing decreased endothelial permeability and upregulated occludin and claudin-5; this effect was prevented by the PI3K inhibitor wortmannin. Lastly, SIRT5 gene expression was increased in peripheral blood monocytes (PBMCs) of AIS patients at 6h after onset of stroke compared to sex- and age-matched healthy controls. SIRT5 is upregulated in PBMCs of AIS patients and in the MCA of WT mice exposed to tMCAO; SIRT5 mediates I/R-induced brain damage by increasing BBB permeability through degradation of occludin. This effect was reproduced in HBMVECs exposed to H/R, mediated by the PI3K/Akt pathway. Our findings shed new light on the mechanisms of I/R-dependent brain damage and suggest SIRT5 as a novel therapeutic target. Copyright © 2017 Elsevier B.V. All rights reserved.
Song, Y; Zhong, M; Cai, F-C
2018-01-01
Anti-epileptic drugs (AEDs) are the main methods for treatment of neonatal seizures; however, a few AEDs may cause developing brain damage of neonate. This study aims to investigate effects of oxcarbazepine (OXC) on developing brain damage of neonatal rats. Both of neonatal and adult rats were divided into 6 groups, including Control, OXC 187.5 mg/kg, OXC 281.25 mg/kg, OXC 375 mg/kg group, LEV and PHT group. Body weight and brain weight were evaluated. Hematoxylin and eosin (HE) and Nissl staining were used to observe neurocyte morphology and Nissl bodies, respectively. Apoptosis was examined using TUNEL assay, and caspase 8 activity was evaluated using spectrophotometer method. Cytochrome C-release was evaluated using flow cytometry. Western blot was used to examine Bax and Bcl-2 expression. OXC 375 mg/kg treatment significantly decreased brain weight compared to Control group in neonatal rats (P5 rats) (p<0.05). OXC administration causes histological changes of neurocytes. OXC 281.25 mg/kg or more concentration significantly decreased neurocytes counts and increased TUNEL-staining positive neurocytes compared to Control group (p<0.05). OXC 281.25 mg/kg and OXC 375 mg/kg significantly increased caspase 3 activity compared to Control group in P5 rats (p<0.05). OXC 281.25 mg/kg and OXC 375 mg/kg significantly increased Bax, Bax/Bcl-2 ratio and cytochrome C release in frontal lobes compared to Control group in P5 rats (p<0.05). Oxcarbazepine at a concentration of 281.25 mg/kg or more causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.
Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.
Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A
2015-06-01
Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.
Rajesh, Kumar; Xiangying, Kong
2015-01-01
Objective To study the effect of early intervention and rehabilitation in the expression of aquaporin-4 and ultrastructure changes on cerebral palsy pups model induced by intrauterine infection. Methods 20 pregnant Wistar rats were consecutively injected with lipopolysaccharide intraperitoneally. 60 Pups born from lipopolysaccharide group were randomly divided into intervention group (n=30) and non-intervention group (n=30); intervention group further divided into early intervention and rehabilitation group (n=10), acupuncture group (n=10) and consolidate group (n=10). Another 5 pregnant rats were injected with normal saline intraperitoneally; 30 pups born from the normal saline group were taken as control group. The intervention group received early intervention, rehabilitation and acupuncture treatment. The motor functions of all pups were assessed via suspension test and modified BBB locomotor score. Aquaporin-4 expression in brain tissue was studied through immunohistochemical and western-blot analysis. Ultrastructure changes in damaged brain and control group were studied electron-microscopically. Results The scores of suspension test and modified BBB locomotor test were significantly higher in the control group than the intervention and non intervention group (p<0.01); higher in the intervention group than the non-intervention group (p<0.01). The expression of Aquaporin-4 was lower in intervention and non intervention group than in the control group (p<0.01); also lower in non-intervention group than the intervention group (p<0.01). Marked changes were observed in ultrastructure of cortex and hippocampus CAI in brain damaged group. Conclusion Early intervention and rehabilitation training can improve the motor function in offspring with brain injury and reduce the expression of aquaporin-4 in damaged brain. PMID:26279808
Lee, Hyung; Bae, Jae Hoon; Lee, Seong-Ryong
2004-09-15
Previous studies have demonstrated that a green tea polyphenol, (-)-epigallocatechine gallate (EGCG), has a potent free radical scavenging and antioxidant effect. Glutamate leads to excitotoxicity and oxidative stress, which are important pathophysiologic responses to cerebral ischemia resulting in brain edema and neuronal damage. We investigated the effect of EGCG on excitotoxic neuronal damage in a culture system and the effect on brain edema formation and lesion after unilateral cerebral ischemia in gerbils. In vitro, excitotoxicity was induced by 24-hr incubation with N-methyl-D-aspartate (NMDA; 10 microM), AMPA (10 microM), or kainate (20 microM). EGCG (5 microM) was added to the culture media alone or with excitotoxins. We examined malondialdehyde (MDA) level and neuronal viability to evaluate the effect of EGCG. In vivo, unilateral cerebral ischemia was induced by occlusion of the right common carotid artery for 30, 60, or 90 min and followed by reperfusion of 24 hr. Brain edema, MDA, and infarction were examined to evaluate the protective effect of EGCG. EGCG (25 or 50 mg/kg, intraperitoneally) was administered twice, at 30 min before and immediately after ischemia. EGCG reduced excitotoxin-induced MDA production and neuronal damage in the culture system. In the in vivo study, treatment of gerbils with the lower EGCG dose failed to show neuroprotective effects; however, the higher EGCG dose attenuated the increase in MDA level caused by cerebral ischemia. EGCG also reduced the formation of postischemic brain edema and infarct volume. These results demonstrate EGCG may have future possibilities as a neuroprotective agent against excitotoxicity-related neurologic disorders such as brain ischemia.
If You Had My Brain, Where Would I Be? Children's Understanding of the Brain and Identity.
ERIC Educational Resources Information Center
Johnson, Carl Nils
1990-01-01
Reveals that during the elementary school years, children acquire a firm understanding of the brain as the primary locus of psychological attributes and identity. The early school years, when children are five to seven years old, appear to be a transitional phase, when performance is variable and subject to task conditions. (RH)
Clapp, N.E.; Hively, L.M.
1997-05-06
Methods and apparatus automatically detect alertness in humans by monitoring and analyzing brain wave signals. Steps include: acquiring the brain wave (EEG or MEG) data from the subject, digitizing the data, separating artifact data from raw data, and comparing trends in f-data to alertness indicators, providing notification of inadequate alertness. 4 figs.
Witzel, Joachim G; Bogerts, Bernhard; Schiltz, Kolja
2016-09-01
This study aimed to assess whether brain pathology might be more abundant in forensic inpatients in a high-security setting than in non-criminal individuals. By using a previously used reliable approach, we explored the frequency and extent of brain pathology in a large group of institutionalized offenders who had not previously been considered to be suffering from structural brain damage and compare it to healthy, non-offending subjects. MRI and CT brain scans from 148 male inpatients of a high-security mental health institution (offense type: 51 sex, 80 violent, 9 arson, and 8 nonviolent) that were obtained due to headache, vertigo, or psychological complaints during imprisonment were assessed and compared to 52 non-criminal healthy controls. Brain scans were assessed qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1), or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex, and medial temporal structures bilaterally as well as third ventricle. Forensic inpatients displayed signs of brain damage to a significantly higher degree than healthy controls (p < 0.001). Even after adjustment for age, in the patients, being younger than the controls (p < 0.05), every offender type group displayed a higher proportion of subjects with brain regions categorized as definitely abnormal than the non-criminal controls. Within the forensic inpatients, offense type groups did not significantly differ in brain pathology. The astonishingly high prevalence of brain pathology in institutionalized inmates of a high-security mental health institution who previously had not been considered to be suffering from an organic brain syndrome raises questions on whether such neuroradiological assessment might be considered as a routine procedure in newly admitted patients. Furthermore, it highlights that organic changes, detectable under clinical routine conditions, may play a role in the development of legally relevant behavioral disturbances which might be underestimated.
Therapeutic effectiveness of a virtual reality game in self-awareness after acquired brain injury.
Lloréns, Roberto; Navarro, María Dolores; Alcañiz, Mariano; Noé, Enrique
2012-01-01
Self-awareness deficits can manifest as a consequence of acquired brain injury decreasing the motivation and the adherence to the treatment. We present a multitouch system that promotes the role-playing and the self-assessment strategies and challenges the participants in a competitive context. This paper presents an initial clinical trial to study the effectiveness of the virtual system in the rehabilitation of the self-awareness skills.According the evolution of the participants in the Self-Awareness Deficits Interview and in the Spanish Social Skills Scale, the participants improve the perception of their deficits and disabilities.
T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm.
Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver
2017-03-14
We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T 1 -weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.
T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm
NASA Astrophysics Data System (ADS)
Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver
2017-03-01
We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T1-weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.
Relating Brain Damage to Brain Plasticity in Patients With Multiple Sclerosis
Tomassini, Valentina; Johansen-Berg, Heidi; Jbabdi, Saad; Wise, Richard G.; Pozzilli, Carlo; Palace, Jacqueline; Matthews, Paul M.
2013-01-01
Background Failure of adaptive plasticity with increasing pathology is suggested to contribute to progression of disability in multiple sclerosis (MS). However, functional impairments can be reduced with practice, suggesting that brain plasticity is preserved even in patients with substantial damage. Objective Here, functional magnetic resonance imaging (fMRI) was used to probe systems-level mechanisms of brain plasticity associated with improvements in visuomotor performance in MS patients and related to measures of microstructural damage. Methods 23 MS patients and 12 healthy controls underwent brain fMRI during the first practice session of a visuomotor task (short-term practice) and after 2 weeks of daily practice with the same task (longer-term practice). Participants also underwent a structural brain MRI scan. Results Patients performed more poorly than controls at baseline. Nonetheless, with practice, patients showed performance improvements similar to controls and independent of the extent of MRI measures of brain pathology. Different relationships between performance improvements and activations were found between groups: greater short-term improvements were associated with lower activation in the sensorimotor, posterior cingulate, and parahippocampal cortices for patients, whereas greater long-term improvements correlated with smaller activation reductions in the visual cortex of controls. Conclusions Brain plasticity for visuomotor practice is preserved in MS patients despite a high burden of cerebral pathology. Cognitive systems different from those acting in controls contribute to this plasticity in patients. These findings challenge the notion that increasing pathology is accompanied by an outright failure of adaptive plasticity, supporting a neuroscientific rationale for recovery-oriented strategies even in chronically disabled patients. PMID:22328685
Song, Si-Xin; Gao, Jun-Ling; Wang, Kai-Jie; Li, Ran; Tian, Yan-Xia; Wei, Jian-Qiang; Cui, Jian-Zhong
2013-01-01
Diffuse brain injury (DBI) is a leading cause of mortality and disability among young individuals and adults worldwide. In specific cases, DBI is associated with permanent spatial learning dysfunction and motor deficits due to primary and secondary brain damage. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a major complex that produces reactive oxygen species (ROS) during the ischemic period. The complex aggravates brain damage and cell death following ischemia/reperfusion injury; however, its role in DBI remains unclear. The present study aimed to investigate the hypothesis that levels of NOX2 (a catalytic subunit of NOX) protein expression and the activation of NOX are enhanced following DBI induction in rats and are involved in aggravating secondary brain damage. A rat model of DBI was created using a modified weight-drop device. Our results demonstrated that NOX2 protein expression and NOX activity were enhanced in the CA1 subfield of the hippocampus at 48 and 72 h following DBI induction. Treatment with apocynin (50 mg/kg body weight), a specific inhibitor of NOX, injected intraperitoneally 30 min prior to DBI significantly attenuated NOX2 protein expression and NOX activation. Moreover, treatment with apocynin reduced brain edema and improved spatial learning function assessed using the Morris water maze. These results reveal that treatment with apocynin may provide a new neuroprotective therapeutic strategy against DBI by diminishing the upregulation of NOX2 protein and NOX activity.
40 plus or minus 10, a new magical number: reply to Russell.
Larrabee, Glenn J; Millis, Scott R; Meyers, John E
2009-07-01
Russell (2009 this issue) has criticized our recently published investigation (Larrabee, Millis, & Meyers, 2008) comparing the diagnostic discrimination of an ability-focused neuropsychological battery (AFB) to that of the Halstead Reitan Battery (HRB). He contended that our symptom validity test (SVT) screening excluding 43% of brain dysfunction and 15% of control patients using computations based on Digit Span inappropriately excluded patients with brain damage, due to the correlation of Digit Span with the Average Index Score (AIS). Our exclusion of 43% of brain dysfunction participants matches the frequency of invalid neuropsychological data of 40-50% or more reported by numerous studies for a wide range of settings with external incentive. Moreover, our study was not an investigation of malingering; rather, we screened our data to insure that only valid data remained, for the most meaningful comparison of the AFB to the HRB. Russell's argument that Digit Span is correlated with brain damage confounds the criterion, AIS (a composite cognitive score), with the predictor, Digit Span (another cognitive score), rather than employing a truly independent neurologic criterion. The fact that Digit Span is notoriously insensitive to brain dysfunction underscores the robustness of our findings, for if we inappropriately excluded brain-damaged patients for low Digit Span, as Russell claimed, this resulted in our sample reflecting more subtle degree of brain dysfunction, and the superiority of the AFB over the HRB was demonstrated under the most challenging of discriminative conditions.
Hauwel, Mathieu; Furon, Emeline; Canova, Cecile; Griffiths, Mark; Neal, Jim; Gasque, Philippe
2005-04-01
In invertebrates and primitive vertebrates, the brain contains large numbers of "professional" macrophages associated with neurones, ependymal tanycytes and radial glia to promote robust regenerative capacity. In higher vertebrates, hematogenous cells are largely excluded from the brain, and innate immune molecules and receptors produced by the resident "amateur" macrophages (microglia, astrocytes and ependymal cells) control pathogen infiltration and clearance of toxic cell debris. However, there is minimal capacity for regeneration. The transfer of function from hematogenous cells to macroglia and microglia is associated with the sophistication of a yet poorly-characterized neurone-glia network. This evolutionary pattern may have been necessary to reduce the risk of autoimmune attack while preserving the neuronal web but the ability to repair central nervous system damage may have been sacrificed in the process. We herein argue that it may be possible to re-educate and stimulate the resident phagocytes to promote clearance of pathogens (e.g., Prion), toxic cell debris (e.g., amyloid fibrils and myelin) and apoptotic cells. Moreover, as part of this greater division of labour between cell types in vertebrate brains, it may be possible to harness the newly described properties of glial stem cells in neuronal protection (revitalization) rather than replacement, and to control brain inflammation. We will also highlight the emerging roles of stromal ependymal cells in controlling stem cell production and migration into areas of brain damage. Understanding the mechanisms involved in the nurturing of damaged neurons by protective glial stem cells with the safe clearance of cell debris could lead to remedial strategies for chronic brain diseases.
Nanobubbles, cavitation, shock waves and traumatic brain injury.
Adhikari, Upendra; Goliaei, Ardeshir; Berkowitz, Max L
2016-12-07
Collapse of bubbles, microscopic or nanoscopic, due to their interaction with the impinging pressure wave produces a jet of particles moving in the direction of the wave. If there is a surface nearby, the high-speed jet particles hit it, and as a result damage to the surface is produced. This cavitation effect is well known and intensely studied in case of microscopic sized bubbles. It can be quite damaging to materials, including biological tissues, but it can also be beneficial when controlled, like in case of sonoporation of biological membranes for the purpose of drug delivery. Here we consider recent simulation work performed to study collapse of nanobubbles exposed to shock waves, in order to understand the detailed mechanism of the cavitation induced damage to soft materials, such as biological membranes. We also discuss the connection of the cavitation effect with the traumatic brain injury caused by blasts. Specifically, we consider possible damage to model membranes containing lipid bilayers, bilayers with embedded ion channel proteins like the ones found in neural cells and also protein assemblies found in the tight junction of the blood brain barrier.
Genomic integrity and the ageing brain.
Chow, Hei-man; Herrup, Karl
2015-11-01
DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.
Brain damage and the moral significance of consciousness.
Kahane, Guy; Savulescu, Julian
2009-02-01
Neuroimaging studies of brain-damaged patients diagnosed as in the vegetative state suggest that the patients might be conscious. This might seem to raise no new ethical questions given that in related disputes both sides agree that evidence for consciousness gives strong reason to preserve life. We question this assumption. We clarify the widely held but obscure principle that consciousness is morally significant. It is hard to apply this principle to difficult cases given that philosophers of mind distinguish between a range of notions of consciousness and that is unclear which of these is assumed by the principle. We suggest that the morally relevant notion is that of phenomenal consciousness and then use our analysis to interpret cases of brain damage. We argue that enjoyment of consciousness might actually give stronger moral reasons not to preserve a patient's life and, indeed, that these might be stronger when patients retain significant cognitive function.
Radon inhalation protects against transient global cerebral ischemic injury in gerbils.
Kataoka, Takahiro; Etani, Reo; Takata, Yuji; Nishiyama, Yuichi; Kawabe, Atsushi; Kumashiro, Masayuki; Taguchi, Takehito; Yamaoka, Kiyonori
2014-10-01
Although brain disorders are not the main indication for radon therapy, our previous study suggested that radon inhalation therapy might mitigate brain disorders. In this study, we assessed whether radon inhalation protects against transient global cerebral ischemic injury in gerbils. Gerbils were treated with inhaled radon at a concentration of 2,000 Bq/m(3) for 24 h. After radon inhalation, transient global cerebral ischemia was induced by bilateral occlusion of the common carotid artery. Results showed that transient global cerebral ischemia induced neuronal damage in hippocampal CA1, and the number of damaged neurons was significantly increased compared with control. However, radon treatment inhibited ischemic damage. Superoxide dismutase (SOD) activity in the radon-treated gerbil brain was significantly higher than that in sham-operated gerbils. These findings suggested that radon inhalation activates antioxidative function, especially SOD, thereby inhibiting transient global cerebral ischemic injury in gerbils.
Epileptic encephalopathy in children with risk factors for brain damage.
Ricardo-Garcell, Josefina; Harmony, Thalía; Porras-Kattz, Eneida; Colmenero-Batallán, Miguel J; Barrera-Reséndiz, Jesús E; Fernández-Bouzas, Antonio; Cruz-Rivero, Erika
2012-01-01
In the study of 887 new born infants with prenatal and perinatal risk factors for brain damage, 11 children with West syndrome that progressed into Lennox-Gastaut syndrome and another 4 children with Lennox-Gastaut syndrome that had not been preceded by West syndrome were found. In this study we present the main findings of these 15 subjects. In all infants multifactor antecedents were detected. The most frequent risk factors were prematurity and severe asphyxia; however placenta disorders, sepsis, and hyperbilirubinemia were also frequent. In all infants MRI direct or secondary features of periventricular leukomalacia were observed. Followup of all infants showed moderate to severe neurodevelopmental delay as well as cerebral palsy. It is concluded that prenatal and perinatal risk factors for brain damage are very important antecedents that should be taken into account to follow up those infants from an early age in order to detect and treat as early as possible an epileptic encephalopathy.
Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis
2015-12-01
response. e. Correlate imaging findings with histological studies of vascular damage, tumor cell and endothelial cell apoptosis or necrosis and vascular ...phosphatidylserine (PS) is exposed exclusively on tumor vascular endothelium of brain metastases in mouse models. A novel PS-targeting antibody, PGN635... vascular endothelial cells in multi-focal brain metastases throughout the whole mouse brain. Vascular endothelium in normal brain tissues is negative
Coqueugniot, Hélène; Dutour, Olivier; Arensburg, Baruch; Duday, Henri; Vandermeersch, Bernard; Tillier, Anne-marie
2014-01-01
The Qafzeh site (Lower Galilee, Israel) has yielded the largest Levantine hominin collection from Middle Palaeolithic layers which were dated to circa 90–100 kyrs BP or to marine isotope stage 5b–c. Within the hominin sample, Qafzeh 11, circa 12–13 yrs old at death, presents a skull lesion previously attributed to a healed trauma. Three dimensional imaging methods allowed us to better explore this lesion which appeared as being a frontal bone depressed fracture, associated with brain damage. Furthermore the endocranial volume, smaller than expected for dental age, supports the hypothesis of a growth delay due to traumatic brain injury. This trauma did not affect the typical human brain morphology pattern of the right frontal and left occipital petalia. It is highly probable that this young individual suffered from personality and neurological troubles directly related to focal cerebral damage. Interestingly this young individual benefited of a unique funerary practice among the south-western Asian burials dated to Middle Palaeolithic. PMID:25054798
Khalsa, Sahib S.; Damasio, Antonio; Tranel, Daniel; Landini, Gregory; Williford, Kenneth
2012-01-01
It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex (mPFC). Such a proposal predicts that damage to these regions should disrupt or even abolish SA. We tested this prediction in a rare neurological patient with extensive bilateral brain damage encompassing the insula, ACC, mPFC, and the medial temporal lobes. In spite of severe amnesia, which partially affected his “autobiographical self”, the patient's SA remained fundamentally intact. His Core SA, including basic self-recognition and sense of self-agency, was preserved. His Extended SA and Introspective SA were also largely intact, as he has a stable self-concept and intact higher-order metacognitive abilities. The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA. Our findings are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices. PMID:22927899
Traumatic brain injury impairs small-world topology
Pandit, Anand S.; Expert, Paul; Lambiotte, Renaud; Bonnelle, Valerie; Leech, Robert; Turkheimer, Federico E.
2013-01-01
Objective: We test the hypothesis that brain networks associated with cognitive function shift away from a “small-world” organization following traumatic brain injury (TBI). Methods: We investigated 20 TBI patients and 21 age-matched controls. Resting-state functional MRI was used to study functional connectivity. Graph theoretical analysis was then applied to partial correlation matrices derived from these data. The presence of white matter damage was quantified using diffusion tensor imaging. Results: Patients showed characteristic cognitive impairments as well as evidence of damage to white matter tracts. Compared to controls, the graph analysis showed reduced overall connectivity, longer average path lengths, and reduced network efficiency. A particular impact of TBI is seen on a major network hub, the posterior cingulate cortex. Taken together, these results confirm that a network critical to cognitive function shows a shift away from small-world characteristics. Conclusions: We provide evidence that key brain networks involved in supporting cognitive function become less small-world in their organization after TBI. This is likely to be the result of diffuse white matter damage, and may be an important factor in producing cognitive impairment after TBI. PMID:23596068
Ge, Xintong; Li, Wenzhu; Huang, Shan; Yin, Zhenyu; Yang, Mengchen; Han, Zhenying; Han, Zhaoli; Chen, Fanglian; Wang, Haichen; Lei, Ping; Zhang, Jian-Ning
2018-04-26
Our recent papers have reported that increased miR-21-5p in brain following traumatic brain injury (TBI) could improve the neurological outcome through alleviating blood-brain barrier (BBB) damage. miR-21-3p is another mature miRNA derived from pre-miR-21 after Dicer Procession other than miR-21-5p. Its roles in various diseases, such as tumors and myocardial disease aroused great interest for research in recent years. To further explore the function and underlying mechanism of miR-21, especially miR-21-3p in regulating the pathological development of BBB damage after TBI, we designed this research and focused on studying the impact of miR-21-3p on apoptosis and inflammation in brain microvascular endothelial cells (BMVECs), the major cellular component of BBB. We performed controlled cortical impact on mouse brain, and employed the oxygen glucose deprivation/reoxygenation (OGD)-treated bEnd.3 cells injury model. We found that miR-21-3p level in BMVECs from injured cerebral cortex of controlled cortical impact (CCI) mice, and bEnd.3 cells with OGD treatment were both increased after injury. For in-vitro experiments, downregulation on miR-21-3p level by transfecting miR-21-3p antagomir in cultured cells alleviated OGD-induced BBB damage, characterized by decreased BBB leakage and increased expression of tight junction proteins. Besides, miR-21-3p antagomir could suppress cell death by anti-apoptosis, and control inflammatory response by inhibiting the activity of NF-κB signaling. Using luciferase reporter assay and a MAT2B-silenced shRNA vector, we further proved that miR-21-3p exerted above functions through targeting MAT2B. In addition, in-vivo experiments also confirmed that intracerebroventricular infusion of miR-21-3p antagomir could alleviate BBB leakage after TBI. It reduced Evans Blue extravasation and promoted the expression of tight junction proteins, thus contributed to improve the neurological outcome of CCI mice. Taken together, increased miR-21-3p in BMVECs after TBI was bad for restoration of injured BBB. Downregulation on miR-21-3p level in injured brain could be a promising therapeutic strategy for BBB damage after TBI.
Casas, Ana I; Geuss, Eva; Kleikers, Pamela W M; Mencl, Stine; Herrmann, Alexander M; Buendia, Izaskun; Egea, Javier; Meuth, Sven G; Lopez, Manuela G; Kleinschnitz, Christoph; Schmidt, Harald H H W
2017-11-14
Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke. Copyright © 2017 the Author(s). Published by PNAS.
Amen, Daniel G; Wu, Joseph C; Taylor, Derek; Willeumier, Kristen
2011-01-01
Brain injuries are common in professional American football players. Finding effective rehabilitation strategies can have widespread implications not only for retired players but also for patients with traumatic brain injury and substance abuse problems. An open label pragmatic clinical intervention was conducted in an outpatient neuropsychiatric clinic with 30 retired NFL players who demonstrated brain damage and cognitive impairment. The study included weight loss (if appropriate); fish oil (5.6 grams a day); a high-potency multiple vitamin; and a formulated brain enhancement supplement that included nutrients to enhance blood flow (ginkgo and vinpocetine), acetylcholine (acetyl-l-carnitine and huperzine A), and antioxidant activity (alpha-lipoic acid and n-acetyl-cysteine). The trial average was six months. Outcome measures were Microcog Assessment of Cognitive Functioning and brain SPECT imaging. In the retest situation, corrected for practice effect, there were statistically significant increases in scores of attention, memory, reasoning, information processing speed and accuracy on the Microcog. The brain SPECT scans, as a group, showed increased brain perfusion, especially in the prefrontal cortex, parietal lobes, occipital lobes, anterior cingulate gyrus and cerebellum. This study demonstrates that cognitive and cerebral blood flow improvements are possible in this group with multiple interventions.
New perspectives on central and peripheral immune responses to acute traumatic brain injury
2012-01-01
Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain. PMID:23061919
NASA Astrophysics Data System (ADS)
Oda, Juhachi; Sakamoto, Jiro; Sakano, Kenichi
A woodpecker strikes its beak toward a tree repeatedly. But, the damage of brain or the brain concussion doesn’t occur by this action. Human cannot strike strongly the head without the damage of a brain. Therefore, it is predicted that the brain of a woodpecker is protected from the shock by some methods and that the woodpecker has the original mechanism to absorb a shock. In this study, the endoskeltal structure, especially head part structure of woodpecker is dissected and the impact-proof system is analyzed by FEM and model experiment. From the results, it is obvious that the woodpecker has the original impact-proof system as the unique states of hyoid bone, skull, tissue and brain. Moreover it is considered that woodpecker has the advanced impact-proof system relating with not only the head part but also with the whole body.
[Neuroendocrine dysfunction and brain damage. A consensus statement].
Leal-Cerro, Alfonso; Rincón, María Dolores; Domingo, Manel Puig
2009-01-01
This consensus statement aims to enhance awareness of the incidence and risks of hypopituitarism in patients with traumatic brain injury (TBI) and/or brain hemorrhages among physicians treating patients with brain damage. The importance of this problem is related not only to the frequency of TBI but also to its prevalence in younger populations. The consequences of TBI are characterized by a series of symptoms that depend on the type of sequels related to neuroendocrine dysfunction. The signs and symptoms of hypopituitarism are often confused with those of other sequels of TBI. Consequently, patients with posttraumatic hypopituitarism may receive suboptimal rehabilitation unless the underlying hormone deficiency is identified and treated. This consensus is based on the recommendation supported by expert opinion that patients with a TBI and/or brain hemorrhage should undergo endocrine evaluation in order to assess pituitary function and, if deficiency is detected, should receive hormone replacement therapy.
Ibitayo, A O; Afolabi, O B; Akinyemi, A J; Ojiezeh, T I; Adekoya, K O; Ojewunmi, O O
2017-01-01
The advent of Wi-Fi connected high technology devices in executing day-to-day activities is fast evolving especially in developing countries of the world and hence the need to assess its safety among others. The present study was conducted to investigate the injurious effect of radiofrequency emissions from installed Wi-Fi devices in brains of young male rats. Animals were divided into four equal groups; group 1 served as control while groups 2, 3, and 4 were exposed to 2.5 Ghz at intervals of 30, 45, and 60 consecutive days with free access to food and water ad libitum. Alterations in harvested brain tissues were confirmed by histopathological analyses which showed vascular congestion and DNA damage in the brain was assayed using agarose gel electrophoresis. Histomorphometry analyses of their brain tissues showed perivascular congestion and tissue damage as well.
Analysis of brain patterns using temporal measures
Georgopoulos, Apostolos
2015-08-11
A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.
MedlinePlus Videos and Cool Tools
... body and lodges within an artery in the brain. When an internal arterial wall becomes damaged, various ... internal carotid artery, breaks loose, travels towards the brain and lodges in a cerebral artery. The blocked ...
A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury
2014-09-01
2004. He served as Guest Coeditor of a special issue on applied neurodynamics for the Journal of Neural Engineering with Dr. Peter Thomas in December...for the millions of individuals who are left with permanent motor and cognitive impairments after acquired brain injury, as occurs in stroke and...Other investigators have proposed a closed-loop approach for a cognitive prosthesis that has shown promise in animal models (40). Other potential