Science.gov

Sample records for acquired brain lesions

  1. Acquired Focal Brain Lesions in Childhood: Effects on Development and Reorganization of Language

    ERIC Educational Resources Information Center

    Chilosi, A. M.; Cipriani, P.; Pecini, C.; Brizzolara, D.; Biagi, L.; Montanaro, D.; Tosetti, M.; Cioni, G.

    2008-01-01

    In the present paper, we address brain-behaviour relationships in children with acquired aphasia, by reviewing some recent studies on the effects of focal brain lesions on language development. Timing of the lesion, in terms of its occurrence, before or after the onset of speech and language acquisition, may be a major factor determining language…

  2. Neurosurgical targets for compulsivity: what can we learn from acquired brain lesions?

    PubMed

    Figee, Martijn; Wielaard, Ilse; Mazaheri, Ali; Denys, Damiaan

    2013-03-01

    Treatment efficacy of deep brain stimulation (DBS) and other neurosurgical techniques in refractory obsessive-compulsive disorder (OCD) is greatly dependent on the targeting of relevant brain regions. Over the years, several case reports have been published on either the emergence or resolution of obsessive-compulsive symptoms due to neurological lesions. These reports can potentially serve as an important source of insight into the neuroanatomy of compulsivity and have implications for targets of DBS. For this purpose, we have reviewed all published case reports of patients with acquired or resolved obsessive-compulsive symptoms after brain lesions. We found a total of 37 case reports describing 71 patients with acquired and 6 with resolved obsessive-compulsive symptoms as a result of hemorrhaging, infarctions or removal of tumors. Behavioral symptoms following brain lesions consisted of typical obsessive-compulsive symptoms, but also symptoms within the compulsivity spectrum. These data suggests that lesions in the cortico-striato-thalamic circuit, parietal and temporal cortex, cerebellum and brainstem may induce compulsivity. Moreover, the resolution of obsessive-compulsive symptoms has been reported following lesions in the putamen, internal capsule and fronto-parietal lobe. These case reports provide strong evidence supporting the rationale for DBS in the ventral striatum and internal capsule for treatment of compulsivity and reveal the putamen and fronto-parietal cortex as promising new targets. PMID:23313647

  3. Internally and externally generated emotions in people with acquired brain injury: preservation of emotional experience after right hemisphere lesions.

    PubMed

    Salas Riquelme, Christian E; Radovic, Darinka; Castro, Osvaldo; Turnbull, Oliver H

    2015-01-01

    The study of emotional changes after brain injury has contributed enormously to the understanding of the neural basis of emotion. However, little attention has been placed on the methods used to elicit emotional responses in people with brain damage. Of particular interest are subjects with right hemisphere [RH] cortical lesions, who have been described as presenting impairment in emotional processing. In this article, an internal and external mood induction procedure [MIP] was used to trigger positive and negative emotions, in a sample of 10 participants with RH damage, and 15 healthy controls. Emotional experience was registered by using a self-report questionnaire. As observed in previous studies, internal and external MIPs were equally effective in eliciting the target emotion, but the internal procedure generated higher levels of intensity. Remarkably, participants with RH lesions were equally able to experience both positive and negative affect. The results are discussed in relation to the role of the RH in the capacity to experience negative emotions.

  4. Acquired Brain Injury Program.

    ERIC Educational Resources Information Center

    Schwartz, Stacey Hunter

    This paper reviews the Acquired Brain Injury (ABI) Program at Coastline Community College (California). The ABI Program is a two-year, for-credit educational curriculum designed to provide structured cognitive retraining for adults who have sustained an ABI due to traumatic (such as motor vehicle accident or fall) or non-traumatic(such as…

  5. Internally and externally generated emotions in people with acquired brain injury: preservation of emotional experience after right hemisphere lesions.

    PubMed

    Salas Riquelme, Christian E; Radovic, Darinka; Castro, Osvaldo; Turnbull, Oliver H

    2015-01-01

    The study of emotional changes after brain injury has contributed enormously to the understanding of the neural basis of emotion. However, little attention has been placed on the methods used to elicit emotional responses in people with brain damage. Of particular interest are subjects with right hemisphere [RH] cortical lesions, who have been described as presenting impairment in emotional processing. In this article, an internal and external mood induction procedure [MIP] was used to trigger positive and negative emotions, in a sample of 10 participants with RH damage, and 15 healthy controls. Emotional experience was registered by using a self-report questionnaire. As observed in previous studies, internal and external MIPs were equally effective in eliciting the target emotion, but the internal procedure generated higher levels of intensity. Remarkably, participants with RH lesions were equally able to experience both positive and negative affect. The results are discussed in relation to the role of the RH in the capacity to experience negative emotions. PMID:25762951

  6. Internally and externally generated emotions in people with acquired brain injury: preservation of emotional experience after right hemisphere lesions

    PubMed Central

    Salas Riquelme, Christian E.; Radovic, Darinka; Castro, Osvaldo; Turnbull, Oliver H.

    2015-01-01

    The study of emotional changes after brain injury has contributed enormously to the understanding of the neural basis of emotion. However, little attention has been placed on the methods used to elicit emotional responses in people with brain damage. Of particular interest are subjects with right hemisphere [RH] cortical lesions, who have been described as presenting impairment in emotional processing. In this article, an internal and external mood induction procedure [MIP] was used to trigger positive and negative emotions, in a sample of 10 participants with RH damage, and 15 healthy controls. Emotional experience was registered by using a self-report questionnaire. As observed in previous studies, internal and external MIPs were equally effective in eliciting the target emotion, but the internal procedure generated higher levels of intensity. Remarkably, participants with RH lesions were equally able to experience both positive and negative affect. The results are discussed in relation to the role of the RH in the capacity to experience negative emotions. PMID:25762951

  7. Asterixis in focal brain lesions.

    PubMed

    Degos, J D; Verroust, J; Bouchareine, A; Serdaru, M; Barbizet, J

    1979-11-01

    Asterixis was observed in 20 cases of focal brain lesions. Metabolic or toxic factors were excluded. An electromyogram study of asterixis was carried out in nine cases to establish the diagnosis. The site of the focal lesion was either parietal or mesencephalic and was always contralateral to the asterixis. "Focal asterixis" could result from a dysfunction of the sensorimotor integration in the parietal lobe and the midbrain.

  8. Support Network Responses to Acquired Brain Injury

    ERIC Educational Resources Information Center

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  9. [Asterixis in focal brain lesions].

    PubMed

    Velasco, F; Gomez, J C; Zarranz, J J; Lambarri, I; Ugalde, J

    2004-05-01

    Asterixis is a motor control disorder characterized by the presence of abnormal movements of the lower limbs in the vertical plane during posture maintenance. Asterixis is usually bilateral and associated with toxic-metabolic metabolic encephalopathies. Unilateral asterixis is less frequent and it normally indicates focal brain damage. We report the cases of four patients (two males/two females), aged 57 to 83 years, suffering from uni or bilateral asterixis associated with focal brain damage. All patients underwent CT brain scan and a neurophysiological study (parietal EMG and/or PES). In addition, any toxic-metabolic cause that could be produced by this clinical phenomenon was ruled out with the appropriate testing. Unilateral asterixis is a clinical symptom that may indicate the presence of focal brain damage. Often, it is ignored or overlooked during routine neurological examinations. On the other hand, the presence of a bilateral asterixis is not always indicative of a toxic-metabolic encephalopathy.Rarely, such as in one of the cases herein presented, bilateral asterixis can also appear associated with structural brain lesions. Although asterixis diagnosis is fundamentally clinical, the neurophysiological study contributes to verify the diagnosis.

  10. Group Treatment in Acquired Brain Injury Rehabilitation

    ERIC Educational Resources Information Center

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  11. Interviewing Children with Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  12. Stereotypic movement disorder after acquired brain injury.

    PubMed

    McGrath, Cynthia M; Kennedy, Richard E; Hoye, Wayne; Yablon, Stuart A

    2002-05-01

    Stereotypic movement disorder (SMD) consists of repetitive, non-functional motor behaviour that interferes with daily living or causes injury to the person. It is most often described in patients with mental retardation. However, recent evidence indicates that this condition is common among otherwise normal individuals. This case study describes a patient with new-onset SMD occurring after subdural haematoma and brain injury. SMD has rarely been reported after acquired brain injury, and none have documented successful treatment. The current psychiatric literature regarding neurochemistry, neuroanatomy, and treatment of SMD are reviewed with particular application to one patient. Treatment options include serotonin re-uptake inhibitors, opioid antagonists and dopamine antagonists. SMD has been under-appreciated in intellectually normal individuals, and may also be unrecognized after brain injury. Further investigation is needed in this area, which may benefit other individuals with SMD as well.

  13. Time Dysperception Perspective for Acquired Brain Injury

    PubMed Central

    Piras, Federica; Piras, Fabrizio; Ciullo, Valentina; Danese, Emanuela; Caltagirone, Carlo; Spalletta, Gianfranco

    2014-01-01

    Distortions of time perception are presented by a number of neuropsychiatric illnesses. Here we survey timing abilities in clinical populations with focal lesions in key brain structures recently implicated in human studies of timing. We also review timing performance in amnesic and traumatic brain injured patients in order to identify the nature of specific timing disorders in different brain damaged populations. We purposely analyzed the complex relationship between both cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will clarify whether time distortions are a manifestation of, or a mechanism for, cognitive and behavioral symptoms of neuropsychiatric disorders. PMID:24454304

  14. Blissfully unaware: Anosognosia and anosodiaphoria after acquired brain injury.

    PubMed

    Gasquoine, Philip Gerard

    2016-01-01

    Historically, anosognosia referred to under-report of striking symptoms of acquired brain injury (e.g., hemiplegia) with debilitating functional consequences and was linked with anosodiaphoria, an emotional reaction of indifference. It was later extended to include under-report of all manner of symptoms of acquired brain injury by the patient compared to clinicians, family members, or functional performance. Anosognosia is related to time since onset of brain injury but not consistently to demographic variables, lesion location (except that it is more common after unilateral right than left hemispheric injury), or specific neuropsychological test scores. This review considers all manifestations of anosognosia as a unitary phenomenon with differing clinical characteristics dictated by variability in linked cognitive impairments. It is concluded that anosognosia has three chief contributing factors: (1) procedural: measurement differences across studies in terms of symptom selection and the designation of a "gold standard" of patient symptomatology; (2) psychological: a tendency towards positive self-evaluation and the avoidance of adverse information, that also occurs in neurologically intact individuals; and (3) neuropathological: an increased likelihood of error recognition failure from disconnections that disrupt feedback between injured brain regions governing specific behaviours (symptoms) and anterior cingulate/insular cortex. Anosodiaphoria is considered as an associated symptom, resulting from the same psychological and neuropathological factors.

  15. Stereotactic biopsy of cerebral lesions in acquired immunodeficiency syndrome.

    PubMed

    Davies, M A; Pell, M F; Brew, B J

    1995-01-01

    The efficacy, mortality and morbidity of CT directed stereotactic biopsy of a cerebral lesion in 32 Human Immunodeficiency Virus (HIV) infected patients between July 1991 and June 1994 who had an atypical presentation for toxoplasmosis or who were failing or intolerant of empirical antitoxoplasmosis treatment was evaluated. An histological diagnosis was able to be made in 85%: progressive multifocal leucoencephalopathy (PML) in 13, primary cerebral lymphoma in 10, toxoplasmosis in 3 and HIV encephalitis in one. Non-specific reactive changes or gliosis were seen in 5 patients. There was no mortality, and morbidity occurred in 2 patients: one intraventricular haemorrhage and one transient third nerve palsy. Correct diagnosis made by image-directed stereotactic biopsy of central nervous system (CNS) disease in acquired immunodeficiency syndrome (AIDS) patients may improve outcome, particularly in those diseases where effective treatment strategies already exist and become increasingly available in the future.

  16. Human brain lesion-deficit inference remapped

    PubMed Central

    Mah, Yee-Haur; Husain, Masud; Rees, Geraint

    2014-01-01

    Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury—the commonest aetiology in lesion-deficit studies—where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant

  17. Human brain lesion-deficit inference remapped.

    PubMed

    Mah, Yee-Haur; Husain, Masud; Rees, Geraint; Nachev, Parashkev

    2014-09-01

    Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury-the commonest aetiology in lesion-deficit studies-where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant

  18. Structural brain lesions in inflammatory bowel disease

    PubMed Central

    Dolapcioglu, Can; Dolapcioglu, Hatice

    2015-01-01

    Central nervous system (CNS) complications or manifestations of inflammatory bowel disease deserve particular attention because symptomatic conditions can require early diagnosis and treatment, whereas unexplained manifestations might be linked with pathogenic mechanisms. This review focuses on both symptomatic and asymptomatic brain lesions detectable on imaging studies, as well as their frequency and potential mechanisms. A direct causal relationship between inflammatory bowel disease (IBD) and asymptomatic structural brain changes has not been demonstrated, but several possible explanations, including vasculitis, thromboembolism and malnutrition, have been proposed. IBD is associated with a tendency for thromboembolisms; therefore, cerebrovascular thromboembolism represents the most frequent and grave CNS complication. Vasculitis, demyelinating conditions and CNS infections are among the other CNS manifestations of the disease. Biological agents also represent a risk factor, particularly for demyelination. Identification of the nature and potential mechanisms of brain lesions detectable on imaging studies would shed further light on the disease process and could improve patient care through early diagnosis and treatment. PMID:26600970

  19. Learning: How the Brain Acquires Information.

    ERIC Educational Resources Information Center

    Miller, Beth R.

    Eight units of instruction and four projects comprise a curriculum on the brain and information processing for fourth grade students. Units, which frequently involve a guest speaker, focus on intelligence and creativity, the appearance and mechanisms of the brain, the five senses, the art and science of perception, language, reading, a field…

  20. Glioblastoma multiforme of the brain stem in a patient with acquired immunodeficiency syndrome.

    PubMed

    Wolff, R; Zimmermann, M; Marquardt, Gerhard; Lanfermann, H; Nafe, R; Seifert, V

    2002-09-01

    Glioblastoma of the brain stem is rare and there is no description of such a lesion in patients suffering from acquired immunodeficiency syndrome. The majority of intracerebral mass lesions are due either to toxoplasmosis or primary central nervous system lymphomas so that it is usually not included in the differential diagnosis of enhancing lesions of the central nervous system in these patients. A 31-year-old human immunodeficiency virus (HIV) infected man presented with a four months history of slowly progressive deterioration of brainstem associated symptoms despite antitoxoplasmic therapy. Magnetic resonance imaging revealed a large ring enhancing lesion in the brainstem. Clinical and neuroradiological data could not establish a proper diagnosis and a stereotactic serial biopsy was undertaken. Histological examination of the specimen showed a glioblastoma multiforme (GBM) as the first reported case of GBM located in the brainstem in an acquired immunodeficiency syndrome (AIDS) patient. Patient management and effectiveness of stereotactic serial biopsy are discussed.

  1. Learning: How the Brain Acquires Information.

    ERIC Educational Resources Information Center

    Miller, Beth R.

    Developed to explore how individuals receive and process sensory information, this paper describes a curriculum designed for elementary students concerning the brain and information processing. The course is entitled "Mind Adventuring: Learning about How We Learn" and is structured into eight units of study. Descriptive accounts are provided for…

  2. [Focal connatal acquired brain damage--sonographic study of the course of healing].

    PubMed

    Franek, A

    1985-06-01

    A case of a perinatal acquired focal brain lesion is reported, and the process of resorption and healing demonstrated by ultrasound. Within four weeks a cortical area of increased echogenicity was resorbed. After two months, the resulting porencephalic cyst had been transformed into glial tissue of very high echogenicity. The neurologic development of two children with such glial focus was good. These cases demonstrate that porencephalic cysts are not always the final state after resorption of a focal brain lesion. They are no reliable prognostic indicator of poor neurological outcome. Traumatic and complicated delivery, asphyxia and coagulopathy are conditions which have been found several times in connection with a focal brain lesion. In contrast to periventricular injury, prematurity does not seem to be a factor of higher risk. PMID:3895372

  3. Cohort Study of Multiple Brain Lesions in Sport Divers: Role of a Patent Foramen Ovale

    NASA Technical Reports Server (NTRS)

    Knauth, Michael; Ries, Stefan; Pohimann, Stefan; Kerby, Tina; Forstring, Michael; Daffertshofer, Michael; Hennerici,Michael; Sartor, Klaus

    1997-01-01

    To investigate the role of a patent foramen ovale in the pathogenesis of multiple brain lesions acquired by sport divers in the absence of reported decompression symptoms. Design: Prospective double blind cohort study. . Setting Diving clubs around Heidelberg and departments of neuroradiology and neurology. Subjects: 87 sport divers with a minimum of 160 scuba dives (dives with self contained underwater breathing apparatus). Main outcome measures: Presence of multiple brain lesions visualised by cranial magnetic resonance imaging and presence and size of patent foramen ovale as documented by echocontrast transcranial Doppler ultrasonograhy. Results: 25 subjects were found to have a right-to-left shunt, 13 with a patent foramen ovale of high haemodynamic relevance. A total of 41 brain lesions were detected in 11 divers. There were seven brain lesions in seven divers without a right-to-left shunt and 34 lesions in four divers with a right-to-left shunt Multiple brain lesions occurred exclusively in three divers with a large patent foramen ovale (P=0.004). Conclusions: Multiple brain lesions in sport divers were associated with presence of a large patent foramen ovale. This association suggests paradoxical gas embolism as the pathological mechanism. A patent foramen ovale of high haemodynamic relevance seems to be an important risk factor for developing multiple brain lesions in sport divers.

  4. Cohort study of multiple brain lesions in sport divers: role of a patent foramen ovale.

    PubMed Central

    Knauth, M.; Ries, S.; Pohimann, S.; Kerby, T.; Forsting, M.; Daffertshofer, M.; Hennerici, M.; Sartor, K.

    1997-01-01

    OBJECTIVE: To investigate the role of a patient foramen ovale in the pathogenesis of multiple brain lesions acquired by sport divers in the absence of reported decompression symptoms. DESIGN: Prospective double blind cohort study. SETTING: Diving clubs around Heidelberg and departments of neuroradiology and neurology. SUBJECTS: 87 sport divers with a minimum of 160 scuba dives (dives with self contained underwater breathing apparatus). MAIN OUTCOME MEASURES: Presence of multiple brain lesions visualised by cranial magnetic resonance imaging and presence and size of patent foramen ovale as documented by echocontrast transcranial Doppler ultrasonography. RESULTS: 25 subjects were found to have a right-to-left shunt, 13 with a patent foramen ovale of high haemodynamic relevance. A total of 41 brain lesions were detected in 11 divers. There were seven brain lesions in seven divers without a right-to-left shunt and 34 lesions in four divers with a right-to-left shunt. Multiple brain lesions occurred exclusively in three divers with a large patent foramen ovale (P = 0.004). CONCLUSIONS: Multiple brain lesions in sport divers were associated with presence of a large patent foramen ovale. This association suggests paradoxical gas embolism as the pathological mechanism. A patent foramen ovale of high haemodynamic relevance seems to be an important risk factor for developing multiple brain lesions in sport divers. PMID:9116544

  5. Behavior Management for Children and Adolescents with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Slifer, Keith J.; Amari, Adrianna

    2009-01-01

    Behavioral problems such as disinhibition, irritability, restlessness, distractibility, and aggression are common after acquired brain injury (ABI). The persistence and severity of these problems impair the brain-injured individual's reintegration into family, school, and community life. Since the early 1980s, behavior analysis and therapy have…

  6. Acquired constricting and restricting lesions of the descending duodenum.

    PubMed

    Carbo, Alberto I; Sangster, Guillermo P; Caraway, Jessica; Heldmann, Maureen G; Thomas, Jaiyeola; Takalkar, Amol

    2014-01-01

    The descending duodenum is a structure with distinct pathologic processes and anatomic relationships that requires a systematic approach to the differential diagnosis. Because of its tubular shape and fixed position in the retroperitoneum, both intrinsic duodenal and juxtaduodenal diseases are capable of producing luminal narrowing and obstruction. Duodenal lesions may be located in the mucosa or submucosa. Extraduodenal lesions may originate in adjacent structures--such as the pancreas, liver, gallbladder, colon, and lymph nodes--or from other retroperitoneal structures. Causes of duodenal obstruction include intraluminal masses, such as bezoars; duodenal inflammation, such as as peptic ulcers and Crohn disease; hematomas; and benign or malignant mucosal and intramural tumors. Pancreatic inflammation; tumors; and extrinsic compression caused by gallbladder processes, hepatic masses, retroperitoneal fluid collections, and tumors, including lymphoma, may produce duodenal obstruction. Abdominal radiography, barium studies, multidetector computed tomography, magnetic resonance imaging, and positron emission tomography may be used to depict and characterize duodenal strictures. Integration of imaging, clinical, laboratory, and endoscopic findings plays a major role in establishing a diagnosis of obstructive duodenal strictures. PMID:25208276

  7. Silent New Brain Lesions: Innocent Bystander or Guilty Party?

    PubMed Central

    Lee, Eun-Jae; Kang, Dong-Wha; Warach, Steven

    2016-01-01

    With the advances in magnetic resonance imaging, previously unrecognized small brain lesions, which are mostly asymptomatic, have been increasingly detected. Diffusion-weighted imaging can identify small ischemic strokes, while gradient echo T2* imaging and susceptibility-weighted imaging can reveal tiny hemorrhagic strokes (microbleeds). In this article, we review silent brain lesions appearing soon after acute stroke events, including silent new ischemic lesions and microbleeds appearing 1) after acute ischemic stroke and 2) after acute intracerebral hemorrhage. Moreover, we briefly discuss the clinical implications of these silent new brain lesions. PMID:26467195

  8. Adenocarcinoma of the lung presenting with atypical cystic brain lesions.

    PubMed

    Costa, Ricardo; Costa, Rubens B; Bacchi, Carlos; Sarinho, Filipe

    2014-04-09

    Brain metastases occur in up to 10-30% of patients with cancer. Metastatic lesions are usually diagnosed as multiple mass lesions at the junction of the grey and white matter with associated perilesional vasogenic oedema. Cysticercosis is an endemic disease in underdeveloped countries of Africa, Central and South America and is the most common parasitic infection of the central nervous system. The classical radiological finding of neurocysticercosis is cystic lesions showing the scolex in the brain parenchyma. We report a case of metastatic adenocarcinoma of the lung presenting with cystic brain lesions mimicking neurocysticercosis.

  9. Adenocarcinoma of the lung presenting with atypical cystic brain lesions

    PubMed Central

    Costa, Ricardo; Costa, Rubens B; Bacchi, Carlos; Sarinho, Filipe

    2014-01-01

    Brain metastases occur in up to 10–30% of patients with cancer. Metastatic lesions are usually diagnosed as multiple mass lesions at the junction of the grey and white matter with associated perilesional vasogenic oedema. Cysticercosis is an endemic disease in underdeveloped countries of Africa, Central and South America and is the most common parasitic infection of the central nervous system. The classical radiological finding of neurocysticercosis is cystic lesions showing the scolex in the brain parenchyma. We report a case of metastatic adenocarcinoma of the lung presenting with cystic brain lesions mimicking neurocysticercosis. PMID:24717598

  10. Functional Topography of Early Periventricular Brain Lesions in Relation to Cytoarchitectonic Probabilistic Maps

    ERIC Educational Resources Information Center

    Staudt, Martin; Ticini, Luca F.; Grodd, Wolfgang; Krageloh-Mann, Ingeborg; Karnath, Hans-Otto

    2008-01-01

    Early periventricular brain lesions can not only cause cerebral palsy, but can also induce a reorganization of language. Here, we asked whether these different functional consequences can be attributed to topographically distinct portions of the periventricular white matter damage. Eight patients with pre- and perinatally acquired left-sided…

  11. The neuropathology of acquired pre- and perinatal brain injuries.

    PubMed

    Folkerth, Rebecca D

    2007-02-01

    Acquired pre- and perinatal brain injuries comprise a significant proportion of perinatal neuropathology. They are associated with placental abnormalities, maternal factors, multiple gestations, and preterm labor, as well as with the later development of cerebral palsy and developmental delay. The patterns of perinatal brain injury depend on the etiology (often hypoxic-ischemic) and the timing relative to the development of the fetal nervous system, since the vulnerabilities of gray and white matter differ across postconceptional age and by neuroanatomic site. Nevertheless, characteristic features allow determination of the approximate age and cause of each pattern of injury in the perinatal brain. PMID:17455862

  12. Predictors of Outcome following Acquired Brain Injury in Children

    ERIC Educational Resources Information Center

    Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.

    2009-01-01

    Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…

  13. Cognitive Rehabilitation for Children with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Slomine, Beth; Locascio, Gianna

    2009-01-01

    Cognitive deficits are frequent consequences of acquired brain injury (ABI) and often require intervention. We review the theoretical and empirical literature on cognitive rehabilitation in a variety of treatment domains including attention, memory, unilateral neglect, speech and language, executive functioning, and family involvement/education.…

  14. Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma.

    PubMed

    Lötsch, Jörn; Ultsch, Alfred; Eckhardt, Maren; Huart, Caroline; Rombaux, Philippe; Hummel, Thomas

    2016-01-01

    The presence of cerebral lesions in patients with neurosensory alterations provides a unique window into brain function. Using a fuzzy logic based combination of morphological information about 27 olfactory-eloquent brain regions acquired with four different brain imaging techniques, patterns of brain damage were analyzed in 127 patients who displayed anosmia, i.e., complete loss of the sense of smell (n = 81), or other and mechanistically still incompletely understood olfactory dysfunctions including parosmia, i.e., distorted perceptions of olfactory stimuli (n = 50), or phantosmia, i.e., olfactory hallucinations (n = 22). A higher prevalence of parosmia, and as a tendency also phantosmia, was observed in subjects with medium overall brain damage. Further analysis showed a lower frequency of lesions in the right temporal lobe in patients with parosmia than in patients without parosmia. This negative direction of the differences was unique for parosmia. In anosmia, and also in phantosmia, lesions were more frequent in patients displaying the respective symptoms than in those without these dysfunctions. In anosmic patients, lesions in the right olfactory bulb region were much more frequent than in patients with preserved sense of smell, whereas a higher frequency of carriers of lesions in the left frontal lobe was observed for phantosmia. We conclude that anosmia, and phantosmia, are the result of lost function in relevant brain areas whereas parosmia is more complex, requiring damaged and intact brain regions at the same time. PMID:26937377

  15. Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma

    PubMed Central

    Lötsch, Jörn; Ultsch, Alfred; Eckhardt, Maren; Huart, Caroline; Rombaux, Philippe; Hummel, Thomas

    2016-01-01

    The presence of cerebral lesions in patients with neurosensory alterations provides a unique window into brain function. Using a fuzzy logic based combination of morphological information about 27 olfactory-eloquent brain regions acquired with four different brain imaging techniques, patterns of brain damage were analyzed in 127 patients who displayed anosmia, i.e., complete loss of the sense of smell (n = 81), or other and mechanistically still incompletely understood olfactory dysfunctions including parosmia, i.e., distorted perceptions of olfactory stimuli (n = 50), or phantosmia, i.e., olfactory hallucinations (n = 22). A higher prevalence of parosmia, and as a tendency also phantosmia, was observed in subjects with medium overall brain damage. Further analysis showed a lower frequency of lesions in the right temporal lobe in patients with parosmia than in patients without parosmia. This negative direction of the differences was unique for parosmia. In anosmia, and also in phantosmia, lesions were more frequent in patients displaying the respective symptoms than in those without these dysfunctions. In anosmic patients, lesions in the right olfactory bulb region were much more frequent than in patients with preserved sense of smell, whereas a higher frequency of carriers of lesions in the left frontal lobe was observed for phantosmia. We conclude that anosmia, and phantosmia, are the result of lost function in relevant brain areas whereas parosmia is more complex, requiring damaged and intact brain regions at the same time. PMID:26937377

  16. Network localization of neurological symptoms from focal brain lesions.

    PubMed

    Boes, Aaron D; Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S; Fox, Michael D

    2015-10-01

    A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10(-5)) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had

  17. Laser treatments of deep-seated brain lesions

    NASA Astrophysics Data System (ADS)

    Ward, Helen A.

    1997-06-01

    The five year survival rate of deep-seated malignant brain tumors after surgery/radiotherapy is virtually 100 percent mortality. Special problems include: (1) Lesions often present late. (2) Position: lesion overlies vital structures, so complete surgical/radiotherapy lesion destruction can damage vital brain-stem functions. (3) Difficulty in differentiating normal brain form malignant lesions. This study aimed to use the unique properties of the laser: (a) to minimize damage during surgical removal of deep-seated brain lesions by operating via fine optic fibers; and (b) to employ the propensity of certain lasers for absorption of dyes and absorption and induction of fluorescence in some brain substances, to differentiate borders of malignant and normal brain, for more complete tumor removal. In the method a fine laser endoscopic technique was devised for removal of brain lesions. The results of this technique, were found to minimize and accurately predict the extent of thermal damage and shock waves to within 1-2mm of the surgical laser beam. Thereby it eliminated the 'popcorn' effect.

  18. Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury

    PubMed Central

    Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.

    2009-01-01

    Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795

  19. The brain network associated with acquiring semantic knowledge.

    PubMed

    Maguire, Eleanor A; Frith, Christopher D

    2004-05-01

    There is ongoing debate about how semantic information is acquired, whether this occurs independently of episodic memory, and what role, if any, brain areas such as hippocampus are required to play. We used auditory stimuli and functional MRI (fMRI) to assess brain activations associated with the incidental acquisition of new and true facts about the world of the sort we are exposed to day to day. A control task was included where subjects heard sentences that described novel scenarios involving unfamiliar people, but these did not convey general knowledge. The incidental encoding task was identical for two stimulus types; both shared the same episodic experience (lying in the brain scanner) and conveyed complex information. Despite this, and considering only those stimuli successfully encoded, compared to a baseline task, a more extensive network of brain regions was found to be associated with exposure to new facts including the hippocampus. Direct comparison between the two stimulus types revealed greater activity in dorsal, ventrolateral and dorsomedial prefrontal cortex, medial dorsal nucleus of the thalamus, and temporal cortex for fact stimuli. The findings suggest that successful encoding is not invariably associated with activation of one particular brain network. Rather, activation patterns may depend on the type of materials being acquired, and the different processes they engender when subjects encode. Qualitatively, from postscan debriefing sessions, it emerged that the factual information was found to be potentially more useful. We suggest that current or prospective utility of incoming information may be one factor that influences the processes engaged during encoding and the concomitant neuronal responses. PMID:15110007

  20. Laterality of brain and ocular lesions in Aicardi Syndrome

    PubMed Central

    Cabrera, Michelle T.; Winn, Bryan J.; Porco, Travis; Strominger, Zoe; Barkovich, A. James; Hoyt, Creig S.; Wakahiro, Mari; Sherr, Elliott H.

    2011-01-01

    This study reports a large case series of children with Aicardi syndrome. A new severity scoring system is established to assess sidedness of ocular and brain lesions. Thirty-five children were recruited from Aicardi syndrome family conferences. All children received dilated ophthalmologic exams, and brain MRI’s were reviewed. Ocular and brain MRI Aicardi lesion severity scores were devised. A linear mixed model was used to compare each side for the ocular and brain MRI severity scores of Aicardi associated disease. Twenty-six children met inclusion criteria for the study. All subjects were female, ages 3 months to 19 years. Rates per child of optic nerve coloboma, severe lacunae, and microphthalmos in one or both eyes (among those with complete fundus exams available) were 10/24 (42%), 8/22 (36%), and 7/26 (27%), respectively. Ocular and brain MRI asymmetry was found in 18% (4/22) and 58% (15/26) of subjects, respectively, with more right sided brain lesions than left (V=52, P=0.028). A significant correlation between sidedness of brain disease and microphthalmos was seen (T = 2.54, P = 0.02). This study substantiates the range and severity of Aicardi syndrome associated ophthalmologic and brain MRI lesions from prior smaller case series. PMID:21824560

  1. The Pediatric Acquired Brain Injury Community Outreach Program (PABICOP) - an innovative comprehensive model of care for children and youth with an acquired brain injury.

    PubMed

    Gillett, Jane

    2004-01-01

    The Pediatric Acquired Brain Injury Community Outreach Program - an innovative, comprehensive model of care for children and youth with an acquired brain injury is described. The background to the formation of the idea is delineated and the current function of the model given. Future directions are discussed. The program addresses the needs and issues of children and youth with an acquired brain injury and their families. Subsequent literature supports the concept of care that this program espouses.

  2. Tumor-like lesions of the brain

    PubMed Central

    2009-01-01

    Abstract Differentiation between tumors and tumor-like lesions of the central nervous system is essential for planning adequate treatment and for estimating outcome and future prognosis. Neuroimaging fulfills an essential role in the correct differentiation between both entities. The radiologist should be aware of all non-neoplastic pathologies and diseases that may mimic tumors. High-end anatomic and functional neuroimaging tools integrating multiple modalities and clinical correlation is mandatory. In the current review, frequent tumor-like lesions are discussed. PMID:19965288

  3. Endoscopic laser stereotaxis: management of brain lesions

    NASA Astrophysics Data System (ADS)

    Zamorano, Lucia J.; Chavantes, Maria C.; Moure, Federico; Diaz, Fernando

    1994-05-01

    Image-guided stereotaxis is an accurate and safe method of directing therapy to target volumes defined in 2D multi-planes or 3D perspectives using computer reconstruction of image data. The major limitations of stereotactic techniques are the lack of intraoperative visualization and the ability to directly monitor the procedures, and changes of intracranial coordinates after decompression of cystic lesions or aspiration of cerebrospinal fluid in the management of intraventricular lesions. Stereotactic neuroendoscopy involves integration of rigid-flexible endoscopy and the Nd-YAG laser in 2D/3D multiplanar image-guided stereotactic procedures. The major advantages of endoscopic laser surgery include being minimally invasive (burrhole or small craniotomy surgery), direct intraoperative visualization, hemostasis, evacuation or resection assessment, and wide exploration of intracranial cavities or ventricles. We used endoscopic laser surgery in the management of 202 patients undergoing biopsy, aspiration, resection, and internal decompression of deep and subcortical intracranial lesions, and for different types of fenestration procedures. Image-guidance combined with endoscopic techniques may offer a safe, accurate alternative to conventional neurosurgical procedures in treating small solid, cystic, intraventricular lesions, and in fenestration procedures.

  4. Inferential stereomorphology of human brain lesions

    NASA Astrophysics Data System (ADS)

    Gedye, John L.

    1980-07-01

    I very much appreciated the invitation to contribute a paper to this Symposium on Applications of Human Biostereometrics, as it provides a valuable opportunity for me to take a fresh look at a problemâ€""the cerebral localisation of psychological function"â€"in which I have been interested for many years. This interest grew out of considerations of the clinically important problem of how we should go about the task of relating the form of the changes in human behavior consequent upon damage to the human brain following, say, head injury, to the form of the changes in brain morphology which constitute that damage, and related issues.

  5. Brain vascular lesions: a clinicopathologic, immunohistochemistry, and ultrastructural approach.

    PubMed

    Navarrete, Marisol Galván; Hernández, Alma Dalia; Collado-Ortiz, Miguel Angel; Salinas-Lara, Citlaltepetl; Tena-Suck, Martha Lilia

    2014-08-01

    Brain vascular malformations are relatively common lesions that cause serious neurologic disability or death in a significant proportion of individuals bearing them. The purpose of this study was to analyze the clinicopathologic and immunohistochemistry these lesions, looking for common antibodies expressed such as CD31, CD34, CD15, factor VIII, nestin, vimentin, vascular endothelial grow factor (VEGF), vascular endothelial grow factor receptor-2 (VEGF-R2), glial fibrillar acidic protien (GFAP), and fibroblastic grow factor β (β-FGF) and ultrastructure in endothelial cells as well as in vessel walls. Fifty cases of vascular lesions were included in this study: 29 (58%) of them were arteriovenous malformations and 21 (52%) were brain cavernomas. Twenty-six (52%) patients were women and 24 (48%) men. The age range was from 13 to 68 years (mean age, 35.86 ± 15.19 years). The size of the lesions ranged between 1 and 8 cm (3 ± 1.65 cm), and parieto-occipital lesions had a bigger size. Evolution time varied from 1 month to 1 year (mean, 7.5 months). There was a significant statistical correlation between age and sex (P = -035), rupture of lesion (P = .015), brain hemorrhage (P = .033), necrosis (P = .011), hemosiderin deposit (P = .042), VEGF (P = .015), and VEGFR (P = .037), as well as localization of rupture (P = .017), loss of consciousness (P = .000), visual deficit (P = .026), hyaline vessels (P = .000), and CD31 (.009). Interactions between endothelial cells and mural cells (pericytes and vascular smooth muscle cells) in blood vessel walls have recently come into focus as central processes in the regulation of vascular formation, stabilization, remodeling, and function in brain vascular lesions. However, the molecular mechanisms that underlie the formation and growth of brain arteriovenous malformations are still poorly understood.

  6. Do brain lesions in stroke affect basic emotions and attachment?

    PubMed

    Farinelli, Marina; Panksepp, Jaak; Gestieri, Laura; Maffei, Monica; Agati, Raffaele; Cevolani, Daniela; Pedone, Vincenzo; Northoff, Georg

    2015-01-01

    The aim of the current study was to investigate basic emotions and attachment in a sample of 86 stroke patients. We included a control group of 115 orthopedic patients (matched for age and cognitive status) without brain lesions to control for unspecific general illness effects of a traumatic recent event on basic emotions and attachment. In order to measure basic emotions and attachment style we applied the Affective Neuroscience Personality Scale (ANPS) and the Attachment Style Questionnaire (ASQ). The stroke patients showed significantly different scores in the SEEKING, SADNESS, and ANGER subscales of the ANPS as well as in the Relationship as Secondary Attachment dimension of the ASQ when compared to the control group. These differences show a pattern influenced by lesion location mainly as concerns basic emotions. Anterior, medial, left, and subcortical patients provide scores significantly lower in ANPS-SEEKING than the control group; ANPS-SADNESS scores in anterior, right, medial, and subcortical patients were significantly higher than those of the control group. ANPS-ANGER scores in posterior, right, and lateral patients were significantly higher than those in the control group; finally, the ANPS-FEAR showed slightly lower scores in posterior patients than in the control group. Minor effects on brain lesions were also individuated in the attachment style. Anterior lesion patients showed a significantly higher average score in the ASQ-Need for Approval subscale than the control group. ASQ-Confidence subscale scores differed significantly in stroke patients with lesions in medial brain regions when compared to control subjects. Scores at ANPS and ASQ subscales appear significantly more correlated in stroke patients than in the control group. Such finding of abnormalities, especially concerning basic emotions in stroke brain-lesioned patients, indicates that the effect of brain lesions may enhance the interrelation between basic emotions and attachment with

  7. Brain lesions in mallard ducklings from parents fed methylmercury

    USGS Publications Warehouse

    Heinz, G.H.; Locke, L.N.

    1976-01-01

    Methylmercury dicyandiamide was fed to mallard ducks at 3 ppm mercury. Mercury accumulated in the eggs to an average of 7.18 and 5.46 ppm on a wet-weight basis in 2 successive years. Mercury in the eggs is believed to have caused brain lesions in the hatched ducklings. Lesions included demyelination, neuron shrink-age, necrosis, and hemorrhage in the meninges overlying the cerebellum. Brains of dead ducklings contained an average of 6.17 and 5.19 ppm mercury on a wet-weight basis in 2 successive years.

  8. Melatonin prevents learning disorders in brain-lesioned newborn mice.

    PubMed

    Bouslama, M; Renaud, J; Olivier, P; Fontaine, R H; Matrot, B; Gressens, P; Gallego, J

    2007-12-12

    Perinatal brain injuries often result in irreversible learning disabilities, which manifest in early childhood. These injuries are chiefly ascribable to marked susceptibility of the immature brain to glutamate-induced excitotoxicity. No treatments are available. One well-characterized model of perinatal brain injuries consists in injecting the glutamate analog ibotenate into the brain of 5-day-old mice. The resulting excitotoxic lesions resemble the hypoxic-ischemic gray-matter lesions seen in full-term and near-term newborns, as well as the white-matter lesions of preterm newborns. We previously reported that these lesions disrupted odor preference conditioning in newborn mice. The aim of this study was to assess the effectiveness of the neuroprotector melatonin in preventing learning disabilities in newborn mice with ibotenate-induced brain injury. In postnatal day (P) 6-P7 pups, we tested psychomotor reflexes, spontaneous preference for maternal odors as an index of memory, ultrasonic vocalization responses to stroking as an index of sensitivity to tactile stimuli, and conditioned preference for an odor previously paired with stroking as an index of learning abilities. Without melatonin, conditioning was abolished, whereas spontaneous odor preference, psychomotor reflexes, and sensitivity to tactile stimuli were normal. Thus, abolition of conditioning was not associated with sensorimotor impairments. Histological analysis confirmed the efficacy of melatonin in reducing white-matter lesions induced by ibotenate. Furthermore, treatment with melatonin protected the ability to develop conditioning. Thus, melatonin, which easily crosses the blood-brain barrier and has been proven safe in children, may be effective in preventing learning disabilities caused by perinatal brain injuries in human preterm infants. PMID:17950543

  9. Simulation of spread and control of lesions in brain.

    PubMed

    Thamattoor Raman, Krishna Mohan

    2012-01-01

    A simulation model for the spread and control of lesions in the brain is constructed using a planar network (graph) representation for the central nervous system (CNS). The model is inspired by the lesion structures observed in the case of multiple sclerosis (MS), a chronic disease of the CNS. The initial lesion site is at the center of a unit square and spreads outwards based on the success rate in damaging edges (axons) of the network. The damaged edges send out alarm signals which, at appropriate intensity levels, generate programmed cell death. Depending on the extent and timing of the programmed cell death, the lesion may get controlled or aggravated akin to the control of wild fires by burning of peripheral vegetation. The parameter phase space of the model shows smooth transition from uncontrolled situation to controlled situation. The simulations show that the model is capable of generating a wide variety of lesion growth and arrest scenarios. PMID:22319549

  10. Content based retrieval of lesioned brain images

    NASA Astrophysics Data System (ADS)

    Batty, Stephen; Blandford, Ann; Clark, John; Fryer, Tim; Gao, Xiaohong

    2002-05-01

    HI-PACS enable more efficient data-management leading to increased operating efficiency and therefore better patient care, a content based pet image retrieval system would contribute to the development of a HI-PACS. A database of PET neuro-images has been created with a facility for retrieving via visual content. The adaptation of algorithms developed for alternate imaging modalities (eg-MRI) formed the basis of feature detection and measurement algorithms. The application of these algorithms to greyscale PET images results in data that is employed as database indices and similarity metrics. The feature detection and measurement algorithms can be split into two different methods. The first uses the extracted ideal mid sagittal symmetry line to detect differences between the two hemisphere of the brain, while the second utilizes Gabor filters to measure the texture of the whole brain.

  11. Inability to acquire spatial information and deploy spatial search strategies in mice with lesions in dorsomedial striatum.

    PubMed

    Pooters, Tine; Gantois, Ilse; Vermaercke, Ben; D'Hooge, Rudi

    2016-02-01

    Dorsal striatum has been shown to contribute to spatial learning and memory, but the role of striatal subregions in this important aspect of cognitive functioning remains unclear. Moreover, the spatial-cognitive mechanisms that underlie the involvement of these regions in spatial navigation have scarcely been studied. We therefore compared spatial learning and memory performance in mice with lesions in dorsomedial (DMS) and dorsolateral striatum (DLS) using the hidden-platform version of the Morris water maze (MWM) task. Compared to sham-operated controls, animals with DMS damage were impaired during MWM acquisition training. These mice displayed delayed spatial learning, increased thigmotaxis, and increased search distance to the platform, in the absence of major motor dysfunction, working memory defects or changes in anxiety or exploration. They failed to show a preference for the target quadrant during probe trials, which further indicates that spatial reference memory was impaired in these animals. Search strategy analysis moreover demonstrated that DMS-lesioned mice were unable to deploy cognitively advanced spatial search strategies. Conversely, MWM performance was barely affected in animals with lesions in DLS. In conclusion, our results indicate that DMS and DLS display differential functional involvement in spatial learning and memory. Our results show that DMS, but not DLS, is crucial for the ability of mice to acquire spatial information and their subsequent deployment of spatial search strategies. These data clearly identify DMS as a crucial brain structure for spatial learning and memory, which could explain the occurrence of neurocognitive impairments in brain disorders that affect the dorsal striatum. PMID:26548360

  12. Inability to acquire spatial information and deploy spatial search strategies in mice with lesions in dorsomedial striatum.

    PubMed

    Pooters, Tine; Gantois, Ilse; Vermaercke, Ben; D'Hooge, Rudi

    2016-02-01

    Dorsal striatum has been shown to contribute to spatial learning and memory, but the role of striatal subregions in this important aspect of cognitive functioning remains unclear. Moreover, the spatial-cognitive mechanisms that underlie the involvement of these regions in spatial navigation have scarcely been studied. We therefore compared spatial learning and memory performance in mice with lesions in dorsomedial (DMS) and dorsolateral striatum (DLS) using the hidden-platform version of the Morris water maze (MWM) task. Compared to sham-operated controls, animals with DMS damage were impaired during MWM acquisition training. These mice displayed delayed spatial learning, increased thigmotaxis, and increased search distance to the platform, in the absence of major motor dysfunction, working memory defects or changes in anxiety or exploration. They failed to show a preference for the target quadrant during probe trials, which further indicates that spatial reference memory was impaired in these animals. Search strategy analysis moreover demonstrated that DMS-lesioned mice were unable to deploy cognitively advanced spatial search strategies. Conversely, MWM performance was barely affected in animals with lesions in DLS. In conclusion, our results indicate that DMS and DLS display differential functional involvement in spatial learning and memory. Our results show that DMS, but not DLS, is crucial for the ability of mice to acquire spatial information and their subsequent deployment of spatial search strategies. These data clearly identify DMS as a crucial brain structure for spatial learning and memory, which could explain the occurrence of neurocognitive impairments in brain disorders that affect the dorsal striatum.

  13. Brain lesion induced by 1319nm laser radiation

    NASA Astrophysics Data System (ADS)

    Yang, Zaifu; Chen, Hongxia; Wang, Jiarui; Chen, Peng; Ma, Ping; Qian, Huanwen

    2010-11-01

    The laser-tissue interaction has not been well defined at the 1319 nm wavelength for brain exposure. The goal of this research effort was to identify the behavioral and histological changes of brain lesion induced by 1319 nm laser. The experiment was performed on China Kunming mice. Unilateral brain lesions were created with a continuous-wave Nd:YAG laser (1319nm). The brain lesions were identified through behavioral observation and histological haematoxylin and eosin (H&E) staining method. The behavior change was observed for a radiant exposure range of 97~773 J/cm2. The histology of the recovery process was identified for radiant exposure of 580 J/cm2. Subjects were sacrificed 1 hour, 1 week, 2 weeks, 3 months, 7 months and 13 months after laser irradiation. Results showed that after laser exposure, behavioral deficits, including kyphosis, tail entasia, or whole body paralysis could be noted right after the animals recovered from anesthesia while gradually disappeared within several days and never recurred again. Histologically, the laser lesion showed a typical architecture dependent on the interval following laser treatment. The central zone of coagulation necrosis is not apparent right after exposure but becomes obvious within several days. The nerotic tissue though may persist for a long time, will finally be completely resorbed. No carbonization granules formed under our exposure condition.

  14. Outcomes of a multicomponent intervention on occupational performance in persons with unilateral acquired brain injury

    PubMed Central

    Hoyas, Elisabet Huertas; Pérez, Eduardo José Pedrero; Águila Maturana, Ana M.; Mota, Gloria Rojo; Piédrola, Rosa Martínez; de Heredia Torres, Marta Pérez

    2016-01-01

    Summary Complications after unilateral acquired brain injury (ABI) can affect various areas of expertise causing (depending on the location of the lesion) impairment in occupational performance. The aim of this study was to analyze and compare the concepts of occupational performance and functional independence, both before and after a multicomponent intervention including occupational therapy, in persons with unilateral brain damage. This was a longitudinal quasi-experimental pretest post-test study in a sample of 58 patients with unilateral brain injury (28 with traumatic brain injury and 30 with ischemic stroke). The patients’ level of independence was measured using the short version of the International Classification of Functioning, Disability and Health. We also measured quality of performance using the Assessment of Motor and Process Skills. The findings of this study showed that patients with injury in the right hemisphere improved more than those with left hemisphere damage (p<0.001). All the patients with ABI, especially those with right-sided injury, derived benefit from the multicomponent intervention, except in the area of motor skills. More research is needed on the specific techniques that might address such skills. PMID:27358224

  15. Delusional misidentifications and duplications: right brain lesions, left brain delusions.

    PubMed

    Devinsky, Orrin

    2009-01-01

    When the delusional misidentification syndromes reduplicative paramnesia and Capgras syndromes result from neurologic disease, lesions are usually bifrontal and/or right hemispheric. The related disorders of confabulation and anosognosis share overlapping mechanisms and anatomic pathology. A dual mechanism is postulated for the delusional misidentification syndromes: negative effects from right hemisphere and frontal lobe dysfunction as well as positive effects from release (i.e., overactivity) of preserved left hemisphere areas. Negative effects of right hemisphere injury impair self-monitoring, ego boundaries, and attaching emotional valence and familiarity to stimuli. The unchecked left hemisphere unleashes a creative narrator from the monitoring of self, memory, and reality by the frontal and right hemisphere areas, leading to excessive and false explanations. Further, the left hemisphere's cognitive style of categorization, often into dual categories, leads it to invent a duplicate or impostor to resolve conflicting information. Delusions result from right hemisphere lesions. But it is the left hemisphere that is deluded.

  16. Behavior management for children and adolescents with acquired brain injury.

    PubMed

    Slifer, Keith J; Amari, Adrianna

    2009-01-01

    Behavioral problems such as disinhibition, irritability, restlessness, distractibility, and aggression are common after acquired brain injury (ABI). The persistence and severity of these problems impair the brain-injured individual's reintegration into family, school, and community life. Since the early 1980s, behavior analysis and therapy have been used to address the behavioral sequelae of ABI. These interventions are based on principles of learning and behavior that have been robustly successful when applied across a broad range of other clinical populations. Most of the research on behavioral treatment after ABI has involved clinical case studies or studies employing single-subject experimental designs across a series of cases. The literature supports the effectiveness of these interventions across ages, injury severities, and stages of recovery after ABI. Recommended guidelines for behavior management include: direct behavioral observations, systematic assessment of environmental and within-patient variables associated with aberrant behavior, antecedent management to minimize the probability of aberrant behavior, provision of functionally equivalent alternative means of controlling the environment, and differential reinforcement to shape positive behavior and coping strategies while not inadvertently shaping emergent, disruptive sequelae. This package of interventions requires direction by a highly skilled behavioral psychologist or therapist who systematically monitors target behavior to evaluate progress and guide treatment decisions. A coordinated multisite effort is needed to design intervention protocols that can be studied prospectively in randomized controlled trials. However, there will continue to be an important role for single subject experimental design for studying the results of individualized interventions and obtaining pilot data to guide subsequent randomized controlled trails.

  17. Focal brain trauma in the cryogenic lesion model in mice.

    PubMed

    Raslan, Furat; Albert-Weißenberger, Christiane; Ernestus, Ralf-Ingo; Kleinschnitz, Christoph; Sirén, Anna-Leena

    2012-01-01

    The method to induce unilateral cryogenic lesions was first described in 1958 by Klatzo. We describe here an adaptation of this model that allows reliable measurement of lesion volume and vasogenic edema by 2, 3, 5-triphenyltetrazolium chloride-staining and Evans blue extravasation in mice. A copper or aluminium cylinder with a tip diameter of 2.5 mm is cooled with liquid nitrogen and placed on the exposed skull bone over the parietal cortex (coordinates from bregma: 1.5 mm posterior, 1.5 mm lateral). The tip diameter and the contact time between the tip and the parietal skull determine the extent of cryolesion. Due to an early damage of the blood brain barrier, the cryogenic cortical injury is characterized by vasogenic edema, marked brain swelling, and inflammation. The lesion grows during the first 24 hours, a process involving complex interactions between endothelial cells, immune cells, cerebral blood flow, and the intracranial pressure. These contribute substantially to the damage from the initial injury. The major advantage of the cryogenic lesion model is the circumscribed and highly reproducible lesion size and location. PMID:22480252

  18. Rehabilitation for children after acquired brain injury: current and emerging approaches.

    PubMed

    Gordon, Anne L; di Maggio, Annalisa

    2012-06-01

    Evidence is emerging of diverse, chronic, cumulative disabilities experienced by children in the months and years after acquired brain injury. The long-held assumption that younger children recover better from brain injury than older children or adults has been challenged by recent studies. Populations with acquired brain injury include children with traumatic brain injury and stroke, and a proportion of children with cerebral palsy. Although characteristics of brain injury in children vary, subgroups of this population offer the potential to inform our understanding of developing brain structure-function relationships in response to intervention. Limited evidence and few controlled rehabilitation trials exist regarding children with neurologic conditions. A number of rehabilitation approaches produced benefits in adult stroke, and cerebral palsy populations may be applied to children with other acquired brain injuries. Rehabilitation approaches that have been applied to children with acquired brain injuries, or hold promise for future applications, are reviewed.

  19. Acquired Brain Injury, Social Work and the Challenges of Personalisation

    PubMed Central

    Holloway, Mark; Fyson, Rachel

    2016-01-01

    Increasing numbers of adults in the UK are living with acquired brain injury (ABI), with those affected requiring immediate medical care and longer-term rehabilitative and social care. Despite their social needs, limited attention has been paid to people with ABI within the social work literature and their needs are also often overlooked in policy and guidance. As a means of highlighting the challenge that ABI presents to statutory social work, this paper will start by outlining the common characteristics of ABI and consider the (limited) relevant policy guidance. The particular difficulties of reconciling the needs of people with ABI with the prevailing orthodoxies of personalisation will then be explored, with a particular focus on the mismatch between systems which rest on presumptions autonomy and the circumstances of individuals with ABI—typified by executive dysfunction and lack of insight into their own condition. Composite case studies, drawn from the first author's experiences as a case manager for individuals with ABI, will be used to illustrate the arguments being made. The paper will conclude by considering the knowledge and skills which social workers need in order to better support people with ABI. PMID:27559229

  20. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    ERIC Educational Resources Information Center

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  1. Acquired Brain Injury Club at a Community College: Opportunities for Support, Involvement, and Leadership

    ERIC Educational Resources Information Center

    Chinn, Nancy Resendes

    2009-01-01

    College students with acquired brain injuries face unique challenges. The likelihood of individuals with acquired brain injury experiencing isolation, lack of social support, and diminished self-esteem, along with cognitive impairments, is well documented in the literature. This article presents an overview of a community college's club for…

  2. Brain lesions and their implications in criminal responsibility.

    PubMed

    Batts, Shelley

    2009-01-01

    For over 200 years, Western courts have considered pleas of "not guilty by reason of insanity" (NGRI) for defendants in possession of a mental defect rendering them unable to understand the wrongfulness of their act. Until recently, determining the mental state of a defendant has fallen largely upon the shoulders of court psychologists and experts in psychiatry for qualitative assessments related to NGRI pleas and mitigation at sentencing. However, advances in neuroscience--particularly neurological scanning techniques such as magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), computed tomography scanning (CT), and positron emission tomography scanning (PET)--may provide additional, pertinent biological evidence as to whether an organically based mental defect exists. With increasing frequency, criminal defense attorneys are integrating neuroimaging data into hearings related to determinations of guilt and sentencing mitigation. This is of concern, since not all brain lesions and abnormalities indicate a compromised mental state that is relevant to knowing whether the act was wrong at the time of commission, and juries may be swayed by neuroscientific evidence that is not relevant to the determination of the legal question before them. This review discusses historical and modern cases involving the intersection of brain lesions and criminality, neuroscientific perspectives of how particular types of lesions may contribute to a legally relevant mental defect, and how such evidence might best be integrated into a criminal trial. PMID:19319837

  3. Brain lesions and their implications in criminal responsibility.

    PubMed

    Batts, Shelley

    2009-01-01

    For over 200 years, Western courts have considered pleas of "not guilty by reason of insanity" (NGRI) for defendants in possession of a mental defect rendering them unable to understand the wrongfulness of their act. Until recently, determining the mental state of a defendant has fallen largely upon the shoulders of court psychologists and experts in psychiatry for qualitative assessments related to NGRI pleas and mitigation at sentencing. However, advances in neuroscience--particularly neurological scanning techniques such as magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), computed tomography scanning (CT), and positron emission tomography scanning (PET)--may provide additional, pertinent biological evidence as to whether an organically based mental defect exists. With increasing frequency, criminal defense attorneys are integrating neuroimaging data into hearings related to determinations of guilt and sentencing mitigation. This is of concern, since not all brain lesions and abnormalities indicate a compromised mental state that is relevant to knowing whether the act was wrong at the time of commission, and juries may be swayed by neuroscientific evidence that is not relevant to the determination of the legal question before them. This review discusses historical and modern cases involving the intersection of brain lesions and criminality, neuroscientific perspectives of how particular types of lesions may contribute to a legally relevant mental defect, and how such evidence might best be integrated into a criminal trial.

  4. Limitations on the Developing Preterm Brain: Impact of Periventricular White Matter Lesions on Brain Connectivity and Cognition

    ERIC Educational Resources Information Center

    Pavlova, Marina A.; Krageloh-Mann, Ingeborg

    2013-01-01

    Brain lesions to the white matter in peritrigonal regions, periventricular leukomalacia, in children who were born prematurely represent an important model for studying limitations on brain development. The lesional pattern is of early origin and bilateral, that constrains the compensatory potential of the brain. We suggest that (i) topography and…

  5. Visual evoked potentials in guinea pigs with brain lesion.

    PubMed

    Takeuchi, T; Suzuki, M; Sitizyo, K; Isobe, R; Saito, T; Umemura, T; Shimada, A

    1992-10-01

    Visual evoked potentials (VEPs) were recorded in 10 adult male guinea pigs with brain lesion. Lesions were produced in 5 animals by superficial suction of the occipital lobe. The other 5 animals were orally administered with hexachlorophene (about 35 mg/kg/day) for 28 days. In the VEP following the ablation of the occipital lobe, the peaks P10, N20, P55, N75, N140 and P200 disappeared in many cases. The amplitude of the peak N40 decreased to approximately one half its control VEP. In the VEP obtained from the animals administered with hexachlorophene, the peak latencies of N20, P30, P55, N75 and P100 were slightly prolonged after the 7th day following the first administration. On the other hand, there was no change in the latency of N40 during the whole period of administration. The peak-to-peak amplitude showed some variability in different peaks. Histologically, diffuse status spongiosis were found in the white matter of the cerebrum, cerebellum, and brain stem. As described above, the ablation of the occipital lobe caused markedly depressed VEPs, however, the responses to the photic stimulation persisted after the injury. On the other hand, the VEPs of animals administered with hexachlorophene showed a high probability of peak appearance, and a decrease in amplitude was not marked.

  6. Cognitive correlates of white matter lesion load and brain atrophy

    PubMed Central

    Dong, Chuanhui; Nabizadeh, Nooshin; Caunca, Michelle; Cheung, Ying Kuen; Rundek, Tatjana; Elkind, Mitchell S.V.; DeCarli, Charles; Sacco, Ralph L.; Stern, Yaakov

    2015-01-01

    Objective: We investigated white matter lesion load and global and regional brain volumes in relation to domain-specific cognitive performance in the stroke-free Northern Manhattan Study (NOMAS) population. Methods: We quantified white matter hyperintensity volume (WMHV), total cerebral volume (TCV), and total lateral ventricular (TLV) volume, as well as hippocampal and cortical gray matter (GM) lobar volumes in a subgroup. We used general linear models to examine MRI markers in relation to domain-specific cognitive performance, adjusting for key covariates. Results: MRI and cognitive data were available for 1,163 participants (mean age 70 ± 9 years; 60% women; 66% Hispanic, 17% black, 15% white). Across the entire sample, those with greater WMHV had worse processing speed. Those with larger TLV volume did worse on episodic memory, processing speed, and semantic memory tasks, and TCV did not explain domain-specific variability in cognitive performance independent of other measures. Age was an effect modifier, and stratified analysis showed that TCV and WMHV explained variability in some domains above age 70. Smaller hippocampal volume was associated with worse performance across domains, even after adjusting for APOE ε4 and vascular risk factors, whereas smaller frontal lobe volumes were only associated with worse executive function. Conclusions: In this racially/ethnically diverse, community-based sample, white matter lesion load was inversely associated with cognitive performance, independent of brain atrophy. Lateral ventricular, hippocampal, and lobar GM volumes explained domain-specific variability in cognitive performance. PMID:26156514

  7. Electrocardiographic abnormalities and cardiac arrhythmias in structural brain lesions.

    PubMed

    Katsanos, Aristeidis H; Korantzopoulos, Panagiotis; Tsivgoulis, Georgios; Kyritsis, Athanassios P; Kosmidou, Maria; Giannopoulos, Sotirios

    2013-07-31

    Cardiac arrhythmias and electrocardiographic abnormalities are frequently observed after acute cerebrovascular events. The precise mechanism that leads to the development of these arrhythmias is still uncertain, though increasing evidence suggests that it is mainly due to autonomic nervous system dysregulation. In massive brain lesions sympathetic predominance and parasympathetic withdrawal during the first 72 h are associated with the occurrence of severe secondary complications in the first week. Right insular cortex lesions are also related with sympathetic overactivation and with a higher incidence of electrocardiographic abnormalities, mostly QT prolongation, in patients with ischemic stroke. Additionally, female sex and hypokalemia are independent risk factors for severe prolongation of the QT interval which subsequently results in malignant arrhythmias and poor outcome. The prognostic value of repolarization changes commonly seen after aneurysmal subarachnoid hemorrhage, such as ST segment, T wave, and U wave abnormalities, still remains controversial. In patients with traumatic brain injury both intracranial hypertension and cerebral hypoperfusion correlate with low heart rate variability and increased mortality. Given that there are no firm guidelines for the prevention or treatment of the arrhythmias that appear after cerebral incidents this review aims to highlight important issues on this topic. Selected patients with the aforementioned risk factors could benefit from electrocardiographic monitoring, reassessment of the medications that prolong QTc interval, and administration of antiadrenergic agents. Further research is required in order to validate these assumptions and to establish specific therapeutic strategies.

  8. Identifying Lesions on Structural Brain Images-Validation of the Method and Application to Neuropsychological Patients

    ERIC Educational Resources Information Center

    Stamatakis, E.A.; Tyler, L.K.

    2005-01-01

    The study of neuropsychological disorders has been greatly facilitated by the localization of brain lesions on MRI scans. Current popular approaches for the assessment of MRI brain scans mostly depend on the successful segmentation of the brain into grey and white matter. These methods cannot be used effectively with large lesions because lesions…

  9. Episodic disorders of behaviour and affect after acquired brain injury.

    PubMed

    Eames, Peter Eames; Wood, Rodger Ll

    2003-01-01

    Psychological disorders that follow traumatic brain injury are possibly more complex and diverse than those associated with other forms of "brain damage". These may include organic aggressive, or organic affective syndromes that are episodic in nature and therefore require a more specific diagnosis, a different classification, and a different approach to treatment. Consequently, it is necessary for clinicians to learn to distinguish between "primary" psychiatric illnesses and those disorders of behavioural control and mood that stem specifically from brain injury. There is relatively little in the clinical literature that explains the relationship between variable states of behaviour, mood or temperament, and clinical disorders that may have long-term implications for patient management. This concept paper therefore addresses abnormalities of mood and behaviour that are episodic in character and are not recognisably included in the DSM and ICD classifications of psychological or psychiatric disorders. PMID:21854336

  10. Acquiring "the Knowledge" of London's layout drives structural brain changes.

    PubMed

    Woollett, Katherine; Maguire, Eleanor A

    2011-12-20

    The last decade has seen a burgeoning of reports associating brain structure with specific skills and traits (e.g., [1-8]). Although these cross-sectional studies are informative, cause and effect are impossible to establish without longitudinal investigation of the same individuals before and after an intervention. Several longitudinal studies have been conducted (e.g., [9-18]); some involved children or young adults, potentially conflating brain development with learning, most were restricted to the motor domain, and all concerned relatively short timescales (weeks or months). Here, by contrast, we utilized a unique opportunity to study average-IQ adults operating in the real world as they learned, over four years, the complex layout of London's streets while training to become licensed taxi drivers. In those who qualified, acquisition of an internal spatial representation of London was associated with a selective increase in gray matter (GM) volume in their posterior hippocampi and concomitant changes to their memory profile. No structural brain changes were observed in trainees who failed to qualify or control participants. We conclude that specific, enduring, structural brain changes in adult humans can be induced by biologically relevant behaviors engaging higher cognitive functions such as spatial memory, with significance for the "nature versus nurture" debate. PMID:22169537

  11. Students with Acquired Brain Injury: A Legal Analysis

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2011-01-01

    This article provides a comprehensive and current synthesis of the legislation, regulations, policy interpretations, and case law concerning students with traumatic and nontraumatic brain injury from pre-K to grade 12. The primary focus is the Individuals with Disabilities Education Act, but the scope extends to other applicable legal bases. The…

  12. Acquiring "the Knowledge" of London's layout drives structural brain changes.

    PubMed

    Woollett, Katherine; Maguire, Eleanor A

    2011-12-20

    The last decade has seen a burgeoning of reports associating brain structure with specific skills and traits (e.g., [1-8]). Although these cross-sectional studies are informative, cause and effect are impossible to establish without longitudinal investigation of the same individuals before and after an intervention. Several longitudinal studies have been conducted (e.g., [9-18]); some involved children or young adults, potentially conflating brain development with learning, most were restricted to the motor domain, and all concerned relatively short timescales (weeks or months). Here, by contrast, we utilized a unique opportunity to study average-IQ adults operating in the real world as they learned, over four years, the complex layout of London's streets while training to become licensed taxi drivers. In those who qualified, acquisition of an internal spatial representation of London was associated with a selective increase in gray matter (GM) volume in their posterior hippocampi and concomitant changes to their memory profile. No structural brain changes were observed in trainees who failed to qualify or control participants. We conclude that specific, enduring, structural brain changes in adult humans can be induced by biologically relevant behaviors engaging higher cognitive functions such as spatial memory, with significance for the "nature versus nurture" debate.

  13. Failure to Acquire New Semantic Knowledge in Patients With Large Medial Temporal Lobe Lesions

    PubMed Central

    Bayley, Peter J.; Squire, Larry R.

    2009-01-01

    We examined new semantic learning in two profoundly amnesic patients (E.P. and G.P.) whose lesions involve virtually the entire medial temporal lobe (MTL) bilaterally. The patients were given five tests of semantic knowledge for information that could only have been acquired after the onset of their amnesia in 1992 and 1987, respectively. Age-matched and education-matched controls (n = 8) were also tested. On tests of recall, E.P. and G.P. each scored 10% correct on a test of 20 easy factual questions (controls = 90%), 2% and 4% correct on 55 questions about news events (controls = 85%), and 0% and 4% correct on a test of 24 famous faces. On three tests of recognition memory for this same material, the patients scored at chance levels. Similarly, the patients were unable to judge whether persons who had been famous for many decades were still living or had died during the past 10 years (E.P. = 53%; G.P. = 50%; controls = 73%; chance = 50%). Lastly, neither patient E.P. nor patient G.P. could draw an accurate floor plan of his current residence, despite having lived there for 10 years and 1 year, respectively. The results demonstrate that the capacity for new semantic learning can be absent, or nearly absent, when there is virtually complete damage to the MTL bilaterally. Accordingly, the results raise the possibility that the acquisition of conscious (declarative) knowledge about the world cannot be supported by structures outside the MTL, even with extended exposure. PMID:15523609

  14. Computer-Aided Relearning Activity Patterns for People with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Montero, Francisco; Lopez-Jaquero, Victor; Navarro, Elena; Sanchez, Enriqueta

    2011-01-01

    People with disabilities constitute a collective that requires continuous and customized attention, since their conditions or abilities are affected with respect to specific standards. People with "Acquired Brain Injury" (ABI), or those who have suffered brain injury at some stage after birth, belong to this collective. The treatment these people…

  15. Speed of perceptual grouping in acquired brain injury.

    PubMed

    Kurylo, Daniel D; Larkin, Gabriella Brick; Waxman, Richard; Bukhari, Farhan

    2014-09-01

    Evidence exists that damage to white matter connections may contribute to reduced speed of information processing in traumatic brain injury and stroke. Damage to such axonal projections suggests a particular vulnerability to functions requiring integration across cortical sites. To test this prediction, measurements were made of perceptual grouping, which requires integration of stimulus components. A group of traumatic brain injury and cerebral vascular accident patients and a group of age-matched healthy control subjects viewed arrays of dots and indicated the pattern into which stimuli were perceptually grouped. Psychophysical measurements were made of perceptual grouping as well as processing speed. The patient group showed elevated grouping thresholds as well as extended processing time. In addition, most patients showed progressive slowing of processing speed across levels of difficulty, suggesting reduced resources to accommodate increased demands on grouping. These results support the prediction that brain injury results in a particular vulnerability to functions requiring integration of information across the cortex, which may result from dysfunction of long-range axonal connection.

  16. Noninvasive brain stimulation: the potential for use in the rehabilitation of pediatric acquired brain injury.

    PubMed

    Chung, Melissa G; Lo, Warren D

    2015-04-01

    Noninvasive brain stimulation (NIBS) offers the potential to modulate neural activity and recovery after acquired brain injury. There are few studies of NIBS in children, but a survey of those studies might provide insight into the potential for NIBS to modulate motor rehabilitation, seizures, and behavior in children. We surveyed the published literature prior to July 2014 for articles pertaining to children and NIBS with a focus on case series or trials. We also reviewed selected articles involving adults to illustrate specific points where the literature in children is lacking. A limited number of articles suggest that NIBS can transiently improve motor function. The evidence for an effect on seizures is mixed. Two open-label studies reported improvement of mood in adolescents with depression. NIBS may serve as a tool for pediatric neurorehabilitation, but many gaps in our knowledge must be filled before NIBS can be adopted as a clinical intervention. To move forward, the field needs adequately powered trials that can answer these questions. Such trials will be challenging to perform, will likely require multicenter collaboration, and may need to adopt novel trial designs that have been used with rare disorders.

  17. Brain lesions in preterms: origin, consequences and compensation.

    PubMed

    Krägeloh-Mann, I; Toft, P; Lunding, J; Andresen, J; Pryds, O; Lou, H C

    1999-08-01

    Twenty-nine high-risk preterm born children, from a cohort with cerebral blood flow (CBF) measurements in the first 2 d of life, were examined prospectively at the age of 5.5-7 y neurologically, neuropsychologically and by magnetic resonance imaging (MRI). They were compared to 57 control children in terms of neurology and neuropsychology. Abnormal MRI was found in 19 children. Low oxygen delivery to the brain was found in 63% of them, in contrast to 12.5% in those with normal MRI, indicating neonatal hypoxia-ischemia as an important factor. The MRI abnormalities were mainly periventricular lesions (n = 19), especially periventricular leucomalacia (PVL, n = 17). Three of the very preterm children had severe cerebellar atrophy in addition to relatively mild periventricular abnormalities. MRI showed specific morphological correlates for the major disabilities, e.g. spastic CP (involvement of motor tracts), mental retardation (bilateral extensive white matter reduction or cerebellar atrophy) and severe visual impairment (severe optic radiation involvement). A morphological correlate for minor disabilities, i.e. functional variations in motor performance or intelligence, was not found, with the exception that symptoms of attention deficit hyperactivity disorder were related to mild MRI abnormalities. This could mean that with respect to cognitive functions, mild or unilateral periventricular MRI lesions could be compensated. However, as among preterms without mental retardation (n = 19), IQ was generally and significantly lower than in the control group; other, more chronic pathogenetic factors, not detectable by MRI alone, may play a role.

  18. I am many: the reconstruction of self following acquired brain injury.

    PubMed

    Gelech, Jan M; Desjardins, Michel

    2011-01-01

    In this article we examine the construction of self following acquired brain injury from an experience-centered perspective. Life history and semistructured interview transcripts collected from four brain injury survivors were analyzed using thematic, syntactic, and deep structure analysis. Though notions of the "lost" or "shattered" self have dominated discussions of personhood in the acquired brain injury literature, we argue that this perspective is a crude representation of the postinjury experience of self, and that aspects of stability, recovery, transcendence, and moral growth are also involved in this process. We highlight the intersubjective nature of the self, and present the processes of delegitimation, invalidation, negotiation, and resistance as crucial aspects of the postinjury construction of personhood. We explore the implications of this complex process of construction of self for grief and bereavement theories, clinical practice, and professional discourse in the area of acquired brain injury.

  19. Seeing mathematics: perceptual experience and brain activity in acquired synesthesia.

    PubMed

    Brogaard, Berit; Vanni, Simo; Silvanto, Juha

    2013-01-01

    We studied the patient JP who has exceptional abilities to draw complex geometrical images by hand and a form of acquired synesthesia for mathematical formulas and objects, which he perceives as geometrical figures. JP sees all smooth curvatures as discrete lines, similarly regardless of scale. We carried out two preliminary investigations to establish the perceptual nature of synesthetic experience and to investigate the neural basis of this phenomenon. In a functional magnetic resonance imaging (fMRI) study, image-inducing formulas produced larger fMRI responses than non-image inducing formulas in the left temporal, parietal and frontal lobes. Thus our main finding is that the activation associated with his experience of complex geometrical images emerging from mathematical formulas is restricted to the left hemisphere.

  20. Intracranial lesions in the acquired immunodeficiency syndrome: radiological (computed tomographic) features

    SciTech Connect

    Elkin, C.M.; Leon, E.; Grenell, S.L.; Leeds, N.E.

    1985-01-18

    Computed tomography (CT) delineates the presence or absence of intracerebral focal lesions in most instances. The presence of contrast enhancement, cerebral atrophy, and an intracranial mass are important in consideration of the differential diagnosis and in establishing the diagnosis. Initially the authors utilized a double dose of contrast medium in all patients after single-dose study, but little additional information was obtained. A second dose of contrast medium is now administered only to evaluate further a suspected lesion. Angiography can confirm the location of the lesion(s) and the cortical veins before biopsy. Of one hundred patients with AIDS examined, 33% had neurological symptoms excluding headache and herpes zoster. All patients with neurological symptoms were studied with noncontrast and contrast CT scanning. Twenty-seven patients in the group had abnormal scans. In 13, the abnormality was limited to a diffuse atrophic appearance, while in 14, focal lesions were identified. Representative cases are discussed and illustrated.

  1. Evaluation of outliers in acquired brain MR images

    NASA Astrophysics Data System (ADS)

    Moldovanu, S.; (Vişan Pungǎ, M.; Moraru, L.

    2015-01-01

    Pre-processing is an important stage in the analysis of magnetic resonance images (MRI), because the effect of specific image artefacts, such as intensity inhomogeneity, noise and low contrast can adversely affect the quantitative image analysis. The image histogram is a useful tool in the analysis of MR images given that it allows a close relationship with important image features such as contrast and noise. The noise and variable contrast are elements that locally modify the quality of images. The key issue of this study derives from the fact that the spatial histogram can contain outliers indicating corrupted image information through the disorder of the bins. These aberrant errors should be excluded from the studied data sets. Here, the outliers are evaluated by using rigorous methods based on the probability theory and Chauvenet (CC), Grubbs (GC) and Peirce's (PC) criteria. In order to check the quality of the MR images, the Minkowsky (MD), Euclidean (ED) and cosine (CD) distance functions were used. They act as similarity scores between the histogram of the acquired MRI and the processed image. This analysis is necessary because, sometimes, the distance function exceeds the co-domain because of the outliers. In this paper, 32 MRIs are tested and the outliers are removed so that the distance functions generate uncorrupted and real values.

  2. Shopping with Acquired Brain Injuries, Coping Strategies and Maslowian Principles.

    PubMed

    Andersson, Jonas E; Skehan, Terry; Rydén, Monica; Lagerkrans, Elisabeth

    2016-01-01

    A positive outcome of the modern welfare state is prolonged life expectancy. In Sweden, the expected life span has increased with approximatively 25 years during the 20th century [Statistics Sweden]. However, ageing is associated with an increased risk for acquiring cognitive and physical disabilities. This study is based on anonymized interviews with groups of older persons who experience cognitive problems and relatives. The interviewees were asked about everyday activities like shopping groceries, clothes or other necessities. The interviewees identified problems and described a series of strategies for coping. This paper uses fictionalized characters to present problems and coping strategies that the interviewees use to overcome cognitive challenges when shopping groceries. The strategies range from complete withdrawal, an increased dependency on proxies to the development of elaborate techniques to mask their problem and obtain assistance. Following the current trend in the design of the Swedish sales environment - large scale, abundance of goods and Maslowian strategies for making people stay longer (and spend more money) - accessibility in the built environment is often an absent friend. PMID:27534318

  3. Structure and function in acquired prosopagnosia: lessons from a series of 10 patients with brain damage.

    PubMed

    Barton, Jason J S

    2008-03-01

    Acquired prosopagnosia varies in both behavioural manifestations and the location and extent of underlying lesions. We studied 10 patients with adult-onset lesions on a battery of face-processing tests. Using signal detection methods, we found that discriminative power for the familiarity of famous faces was most reduced by bilateral occipitotemporal lesions that involved the fusiform gyri, and better preserved with unilateral right-sided lesions. Tests of perception of facial structural configuration showed severe deficits with lesions that included the right fusiform gyrus, whether unilateral or bilateral. This deficit was most consistent for eye configuration, with some patients performing normally for mouth configuration. Patients with anterior temporal lesions had better configuration perception, though at least one patient showed a more subtle failure to integrate configural data from different facial regions. Facial imagery, an index of facial memories, was severely impaired by bilateral lesions that included the right anterior temporal lobe and marginally impaired by fusiform lesions alone; unilateral right fusiform lesions tended to spare imagery for facial features. These findings suggest that (I) prosopagnosia is more severe with bilateral than unilateral lesions, indicating a minor contribution of the left hemisphere to face recognition, (2) perception of facial configuration critically involves the right fusiform gyrus and (3) access to facial memories is most disrupted by bilateral lesions that also include the right anterior temporal lobe. This supports assertions that more apperceptive variants of prosopagnosia are linked to fusiform damage, whereas more associative variants are linked to anterior temporal damage. Next, we found that behavioural indices of covert recognition correlated with measures of overt familiarity, consistent with theories that covert behaviour emerges from the output of damaged neural networks, rather than alternative

  4. Lateral Trunk Flexion Strength: Impairment, Measurement Reliability and Implications Following Unilateral Brain Lesion.

    ERIC Educational Resources Information Center

    Bohannon, Richard W.

    1992-01-01

    This pilot study into trunk muscle strength following brain lesions examined 11 patients to determine (1) whether the trunk muscles of the paretic side are impaired after brain lesions; (2) whether measurements of lateral muscle strength are reliable; and (3) the implications of trunk muscle strength for sitting balance and walking performance.…

  5. Isolated cystic lesion of the callosal genu after traumatic brain injury.

    PubMed

    Kato, Toru; Okumura, Akihisa; Tsuji, Takeshi; Emi, Misugi; Natsume, Jun

    2012-06-01

    We report the case of a 17-month-old infant who developed an isolated cystic lesion of the callosal genu as a unique lesion of traumatic axonal injury (TAI). Although one of the most common sites of TAI is the corpus callosum, there have been no reports describing the lesion seen in our patient. Brain computed tomography findings were normal on the day of the traffic accident. After 3 months, brain magnetic resonance imaging showed an isolated cystic lesion of the callosal genu that had the appearance of a cystic cavity. This lesion decreased in size 16 months later. The neuroimaging findings of this patient suggest that an isolated cystic lesion of the callosal genu could appear as a unique form of TAI in infants after traumatic brain injury (TBI), but it is nevertheless important to attend to such lesions in children with TBI.

  6. Characterization of T2 hyperintensity lesions in patients with mild traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Caban, Jesus J.; Green, Savannah A.; Riedy, Gerard

    2013-03-01

    Mild traumatic brain injury (TBI) is often an invisible injury that is poorly understood and its sequelae can be difficult to diagnose. Recent neuroimaging studies on patients diagnosed with mild TBI (mTBI) have demonstrated an increase in hyperintense brain lesions on T2-weighted MR images. This paper presents an in-depth analysis of the multi-modal and morphological properties of T2 hyperintensity lesions among service members diagnosed with mTBI. A total of 790 punctuate T2 hyperintensity lesions from 89 mTBI subjects were analyzed and used to characterize the lesions based on different quantitative measurements. Morphological analysis shows that on average, T2 hyperintensity lesions have volumes of 23mm3 (+/-24.75), a roundness measure of 0.83 (+/-0.08) and an elongation of 7.90 (+/-2.49). The frontal lobe lesions demonstrated significantly more elongated lesions when compared to other areas of the brain.

  7. Limitations on the developing preterm brain: impact of periventricular white matter lesions on brain connectivity and cognition.

    PubMed

    Pavlova, Marina A; Krägeloh-Mann, Ingeborg

    2013-04-01

    Brain lesions to the white matter in peritrigonal regions, periventricular leukomalacia, in children who were born prematurely represent an important model for studying limitations on brain development. The lesional pattern is of early origin and bilateral, that constrains the compensatory potential of the brain. We suggest that (i) topography and severity of periventricular lesions may have a long-term predictive value for cognitive and social capabilities in preterm birth survivors; and (ii) periventricular lesions may impact cognitive and social functions by affecting brain connectivity, and thereby, the dissociable neural networks underpinning these functions. A further pathway to explore is the relationship between cerebral palsy and cognitive outcome. Restrictions caused by motor disability may affect active exploration of surrounding and social participation that may in turn differentially impinge on cognitive development and social cognition. As an outline for future research, we underscore sex differences, as the sex of a preterm newborn may shape the mechanisms by which the developing brain is affected.

  8. In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders.

    PubMed

    Sherry, Erica B; Lee, Phil; Choi, In-Young

    2015-12-01

    Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.

  9. Effects of brain lesions on moral agency: ethical dilemmas in investigating moral behavior.

    PubMed

    Christen, Markus; Müller, Sabine

    2015-01-01

    Understanding how the "brain produces behavior" is a guiding idea in neuroscience. It is thus of no surprise that establishing an interrelation between brain pathology and antisocial behavior has a long history in brain research. However, interrelating the brain with moral agency--the ability to act in reference to right and wrong--is tricky with respect to therapy and rehabilitation of patients affected by brain lesions. In this contribution, we outline the complexity of the relationship between the brain and moral behavior, and we discuss ethical issues of the neuroscience of ethics and of its clinical consequences. First, we introduce a theory of moral agency and apply it to the issue of behavioral changes caused by brain lesions. Second, we present a typology of brain lesions both with respect to their cause, their temporal development, and the potential for neural plasticity allowing for rehabilitation. We exemplify this scheme with case studies and outline major knowledge gaps that are relevant for clinical practice. Third, we analyze ethical pitfalls when trying to understand the brain-morality relation. In this way, our contribution addresses both researchers in neuroscience of ethics and clinicians who treat patients affected by brain lesions to better understand the complex ethical questions, which are raised by research and therapy of brain lesion patients.

  10. Benign cystic lymphoepithelial lesion of the parotid gland an unusual presentation of the acquired immunodeficiency syndrome.

    PubMed

    Galindo, L M; Franceschini, A; Soltero, E; Dávila, R

    1991-08-01

    This article presents a case of a young, otherwise asymptomatic male patient with a parotid gland enlargement. The initial clinical history did not reveal any risk factors related with HIV infection. A fine needle aspiration biopsy of the lesion showed a benign cystic lymphoepithelial lesion of the parotid gland. This once unusual lesion of the salivary gland has been recently associated with infection by the human immunodeficiency virus (HIV) and is presently encountered with increased frequency in the clinical practice. The knowledge of the association between these two entities led, in this case, to the diagnosis of HIV infection in an otherwise asymptomatic patient. Early detection of HIV infection is of vital importance since it has been demonstrated that prompt treatment of these patients with AZT slows down the progression of the disease.

  11. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    ERIC Educational Resources Information Center

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  12. Brain modules of hallucination: an analysis of multiple patients with brain lesions

    PubMed Central

    Braun, Claude M.J.; Dumont, Mathieu; Duval, Julie; Hamel-Hébert, Isabelle; Godbout, Lucie

    2003-01-01

    We systematically reviewed the localization of focal brain lesions that cause isolated hallucination in a single sensory modality. Case reports of post-lesion nonparoxysmal hallucination in 1 (and only 1) of 3 sensory modalities (i.e., visual, auditory, somatic) were reviewed, and the content of the qualitative descriptions was analyzed for each modality. The lesion is practically always located in the brain pathway of the sensory modality of the hallucination. There seem to exist localized sensory brain circuits that in healthy people diminish the intensity of internal sensory representation. After a lesion, hallucinosis seems to be caused also by compensatory overactivation of tissue in the nearby brain sensory pathway. This type of hallucination may indeed be termed a “release” form, whereby patients are aware of the hallucinatory nature of their experience, but not usually of “dream centres” as proposed by Lhermitte. Instead, we propose that it is dreaming that should be considered a special case of neural “release.” Nous avons passé en revue systématiquement l'emplacement des lésions cérébrales focales qui causent des hallucinations isolées dans un seul mode sensoriel. On a analysé des rapports de cas portant sur l'hallucination non paroxystique postlésionnelle dans un mode sensoriel (et un seulement) sur trois (c.-à-d. visuel, auditif, somatique), et on a analysé le contenu des descriptions qualitatives de chaque mode. La lésion est presque toujours située dans la voie cérébrale du mode sensoriel de l'hallucination. Il semble y avoir des circuits cérébraux sensoriels localisés qui, chez les gens en bonne santé, «atténuent» l'intensité de la représentation sensorielle interne. Après une lésion, l'hallucinose semble être causée aussi par une suractivation compensatoire de tissus de la voie sensorielle cérébrale voisine. On peut en fait qualifier ce type d'hallucination de forme de «libération», dans laquelle les

  13. Acquired Brain Injury and Return to Work in Australia and New Zealand.

    ERIC Educational Resources Information Center

    Athanasou, James A.

    2003-01-01

    A research review of 9 Australian-New Zealand (n=1,010) and 23 international (n=2,182) studies found the overall return-to-work rates after head injury were 44% and 45% respectively. Methodological issues might have inflated these numbers. Only an estimated 7-10% of persons with acquired brain injury returned to the same job. (Contains 46…

  14. Reliability of the Motor Learning Strategy Rating Instrument for Children and Youth with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Kamath, Trishna; Pfeifer, Megan; Banerjee-Guenette, Priyanka; Hunter, Theresa; Ito, Julia; Salbach, Nancy M.; Wright, Virginia; Levac, Danielle

    2012-01-01

    Purpose: To evaluate reliability and feasibility of the Motor Learning Strategy Rating Instrument (MLSRI) in children with acquired brain injury (ABI). The MLSRI quantifies the extent to which motor learning strategies (MLS) are used within physiotherapy (PT) interventions. Methods: PT sessions conducted by ABI team physiotherapists with a…

  15. Exploring the Use of Cognitive Intervention for Children with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Missiuna, Cheryl; DeMatteo, Carol; Hanna, Steven; Mandich, Angela; Law, Mary; Mahoney, William; Scott, Louise

    2010-01-01

    Introduction: Children with acquired brain injury (ABI) often experience cognitive, motor, and psychosocial deficits that affect participation in everyday activities. Cognitive Orientation to Daily Occupational Performance (CO-OP) is an individualized treatment that teaches cognitive strategies necessary to support successful performance.…

  16. Preference for Progressive Delays and Concurrent Physical Therapy Exercise in an Adult with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Dixon, Mark R.; Falcomata, Terry S.

    2004-01-01

    The purpose of this study was to increase self-control and engagement in a physical therapy task (head holding) for a man with acquired traumatic brain injury. Once impulsivity was observed (i.e., repeated impulsive choices), an experimental condition was introduced that consisted of choices between a small immediate reinforcer, a large…

  17. The Use of Narratives to Identify Characteristics Leading to a Productive Life following Acquired Brain Injury

    ERIC Educational Resources Information Center

    Fraas, Michael R.; Calvert, Margaret

    2009-01-01

    Purpose: To determine the factors leading to successful recovery and productive lifestyles after acquired brain injury (ABI). Method: Qualitative investigation examined semistructured interviews of 31 survivors of ABI. Thematic analysis followed a phenomenological approach and revealed 4 major themes and 28 subthemes in the interviews. Four…

  18. Behavioral Treatment for Pathological Gambling in Persons with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Guercio, John M.; Johnson, Taylor; Dixon, Mark R.

    2012-01-01

    The present investigation examined a behavior-analytic clinical treatment package designed to reduce the pathological gambling of 3 individuals with acquired brain injury. A prior history of pathological gambling of each patient was assessed via caregiver report, psychological testing, and direct observation of gambling behavior. Using an 8-week…

  19. A Review of Family Intervention Guidelines for Pediatric Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Cole, Wesley R.; Paulos, Stephanie K.; Cole, Carolyn A. S.; Tankard, Carol

    2009-01-01

    Pediatric acquired brain injury (BI) not only affects the child with the injury, but also greatly impacts their family. Studies suggest there are higher rates of caregiver and sibling psychological distress after a child in the family has sustained a BI. Also, family functioning after BI impacts the child's recovery. In reviewing the literature,…

  20. Expressive Electronic Journal Writing: Freedom of Communication for Survivors of Acquired Brain Injury

    ERIC Educational Resources Information Center

    Fraas, Michael; Balz, Magdalen A.

    2008-01-01

    In addition to the impaired ability to effectively communicate, adults with acquired brain injury (ABI) also experience high incidences of depression, social isolation, and decreased quality of life. Expressive writing programs have been shown to be effective in alleviating these concomitant impairments in other populations including incarcerated…

  1. The Classical Classroom: Enhancing Learning for Pupils with Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Rees, Sian A.; Skidmore, David

    2008-01-01

    This paper seeks to draw parallels between different approaches to classroom instruction and two contrasting musical styles and to examine how pupils with Acquired Brain Injuries (ABI) might fare in each. A polyphonic classroom is defined as one where an awareness of multiple layers of meaning are encouraged to enhance the learning opportunities,…

  2. Where Have They All Gone?: Classroom Attention Patterns after Acquired Brain Injury

    ERIC Educational Resources Information Center

    Rees, Siân A.

    2016-01-01

    Certain groups of pupils who have sustained an Acquired Brain Injury (ABI) have a different pattern of attention within the classroom which interferes with learning and social interactions. The delineation of these groups is suggested. By looking in detail at the classroom behaviour of eight pupils, a common account for classroom behaviour…

  3. Thinking Allowed: Use of Egocentric Speech after Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Rees, Sian A.; Skidmore, David

    2011-01-01

    This paper explores the use of thinking aloud made by young people who have sustained a severe acquired brain injury (ABI). The phenomenon is compared with the concepts of egocentric speech and inner speech before the form of thinking aloud by pupils with ABI is examined. It is suggested that by using thinking aloud, this group of pupils is able…

  4. Life Satisfaction Questionnaire (Lisat-9): Reliability and Validity for Patients with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Boonstra, Anne M.; Reneman, Michiel F.; Stewart, Roy E.; Balk, Gerlof A.

    2012-01-01

    The aim of this study was to determine the reliability and discriminant validity of the Dutch version of the life satisfaction questionnaire (Lisat-9 DV) to assess patients with an acquired brain injury. The reliability study used a test-retest design, and the validity study used a cross-sectional design. The setting was the general rehabilitation…

  5. Using Differential Reinforcement to Decrease Academic Response Latencies of an Adolescent with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Heinicke, Megan R.; Carr, James E.; Mozzoni, Michael P.

    2009-01-01

    The present study investigated the effects of contingency-specifying rules and a token economy to decrease the latency to comply with academic instructions by a 16-year-old girl with acquired brain injury. Results showed that treatment was successful in reducing academic response latencies. These results replicate previous research in which…

  6. Using differential reinforcement to decrease academic response latencies of an adolescent with acquired brain injury.

    PubMed

    Heinicke, Megan R; Carr, James E; Mozzoni, Michael P

    2009-01-01

    The present study investigated the effects of contingency-specifying rules and a token economy to decrease the latency to comply with academic instructions by a 16-year-old girl with acquired brain injury. Results showed that treatment was successful in reducing academic response latencies. These results replicate previous research in which differential reinforcement was used to decrease slow responding to academic tasks.

  7. Left-Sided Brain Injury Associated With More Hospital-Acquired Infections During Inpatient Rehabilitation

    PubMed Central

    Frisina, Pasquale G.; Kutlik, Ann M.; Barrett, Anna M.

    2013-01-01

    Objective To test the hypothesis that a left-dominant brain immune network (LD-BIN) might affect the occurrence of infection during inpatient rehabilitation of stroke and traumatic brain injury (TBI). Design A retrospective analysis was performed on electronic medical records between January 2009 and December 2010. All patients with left-or right-sided stroke or TBI were included into the study. The LD-BIN hypothesis was tested by comparing HAI rates depending on whether patients had left- or right-sided brain lesions. Setting A large inpatient rehabilitation hospital. Participants Among the patients (N=2236) with stroke or TBI who had either a left- or right-sided brain lesion, 163 patients were identified with HAIs. Intervention Not applicable. Main Outcome Measure Frequency of HAIs. Results In the 163 patients identified with HAIs with a diagnosis of stroke or TBI, chi-square analysis revealed a significantly higher proportion of HAIs among patients with left-sided (n=98; 60.1%) relative to right-sided (n=65; 39.9%) brain injuries (χ2=6.68, P<.01). These effects could not be attributed to either clinical or demographic factors. Conclusions Our findings are consistent with the hypothesis that an LD-BIN may mediate vulnerability to infection during rehabilitation of patients with stroke or TBI. Further translational research investigating novel means of managing patients based on brain lesion location, and modulating the LD-BIN via behavioral and physiologic interventions, may result in neuroscience-based methods to improve infection resistance in brain-injured patients. PMID:23123439

  8. The development of a measure of motivational changes following acquired brain injury.

    PubMed

    Oddy, Michael; Cattran, Charlotte; Wood, Rodger

    2008-07-01

    Motivational deficits following acquired brain injury have been found to be both prevalent and particularly disabling. Despite this, relatively little attention has been given to such deficits. The development of self and informant versions of a new questionnaire measure of the changes in motivation that may occur following acquired brain injury is described. The measure demonstrates excellent psychometric properties including high test-retest (r = .90) and split-half reliability (.94), high internal consistency (Cronbach's alpha = .94), and good concurrent validity. The study also demonstrates that the questionnaire is measuring a different domain to cognitive tests and tests of affect, but one that is predictive of brain injury outcome. There was moderate overlap between self-report and relative versions of the questionnaire (r = .41) but results suggest that the relative version has the stronger predictive value. The potential uses of the measure in relation to theory and practice are discussed.

  9. Impairment in cognitive and affective empathy in patients with brain lesions: anatomical and cognitive correlates.

    PubMed

    Shamay-Tsoory, S G; Tomer, R; Goldsher, D; Berger, B D; Aharon-Peretz, J

    2004-11-01

    The present study was designed to examine the degree of impairment in cognitive and affective empathy among patients with focal brain lesions, and the contribution of specific cognitive abilities (such as cognitive flexibility and processing of emotional information), to empathy. The cognitive and affective empathic response of patients with localized prefrontal lesions (n=36) was compared to responses of patients with parietal lesions (n=15) and healthy control subjects (n=19). Results indicate that patients with prefrontal lesions (especially those with lesions involving the orbitoprefrontal and medial regions) were significantly impaired in both cognitive and affective empathy as compared to parietal patients and healthy controls. When the damage was restricted to the prefrontal cortex, either left- or right-hemisphere lesions resulted in impaired empathy. However, when the lesion involved the right hemisphere, patients with parietal lesions were also impaired. The pattern of relationships between cognitive performance and empathy suggested dissociation between the cognitive correlates of affective and cognitive empathy. PMID:15590464

  10. Altered Recruitment of the Attention Network Is Associated with Disability and Cognitive Impairment in Pediatric Patients with Acquired Brain Injury

    PubMed Central

    Strazzer, Sandra; Rocca, Maria A.; Molteni, Erika; De Meo, Ermelinda; Recla, Monica; Valsasina, Paola; Arrigoni, Filippo; Galbiati, Susanna; Bardoni, Alessandra; Filippi, Massimo

    2015-01-01

    We assessed abnormalities of brain functional magnetic resonance imaging (fMRI) activity during a sustained attention task (Conners' Continuous Performance Test (CCPT)) in 20 right-handed pediatric acquired brain injury (ABI) patients versus 7 right-handed age-matched healthy controls, and we estimated the correlation of such abnormalities with clinical and cognitive deficits. Patients underwent the Wechsler Intelligence Scale for Children (WISC), Wisconsin Card Sorting Test, and Functional Independence Measure (FIM) evaluations. During fMRI, patients and controls activated regions of the attention network. Compared to controls, ABI patients experienced a decreased average fMRI recruitment of the left cerebellum and a decreased deactivation of the left anterior cingulate cortex. With increasing task demand, compared to controls, ABI patients had an impaired ability to increase the recruitment of several posterior regions of the attention network. They also experienced a greater activation of frontal regions, which was correlated with worse performance on FIM, WISC, and fMRI CCPT. Such abnormal brain recruitment was significantly influenced by the type of lesion (focal versus diffuse axonal injury) and time elapsed from the event. Pediatric ABI patients experienced an inability to optimize attention network recruitment, especially when task difficulty was increased, which likely contributes to their clinical and cognitive deficits. PMID:26448878

  11. Lesion Analysis of the Brain Areas Involved in Language Comprehension

    ERIC Educational Resources Information Center

    Dronkers, Nina F.; Wilkins, David P.; Van Valin, Robert D., Jr.; Redfern, Brenda B.; Jaeger, Jeri J.

    2004-01-01

    The cortical regions of the brain traditionally associated with the comprehension of language are Wernicke's area and Broca's area. However, recent evidence suggests that other brain regions might also be involved in this complex process. This paper describes the opportunity to evaluate a large number of brain-injured patients to determine which…

  12. Topographic congruence of calcified parenchymal neurocysticercosis and other structural brain lesions with epileptiform activity

    PubMed Central

    Saito, Erin K; Nagpal, Meera; Leon, Amanda; Mehta, Bijal; McMurtray, Aaron Matthew

    2016-01-01

    Introduction: Calcified parenchymal neurocysticercosis (NCC) lesions are commonly detected in many individuals with refractory epilepsy. However, the relationship between these lesions and epilepsy is not fully determined. We sought to determine if calcified parenchymal NCC demonstrated topographic congruence with epileptiform activity in refractory epilepsy patients. Additional patients with other structural brain lesions were included for comparison. Subjects and Methods: Retrospective cross-sectional analysis of all patients treated at a community-based neurology clinic for refractory epilepsy during a 3-month period and with structural brain lesions detected by neuroimaging studies. Results: A total of 105 patients were included in the study, including 63 with calcified parenchymal NCC lesions and 42 with other structural brain lesions. No significant relationship was detected between hemispheric localization of calcified parenchymal NCC lesions and epileptiform activity. For those with other structural brain lesions, the hemispheric localization was significantly related to the side of epileptiform activity (Chi-square = 11.13, P = 0.025). In addition, logistic regression models showed that those with right-sided non-NCC lesions were more likely to have right-sided epileptiform activity (odds ratio = 4.36, 95% confidence interval [CI] =1.16–16.31, P = 0.029), and those with left-sided non-NCC lesions were more likely to have left-sided epileptiform activity (odds ratio = 7.60, 95% CI = 1.89–30.49, P = 0.004). Conclusion: The lack of correlation between the side of calcified parenchymal NCC lesions and the side of the epileptiform activity suggests that these lesions may be incidental findings in many patients. PMID:26998434

  13. The needs of aging parents caring for an adult with acquired brain injury.

    PubMed

    Minnes, Patricia; Woodford, Lynn; Carlson, Peter; Johnston, Jane; McColl, Mary Ann

    2010-06-01

    This study focused on issues of concern to and service needs of older parents caring for an adult son or daughter with an acquired brain injury (ABI) in Ontario. Three issues were identified as particularly challenging: diagnosis of the brain injury, parents' feelings about the cause of the brain injury, and planning for long-term accommodation for their family member with a brain injury. The most frequently cited services needed for the person with ABI were social and/or recreational activities, day programs, and residential placement. The most frequently cited services needed by parents were parent education and support groups. The information gathered provides a base for further research in other sectors. Implications of these initial findings for clinical practice and policy and program development are discussed.

  14. Brain lesions that impair vocal imitation in adult budgerigars.

    PubMed

    Plummer, Thane K; Striedter, Georg F

    2002-11-15

    Vocal imitation is a complex form of imitative learning that is well developed only in humans, dolphins, and birds. Among birds, only some species are able to imitate sounds in adulthood. Of these, the budgerigar (Melopsittacus undulatus) has been studied in most detail. Previous studies suggested that the vocal motor system in budgerigars receives auditory information from the lateral frontal neostriatum (NFl). In the present study, we confirm this hypothesis by showing that infusions of the GABA agonist muscimol into NFl reduce the strength of auditory responses in a telencephalic vocal motor nucleus, the central nucleus of the lateral neostriatum (NLc). To test whether the auditory information conveyed from NFl to NLc plays a role in vocal imitation, we lesioned parts of NFl and the overlying ventral hyperstriatum (HVl) in seven adult male budgerigars and then examined whether the lesioned males would imitate the calls of females with whom they were paired. We found that, compared to sham-lesioned controls, the lesioned birds were significantly impaired in their imitation of female calls. Yet, the lesioned males were clearly not deaf (e.g., their previously learned calls did not degrade as they do after deafening). Therefore, the data suggest that NFl/HVl lesions impair vocal imitation by reducing the amount of auditory information that reaches the vocal motor system. Interestingly, the females that were paired with lesioned males displayed more vocal plasticity than the females in the control group, and some even imitated their male's prepairing calls.

  15. The Relation of Focal Lesions to Cortical Thickness in Pediatric Traumatic Brain Injury.

    PubMed

    Bigler, Erin D; Zielinski, Brandon A; Goodrich-Hunsaker, Naomi; Black, Garrett M; Huff, B S Trevor; Christiansen, Zachary; Wood, Dawn-Marie; Abildskov, Tracy J; Dennis, Maureen; Taylor, H Gerry; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Yeates, Keith Owen

    2016-10-01

    In a sample of children with traumatic brain injury, this magnetic resonance imaging (MRI)-based investigation examined whether presence of a focal lesion uniquely influenced cortical thickness in any brain region. Specifically, the study explored the relation of cortical thickness to injury severity as measured by Glasgow Coma Scale score and length of stay, along with presence of encephalomalacia, focal white matter lesions or presence of hemosiderin deposition as a marker of shear injury. For comparison, a group of children without head injury but with orthopedic injury of similar age and sex were also examined. Both traumatic brain injury and orthopedic injury children had normally reduced cortical thickness with age, assumed to reflect neuronal pruning. However, the reductions observed within the traumatic brain injury sample were similar to those in the orthopedic injury group, suggesting that in this sample traumatic brain injury, per se, did not uniquely alter cortical thickness in any brain region at the group level. Injury severity in terms of Glasgow Coma Scale or longer length of stay was associated with greater reductions in frontal and occipitoparietal cortical thickness. However, presence of focal lesions were not related to unique changes in cortical thickness despite having a prominent distribution of lesions within frontotemporal regions among children with traumatic brain injury. Because focal lesions were highly heterogeneous, their association with cortical thickness and development appeared to be idiosyncratic, and not associated with group level effects.

  16. Uncovering cortico-striatal correlates of cognitive fatigue in pediatric acquired brain disorder: Evidence from traumatic brain injury.

    PubMed

    Ryan, Nicholas P; Beauchamp, Miriam H; Beare, Richard; Coleman, Lee; Ditchfield, Michael; Kean, Michael; Silk, Timothy J; Genc, Sila; Catroppa, Cathy; Anderson, Vicki A

    2016-10-01

    Cognitive fatigue is among the most profound and disabling sequelae of pediatric acquired brain disorders, however the neural correlates of these symptoms in children remains unexplored. One hypothesis suggests that cognitive fatigue may arise from dysfunction of cortico-striatal networks (CSNs) implicated in effort output and outcome valuation. Using pediatric traumatic brain injury (TBI) as a model, this study investigated (i) the sub-acute effect of brain injury on CSN volume; and (ii) potential relationships between cognitive fatigue and sub-acute volumetric abnormalities of the CSN. 3D T1 weighted magnetic resonance imaging sequences were acquired sub-acutely in 137 children (TBI: n = 103; typically developing - TD children: n = 34). 67 of the original 137 participants (49%) completed measures of cognitive fatigue and psychological functioning at 24-months post-injury. Results showed that compared to TD controls and children with milder injuries, children with severe TBI showed volumetric reductions in the overall CSN package, as well as regional gray matter volumetric change in cortical and subcortical regions of the CSN. Significantly greater cognitive fatigue in the TBI patients was associated with volumetric reductions in the CSN and its putative hub regions, even after adjusting for injury severity, socioeconomic status (SES) and depression. In the first study to evaluate prospective neuroanatomical correlates of cognitive fatigue in pediatric acquired brain disorder, these findings suggest that post-injury cognitive fatigue is related to structural abnormalities of cortico-striatal brain networks implicated in effort output and outcome valuation. Morphometric magnetic resonance imaging (MRI) may have potential to unlock early prognostic markers that may assist to identify children at elevated risk for cognitive fatigue post-TBI.

  17. Beyond utterances: distributed cognition as a framework for studying discourse in adults with acquired brain injury.

    PubMed

    Duff, Melissa C; Mutlu, Bilge; Byom, Lindsey; Turkstra, Lyn S

    2012-02-01

    Considerable effort has been directed at understanding the nature of the communicative deficits observed in individuals with acquired brain injuries. Yet several theoretical, methodological, and clinical challenges remain. In this article, we examine distributed cognition as a framework for understanding interaction among communication partners, interaction of communication and cognition, and interaction with the environments and contexts of everyday language use. We review the basic principles of distributed cognition and the implications for applying this approach to the study of discourse in individuals with cognitive-communication disorders. We also review a range of protocols and findings from our research that highlight how the distributed cognition approach might offer a deeper understanding of communicative mechanisms and deficits in individuals with cognitive communication impairments. The advantages and implications of distributed cognition as a framework for studying discourse in adults with acquired brain injury are discussed. PMID:22362323

  18. Beyond Utterances: Distributed Cognition as a Framework for Studying Discourse in Adults with Acquired Brain Injury

    PubMed Central

    Duff, Melissa C.; Mutlu, Bilge; Byom, Lindsey; Turkstra, Lyn S.

    2014-01-01

    Considerable effort has been directed at understanding the nature of the communicative deficits observed in individuals with acquired brain injuries. Yet several theoretical, methodological, and clinical challenges remain. In this article, we examine distributed cognition as a framework for understanding interaction among communication partners, interaction of communication and cognition, and interaction with the environments and contexts of everyday language use. We review the basic principles of distributed cognition and the implications for applying this approach to the study of discourse in individuals with cognitive-communication disorders. We also review a range of protocols and findings from our research that highlight how the distributed cognition approach might offer a deeper understanding of communicative mechanisms and deficits in individuals with cognitive communication impairments. The advantages and implications of distributed cognition as a framework for studying discourse in adults with acquired brain injury are discussed. PMID:22362323

  19. Brain lesions and IQ: recovery versus decline depends on age of onset.

    PubMed

    Duval, Julie; Braun, Claude M J; Montour-Proulx, Isabelle; Daigneault, Sylvie; Rouleau, Isabelle; Bégin, Jean

    2008-06-01

    A growing literature suggests that early lesions are associated with poorer IQ outcome. Those studies covered a restricted age range in pediatric populations only and did not control for important moderator variables. The present investigation studied IQ change in brain-lesioned children and adults (age 0 to 84 years). Altogether, 725 cases with a documented unilateral focal lesion were gathered from hospital charts and from published cases in the literature, including 240 with repeated IQ testing. Multiple regression analyses isolated the contribution of age at lesion onset to IQ change. Important mediator variables included were lesion side, site, volume, etiology, and so on. An early lesion was significantly associated with poorer postlesion IQ in time and with decline of IQ in time. Later onset lesions were associated with better postlesion IQ and recovery in time. The so-called Kennard principle is refuted, with regard to IQ.

  20. Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury.

    PubMed

    Castellanos, Nazareth P; Paúl, Nuria; Ordóñez, Victoria E; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomás; del-Pozo, Francisco; Maestú, Fernando

    2010-08-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on functional connectivity patterns. Networks were calculated from resting-state magnetoencephalographic recordings from 15 brain injured patients and 14 healthy controls by means of wavelet coherence in standard frequency bands. We compared the parameters defining the network, such as number and strength of interactions as well as their topology, in controls and patients for two conditions: following a traumatic brain injury and after a rehabilitation treatment. A loss of delta- and theta-based connectivity and conversely an increase in alpha- and beta-band-based connectivity were found. Furthermore, connectivity parameters approached controls in all frequency bands, especially in slow-wave bands. A correlation between network reorganization and cognitive recovery was found: the reduction of delta-band-based connections and the increment of those based on alpha band correlated with Verbal Fluency scores, as well as Perceptual Organization and Working Memory Indexes, respectively. Additionally, changes in connectivity values based on theta and beta bands correlated with the Patient Competency Rating Scale. The current study provides new evidence of the neurophysiological mechanisms underlying neuronal plasticity processes after brain injury, and suggests that these changes are related with observed changes at the behavioural level.

  1. Predictors of Change in Participation Rates Following Acquired Brain Injury: Results of a Longitudinal Study

    ERIC Educational Resources Information Center

    Anaby, Dana; Law, Mary; Hanna, Steven; DeMatteo, Carol

    2012-01-01

    Aim: The purpose of this study was (1) to examine the changes in participation rates over 1 year among children and adolescents after acquired brain injury and (2) to explore the effect of child and family factors on these changes. Method: The participation levels of 136 children and young people (88 males; 48 females; age range 4y 11mo-17y 6mo;…

  2. USING DIFFERENTIAL REINFORCEMENT TO DECREASE ACADEMIC RESPONSE LATENCIES OF AN ADOLESCENT WITH ACQUIRED BRAIN INJURY

    PubMed Central

    Heinicke, Megan R; Carr, James E; Mozzoni, Michael P

    2009-01-01

    The present study investigated the effects of contingency-specifying rules and a token economy to decrease the latency to comply with academic instructions by a 16-year-old girl with acquired brain injury. Results showed that treatment was successful in reducing academic response latencies. These results replicate previous research in which differential reinforcement was used to decrease slow responding to academic tasks. PMID:20514195

  3. Relationship between somatosensory deficit and brain somatosensory system after early brain lesion: A morphometric study.

    PubMed

    Perivier, Maximilien; Delion, Matthieu; Chinier, Eva; Loustau, Sebastien; Nguyen, Sylvie; Ter Minassian, Aram; Richard, Isabelle; Dinomais, Mickael

    2016-05-01

    Cerebral Palsy (CP) is a group of permanent motor disorders due to non-progressive damage to the developing brain. Poor tactile discrimination is common in children with unilateral CP. Previous findings suggest the crucial role of structural integrity of the primary (S1) and secondary (S2) somatosensory areas located in the ipsilesional hemisphere for somatosensory function processing. However, no focus on the relationship between structural characteristics of ipsilesional S1 and S2 and tactile discrimination function in paretic hands has been proposed. Using structural MRI and a two-point discrimination assessment (2 PD), we explore this potential link in a group of 21 children (mean age 13 years and 7 months) with unilateral CP secondary to a periventricular white matter injury (PWMI) or middle cerebral artery infarct (MCA). For our whole sample there was a significant negative correlation between the 2 PD and the gray matter volume in the ipsilesional S2 (rho = -0.50 95% confidence interval [-0.76, -0.08], one-tailed p-value = 0.0109) and in the ipsilesional S1 (rho = -0.57, 95% confidence interval [-0.81, -0.19], one-tailed p-value = 0.0032). When studying these relationships with regard to the lesion types, we found these correlations were non-significant in the patients with PWMI but stronger in patients with MCA. According to our results, the degree of sensory impairment is related to the spared gray matter volume in ipsilesional S1 and S2 and is marked after an MCA stroke. Our work contributes to a better understanding of why some patients with CP have variable somatosensory deficit following an early brain lesion. PMID:26831357

  4. Sodium MRI in Multiple Sclerosis is Compatible with Intracellular Sodium Accumulation and Inflammation-Induced Hyper-Cellularity of Acute Brain Lesions

    PubMed Central

    Biller, Armin; Pflugmann, Isabella; Badde, Stephanie; Diem, Ricarda; Wildemann, Brigitte; Nagel, Armin M.; Jordan, J.; Benkhedah, Nadia; Kleesiek, Jens

    2016-01-01

    The cascade of inflammatory pathogenetic mechanisms in multiple sclerosis (MS) has no specific conventional MRI correlates. Clinicians therefore stipulate improved imaging specificity to define the pathological substrates of MS in vivo including mapping of intracellular sodium accumulation. Based upon preclinical findings and results of previous sodium MRI studies in MS patients we hypothesized that the fluid-attenuated sodium signal differs between acute and chronic lesions. We acquired brain sodium and proton MRI data of N = 29 MS patients; lesion type was defined by the presence or absence of contrast enhancement. N = 302 MS brain lesions were detected, and generalized linear mixed models were applied to predict lesion type based on sodium signals; thereby controlling for varying numbers of lesions among patients and confounding variables such as age and medication. Hierarchical model comparisons revealed that both sodium signals average tissue (χ2(1) = 27.89, p < 0.001) and fluid-attenuated (χ2(1) = 5.76, p = 0.016) improved lesion type classification. Sodium MRI signals were significantly elevated in acute compared to chronic lesions compatible with intracellular sodium accumulation in acute MS lesions. If confirmed in further studies, sodium MRI could serve as biomarker for diagnostic assessment of MS, and as readout parameter in clinical trials promoting attenuation of chronic inflammation. PMID:27507776

  5. Sodium MRI in Multiple Sclerosis is Compatible with Intracellular Sodium Accumulation and Inflammation-Induced Hyper-Cellularity of Acute Brain Lesions.

    PubMed

    Biller, Armin; Pflugmann, Isabella; Badde, Stephanie; Diem, Ricarda; Wildemann, Brigitte; Nagel, Armin M; Jordan, J; Benkhedah, Nadia; Kleesiek, Jens

    2016-01-01

    The cascade of inflammatory pathogenetic mechanisms in multiple sclerosis (MS) has no specific conventional MRI correlates. Clinicians therefore stipulate improved imaging specificity to define the pathological substrates of MS in vivo including mapping of intracellular sodium accumulation. Based upon preclinical findings and results of previous sodium MRI studies in MS patients we hypothesized that the fluid-attenuated sodium signal differs between acute and chronic lesions. We acquired brain sodium and proton MRI data of N = 29 MS patients; lesion type was defined by the presence or absence of contrast enhancement. N = 302 MS brain lesions were detected, and generalized linear mixed models were applied to predict lesion type based on sodium signals; thereby controlling for varying numbers of lesions among patients and confounding variables such as age and medication. Hierarchical model comparisons revealed that both sodium signals average tissue (χ(2)(1) = 27.89, p < 0.001) and fluid-attenuated (χ(2)(1) = 5.76, p = 0.016) improved lesion type classification. Sodium MRI signals were significantly elevated in acute compared to chronic lesions compatible with intracellular sodium accumulation in acute MS lesions. If confirmed in further studies, sodium MRI could serve as biomarker for diagnostic assessment of MS, and as readout parameter in clinical trials promoting attenuation of chronic inflammation. PMID:27507776

  6. Atlas-based segmentation of pathological MR brain images using a model of lesion growth.

    PubMed

    Cuadra, Meritxell Bach; Pollo, Claudio; Bardera, Anton; Cuisenaire, Olivier; Villemure, Jean-Guy; Thiran, Jean-Philippe

    2004-10-01

    We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy. PMID:15493697

  7. Categorical and dimensional decoding of emotional intonations in patients with focal brain lesions.

    PubMed

    Peper, M; Irle, E

    1997-06-15

    The present study attempts to elucidate whether cerebral brain lesions differentially affect the crossmodal decoding of emotional intonations in semantically meaningless sentences. Forty patients with well-documented lesions and 12 matched hospital controls participated in the study. Twenty-one had left brain damage (LBD: 12 with anterorolandic (anterior) and 9 with retrorolandic-infrasylvian (posterior) lesions); 19 had right brain damage (RBD: 12 anterior, 7 posterior lesions). The decoding of emotion categories was measured using (a) multiple choice of verbal labels and (b) matching one emotional vocalization (joy, fear, sadness, or anger) with two choice facial expressions. Crossmodal dimensional decoding was assessed by matching vocalizations with two facial expressions with regard to emotional valence or arousal. Results indicate that labeling was reduced in all lesion groups as compared to that in controls. Crossmodal categorical recognition was impaired in RBD, whereas LBD performance was comparable to controls. However, in the dimensional decoding task, a reduced recognition of valence in LBD and arousal in RBD was observed. An analysis of localizational subgroups revealed that subjects with left ventral frontal lesions, which in part extended into the adjacent right hemisphere, were predominantly impaired in the crossmodal identification of valence, whereas right temporoparietal lesions affected arousal decoding. Our results suggest that lateralized lesions may differentially affect the crossmodal recognition of dimensional concepts such as valence and arousal. PMID:9182749

  8. [Diagnosis of toxic lesions of the brain using computerized tomography].

    PubMed

    Bushev, I I; Karpova, M N; Tskhovrebov, T M

    1990-01-01

    X-ray computerized tomography was used to examine the brain in 39 patients aged 14 to 39 years with different experience of using volatile narcotically acting substances. The discovered alterations make it possible to appraise the influence of toxic substances and the degree of brain atrophy, which attests to the diagnostic value of computerized tomography in patients with toxicomanias.

  9. Language testing during awake "anesthesia" in a bilingual patient with brain lesion adjacent to Wernicke's area.

    PubMed

    Bilotta, Federico; Stazi, Elisabetta; Delfini, Roberto; Rosa, Giovanni

    2011-04-01

    Awake "anesthesia" is the preferable anesthetic approach for neurosurgical procedures that require intraoperative localization of eloquent brain areas. We describe intraoperative inducible selective English aphasia in a bilingual (English and Italian) patient undergoing awake anesthesia for excision of a brain lesion adjacent to Wernicke's area with no postoperative neurological sequelae. We discuss the importance of intraoperative brain mapping and intraoperative language testing in bilingual patients to prevent iatrogenic-related morbidity.

  10. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images.

    PubMed

    Jain, Saurabh; Sima, Diana M; Ribbens, Annemie; Cambron, Melissa; Maertens, Anke; Van Hecke, Wim; De Mey, Johan; Barkhof, Frederik; Steenwijk, Martijn D; Daams, Marita; Maes, Frederik; Van Huffel, Sabine; Vrenken, Hugo; Smeets, Dirk

    2015-01-01

    The location and extent of white matter lesions on magnetic resonance imaging (MRI) are important criteria for diagnosis, follow-up and prognosis of multiple sclerosis (MS). Clinical trials have shown that quantitative values, such as lesion volumes, are meaningful in MS prognosis. Manual lesion delineation for the segmentation of lesions is, however, time-consuming and suffers from observer variability. In this paper, we propose MSmetrix, an accurate and reliable automatic method for lesion segmentation based on MRI, independent of scanner or acquisition protocol and without requiring any training data. In MSmetrix, 3D T1-weighted and FLAIR MR images are used in a probabilistic model to detect white matter (WM) lesions as an outlier to normal brain while segmenting the brain tissue into grey matter, WM and cerebrospinal fluid. The actual lesion segmentation is performed based on prior knowledge about the location (within WM) and the appearance (hyperintense on FLAIR) of lesions. The accuracy of MSmetrix is evaluated by comparing its output with expert reference segmentations of 20 MRI datasets of MS patients. Spatial overlap (Dice) between the MSmetrix and the expert lesion segmentation is 0.67 ± 0.11. The intraclass correlation coefficient (ICC) equals 0.8 indicating a good volumetric agreement between the MSmetrix and expert labelling. The reproducibility of MSmetrix' lesion volumes is evaluated based on 10 MS patients, scanned twice with a short interval on three different scanners. The agreement between the first and the second scan on each scanner is evaluated through the spatial overlap and absolute lesion volume difference between them. The spatial overlap was 0.69 ± 0.14 and absolute total lesion volume difference between the two scans was 0.54 ± 0.58 ml. Finally, the accuracy and reproducibility of MSmetrix compare favourably with other publicly available MS lesion segmentation algorithms, applied on the same data using default parameter

  11. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling.

    PubMed

    Valverde, Sergi; Oliver, Arnau; Roura, Eloy; Pareto, Deborah; Vilanova, Joan C; Ramió-Torrentà, Lluís; Sastre-Garriga, Jaume; Montalban, Xavier; Rovira, Àlex; Lladó, Xavier

    2015-01-01

    Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.

  12. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

    PubMed Central

    Valverde, Sergi; Oliver, Arnau; Roura, Eloy; Pareto, Deborah; Vilanova, Joan C.; Ramió-Torrentà, Lluís; Sastre-Garriga, Jaume; Montalban, Xavier; Rovira, Àlex; Lladó, Xavier

    2015-01-01

    Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations. PMID:26740917

  13. [Evaluation of the community integration of persons with lateralised post-acute acquired brain injury].

    PubMed

    Huertas-Hoyas, E; Pedrero-Perez, E J; Aguila-Maturana, A M; Gonzalez-Alted, C

    2013-08-16

    INTRODUCTION. Hemispheric specialization is a topic of interest that has motivated an enormous amount of research in recent decades. After a unilateral brain injury, the consequences can affect various areas of specialization, leading, depending on the location of the injury, impairment in quality of life and community integration. PATIENTS AND METHODS. Cross-sectional study with a sample of 58 patients, 28 traumatic brain injury (TBI) and 30 cerebrovascular accidents, both lateralized. The level of integration in the community is measured by the Community Integration Questionnaire. RESULTS. There were three groups analyzed by considering unilateral injury (full sample, stroke sample, and TBI sample). Results showed a significantly high community integration of people with right hemisphere injury. However, to measure the level of community integration between TBI and stroke, the results showed no significant differences. CONCLUSION. According to the results of the study people with brain injury in the right hemisphere have a better community integration than people with lesions in the left hemisphere regardless of the origin of the lesions (vascular or traumatic). We discussed the reasons that may motivate the differences and clinical implications.

  14. Arithmetic and brain connectivity: mental calculation in adolescents with periventricular lesions.

    PubMed

    Pavlova, Marina; Sokolov, Alexander N; Krägeloh-Mann, Ingeborg

    2009-01-01

    The ability for mental calculation represents a fundamental prerequisite for development of intelligence, which is predictive for educational and professional success in life. Many individuals with calculation difficulties are survivors of premature birth. The brain mechanisms of these deficits are, however, largely unknown. In this work, we clarify whether and, if so, how calculation abilities in adolescents who were born premature are related to the extent and topography of periventricular lesions that affect brain connectivity. Performance on a set of mental calculation tasks is lower in adolescents with periventricular leukomalacia (PVL) than in former preterms and term-born peers without signs of brain abnormalities on a magnetic resonance imaging scan. No difference in the calculation ability was found between term-born and preterm adolescents without PVL. Calculation abilities in PVL patients were unrelated to volumetric extent and topography of lesions in both brain hemispheres. Whereas previous work clearly reveals the link between the extent and topography of lesions and severity of impairments in visual cognition ranging from body motion processing to visual navigation and social cognition, no such association occurs for mental calculation. We assume that the lack of relationship between calculation abilities and the extent and topography of periventricular lesions point to topographically restricted neural substrate that serves as the keystone for mental calculation. The findings suggest that periventricular brain damage does not substantially affect the connectivity of this region with other brain structures engaged in the mental calculation network. PMID:18929585

  15. First and second-order-motion perception after focal human brain lesions

    PubMed Central

    Rizzo, Matthew; Nawrot, Mark; Sparks, JonDavid; Dawson, Jeffrey

    2011-01-01

    Perception of visual motion includes a 1st-order mechanism sensitive to luminance changes and a 2nd-order motion mechanism sensitive to contrast changes. We studied neural substrates for these motion types in 142 subjects with visual cortex lesions, 68 normal controls and 28 brain lesion controls. On 1st-order motion, the visual cortex lesion group performed significantly worse than normal controls overall and in each hemifield, but 2nd-order motion did not differ. Only 1 individual showed a selective 2nd-order motion deficit. Motion deficits were seen with lesions outside the small occipitotemporal region thought to contain a human homolog of motion processing area MT (V5), suggesting that many areas of human brain process visual motion. PMID:18440580

  16. Application of radiosurgical techniques to produce a primate model of brain lesions.

    PubMed

    Kunimatsu, Jun; Miyamoto, Naoki; Ishikawa, Masayori; Shirato, Hiroki; Tanaka, Masaki

    2015-01-01

    Behavioral analysis of subjects with discrete brain lesions provides important information about the mechanisms of various brain functions. However, it is generally difficult to experimentally produce discrete lesions in deep brain structures. Here we show that a radiosurgical technique, which is used as an alternative treatment for brain tumors and vascular malformations, is applicable to create non-invasive lesions in experimental animals for the research in systems neuroscience. We delivered highly focused radiation (130-150 Gy at ISO center) to the frontal eye field (FEF) of macaque monkeys using a clinical linear accelerator (LINAC). The effects of irradiation were assessed by analyzing oculomotor performance along with magnetic resonance (MR) images before and up to 8 months following irradiation. In parallel with tissue edema indicated by MR images, deficits in saccadic and smooth pursuit eye movements were observed during several days following irradiation. Although initial signs of oculomotor deficits disappeared within a month, damage to the tissue and impaired eye movements gradually developed during the course of the subsequent 6 months. Postmortem histological examinations showed necrosis and hemorrhages within a large area of the white matter and, to a lesser extent, in the adjacent gray matter, which was centered at the irradiated target. These results indicated that the LINAC system was useful for making brain lesions in experimental animals, while the suitable radiation parameters to generate more focused lesions need to be further explored. We propose the use of a radiosurgical technique for establishing animal models of brain lesions, and discuss the possible uses of this technique for functional neurosurgical treatments in humans. PMID:25964746

  17. Motor and cognitive outcome after specific early lesions of the brain - a systematic review.

    PubMed

    Hielkema, Tjitske; Hadders-Algra, Mijna

    2016-03-01

    The aim of this systematic review was to study motor and cognitive outcome in infants with severe early brain lesions and to evaluate effects of side of the lesion, sex, and social economic status on outcome. A literature search was performed using the databases Pubmed and Embase. Included studies involved infants with either cystic periventricular leukomalacia (cPVL), preterm, or term stroke (i.e. parenchymal lesion of the brain). Outcome was expressed as cerebral palsy (CP) and intellectual disability (mental retardation). Median prevalence rates of CP after cPVL, preterm, and term stroke were 86%, 71%, and 29% respectively; of intellectual disability 50%, 27%, and 33%. Most infants with cPVL developed bilateral CP, those with term stroke unilateral CP, whereas after preterm stroke bilateral and unilateral CP occurred equally often. Information on the effects of sex and social economic status on outcome after specific brain lesions was very limited. Our findings show that the risk for CP is high after cPVL, moderate after preterm stroke, and lowest after term stroke. The risk for intellectual disability after an early brain lesion is lower than that for CP. Predicting outcome at individual level remains difficult; new imaging techniques may improve predicting developmental trajectories. PMID:27027607

  18. Analysis of geometrical relations between multiple sclerosis lesions and brain vasculature

    NASA Astrophysics Data System (ADS)

    Kozinska, Dorota E.; Holland, Christopher; Krissian, Karl; Westin, Carl-Fredrik; Guttmann, Charles R. G.

    2004-04-01

    Due to histological evidence of the fundamental role of the cerebral vessels in white matter abnormalities, recently there has been an increased interest in analyzing the relationship between brain white matter lesions in multiple sclerosis (MS) and brain vasculature. We developed a method for visualization and measurement of geometrical relationships between MS lesions and the brain vessels imaged with magnetic resonance (MR) imaging techniques. Using MR images we create surface models of lesions and vessels that constitute a base for quantitative analysis. In this work we analyze correlation between basic lesion geometrical characteristics and two features: 1) distances to vessels, and 2) vessel caliber. For the former, we compute a distance map from the vessel structure, such that each voxel stores its distance vector to the closest vessel. This allows the measurements of Euclidean distances to the closest vessels. For the latter, we compute a radius map in which each voxel stores the radius of its closest vessel. It is used to measure distribution of lesions with respect to the vessel caliber. We compute and analyze relations between the basic geometrical characteristics of lesions and the closest vessels locations and calibers. To demonstrate the feasibility of the developed technique we present results from the study of 3 MS cases.

  19. The effects of focal anterior and posterior brain lesions on verbal fluency.

    PubMed

    Stuss, D T; Alexander, M P; Hamer, L; Palumbo, C; Dempster, R; Binns, M; Levine, B; Izukawa, D

    1998-05-01

    Seventy-four patients with focal brain lesions were compared to a neurologically normal control group on tasks of letter-based and category-based list generation. When patients were divided only by right frontal, left frontal, or nonfrontal lesion sites, the pattern of fluency impairments confirmed prior claims. When more precise lesion sites within the frontal lobes were compared between groups classified based on their fluency performance, much more specific brain-behavior relations were uncovered. Damage to the right dorsolateral cortical or connecting striatal regions, the right posterior area, or the medial inferior frontal lobe of either hemisphere did not significantly affect letter-based fluency performance. Superior medial frontal damage, right or left, resulted in moderate impairment. Patients with left dorsolateral and/or striatal lesions were most impaired. Left parietal damage led to performance relatively equivalent to the superior medial and left dorsolateral groups. The same lesion sites produced impairments in category based fluency, but so did lesions of right dorsolateral and inferior medial regions. Task analysis and correlations with other measures revealed that different cognitive processes related to different brain regions underlie performance on verbal fluency tests. PMID:9623001

  20. BEHAVIORAL TREATMENT FOR PATHOLOGICAL GAMBLING IN PERSONS WITH ACQUIRED BRAIN INJURY

    PubMed Central

    Guercio, John M; Johnson, Taylor; Dixon, Mark R

    2012-01-01

    The present investigation examined a behavior-analytic clinical treatment package designed to reduce the pathological gambling of 3 individuals with acquired brain injury. A prior history of pathological gambling of each patient was assessed via caregiver report, psychological testing, and direct observation of gambling behavior. Using an 8-week one-on-one client–patient format, a treatment program was developed in which the patient learned about the antecedents, consequences, and motivating operations that controlled the emission of gambling behavior. Data were collected on both self-report of gambling urges and behavior following therapy and during in situ gambling opportunities. The therapy program reduced urges to gamble and actual gambling for all patients. The potential of behavior-analytic therapy for reducing the pathological gambling of patients with and without brain injury is discussed. PMID:23060663

  1. Macrostructural and Microstructural Brain Lesions Relate to Gait Pathology in Children With Cerebral Palsy.

    PubMed

    Meyns, Pieter; Van Gestel, Leen; Leunissen, Inge; De Cock, Paul; Sunaert, Stefan; Feys, Hilde; Duysens, Jacques; Desloovere, Kaat; Ortibus, Els

    2016-10-01

    Background Even though lower-limb motor disorders are core features of spastic cerebral palsy (sCP), the relationship with brain lesions remains unclear. Unraveling the relation between gait pathology, lower-limb function, and brain lesions in sCP is complex for several reasons; wide heterogeneity in brain lesions, ongoing brain maturation, and gait depends on a number of primary motor functions/deficits (eg, muscle strength, spasticity). Objective To use a comprehensive approach combining conventional MRI and diffusion tensor imaging (DTI) in children with sCP above 3 years old to relate quantitative parameters of brain lesions in multiple brain areas to gait performance. Methods A total of 50 children with sCP (25 bilateral, 25 unilateral involvement) were enrolled. The investigated neuroradiological parameters included the following: (1) volumetric measures of the corpus callosum (CC) and lateral ventricles (LVs), and (2) DTI parameters of the corticospinal tract (CST). Gait pathology and primary motor deficits, including muscle strength and spasticity, were evaluated by 3D gait analysis and clinical examination. Results In bilateral sCP (n = 25), volume of the LV and the subparts of the CC connecting frontal, (pre)motor, and sensory areas were most related to lower-limb functioning and gait pathology. DTI measures of the CST revealed additional relations with the primary motor deficits (n = 13). In contrast, in unilateral sCP, volumetric (n = 25) and diffusion measures (n = 14) were only correlated to lower-limb strength. Conclusions These results indicate that the combined influence of multiple brain lesions and their impact on the primary motor deficits might explain a large part of the gait pathology in sCP.

  2. Intrinsic Functional Connectivity Patterns Predict Consciousness Level and Recovery Outcome in Acquired Brain Injury

    PubMed Central

    Wu, Xuehai; Zou, Qihong; Hu, Jin; Tang, Weijun; Mao, Ying; Gao, Liang; Zhu, Jianhong; Jin, Yi; Wu, Xin; Lu, Lu; Zhang, Yaojun; Zhang, Yao; Dai, Zhengjia; Gao, Jia-Hong; Weng, Xuchu; Northoff, Georg; Giacino, Joseph T.; He, Yong

    2015-01-01

    For accurate diagnosis and prognostic prediction of acquired brain injury (ABI), it is crucial to understand the neurobiological mechanisms underlying loss of consciousness. However, there is no consensus on which regions and networks act as biomarkers for consciousness level and recovery outcome in ABI. Using resting-state fMRI, we assessed intrinsic functional connectivity strength (FCS) of whole-brain networks in a large sample of 99 ABI patients with varying degrees of consciousness loss (including fully preserved consciousness state, minimally conscious state, unresponsive wakefulness syndrome/vegetative state, and coma) and 34 healthy control subjects. Consciousness level was evaluated using the Glasgow Coma Scale and Coma Recovery Scale-Revised on the day of fMRI scanning; recovery outcome was assessed using the Glasgow Outcome Scale 3 months after the fMRI scanning. One-way ANOVA of FCS, Spearman correlation analyses between FCS and the consciousness level and recovery outcome, and FCS-based multivariate pattern analysis were performed. We found decreased FCS with loss of consciousness primarily distributed in the posterior cingulate cortex/precuneus (PCC/PCU), medial prefrontal cortex, and lateral parietal cortex. The FCS values of these regions were significantly correlated with consciousness level and recovery outcome. Multivariate support vector machine discrimination analysis revealed that the FCS patterns predicted whether patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%, and the most discriminative region was the PCC/PCU. These findings suggest that intrinsic functional connectivity patterns of the human posteromedial cortex could serve as a potential indicator for consciousness level and recovery outcome in individuals with ABI. SIGNIFICANCE STATEMENT Varying degrees of consciousness loss and recovery are commonly observed in acquired brain injury patients, yet the

  3. Gadolinium enhancement patterns of tumefactive demyelinating lesions: correlations with brain biopsy findings and pathophysiology.

    PubMed

    Kobayashi, Masaki; Shimizu, Yuko; Shibata, Noriyuki; Uchiyama, Shinichiro

    2014-10-01

    Tumefactive demyelinating lesions (TDLs) can mimic brain tumors on radiological images. TDLs are often referred to as tumefactive multiple sclerosis (TMS), but the heterogeneous nature and monophasic course of TDLs do not fulfill clinical and magnetic resonance imaging (MRI) criteria for multiple sclerosis. Redefining TDLs, TMS and other inflammatory brain lesions is essential for the accurate clinical diagnosis of extensive demyelinating brain lesions. We retrospectively analyzed MRI from nine TDL cases that underwent brain biopsy. Patterns of gadolinium enhancement on MRI were categorized as homogenous, inhomogeneous, patchy and diffuse, open ring or irregular rim, and were compared with pathological hallmarks including demyelination, central necrosis, macrophage infiltration, angiogenesis and perivascular lymphocytic cuffing. All cases had coexistence of demyelinating features and axonal loss. Open-ring and irregular rim patterns of gadolinium enhancement were associated with macrophage infiltrations and angiogenesis at the inflammatory border. An inhomogeneous pattern of gadolinium enhancement was associated with perivascular lymphocytic cuffing. Central necrosis was seen in cases of severe multiple sclerosis and hemorrhagic leukoencephalopathy. These results suggest that the radiological features of TDLs may be related to different pathological processes, and indicate that MRI may be useful in understanding their pathophysiology. Further investigation is needed to determine the precise disease entity of these inflammatory demyelinating brain lesions.

  4. Electrically elicited blink reflex and early acoustic evoked potentials in circumscribed and diffuse brain stem lesions.

    PubMed

    Klug, N; Csécsei, G

    1987-01-01

    In the present paper, the function of the brain stem in patients with brain stem lesions of various aetiology is investigated with electrophysiological methods. The clinical observations are supplemented by experimental investigations on cats, in which the blink reflex and the early acoustic evoked potentials were registered during the acute elevation of intracranial pressure. The findings in patients with circumscribed space-occupying lesions in the posterior fossa document that the registration of the BR and the BAEP have a functional diagnostic significance above and beyond the neurological and radiological investigation. In the case of the cerebellar space occupations, specific alterations could not be observed. On the contrary, the alterations of BR and BAEP indicate a general disturbance of brain stem function, possibly as a result of a general increase of intracranial pressure. In cerebellopontine angle tumours, both BR and BAEP showed specific alterations which were usually asymmetrical. The BR changes ipsilateral to the tumour are of major topodiagnostic significance, whereas the alterations of the contralateral potential are especially informative in the registration of BAEP. The alterations of BR and BAEP also allow an appraisal of the localization and extent of the lesion in primary space occupations in the brain stem: A pathological R1 indicates a pontine lesion, whereas pathological R2 responses are found in medullary and in oral pontine and mesencephalic lesions. In contrast to cerebellopontine angle tumours, the BAEP tends to show symmetrical alterations in primary brain stem lesions. The prolongations of interpeak latencies correspond to the brain stem segment concerned, and the same also applies to pathological amplitude reduction and deformations of individual potentials. In patients with localized brain stem damage, the reflex pathway of R2 is discussed on the basis of the BR findings. In contrast to the view held up to now that only structures

  5. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    PubMed

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined.

  6. Investigation of the best model to characterize diffuse correlation spectroscopy measurements acquired directly on the brain

    NASA Astrophysics Data System (ADS)

    Verdecchia, K.; Diop, M.; St. Lawrence, K.

    2015-03-01

    Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique capable of monitoring tissue perfusion changes, particularly in the brain. The normalized temporal intensity autocorrelation function generated by DCS is typically characterized by assuming that the movement of erythrocytes can be modeled as a Brownian diffusion-like process instead of the expected random flow model. Carp et al. [Biomedical Optics Express, 2011] proposed a hybrid model, referred to as the hydrodynamic diffusion model, to capture both the random ballistic and diffusive nature of erythrocyte motion. The purpose of this study was to compare how well the Brownian diffusion and the hydrodynamic diffusion models characterized DCS data acquired directly on the brain, avoiding the confounding effects of scalp and skull. Data were acquired from seven pigs during normocapnia (39.9 +/- 0.7 mmHg) and hypocapnia (22.1 +/- 1.6 mmHg) with the DCS fibers placed 7 mm apart, directly on the cerebral cortex. The hydrodynamic diffusion model was found to provide a consistently better fit to the autocorrelation functions compared to the Brownian diffusion model and was less sensitive to the chosen start and end time points used in the fitting. However, the decrease in cerebral blood flow from normocapnia to hypocapnia determined was similar for the two models (-42.6 +/- 8.6 % for the Brownian model and -42.2 +/- 10.2 % for the hydrodynamic model), suggesting that the latter is reasonable for monitoring flow changes.

  7. Fast attainment of computer cursor control with noninvasively acquired brain signals

    NASA Astrophysics Data System (ADS)

    Bradberry, Trent J.; Gentili, Rodolphe J.; Contreras-Vidal, José L.

    2011-06-01

    Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (~20 min) and subject practice (~20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.

  8. Validation of the Behavioural Inattention Test (BIT) in patients with acquired brain injury in Turkey.

    PubMed

    Kutlay, Sehim; Küçükdeveci, Ayşe A; Elhan, Atilla H; Tennant, Alan

    2009-06-01

    The aim of this descriptive study was to evaluate the construct validity and reliability of the Behavioural Inattention Test (BIT) in patients with acquired brain injury in Turkey. One hundred and eighteen acquired brain injury patients undergoing rehabilitation were assessed by the BIT. Internal construct validity was tested by Rasch analysis; reliability by internal consistency and the Person Separation Index; and external construct validity by associations with physical and cognitive disability. Analysis of the data revealed that some subtests deviated from Rasch model expectation and the conventional subscale of the BIT had an unsatisfactory reliability for individual use. Consequently, a common 10-item scale (BIT-10) was derived from both the behavioural and conventional subscales of the BIT. Reliability of .87 met expectation for individual use. The BIT-10 correlated at .52 with cognitive disability upon admission. As a conclusion the original BIT adapted for use in Turkey was shown to lack reliability and internal construct validity. A revised 10-item new version, BIT-10, gave a valid unidimensional summed score, with high sensitivity and specificity to the original cut points. Reliability of the BIT-10 was high and external construct validity was as expected.

  9. Small brain lesions and incident stroke and mortality: A cohort study

    PubMed Central

    Windham, B Gwen; Deere, Bradley; Griswold, Michael E.; Wang, Wanmei; Bezerra, Daniel C; Shibata, Dean; Butler, Kenneth; Knopman, David; Gottesman, Rebecca F; Heiss, Gerardo; Mosley, Thomas H

    2015-01-01

    Background Although cerebral lesions ≥3mm on imaging are associated with incident stroke, lesions < 3mm are typically ignored. Objective To examine stroke risks associated with subclinical brain lesions by size (< 3 mm only, lesions ≥3 mm only, both < 3 mm and ≥3 mm) and white matter hyperintensities (WMH). Design Community cohort, Atherosclerosis Risk in Communities (ARIC) Study Setting Two ARIC sites with magnetic resonance imaging (MRI) data (1993–95) Participants 1,884 (99%) adults (50–73 years, 40% men; 50% black) with MRI and no prior stroke; average 14.5 years follow-up. Measurements MRI lesions: none (n=1611), < 3 mm only (n=50), ≥3 mm only (n=185), or both < 3 and ≥3 mm lesions (n=35); WMH score (0–9 scale). Outcomes: incident stroke (n=157), overall mortality (n=576), stroke mortality (n=50). Hazard Ratios (HR) estimated with proportional hazards models. Results Compared to no lesions, stroke risk was tripled with lesions < 3mm only (HR=3.47, 95% CI:1.86-6.49), doubled with lesions ≥3 mm only (HR=1.94, 95% CI:1.22-3.07), and was 8-fold higher with both < 3 mm and ≥3 mm-sized lesions (HR=8.59, 95% CI:4.69-15.73). Stroke risk doubled with WMH ≥3 (HR=2.14, 95% CI:1.45-3.16). Stroke mortality risk tripled with lesions < 3 mm only (HR=3.05, 95% CI:1.04-8.94), doubled with lesions ≥3 mm (HR=1.9, 95% CI:1.48-2.44) and was seven-times higher with both lesion sizes (HR=6.97, 95% CI:2.03-23.93). Limitations Few stroke events (n=147), especially hemorrhagic (n=15); limited numbers of participants with only lesions ≤3mm (n=50) or with both lesions ≤3mm and 3–20mm (n=35). Conclusions Very small cerebrovascular lesions may be associated with increased risks of stroke and mortality; having both < 3 mm and ≥3 mm lesions may represent a particularly striking risk increase. Larger studies are needed to confirm findings and provide more precise estimates. PMID:26148278

  10. Serotonergic changes in specific areas of rat brain associated with activity--stress gastric lesions.

    PubMed

    Hellhammer, D H; Hingtgen, J N; Wade, S E; Shea, P A; Aprison, M H

    1983-05-01

    To study serotonergic involvement in the development of gastric lesions following activity wheel stress, three groups of rats (gastric lesions, no gastric lesions, and home--cage controls) were killed following exposure to the experimental procedures. The brains were dissected into eight specific areas and subjected to analyses for serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) using high performance liquid chromatography with EC detection. Lower levels of 5-HT were found in the midbrain, cortex, and hippocampus of rats with gastric lesions compared to either the no lesion group, subjected to shorter periods of activity--stress, or the home--cage control group. Levels of 5-HT and 5-HIAA were elevated in the pons/medulla oblongata of both the lesion and the no lesion groups compared to the home--cage controls. Corticosterone levels in blood were also significantly elevated in the lesion group. These data on serotonin changes in the CNS suggest a possible role for this neurotransmitter in stress-induced gastric pathology. PMID:6191350

  11. Investigating the recovery period of rat brain tissue after electrolytic and 980-nm laser induced lesions

    NASA Astrophysics Data System (ADS)

    Bozkulak, Ozguncem; Tabakoglu, H. Ozgur; Aksoy, Ayla; Canbeyli, Resit; Bilgin, Nes'e.; Kurtkaya, Ozlem; Sav, Aydin; Gulsoy, Murat

    2003-10-01

    The effects of 980-nm diode laser and electrolytic lesions in Wistar rat brain tissue were observed by immunohistochemical staining for CD68 marker and Hematoxylin-Eosin (H&E). Bilateral lesions; laser lesions (2W/2sec) in the right hemispheres, and electrolytic lesions (1.5mA/20sec) in the left hemispheres were done through in vivo stereotaxic neurosurgical procedure. Subjects were classified into three groups due to the recovery period. Subjects in Group I, II, and III were sacrificed after 0, 2 and 7 days of recovery period respectively. After saline perfusion their brains were dislocated, and paraffin embedded sections were taken. One section for H&E and one for CD68 were cut consecutively in 3μm thickness by examining the lesion in every 30-μm thickness. CD68 was found more efficient marker than H&E in observing the after-effects of both types of lesions. The total damage of laser was smaller than that of electrosurgical unit. The shape of the ablated area in laser induced lesions was more spherical than that of electrosurgical unit. The number of macrophages increased as the recovery period increased for all subjects. Group III showed the highest number of macrophages in three, and the number of macrophages around electrolytic lesion is nearly 1.5 times higher than that of laser lesion. The remarkable ablating ability, the damage zone created and the healing of nearby tissue clearly showed that the 980-nm diode laser is an effective and useful alternative to electrosurgical unit in neurosurgery.

  12. Pseudo-progression after stereotactic radiotherapy of brain metastases: lesion analysis using MRI cine-loops.

    PubMed

    Wiggenraad, Ruud; Bos, Petra; Verbeek-de Kanter, Antoinette; Lycklama À Nijeholt, Geert; van Santvoort, Jan; Taphoorn, Martin; Struikmans, Henk

    2014-09-01

    Stereotactic radiotherapy (SRT) of brain metastasis can lead to lesion growth caused by radiation toxicity. The pathophysiology of this so-called pseudo-progression is poorly understood. The purpose of this study was to evaluate the use of MRI cine-loops for describing the consecutive events in this radiation induced lesion growth. Ten patients were selected from our department's database that had received SRT of brain metastases and had lesion growth caused by pseudo-progression as well as at least five follow-up MRI scans. Pre- and post SRT MRI scans were co-registered and cine-loops were made using post-gadolinium 3D T1 axial slices. The ten cine loops were discussed in a joint meeting of the authors. The use of cine-loops was superior to evaluation of separate MRI scans for interpretation of events after SRT. There was a typical lesion evolution pattern in all patients with varying time course. Initially regression of the metastases was observed, followed by an enlarging area of new contrast enhancement in the surrounding brain tissue. Analysis of consecutive MRI's using cine-loops may improve understanding of pseudo-progression. It probably represents a radiation effect in brain tissue surrounding the irradiated metastasis and not enlargement of the metastasis itself.

  13. Brain MRI segmentation and lesion detection using generalized Gaussian and Rician modeling

    NASA Astrophysics Data System (ADS)

    Wu, Xuqiang; Bricq, Stéphanie; Collet, Christophe

    2011-03-01

    In this paper we propose a mixed noise modeling so as to segment the brain and to detect lesion. Indeed, accurate segmentation of multimodal (T1, T2 and Flair) brain MR images is of great interest for many brain disorders but requires to efficiently manage multivariate correlated noise between available modalities. We addressed this problem in1 by proposing an entirely unsupervised segmentation scheme, taking into account multivariate Gaussian noise, imaging artifacts,intrinsic tissue variation and partial volume effects in a Bayesian framework. Nevertheless, tissue classification remains a challenging task especially when one addresses the lesion detection during segmentation process2 as we did. In order to improve brain segmentation into White and Gray Matter (resp. WM and GM) and cerebro-spinal fluid (CSF), we propose to fit a Rician (RC) density distribution for CSF whereas Generalized Gaussian (GG) models are used to fit the likelihood between model and data corresponding to WM and GM. In this way, we present in this paper promising results showing that in a multimodal segmentation-detection scheme, this model fits better with the data and increases lesion detection rate. One of the main challenges consists in being able to take into account various pdf (Gaussian and non- Gaussian) for correlated noise between modalities and to show that lesion-detection is then clearly improved, probably because non-Gaussian noise better fits to the physic of MRI image acquisition.

  14. Early Gesture Predicts Language Delay in Children with Pre- Or Perinatal Brain Lesions

    ERIC Educational Resources Information Center

    Sauer, Eve; Levine, Susan C.; Goldin-Meadow, Susan

    2010-01-01

    Does early gesture use predict later productive and receptive vocabulary in children with pre- or perinatal unilateral brain lesions (PL)? Eleven children with PL were categorized into 2 groups based on whether their gesture at 18 months was within or below the range of typically developing (TD) children. Children with PL whose gesture was within…

  15. Brain lesions in a Pacific white-sided dolphin (Lagenorhynchus obliquidens).

    PubMed

    Lewis, R J; Berry, K

    1988-07-01

    A young, male, free-ranging Pacific white-sided dolphin (Lagenorhynchus obliquidens) was found disoriented and died after being held in captivity for several months. Malacic lesions in several areas of the brain were associated with helminth eggs. The appearance and location of these eggs suggested they were of the genus Nasitrema. PMID:3411721

  16. Lesion localization of global aphasia without hemiparesis by overlapping of the brain magnetic resonance images

    PubMed Central

    Kim, Woo Jin; Paik, Nam-Jong

    2014-01-01

    Global aphasia without hemiparesis is a striking stroke syndrome involving language impairment without the typically manifested contralateral hemiparesis, which is usually seen in patients with global aphasia following large left perisylvian lesions. The objective of this study is to elucidate the specific areas for lesion localization of global aphasia without hemiparesis by retrospectively studying the brain magnetic resonance images of six patients with global aphasia without hemiparesis to define global aphasia without hemiparesis-related stroke lesions before overlapping the images to visualize the most overlapped area. Talairach coordinates for the most overlapped areas were converted to corresponding anatomical regions. Lesions where the images of more than three patients overlapped were considered significant. The overlapped global aphasia without hemiparesis related stroke lesions of six patients revealed that the significantly involved anatomical lesions were as follows: frontal lobe, sub-gyral, sub-lobar, extra-nuclear, corpus callosum, and inferior frontal gyrus, while caudate, claustrum, middle frontal gyrus, limbic lobe, temporal lobe, superior temporal gyrus, uncus, anterior cingulate, parahippocampal, amygdala, and subcallosal gyrus were seen less significantly involved. This study is the first to demonstrate the heterogeneous anatomical involvement in global aphasia without hemiparesis by overlapping of the brain magnetic resonance images. PMID:25657725

  17. New brain lesions in a patient with sarcoidosis: is it neurosarcoidosis?

    PubMed

    Pandey, Subodh; Mukhopadhyay, Sanjay; Iannuzzi, Michael C; Sah, Birendra P

    2014-01-01

    A 45-year-old woman with pulmonary sarcoidosis diagnosed 5 years previously, who was on treatment with prednisone and methotrexate for 1year, developed partial seizure with secondary generalization. MRI showed three non-cavitary enhancing lesions in the cerebello-occipital region. These lesions were presumed to be neurosarcoidosis. Methotrexate was discontinued, prednisone dose was increased and azathiopurine and levetiracetam were added. While on treatment, follow up imaging showed enlarging brain lesions. Biopsy of the lesions showed Epstein Barr virus (EBV) positive diffuse B cell lymphoma. Immunosuppressants were tapered off and she was begun on Rituximab. Because of lack of improvement after 4 cycles of Rituximab, she was then treated with high dose Methotrexate and Temozolamide. We present this case as a diagnostic challenge. New enhancing brain lesions occurring in a patient with long standing sarcoidosis, while likely to be neurosarcoidosis, may be due to a complication of immunosuppressant therapy. The need for early biopsy, if the lesions do not improve, should be considered. PMID:24751455

  18. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study.

    PubMed

    Gregoire, Simone M; Charidimou, Andreas; Gadapa, Naveen; Dolan, Eamon; Antoun, Nagui; Peeters, Andre; Vandermeeren, Yves; Laloux, Patrice; Baron, Jean-Claude; Jäger, Hans R; Werring, David J

    2011-08-01

    Subclinical acute ischaemic lesions on brain magnetic resonance imaging have recently been described in spontaneous intracerebral haemorrhage, and may be important to understand pathophysiology and guide treatment. The underlying mechanisms are uncertain. We tested the hypothesis that ischaemic lesions are related to magnetic resonance imaging markers of the severity and type of small-vessel disease (hypertensive arteriopathy or cerebral amyloid angiopathy) in a multicentre, cross-sectional study. We studied consecutive patients with intracerebral haemorrhage from four specialist stroke centres, and age-matched stroke service referrals without intracerebral haemorrhage. Acute ischaemic lesions were assessed on magnetic resonance imaging (<3 months after intracerebral haemorrhage) using diffusion-weighted imaging. White matter changes and cerebral microbleeds were rated with validated scales. We investigated associations between diffusion-weighted imaging lesions, clinical and radiological characteristics. We included 114 patients with intracerebral haemorrhage (39 with clinically probable cerebral amyloid angiopathy) and 47 age-matched controls. The prevalence of diffusion-weighted imaging lesions was 9/39 (23%) in probable cerebral amyloid angiopathy-related intracerebral haemorrhage versus 6/75 (8%) in the remaining patients with intracerebral haemorrhage (P = 0.024); no diffusion-weighted imaging lesions were found in controls. Diffusion-weighted imaging lesions were mainly cortical and were associated with mean white matter change score (odds ratio 1.14 per unit increase, 95% confidence interval 1.02-1.28, P = 0.024) and the presence of strictly lobar cerebral microbleeds (odds ratio 3.85, 95% confidence interval 1.15-12.93, P = 0.029). Acute, subclinical ischaemic brain lesions are frequent but previously underestimated after intracerebral haemorrhage, and are three times more common in cerebral amyloid angiopathy-related intracerebral haemorrhage than in

  19. A genome-wide association study of brain lesion distribution in multiple sclerosis.

    PubMed

    Gourraud, Pierre-Antoine; Sdika, Michael; Khankhanian, Pouya; Henry, Roland G; Beheshtian, Azadeh; Matthews, Paul M; Hauser, Stephen L; Oksenberg, Jorge R; Pelletier, Daniel; Baranzini, Sergio E

    2013-04-01

    Brain magnetic resonance imaging is widely used as a diagnostic and monitoring tool in multiple sclerosis and provides a non-invasive, sensitive and reproducible way to track the disease. Topological characteristics relating to the distribution and shape of lesions are recognized as important neuroradiological markers in the diagnosis of multiple sclerosis, although these have been much less well characterized quantitatively than have traditional measures such as T2 hyperintense or T1 hypointense lesion volumes. Here, we used voxel-level 3 T magnetic resonance imaging T1-weighted scans to reconstruct the 3D topology of lesions in 284 subjects with multiple sclerosis and tested whether this is a heritable phenotype. To this end, we extracted the genotypes from a published genome-wide association study on these same individuals and searched for genetic associations with lesion load, shape and topological distribution. Lesion probability maps were created to identify frequently affected areas and to assess the overall distribution of T1 lesions in the subject population as a whole. We then developed an original algorithm to cluster adjacent lesional voxels (cluxels) in each subject and tested whether cluxel topology was significantly associated with any single-nucleotide polymorphism in our data set. To focus on patterns of lesion distribution, we computed the first 10 principal components. Although principal component 1 correlated with lesion load, none of the remaining orthogonal components correlated with any other known variable. We then conducted genome-wide association studies on each of these and found 31 significant associations (false discovery rate <0.01) with principal component 8, which represents a mode of variation of lesion topology in the population. The majority of the loci can be linked to genes related to immune cell function and to myelin and neural growth; some (SYK, MYT1L, TRAPPC9, SLITKR6 and RIC3) have been previously associated with the

  20. The efficacy of image-guided stereotactic brain biopsy in neurologically symptomatic acquired immunodeficiency syndrome patients.

    PubMed

    Levy, R M; Russell, E; Yungbluth, M; Hidvegi, D F; Brody, B A; Dal Canto, M C

    1992-02-01

    A prospective series of 50 neurologically symptomatic human immunodeficiency infected patients with intracranial lesions who underwent image-guided stereotactic brain biopsy is presented. Patients were diagnosed with primary central nervous system lymphoma (14 patients), progressive multifocal leukoencephalopathy (14 patients), toxoplasmosis (13 patients), human immunodeficiency virus encephalitis (3 patients), infarction (2 patients), and 1 patient each with metastatic adenocarcinoma, metastatic melanoma, cryptococcoma, and atypical mycobacterial infection. Two of the patients with toxoplasmosis had a second intracranial abnormality. Two biopsies resulted in either descriptive diagnosis only or were nondiagnostic; the definitive diagnostic efficacy of image-guided stereotactic biopsy was thus 96%. No deaths were incurred as a result of biopsy. Four intraoperative or postoperative hemorrhages occurred; in only 1 patient was there a residual neurological deficit related to the surgery. Image-guided stereotactic biopsy may thus be considered both safe and effective in this patient population.

  1. a Computational Model for Lesion Dynamics in Multiple Sclerosis of the Brain

    NASA Astrophysics Data System (ADS)

    Mohan, T. R. Krishna; Sen, Surajit; Ramanathan, Murali

    Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system (CNS) that is characterized by lesions with inflammatory cells, axons with the insulating myelin sheath damaged, and axonal loss. The causes of MS are not known and there is as yet no cure. The purpose of this research was to evaluate a physically motivated network model for lesion formation in the brain. The parsimonious network model contained two elements: (i) a spatially spreading pathological process causing cell damage and death leading to neuro-degeneration and, (ii) generation of alarm signals by the damaged cells that lead to activation of programmed death of cells surrounding the lesions in an attempt to contain the spatial spread of the pathologic process. Simulation results with a range of network geometries indicated that the model was capable of describing lesion progression and arrest. The modeling results also demonstrated dynamical complexity with sensitivity to initial conditions.

  2. Immune endocrinological evaluation in patients with severe vascular acquired brain injuries: therapeutical approaches.

    PubMed

    Amico, Angelo Paolo; Terlizzi, Annamaria; Annamaria, Terlizzi; Megna, Marisa; Marisa, Megna; Megna, Gianfranco; Gianfranco, Megna; Damiani, Sabino; Sabino, Damiani

    2013-06-01

    It is known that in severe acquired brain injuries there is process of neuroinflammation, with the activation of a local and general stress response. In our study we considered six patients with disorders of consciousness (five in vegetative state and one in minimal consciousness state) in subacute phase, which had both a clinical assessment and a functional imaging (fMRI): in all these patients we analised blood levels of osteopontin (OPN), a cytokin involved in neuroinflammation but also in neurorepair with a still discussed role. Besides we studied the lymphocyte subsets and blood levels of some hormones (ADH, ACTH, PRL, GH, TSH, fT3, fT4). We found a positive correlation between the levels of serum osteopontin (higher than normal in all subjects) and the severity of the brain injury, especially for prognosis: actually, the patient with the lowest level has emerged from minimal consciousness state, while the one with the highest level has died a few days after the evaluation. The lymphocyte subset was altered, with a general increase of CD4+/CD3+ ratio, but without a so strict correlation with clinical severity; the only hormone with a significant increase in the worse patients was prolactin. In fMRI we detected some responses to visual and acoustic stimuli also in vegetative states, which had no clinical response to this kind of stimulation but generally have had a better prognosis. So we conclude that osteopontin could be a good marker of neuroinflammation and relate to a worse prognosis of brain injuries; the lymphocyte alterations in these disorders are not clear, but we suspect an unbalance of CD4 towards Th2; PRL is the best endocrinological marker of brain injury severity; fMRI surely plays an important role in the detection of subclinical responses and in prognostic stratification, that is still to define with more studies and statistical analysis.

  3. Impaired grip-lift synergy in children with unilateral brain lesions.

    PubMed

    Forssberg, H; Eliasson, A C; Redon-Zouitenn, C; Mercuri, E; Dubowitz, L

    1999-06-01

    Children with spastic hemiplegia have impaired dexterity in the affected extremity. The purpose of the present study was to investigate whether the force co-ordination pattern during precision grip in 13 children between 4 and 10 years of age with predominant unilateral brain lesions is related to manual dexterity and to the location and size of the brain lesion. The force co-ordination pattern was investigated by means of a specially designed object that monitored the isometric fingertip forces applied to the contact surfaces during precision grip. Hand function was measured by means of neurological examination, functional hand-grips and dexterity. Brain lesions were identified by series of ultrasound and MRI scans. Normally, the fingertip forces are applied to the object in the initial phase of the lift in an invariant force co-ordination pattern (i.e. grip-lift synergy), in which the grip and load forces are initiated simultaneously and increase in parallel with unimodal force rate trajectories. A majority of children with unilateral brain lesions had not developed the force co-ordination pattern typical for their age, but produced an immature or a pathological pattern. The developmental level of the grip-lift synergy was determined and quantified according to criteria derived from earlier studies on normally developed children. There was a clear relationship between the developmental level of the grip-lift synergy and impaired dexterity, indicating that proper development of the force co-ordination pattern is important for skilled hand function. The grip-lift synergy correlated with the total extent of lesions in the contralateral cortex and white matter and with lesions in the thalamus/basal ganglia, while no correlation was found for isolated cortical lesions. The results suggest that the neural circuits involved in the control of the precision grip are organized in a parallel and distributed system in the hemispheres, and that the basal ganglia are important

  4. Increasing functional rehabilitation in acquired brain injury treatment: effective applications of behavioural principles.

    PubMed

    Guercio, John; Davis, Paula; Faw, Gerry; McMorrow, Martin; Ori, Lindsay; Berkowitz, Brooke; Nigra, Megan

    2002-10-01

    This paper investigated ways to increase the participation of direct care staff in the functional rehabilitation activities (FRAs) of adults with acquired brain injuries (ABIs). FRAs were rehabilitation agendas written by clinical staff for delivery by paraprofessionals. Increases in FRA completion were believed to be directly related to clinical success. These FRAs had been identified as key components in the rehabilitation programmes of the adults living within the residential facilities. Increases in FRAs were crucial in improving the quality of the rehabilitation programmes of the participants involved. The study observed four residential settings serving adults with ABIs using a multiple baseline design. The treatment approach consisted of public posting of weekly FRA documentation, incorporation of staff input, and reinforcement for documentation of FRAs. The results indicated a positive impact on the participation of staff in all of the residences in the study, consistent with implementation of the treatment package. PMID:12418998

  5. Predicting competency in automated machine use in an acquired brain injury population using neuropsychological measures.

    PubMed

    Crowe, Simon F; Mahony, Kate; Jackson, Martin

    2004-08-01

    The purpose of the current study was to explore whether performance on standardised neuropsychological measures could predict functional ability with automated machines and services among people with an acquired brain injury (ABI). Participants were 45 individuals who met the criteria for mild, moderate or severe ABI and 15 control participants matched on demographic variables including age- and education. Each participant was required to complete a battery of neuropsychological tests, as well as performing three automated service delivery tasks: a transport automated ticketing machine, an automated teller machine (ATM) and an automated telephone service. The results showed consistently high relationship between the neuropsychological measures, both as single predictors and in combination, and level of competency with the automated machines. Automated machines are part of a relatively new phenomena in service delivery and offer an ecologically valid functional measure of performance that represents a true indication of functional disability. PMID:15271411

  6. In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy

    PubMed Central

    Serduc, Raphaël; Berruyer, Gilles; Brochard, Thierry; Renier, Michel; Nemoz, Christian

    2010-01-01

    A fast 50 µm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. In vivo imaging was performed using the pink beam (35–60 keV) produced by the ID17 wiggler at the ESRF opened at 120 mm and filtered. A graphical user interface has been developed in order to define the irradiation field size and to position the target with respect to the skull structures observed in X-ray images. The method proposed here allows tremendous time saving by skipping the swap from white beam to monochromatic beam and vice versa. To validate the concept, the somatosensory cortex or thalamus of GAERS rats were irradiated under several ports using this alignment procedure. The magnetic resonance images acquired after contrast agent injection showed that the irradiations were selectively performed in these two expected brain regions. Image-guided microbeam irradiations have therefore been realised for the first time ever, and, thanks to this new development, the ID17 biomedical beamline provides a major tool allowing brain radiosurgery trials on animal patients. PMID:20400830

  7. Further validation of the Motivation for Traumatic Brain Injury Rehabilitation Questionnaire (MOT-Q) in patients with acquired brain injury.

    PubMed

    Boosman, Hileen; van Heugten, Caroline M; Winkens, Ieke; Smeets, Sanne M J; Visser-Meily, Johanna M A

    2016-01-01

    The Motivation for Traumatic Brain Injury Rehabilitation Questionnaire (MOT-Q) evaluates motivation for rehabilitation in four subscales: Interest in rehabilitation, Lack of anger, Lack of denial, and Reliance on professional help. The objective of this study was to further validate the MOT-Q in 122 inpatients and 92 outpatients with acquired brain injury (ABI). The main measures were motivation for rehabilitation (MOT-Q), self-awareness (Patient Competency Rating Scale), and treatment motivation (Visual Analogue Scale). The MOT-Q showed adequate feasibility in terms of few items with missing responses and few undecided responses. We found no floor or ceiling effects, and significant item-total MOT-Q correlations for 29 of 31 items. Internal consistency was good for the MOT-Q total and acceptable to good for the subscales. The MOT-Q scores were significantly intercorrelated except for the subscales Lack of denial and Reliance on professional help in the inpatient group. The MOT-Q total and subscales were significantly associated with treatment motivation. The Lack of denial subscale showed no significant association with treatment motivation and no to moderate significant associations with self-awareness. In conclusion, the overall MOT-Q is a valid instrument to assess motivation for rehabilitation in patients with ABI. Further research is needed to examine the validity of the subscales.

  8. Improving residual vision by attentional cueing in patients with brain lesions.

    PubMed

    Poggel, Dorothe A; Kasten, Erich; Müller-Oehring, Eva M; Bunzenthal, Ulrike; Sabel, Bernhard A

    2006-06-30

    Visual attention is crucial for almost all processes of visual perception, particularly when perception is difficult. We were interested in the effects of cueing spatial attention in patients with cerebral lesions who face difficulties in visual perception in areas of residual vision at the border of visual field defects. In 23 patients with visual field loss due to post-geniculate brain lesions, stimulus detection performance and reaction times were mapped with high-resolution computer-based perimetry. A cueing procedure using Gestalt completion to attract attention to areas of residual vision was implemented in this test and performance compared in attended and unattended conditions. Stimulus detection and reaction times in areas of residual vision improved significantly under attended conditions. The extent of this effect depended on the size of areas of residual vision within the cued field. Unexpectedly, facilitation was also observed, though to a lesser extent, in invalid cueing conditions, suggesting an unspecific increase of alertness in unattended areas. Our findings show that top-down influences are relevant for visual field testing. Visuo-spatial attention may change patterns of neural activation and induce short-term plasticity not only in the intact visual system but also in the presence of visual field loss after brain lesions. Attentional cueing induces a co-activation of the lesioned visual system and (intact) attentional networks in the brain inducing immediate facilitation of visual perception. This effect may be relevant for designing new strategies to permanently improve vision during neuropsychological rehabilitation. PMID:16777076

  9. Functional MRI Preprocessing in Lesioned Brains: Manual Versus Automated Region of Interest Analysis.

    PubMed

    Garrison, Kathleen A; Rogalsky, Corianne; Sheng, Tong; Liu, Brent; Damasio, Hanna; Winstein, Carolee J; Aziz-Zadeh, Lisa S

    2015-01-01

    Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially normalize each participant's structural brain image to a template brain image and define ROIs using an atlas. However, in studies of individuals with structural brain lesions, such as stroke, the gold standard approach may be to manually hand-draw ROIs on each participant's non-normalized structural brain image. Automated approaches to ROI analysis are faster and more standardized, yet are susceptible to preprocessing error (e.g., normalization error) that can be greater in lesioned brains. The manual approach to ROI analysis has high demand for time and expertise, but may provide a more accurate estimate of brain response. In this study, commonly used automated and manual approaches to ROI analysis were directly compared by reanalyzing data from a previously published hypothesis-driven cognitive fMRI study, involving individuals with stroke. The ROI evaluated is the pars opercularis of the inferior frontal gyrus. Significant differences were identified in task-related effect size and percent-activated voxels in this ROI between the automated and manual approaches to ROI analysis. Task interactions, however, were consistent across ROI analysis approaches. These findings support the use of automated approaches to ROI analysis in studies of lesioned brains, provided they employ a task interaction design. PMID:26441816

  10. Functional MRI Preprocessing in Lesioned Brains: Manual Versus Automated Region of Interest Analysis.

    PubMed

    Garrison, Kathleen A; Rogalsky, Corianne; Sheng, Tong; Liu, Brent; Damasio, Hanna; Winstein, Carolee J; Aziz-Zadeh, Lisa S

    2015-01-01

    Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially normalize each participant's structural brain image to a template brain image and define ROIs using an atlas. However, in studies of individuals with structural brain lesions, such as stroke, the gold standard approach may be to manually hand-draw ROIs on each participant's non-normalized structural brain image. Automated approaches to ROI analysis are faster and more standardized, yet are susceptible to preprocessing error (e.g., normalization error) that can be greater in lesioned brains. The manual approach to ROI analysis has high demand for time and expertise, but may provide a more accurate estimate of brain response. In this study, commonly used automated and manual approaches to ROI analysis were directly compared by reanalyzing data from a previously published hypothesis-driven cognitive fMRI study, involving individuals with stroke. The ROI evaluated is the pars opercularis of the inferior frontal gyrus. Significant differences were identified in task-related effect size and percent-activated voxels in this ROI between the automated and manual approaches to ROI analysis. Task interactions, however, were consistent across ROI analysis approaches. These findings support the use of automated approaches to ROI analysis in studies of lesioned brains, provided they employ a task interaction design.

  11. Alzheimer Lesions in the Autopsied Brains of People 30 to 50 Years of Age

    PubMed Central

    Pletnikova, Olga; Rudow, Gay L.; Hyde, Thomas M.; Kleinman, Joel E.; Ali, Sabeen Z.; Bharadwaj, Rahul; Gangadeen, Salina; Crain, Barbara J.; Fowler, David R.; Rubio, Ana I.; Troncoso, Juan C.

    2015-01-01

    Objective To test the hypothesis that asymptomatic Alzheimer disease lesions may appear before 50 years of age. Background Alzheimer disease has an asymptomatic stage during which people are cognitively intact despite having substantial pathologic changes in the brain. While this asymptomatic stage is common in older people, how early in life it may develop has been unknown. Methods We microscopically examined the postmortem brains of 154 people aged 30-39 years (n = 59) and 40-50 years (n = 95) for specific Alzheimer lesions: beta-amyloid plaques, neurofibrillary tangles, and tau-positive neurites. We genotyped DNA samples for the apolipoprotein E gene (APOE). Results We found beta-amyloid lesions in 13 brains, all of them from people aged 40 to 49 with no history of dementia. These plaques were of the diffuse type only and appeared throughout the neocortex. Among these 13 brains, 5 had very subtle tau lesions in the entorhinal cortex and/or hippocampus. All individuals with beta-amyloid deposits carried 1 or 2 APOE4 alleles. Among the individuals aged 40 to 50 with genotype APOE3/4, 10 (36%) had beta-amyloid deposits but 18 (64%) had none. Conclusions Our study demonstrates that beta-amyloid deposits in the cerebral cortex appear as early as 40 years of age in APOE4 carriers, suggesting that these lesions may constitute a very early stage of Alzheimer disease. Future preventive and therapeutic measures for this disease may have to be stratified by risk factors like APOE genotype and target people in their 40s or even earlier. PMID:26413742

  12. Neurophysiological markers of plastic brain reorganization following central and peripheral lesions.

    PubMed

    Ferreri, Florinda; Guerra, Andrea; Rossini, Paolo Maria

    2014-12-01

    There is increasing evidence supporting the concept that adult brain has the remarkable ability to plastically reorganize itself. Brain plasticity involves distinct functional and structural components and plays a crucial role in reorganizing central nervous system's networks after central and peripheral lesions in order to partly or totally restore lost and/or compromised functions. This plastic rearrangement occurs in fact not only after a central nervous system injury but also following a peripheral lesion. Interestingly, the existence of a certain type of maladaptive plasticity was clearly recognized in the last decade, which gives reason for example to poor out- come performances or aberrant phenomena. In this review we analyze stroke and amputees studies, as illustrative conditions of central and peripheral nervous system damage, and discuss the adaptive as well maladaptive plastic brain changes following these lesions. The emerging possibility, through neuro-imaging and neurophysiological advanced techniques, to clarify some crucial issues underlying brain plasticity will give the chance to modulate these mechanisms in a highly personalized therapy. This approach may have a tremendous impact in a variety of neuropsychiatric disorders opening a new era of restorative medicine. PMID:25987182

  13. Post-traumatic growth following acquired brain injury: a systematic review and meta-analysis

    PubMed Central

    Grace, Jenny J.; Kinsella, Elaine L.; Muldoon, Orla T.; Fortune, Dónal G.

    2015-01-01

    The idea that acquired brain injury (ABI) caused by stroke, hemorrhage, infection or traumatic insult to the brain can result in post-traumatic growth (PTG) for individuals is increasingly attracting psychological attention. However, PTG also attracts controversy as a result of ambiguous empirical findings. The extent that demographic variables, injury factors, subjective beliefs, and psychological health are associated with PTG following ABI is not clear. Consequently, this systematic review and meta-analysis explores the correlates of variables within these four broad areas and PTG. From a total of 744 published studies addressing PTG in people with ABI, eight studies met inclusion criteria for detailed examination. Meta-analysis of these studies indicated that growth was related to employment, longer education, subjective beliefs about change post-injury, relationship status, older age, longer time since injury, and lower levels of depression. Results from homogeneity analyses indicated significant inter-study heterogeneity across variables. There is general support for the idea that people with ABI can experience growth, and that various demographics, injury-related variables, subjective beliefs and psychological health are related to growth. The contribution of social integration and the forming of new identities post-ABI to the experience of PTG is explored. These meta-analytic findings are however constrained by methodological limitations prevalent in the literature. Clinical and research implications are discussed with specific reference to community and collective factors that enable PTG. PMID:26321983

  14. The impact of acquired brain damage in terms of epidemiology, economics and loss in quality of life

    PubMed Central

    2011-01-01

    Background Patients with acquired brain damage (ABD) have suffered a brain lesion that interrupts vital development in the physical, psychological and social spheres. Stroke and traumatic brain injury (TBI) are the two main causes. The objectives of this study were to estimate the incidence and prevalence of ABD in the population of the Basque Country and Navarre in 2008, to calculate the associated cost of the care required and finally to assess the loss in health-related quality of life. Methods On the one hand, a cross-sectional survey was carried out, in order to estimate the incidence of ABD and its consequences in terms of costs and loss in quality of life from the evolution of a sample of patients diagnosed with stroke and TBI. On the other hand, a discrete event simulation model was built that enabled the prevalence of ABD to be estimated. Finally, a calculation was made of the formal and informal costs of ABD in the population of the Basque Country and Navarre (2,750,000 people). Results The cross-sectional study showed that the incidences of ABD caused by stroke and TBI were 61.8 and 12.5 cases per 100,000 per year respectively, while the overall prevalence was 657 cases per 100,000 people. The SF-36 physical and mental component scores were 28.9 and 44.5 respectively. The total economic burden was calculated to be 382.14 million euro per year, distributed between 215.27 and 166.87 of formal and informal burden respectively. The average cost per individual was 21,040 € per year. Conclusions The main conclusion of this study is that ABD has a high impact in both epidemiological and economic terms as well as loss in quality of life. The overall prevalence obtained is equivalent to 0.7% of the total population. The substantial economic burden is distributed nearly evenly between formal and informal costs. Specifically, it was found that the physical dimensions of quality of life are the most severely affected. The prevalence-based approach showed adequate

  15. Novel insights into the rehabilitation of memory post acquired brain injury: a systematic review

    PubMed Central

    Spreij, Lauriane A.; Visser-Meily, Johanna M. A.; van Heugten, Caroline M.; Nijboer, Tanja C. W.

    2014-01-01

    Objective: Acquired Brain Injury (ABI) frequently results in memory impairment causing significant disabilities in daily life and is therefore a critical target for cognitive rehabilitation. Current understanding of brain plasticity has led to novel insights in remediation-oriented approaches for the rehabilitation of memory deficits. We will describe 3 of these approaches that have emerged in the last decade: Virtual Reality (VR) training, Computer-Based Cognitive Retraining (CBCR) and Non-Invasive Brain Stimulation (NBS) and evaluate its effectiveness. Methods: A systematic literature search was completed in regard to studies evaluating interventions aiming to improve the memory function after ABI. Information concerning study content and reported effectiveness were extracted. Quality of the studies and methods were evaluated. Results: A total of 786 studies were identified, 15 studies met the inclusion criteria. Three of those studies represent the VR technique, 7 studies represent CBCR and 5 studies NBS. All 3 studies found a significant improvement of the memory function after VR-based training, however these studies are considered preliminary. All 7 studies have shown that CBCR can be effective in improving memory function in patients suffering from ABI. Four studies of the 5 did not find significant improvement of the memory function after the use of NBS in ABI patients. Conclusion: On the basis of this review, CBCR is considered the most promising novel approach of the last decade because of the positive results in improving memory function post ABI. The number of studies representing VR were limited and the methodological quality low, therefore the results should be considered preliminary. The studies representing NBS did not detect evidence for the use of NBS in improving memory function. PMID:25566021

  16. Multispectral analysis and visualization of multiple sclerosis lesions in MR volumes of the brain

    NASA Astrophysics Data System (ADS)

    Mitchell, Ross; Karlik, Stephen J.; Lee, Donald H.; Fenster, Aaron

    1993-09-01

    MRI is a valuable tool in the diagnosis of multiple sclerosis (MS). Standard MR protocols for imaging MS produce proton density (PD) and T2 weighted images of the same slice in the brain. While these image pairs provide valuable information about MS lesions, they are two dimensional (2-D) while lesions are three dimensional (3-D). Furthermore, the vast amount of data produced in an MR exam for MS makes routine analysis and comparison of the image pairs difficult. Therefore, we have developed a computerized system which employs multi- spectral analysis techniques to allow interactive 3-D analysis of MR data by radiologists and neurologists. We have used our system to classify and analyze four MR exams of a chronic- progressive MS patient taken over an 18 month period. Comparison of volume renderings of classified white matter, grey matter and MS lesions at each exam date provide information about the changes in individual lesions, and total lesion burden. Analysis of the intensity distributions of large MS lesions reveals that they have a wide range of PD/T2 weighted intensities, and some contain a higher PD/longer T2 'core' perhaps corresponding to edema.

  17. Nitric oxide as an initiator of brain lesions during the development of Alzheimer disease.

    PubMed

    Aliev, Gjumrakch; Palacios, Hector H; Lipsitt, Amanda E; Fischbach, Kathryn; Lamb, Bruce T; Obrenovich, Mark E; Morales, Ludis; Gasimov, Eldar; Bragin, Valentin

    2009-10-01

    Nitric oxide (NO) is an important regulatory molecule for the host defense that plays a fundamental role in the cardiovascular, immune, and nervous systems. NO is synthesized through the conversion of L-arginine to L-citrulline by the enzyme NO synthase (NOS), which is found in three isoforms classified as neuronal (nNOS), inducible (iNOS), and endothelial (eNOS). Recent evidence supports the theory that this bioactive molecule has an influential role in the disruption of normal brain and vascular homeostasis, a condition known to elucidate chronic hypoperfusion which ultimately causes the development of brain lesions and the pathology that typify Alzheimer disease (AD). In addition, vascular NO activity appears to be a major contributor to this pathology before any overexpression of NOS isoforms is observed in the neuron, glia, and microglia of the brain tree, where the overexpression the NOS isoforms causes the formation of a large amount of NO. We hypothesize that since an imbalance between the NOS isoforms and endothelin-1 (ET-1), a human gene that encodes for blood vessel constriction, can cause antioxidant system insufficiency; by using pharmacological intervention with NO donors and/or NO suppressors, the brain lesions and the downstream progression of brain pathology and dementia in AD should be delayed or minimized.

  18. Automated metastatic brain lesion detection: a computer aided diagnostic and clinical research tool

    NASA Astrophysics Data System (ADS)

    Devine, Jeremy; Sahgal, Arjun; Karam, Irene; Martel, Anne L.

    2016-03-01

    The accurate localization of brain metastases in magnetic resonance (MR) images is crucial for patients undergoing stereotactic radiosurgery (SRS) to ensure that all neoplastic foci are targeted. Computer automated tumor localization and analysis can improve both of these tasks by eliminating inter and intra-observer variations during the MR image reading process. Lesion localization is accomplished using adaptive thresholding to extract enhancing objects. Each enhancing object is represented as a vector of features which includes information on object size, symmetry, position, shape, and context. These vectors are then used to train a random forest classifier. We trained and tested the image analysis pipeline on 3D axial contrast-enhanced MR images with the intention of localizing the brain metastases. In our cross validation study and at the most effective algorithm operating point, we were able to identify 90% of the lesions at a precision rate of 60%.

  19. Reappraisal generation after acquired brain damage: The role of laterality and cognitive control

    PubMed Central

    Salas, Christian E.; Gross, James J.; Turnbull, Oliver H.

    2014-01-01

    In the past decade, there has been growing interest in the neuroanatomical and neuropsychological bases of reappraisal. Findings suggest that reappraisal activates a set of areas in the left hemisphere (LH), which are commonly associated with language abilities and verbally mediated cognitive control. The main goal of this study was to investigate whether individuals with focal damage to the LH (n = 8) were more markedly impaired on a reappraisal generation task than individuals with right hemisphere lesions (RH, n = 8), and healthy controls (HC, n = 14). The reappraisal generation task consisted of a set of ten pictures from the IAPS, depicting negative events of different sorts. Participants were asked to quickly generate as many positive reinterpretations as possible for each picture. Two scores were derived from this task, namely difficulty and productivity. A second goal of this study was to explore which cognitive control processes were associated with performance on the reappraisal task. For this purpose, participants were assessed on several measures of cognitive control. Findings indicated that reappraisal difficulty – defined as the time taken to generate a first reappraisal – did not differ between LH and RH groups. However, differences were found between patients with brain injury (LH + RH) and HC, suggesting that brain damage in either hemisphere influences reappraisal difficulty. No differences in reappraisal productivity were found across groups, suggesting that neurological groups and HC are equally productive when time constraints are not considered. Finally, only two cognitive control processes inhibition and verbal fluency- were inversely associated with reappraisal difficulty. Implications for the neuroanatomical and neuropsychological bases of reappraisal generation are discussed, and implications for neuro-rehabilitation are considered. PMID:24711799

  20. Reappraisal generation after acquired brain damage: The role of laterality and cognitive control.

    PubMed

    Salas, Christian E; Gross, James J; Turnbull, Oliver H

    2014-01-01

    In the past decade, there has been growing interest in the neuroanatomical and neuropsychological bases of reappraisal. Findings suggest that reappraisal activates a set of areas in the left hemisphere (LH), which are commonly associated with language abilities and verbally mediated cognitive control. The main goal of this study was to investigate whether individuals with focal damage to the LH (n = 8) were more markedly impaired on a reappraisal generation task than individuals with right hemisphere lesions (RH, n = 8), and healthy controls (HC, n = 14). The reappraisal generation task consisted of a set of ten pictures from the IAPS, depicting negative events of different sorts. Participants were asked to quickly generate as many positive reinterpretations as possible for each picture. Two scores were derived from this task, namely difficulty and productivity. A second goal of this study was to explore which cognitive control processes were associated with performance on the reappraisal task. For this purpose, participants were assessed on several measures of cognitive control. Findings indicated that reappraisal difficulty - defined as the time taken to generate a first reappraisal - did not differ between LH and RH groups. However, differences were found between patients with brain injury (LH + RH) and HC, suggesting that brain damage in either hemisphere influences reappraisal difficulty. No differences in reappraisal productivity were found across groups, suggesting that neurological groups and HC are equally productive when time constraints are not considered. Finally, only two cognitive control processes inhibition and verbal fluency- were inversely associated with reappraisal difficulty. Implications for the neuroanatomical and neuropsychological bases of reappraisal generation are discussed, and implications for neuro-rehabilitation are considered.

  1. Texture Analysis of T2-Weighted MR Images to Assess Acute Inflammation in Brain MS Lesions

    PubMed Central

    Michoux, Nicolas; Guillet, Alain; Rommel, Denis; Mazzamuto, Giosué; Sindic, Christian; Duprez, Thierry

    2015-01-01

    Brain blood barrier breakdown as assessed by contrast-enhanced (CE) T1-weighted MR imaging is currently the standard radiological marker of inflammatory activity in multiple sclerosis (MS) patients. Our objective was to evaluate the performance of an alternative model assessing the inflammatory activity of MS lesions by texture analysis of T2-weighted MR images. Twenty-one patients with definite MS were examined on the same 3.0T MR system by T2-weighted, FLAIR, diffusion-weighted and CE-T1 sequences. Lesions and mirrored contralateral areas within the normal appearing white matter (NAWM) were characterized by texture parameters computed from the gray level co-occurrence and run length matrices, and by the apparent diffusion coefficient (ADC). Statistical differences between MS lesions and NAWM were analyzed. ROC analysis and leave-one-out cross-validation were performed to evaluate the performance of individual parameters, and multi-parametric models using linear discriminant analysis (LDA), partial least squares (PLS) and logistic regression (LR) in the identification of CE lesions. ADC and all but one texture parameter were significantly different within white matter lesions compared to within NAWM (p < 0.0167). Using LDA, an 8-texture parameter model identified CE lesions with a sensitivity Se = 70% and a specificity Sp = 76%. Using LR, a 10-texture parameter model performed better with Se = 86% / Sp = 84%. Using PLS, a 6-texture parameter model achieved the highest accuracy with Se = 88% / Sp = 81%. Texture parameter from T2-weighted images can assess brain inflammatory activity with sufficient accuracy to be considered as a potential alternative to enhancement on CE T1-weighted images. PMID:26693908

  2. Texture Analysis of T2-Weighted MR Images to Assess Acute Inflammation in Brain MS Lesions.

    PubMed

    Michoux, Nicolas; Guillet, Alain; Rommel, Denis; Mazzamuto, Giosué; Sindic, Christian; Duprez, Thierry

    2015-01-01

    Brain blood barrier breakdown as assessed by contrast-enhanced (CE) T1-weighted MR imaging is currently the standard radiological marker of inflammatory activity in multiple sclerosis (MS) patients. Our objective was to evaluate the performance of an alternative model assessing the inflammatory activity of MS lesions by texture analysis of T2-weighted MR images. Twenty-one patients with definite MS were examined on the same 3.0T MR system by T2-weighted, FLAIR, diffusion-weighted and CE-T1 sequences. Lesions and mirrored contralateral areas within the normal appearing white matter (NAWM) were characterized by texture parameters computed from the gray level co-occurrence and run length matrices, and by the apparent diffusion coefficient (ADC). Statistical differences between MS lesions and NAWM were analyzed. ROC analysis and leave-one-out cross-validation were performed to evaluate the performance of individual parameters, and multi-parametric models using linear discriminant analysis (LDA), partial least squares (PLS) and logistic regression (LR) in the identification of CE lesions. ADC and all but one texture parameter were significantly different within white matter lesions compared to within NAWM (p < 0.0167). Using LDA, an 8-texture parameter model identified CE lesions with a sensitivity Se = 70% and a specificity Sp = 76%. Using LR, a 10-texture parameter model performed better with Se = 86% / Sp = 84%. Using PLS, a 6-texture parameter model achieved the highest accuracy with Se = 88% / Sp = 81%. Texture parameter from T2-weighted images can assess brain inflammatory activity with sufficient accuracy to be considered as a potential alternative to enhancement on CE T1-weighted images. PMID:26693908

  3. Atypical language lateralization and early linguistic development in children with focal brain lesions.

    PubMed

    Chilosi, A M; Pecini, C; Cipriani, P; Brovedani, P; Brizzolara, D; Ferretti, G; Pfanner, L; Cioni, G

    2005-11-01

    The effects of congenital, unilateral, focal brain lesions on early linguistic development and hemispheric lateralization for language were investigated longitudinally in 24 preschool children with hemiplegia (14 males, 10 females), 12 with left hemisphere damage (LHD) and 12 with right hemisphere damage (RHD). A comprehensive linguistic assessment was performed at 2 and 3 years of life; cerebral lateralization for language was measured by the Fused Dichotic Words Listening Test. An early left-side specificity for language was indicated by the presence of lexical and grammatical delay in most children with LHD. In the dichotic listening test all 12 children with LHD showed a shift of language lateralization from the left to the right hemisphere. Atypical lateralization coefficients (lambda), i.e. values falling more than two standard deviations from the mean of a normative sample, were associated with a delay in lexical and grammatical development, especially after LHD. In addition, cortical-subcortical-periventricular lesions rather than solely periventricular damage, and larger lesions rather than small, were associated with the most atypical lateralization coefficients, irrespective of lesion side. Results of this study suggest that language and lateralization data are closely related and that reallocation of language functions in alternative regions of the brain has a cost in terms of a slow rate of language acquisition. PMID:16225734

  4. Encephalitozoon cuniculi: Grading the Histological Lesions in Brain, Kidney, and Liver during Primoinfection Outbreak in Rabbits

    PubMed Central

    Rodríguez-Tovar, Luis E.; Nevárez-Garza, Alicia M.; Trejo-Chávez, Armando; Hernández-Martínez, Carlos A.; Zarate-Ramos, Juan J.; Castillo-Velázquez, Uziel

    2016-01-01

    This is the first confirmed report of Encephalitozoon cuniculi (E. cuniculi) in farm meat rabbits located in Northern Mexico. Eighty young rabbits exhibited clinical signs of this zoonotic emerging disease, like torticollis, ataxia, paresis, circling, and rolling. Samples of brain, kidney, and liver were examined for histology lesions. For the first time the lesions caused by E. cuniculi were graded according to their severity (I, II, and III) and the size of the granulomas (Types A, B, and C). The main cerebral injuries were Grade III, coinciding with the presence of Type C granulomas. The cerebral lesions were located in the cortex, brain stem, and medulla. The renal lesions were also Grade III distributed throughout cortex and renal medulla, with no granuloma formation. The involvement of hypersensitivity Types III and IV is suggested. All of the rabbits were seropositive to E. cuniculi by CIA testing, suggesting that this zoonotic and emerging pathogen is widely distributed among animals intended for human consumption. We believe this work could be used as a guide when examining E. cuniculi and will provide direction to confirm the diagnosis of this pathogen. PMID:27022485

  5. Improved CSF classification and lesion detection in MR brain images with multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Wolff, Yulian; Miron, Shmuel; Achiron, Anat; Greenspan, Hayit

    2007-03-01

    The study deals with the challenging task of automatic segmentation of MR brain images with multiple sclerosis lesions (MSL). Multi-Channel data is used, including "fast fluid attenuated inversion recovery" (fast FLAIR or FF), and statistical modeling tools are developed, in order to improve cerebrospinal fluid (CSF) classification and to detect MSL. Two new concepts are proposed for use within an EM framework. The first concept is the integration of prior knowledge as it relates to tissue behavior in different MRI modalities, with special attention given to the FF modality. The second concept deals with running the algorithm on a subset of the input that is most likely to be noise- and artifact-free data. This enables a more reliable learning of the Gaussian mixture model (GMM) parameters for brain tissue statistics. The proposed method focuses on the problematic CSF intensity distribution, which is a key to improved overall segmentation and lesion detection. A level-set based active contour stage is performed for lesion delineation, using gradient and shape properties combined with previously learned region intensity statistics. In the proposed scheme there is no need for preregistration of an atlas, a common characteristic in brain segmentation schemes. Experimental results on real data are presented.

  6. Lesion detection in magnetic resonance brain images by hyperspectral imaging algorithms

    NASA Astrophysics Data System (ADS)

    Xue, Bai; Wang, Lin; Li, Hsiao-Chi; Chen, Hsian Min; Chang, Chein-I.

    2016-05-01

    Magnetic Resonance (MR) images can be considered as multispectral images so that MR imaging can be processed by multispectral imaging techniques such as maximum likelihood classification. Unfortunately, most multispectral imaging techniques are not particularly designed for target detection. On the other hand, hyperspectral imaging is primarily developed to address subpixel detection, mixed pixel classification for which multispectral imaging is generally not effective. This paper takes advantages of hyperspectral imaging techniques to develop target detection algorithms to find lesions in MR brain images. Since MR images are collected by only three image sequences, T1, T2 and PD, if a hyperspectral imaging technique is used to process MR images it suffers from the issue of insufficient dimensionality. To address this issue, two approaches to nonlinear dimensionality expansion are proposed, nonlinear correlation expansion and nonlinear band ratio expansion. Once dimensionality is expanded hyperspectral imaging algorithms are readily applied. The hyperspectral detection algorithm to be investigated for lesion detection in MR brain is the well-known subpixel target detection algorithm, called Constrained Energy Minimization (CEM). In order to demonstrate the effectiveness of proposed CEM in lesion detection, synthetic images provided by BrainWeb are used for experiments.

  7. The beneficial effects of nettle supplementation and exercise on brain lesion and memory in rat.

    PubMed

    Toldy, Anna; Atalay, Mustafa; Stadler, Krisztián; Sasvári, Mária; Jakus, Judit; Jung, Kyung J; Chung, Hae Y; Nyakas, Csaba; Radák, Zsolt

    2009-12-01

    Regular swimming and phytotherapeutic supplementation are assumed to alleviate the severity of neurodegeneration leading to dementia. The effect of swimming training and that of enriched lab chow containing 1% (w/w) dried nettle (Urtica dioica) leaf on the prevention of severity of brain injury caused by N-methyl-d-aspartate (NMDA) lesion in Wistar rats were investigated. Nettle supplementation and regular swimming exercise seem to improve the adverse effect of brain injury caused by NMDA lesion assessed by passive avoidance test and open-field test. Nettle supplementation decreases the level of reactive oxygen species, measured by electron paramagnetic resonance, and the DNA-binding activity of NF-kappaB. The data reveal that nettle supplementation has an effective antioxidant role, down-regulates the inflammatory transcription factors and could also promote learning performance in the brain. Regular swimming increases the concentration of reactive species in the cerebellum and alters the activity of transcription factors toward inflammation. The additive effect of the two treatments was more profound in the down-regulation of inflammatory transcription processes in NMDA lesion.

  8. Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions.

    PubMed

    Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M; Mariani, John N; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S; John, Gareth R

    2015-06-01

    In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an

  9. The need for improved brain lesion segmentation techniques for children with cerebral palsy: A review.

    PubMed

    Pagnozzi, Alex M; Gal, Yaniv; Boyd, Roslyn N; Fiori, Simona; Fripp, Jurgen; Rose, Stephen; Dowson, Nicholas

    2015-12-01

    Cerebral palsy (CP) describes a group of permanent disorders of posture and movement caused by disturbances in the developing brain. Accurate diagnosis and prognosis, in terms of motor type and severity, is difficult to obtain due to the heterogeneous appearance of brain injury and large anatomical distortions commonly observed in children with CP. There is a need to optimise treatment strategies for individual patients in order to lead to lifelong improvements in function and capabilities. Magnetic resonance imaging (MRI) is critical to non-invasively visualizing brain lesions, and is currently used to assist the diagnosis and qualitative classification in CP patients. Although such qualitative approaches under-utilise available data, the quantification of MRIs is not automated and therefore not widely performed in clinical assessment. Automated brain lesion segmentation techniques are necessary to provide valid and reproducible quantifications of injury. Such techniques have been used to study other neurological disorders, however the technical challenges unique to CP mean that existing algorithms require modification to be sufficiently reliable, and therefore have not been widely applied to MRIs of children with CP. In this paper, we present a review of a subset of available brain injury segmentation approaches that could be applied to CP, including the detection of cortical malformations, white and grey matter lesions and ventricular enlargement. Following a discussion of strengths and weaknesses, we suggest areas of future research in applying segmentation techniques to the MRI of children with CP. Specifically, we identify atlas-based priors to be ineffective in regions of substantial malformations, instead propose relying on adaptive, spatially consistent algorithms, with fast initialisation mechanisms to provide additional robustness to injury. We also identify several cortical shape parameters that could be used to identify cortical injury, and shape

  10. Reading-related oculomotor testing and training protocols for acquired brain injury in humans.

    PubMed

    Han, Ying; Ciuffreda, Kenneth J; Kapoor, Neera

    2004-11-01

    Many individuals with acquired brain injury (ABI) report reading problems of oculomotor origin. These may include frequent loss of place, skipping of lines and difficulty shifting to the next line of print. We describe two protocols for the testing and training of reading-related eye movements in adult individuals with ABI (traumatic brain injury [TBI] and stroke with hemianopia), who experience oculomotor-based symptoms when reading. These protocols use objective eye movement recording techniques and computer-based stimulus presentation and analysis. One protocol tests and the other trains basic horizontal and vertical versional eye movements (fixation, saccades and pursuit), as well as reading eye movements using simulated single and multiple line dynamic arrays. In addition, a reading rating-scale questionnaire is administered before and after completion of training to assess subjective reading improvement. In all paradigms, the target consists of a 0.5 degrees luminous square, which is displayed on a computer monitor positioned 40 cm from the subject along the midline. All testing and training are conducted under binocular viewing conditions with optical correction in place. There are two modes of training: normal internal oculomotor visual feedback either alone (4 weeks) or in conjunction with external oculomotor auditory feedback (4 weeks) administered in a counterbalanced manner within each diagnostic group. Training is performed 1 h, twice weekly for the 8 weeks. Oculomotor testing is conducted before, midway and after training. Following training, reading-related eye movements and reading ability improved as assessed both subjectively and objectively. These protocols provide a systematic approach to the quantitative and comprehensive testing and training of reading-related eye movement skills and behaviors in the ABI population manifesting oculomotor-based reading dysfunctions. Furthermore, the training protocol results in the rapid remediation of the eye

  11. Acquired lymphangiectasis.

    PubMed

    Celis, A V; Gaughf, C N; Sangueza, O P; Gourdin, F W

    1999-01-01

    Acquired lymphangiectasis is a dilatation of lymphatic vessels that can result as a complication of surgical intervention and radiation therapy for malignancy. Acquired lymphangiectasis shares clinical and histologic features with the congenital lesion, lymphangioma circumscriptum. Diagnosis and treatment of these vesiculo-bullous lesions is important because they may be associated with pain, chronic drainage, and cellulitis. We describe two patients who had these lesions after treatment for cancer and review the pertinent literature. Although a number of treatment options are available, we have found CO2 laser ablation particularly effective. PMID:9932832

  12. Effects of subthalamic deep brain stimulation on blink abnormalities of 6-OHDA lesioned rats

    PubMed Central

    Kaminer, Jaime; Thakur, Pratibha

    2015-01-01

    Parkinson's disease (PD) patients and the 6-hydroxydopamine (6-OHDA) lesioned rat model share blink abnormalities. In view of the evolutionarily conserved organization of blinking, characterization of blink reflex circuits in rodents may elucidate the neural mechanisms of PD reflex abnormalities. We examine the extent of this shared pattern of blink abnormalities by measuring blink reflex excitability, blink reflex plasticity, and spontaneous blinking in 6-OHDA lesioned rats. We also investigate whether 130-Hz subthalamic nucleus deep brain stimulation (STN DBS) affects blink abnormalities, as it does in PD patients. Like PD patients, 6-OHDA-lesioned rats exhibit reflex blink hyperexcitability, impaired blink plasticity, and a reduced spontaneous blink rate. At 130 Hz, but not 16 Hz, STN DBS eliminates reflex blink hyperexcitability and restores both short- and long-term blink plasticity. Replicating its lack of effect in PD patients, 130-Hz STN DBS does not reinstate a normal temporal pattern or rate to spontaneous blinking in 6-OHDA lesioned rats. These data show that the 6-OHDA lesioned rat is an ideal model system for investigating the neural bases of reflex abnormalities in PD and highlight the complexity of PD's effects on motor control, by showing that dopamine depletion does not affect all blink systems via the same neural mechanisms. PMID:25673748

  13. Patch-Based Segmentation with Spatial Consistency: Application to MS Lesions in Brain MRI.

    PubMed

    Mechrez, Roey; Goldberger, Jacob; Greenspan, Hayit

    2016-01-01

    This paper presents an automatic lesion segmentation method based on similarities between multichannel patches. A patch database is built using training images for which the label maps are known. For each patch in the testing image, k similar patches are retrieved from the database. The matching labels for these k patches are then combined to produce an initial segmentation map for the test case. Finally an iterative patch-based label refinement process based on the initial segmentation map is performed to ensure the spatial consistency of the detected lesions. The method was evaluated in experiments on multiple sclerosis (MS) lesion segmentation in magnetic resonance images (MRI) of the brain. An evaluation was done for each image in the MICCAI 2008 MS lesion segmentation challenge. Results are shown to compete with the state of the art in the challenge. We conclude that the proposed algorithm for segmentation of lesions provides a promising new approach for local segmentation and global detection in medical images. PMID:26904103

  14. Brain derived neurotrophic factor keeps pattern electroretinogram from dropping after superior colliculus lesion in mice

    PubMed Central

    Yang, Bin-Bin; Yang, Xu; Ding, Huai-Yu

    2016-01-01

    AIM To determine if brain-derived neurotrophic factor (BDNF) could offer protention to retinal ganglion cells following a superior colliculus (SC) lesion in mice using pattern electroretinogram (PERG) and optical coherence tomography (OCT) as a measures of ganglion cell response and retinal health. METHODS Seven C57BL/6J mice with BDNF protection were tested with PERG and OCT before and after SC lesions. RESULTS Compared with baseline PERG, the amplitude of PERG decreased 11.7% after SC lesions, but not significantly (P>0.05). Through fast Fourier transform (FFT) analysis of the PERGs before and after SC lesions, it was found that dominant frequency of PERGs stayed unchanged, suggesting that the ganglion cells of the retina remained relatively healthy inspite of damage to the ends of the ganglion cell axons. Also, OCT showed no changes in retinal thickness after lesions. CONCLUSION It was concluded that BDNF is essential component of normal retinal and helps retina keeping normal function. While retina lack of BDNF, ex vivo resource of BDNF provides protection to the sick retina. It implies that BDNF is a kind therapeutic neurotrophic factor to retina neurodegeneration diseases, such as glaucoma, age related macular degeneration. PMID:27158604

  15. Stereotactic laser induced thermotherapy (LITT): a novel treatment for brain lesions regrowing after radiosurgery.

    PubMed

    Torres-Reveron, Juan; Tomasiewicz, Hilarie C; Shetty, Anil; Amankulor, Nduka M; Chiang, Veronica L

    2013-07-01

    Since the inception of radiosurgery, the management of brain metastases has become a common problem for neurosurgeons. Although the use of stereotactic radiosurgery and/or whole brain radiation therapy serves to control the majority of disease burden, patients who survive longer than 6-8 months sometimes face the problem of symptomatic radiographically regrowing lesions with few treatment options. Here we investigate the feasibility of use of MRI-guided stereotactic laser induced thermotherapy (LITT) as a novel treatment option for these lesions. Six patients who had previously undergone gamma knife stereotactic radiosurgery for brain metastases were selected. All patients had an initial favorable response to radiosurgery but subsequently developed regrowth of at least one lesion associated with recurrent edema and progressive neurological symptoms requiring ongoing steroids for symptom control. All lesions were evaluated for craniotomy, but were deemed unresectable due to deep location or patient's comorbidities. Stereotactic biopsies were performed prior to the thermotherapy procedure in all cases. LITT was performed using the Visualase system and follow-up MRI imaging was used to determine treatment response. In all six patients biopsy results were negative for tumor and consistent with adverse radiation effects also known as radiation necrosis. Patients tolerated the procedure well and were discharged from the hospital within 48 h of the procedure. In 4/6 cases there was durable improvement of neurological symptoms until death. In all cases steroids were weaned off within 2 months. One patient died from systemic causes related to his cancer a month after the procedure. One patient had regrowth of the lesion 3 months after the procedure and required re-initiation of steroids and standard craniotomy for surgical resection. There were no complications directly related to the thermocoagulation procedure. Stereotactic laser induced thermotherapy is a feasible

  16. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.

  17. Coarse electrocorticographic decoding of ipsilateral reach in patients with brain lesions.

    PubMed

    Hotson, Guy; Fifer, Matthew S; Acharya, Soumyadipta; Benz, Heather L; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-01-01

    In patients with unilateral upper limb paralysis from strokes and other brain lesions, strategies for functional recovery may eventually include brain-machine interfaces (BMIs) using control signals from residual sensorimotor systems in the damaged hemisphere. When voluntary movements of the contralateral limb are not possible due to brain pathology, initial training of such a BMI may require use of the unaffected ipsilateral limb. We conducted an offline investigation of the feasibility of decoding ipsilateral upper limb movements from electrocorticographic (ECoG) recordings in three patients with different lesions of sensorimotor systems associated with upper limb control. We found that the first principal component (PC) of unconstrained, naturalistic reaching movements of the upper limb could be decoded from ipsilateral ECoG using a linear model. ECoG signal features yielding the best decoding accuracy were different across subjects. Performance saturated with very few input features. Decoding performances of 0.77, 0.73, and 0.66 (median Pearson's r between the predicted and actual first PC of movement using nine signal features) were achieved in the three subjects. The performance achieved here with small numbers of electrodes and computationally simple decoding algorithms suggests that it may be possible to control a BMI using ECoG recorded from damaged sensorimotor brain systems. PMID:25545500

  18. Promoting Adaptive Behavior in Persons with Acquired Brain Injury, Extensive Motor and Communication Disabilities, and Consciousness Disorders

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Belardinelli, Marta Olivetti; Buonocunto, Francesca; Sacco, Valentina; Navarro, Jorge; Lanzilotti, Crocifissa; De Tommaso, Marina; Megna, Marisa; Badagliacca, Francesco

    2012-01-01

    These two studies extended the evidence on the use of technology-based intervention packages to promote adaptive behavior in persons with acquired brain injury and multiple disabilities. Study I involved five participants in a minimally conscious state who were provided with intervention packages based on specific arrangements of optic, tilt, or…

  19. A Systematic Review of Psychological Interventions to Alleviate Cognitive and Psychosocial Problems in Children with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Ross, Kimberley A.; Dorris, Liam; McMillan, Tom

    2011-01-01

    Aim: It is now generally accepted that paediatric acquired brain injury (ABI) can have an impact on a child's cognitive, social, and behavioural functioning. However, the lack of guidelines on effective interventions for the affected children and their families, particularly beyond the acute recovery phase, can limit access to effective support.…

  20. Social communication features in children following moderate to severe acquired brain injury: a cross-sectional pilot study.

    PubMed

    Breau, Lynn M; Clark, Brenda; Scott, Ori; Wilkes, Courtney; Reynolds, Shawn; Ricci, Florencia; Sonnenberg, Lyn; Zwaigenbaum, Lonnie; Rashid, Marghalara; Goez, Helly R

    2015-04-01

    We compared the social communication deficits of children with moderate to severe acquired brain injury or autism spectrum disorder, while accounting for the role of attention-deficit hyperactivity disorder (ADHD) symptoms. Parents of 20 children aged 6 to 10 years (10 acquired brain injury; 10 autism spectrum disorder) completed the Social Communication Questionnaire, and Conners 3 Parent Short. A multivariate analysis of covariance revealed significant differences between groups in Social Communication Questionnaire restricted repetitive behavior scores, but not reciprocal social interaction or social communication. Multiple linear regressions indicated diagnosis did not predict reciprocal social interaction or social communication scores and that Conners 3 Parent Short Form hyperactivity scores were the strongest predictor of Social Communication Questionnaire reciprocal social interaction scores after accounting for age and Intelligence Quotient. The lack of difference in social communication deficits between groups may help in understanding the pathophysiology underlying the behavioral consequences of acquired brain injury. The link between hyperactivity and reciprocal interaction suggests that targeting hyperactivity may improve social outcomes in children following acquired brain injury.

  1. Evaluation of a Reading Comprehension Strategy Package to Improve Reading Comprehension of Adult College Students with Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Griffiths, Gina G.

    2013-01-01

    Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI.…

  2. Usual and Virtual Reality Video Game-Based Physiotherapy for Children and Youth with Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Levac, Danielle; Miller, Patricia; Missiuna, Cheryl

    2012-01-01

    Little is known about how therapists promote learning of functional motor skills for children with acquired brain injuries. This study explores physiotherapists' description of these interventions in comparison to virtual reality (VR) video game-based therapy. Six physiotherapists employed at a children's rehabilitation center participated in…

  3. How Can Educational Psychologists Support the Reintegration of Children with an Acquired Brain Injury upon Their Return to School?

    ERIC Educational Resources Information Center

    Ball, Heather; Howe, Julia

    2013-01-01

    This study explores the process of reintegration into school for children with an acquired brain injury (ABI) and considers the role of the educational psychologist (EP) in supporting these children. Interviews were conducted with a range of professionals in two specialist settings: a specialist rehabilitation centre and a children's hospital with…

  4. Expressive Art for the Social and Community Integration of Adolescents with Acquired Brain Injuries: A Systematic Review

    ERIC Educational Resources Information Center

    Goyal, Anita; Keightley, Michelle L.

    2008-01-01

    Adolescents with acquired brain injuries suffer from social and community withdrawal that result in isolation from their peer groups. The review highlights the evidence of effectiveness of expressive art interventions in the form of theatre for populations with difficulties in physical, emotional, cognitive, or social functioning. A systematic…

  5. Meeting the Needs of Persons with Acquired Brain Injury in the Republic of Ireland: A Contextual Review

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Fullerton, Nicole

    2015-01-01

    Purpose: This article examines how the Republic of Ireland conceptualizes disability, specifically acquired brain injury (ABI); how it meets the needs of people with ABI; and its similarities and difference with the U.S. system of ABI professional care, policy, and services. The article provides ideas for improvements and innovations toward ABI…

  6. Certification standards of professionals coordinating life care plans for individuals who have acquired brain injury.

    PubMed

    Johnson, Cloie B; Lacerte, Michel; Fountaine, John D

    2015-01-01

    This article will discuss the history and evolution of what is now known as a life care plan. The objectives will be to understand that a life care plan is a tool of case management. A life care plan is based on a proper medical, psychological, case management, and/or rehabilitation foundation. The development of a life care plan requires following generally accepted and peer-reviewed methodology and standards of practice. Life care planning is a trans-disciplinary specialty practice. A life care plan is a dynamic document based upon published standards of practice, comprehensive assessment, data analysis and research that provides an organized, concise plan for current and future needs with associated costs for individuals who have experienced catastrophic injury or have chronic health care needs. The reader will also learn there are Standards of Practice for life care planning that have been a long-standing guide for the practitioner and its core components will be discussed. There are qualifications of professionals who perform the specialty practice of life care planning which will be reviewed, and in conclusion there are special considerations for individuals coordinating life care plans with individuals who have sustained an acquired brain injury will also be discussed.

  7. Music evoked autobiographical memory after severe acquired brain injury: preliminary findings from a case series.

    PubMed

    Baird, A; Samson, S

    2014-01-01

    Music evoked autobiographical memories (MEAMs) have been characterised in the healthy population, but not, to date, in patients with acquired brain injury (ABI). Our aim was to investigate music compared with verbal evoked autobiographical memories. Five patients with severe ABI and matched controls completed the experimental music (MEAM) task (a written questionnaire) while listening to 50 "Number 1 Songs of the Year" (from 1960 to 2010). Patients also completed the Autobiographical Memory Interview (AMI) and a standard neuropsychological assessment. With the exception of Case 5, who reported no MEAMs and no autobiographical incidents on the AMI and who also had impaired pitch perception, the range of frequency and type of MEAMs in patients was broadly in keeping with their matched controls. The relative preservation of MEAMs in four cases was particularly noteworthy given their impaired verbal and/or visual anterograde memory, and in three cases, autobiographical memory impairment. The majority of MEAMs in both cases and matched controls were of a person/people or a period of life. In three patients music was more efficient at evoking autobiographical memories than the AMI verbal prompts. This is the first study of MEAMs after ABI. The findings suggest that music is an effective stimulus for eliciting autobiographical memories, and may be beneficial in the rehabilitation of autobiographical amnesia, but only in patients without a fundamental deficit in autobiographical recall memory and intact pitch perception.

  8. Correlation of brain Magnetic Resonance Imaging of spontaneously lead poisoned bald eagles (Haliaeetus leucocephalus) with histological lesions: A pilot study.

    PubMed

    de Francisco, Olga Nicolas; Feeney, Daniel; Armién, Anibal G; Wuenschmann, Arno; Redig, Patrick T

    2016-04-01

    Six bald eagles with severe, acute lead poisoning based on blood lead values were analyzed by Magnetic Resonance Imaging (MRI) of the brain and histopathology. The aims of the study were to use MRI to locate brain lesions and correlate the changes in MRI signal with the histological character of the lesions at necropsy. All of the bald eagles presented with neurologic and non-neurologic signs suggestive of severe lead poisoning and had blood lead levels in excess of 1.0 ppm. Areas of change in image intensity in the brainstem, midbrain and cerebellum were detected in the MRI scans. Histopathology confirmed the presence of all suspected lesions. The character of the lesions suggested vascular damage as the primary insult. MRI was useful for detecting lesions and defining their three-dimensional distribution and extent. Future studies are needed to evaluate the utility of MRI for detection of lesions in less severely lead poisoned eagles and determining prognosis for treatment.

  9. Differential diagnosis of a vanishing brain space occupying lesion in a child

    PubMed Central

    Hamed, Sherifa A; Mekkawy, Mohamad A; Abozaid, Hosam

    2015-01-01

    We describe clinical, diagnostic features and follow up of a patient with a vanishing brain lesion. A 14-year-old child admitted to the department of Neurology at September 2009 with a history of subacute onset of fever, anorexia, vomiting, blurring of vision and right hemiparesis since one month. Magnetic resonance imaging (MRI) of the brain revealed presence of intra-axial large mass (25 mm × 19 mm) in the left temporal lobe and the brainstem which showed hypointense signal in T1W and hyperintense signals in T2W and fluid attenuated inversion recovery (FLAIR) images and homogenously enhanced with gadolinium (Gd). It was surrounded by vasogenic edema with mass effect. Intravenous antibiotics, mannitol (2 g/12 h per 2 d) and dexamethasone (8 mg/12 h) were given to relief manifestations of increased intracranial pressure. Whole craniospinal radiotherapy (brain = 4000 CGy/20 settings per 4 wk; Spinal = 2600/13 settings per 3 wk) was given based on the high suspicion of neoplastic lesion (lymphoma or glioma). Marked clinical improvement (up to complete recovery) occurred within 15 d. Tapering of the steroid dose was done over the next 4 mo. Follow up with MRI after 3 mo showed small lesion in the left antero-medial temporal region with hypointense signal in T1W and hyperintense signals in T2W and FLAIR images but did not enhance with Gd. At August 2012, the patient developed recurrent generalized epilepsy. His electroencephalography showed the presence of left temporal focus of epileptic activity. MRI showed the same lesion as described in the follow up. The diffusion weighted images were normal. The seizures frequency was decreased with carbamazepine therapy (300 mg/12 h). At October 2014, single voxel proton (1H) MR spectroscopy (MRS) showed reduced N-acetyl-aspartate (NAA)/creatine (Cr), choline (Cho)/Cr, NAA/Cho ratios consistent with absence of a neoplasm and highly suggested presence of gliosis. A solitary brain mass in a child poses a considerable diagnostic

  10. Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis

    PubMed Central

    Zivadinov, R; Weinstock-Guttman, B; Hashmi, K; Abdelrahman, N; Stosic, M; Dwyer, M; Hussein, S; Durfee, J; Ramanathan, M

    2009-01-01

    Background: Cigarette smoking has been linked to higher susceptibility and increased risk of progressive multiple sclerosis (MS). The effects of smoking on MRI characteristics of patients with MS have not been evaluated. Objectives: To compare the MRI characteristics in cigarette smoker and nonsmoker patients with MS. Methods: We studied 368 consecutive patients with MS (age 44.0 ±SD 10.2 years, disease duration 12.1 ± 9.1 years) comprising 240 never-smokers and 128 (34.8%) ever-smokers (currently active and former smokers). The average number of packs per day smoked (±SD) was 0.95 ± 0.65, and the mean duration of smoking was 18.0 ± 9.5 years. All patients obtained full clinical and quantitative MRI evaluation. MRI measures included T1, T2, and gadolinium contrast-enhancing (CE) lesion volumes (LVs) and measures of central, global, and tissue-specific brain atrophy. The associations between smoking status and MRI measurements were assessed in regression analysis. Results: Smoking was associated with increased Expanded Disability Status Scale (EDSS) scores (p = 0.004). The median EDSS scores (interquartile range) in the ever-smoker group and the active-smoker group were both 3.0 (2.0), compared with 2.5 (2.5) in never-smokers. There were adverse associations between smoking and the lesion measures including increased number of CE lesions (p < 0.001), T2 LV (p = 0.009), and T1 LV (p = 0.003). Smoking was associated with decreased brain parenchymal fraction (p = 0.047) and with increases in the lateral ventricle volume (p = 0.001) and third ventricle width (p = 0.023). Conclusions: Smoking is associated with increased blood–brain barrier disruption, higher lesion volumes, and greater atrophy in multiple sclerosis. GLOSSARY BPF = brain parenchymal fraction; CE = contrast-enhancing; CIS = clinically isolated syndromes; EDSS = Expanded Disability Status Scale; GMF = gray matter fraction; LV = lesion volume; LVV = lateral ventricle volume; MS = multiple sclerosis

  11. Inability to empathize: brain lesions that disrupt sharing and understanding another’s emotions

    PubMed Central

    2014-01-01

    Emotional empathy—the ability to recognize, share in, and make inferences about another person’s emotional state—is critical for all social interactions. The neural mechanisms underlying emotional empathy have been widely studied with functional imaging of healthy participants. However, functional imaging studies reveal correlations between areas of activation and performance of a task, so that they can only reveal areas engaged in a task, rather than areas of the brain that are critical for the task. Lesion studies complement functional imaging, to identify areas necessary for a task. Impairments in emotional empathy have been mostly studied in neurological diseases with fairly diffuse injury, such as traumatic brain injury, autism and dementia. The classic ‘focal lesion’ is stroke. There have been scattered studies of patients with impaired empathy after stroke and other focal injury, but these studies have included small numbers of patients. This review will bring together data from these studies, to complement evidence from functional imaging. Here I review how focal lesions affect emotional empathy. I will show how lesion studies contribute to the understanding of the cognitive and neural mechanisms underlying emotional empathy, and how they contribute to the management of patients with impaired emotional empathy. PMID:24293265

  12. Mental Paper Folding Performance Following Penetrating Traumatic Brain Injury in Combat Veterans: A Lesion Mapping Study

    PubMed Central

    Glass, Leila; Krueger, Frank; Solomon, Jeffrey; Raymont, Vanessa; Grafman, Jordan

    2013-01-01

    Mental paper folding is a complex measure of visuospatial ability involving a coordinated sequence of mental transformations and is often considered a measure of mental ability. The literature is inconclusive regarding the precise neural architecture that underlies performance. We combined the administration of the Armed Forces Qualification Test boxes subtest measuring mental paper folding ability, with a voxel-based lesion symptom mapping approach to identify brain regions associated with impaired mental paper folding ability. Using a large sample of subjects with penetrating traumatic brain injury and defined lesions studied over 2 time points, roughly 15 and 35 years post-injury, enabled us to answer the causal questions regarding mental paper folding impairment. Our results revealed that brain injury significantly exacerbates the decline of performance on mental paper folding tasks over time. Our study adds novel neuropsychological and neuroimaging support for parietal lobe involvement; specifically the right inferior parietal lobule (Broadmann's Area [BA] 40) and the left parahippocampal region (BAs 19, 36). Both areas were consistently associated with mental paper folding performance and demonstrate that the right parietal lobe and the left parahippocampal gyrus play an integral role in mental paper folding tasks. PMID:22669970

  13. Intelligent Therapy Assistant (ITA) for cognitive rehabilitation in patients with acquired brain injury

    PubMed Central

    2014-01-01

    Background This paper presents the design, development and first evaluation of an algorithm, named Intelligent Therapy Assistant (ITA), which automatically selects, configures and schedules rehabilitation tasks for patients with cognitive impairments after an episode of Acquired Brain Injury. The ITA is integrated in “Guttmann, Neuro Personal Trainer” (GNPT), a cognitive tele-rehabilitation platform that provides neuropsychological services. Methods The ITA selects those tasks that are more suitable for the specific needs of each patient, considering previous experiences, and improving the personalization of the treatment. The system applies data mining techniques to cluster the patients according their cognitive impairment profile. Then, the algorithm rates every rehabilitation task, based on its cognitive structure and the clinical impact of executions done by similar patients. Finally, it configures the most suitable degree of difficulty, depending on the impairment of the patient and his/her evolution during the treatment. Results The ITA has been evaluated during 18 months by 582 patients. In order to evaluate the effectiveness of the ITA, a comparison between the traditional manual planning procedure and the one presented in this paper has been done, taking into account: a) the selected tasks assigned to rehabilitation sessions; b) the difficulty level configured for the sessions; c) and the improvement of their cognitive capacities after completing treatment. Conclusions The obtained results reveal that the rehabilitation treatment proposed by the ITA is as effective as the one performed manually by therapists, arising as a new powerful support tool for therapists. The obtained results make us conclude that the proposal done by the ITA is very close to the one done by therapists, so it is suitable for real treatments. PMID:25038823

  14. 3D texture-based classification applied on brain white matter lesions on MR images

    NASA Astrophysics Data System (ADS)

    Leite, Mariana; Gobbi, David; Salluzi, Marina; Frayne, Richard; Lotufo, Roberto; Rittner, Letícia

    2016-03-01

    Lesions in the brain white matter are among the most frequently observed incidental findings on MR images. This paper presents a 3D texture-based classification to distinguish normal appearing white matter from white matter containing lesions, and compares it with the 2D approach. Texture analysis were based on 55 texture attributes extracted from gray-level histogram, gray-level co-occurrence matrix, run-length matrix and gradient. The results show that the 3D approach achieves an accuracy rate of 99.28%, against 97.41% of the 2D approach by using a support vector machine classifier. Furthermore, the most discriminating texture attributes on both 2D and 3D cases were obtained from the image histogram and co-occurrence matrix.

  15. Novel brain lesions caused by Edwardsiella tarda in a red tilapia (Oreochromis spp.).

    PubMed

    Iregui, Carlos A; Guarín, Marlly; Tibatá, Victor M; Ferguson, Hugh W

    2012-03-01

    The histological lesions caused by Edwardsiella tarda in a variety of fish species, including tilapia, have been well characterized. There are apparent differences in the type of inflammatory response manifested by these different species, which may be due to the fish species itself, the phase of infection, or the virulence factors produced by different strains of E. tarda. In catfish, systemic abscesses involving muscles of the flank or caudal peduncle are the most common lesions. By contrast, infection in tilapia and red sea bream is more likely to be associated with granulomatous inflammation. Necrotic meningitis, encephalitis, and vasculitis with fibrinoid necrosis of the blood vessels walls, as well as the formation of a plaque-like structure in the brain, are described in the current study. The presence of E. tarda was confirmed by microbiological isolation and a positive nested polymerase chain reaction in paraffin wax-embedded tilapia tissues. PMID:22379061

  16. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity.

    PubMed

    Viggiano, Davide

    2008-12-01

    The large number of transgenic mice realized thus far with different purposes allows addressing new questions, such as which animals, over the entire set of transgenic animals, show a specific behavioural abnormality. In the present study, we have used a metanalytical approach to organize a database of genetic modifications, brain lesions and pharmacological interventions that increase locomotor activity in animal models. To further understand the resulting data set, we have organized a second database of the alterations (genetic, pharmacological or brain lesions) that reduce locomotor activity. Using this approach, we estimated that 1.56% of the genes in the genome yield to hyperactivity and 0.75% of genes produce hypoactivity when altered. These genes have been classified into genes for neurotransmitter systems, hormonal, metabolic systems, ion channels, structural proteins, transcription factors, second messengers and growth factors. Finally, two additional classes included animals with neurodegeneration and inner ear abnormalities. The analysis of the database revealed several unexpected findings. First, the genes that, when mutated, induce hyperactive behaviour do not pertain to a single neurotransmitter system. In fact, alterations in most neurotransmitter systems can give rise to a hyperactive phenotype. In contrast, fewer changes can decrease locomotor activity. Specifically, genetic and pharmacological alterations that enhance the dopamine, orexin, histamine, cannabinoids systems or that antagonize the cholinergic system induce an increase in locomotor activity. Similarly, imbalances in the two main neurotransmitters of the nervous system, GABA and glutamate usually result in hyperactive behaviour. It is remarkable that no genetic alterations pertaining to the GABA system have been reported to reduce locomotor behaviour. Other neurotransmitters, such as norepinephrine and serotonin, have a more complex influence. For instance, a decrease in norepinephrine

  17. Sources of abnormal EEG activity in the presence of brain lesions.

    PubMed

    Fernández-Bouzas, A; Harmony, T; Bosch, J; Aubert, E; Fernández, T; Valdés, P; Silva, J; Marosi, E; Martínez-López, M; Casián, G

    1999-04-01

    In routine clinical EEG, a common origin is assumed for delta and theta rhythms produced by brain lesions. In previous papers, we have provided some experimental support, based on High Resolution qEEG and dipole fitting in the frequency domain, for the hypothesis that delta and theta spectral power have independent origins related to lesion and edema respectively. This paper describes the results obtained with Frequency Domain VARETA (FD-VARETA) in a group of 13 patients with cortical space-occupying lesions, in order to: 1) Test the accuracy of FD-VARETA for the localization of brain lesions, and 2) To provide further support for the independent origin of delta and theta components. FD VARETA is a distributed inverse solution, constrained by the Montreal Neurological Institute probabilistic atlas that estimates the spectra of EEG sources. In all patients, logarithmic transformed source spectra were compared with age-matched normative values, defining the Z source spectrum. Maximum Z values were found in 10 patients within the delta band (1.56 to 3.12 Hz); the spatial extent of these sources in the atlas corresponded with the location of the tumors in the CT. In 2 patients with small metastases and large volumes of edema and in a patient showing only edema, maximum Z values were found between 4.29 and 5.12 Hz. The spatial extent of the sources at these frequencies was within the volume of the edema in the CT. These results provided strong support to the hypothesis that both delta and theta abnormal EEG activities are the counterparts of two different pathophysiological processes. PMID:10358783

  18. Severe Traumatic Brain Injury, Frontal Lesions, and Social Aspects of Language Use: A Study of French-Speaking Adults

    ERIC Educational Resources Information Center

    Dardier, Virginie; Bernicot, Josie; Delanoe, Anaig; Vanberten, Melanie; Fayada, Catherine; Chevignard, Mathilde; Delaye, Corinne; Laurent-Vannier, Anne; Dubois, Bruno

    2011-01-01

    The purpose of this study was to gain insight into the social (pragmatic) aspects of language use by French-speaking individuals with frontal lesions following a severe traumatic brain injury. Eleven participants with traumatic brain injury performed tasks in three areas of communication: production (interview situation), comprehension (direct…

  19. A Prospective Pilot Investigation of Brain Volume, White Matter Hyperintensities, and Hemorrhagic Lesions after Mild Traumatic Brain Injury

    PubMed Central

    Jarrett, Michael; Tam, Roger; Hernández-Torres, Enedino; Martin, Nancy; Perera, Warren; Zhao, Yinshan; Shahinfard, Elham; Dadachanji, Shiroy; Taunton, Jack; Li, David K. B.; Rauscher, Alexander

    2016-01-01

    Traumatic brain injury (TBI) is among the most common neurological disorders. Hemorrhagic lesions and white matter hyperintensities (WMH) are radiological features associated with moderate and severe TBI. Brain volume reductions have also been observed during the months following injury. In concussion, no signs of injury are observed on conventional magnetic resonance imaging (MRI), which may be a true feature of concussion or merely due to the limited sensitivity of imaging techniques used so far. Moreover, it is not known whether volume reductions are due to the resolution of trauma-related edema or a true volume loss. Forty-five collegiate-level ice hockey players (20 females) and 15 controls (9 females), 40 players underwent 3-T MRI for hemorrhages [multi-echo susceptibility-weighted imaging (SWI)], WMH (three-dimensional fluid-attenuated inversion recovery), and brain volume at the beginning and the end of the hockey season. Concussed athletes underwent additional imaging and neuropsychological testing at 3 days, 2 weeks, and 2 months after injury. At the end of the hockey season, brain volume was reduced compared to controls by 0.32% (p < 0.034) in the whole cohort and by 0.26% (p < 0.09) in the concussed athletes. Two weeks and 2 months after concussion, brain volume was reduced by −0.08% (p = 0.027) and −0.23% (p = 0.035), respectively. In athletes, the WMH were significantly closer to the interface between gray matter and white matter compared to controls. No significant changes in the number of WMH over the duration of the study were found in athletes. No microhemorrhages were detected as a result of concussion or playing a season of ice hockey. We conclude that mild TBI does not lead to transient increases in brain volume and no new microbleeds or WMH are detectable after concussion. Brain volume reductions appear by 2 weeks after concussion and persist until at least 2 months after concussion. Brain volume is reduced

  20. A Prospective Pilot Investigation of Brain Volume, White Matter Hyperintensities, and Hemorrhagic Lesions after Mild Traumatic Brain Injury.

    PubMed

    Jarrett, Michael; Tam, Roger; Hernández-Torres, Enedino; Martin, Nancy; Perera, Warren; Zhao, Yinshan; Shahinfard, Elham; Dadachanji, Shiroy; Taunton, Jack; Li, David K B; Rauscher, Alexander

    2016-01-01

    Traumatic brain injury (TBI) is among the most common neurological disorders. Hemorrhagic lesions and white matter hyperintensities (WMH) are radiological features associated with moderate and severe TBI. Brain volume reductions have also been observed during the months following injury. In concussion, no signs of injury are observed on conventional magnetic resonance imaging (MRI), which may be a true feature of concussion or merely due to the limited sensitivity of imaging techniques used so far. Moreover, it is not known whether volume reductions are due to the resolution of trauma-related edema or a true volume loss. Forty-five collegiate-level ice hockey players (20 females) and 15 controls (9 females), 40 players underwent 3-T MRI for hemorrhages [multi-echo susceptibility-weighted imaging (SWI)], WMH (three-dimensional fluid-attenuated inversion recovery), and brain volume at the beginning and the end of the hockey season. Concussed athletes underwent additional imaging and neuropsychological testing at 3 days, 2 weeks, and 2 months after injury. At the end of the hockey season, brain volume was reduced compared to controls by 0.32% (p < 0.034) in the whole cohort and by 0.26% (p < 0.09) in the concussed athletes. Two weeks and 2 months after concussion, brain volume was reduced by -0.08% (p = 0.027) and -0.23% (p = 0.035), respectively. In athletes, the WMH were significantly closer to the interface between gray matter and white matter compared to controls. No significant changes in the number of WMH over the duration of the study were found in athletes. No microhemorrhages were detected as a result of concussion or playing a season of ice hockey. We conclude that mild TBI does not lead to transient increases in brain volume and no new microbleeds or WMH are detectable after concussion. Brain volume reductions appear by 2 weeks after concussion and persist until at least 2 months after concussion. Brain volume is reduced between

  1. Drawing ability in four young children with congenital unilateral brain lesions.

    PubMed

    Stiles-Davis, J; Janowsky, J; Engel, M; Nass, R

    1988-01-01

    The drawings of four 5-yr-old children, two with left and two right hemisphere congenital brain injury, were compared with those of 20 normal 3.5-5 yr-olds. Two types of drawings were evaluated: copied geometric forms and free drawings. The children with left hemisphere injury showed normal development in both copying and free drawing. The children with right hemisphere injury were developmentally impaired in the copying task. In addition, their free drawings lacked configurational coherence; they included the elements of the figures but failed to arrange them in spatially organized ways. This failure to organize spatially elements is consistent with the descriptions of spatial cognitive disorders found in the drawings of adults with right parietal brain lesions. PMID:3374798

  2. The Effects of Exercise on Cognitive Recovery after Acquired Brain Injury in Animal Models: A Systematic Review

    PubMed Central

    Wogensen, Elise; Malá, Hana; Mogensen, Jesper

    2015-01-01

    The objective of the present paper is to review the current status of exercise as a tool to promote cognitive rehabilitation after acquired brain injury (ABI) in animal model-based research. Searches were conducted on the PubMed, Scopus, and psycINFO databases in February 2014. Search strings used were: exercise (and) animal model (or) rodent (or) rat (and) traumatic brain injury (or) cerebral ischemia (or) brain irradiation. Studies were selected if they were (1) in English, (2) used adult animals subjected to acquired brain injury, (3) used exercise as an intervention tool after inflicted injury, (4) used exercise paradigms demanding movement of all extremities, (5) had exercise intervention effects that could be distinguished from other potential intervention effects, and (6) contained at least one measure of cognitive and/or emotional function. Out of 2308 hits, 22 publications fulfilled the criteria. The studies were examined relative to cognitive effects associated with three themes: exercise type (forced or voluntary), timing of exercise (early or late), and dose-related factors (intensity, duration, etc.). The studies indicate that exercise in many cases can promote cognitive recovery after brain injury. However, the optimal parameters to ensure cognitive rehabilitation efficacy still elude us, due to considerable methodological variations between studies. PMID:26509085

  3. The Effects of Exercise on Cognitive Recovery after Acquired Brain Injury in Animal Models: A Systematic Review.

    PubMed

    Wogensen, Elise; Malá, Hana; Mogensen, Jesper

    2015-01-01

    The objective of the present paper is to review the current status of exercise as a tool to promote cognitive rehabilitation after acquired brain injury (ABI) in animal model-based research. Searches were conducted on the PubMed, Scopus, and psycINFO databases in February 2014. Search strings used were: exercise (and) animal model (or) rodent (or) rat (and) traumatic brain injury (or) cerebral ischemia (or) brain irradiation. Studies were selected if they were (1) in English, (2) used adult animals subjected to acquired brain injury, (3) used exercise as an intervention tool after inflicted injury, (4) used exercise paradigms demanding movement of all extremities, (5) had exercise intervention effects that could be distinguished from other potential intervention effects, and (6) contained at least one measure of cognitive and/or emotional function. Out of 2308 hits, 22 publications fulfilled the criteria. The studies were examined relative to cognitive effects associated with three themes: exercise type (forced or voluntary), timing of exercise (early or late), and dose-related factors (intensity, duration, etc.). The studies indicate that exercise in many cases can promote cognitive recovery after brain injury. However, the optimal parameters to ensure cognitive rehabilitation efficacy still elude us, due to considerable methodological variations between studies.

  4. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke

    PubMed Central

    2011-01-01

    Background Although free radicals have been reported to play a role in the expansion of ischemic brain lesions, the effect of free radical scavengers is still under debate. In this study, the temporal profile of ischemic stroke lesion sizes was assessed for more than one year to evaluate the effect of edaravone which might reduce ischemic damage. Methods We sequentially enrolled acute ischemic stroke patients, who admitted between April 2003 and March 2004, into the edaravone(-) group (n = 83) and, who admitted between April 2004 and March 2005, into the edaravone(+) group (n = 93). Because, edaravone has been used as the standard treatment after April 2004 in our hospital. To assess the temporal profile of the stroke lesion size, the ratio of the area [T2-weighted magnetic resonance images (T2WI)/iffusion-weighted magnetic resonance images (DWI)] were calculated. Observations on T2WI were continued beyond one year, and observational times were classified into subacute (1-2 months after the onset), early chronic (3-6 month), late chronic (7-12 months) and old (≥13 months) stages. Neurological deficits were assessed by the National Institutes of Health Stroke Scale upon admission and at discharge and by the modified Rankin Scale at 1 year following stroke onset. Results Stroke lesion size was significantly attenuated in the edaravone(+) group compared with the edaravone(-) group in the period of early and late chronic observational stages. However, this reduction in lesion size was significant within a year and only for the small-vessel occlusion stroke patients treated with edaravone. Moreover, patients with small-vessel occlusion strokes that were treated with edaravone showed significant neurological improvement during their hospital stay, although there were no significant differences in outcome one year after the stroke. Conclusion Edaravone treatment reduced the volume of the infarct and improved neurological deficits during the subacute period, especially

  5. [Disruption of acquired head and paw movement coordination after unilateral lesioning of the motor cortex in dogs (a kinematic analysis)].

    PubMed

    Pavlova, O G; Mats, V N

    2001-01-01

    Dogs were trained to remove a cup with meat to the head bent down to the feeder and hold the limb flexed during eating. At the early stage of learning, the stable innate head-forelimb coordination characteristic for untrained animals was manifest. The forelimb flexion was accompanied by anticipatory lifting of the bent head, and the following bending of the head led to an extension of the flexed forelimb. The opposite coordination, i.e., the lifting and holding of the forelimb when the head is bent down, was achieved only by training. The lesion of the motor cortex contralateral to the working forelimb in the trained dogs led to a prolonged disturbance of the simultaneous holding of the flexed forelimb and the head bent down. The lesion of the motor cortex did not affect the individual movements but disturbed their coordination. In the operated dogs the innate relationships between the head and forelimb movement recovered. The results support the previous finding that the lesion of the motor cortex led to recovery of the innate coordination transformed in the process of learning.

  6. Exploring the brain's structural connectome: a quantitative stroke lesion-dysfunction mapping study

    PubMed Central

    Kuceyeski, Amy; Navi, Babak B.; Kamel, Hooman; Relkin, Norman; Villanueva, Mark; Raj, Ashish; Toglia, Joan; O'Dell, Michael; Iadecola, Costantino

    2015-01-01

    The aim of this work was to quantitatively model cross-sectional relationships between structural connectome disruptions caused by cerebral infarction and measures of clinical performance. Imaging biomarkers of 41 ischemic stroke patients (72.0±12.0 years, 20 female) were related to their baseline performance in 18 cognitive, physical and daily life activity assessments. Individual estimates of structural connectivity disruption in gray matter regions were computed using the Change in Connectivity (ChaCo) score. ChaCo scores were utilized because they can be calculated using routinely collected clinical MRIs. Partial Least Squares Regression (PLSR) was used to predict various acute impairment and activity measures from ChaCo scores and patient demographics. Statistical methods of cross-validation, bootstrapping and multiple comparisons correction were implemented to minimize over-fitting and Type I errors. Multiple linear regression models based on lesion volume and lateralization information were constructed for comparison. All models based on connectivity disruption had lower Akaike Information Criterion and almost all had better goodness-of-fit values (R2:0.26-0.92) than models based on lesion characteristics (R2:0.06-0.50). Confidence intervals of PLSR coefficients identified brain regions important in predicting each clinical assessment. Appropriate mapping of eloquent functions, i.e. language and motor, and replication of results across pathologies provided validation of this method. Models of complex functions provided new insights into brain-behavior relationships. In addition to the potential applications in prognostication and rehabilitation development, this quantitative approach provides insight into the structural networks underlying complex functions like activities of daily living and cognition. Quantitative analysis of big data will be invaluable in understanding complex brain-behavior relationships. PMID:25655204

  7. Surface errors without semantic impairment in acquired dyslexia: a voxel-based lesion-symptom mapping study.

    PubMed

    Binder, Jeffrey R; Pillay, Sara B; Humphries, Colin J; Gross, William L; Graves, William W; Book, Diane S

    2016-05-01

    Patients with surface dyslexia have disproportionate difficulty pronouncing irregularly spelled words (e.g. pint), suggesting impaired use of lexical-semantic information to mediate phonological retrieval. Patients with this deficit also make characteristic 'regularization' errors, in which an irregularly spelled word is mispronounced by incorrect application of regular spelling-sound correspondences (e.g. reading plaid as 'played'), indicating over-reliance on sublexical grapheme-phoneme correspondences. We examined the neuroanatomical correlates of this specific error type in 45 patients with left hemisphere chronic stroke. Voxel-based lesion-symptom mapping showed a strong positive relationship between the rate of regularization errors and damage to the posterior half of the left middle temporal gyrus. Semantic deficits on tests of single-word comprehension were generally mild, and these deficits were not correlated with the rate of regularization errors. Furthermore, the deep occipital-temporal white matter locus associated with these mild semantic deficits was distinct from the lesion site associated with regularization errors. Thus, in contrast to patients with surface dyslexia and semantic impairment from anterior temporal lobe degeneration, surface errors in our patients were not related to a semantic deficit. We propose that these patients have an inability to link intact semantic representations with phonological representations. The data provide novel evidence for a post-semantic mechanism mediating the production of surface errors, and suggest that the posterior middle temporal gyrus may compute an intermediate representation linking semantics with phonology. PMID:26966139

  8. Surface errors without semantic impairment in acquired dyslexia: a voxel-based lesion-symptom mapping study.

    PubMed

    Binder, Jeffrey R; Pillay, Sara B; Humphries, Colin J; Gross, William L; Graves, William W; Book, Diane S

    2016-05-01

    Patients with surface dyslexia have disproportionate difficulty pronouncing irregularly spelled words (e.g. pint), suggesting impaired use of lexical-semantic information to mediate phonological retrieval. Patients with this deficit also make characteristic 'regularization' errors, in which an irregularly spelled word is mispronounced by incorrect application of regular spelling-sound correspondences (e.g. reading plaid as 'played'), indicating over-reliance on sublexical grapheme-phoneme correspondences. We examined the neuroanatomical correlates of this specific error type in 45 patients with left hemisphere chronic stroke. Voxel-based lesion-symptom mapping showed a strong positive relationship between the rate of regularization errors and damage to the posterior half of the left middle temporal gyrus. Semantic deficits on tests of single-word comprehension were generally mild, and these deficits were not correlated with the rate of regularization errors. Furthermore, the deep occipital-temporal white matter locus associated with these mild semantic deficits was distinct from the lesion site associated with regularization errors. Thus, in contrast to patients with surface dyslexia and semantic impairment from anterior temporal lobe degeneration, surface errors in our patients were not related to a semantic deficit. We propose that these patients have an inability to link intact semantic representations with phonological representations. The data provide novel evidence for a post-semantic mechanism mediating the production of surface errors, and suggest that the posterior middle temporal gyrus may compute an intermediate representation linking semantics with phonology.

  9. Neural correlates of apathy revealed by lesion mapping in participants with traumatic brain injuries.

    PubMed

    Knutson, Kristine M; Monte, Olga Dal; Raymont, Vanessa; Wassermann, Eric M; Krueger, Frank; Grafman, Jordan

    2014-03-01

    Apathy, common in neurological disorders, is defined as disinterest and loss of motivation, with a reduction in self-initiated activity. Research in diseased populations has shown that apathy is associated with variations in the volume of brain regions such as the anterior cingulate and the frontal lobes. The goal of this study was to determine the neural signatures of apathy in people with penetrating traumatic brain injuries (pTBIs), as to our knowledge, these have not been studied in this sample. We studied 176 male Vietnam War veterans with pTBIs using voxel-based lesion-symptom mapping (VLSM) and apathy scores from the UCLA Neuropsychiatric Inventory (NPI), a structured inventory of symptoms completed by a caregiver. Our results revealed that increased apathy symptoms were associated with brain damage in limbic and cortical areas of the left hemisphere including the anterior cingulate, inferior, middle, and superior frontal regions, insula, and supplementary motor area. Our results are consistent with the literature, and extend them to people with focal pTBI. Apathy is a significant symptom since it can reduce participation of the patient in family and other social interactions, and diminish affective decision-making. PMID:23404730

  10. Simulation of reflected light intensity changes during navigation and radio-frequency lesioning in the brain.

    PubMed

    Johansson, Johannes D; Fredriksson, Ingemar; Wårdell, Karin; Eriksson, Ola

    2009-01-01

    An electrode with adjacent optical fibers for measurements during navigation and radio frequency lesioning in the brain is modeled for Monte Carlo simulations of light transport in brain tissue. Relative reflected light intensity at 780 nm, I780, from this electrode and probes with identical fiber configuration are simulated using the intensity from native white matter as reference. Models are made of homogeneous native and coagulated gray, thalamus, and white matter as well as blood. Dual layer models, including models with a layer of cerebrospinal fluid between the fibers and the brain tissue, are also made. Simulated I780 was 0.16 for gray matter, 0.67 for coagulate gray matter, 0.36 for thalamus, 0.39 for coagulated thalamus, unity for white matter, 0.70 for coagulated white matter, and 0.24 for blood. Thalamic matter is also found to reflect more light than gray matter and less than white matter in clinical studies. In conclusion, the reflected light intensity can be used to differentiate between gray and white matter during navigation. Furthermore, coagulation of light gray tissue, such as the thalamus, might be difficult to detect using I780, but coagulation in darker gray tissue should result in a rapid increase of I780.

  11. A voxel-based lesion study on facial emotion recognition after penetrating brain injury

    PubMed Central

    Dal Monte, Olga; Solomon, Jeffrey M.; Schintu, Selene; Knutson, Kristine M.; Strenziok, Maren; Pardini, Matteo; Leopold, Anne; Raymont, Vanessa; Grafman, Jordan

    2013-01-01

    The ability to read emotions in the face of another person is an important social skill that can be impaired in subjects with traumatic brain injury (TBI). To determine the brain regions that modulate facial emotion recognition, we conducted a whole-brain analysis using a well-validated facial emotion recognition task and voxel-based lesion symptom mapping (VLSM) in a large sample of patients with focal penetrating TBIs (pTBIs). Our results revealed that individuals with pTBI performed significantly worse than normal controls in recognizing unpleasant emotions. VLSM mapping results showed that impairment in facial emotion recognition was due to damage in a bilateral fronto-temporo-limbic network, including medial prefrontal cortex (PFC), anterior cingulate cortex, left insula and temporal areas. Beside those common areas, damage to the bilateral and anterior regions of PFC led to impairment in recognizing unpleasant emotions, whereas bilateral posterior PFC and left temporal areas led to impairment in recognizing pleasant emotions. Our findings add empirical evidence that the ability to read pleasant and unpleasant emotions in other people's faces is a complex process involving not only a common network that includes bilateral fronto-temporo-limbic lobes, but also other regions depending on emotional valence. PMID:22496440

  12. Neural correlates of apathy revealed by lesion mapping in participants with traumatic brain injuries.

    PubMed

    Knutson, Kristine M; Monte, Olga Dal; Raymont, Vanessa; Wassermann, Eric M; Krueger, Frank; Grafman, Jordan

    2014-03-01

    Apathy, common in neurological disorders, is defined as disinterest and loss of motivation, with a reduction in self-initiated activity. Research in diseased populations has shown that apathy is associated with variations in the volume of brain regions such as the anterior cingulate and the frontal lobes. The goal of this study was to determine the neural signatures of apathy in people with penetrating traumatic brain injuries (pTBIs), as to our knowledge, these have not been studied in this sample. We studied 176 male Vietnam War veterans with pTBIs using voxel-based lesion-symptom mapping (VLSM) and apathy scores from the UCLA Neuropsychiatric Inventory (NPI), a structured inventory of symptoms completed by a caregiver. Our results revealed that increased apathy symptoms were associated with brain damage in limbic and cortical areas of the left hemisphere including the anterior cingulate, inferior, middle, and superior frontal regions, insula, and supplementary motor area. Our results are consistent with the literature, and extend them to people with focal pTBI. Apathy is a significant symptom since it can reduce participation of the patient in family and other social interactions, and diminish affective decision-making.

  13. Simulation of reflected light intensity changes during navigation and radio-frequency lesioning in the brain

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.; Fredriksson, Ingemar; Wa˚Rdell, Karin; Eriksson, Ola

    2009-07-01

    An electrode with adjacent optical fibers for measurements during navigation and radio frequency lesioning in the brain is modeled for Monte Carlo simulations of light transport in brain tissue. Relative reflected light intensity at 780 nm, I780, from this electrode and probes with identical fiber configuration are simulated using the intensity from native white matter as reference. Models are made of homogeneous native and coagulated gray, thalamus, and white matter as well as blood. Dual layer models, including models with a layer of cerebrospinal fluid between the fibers and the brain tissue, are also made. Simulated I780 was 0.16 for gray matter, 0.67 for coagulate gray matter, 0.36 for thalamus, 0.39 for coagulated thalamus, unity for white matter, 0.70 for coagulated white matter, and 0.24 for blood. Thalamic matter is also found to reflect more light than gray matter and less than white matter in clinical studies. In conclusion, the reflected light intensity can be used to differentiate between gray and white matter during navigation. Furthermore, coagulation of light gray tissue, such as the thalamus, might be difficult to detect using I780, but coagulation in darker gray tissue should result in a rapid increase of I780.

  14. Functional aspects of early brain development are preserved in tuberous sclerosis complex (TSC) epileptogenic lesions.

    PubMed

    Ruffolo, Gabriele; Iyer, Anand; Cifelli, Pierangelo; Roseti, Cristina; Mühlebner, Angelika; van Scheppingen, Jackelien; Scholl, Theresa; Hainfellner, Johannes A; Feucht, Martha; Krsek, Pavel; Zamecnik, Josef; Jansen, Floor E; Spliet, Wim G M; Limatola, Cristina; Aronica, Eleonora; Palma, Eleonora

    2016-11-01

    Tuberous sclerosis complex (TSC) is a rare multi-system genetic disease characterized by several neurological disorders, the most common of which is the refractory epilepsy caused by highly epileptogenic cortical lesions. Previous studies suggest an alteration of GABAergic and glutamatergic transmission in TSC brain indicating an unbalance of excitation/inhibition that can explain, at least in part, the high incidence of epilepsy in these patients. Here we investigate whether TSC cortical tissues could retain GABAA and AMPA receptors at early stages of human brain development thus contributing to the generation and recurrence of seizures. Given the limited availability of pediatric human brain specimens, we used the microtransplantation method of injecting Xenopus oocytes with membranes from TSC cortical tubers and control brain tissues. Moreover, qPCR was performed to investigate the expression of GABAA and AMPA receptor subunits (GABAA α1-5, β3, γ2, δ; GluA1, GluA2) and cation chloride co-transporters NKCC1 and KCC2. The evaluation of nine human cortical brain samples, from 15 gestation weeks to 15years old, showed a progressive shift towards more hyperpolarized GABAA reversal potential (EGABA). This shift was associated with a differential expression of the chloride cotransporters NKCC1 and KCC2. Furthermore, the GluA1/GluA2 mRNA ratio of expression paralleled the development process. On the contrary, in oocytes micro-transplanted with epileptic TSC tuber tissue from seven patients, neither the GABAA reversal potential nor the GluA1/GluA2 expression showed similar developmental changes. Our data indicate for the first time, that in the same cohort of TSC patients, the pattern of both GABAAR and GluA1/GluA2 functions retains features that are typical of an immature brain. These observations support the potential contribution of altered receptor function to the epileptic disorder of TSC and may suggest novel therapeutic approaches. Furthermore, our findings

  15. Functional aspects of early brain development are preserved in tuberous sclerosis complex (TSC) epileptogenic lesions.

    PubMed

    Ruffolo, Gabriele; Iyer, Anand; Cifelli, Pierangelo; Roseti, Cristina; Mühlebner, Angelika; van Scheppingen, Jackelien; Scholl, Theresa; Hainfellner, Johannes A; Feucht, Martha; Krsek, Pavel; Zamecnik, Josef; Jansen, Floor E; Spliet, Wim G M; Limatola, Cristina; Aronica, Eleonora; Palma, Eleonora

    2016-11-01

    Tuberous sclerosis complex (TSC) is a rare multi-system genetic disease characterized by several neurological disorders, the most common of which is the refractory epilepsy caused by highly epileptogenic cortical lesions. Previous studies suggest an alteration of GABAergic and glutamatergic transmission in TSC brain indicating an unbalance of excitation/inhibition that can explain, at least in part, the high incidence of epilepsy in these patients. Here we investigate whether TSC cortical tissues could retain GABAA and AMPA receptors at early stages of human brain development thus contributing to the generation and recurrence of seizures. Given the limited availability of pediatric human brain specimens, we used the microtransplantation method of injecting Xenopus oocytes with membranes from TSC cortical tubers and control brain tissues. Moreover, qPCR was performed to investigate the expression of GABAA and AMPA receptor subunits (GABAA α1-5, β3, γ2, δ; GluA1, GluA2) and cation chloride co-transporters NKCC1 and KCC2. The evaluation of nine human cortical brain samples, from 15 gestation weeks to 15years old, showed a progressive shift towards more hyperpolarized GABAA reversal potential (EGABA). This shift was associated with a differential expression of the chloride cotransporters NKCC1 and KCC2. Furthermore, the GluA1/GluA2 mRNA ratio of expression paralleled the development process. On the contrary, in oocytes micro-transplanted with epileptic TSC tuber tissue from seven patients, neither the GABAA reversal potential nor the GluA1/GluA2 expression showed similar developmental changes. Our data indicate for the first time, that in the same cohort of TSC patients, the pattern of both GABAAR and GluA1/GluA2 functions retains features that are typical of an immature brain. These observations support the potential contribution of altered receptor function to the epileptic disorder of TSC and may suggest novel therapeutic approaches. Furthermore, our findings

  16. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions

    SciTech Connect

    Wang, Dongxu Dirksen, Blake; Hyer, Daniel E.; Buatti, John M.; Sheybani, Arshin; Dinges, Eric; Felderman, Nicole; TenNapel, Mindi; Bayouth, John E.; Flynn, Ryan T.

    2014-12-15

    Purpose: To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. Methods: Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). Results: For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SS plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100–4.49/100) to 6.05/100 (range 1.38/100–11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100–11.5/100) for Cone and 5.22/100 (range 1.37/100–8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). Conclusions: For treating peripheral brain lesions—where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy—the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems.

  17. Differences in Brain Metabolic Impairment between Chronic Mild/Moderate TBI Patients with and without Visible Brain Lesions Based on MRI

    PubMed Central

    Asano, Yoshitaka; Ikegame, Yuka

    2016-01-01

    Introduction. Many patients with mild/moderate traumatic brain injury (m/mTBI) in the chronic stage suffer from executive brain function impairment. Analyzing brain metabolism is important for elucidating the pathological mechanisms associated with their symptoms. This study aimed to determine the differences in brain glucose metabolism between m/mTBI patients with and without visible traumatic brain lesions based on MRI. Methods. Ninety patients with chronic m/mTBI due to traffic accidents were enrolled and divided into two groups based on their MRI findings. Group A comprised 50 patients with visible lesions. Group B comprised 40 patients without visible lesions. Patients underwent FDG-PET scans following cognitive tests. FDG-PET images were analyzed using voxel-by-voxel univariate statistical tests. Results. There were no significant differences in the cognitive tests between Group A and Group B. Based on FDG-PET findings, brain metabolism significantly decreased in the orbital gyrus, cingulate gyrus, and medial thalamus but increased in the parietal and occipital convexity in Group A compared with that in the control. Compared with the control, patients in Group B exhibited no significant changes. Conclusions. These results suggest that different pathological mechanisms may underlie cognitive impairment in m/mTBI patients with and without organic brain damage. PMID:27529067

  18. Differences in Brain Metabolic Impairment between Chronic Mild/Moderate TBI Patients with and without Visible Brain Lesions Based on MRI.

    PubMed

    Ito, Keiichi; Asano, Yoshitaka; Ikegame, Yuka; Shinoda, Jun

    2016-01-01

    Introduction. Many patients with mild/moderate traumatic brain injury (m/mTBI) in the chronic stage suffer from executive brain function impairment. Analyzing brain metabolism is important for elucidating the pathological mechanisms associated with their symptoms. This study aimed to determine the differences in brain glucose metabolism between m/mTBI patients with and without visible traumatic brain lesions based on MRI. Methods. Ninety patients with chronic m/mTBI due to traffic accidents were enrolled and divided into two groups based on their MRI findings. Group A comprised 50 patients with visible lesions. Group B comprised 40 patients without visible lesions. Patients underwent FDG-PET scans following cognitive tests. FDG-PET images were analyzed using voxel-by-voxel univariate statistical tests. Results. There were no significant differences in the cognitive tests between Group A and Group B. Based on FDG-PET findings, brain metabolism significantly decreased in the orbital gyrus, cingulate gyrus, and medial thalamus but increased in the parietal and occipital convexity in Group A compared with that in the control. Compared with the control, patients in Group B exhibited no significant changes. Conclusions. These results suggest that different pathological mechanisms may underlie cognitive impairment in m/mTBI patients with and without organic brain damage. PMID:27529067

  19. DCE-MRI defined subvolumes of a brain metastatic lesion by principle component analysis and fuzzy-c-means clustering for response assessment of radiation therapy

    SciTech Connect

    Farjam, Reza; Tsien, Christina I.; Lawrence, Theodore S.; Cao, Yue

    2014-01-15

    Purpose: To develop a pharmacokinetic modelfree framework to analyze the dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data for assessment of response of brain metastases to radiation therapy. Methods: Twenty patients with 45 analyzable brain metastases had MRI scans prior to whole brain radiation therapy (WBRT) and at the end of the 2-week therapy. The volumetric DCE images covering the whole brain were acquired on a 3T scanner with approximately 5 s temporal resolution and a total scan time of about 3 min. DCE curves from all voxels of the 45 brain metastases were normalized and then temporally aligned. A DCE matrix that is constructed from the aligned DCE curves of all voxels of the 45 lesions obtained prior to WBRT is processed by principal component analysis to generate the principal components (PCs). Then, the projection coefficient maps prior to and at the end of WBRT are created for each lesion. Next, a pattern recognition technique, based upon fuzzy-c-means clustering, is used to delineate the tumor subvolumes relating to the value of the significant projection coefficients. The relationship between changes in different tumor subvolumes and treatment response was evaluated to differentiate responsive from stable and progressive tumors. Performance of the PC-defined tumor subvolume was also evaluated by receiver operating characteristic (ROC) analysis in prediction of nonresponsive lesions and compared with physiological-defined tumor subvolumes. Results: The projection coefficient maps of the first three PCs contain almost all response-related information in DCE curves of brain metastases. The first projection coefficient, related to the area under DCE curves, is the major component to determine response while the third one has a complimentary role. In ROC analysis, the area under curve of 0.88 ± 0.05 and 0.86 ± 0.06 were achieved for the PC-defined and physiological-defined tumor subvolume in response assessment. Conclusions: The PC

  20. Variant of multiple sclerosis with dementia and tumefactive demyelinating brain lesions

    PubMed Central

    Hamed, Sherifa A

    2015-01-01

    We describe an unusual clinical and diagnostic feature of a patient with multiple sclerosis (MS). A 25-year-old woman was admitted to the Neurology department (December 2009) with one month history of rapid cognitive deterioration. She had poor cognition, dysphasia, reduction in visual acuity and temporal pallor of the optic discs. She had prolonged latencies of P100 component of visual evoked potentials (VEPs). Magnetic resonance imaging (MRI)-brain showed multifocal large (≥ 3 cm) white-matter hypointense lesions in T1W and hyperintense in T2W and fluid-attenuated inversion recovery images and patchy enhancement. A diagnosis of tumefactive MS was given. She received two consecutive 5-d courses of 1 g daily intravenous methylprednisolone for 2 mo and oral prednisolone in dose of 80 mg twice/daily in between. At the 3rd month, Mini Mental State Examination and VEPs returned to normal but not the MRI. Patient continued oral steroids after hospital discharge (March 2010) for 9 mo with significant MRI improvement after which tapering of steroids started for a year. The patient refused immunomodulation therapy due to her low socioeconomic status. Neither clinical relapse nor new MRI lesions were observed throughout the next 4 years. In spite of the aggressive course of tumefactive MS variant, good prognosis may be seen in some patients. PMID:26090374

  1. Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions.

    PubMed

    Price, C J; Warburton, E A; Moore, C J; Frackowiak, R S; Friston, K J

    2001-05-15

    Functional neuroimaging was used to investigate how lesions to the Broca's area impair neuronal responses in remote undamaged cortical regions. Four patients with speech output problems, but relatively preserved comprehension, were scanned while viewing words relative to consonant letter strings. In normal subjects, this results in left lateralized activation in the posterior inferior frontal, middle temporal, and posterior inferior temporal cortices. Each patient activated normally in the middle temporal region but abnormally in the damaged posterior inferior frontal cortex and the undamaged posterior inferior temporal cortex. In the damaged frontal region, activity was insensitive to the presence of words but in the undamaged posterior inferior temporal region, activity decreased in the presence of words rather than increasing as it did in the normal individuals. The reversal of responses in the left posterior inferior temporal region illustrate the context-sensitive nature of the abnormality and that failure to activate the left posterior temporal region could not simply be accounted for by insufficient demands on the underlying function. We propose that, in normal individuals, visual word presentation changes the effective connectivity among reading areas and, in patients, posterior temporal responses are abnormal when they depend upon inputs from the damaged inferior frontal cortex. Our results serve to introduce the concept of dynamic diaschisis; the anatomically remote and context-sensitive effects of focal brain lesions. Dynamic diaschisis reveals abnormalities of functional integration that may have profound implications for neuropsychological inference, functional anatomy and, vicariously, cognitive rehabilitation.

  2. Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain

    PubMed Central

    Verdecchia, Kyle; Diop, Mamadou; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith

    2015-01-01

    Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique capable of monitoring tissue perfusion. The normalized temporal intensity autocorrelation function generated by DCS is typically characterized by assuming that the movement of erythrocytes can be modeled as a Brownian diffusion-like process instead of by the expected random flow model. Recently, a hybrid model, referred to as the hydrodynamic diffusion model, was proposed, which combines the random and Brownian flow models. The purpose of this study was to investigate the best model to describe autocorrelation functions acquired directly on the brain in order to avoid confounding effects of extracerebral tissues. Data were acquired from 11 pigs during normocapnia and hypocapnia, and flow changes were verified by computed tomography perfusion (CTP). The hydrodynamic diffusion model was found to provide the best fit to the autocorrelation functions; however, no significant difference for relative flow changes measured by the Brownian and hydrodynamic diffusion models was observed. PMID:26600995

  3. An innovative approach to meeting the educational needs of children following acquired brain injury in the UK.

    PubMed

    Wicks, Beth

    2012-01-01

    Children with acquired brain injury encounter problems both in terms of academic attainment and in other aspects of their lives in relation to social, behavioural and independent life skills. Many previous rehabilitation programmes for these children have been inappropriately adapted versions of adult models but there has often not been a recognition that successful current adult models of vocational rehabilitation can translate to educational rehabilitation models for children and adolescents. This article considers the historical basis of provision for these children in the UK and describes the development of a new programme of education as rehabilitation.

  4. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice

    PubMed Central

    2014-01-01

    Background Traumatic brain injury (TBI) enhances pro-inflammatory responses, neuronal loss and long-term behavioral deficits. Caveolins (Cavs) are regulators of neuronal and glial survival signaling. Previously we showed that astrocyte and microglial activation is increased in Cav-1 knock-out (KO) mice and that Cav-1 and Cav-3 modulate microglial morphology. We hypothesized that Cavs may regulate cytokine production after TBI. Methods Controlled cortical impact (CCI) model of TBI (3 m/second; 1.0 mm depth; parietal cortex) was performed on wild-type (WT; C57Bl/6), Cav-1 KO, and Cav-3 KO mice. Histology and immunofluorescence microscopy (lesion volume, glia activation), behavioral tests (open field, balance beam, wire grip, T-maze), electrophysiology, electron paramagnetic resonance, membrane fractionation, and multiplex assays were performed. Data were analyzed by unpaired t tests or analysis of variance (ANOVA) with post-hoc Bonferroni’s multiple comparison. Results CCI increased cortical and hippocampal injury and decreased expression of MLR-localized synaptic proteins (24 hours), enhanced NADPH oxidase (Nox) activity (24 hours and 1 week), enhanced polysynaptic responses (1 week), and caused hippocampal-dependent learning deficits (3 months). CCI increased brain lesion volume in both Cav-3 and Cav-1 KO mice after 24 hours (P < 0.0001, n = 4; one-way ANOVA). Multiplex array revealed a significant increase in expression of IL-1β, IL-9, IL-10, KC (keratinocyte chemoattractant), and monocyte chemoattractant protein 1 (MCP-1) in ipsilateral hemisphere and IL-9, IL-10, IL-17, and macrophage inflammatory protein 1 alpha (MIP-1α) in contralateral hemisphere of WT mice after 4 hours. CCI increased IL-2, IL-6, KC and MCP-1 in ipsilateral and IL-6, IL-9, IL-17 and KC in contralateral hemispheres in Cav-1 KO and increased all 10 cytokines/chemokines in both hemispheres except for IL-17 (ipsilateral) and MIP-1α (contralateral) in Cav-3 KO (versus WT CCI). Cav-3 KO CCI

  5. Individualized statistical learning from medical image databases: application to identification of brain lesions.

    PubMed

    Erus, Guray; Zacharaki, Evangelia I; Davatzikos, Christos

    2014-04-01

    This paper presents a method for capturing statistical variation of normal imaging phenotypes, with emphasis on brain structure. The method aims to estimate the statistical variation of a normative set of images from healthy individuals, and identify abnormalities as deviations from normality. A direct estimation of the statistical variation of the entire volumetric image is challenged by the high-dimensionality of images relative to smaller sample sizes. To overcome this limitation, we iteratively sample a large number of lower dimensional subspaces that capture image characteristics ranging from fine and localized to coarser and more global. Within each subspace, a "target-specific" feature selection strategy is applied to further reduce the dimensionality, by considering only imaging characteristics present in a test subject's images. Marginal probability density functions of selected features are estimated through PCA models, in conjunction with an "estimability" criterion that limits the dimensionality of estimated probability densities according to available sample size and underlying anatomy variation. A test sample is iteratively projected to the subspaces of these marginals as determined by PCA models, and its trajectory delineates potential abnormalities. The method is applied to segmentation of various brain lesion types, and to simulated data on which superiority of the iterative method over straight PCA is demonstrated.

  6. Lesion correlates of impairments in actual tool use following unilateral brain damage.

    PubMed

    Salazar-López, E; Schwaiger, B J; Hermsdörfer, J

    2016-04-01

    To understand how the brain controls actions involving tools, tests have been developed employing different paradigms such as pantomime, imitation and real tool use. The relevant areas have been localized in the premotor cortex, the middle temporal gyrus and the superior and inferior parietal lobe. This study employs Voxel Lesion Symptom Mapping to relate the functional impairment in actual tool use with extent and localization of the structural damage in the left (LBD, N=31) and right (RBD, N=19) hemisphere in chronic stroke patients. A series of 12 tools was presented to participants in a carousel. In addition, a non-tool condition tested the prescribed manipulation of a bar. The execution was scored according to an apraxic error scale based on the dimensions grasp, movement, direction and space. Results in the LBD group show that the ventro-dorsal stream constitutes the core of the defective network responsible for impaired tool use; it is composed of the inferior parietal lobe, the supramarginal and angular gyrus and the dorsal premotor cortex. In addition, involvement of regions in the temporal lobe, the rolandic operculum, the ventral premotor cortex and the middle occipital gyrus provide evidence of the role of the ventral stream in this task. Brain areas related to the use of the bar largely overlapped with this network. For patients with RBD data were less conclusive; however, a trend for the involvement of the temporal lobe in apraxic errors was manifested. Skilled bar manipulation depended on the same temporal area in these patients. Therefore, actual tool use depends on a well described left fronto-parietal-temporal network. RBD affects actual tool use, however the underlying neural processes may be more widely distributed and more heterogeneous. Goal directed manipulation of non-tool objects seems to involve very similar brain areas as tool use, suggesting that both types of manipulation share identical processes and neural representations. PMID

  7. Elevated brain lesion volumes in older adults who use calcium supplements: a cross-sectional clinical observational study.

    PubMed

    Payne, Martha E; McQuoid, Douglas R; Steffens, David C; Anderson, John J B

    2014-07-28

    Recent studies have implicated Ca supplements in vascular risk elevation, and therefore these supplements may also be associated with the occurrence of brain lesions (or hyperintensities) in older adults. These lesions represent damage to brain tissue that is caused by ischaemia. In the present cross-sectional clinical observational study, the association between Ca-containing dietary supplement use and lesion volumes was investigated in a sample of 227 older adults (60 years and above). Food and supplemental Ca intakes were assessed with the Block 1998 FFQ; participants with supplemental Ca intake above zero were categorised as supplement users. Lesion volumes were determined from cranial MRI (1.5 tesla) scans using a semi-automated technique; volumes were log-transformed because they were non-normal. ANCOVA models revealed that supplement users had greater lesion volumes than non-users, even after controlling for food Ca intake, age, sex, race, years of education, energy intake, depression and hypertension (Ca supplement use: β = 0.34, SE 0.10, F(1,217)= 10.98, P= 0.0011). The influence of supplemental Ca use on lesion volume was of a magnitude similar to that of the influence of hypertension, a well-established risk factor for lesions. Among the supplement users, the amount of supplemental Ca was not associated with lesion volume (β = - 0.000035, SE 0.00 015, F(1,139)= 0.06, P= 0.81). The present study demonstrates that the use of Ca-containing dietary supplements, even low-dose supplements, by older adults may be associated with greater lesion volumes. Evaluation of randomised controlled trials is warranted to determine whether this relationship is a causal one.

  8. Improving the Quality of Staff and Participant Interaction in an Acquired Brain Injury Organization

    ERIC Educational Resources Information Center

    Guercio, John M.; Dixon, Mark R.

    2010-01-01

    Weekly observations of direct-care staff in a facility for persons with brain injury yielded less than optimal interactional style with facility residents. Following an observational baseline, staff were asked to self-rate a 15-min video sample of their interaction behavior with participants on their unit. They were then asked to compare their…

  9. Hand Function in Relation to Brain Lesions and Corticomotor-Projection Pattern in Children with Unilateral Cerebral Palsy

    ERIC Educational Resources Information Center

    Holmstrom, Linda; Vollmer, Brigitte; Tedroff, Kristina; Islam, Mominul; Persson, Jonas Ke; Kits, Annika; Forssberg, Hans; Eliasson, Ann-Christin

    2010-01-01

    Aim: To investigate relationships between hand function, brain lesions, and corticomotor projections in children with unilateral cerebral palsy (CP). Method: The study included 17 children (nine males, eight females; mean age 11.4 [SD 2.4] range 7-16y), with unilateral CP at Gross Motor Function Classification System level I and Manual Ability…

  10. Correlation of brain Magnetic Resonance Imaging of spontaneously lead poisoned bald eagles (Haliaeetus leucocephalus) with histological lesions: A pilot study.

    PubMed

    de Francisco, Olga Nicolas; Feeney, Daniel; Armién, Anibal G; Wuenschmann, Arno; Redig, Patrick T

    2016-04-01

    Six bald eagles with severe, acute lead poisoning based on blood lead values were analyzed by Magnetic Resonance Imaging (MRI) of the brain and histopathology. The aims of the study were to use MRI to locate brain lesions and correlate the changes in MRI signal with the histological character of the lesions at necropsy. All of the bald eagles presented with neurologic and non-neurologic signs suggestive of severe lead poisoning and had blood lead levels in excess of 1.0 ppm. Areas of change in image intensity in the brainstem, midbrain and cerebellum were detected in the MRI scans. Histopathology confirmed the presence of all suspected lesions. The character of the lesions suggested vascular damage as the primary insult. MRI was useful for detecting lesions and defining their three-dimensional distribution and extent. Future studies are needed to evaluate the utility of MRI for detection of lesions in less severely lead poisoned eagles and determining prognosis for treatment. PMID:27033939

  11. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions

    PubMed Central

    Pannek, Kerstin; Boyd, Roslyn N.; Fiori, Simona; Guzzetta, Andrea; Rose, Stephen E.

    2014-01-01

    Background Cerebral palsy (CP) is a term to describe the spectrum of disorders of impaired motor and sensory function caused by a brain lesion occurring early during development. Diffusion MRI and tractography have been shown to be useful in the study of white matter (WM) microstructure in tracts likely to be impacted by the static brain lesion. Aim The purpose of this study was to identify WM pathways with altered connectivity in children with unilateral CP caused by periventricular white matter lesions using a whole-brain connectivity approach. Methods Data of 50 children with unilateral CP caused by periventricular white matter lesions (5–17 years; manual ability classification system [MACS] I = 25/II = 25) and 17 children with typical development (CTD; 7–16 years) were analysed. Structural and High Angular Resolution Diffusion weighted Images (HARDI; 64 directions, b = 3000 s/mm2) were acquired at 3 T. Connectomes were calculated using whole-brain probabilistic tractography in combination with structural parcellation of the cortex and subcortical structures. Connections with altered fractional anisotropy (FA) in children with unilateral CP compared to CTD were identified using network-based statistics (NBS). The relationship between FA and performance of the impaired hand in bimanual tasks (Assisting Hand Assessment—AHA) was assessed in connections that showed significant differences in FA compared to CTD. Results FA was reduced in children with unilateral CP compared to CTD. Seven pathways, including the corticospinal, thalamocortical, and fronto-parietal association pathways were identified simultaneously in children with left and right unilateral CP. There was a positive relationship between performance of the impaired hand in bimanual tasks and FA within the cortico-spinal and thalamo-cortical pathways (r2 = 0.16–0.44; p < 0.05). Conclusion This study shows that network-based analysis of structural connectivity can identify alterations

  12. Interictal Electroencephalography (EEG) Findings in Children with Epilepsy and Bilateral Brain Lesions on Magnetic Resonance Imaging (MRI)

    PubMed Central

    Zubcevic, Smail; Milos, Maja; Catibusic, Feriha; Uzicanin, Sajra; Krdzalic, Belma

    2015-01-01

    Introduction: Neuroimaging procedures and electroencephalography (EEG) are basic parts of investigation of patients with epilepsies. Aim: The aim is to try to assess relationship between bilaterally localized brain lesions found in routine management of children with newly diagnosed epilepsy and their interictal EEG findings. Patients and methods: Total amount of 68 patients filled criteria for inclusion in the study that was performed at Neuropediatrics Department, Pediatric Hospital, University Clinical Center Sarajevo, or its outpatient clinic. There were 33 girls (48,5%) and 35 boys (51,5%). Average age at diagnosis of epilepsy was 3,5 years. Results: Both neurological and neuropsychological examination in the moment of making diagnosis of epilepsy was normal in 27 (39,7%) patients, and showed some kind of delay or other neurological finding in 41 (60,3%). Brain MRI showed lesions that can be related to antenatal or perinatal events in most of the patients (ventricular dilation in 30,9%, delayed myelination and post-hypoxic changes in 27,9%). More than half of patients (55,9%) showed bilateral interictal epileptiform discharges on their EEGs, and further 14,7% had other kinds of bilateral abnormalities. Frequency of bilateral epileptic discharges showed statistically significant predominance on level of p<0,05. Cross tabulation between specific types of bilateral brain MRI lesions and EEG finding did not reveal significant type of EEG for assessed brain lesions. Conclusion: We conclude that there exists relationship between bilaterally localized brain MRI lesions and interictal bilateral epileptiform or nonspecific EEG findings in children with newly diagnosed epilepsies. These data are suggesting that in cases when they do not correlate there is a need for further investigation of seizure etiology. PMID:26862242

  13. αβ T-cell receptors from multiple sclerosis brain lesions show MAIT cell–related features

    PubMed Central

    Held, Kathrin; Bhonsle-Deeng, Latika; Siewert, Katherina; Sato, Wakiro; Beltrán, Eduardo; Schmidt, Stephan; Rühl, Geraldine; Ng, Judy K.M.; Engerer, Peter; Moser, Markus; Klinkert, Wolfgang E.F.; Babbe, Holger; Misgeld, Thomas; Wekerle, Hartmut; Laplaud, David-Axel; Hohlfeld, Reinhard

    2015-01-01

    Objectives: To characterize phenotypes of T cells that accumulated in multiple sclerosis (MS) lesions, to compare the lesional T-cell receptor (TCR) repertoire of T-cell subsets to peripheral blood, and to identify paired α and β chains from single CD8+ T cells from an index patient who we followed for 18 years. Methods: We combined immunohistochemistry, laser microdissection, and single-cell multiplex PCR to characterize T-cell subtypes and identify paired TCRα and TCRβ chains from individual brain-infiltrating T cells in frozen brain sections. The lesional and peripheral TCR repertoires were analyzed by pyrosequencing. Results: We found that a TCR Vβ1+ T-cell population that was strikingly expanded in active brain lesions at clinical onset comprises several subclones expressing distinct yet closely related Vα7.2+ α chains, including a canonical Vα7.2-Jα33 chain of mucosal-associated invariant T (MAIT) cells. Three other α chains bear striking similarities in their antigen-recognizing, hypervariable complementarity determining region 3. Longitudinal repertoire studies revealed that the TCR chains that were massively expanded in brain at onset persisted for several years in blood or CSF but subsequently disappeared except for the canonical Vα7.2+ MAIT cell and a few other TCR sequences that were still detectable in blood after 18 years. Conclusions: Our observation that a massively expanded TCR Vβ1-Jβ2.3 chain paired with distinct yet closely related canonical or atypical MAIT cell–related α chains strongly points to an antigen-driven process in early active MS brain lesions. PMID:25977934

  14. [Professional career, disability and dependence after acquired brain injury: a prospective study in the two years following the brain injury].

    PubMed

    Luna-Lario, Pilar; Blanco-Beregaña, Miriam; Tirapu-Ustárroz, Javier; Ojeda, Natalia; Mata-Pastor, Ignacio

    2013-09-16

    Objetivos. Analizar la trayectoria laboral, el grado de discapacidad y el grado de dependencia reconocidos en una muestra de sujetos con daño cerebral adquirido de diferentes etiologias y que presentan deficit de memoria como secuela cognitiva principal, durante un periodo de dos años tras la lesion original, y examinar que variables sociodemograficas, datos clinicos premorbidos y relacionados con la lesion cerebral predicen el exito en la incorporacion laboral. Pacientes y metodos. Muestra de 129 pacientes, de 18 a 80 años, atendidos en el Servicio de Neuropsicologia y Neuro­psiquiatria del Complejo Hospitalario de Navarra, con deficits de memoria objetivados con tests psicometricos. Las diferencias entre variables discretas se analizaron con el test de chi al cuadrado, para analizar las existentes entre dos grupos en cuanto a variables cuantitativas, se utilizo el test t de Stutent y para calcular la correlacion entre variables continuas, el coeficiente de correlacion de Pearson. Resultados. El 17,7% retoma la actividad laboral al año y el 25% a los dos años. Lo anterior se relaciono con un mayor nivel educativo. Se reconocio la discapacidad al 85% de los solicitantes, por factores psiquicos o fisicos y psiquicos en el 89% de los mismos. Al 77% de los solicitantes se le reconocio el nivel de dependencia. Conclusiones. El daño cerebral adquirido genera un fuerte impacto en la trayectoria laboral, la interaccion con el ambiente y el nivel de autonomia. Entre los factores que explican este impacto es reseñable el deficit de memoria.

  15. "You Can't Imagine Unless You've Been There Yourself": A Report on the Concerns of Parents of Children with Acquired Brain Injury.

    ERIC Educational Resources Information Center

    Singer, George H. S.; Nixon, Charles

    This report describes a qualitative study of the experiences and perceptions of parents of children with severe acquired brain injury (ABI) and summarizes the experiences of several parents during the first year following their child's traumatic brain injury. Twenty-five parents participated in a day-long focus group, in lengthy structured…

  16. Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia.

    PubMed

    Ruiz, Sergio; Lee, Sangkyun; Soekadar, Surjo R; Caria, Andrea; Veit, Ralf; Kircher, Tilo; Birbaumer, Niels; Sitaram, Ranganatha

    2013-01-01

    Real-time functional magnetic resonance imaging (rtfMRI) is a novel technique that has allowed subjects to achieve self-regulation of circumscribed brain regions. Despite its anticipated therapeutic benefits, there is no report on successful application of this technique in psychiatric populations. The objectives of the present study were to train schizophrenia patients to achieve volitional control of bilateral anterior insula cortex on multiple days, and to explore the effect of learned self-regulation on face emotion recognition (an extensively studied deficit in schizophrenia) and on brain network connectivity. Nine patients with schizophrenia were trained to regulate the hemodynamic response in bilateral anterior insula with contingent rtfMRI neurofeedback, through a 2-weeks training. At the end of the training stage, patients performed a face emotion recognition task to explore behavioral effects of learned self-regulation. A learning effect in self-regulation was found for bilateral anterior insula, which persisted through the training. Following successful self-regulation, patients recognized disgust faces more accurately and happy faces less accurately. Improvements in disgust recognition were correlated with levels of self-activation of right insula. RtfMRI training led to an increase in the number of the incoming and outgoing effective connections of the anterior insula. This study shows for the first time that patients with schizophrenia can learn volitional brain regulation by rtfMRI feedback training leading to changes in the perception of emotions and modulations of the brain network connectivity. These findings open the door for further studies of rtfMRI in severely ill psychiatric populations, and possible therapeutic applications.

  17. Modelling verbal aggression, physical aggression and inappropriate sexual behaviour after acquired brain injury

    PubMed Central

    James, Andrew I. W.; Böhnke, Jan R.; Young, Andrew W.; Lewis, Gary J.

    2015-01-01

    Understanding the underpinnings of behavioural disturbances following brain injury is of considerable importance, but little at present is known about the relationships between different types of behavioural disturbances. Here, we take a novel approach to this issue by using confirmatory factor analysis to elucidate the architecture of verbal aggression, physical aggression and inappropriate sexual behaviour using systematic records made across an eight-week observation period for a large sample (n = 301) of individuals with a range of brain injuries. This approach offers a powerful test of the architecture of these behavioural disturbances by testing the fit between observed behaviours and different theoretical models. We chose models that reflected alternative theoretical perspectives based on generalized disinhibition (Model 1), a difference between aggression and inappropriate sexual behaviour (Model 2), or on the idea that verbal aggression, physical aggression and inappropriate sexual behaviour reflect broadly distinct but correlated clinical phenomena (Model 3). Model 3 provided the best fit to the data indicating that these behaviours can be viewed as distinct, but with substantial overlap. These data are important both for developing models concerning the architecture of behaviour as well as for clinical management in individuals with brain injury. PMID:26136449

  18. Modelling verbal aggression, physical aggression and inappropriate sexual behaviour after acquired brain injury.

    PubMed

    James, Andrew I W; Böhnke, Jan R; Young, Andrew W; Lewis, Gary J

    2015-07-22

    Understanding the underpinnings of behavioural disturbances following brain injury is of considerable importance, but little at present is known about the relationships between different types of behavioural disturbances. Here, we take a novel approach to this issue by using confirmatory factor analysis to elucidate the architecture of verbal aggression, physical aggression and inappropriate sexual behaviour using systematic records made across an eight-week observation period for a large sample (n = 301) of individuals with a range of brain injuries. This approach offers a powerful test of the architecture of these behavioural disturbances by testing the fit between observed behaviours and different theoretical models. We chose models that reflected alternative theoretical perspectives based on generalized disinhibition (Model 1), a difference between aggression and inappropriate sexual behaviour (Model 2), or on the idea that verbal aggression, physical aggression and inappropriate sexual behaviour reflect broadly distinct but correlated clinical phenomena (Model 3). Model 3 provided the best fit to the data indicating that these behaviours can be viewed as distinct, but with substantial overlap. These data are important both for developing models concerning the architecture of behaviour as well as for clinical management in individuals with brain injury.

  19. Experimental carbon dioxide laser brain lesions and intracranial dynamics. Part 2. Effect on brain water content and its response to acute therapy

    SciTech Connect

    Tiznado, E.G.; James, H.E.; Moore, S.

    1985-04-01

    Experimental brain lesions were created over the left parietooccipital cortex of the albino rabbit through the intact dura mater with high radiating carbon dioxide laser energy. The brain water content was studied 2, 6, and 24 hours after the insult. Another two groups of animals received acute therapy with either dexamethasone (1 mg/kg) or furosemide (1 mg/kg). In all groups, Evans blue extravasation uniformly extended from the impact crater into the surrounding white matter. The brain water content in the gray matter was elevated from the control value by 2 hours after impact and remained elevated at 6 and 24 hours. The white matter brain water content did not increase until 6 hours after impact and remained elevated in the 24-hour group. After dexamethasone treatment, there was a significant decrease of water in the gray matter, but not in the white matter. With furosemide therapy, there was no reduction of gray or white matter brain water.

  20. Random motor generation in a finger tapping task: influence of spatial contingency and of cortical and subcortical hemispheric brain lesions

    PubMed Central

    Annoni, J.; Pegna, A.

    1997-01-01

    OBJECTIVE—To test the hypothesis that, during random motor generation, the spatial contingencies inherent to the task would induce additional preferences in normal subjects, shifting their performances farther from randomness. By contrast, perceptual or executive dysfunction could alter these task related biases in patients with brain damage.
METHODS—Two groups of patients, with right and left focal brain lesions, as well as 25 right handed subjects matched for age and handedness were asked to execute a random choice motor task—namely, to generate a random series of 180 button presses from a set of 10 keys placed vertically in front of them.
RESULTS—In the control group, as in the left brain lesion group, motor generation was subject to deviations from theoretical expected randomness, similar to those when numbers are generated mentally, as immediate repetitions (successive presses on the same key) are avoided. However, the distribution of button presses was also contingent on the topographic disposition of the keys: the central keys were chosen more often than those placed at extreme positions. Small distances were favoured, particularly with the left hand. These patterns were influenced by implicit strategies and task related contingencies.
 By contrast, right brain lesion patients with frontal involvement tended to show a more square distribution of key presses—that is, the number of key presses tended to be more equally distributed. The strategies were also altered by brain lesions: the number of immediate repetitions was more frequent when the lesion involved the right frontal areas yielding a random generation nearer to expected theoretical randomness. The frequency of adjacent key presses was increased by right anterior and left posterior cortical as well as by right subcortical lesions, but decreased by left subcortical lesions.
CONCLUSIONS—Depending on the side of the lesion and the degree of cortical-subcortical involvement, the

  1. [Study of the pre- and post-treatment functionality of unilateral acquired brain injuries].

    PubMed

    Huertas-Hoyas, Elisabet; Pedrero-Pérez, Eduardo J; Águila-Maturana, Ana M; González-Alted, Carlos

    2014-04-16

    Introduccion. La mayoria de las personas que han sobrevivido a un daño cerebral lateralizado presenta secuelas que afectan a componentes sensoriomotores, cognitivos o conductuales. Estos deficits repercuten en la correcta ejecucion de actividades de la vida diaria, antes y despues de un tratamiento multidisciplinar. El objetivo de este estudio es analizar y comparar el perfil ocupacional de las personas con daño cerebral adquirido unilateral, tanto en personas con traumatismo craneoencefalico (TCE) como accidentes cerebrovasculares (ACV), mediante la independencia funcional, la capacidad, la participacion y la calidad del desempeño de las actividades cotidianas. Pacientes y metodos. Diseño cuasi experimental de cohortes con medidas transversales pre y postratamiento con una muestra de 58 personas, 28 con TCE y 30 con ACV, en ambos casos lateralizados. Las medidas utilizadas fueron la Functional Independence Measure + Functional Assessment Measure, la clasificacion internacional del funcionamiento, la discapacidad y la salud, y el Assessment of Motor and Process Skills. Resultados. Teniendo en cuenta los grupos analizados (muestra completa lateralizada, muestra por diagnostico), los resultados del analisis apuntan hacia la existencia de diferencias significativas y un moderado tamaño del efecto en las dos estimaciones transversales, otorgando mayores niveles de independencia a las lesiones sobrevenidas en el hemisferio derecho (p < 0,001). Sin embargo, al dividir la muestra segun el diagnostico, no aparecen diferencias significativas, salvo en las habilidades motoras, donde se muestran mayores puntuaciones en los TCE (p < 0,05). Conclusiones. Se piensa que lo que justifica las diferencias no es la modalidad de la lesion (TCE o ACV), sino la localizacion hemisferica. Por ello, se sugiere que las personas con daño cerebral adquirido en el hemisferio izquierdo requeriran una intervencion mas intensa.

  2. Acquired infection with Toxoplasma gondii in adult mice results in sensorimotor deficits but normal cognitive behavior despite widespread brain pathology

    PubMed Central

    Gulinello, Maria; Acquarone, Mariana; Kim, John H; Spray, David C.; Barbosa, Helene S.; Sellers, Rani; Tanowitz, Herbert B.; Weiss, Louis M.

    2010-01-01

    Toxoplasma gondii is a ubiquitous intracellular parasite which chronically infects 30 to 50% of the human population. While acquired infection is primarily asymptomatic several studies have suggested that such infections may contribute to neurological and psychiatric symptoms. Previous studies in rodents have demonstated that T. gondii infection does not just kill its host, but alters the behavioral repertoire of an infected animal making it more likely that predation with occur completing the parasite life cycle. The aim of the present study was to evaluate the behavioral changes in C57BL/6 mice chronically infected with the avirulent T. gondii (ME49, a type II strain), in a comprehensive test battery. Infected mice demonstrated profound and widespread brain pathology, motor coordination and sensory deficits. In contrast, cognitive function, anxiety levels, social behavior and the motivation to explore novel objects were normal. The observed changes in behavior did not represent “gross” brain damage or dysfunction and were not due to targeted destruction of specific areas of the brain. Such changes point out the subtle interaction of this parasite with its intermediate hosts and are consistent with ideas about increased predation being an outcome of infection. PMID:20348009

  3. Clinical impact of RehaCom software for cognitive rehabilitation of patients with acquired brain injury.

    PubMed

    Fernández, Elízabeth; Bringas, María Luisa; Salazar, Sonia; Rodríguez, Daymí; García, María Eugenia; Torres, Maydané

    2012-10-01

    We describe the clinical impact of the RehaCom computerized cognitive training program instituted in the International Neurological Restoration Center for rehabilitation of brain injury patients. Fifty patients admitted from 2008 through 2010 were trained over 60 sessions. Attention and memory functions were assessed with a pre- and post-treatment design, using the Mini-Mental State Examination, Wechsler Memory Scale and Trail Making Test (Parts A and B). Negative effects were assessed, including mental fatigue, headache and eye irritation. The program's clinical usefulness was confirmed, with 100% of patients showing improved performance in trained functions. PMID:23154316

  4. Parcellation of parietal cortex: convergence between lesion-symptom mapping and mapping of the intact functioning brain.

    PubMed

    Vandenberghe, Rik; Gillebert, Céline R

    2009-05-16

    Spatial-attentional deficits are highly prevalent following stroke. They can be clinically detected by means of conventional bedside tests such as target cancellation, line bisection and the visual extinction test. Until recently, lesion mapping studies and functional imaging of the intact brain did not agree very well on exactly which parietal areas play a key role in selective attention: the inferior parietal lobule or the intraparietal sulcus. Recently, the use of a contrastive approach in patients akin to that commonly used in functional imaging studies in healthy volunteers together with voxel-based lesion-symptom mapping have allowed to bring the patient lesion mapping much closer to the functional imaging results obtained in healthy controls. In this review we focus on converging evidence obtained from patient lesion studies and from fMRI studies in the intact brain in humans. This has yielded novel insights into the functional segregation between the middle third of the intraparietal sulcus, the superior parietal lobule and the temporoparietal junction in the intact brain and also enhanced our understanding of the pathogenetic mechanisms underlying deficits arising in patients. PMID:19118580

  5. Exploring social cognition in patients with apathy following acquired brain damage

    PubMed Central

    2014-01-01

    Background Research on cognition in apathy has largely focused on executive functions. To the best of our knowledge, no studies have investigated the relationship between apathy symptoms and processes involved in social cognition. Apathy symptoms include attenuated emotional behaviour, low social engagement and social withdrawal, all of which may be linked to underlying socio-cognitive deficits. Methods We compared patients with brain damage who also had apathy symptoms against similar patients with brain damage but without apathy symptoms. Both patient groups were also compared against normal controls on key socio-cognitive measures involving moral reasoning, social awareness related to making judgements between normative and non-normative behaviour, Theory of Mind processing, and the perception of facial expressions of emotion. We also controlled for the likely effects of executive deficits and depressive symptoms on these comparisons. Results Our results indicated that patients with apathy were distinctively impaired in making moral reasoning decisions and in judging the social appropriateness of behaviour. Deficits in Theory of Mind and perception of facial expressions of emotion did not distinguish patients with apathy from those without apathy. Conclusion Our findings point to a possible socio-cognitive profile for apathy symptoms and provide initial insights into how socio-cognitive deficits in patients with apathy may affect social functioning. PMID:24450311

  6. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders.

    PubMed

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-10-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar across different pathological conditions. The purpose of this systematic review was to provide an extensive overview of the neuroimaging literature on apathy including studies of various patient populations, and evaluate whether the current state of affairs suggest disorder specific or shared neural correlates of apathy. Results suggest that abnormalities within fronto-striatal circuits are most consistently associated with apathy across the different pathological conditions. Of note, abnormalities within the inferior parietal cortex were also linked to apathy, a region previously not included in neuroanatomical models of apathy. The variance in brain regions implicated in apathy may suggest that different routes towards apathy are possible. Future research should investigate possible alterations in different processes underlying goal-directed behavior, ranging from intention and goal-selection to action planning and execution. PMID:27527825

  7. Reversible lesions in the brain parenchyma in Wilson's disease confirmed by magnetic resonance imaging: earlier administration of chelating therapy can reduce the damage to the brain

    PubMed Central

    Kozić, Duško B.; Petrović, Igor; Svetel, Marina; Pekmezović, Tatjana; Ragaji, Aleksandar; Kostić, Vladimir S.

    2014-01-01

    The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson's disease during the long-term chelating therapy using magnetic resonance imaging and a possible significance of the time latency between the initial symptoms of the disease and the introduction of this therapy. Initial magnetic resonance examination was performed in 37 patients with proven neurological form of Wilson's disease with cerebellar, parkinsonian and dystonic presentation. Magnetic resonance reexamination was done 5.7 ± 1.3 years later in 14 patients. Patients were divided into: group A, where chelating therapy was initiated < 24 months from the first symptoms and group B, where the therapy started ≥ 24 months after the initial symptoms. Symmetry of the lesions was seen in 100% of patients. There was a significant difference between groups A and B regarding complete resolution of brain stem and putaminal lesions (P = 0.005 and P = 0.024, respectively). If the correct diagnosis and adequate treatment are not established less than 24 months after onset of the symptoms, irreversible lesions in the brain parenchyma could be expected. Signal abnormalities on magnetic resonance imaging might therefore, at least in the early stages, represent reversible myelinolisis or cytotoxic edema associated with copper toxicity. PMID:25558242

  8. Reversible lesions in the brain parenchyma in Wilson's disease confirmed by magnetic resonance imaging: earlier administration of chelating therapy can reduce the damage to the brain.

    PubMed

    Kozić, Duško B; Petrović, Igor; Svetel, Marina; Pekmezović, Tatjana; Ragaji, Aleksandar; Kostić, Vladimir S

    2014-11-01

    The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson's disease during the long-term chelating therapy using magnetic resonance imaging and a possible significance of the time latency between the initial symptoms of the disease and the introduction of this therapy. Initial magnetic resonance examination was performed in 37 patients with proven neurological form of Wilson's disease with cerebellar, parkinsonian and dystonic presentation. Magnetic resonance reexamination was done 5.7 ± 1.3 years later in 14 patients. Patients were divided into: group A, where chelating therapy was initiated < 24 months from the first symptoms and group B, where the therapy started ≥ 24 months after the initial symptoms. Symmetry of the lesions was seen in 100% of patients. There was a significant difference between groups A and B regarding complete resolution of brain stem and putaminal lesions (P = 0.005 and P = 0.024, respectively). If the correct diagnosis and adequate treatment are not established less than 24 months after onset of the symptoms, irreversible lesions in the brain parenchyma could be expected. Signal abnormalities on magnetic resonance imaging might therefore, at least in the early stages, represent reversible myelinolisis or cytotoxic edema associated with copper toxicity.

  9. Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage.

    PubMed

    Hamilton, B F; Gould, D H

    1987-01-01

    The clinical signs and morphological brain lesions associated with histotoxic hypoxia induced by subcutaneous injection of 3-nitropropionic acid (NPA) in rats are described, and compared to hypoxic brain damage from other causes including ischemia and hypoglycemia. The brains were perfusion-fixed with paraformaldehyde/glutaraldehyde fixative, and examined by light and electron microscopy. Intoxicated rats developed severe neurological disease characterized by somnolence, uncoordinated gait with stereotypical paddling movements, and ventral or lateral recumbency. Recumbent rats had a selective, bilaterally symmetrical pattern of severe morphological injury in the caudate-putamen, hippocampus, and thalamus. Recumbency was a consistent indicator of the development of morphological brain lesions. In contrast to reports describing rat models of ischemia and hypoglycemia, morphological injury was not seen in the cerebral and cerebellar cortices of NPA-intoxicated rats. Ultrastructurally, neuronal alterations ranged from chromatin clumping with increased cytoplasmic lucency to severe cellular shrinkage or swelling with marked mitochondrial swelling (high amplitude swelling). White matter alterations included axonal swelling and adaxonal splitting of myelin lamellae. Vascular changes included perivascular deposits of proteinaceous material presumably from leakage of serum proteins, variable electron lucency of endothelial cell cytoplasm, an apparent increase in pinocytotic vesicles, rare platelet thrombosis of capillaries, and rare intravascular blebs of luminal plasma membrane. As a model of brain damage following energy deficiency, NPA intoxication has the advantages of producing morphological brain injury in a highly predictable anatomical pattern, and at a time paralleling the onset of clinical recumbency.

  10. Neurocognitive development of children with congenital unilateral brain lesion and epilepsy.

    PubMed

    Kolk, A; Beilmann, A; Tomberg, T; Napa, A; Talvik, T

    2001-03-01

    The aim of this study was to specify the neuropsychological deficits characteristic of children with unilateral non-progressive brain lesion. In order to assess these specific functions, we used a comprehensive model of congenital hemiparesis with partial epilepsy and newly diagnosed partial epilepsy without hemiparesis. The neuropsychological examination was performed using the NEPSY test battery on 44 children aged from 4 to 9 years. The children were divided into three groups: 18 children suffering from congenital hemiparesis with chronic partial epilepsy, 12 children with newly diagnosed partial epilepsy prior to anti-epileptic treatment, and 14 healthy controls matched by sex, age, and socioeconomic status. Children with congenital hemiparesis and epilepsy had a more clearly expressed cognitive dysfunction, especially in language, visuo-perceptual and memory tasks, than children with newly diagnosed partial epilepsy. The profile of cognitive weakness appears to be diffuse and quite similar in both groups, and it did not demonstrate a clear effect of lateralization, according to the side of epileptic electroencephalogram discharges. Children within both groups are likely to have a high risk of developing attention, phonological, visuo-perceptual, and memory deficits in their life. Especially interesting and surprising was the fact that the newly diagnosed epilepsy group demonstrated impairment not only in attention, visuo-perceptual and short-term memory skills, but also in auditory perception, lexical function, and the comprehension of speech. Therefore, it is recommended that children with epilepsy would undergo neuropsychological examination in order to assess their cognitive abilities. PMID:11248457

  11. The effect of brain lesions on sound localization in complex acoustic environments.

    PubMed

    Zündorf, Ida C; Karnath, Hans-Otto; Lewald, Jörg

    2014-05-01

    Localizing sound sources of interest in cluttered acoustic environments--as in the 'cocktail-party' situation--is one of the most demanding challenges to the human auditory system in everyday life. In this study, stroke patients' ability to localize acoustic targets in a single-source and in a multi-source setup in the free sound field were directly compared. Subsequent voxel-based lesion-behaviour mapping analyses were computed to uncover the brain areas associated with a deficit in localization in the presence of multiple distracter sound sources rather than localization of individually presented sound sources. Analyses revealed a fundamental role of the right planum temporale in this task. The results from the left hemisphere were less straightforward, but suggested an involvement of inferior frontal and pre- and postcentral areas. These areas appear to be particularly involved in the spectrotemporal analyses crucial for effective segregation of multiple sound streams from various locations, beyond the currently known network for localization of isolated sound sources in otherwise silent surroundings.

  12. Headache Following Occipital Brain Lesion: A Case of Migraine Triggered by Occipital Spikes?

    PubMed

    Vollono, Catello; Mariotti, Paolo; Losurdo, Anna; Giannantoni, Nadia Mariagrazia; Mazzucchi, Edoardo; Valentini, Piero; De Rose, Paola; Della Marca, Giacomo

    2015-10-01

    This study describes the case of an 8-year-old boy who developed a genuine migraine after the surgical excision, from the right occipital lobe, of brain abscesses due to selective infestation of the cerebrum by Entamoeba histolytica. After the surgical treatment, the boy presented daily headaches with typical migraine features, including right-side parieto-temporal pain, nausea, vomiting, and photophobia. Electroencephalography (EEG) showed epileptiform discharges in the right occipital lobe, although he never presented seizures. Clinical and neurophysiological observations were performed, including video-EEG and polygraphic recordings. EEG showed "interictal" epileptiform discharges in the right occipital lobe. A prolonged video-EEG recording performed before, during, and after an acute attack ruled out ictal or postictal migraine. In this boy, an occipital lesion caused occipital epileptiform EEG discharges without seizures, probably prevented by the treatment. We speculate that occipital spikes, in turn, could have caused a chronic headache with features of migraine without aura. Occipital epileptiform discharges, even in absence of seizures, may trigger a genuine migraine, probably by means of either the trigeminovascular or brainstem system.

  13. Correlation of morphologic brain lesions with physiologic alterations and blood-brain barrier impairment in 3-nitropropionic acid toxicity in rats.

    PubMed

    Hamilton, B F; Gould, D H

    1987-01-01

    3-Nitropropionic acid (NPA), a toxin which irreversibly inhibits the Krebs cycle enzyme succinate dehydrogenase, causes severe neurologic disease and a specific pattern of morphologic brain damage when given subcutaneously to rats. To determine whether hypotension or hypoxemia were necessary for development of morphologic brain lesions in NPA neurotoxicity, systemic blood pressure and arterial blood gases were measured in NPA-intoxicated rats. The extent and distribution of albumin extravasation was examined by immunohistochemistry, and was compared to the extent and severity of morphological injury in the caudate-putamen. Neither hypotension nor hypoxemia were necessary for the development of morphologic injury in the brains of NPA-intoxicated rats. In fact, intoxicated rats had significantly higher systolic blood pressure and arterial blood oxygen than did controls. Arterial bicarbonate and pH were significantly lower in intoxicated rats than controls, however, suggesting that acidosis may be involved in the pathogenesis of NPA toxicity. When morphologic injury was severe, albumin extravasation was extensive occupying approximately 30%-80% of the lesion area in the caudate-putamen of NPA-intoxicated rats. When morphologic injury was mild, albumin extravasation was absent, or limited to small cuffs around individual capillaries (less than 1% of the lesion area). There was no leakage of albumin in the cerebral cortex, which was resistant to morphologic injury. It was concluded that leakage of protein-rich fluid into cerebral parenchyma from blood-brain barrier impairment is not responsible for the initiation of morphologic injury in NPA toxicity, but may contribute to the severity of injury later in the evolution of brain lesions.

  14. Usual and virtual reality video game-based physiotherapy for children and youth with acquired brain injuries.

    PubMed

    Levac, Danielle; Miller, Patricia; Missiuna, Cheryl

    2012-05-01

    Little is known about how therapists promote learning of functional motor skills for children with acquired brain injuries. This study explores physiotherapists' description of these interventions in comparison to virtual reality (VR) video game-based therapy. Six physiotherapists employed at a children's rehabilitation center participated in semi-structured interviews, which were transcribed and analyzed using thematic analysis. Physiotherapists describe using interventions that motivate children to challenge performance quality and optimize real-life functioning. Intervention strategies are influenced by characteristics of the child, parent availability to practice skills outside therapy, and therapist experience. VR use motivates children to participate, but can influence therapist use of verbal strategies and complicate interventions. Physiotherapists consider unique characteristics of this population when providing interventions that promote learning of motor skills. The VR technology has advantageous features but its use with this population can be challenging; further research is recommended.

  15. Estimating the diagnostic value of the trail making test for suboptimal effort in acquired brain injury rehabilitation patients.

    PubMed

    Powell, Matthew R; Locke, Dona E C; Smigielski, Jeffrey S; McCrea, Michael

    2011-01-01

    This investigation explored the classification accuracy of Trail Making Test (TMT; Reitan & Wolfson, 1992) indices for suboptimal effort in a sample of non-litigious acquired brain injury patients seeking outpatient rehabilitation. Patients who exhibited optimal effort completed TMT A and B faster than suboptimal effort patients. Although TMT A time to completion demonstrated adequate sensitivity to suboptimal effort, positive predictive value was fair to poor unless the base rate of suboptimal effort was inflated to 40%. TMT B time to completion yielded poor sensitivity and positive predictive value for suboptimal effort. While TMT A time to completion appears to have some value as a validity indicator, no TMT validity indicator should replace more precise symptom validity tests during neuropsychological assessment.

  16. Social cognition and its relationship to functional outcomes in patients with sustained acquired brain injury

    PubMed Central

    Ubukata, Shiho; Tanemura, Rumi; Yoshizumi, Miho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita

    2014-01-01

    Deficits in social cognition are common after traumatic brain injury (TBI). However, little is known about how such deficits affect functional outcomes. The purpose of this study was to investigate the relationship between social cognition and functional outcomes in patients with TBI. We studied this relationship in 20 patients with TBI over the course of 1 year post-injury. Patients completed neurocognitive assessments and social cognition tasks. The social cognition tasks included an emotion-perception task and three theory of mind tasks: the Faux Pas test, Reading the Mind in the Eyes (Eyes) test, and the Moving-Shapes paradigm. The Craig Handicap Assessment and Reporting Technique was used to assess functional outcomes. Compared with our database of normal subjects, patients showed impairments in all social cognition tasks. Multiple regression analysis revealed that theory of mind ability as measured by the Eyes test was the best predictor of the cognitive aspects of functional outcomes. The findings of this pilot study suggest that the degree to which a patient can predict what others are thinking is an important measure that can estimate functional outcomes over 1 year following TBI. PMID:25395854

  17. Difficulties in using everyday technology after acquired brain injury: a qualitative analysis.

    PubMed

    Engström, Ann-Louice Lövgreen; Lexell, Jan; Lund, Maria Larsson

    2010-09-01

    The aim of this study was to identify and describe the characteristics of the difficulties using everyday technology in persons with an aquired brain injury (ABI), and their experiences of how these difficulties influenced their life. Thirteen persons with an ABI were interviewed about their difficulties in using everyday technology and were observed in their use of technology. Data were analysed qualitatively with a constant comparative method. The results showed that the persons' experiences formed two categories: “A variety of combinations of difficulties in the use of everyday technology” and “Restrictions in life”. The difficulties identified were related not only to everyday technology itself but also to the interaction between the technology, the task, the person, and the environment. These difficulties influenced their experiences of restrictions in occupational performance, personal identification, and participation in society. The results emphasize that occupational therapists who design interventions for people with an ABI need to accommodate both the technology and other interacting aspects in order to overcome difficulties in using everyday technology.

  18. Impact of a family-focused intervention on self-concept after acquired brain injury.

    PubMed

    Kelly, Amber; Ponsford, Jennie; Couchman, Grace

    2013-01-01

    The present study examined the impact of a family inclusive intervention on the multidimensional self-concept of individuals with traumatic brain injury (TBI). Forty one individuals with TBI and a matched control group completed the Tennessee Self-Concept Scale: Second Edition (TSCS: 2), the Rosenberg Self-Esteem Scale (RSE), the Family Assessment Device (FAD), and the Hospital Anxiety and Depression Scale (HADS) on two occasions: at immediate contact (pre-group, T1) and post-group (3 months after initial contact, T2). Controls did not attend the intervention. Total scores for the measures, as well as scores on subdomains of self-concept, taken pre- and post-intervention for the TBI sample and at the same time for matched controls were compared between groups using Multivariate Analysis of Variance (MANOVA); followed by a series of repeated measures analyses of variance (ANOVA) to determine whether significant changes occurred. Contrary to the main aim, the use of a family-focused intervention did not result in self-concept improvement, either globally or across self-concept domains. Nor did mood or family functioning improve for the TBI sample. Measures remained stable across time for the controls. PMID:23656483

  19. Effect of antisera to beta and gamma goldfish brain proteins on the retention of a newly acquired behavior.

    PubMed

    Shashoua, V E; Moore, M E

    1978-06-16

    The metabolism of 3 brain cytoplasmic proteins (alpha, beta, and gamma) increases markedly when goldfish acquire a new pattern of behavior. Antisera specific to beta and beta + gamma proteins were prepared and injected into the fourth ventricle of the brains of trained animals at 8 and 24 h after the initiation of training. When tested 3 days later, such goldfish (N = 98) could not recall the training; whereas trained goldfish (N = 97) receiving non-immunized rabbit serum had complete recall of the behavior. Also no amnesia was obtained in control experiments in which trained goldfish were injected with an antiserum to a neural surface membrane protein NS-6. The fact that antisera to beta + gamma had no toxic effects was demonstrated by injecting them prior to training; no effects on the rate of acquisition and recall of the behavior was found. The antisera to beta + gamma were effective in inhibiting recall of the training when they were injected any time between 3 h up to 48 h after training; no effect was obtained at 72 h post training. These results are consistent with the hypothesis that beta and gamma might have some functional role in the plasticity of the CNS.

  20. Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens

    PubMed Central

    Nätt, Daniel; Lindqvist, Niclas; Stranneheim, Henrik; Lundeberg, Joakim; Torjesen, Peter A.; Jensen, Per

    2009-01-01

    Background Environmental challenges may affect both the exposed individuals and their offspring. We investigated possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring. Methodology/Principal Findings Parents were raised in an unpredictable (UL) or in predictable diurnal light rhythm (PL, 12∶12 h light∶dark). In a foraging test, UL birds pecked more at freely available, rather than at hidden and more attractive food, compared to birds from the PL group. Female offspring of UL birds, raised in predictable light conditions without parental contact, showed a similar foraging behavior, differing from offspring of PL birds. Furthermore, adult offspring of UL birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better, and were heavier than offspring of PL parents. Using cDNA microarrays, we found that the differential brain gene expression caused by the challenge was mirrored in the offspring. In particular, several immunoglobulin genes seemed to be affected similarly in both UL parents and their offspring. Estradiol levels were significantly higher in egg yolk from UL birds, suggesting one possible mechanism for these effects. Conclusions/Significance Our findings suggest that unpredictable food access caused seemingly adaptive responses in feeding behavior, which may have been transmitted to the offspring by means of epigenetic mechanisms, including regulation of immune genes. This may have prepared the offspring for coping with an unpredictable environment. PMID:19636381

  1. Word fluency in relation to severity of closed head injury, associated frontal brain lesions, and age at injury in children.

    PubMed

    Levin, H S; Song, J; Ewing-Cobbs, L; Chapman, S B; Mendelsohn, D

    2001-01-01

    Effects of closed head injury (CHI) severity, focal brain lesions, and age at injury on word fluency (WF) were studied longitudinally in 122 children (78 severe, 44 mild); 112 CHI patients (68 severe, 44 mild CHI) and 104 uninjured normal controls participated in a cross-sectional study. WF was measured by asking the child to generate as many words as possible beginning with a designated letter within 60 s, repeated for three letters. Intellectual ability, receptive vocabulary, narrative discourse, and word list recall were also measured. Results of the cross-sectional study showed a significant group effect with poorer WF in severe CHI than mild CHI and control groups. Growth curve analysis of longitudinal data revealed an interaction of age, follow-up interval, and CHI severity as WF recovery was slower after severe CHI in younger children as compared to severe CHI in older children or mild CHI in younger children. An interaction of left frontal lesion with age and interval indicated a more adverse effect on WF in older children. Right frontal lesion effect was nonsignificant and did not interact with age. Correlations of WF with receptive vocabulary, word list recall, and narrative discourse were moderate and weak with estimated intellectual ability. Differences in focal lesion effects after traumatic versus nontraumatic brain injury in children, the contribution of diffuse white matter injury, reduced opportunity for language development, and functional commitment of left frontal region at time of CHI were discussed. PMID:11163370

  2. Comparing the Effect of Botulinum Toxin Type B Injection at Different Dosages for Patient with Drooling due to Brain Lesion

    PubMed Central

    Park, Hee Dong; Park, Sang Jun; Choi, Yong Min

    2012-01-01

    Objective To investigate Botulinum toxin type B (BNT-B) injection's effect and duration depending on dose for patients with brain lesion. Method Twenty one patients with brain lesion and severe drooling were included and divided into three groups. All patients received conventional dysphagia therapy. Group A patients (n=7) received an injection of 1,500 units and group B patients (n=7) received an injection of 2,500 units of BNT-B in submandibular gland under ultrasound guidance. Group C patients (n=7) received conventional dysphagia therapy. Saliva secretion was assessed quantitatively at baseline and at weeks 1, 2, 4, 8, and 12. The severity and frequency of drooling was assessed using the Drooling Quotient (DQ) by patients and/or caregivers. Results Group A and B reported a distinct improvement of the symptoms within 2 weeks after BNT-B injection. Compared to the baseline, the mean amount of saliva decreased significantly throughout the study. However, there was no meaningful difference between the two groups. The greatest reductions were achieved at 2 weeks and lasted up to 8 weeks after BNT-B injection. Group C did not show any differences. Conclusion Local injection of 1,500 units of BNT-B into salivary glands under ultrasonic guidance proved to be a safe and effective dose for drooling in patient with brain lesion, as did 2,500 units. PMID:23342318

  3. The Italian version of the Brain Injury Rehabilitation Trust (BIRT) personality questionnaires: five new measures of personality change after acquired brain injury.

    PubMed

    Basagni, Benedetta; Navarrete, Eduardo; Bertoni, Debora; Cattran, Charlotte; Mapelli, Daniela; Oddy, Michael; De Tanti, Antonio

    2015-10-01

    The aim of this study was to describe the translation and adaptation of the BIRT personality questionnaires for the Italian population. This included the replication of validity testing and the collection of normative data. Following translation and adaptation according to cross-cultural guidelines, the questionnaires were administered as a pre-test to a sample of 20 healthy subjects and then to 10 patients. The questionnaires were then administered to 120 healthy subjects equally distributed by sex, education, and age, to collect normative data from an Italian population. The questionnaires were easily administered to both healthy subjects and patients. Statistical analysis on normative data was conducted to find the mean value for each questionnaire. This study lays the foundations for using a new instrument to assess behavioral changes after acquired brain injury on the Italian population. PMID:25981230

  4. The Italian version of the Brain Injury Rehabilitation Trust (BIRT) personality questionnaires: five new measures of personality change after acquired brain injury.

    PubMed

    Basagni, Benedetta; Navarrete, Eduardo; Bertoni, Debora; Cattran, Charlotte; Mapelli, Daniela; Oddy, Michael; De Tanti, Antonio

    2015-10-01

    The aim of this study was to describe the translation and adaptation of the BIRT personality questionnaires for the Italian population. This included the replication of validity testing and the collection of normative data. Following translation and adaptation according to cross-cultural guidelines, the questionnaires were administered as a pre-test to a sample of 20 healthy subjects and then to 10 patients. The questionnaires were then administered to 120 healthy subjects equally distributed by sex, education, and age, to collect normative data from an Italian population. The questionnaires were easily administered to both healthy subjects and patients. Statistical analysis on normative data was conducted to find the mean value for each questionnaire. This study lays the foundations for using a new instrument to assess behavioral changes after acquired brain injury on the Italian population.

  5. [Participation limitations following acquired brain damage: a pilot study on the relationship among functional disorders as well as personal and environmental context factors].

    PubMed

    Fries, W; Fischer, S

    2008-10-01

    The SGB IX, book 9 of the German social code (Sozialgesetzbuch, SGB), which is the legal basis of rehabilitation in Germany, states "participation and self-determined conduct of life" as the ultimate ambition of rehabilitation. This concept of participation and disability is based on the WHO model expressed in the International Classification of Functioning, Disability and Health (ICF). In this model, participation after the onset of a health problem may not only be infringed by disturbances in body functions and structures and the resulting activity limitations but also by contextual factors such as environmental and personal factors. In an outpatient neurological rehabilitation centre we prospectively rated for 49 patients the influence of these contextual factors as well as of objectively assessed functional/activity limitations on the overall disability. On average, functional/activity limitations were rated as contributing 58.4% (SD=17.2%), personal factors 26.4% (SD=12.7%) and environmental factors 15.1% (SD=11.2%) to the overall disability. The functional/activity limitations closely matched the expected limitations based on the underlying brain lesions. The degree of disability based on contextual factors was not related to activity limitations based on disturbances of body functions and structures. Also, demographic variables such as age, sex or chronicity were not significantly linked to contextual factors. Since contextual factors together contributed 41.6% (SD=17.2%) to the overall disability they have major relevance for the rehabilitation process, because they essentially decide on the extent to which abilities acquired by the rehabilitant during rehabilitation actually be transfered to his everyday life. Therefore, rehabilitation programmes need to include assessment and treatment of contextual factors. It hence is necessary to develop instruments to quantify contextual factors.

  6. Intravenous delivery of AAV9 vector mediates effective gene expression in ischemic stroke lesion and brain angiogenic foci

    PubMed Central

    Shen, Fanxia; Kuo, Robert; Milon-Camus, Marine; Han, Zhenying; Jiang, Lidan; Young, William L.; Su, Hua

    2012-01-01

    Background and Purpose Adeno-associated viral vector (AAV) is a powerful tool for delivering genes to treat brain diseases. Intravenous delivery of a self-complementary, but not single-stranded, AAV9 vector (ssAAV9) mediates robust gene expression in the adult brain. We tested if ssAAV9 effectively mediates gene expression in the ischemic stroke lesion and angiogenic foci. Methods Focal ischemic stroke was induced by permanent occlusion of the left middle cerebral artery (MCAO), and focal angiogenesis, by injecting an AAV vector expressing vascular endothelial growth factor (AAV-VEGF) into the basal ganglia. ssAAV vectors that have CMV promoter driving (AAV-CMVLacZ) or hypoxia response elements controlling (AAV-H9LacZ) LacZ expression were packaged in AAV9 or AAV1 capsid, and injected into mice through the jugular vein one hour after MCAO or four weeks after the induction of angiogenesis. LacZ gene expression was analyzed in the brain and other organs five days post LacZ vector-injection. Results LacZ expression was detected in the peri-infarct region of AAV9-CMVLacZ and AAV9-H9LacZ-injected MCAO mice, and the brain angiogenic foci of AAV9-CMVLacZ-injected mice. Minimum LacZ expression was detected in the brain of AAV1-CMVLacZ-injected mice. Robust LacZ expression was found in the liver and heart of AAV-CMVLacZ-injected mice, but not AAV9-H9LacZ-injected mice. Conclusion ssAAV9 vector could be a useful tool to deliver therapeutic genes to the ischemic stroke lesion or brain angiogenic foci. PMID:23250995

  7. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of 'virtual lesions'.

    PubMed Central

    Pascual-Leone, A; Bartres-Faz, D; Keenan, J P

    1999-01-01

    Transcranial magnetic stimulation (TMS) provides a non-invasive method of induction of a focal current in the brain and transient modulation of the function of the targeted cortex. Despite limited understanding about focality and mechanisms of action, TMS provides a unique opportunity of studying brain-behaviour relations in normal humans. TMS can enhance the results of other neuroimaging techniques by establishing the causal link between brain activity and task performance, and by exploring functional brain connectivity. PMID:10466148

  8. CT-Based Attenuation Correction in Brain SPECT/CT Can Improve the Lesion Detectability of Voxel-Based Statistical Analyses

    PubMed Central

    Kato, Hiroki; Shimosegawa, Eku; Fujino, Koichi; Hatazawa, Jun

    2016-01-01

    Background Integrated SPECT/CT enables non-uniform attenuation correction (AC) using built-in CT instead of the conventional uniform AC. The effect of CT-based AC on voxel-based statistical analyses of brain SPECT findings has not yet been clarified. Here, we assessed differences in the detectability of regional cerebral blood flow (CBF) reduction using SPECT voxel-based statistical analyses based on the two types of AC methods. Subjects and Methods N-isopropyl-p-[123I]iodoamphetamine (IMP) CBF SPECT images were acquired for all the subjects and were reconstructed using 3D-OSEM with two different AC methods: Chang’s method (Chang’s AC) and the CT-based AC method. A normal database was constructed for the analysis using SPECT findings obtained for 25 healthy normal volunteers. Voxel-based Z-statistics were also calculated for SPECT findings obtained for 15 patients with chronic cerebral infarctions and 10 normal subjects. We assumed that an analysis with a higher specificity would likely produce a lower mean absolute Z-score for normal brain tissue, and a more sensitive voxel-based statistical analysis would likely produce a higher absolute Z-score for in old infarct lesions, where the CBF was severely decreased. Results The inter-subject variation in the voxel values in the normal database was lower using CT-based AC, compared with Chang’s AC, for most of the brain regions. The absolute Z-score indicating a SPECT count reduction in infarct lesions was also significantly higher in the images reconstructed using CT-based AC, compared with Chang’s AC (P = 0.003). The mean absolute value of the Z-score in the 10 intact brains was significantly lower in the images reconstructed using CT-based AC than in those reconstructed using Chang’s AC (P = 0.005). Conclusions Non-uniform CT-based AC by integrated SPECT/CT significantly improved sensitivity and the specificity of the voxel-based statistical analyses for regional SPECT count reductions, compared with

  9. Automated detection and quantification of multiple sclerosis lesions in MR volumes of the brain

    NASA Astrophysics Data System (ADS)

    Mitchell, Ross; Karlik, Stephen J.; Lee, Donald H.; Fenster, Aaron

    1992-06-01

    MRI is the principle technique for the diagnosis of multiple sclerosis. However, manually quantifying the number and extent of lesions in MR images is arduous. Therefore, we are developing a computerized 3-D quantitative system to determine the lesions' extent and their changes in time. Our system uses proton density (PD) and T2 weighted MR volumes. A 2-D histogram showing the frequency of voxels with particular PD and T2 weighted intensities reveals that white matter, grey matter (GM), and cerebro-spinal fluid voxels correspond to distinct clusters in this histogram and can be classified on this basis. However, many true MS lesion voxels have PD and T2 weighted intensities similar to GM. Therefore, on the basis of location in the histogram alone, it is difficult to differentiate all lesions voxels from GM voxels. However, some lesions have a distinctive `peak' in the 2-D histogram which can be used to identify them successfully. Using this system it is possible to assess and monitor changes in time for these lesions. To demonstrate this ability, four MR examinations of a single chronic-progressive MS patient obtained over a 510 day period were analyzed using our system. Three-dimensional volume rendering and measurement of the results clearly shows changes in lesion shape, position, and size.

  10. Objectively measured physical activity, brain atrophy, and white matter lesions in older adults with mild cognitive impairment.

    PubMed

    Doi, Takehiko; Makizako, Hyuma; Shimada, Hiroyuki; Tsutsumimoto, Kota; Hotta, Ryo; Nakakubo, Sho; Park, Hyuntae; Suzuki, Takao

    2015-02-01

    Physical activity may help to prevent or delay brain atrophy. Numerous studies have shown associations between physical activity and age-related changes in the brain. However, most of these studies involved self-reported physical activity, not objectively measured physical activity. Therefore, the aim of this study was to examine the association between objectively measured physical activity, as determined using accelerometers, and brain magnetic resonance imaging (MRI) measures in older adults with mild cognitive impairment (MCI). We analyzed 323 older subjects with MCI (mean age 71.4 years) who were recruited from the participants of the Obu Study of Health Promotion for the Elderly. We recorded demographic data and measured physical activity using a tri-axial accelerometer. Physical activity was classified as light-intensity physical activity (LPA) or moderate-to-vigorous physical activity (MVPA). Brain atrophy and the severity of white matter lesions (WML) were determined by MRI. Low levels of LPA and MVPA were associated with severe WML. Subjects with severe WML were older, had lower mobility, and had greater brain atrophy than subjects with mild WML (all P<0.05). Multivariate analysis revealed that more MVPA was associated with less brain atrophy, even after adjustment for WML (β=-0.126, P=0.015), but LPA was not (β=-0.102, P=0.136). Our study revealed that objectively measured physical activity, especially MVPA, was associated with brain atrophy in MCI subjects, even after adjusting for WML. These findings support the hypothesis that physical activity plays a crucial role in maintaining brain health.

  11. Excessive disgust caused by brain lesions or temporary inactivations: Mapping hotspots of nucleus accumbens and ventral pallidum

    PubMed Central

    Ho, Chao-Yi; Berridge, Kent C.

    2014-01-01

    Disgust is a prototypical type of negative affect. In animal models of excessive disgust, only a few brain sites are known in which localized dysfunction (lesions or neural inactivations) can induce intense ‘disgust reactions’ (e.g., gapes) to a normally pleasant sensation such as sweetness. Here we aimed to map forebrain candidates more precisely to identify where either local neuronal damage (excitotoxin lesions) or local pharmacological inactivation (muscimol-baclofen microinjections) caused rats to emit excessive sensory disgust reactions to sucrose. Our study compared subregions of nucleus accumbens shell, ventral pallidum, lateral hypothalamus and adjacent extended amygdala. Results indicated the posterior half of ventral pallidum to be the only forebrain site where intense sensory disgust gapes to sucrose were induced by both lesions and temporary inactivations (this site was previously identified as a hedonic hotspot for enhancements of sweetness ‘liking’). By comparison, for the nucleus accumbens, temporary GABA inactivations in the caudal half of the medial shell also generated sensory disgust but lesions never did at any site. Further, even inactivations failed to induce disgust in the rostral half of accumbens shell (which also contains a hedonic hotspot). In other structures, neither lesions nor inactivations induced disgust as long as the posterior ventral pallidum remained spared. We conclude that the posterior ventral pallidum is an especially crucial hotspot for producing excessive sensory disgust by local pharmacological/lesion dysfunction. By comparison, the nucleus accumbens appears to segregate sites for pharmacological disgust induction and hedonic enhancement into separate posterior versus rostral halves of medial shell. PMID:25229197

  12. Is it time to act? The potential of acceptance and commitment therapy for psychological problems following acquired brain injury.

    PubMed

    Kangas, Maria; McDonald, Skye

    2011-04-01

    Behaviour therapies have a well-established, useful tradition in psychological treatments and have undergone several major revisions. Acceptance and Commitment Therapy (ACT) and mindfulness-based approaches are considered a third wave of behavioural therapies. Emerging evidence for ACT has demonstrated that this paradigm has promising effectiveness in improving functionality and well-being in a variety of populations that have psychological disturbances and/or medical problems. In this review we first evaluate traditional cognitive behavioural therapy (CBT) interventions used to manage psychological problems in distressed individuals who have sustained an acquired brain injury (ABI). We provide an overview of the ACT paradigm and the existent evidence base for this intervention. A rationale is outlined for why ACT-based interventions may have potential utility in assisting distressed individuals who have sustained a mild to moderate ABI to move forward with their lives. We also review emerging evidence that lends preliminary support to the implementation of acceptance and mindfulness-based interventions in the rehabilitation of ABI patient groups. On the basis of existent literature, we recommend that it is an opportune time for forthcoming research to rigorously test the efficacy of ACT-based interventions in facilitating ABI patient groups to re-engage in living a valued and meaningful life, in spite of their neurocognitive and physical limitations. The promising utility of testing the efficacy of the ACT paradigm in the context of multimodal rehabilitation programmes for ABI populations is also addressed.

  13. Can, Want and Try: Parents’ Viewpoints Regarding the Participation of Their Child with an Acquired Brain Injury

    PubMed Central

    Thompson, Melanie; Elliott, Catherine; Willis, Claire; Ward, Roslyn; Falkmer, Marita; Falkmer, Torbjӧrn; Gubbay, Anna; Girdler, Sonya

    2016-01-01

    Background Acquired brain injury (ABI) is a leading cause of permanent disability, currently affecting 20,000 Australian children. Community participation is essential for childhood development and enjoyment, yet children with ABI can often experience barriers to participation. The factors which act as barriers and facilitators to community participation for children with an ABI are not well understood. Aim To identify the viewpoints of parents of children with an ABI, regarding the barriers and facilitators most pertinent to community participation for their child. Methods Using Q-method, 41 parents of children with moderate/severe ABI sorted 37 statements regarding barriers and facilitators to community participation. Factor analysis identified three viewpoints. Results This study identified three distinct viewpoints, with the perceived ability to participate decreasing with a stepwise trend from parents who felt their child and family “can” participate in viewpoint one, to “want” in viewpoint two and “try” in viewpoint three. Conclusions Findings indicated good participation outcomes for most children and families, however some families who were motivated to participate experienced significant barriers. The most significant facilitators included child motivation, supportive relationships from immediate family and friends, and supportive community attitudes. The lack of supportive relationships and attitudes was perceived as a fundamental barrier to community participation. Significance This research begins to address the paucity of information regarding those factors that impact upon the participation of children with an ABI in Australia. Findings have implications for therapists, service providers and community organisations. PMID:27367231

  14. Abacus in the brain: a longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion.

    PubMed

    Tanaka, Satoshi; Seki, Keiko; Hanakawa, Takashi; Harada, Madoka; Sugawara, Sho K; Sadato, Norihiro; Watanabe, Katsumi; Honda, Manabu

    2012-01-01

    The abacus, a traditional physical calculation device, is still widely used in Asian countries. Previous behavioral work has shown that skilled abacus users perform rapid and precise mental arithmetic by manipulating a mental representation of an abacus, which is based on visual imagery. However, its neurophysiological basis remains unclear. Here, we report the case of a patient who was a good abacus user, but transiently lost her "mental abacus" and superior arithmetic performance after a stroke owing to a right hemispheric lesion including the dorsal premotor cortex (PMd) and inferior parietal lobule (IPL). Functional magnetic resonance imaging experiments were conducted 6 and 13 months after her stroke. In the mental calculation task, her brain activity was shifted from the language-related areas, including Broca's area and the left dorsolateral prefrontal and IPLs, to the visuospatial-related brain areas including the left superior parietal lobule (SPL), according to the recovery of her arithmetic abilities. In the digit memory task, activities in the bilateral SPL, and right visual association cortex were also observed after recovery. The shift of brain activities was consistent with her subjective report that she was able to shift the calculation strategy from linguistic to visuospatial as her mental abacus became stable again. In a behavioral experiment using an interference paradigm, a visual presentation of an abacus picture, but not a human face picture, interfered with the performance of her digit memory, confirming her use of the mental abacus after recovery. This is the first case report on the impairment of the mental abacus by a brain lesion and on recovery-related brain activity. We named this rare case "abacus-based acalculia." Together with previous neuroimaging studies, the present result suggests an important role for the PMd and parietal cortex in the superior arithmetic ability of abacus users.

  15. Impact of cysts during radiofrequency lesioning in deep brain structures—a simulation and in vitro study

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.; Loyd, Dan; Wårdell, Karin; Wren, Joakim

    2007-06-01

    Radiofrequency lesioning of nuclei in the thalamus or the basal ganglia can be used to reduce symptoms caused by e.g. movement disorders such as Parkinson's disease. Enlarged cavities containing cerebrospinal fluid (CSF) are commonly present in the basal ganglia and tend to increase in size and number with age. Since the cavities have different electrical and thermal properties compared with brain tissue, it is likely that they can affect the lesioning process and thereby the treatment outcome. Computer simulations using the finite element method and in vitro experiments have been used to investigate the impact of cysts on lesions' size and shape. Simulations of the electric current and temperature distributions as well as convective movements have been conducted for various sizes, shapes and locations of the cysts as well as different target temperatures. Circulation of the CSF caused by the heating was found to spread heat effectively and the higher electric conductivity of the CSF increased heating of the cyst. These two effects were together able to greatly alter the resulting lesion size and shape when the cyst was in contact with the electrode tip. Similar results were obtained for the experiments.

  16. Detection of Intranasally Delivered Bone Marrow-Derived Mesenchymal Stromal Cells in the Lesioned Mouse Brain: A Cautionary Report

    PubMed Central

    Chartoff, Elena H.; Damez-Werno, Diane; Sonntag, Kai C.; Hassinger, Linda; Kaufmann, Daniel E.; Peterson, Jesse; McPhie, Donna; Cataldo, Anne M.; Cohen, Bruce M.

    2011-01-01

    Bone marrow-derived mesenchymal stromal cells (MSCs) hold promise for autologous treatment of neuropathologies. Intranasal delivery is relatively noninvasive and has recently been reported to result in transport of MSCs to the brain. However, the ability of MSCs to migrate from nasal passages to sites of neuropathology and ultimately survive has not been fully examined. In this paper, we harvested MSCs from transgenic mice expressing enhanced green fluorescent protein (cells hereafter referred to as MSC-EGFP) and delivered them intranasally to wild-type mice sustaining mechanical lesions in the striatum. Using fluorescent, colorimetric, and ultrastructural detection methods, GFP-expressing cells were undetectable in the brain from 3 hours to 2 months after MSC delivery. However, bright autofluorescence that strongly resembled emission from GFP was observed in the olfactory bulb and striatum of lesioned control and MSC-EGFP-treated mice. In a control experiment, we directly implanted MSC-EGFPs into the mouse striatum and detected robust GFP expression 1 and 7 days after implantation. These findings suggest that—under our conditions—intranasally delivered MSC-EGFPs do not survive or migrate in the brain. Furthermore, our observations highlight the necessity of including appropriate controls when working with GFP as a cellular marker. PMID:22190964

  17. A case of generalized auditory agnosia with unilateral subcortical brain lesion.

    PubMed

    Suh, Hyee; Shin, Yong-Il; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-12-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia.

  18. Early (N170/M170) Face-Sensitivity Despite Right Lateral Occipital Brain Damage in Acquired Prosopagnosia

    PubMed Central

    Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno

    2011-01-01

    Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect

  19. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].

    PubMed

    Šaponjić, Jasna

    2011-01-01

    Many complex behavioral phenomena such as sleep can not be explained without multidisciplinary experimental approach, and complementay approaches in the animal models "in vivo" and human studies. Electrophysiological, pharmacological, anatomical and immunohistochemical techniques, and particularly stereotaxically guided local nanovolume microinjection technique, enable us to selectively stimulate and lesion the brain nuclei or their specific neuronal subpopulation, and to reslove the mechanisms of certain brain structure regulatory role, and its afferent-efferent connectivity within the brain. Local stereotaxically guided nanovolume microinjection technique enable us to investigate in animals the brain nulcei functional topography with a resolution of < or = 10 microM, and at a level of 300 microM of effective radius within the brain tissue "in vivo". The advantage of local glutamate or DL- homocysteic acid microinjection stimulation or local excitotoxic (glutamate, ibotenic acid, IgG saporin) microinjection lesion over electrical stimulation/lesion of the same neuronal population are that they reduces the likelihood of activation/lesion of fibers of passage. Much of our knowledge of the sleep neuronal substrates is based on animal studies primarly in cat and rat. Selective pharmacological stimulation of the pedunculopontine tegmentum (PPT) in freely moving rat, using glutamate microinjection, proved that excitation of its cholinergic part is necessary for induction of wakefulness or REM (Datta S, 2001). Local nanovolume glutamate microinjection into PPT of anesthetized rats (Saponjić et al, 2003a) additionally evidenced P-wave and respiratory regulating neuronal subpopulation within the cholinergic compartment of PPT (apneogenic neuronal zone). Local microinjection of serotonin and noradrenaline into cholinergic PPT apneogenic zone evidenced their opposed impact through PPT on breathing, in contrast to their convergent regulatory role in behavioral state control

  20. Alterations in the central vasopressin and oxytocin axis after lesion of a brain osmotic sensory region.

    PubMed

    Oliveira, Gabriela R; Franci, Celso R; Rodovalho, Gisele V; Franci, Janete A A; Morris, Mariana; Rocha, Maria José A

    2004-07-15

    The anteroventral region of the third ventricle (AV3V) is critical in mediating osmotic sensitivity. AV3V lesions increase plasma osmolality and block osmotic-induced vasopressin (VP) and oxytocin (OT) secretion. The aim was to evaluate the effects of AV3V lesions on neurosecretion under control/water replete conditions and after 48 h dehydration. The focus was on central peptidergic changes with measurement of OT and VP content in the hypothalamic paraventricular (PVN) and supraoptic (OT) regions and the posterior pituitary. AV3V-lesioned rats exhibited an elevated plasma osmolality and higher OT content in SON and PVN. There was an increase in VP content in PVN, but no change in SON. As predicted, the plasma peptide response to dehydration was absent in lesioned animals. However, dehydration produced depletion in posterior pituitary VP in lesioned animals with no change in OT. No changes in nuclear VP and OT levels were seen after dehydration. These results demonstrate that AV3V lesions alter the VP and OT neurosecretory system, seen as a blockade of osmotic-induced release and an increase in basal nuclear peptide content. The data indicate that interruption of the osmotic sensory system affects the central neurosecretory axis, resulting in a backup in content and likely changes in synthesis and processing.

  1. Manganese uptake and distribution in the brain after methyl bromide-induced lesions in the olfactory epithelia.

    PubMed

    Thompson, Khristy J; Molina, Ramon M; Donaghey, Thomas; Savaliya, Sandeep; Schwob, James E; Brain, Joseph D

    2011-03-01

    Manganese (Mn) is an essential nutrient with potential neurotoxic effects. Mn deposited in the nose is apparently transported to the brain through anterograde axonal transport, bypassing the blood-brain barrier. However, the role of the olfactory epithelial cells in Mn transport from the nasal cavity to the blood and brain is not well understood. We utilized the methyl bromide (MeBr) lesion model wherein the olfactory epithelium fully regenerates in a time-dependent and cell type-specific manner over the course of 6-8 weeks postinjury. We instilled (54)MnCl(2) intranasally at different recovery periods to study the role of specific olfactory epithelial cell types in Mn transport. (54)MnCl(2) was instilled at 2, 4, 7, 21, and 56 days post-MeBr treatment. (54)Mn concentrations in the blood were measured over the first 4-h period and in the brain and other tissues at 7 days postinstillation. Age-matched control rats were similarly studied at 2 and 56 days. Blood and tissue (54)Mn levels were reduced initially but returned to control values by day 7 post-MeBr exposure, coinciding with the reestablishment of sustentacular cells. Brain (54)Mn levels also decreased but returned to control levels only by 21 days, the period near the completion of neuronal regeneration/bulbar reinnervation. Our data show that Mn transport to the blood and brain temporally correlated with olfactory epithelial regeneration post-MeBr injury. We conclude that (1) sustentacular cells are necessary for Mn transport to the blood and (2) intact axonal projections are required for Mn transport from the nasal cavity to the olfactory bulb and brain.

  2. Diagnostic Value of Elevated D-Dimer Level in Venous Thromboembolism in Patients With Acute or Subacute Brain Lesions

    PubMed Central

    Kim, Yeon Jin; Im, Sun; Jang, Yong Jun; Park, So Young; Sohn, Dong Gyun

    2015-01-01

    Objective To define the risk factors that influence the occurrence of venous thromboembolism (VTE) in patients with acute or subacute brain lesions and to determine the usefulness of D-dimer levels for VTE screening of these patients. Methods Medical data from January 2012 to December 2013 were retrospectively reviewed. Mean D-dimer levels in those with VTE versus those without VTE were compared. Factors associated with VTE were analyzed and the odds ratios (ORs) were calculated. The D-dimer cutoff value for patients with hemiplegia was defined using a receiver operating characteristic (ROC) curve. Results Of 117 patients with acute or subacute brain lesions, 65 patients with elevated D-dimer levels (mean, 5.1±5.8 mg/L; positive result >0.55 mg/L) were identified. Logistic regression analysis showed that the risk of VTE was 3.9 times higher in those with urinary tract infections (UTIs) (p=0.0255). The risk of VTE was 4.5 times higher in those who had recently undergone surgery (p=0.0151). Analysis of the ROC showed 3.95 mg/L to be the appropriate D-dimer cutoff value for screening for VTE (area under the curve [AUC], 0.63; 95% confidence interval [CI], 0.5-0.8) in patients with acute or subacute brain lesions. This differs greatly from the conventional D-dimer cutoff value of 0.55 mg/L. D-dimer levels less than 3.95 mg/L in the absence of surgery showed a negative predictive value of 95.8% (95% CI, 78.8-99.8). Conclusion Elevated D-dimer levels alone have some value in VTE diagnosis. However, the concomitant presence of UTI or a history of recent surgery significantly increased the risk of VTE in patients with acute or subacute brain lesions. Therefore, a different D-dimer cutoff value should be applied in these cases. PMID:26798616

  3. Anterior thalamic nuclei lesions in rats disrupt markers of neural plasticity in distal limbic brain regions

    PubMed Central

    Dumont, J.R.; Amin, E.; Poirier, G.L.; Albasser, M.M.; Aggleton, J.P.

    2012-01-01

    In two related experiments, neurotoxic lesions were placed in the anterior thalamic nuclei of adult rats. The rats were then trained on behavioral tasks, immediately followed by the immunohistochemical measurement of molecules linked to neural plasticity. These measurements were made in limbic sites including the retrosplenial cortex, the hippocampal formation, and parahippocampal areas. In Experiment 1, rats with unilateral anterior thalamic lesions explored either novel or familiar objects prior to analysis of the immediate-early gene zif268. The lesions reduced zif268 activity in the granular retrosplenial cortex and postsubiculum. Exploring novel objects resulted in local changes of hippocampal zif268, but this change was not moderated by anterior thalamic lesions. In Experiment 2, rats that had received either bilateral anterior thalamic lesions or control surgeries were exposed to novel room cues while running in the arms of a radial maze. In addition to zif268, measurements of c-AMP response element binding protein (CREB), phosphorylated CREB (pCREB), and growth associated protein43 (GAP-43) were made. As before, anterior thalamic lesions reduced zif268 in retrosplenial cortex and postsubiculum, but there were also reductions of pCREB in granular retrosplenial cortex. Again, the hippocampus did not show lesion-induced changes in zif268, but there were differential effects on CREB and pCREB consistent with reduced levels of hippocampal CREB phosphorylation following anterior thalamic damage. No changes in GAP-43 were detected. The results not only point to changes in several limbic sites (retrosplenial cortex and hippocampus) following anterior thalamic damage, but also indicate that these changes include decreased levels of pCREB. As pCREB is required for neuronal plasticity, partly because of its regulation of immediate early-gene expression, the present findings reinforce the concept of an ‘extended hippocampal system’ in which hippocampal function is

  4. Dichotic listening ear preference after childhood cerebral lesions.

    PubMed

    Woods, B T

    1984-01-01

    Patients with unilateral (right or left) nonprogressive cerebral lesions acquired in infancy (before age one) or childhood (ages one to fifteen) were given a dichotic listening test. The two groups of patients with the childhood lesions showed the pattern of ear preference typically seen after hemispheric lesions in adults; loss of right ear preference after left hemisphere (LH) lesions, and enhanced right ear preference after right hemisphere (RH) lesions. The two groups of patients with the very early lesions failed to show any consistent ear preference or to differ from one another in ear preference. It is postulated that this lack of a consistent lesion effect following very early lateralized brain lesions is due to the greater degree of functional reorganization that takes place after such lesions. PMID:6462424

  5. Reduction in Serum Aquaporin-4 Antibody Titers During Development of a Tumor-Like Brain Lesion in a Patient With Neuromyelitis Optica: A Serum Antibody–Consuming Effect?

    PubMed Central

    Aboulenein-Djamshidian, Fahmy; Höftberger, Romana; Waters, Patrick; Krampla, Wolfgang; Lassmann, Hans; Budka, Herbert; Vincent, Angela; Kristoferitsch, Wolfgang

    2015-01-01

    Abstract Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the CNS with severe involvement of the optic nerve and spinal cord. Highly specific serum IgG autoantibodies (NMO-IgG) that react with aquaporin-4 (AQP4), the most abundant CNS water channel protein, are found in patients with NMO. However, in vivo evidence combining the results of AQP4 antibody serum levels and brain pathology is lacking. We report a patient with NMO whose AQP4 antibody levels decreased simultaneously with clinical deterioration caused by the development of a tumor-like brain lesion. In the seminecrotic biopsied brain lesion, there was activated complement complex, whereas only very scattered immunoreactivity to AQP4 protein was detectable. The decrease in serum AQP4 antibody levels and the loss of AQP4 in the tumor-like lesion could represent a “serum antibody–consuming effect” during lesion formation. PMID:25668569

  6. Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity

    ERIC Educational Resources Information Center

    Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues

    2007-01-01

    The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…

  7. Traumatic Brain Injury. Fact Sheet = Lesion Cerebral Traumatica (TBI). Hojas Informativas Sobre Discapacidades.

    ERIC Educational Resources Information Center

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet, written in both English and Spanish, offers general information about traumatic brain injury. Information includes a definition, incidence, individual characteristics, and educational implications. The signs of traumatic brain injury are listed and include physical disabilities, difficulties with thinking, and social, behavioral,…

  8. Remote effect of deep-seated vascular brain lesions on cerebral blood flow

    SciTech Connect

    Attig, E.; Capon, A.; Demeurisse, G.; Verhas, M. )

    1990-11-01

    We measured regional cerebral blood flow using the xenon-133 inhalation method, at approximately 1 month after onset, in 60 stroke patients who had no evidence of major carotid artery stenosis or occlusion. Their single lesions (43 infarcts and 17 hematomas) were located in the capsulothalamolenticular region, sparing the cortex. Hemispheric mean cerebral blood flow was reduced on the side of the lesion in 25 patients and on both sides in 20. Regional hypoperfusion was observed in 46 patients (ipsilaterally in 34, bilaterally in 10, and contralaterally in two). Regional hypoperfusion was observed most frequently in the frontal lobe, particularly in the motor and premotor cortices of the prerolandic area. The 46 patients with regional hypoperfusion were compared with the 14 patients without regional hypoperfusion, considering the size and location of the lesion as well as the functional and analytic motor performances. As a rule, the lesion was slightly smaller and more posterior and the functional (p less than 0.001) and analytic (p less than 0.05) motor performances were significantly better in the 14 patients without regional hypoperfusion. Since the xenon-133 inhalation method examines cortical blood flow, we can attribute blood flow reductions resulting from deep-seated lesions to a functional depression akin to diaschisis. Interpretation of the clinical consequences and pathogenesis of this phenomenon requires further sequential and pathologic studies.

  9. Evaluation of use of reading comprehension strategies to improve reading comprehension of adult college students with acquired brain injury.

    PubMed

    Griffiths, Gina G; Sohlberg, McKay Moore; Kirk, Cecilia; Fickas, Stephen; Biancarosa, Gina

    2016-01-01

    Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI. Despite the rising need, empirical evaluation of reading comprehension interventions for adults with ABI is scarce. This study used a within-subject design to evaluate whether adult college students with ABI with no more than moderate cognitive impairments benefited from using reading comprehension strategies to improve comprehension of expository text. Integrating empirical support from the cognitive rehabilitation and special education literature, the researchers designed a multi-component reading comprehension strategy package. Participants read chapters from an introductory-level college anthropology textbook in two different conditions: strategy and no-strategy. The results indicated that reading comprehension strategy use was associated with recall of more correct information units in immediate and delayed free recall tasks; more efficient recall in the delayed free recall task; and increased accuracy recognising statements from a sentence verification task designed to reflect the local and global coherence of the text. The findings support further research into using reading comprehension strategies as an intervention approach for the adult ABI population. Future research needs include identifying how to match particular reading comprehension strategies to individuals, examining whether reading comprehension performance improves further through the incorporation of systematic training, and evaluating texts from a range of disciplines and genres. PMID:25712402

  10. A Systematic Review of Hospital-to-School Reintegration Interventions for Children and Youth with Acquired Brain Injury

    PubMed Central

    Lindsay, Sally; Hartman, Laura R.; Reed, Nick; Gan, Caron; Thomson, Nicole; Solomon, Beverely

    2015-01-01

    Objectives We reviewed the literature on interventions that aimed to improve hospital-to-school reintegration for children and youth with acquired brain injury (ABI). ABI is the leading cause of disability among children and youth. A successful hospital-to-school reintegration process is essential to the rehabilitative process. However, little is known about the effective components of of such interventions. Methods and findings Our research team conducted a systematic review, completing comprehensive searches of seven databases and selected reference lists for relevant articles published in a peer-reviewed journal between 1989 and June 2014. We selected articles for inclusion that report on studies involving: a clinical population with ABI; sample had an average age of 20 years or younger; an intentional structured intervention affecting hospital-to-school transitions or related components; an experimental design; and a statistically evaluated health outcome. Two independent reviewers applied our inclusion criteria, extracted data, and rated study quality. A meta-analysis was not feasible due to the heterogeneity of the studies reported. Of the 6933 articles identified in our initial search, 17 articles (reporting on 350 preadolescents and adolescents, aged 4–19, (average age 11.5 years, SD: 2.21) met our inclusion criteria. They reported on interventions varying in number of sessions (one to 119) and session length (20 minutes to 4 hours). The majority of interventions involved multiple one-to-one sessions conducted by a trained clinician or educator, homework activities, and parental involvement. The interventions were delivered through different settings and media, including hospitals, schools, and online. Although outcomes varied (with effect sizes ranging from small to large), 14 of the articles reported at least one significant improvement in cognitive, social, psychological, or behavioral functioning or knowledge of ABI. Conclusions Cognitive, behavioral

  11. Evaluation of use of reading comprehension strategies to improve reading comprehension of adult college students with acquired brain injury.

    PubMed

    Griffiths, Gina G; Sohlberg, McKay Moore; Kirk, Cecilia; Fickas, Stephen; Biancarosa, Gina

    2016-01-01

    Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI. Despite the rising need, empirical evaluation of reading comprehension interventions for adults with ABI is scarce. This study used a within-subject design to evaluate whether adult college students with ABI with no more than moderate cognitive impairments benefited from using reading comprehension strategies to improve comprehension of expository text. Integrating empirical support from the cognitive rehabilitation and special education literature, the researchers designed a multi-component reading comprehension strategy package. Participants read chapters from an introductory-level college anthropology textbook in two different conditions: strategy and no-strategy. The results indicated that reading comprehension strategy use was associated with recall of more correct information units in immediate and delayed free recall tasks; more efficient recall in the delayed free recall task; and increased accuracy recognising statements from a sentence verification task designed to reflect the local and global coherence of the text. The findings support further research into using reading comprehension strategies as an intervention approach for the adult ABI population. Future research needs include identifying how to match particular reading comprehension strategies to individuals, examining whether reading comprehension performance improves further through the incorporation of systematic training, and evaluating texts from a range of disciplines and genres.

  12. Lost Polarization of Aquaporin4 and Dystroglycan in the Core Lesion after Traumatic Brain Injury Suggests Functional Divergence in Evolution

    PubMed Central

    Liu, Hui; Qiu, Gou ping; Zhuo, Fei; Yu, Wei hua; Sun, Shan quan; Li, Fen hong; Yang, Mei

    2015-01-01

    Objective. To understand how aquaporin4 (AQP4) and dystroglycan (DG) polarized distribution change and their roles in brain edema formation after traumatic brain injury (TBI). Methods. Brain water content, Evans blue detection, real-time PCR, western blot, and immunofluorescence were used. Results. At an early stage of TBI, AQP4 and DG maintained vessel-like pattern in perivascular endfeet; M1, M23, and M1/M23 were increased in the core lesion. At a later stage of TBI, DG expression was lost in perivascular area, accompanied with similar but delayed change of AQP4 expression; expression of M1, M23, and DG and the ratio of M1/M2 were increased. Conclusion. At an early stage, AQP4 and DG maintained the polarized distribution. Upregulated M1 and M23 could retard the cytotoxic edema formation. At a later stage AQP4 and DG polarized expression were lost from perivascular endfeet and induced the worst cytotoxic brain edema. The alteration of DG expression could regulate that of AQP4 expression after TBI. PMID:26583111

  13. Chronic neuroborreliosis by B. garinii: an unusual case presenting with epilepsy and multifocal brain MRI lesions.

    PubMed

    Matera, Giovanni; Labate, Angelo; Quirino, Angela; Lamberti, Angelo G; BorzÃ, Giuseppe; Barreca, Giorgio S; Mumoli, Laura; Peronace, Cinzia; Giancotti, Aida; Gambardella, Antonio; FocÃ, Alfredo; Quattrone, Aldo

    2014-07-01

    Late/chronic Lyme neuroborreliosis (LNB) represents a challenging entity whose diagnosis requires a combination of clinical and laboratory findings, surrounded by much controversy. Here we describe a patient who had a peculiar form of late LNB with CNS lesions shown by magnetic resonance imaging (MRI), and epileptic seizures, etiologically diagnosed by conventional and molecular methods. The current case provides evidence that patients presenting with epileptic seizures and MRI-detected multifocal lesions, particularly when a facial palsy has also occurred, should raise the suspicion of LNB, as this diagnosis has important implications for treatment and prognosis. PMID:25180856

  14. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study

    PubMed Central

    Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B.L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we use an event-related design, which allowed us to isolate trial related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single-subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. PMID:19819000

  15. The brain--the organ of the psychic (the lesions/ the defense mechanisms).

    PubMed

    Rotarescu, Virginia; Ciurea, A V

    2010-01-01

    The article is based on the Leopold Szondi theory (March 11, 1893 - January 24, 1986), who was a Hungarian psychiatrist. He is known for the psychological tool that bears his name, the Szondi test. He developed a form of depth psychology that had some prominence in Europe in the mid-20th century, but has been ignored for the most part), the study seeks to correlate the szondian test results with the imagistic ones on a wide-range pathology. In the Neurosurgery Department, patients are investigated using modern exploration methods (MRI, CTscan, and computed EEG, etc.) in order to identify possible somatic lesions. The study's subjects selected during 2000-2004 from the patients admitted and investigated for neurosurgical conditions; they were divided into two subgroups, based on whether the organic lesions were or were not present (the independent variable). The exclusion criterion was a lesion due to external causes. Statistically meaningful there are seven types of Ego profiles, in relation with the lesion: the archaic ego [0 -], the inhibited ego [- +], the adaptive ego [- -], the narcissist ego [+ +], the identified ego [+/- 0], the fugitive ego [+/- -] and the possessed ego [0 +]. The nexus in the destiny's analysis description highlights the dialectic between the Ego's functions and the drived dangers when facing the demands of the concrete reality. PMID:20945811

  16. Prefrontal Cortex Is Critical for Contextual Processing: Evidence from Brain Lesions

    ERIC Educational Resources Information Center

    Fogelson, Noa; Shah, Mona; Scabini, Donatella; Knight, Robert T.

    2009-01-01

    We investigated the role of prefrontal cortex (PFC) in local contextual processing using a combined event-related potentials and lesion approach. Local context was defined as the occurrence of a short predictive series of visual stimuli occurring before delivery of a target event. Targets were preceded by either randomized sequences of standards…

  17. The brain--the organ of the psychic (the lesions/ the defense mechanisms).

    PubMed

    Rotarescu, Virginia; Ciurea, A V

    2010-01-01

    The article is based on the Leopold Szondi theory (March 11, 1893 - January 24, 1986), who was a Hungarian psychiatrist. He is known for the psychological tool that bears his name, the Szondi test. He developed a form of depth psychology that had some prominence in Europe in the mid-20th century, but has been ignored for the most part), the study seeks to correlate the szondian test results with the imagistic ones on a wide-range pathology. In the Neurosurgery Department, patients are investigated using modern exploration methods (MRI, CTscan, and computed EEG, etc.) in order to identify possible somatic lesions. The study's subjects selected during 2000-2004 from the patients admitted and investigated for neurosurgical conditions; they were divided into two subgroups, based on whether the organic lesions were or were not present (the independent variable). The exclusion criterion was a lesion due to external causes. Statistically meaningful there are seven types of Ego profiles, in relation with the lesion: the archaic ego [0 -], the inhibited ego [- +], the adaptive ego [- -], the narcissist ego [+ +], the identified ego [+/- 0], the fugitive ego [+/- -] and the possessed ego [0 +]. The nexus in the destiny's analysis description highlights the dialectic between the Ego's functions and the drived dangers when facing the demands of the concrete reality.

  18. Presupposition and implication of truth: linguistic deficits following early brain lesions.

    PubMed

    Eisele, J A; Lust, B; Aram, D M

    1998-02-15

    Twenty-four children (4-17 years) with unilateral left (N = 14) or right (N = 10) hemisphere damage and 24 age-matched controls were tested on their ability to presuppose the truth of factive sentences e.g., "Max knew that he locked the door," and to infer the truth or falsity of implicative sentences "Max remembered to lock the door." Experimental sentence types varied according to the type of inference, the semantic features of the verb (factive vs. implicative), the presence and type of negation (lexical or syntactic), and the syntax of the complement (tensed or infinitive). Relative to age-matched controls, left lesion subjects were deficient in both their presupposition and implication performance, particularly when such inferences required the computation of negation scope. Right lesion subjects exhibited a somewhat more selective deficit; one limited to implication, but not presupposition, and one limited to lexical but not syntactic forms of negation.

  19. [CLIPPERS syndrome with atypical distribution of lesions in magnetic resonance imaging of the brain].

    PubMed

    Canneti, Beatrice; Mosqueira, Antonio J; Gilo, Francisco; Carreras, Teresa; Barbosa, Antonio; Meca-Lallana, Virginia; Vivancos, José

    2013-10-16

    Introduccion. El sindrome CLIPPERS (chronic lymphocytic in?ammation with pontine perivascular enhancement responsive to steroids) es un proceso inflamatorio del sistema nervioso central cuyo rasgo distintivo son las lesiones puntiformes en el troncoencefalo captantes en los estudios de resonancia magnetica. Clinicamente, cursa con disartria, ataxia y diplopia, y suele responder a corticoides. Anatomopatologicamente, aparecen infiltrados de linfocitos T en los espacios perivasculares troncoencefalicos. Caso clinico. Mujer de 40 años con cuadro de instauracion subaguda de diplopia binocular, ataxia y disartria. En la resonancia magnetica cerebral presento lesiones puntiformes hipertintensas en secuencia T2 en el tronco, cerebelo, diencefalo y areas cortico-subcorticales bihemisfericas, que realzaron con contraste. Se realizo un estudio etiologico para descartar un origen infeccioso, neoplasico o inflamatorio subyacente, que resulto negativo. La paciente recibio tratamiento en dos ocasiones con metilprednisolona, con descenso progresivo de la dosis, con buena respuesta. Conclusiones. La diplopia y la ataxia, como en nuestro caso, estan presentes practicamente siempre. Los hallazgos en la RM consisten en lesiones captantes puntiformes localizadas en la protuberancia con extension hacia el cerebelo, ganglios basales y cuerpo calloso, con gradiente de captacion menor conforme se alejan rostralmente hacia la corteza, y caudalmente hacia la medula. En el caso de nuestra paciente, este gradiente no se respeta, encontrandose una densidad similar de las lesiones a nivel supratentorial. El diagnostico diferencial es amplio y justifica un estudio diagnostico extenso, y en casos seleccionados la biopsia cerebral. El curso de la enfermedad es remitente-recurrente, y el pronostico mejora cuanto mas precoz y prolongado es el tiempo de corticoterapia.

  20. [Chronic visual hallucinations and illusions following brain lesions. A single case study].

    PubMed

    Kasten, E; Müller-Oehring, E; Poggel, D; Sabel, B A

    1998-02-01

    Lesions of the visual system do not necessarily lead to deficits in visual function. In some cases, there may even occur Positive Spontaneous Visual Phenomena (PSVP) following cerebral damage. We present data from a male patient with continuous, long-term visual illusions after having experienced cerebral infarction at the age of 56. Basing on conventional Magnetic Resonance Imaging, lesions could be located in areas supported by the lateral and medial occipital artery. Initially, homonymous hemianopsia of the right visual field was found in perimetric examinations, but in the course of six months, visual function recovered completely. Ever since the incident, the patient has been suffering from permanent photopsia, intense colourful visual hallucinations and perseverations located in the former defective area which continued unabated even after the remission of his visual field defects. While many authors have published data on PSVP lasting for several seconds, usually vanishing completely within days or weeks after cerebral lesion, in our patient the symptoms continued over a period of so far nine months. Surprisingly, he was even able to make drawings of his illusions so that we were able to include some of his pictures.

  1. [Quantitative evaluation of visual gnosis in children with focal brain lesions].

    PubMed

    Pencheva, S; Zaprianova, L

    1983-01-01

    Bearing in mind the opinion of many authors on a great plasticity and interchangeability of the brain cortical functional systems in children the authors have carried out an experiment with 40 children with focal damages of the brain hemispheres, in 20 of whom the right, and in the other 20 the left hemisphere was affected. Use was made of the method of visual gnosis quantitative assessment in the modification of Pencheva and Mavlov (1975). In the children with the focal damages, more or less marked disturbances of the visual gnosis were revealed, however, no statistically significant relationship between the disturbances and the brain side were disclosed. The agnostic disorders were equally frequent in the children of both groups.

  2. Intelligent speed adaptation as an assistive device for drivers with acquired brain injury: a single-case field experiment.

    PubMed

    Klarborg, Brith; Lahrmann, Harry; NielsAgerholm; Tradisauskas, Nerius; Harms, Lisbeth

    2012-09-01

    Intelligent speed adaptation (ISA) was tested as an assistive device for drivers with an acquired brain injury (ABI). The study was part of the "Pay as You Speed" project (PAYS) and used the same equipment and technology as the main study (Lahrmann et al., in press-a, in press-b). Two drivers with ABI were recruited as subjects and had ISA equipment installed in their private vehicle. Their speed was logged with ISA equipment for a total of 30 weeks of which 12 weeks were with an active ISA user interface (6 weeks=Baseline 1; 12 weeks=ISA period; 12 weeks=Baseline 2). The subjects participated in two semi-structured interviews concerning their strategies for driving with ABI and for driving with ISA. Furthermore, they gave consent to have data from their clinical journals and be a part of the study. The two subjects did not report any instances of being distracted or confused by ISA, and in general they described driving with ISA as relaxed. ISA reduced the percentage of the total distance that was driven with a speed above the speed limit (PDA), but the subjects relapsed to their previous PDA level in Baseline 2. This suggests that ISA is more suited as a permanent assistive device (i.e. cognitive prosthesis) than as a temporary training device. As ABI is associated with a multitude of cognitive deficits, we developed a conceptual framework, which focused on the cognitive parameters that have been shown to relate to speeding behaviour, namely "intention to speed" and "inattention to speeding". The subjects' combined status on the two independent parameters made up their "speeding profile". A comparison of the speeding profiles and the speed logs indicated that ISA in the present study was more efficient in reducing inattention to speeding than affecting intention to speed. This finding suggests that ISA might be more suited for some neuropsychological profiles than for others, and that customisation of ISA for different neuropsychological profiles may be required

  3. Effectiveness of a Very Early Stepping Verticalization Protocol in Severe Acquired Brain Injured Patients: A Randomized Pilot Study in ICU

    PubMed Central

    Bonini, Sara; Maffia, Sara; Molatore, Katia; Sebastianelli, Luca; Zarucchi, Alessio; Matteri, Diana; Ercoli, Giuseppe; Maestri, Roberto

    2016-01-01

    Background and Objective Verticalization was reported to improve the level of arousal and awareness in patients with severe acquired brain injury (ABI) and to be safe in ICU. We evaluated the effectiveness of a very early stepping verticalization protocol on their functional and neurological outcome. Methods Consecutive patients with Vegetative State or Minimally Conscious State were enrolled in ICU on the third day after an ABI. They were randomized to undergo conventional physiotherapy alone or associated to fifteen 30-minute sessions of verticalization, using a tilt table with robotic stepping device. Once stabilized, patients were transferred to our Neurorehabilitation unit for an individualized treatment. Outcome measures (Glasgow Coma Scale, Coma Recovery Scale revised -CRSr-, Disability Rating Scale–DRS- and Levels of Cognitive Functioning) were assessed on the third day from the injury (T0), at ICU discharge (T1) and at Rehab discharge (T2). Between- and within-group comparisons were performed by the Mann-Whitney U test and Wilcoxon signed-rank test, respectively. Results Of the 40 patients enrolled, 31 completed the study without adverse events (15 in the verticalization group and 16 in the conventional physiotherapy). Early verticalization started 12.4±7.3 (mean±SD) days after ABI. The length of stay in ICU was longer for the verticalization group (38.8 ± 15.7 vs 25.1 ± 11.2 days, p = 0.01), while the total length of stay (ICU+Neurorehabilitation) was not significantly different (153.2 ± 59.6 vs 134.0 ± 61.0 days, p = 0.41). All outcome measures significantly improved in both groups after the overall period (T2 vs T0, p<0.001 all), as well as after ICU stay (T1 vs T0, p<0.004 all) and after Neurorehabilitation (T2 vs T1, p<0.004 all). The improvement was significantly better in the experimental group for CRSr (T2-T0 p = 0.033, T1-T0 p = 0.006) and (borderline) for DRS (T2-T0 p = 0.040, T1-T0 p = 0.058). Conclusions A stepping verticalization

  4. Correlation between Patent Foramen Ovale, Cerebral "Lesions" and Neuropsychometric Testing in Experienced Sports Divers: Does Diving Damage the Brain?

    PubMed

    Balestra, Costantino; Germonpré, Peter

    2016-01-01

    SCUBA diving exposes divers to decompression sickness (DCS). There has been considerable debate whether divers with a Patent Foramen Ovale of the heart have a higher risk of DCS because of the possible right-to-left shunt of venous decompression bubbles into the arterial circulation. Symptomatic neurological DCS has been shown to cause permanent damage to brain and spinal cord tissue; it has been suggested that divers with PFO may be at higher risk of developing subclinical brain lesions because of repeated asymptomatic embolization of decompression-induced nitrogen bubbles. These studies however suffer from several methodological flaws, including self-selection bias. We recruited 200 volunteer divers from a recreational diving population who had never suffered from DCS; we then randomly selected 50 of those for further investigation. The selected divers underwent brain Magnetic Resonance Imaging to detect asymptomatic brain lesions, contrast trans-oesophageal echocardiography for PFO, and extensive neuro-psychometric testing. Neuro-psychometry results were compared with a control group of normal subjects and a separate control group for subjects exposed to neurotoxic solvents. Forty two divers underwent all the tests and are included in this report. Grade 2 Patent Foramen Ovale was found in 16 (38%) of the divers; brain Unidentified Bright Objects (UBO's) were found in 5 (11.9%). There was no association between PFO and the presence of UBO's (P = 0.693) or their size (p = 0.5) in divers. Neuropsychometric testing in divers was significantly worse from controls in two tests, Digit Span Backwards (DSB; p < 0.05) and Symbol-Digit-Substitution (SDS; p < 0.01). Compared to subjects exposed to neurotoxic solvents, divers scored similar on DSB and SDS tests, but significantly better on the Simple Reaction Time (REA) and Hand-Eye Coordination (EYE) tests. There was no correlation between PFO, number of UBO's and any of the neuro-psychometric tests. We conclude that for

  5. Correlation between Patent Foramen Ovale, Cerebral "Lesions" and Neuropsychometric Testing in Experienced Sports Divers: Does Diving Damage the Brain?

    PubMed

    Balestra, Costantino; Germonpré, Peter

    2016-01-01

    SCUBA diving exposes divers to decompression sickness (DCS). There has been considerable debate whether divers with a Patent Foramen Ovale of the heart have a higher risk of DCS because of the possible right-to-left shunt of venous decompression bubbles into the arterial circulation. Symptomatic neurological DCS has been shown to cause permanent damage to brain and spinal cord tissue; it has been suggested that divers with PFO may be at higher risk of developing subclinical brain lesions because of repeated asymptomatic embolization of decompression-induced nitrogen bubbles. These studies however suffer from several methodological flaws, including self-selection bias. We recruited 200 volunteer divers from a recreational diving population who had never suffered from DCS; we then randomly selected 50 of those for further investigation. The selected divers underwent brain Magnetic Resonance Imaging to detect asymptomatic brain lesions, contrast trans-oesophageal echocardiography for PFO, and extensive neuro-psychometric testing. Neuro-psychometry results were compared with a control group of normal subjects and a separate control group for subjects exposed to neurotoxic solvents. Forty two divers underwent all the tests and are included in this report. Grade 2 Patent Foramen Ovale was found in 16 (38%) of the divers; brain Unidentified Bright Objects (UBO's) were found in 5 (11.9%). There was no association between PFO and the presence of UBO's (P = 0.693) or their size (p = 0.5) in divers. Neuropsychometric testing in divers was significantly worse from controls in two tests, Digit Span Backwards (DSB; p < 0.05) and Symbol-Digit-Substitution (SDS; p < 0.01). Compared to subjects exposed to neurotoxic solvents, divers scored similar on DSB and SDS tests, but significantly better on the Simple Reaction Time (REA) and Hand-Eye Coordination (EYE) tests. There was no correlation between PFO, number of UBO's and any of the neuro-psychometric tests. We conclude that for

  6. Individual Assessment of Brain Tissue Changes in MS and the Effect of Focal Lesions on Short-Term Focal Atrophy Development in MS: A Voxel-Guided Morphometry Study

    PubMed Central

    Fox, Jan; Kraemer, Matthias; Schormann, Thorsten; Dabringhaus, Andreas; Hirsch, Jochen; Eisele, Philipp; Szabo, Kristina; Weiss, Christel; Amann, Michael; Weier, Katrin; Naegelin, Yvonne; Kappos, Ludwig; Gass, Achim

    2016-01-01

    We performed voxel-guided morphometry (VGM) investigating the mechanisms of brain atrophy in multiple sclerosis (MS) related to focal lesions. VGM maps detect regional brain changes when comparing 2 time points on high resolution T1-weighted (T1w) magnetic resonace imaging (MRI). Two T1w MR datasets from 92 relapsing-remitting MS patients obtained 12 months apart were analysed with VGM. New lesions and volume changes of focal MS lesions as well as in the surrounding tissue were identified by visual inspection on colour coded VGM maps. Lesions were dichotomized in active and inactive lesions. Active lesions, defined by either new lesions (NL) (volume increase > 5% in VGM), chronic enlarging lesions (CEL) (pre-existent T1w lesions with volume increase > 5%), or chronic shrinking lesions (CSL) (pre-existent T1w lesions with volume reduction > 5%) in VGM, were accompanied by tissue shrinkage in surrounding and/or functionally related regions. Volume loss within the corpus callosum was highly correlated with the number of lesions in its close proximity. Volume loss in the lateral geniculate nucleus was correlated with lesions along the optic radiation. VGM analysis provides strong evidence that all active lesion types (NL, CEL, and CSL) contribute to brain volume reduction in the vicinity of lesions and/or in anatomically and functionally related areas of the brain. PMID:27043553

  7. [Cognitive functions and personality traits in patients with brain tumors: the role of lesion localization].

    PubMed

    Razumnikova, O M; Perfil'ev, A M; Stupak, V V

    2014-01-01

    Personality traits and cognitive functions were studied depending on a tumor localization in the brain in 21 neurosurgical patients and the results were compared with a control group. In patients with brain damage, mostly affected were personality traits associated with emotion regulation and social interaction (neuroticism, psychoticism and social conformity). Increases in psychoticism and decreases in neuroticism were more expressed in patients with a left-hemisphere localization of tumors. The tumor-induced decrease in cognitive abilities was more presented in performing figurative tasks and less in verbal ones. Verbal functions were more decreased in the group with frontal localization of tumor compared to that with parietal localization.

  8. Knowledge-based 3D segmentation of the brain in MR images for quantitative multiple sclerosis lesion tracking

    NASA Astrophysics Data System (ADS)

    Fisher, Elizabeth; Cothren, Robert M., Jr.; Tkach, Jean A.; Masaryk, Thomas J.; Cornhill, J. Fredrick

    1997-04-01

    Brain segmentation in magnetic resonance (MR) images is an important step in quantitative analysis applications, including the characterization of multiple sclerosis (MS) lesions over time. Our approach is based on a priori knowledge of the intensity and three-dimensional (3D) spatial relationships of structures in MR images of the head. Optimal thresholding and connected-components analysis are used to generate a starting point for segmentation. A 3D radial search is then performed to locate probable locations of the intra-cranial cavity (ICC). Missing portions of the ICC surface are interpolated in order to exclude connected structures. Partial volume effects and inter-slice intensity variations in the image are accounted for automatically. Several studies were conducted to validate the segmentation. Accuracy was tested by calculating the segmented volume and comparing to known volumes of a standard MR phantom. Reliability was tested by comparing calculated volumes of individual segmentation results from multiple images of the same subject. The segmentation results were also compared to manual tracings. The average error in volume measurements for the phantom was 1.5% and the average coefficient of variation of brain volume measurements of the same subject was 1.2%. Since the new algorithm requires minimal user interaction, variability introduced by manual tracing and interactive threshold or region selection was eliminated. Overall, the new algorithm was shown to produce a more accurate and reliable brain segmentation than existing manual and semi-automated techniques.

  9. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].

    PubMed

    Šaponjić, Jasna

    2011-01-01

    Many complex behavioral phenomena such as sleep can not be explained without multidisciplinary experimental approach, and complementay approaches in the animal models "in vivo" and human studies. Electrophysiological, pharmacological, anatomical and immunohistochemical techniques, and particularly stereotaxically guided local nanovolume microinjection technique, enable us to selectively stimulate and lesion the brain nuclei or their specific neuronal subpopulation, and to reslove the mechanisms of certain brain structure regulatory role, and its afferent-efferent connectivity within the brain. Local stereotaxically guided nanovolume microinjection technique enable us to investigate in animals the brain nulcei functional topography with a resolution of < or = 10 microM, and at a level of 300 microM of effective radius within the brain tissue "in vivo". The advantage of local glutamate or DL- homocysteic acid microinjection stimulation or local excitotoxic (glutamate, ibotenic acid, IgG saporin) microinjection lesion over electrical stimulation/lesion of the same neuronal population are that they reduces the likelihood of activation/lesion of fibers of passage. Much of our knowledge of the sleep neuronal substrates is based on animal studies primarly in cat and rat. Selective pharmacological stimulation of the pedunculopontine tegmentum (PPT) in freely moving rat, using glutamate microinjection, proved that excitation of its cholinergic part is necessary for induction of wakefulness or REM (Datta S, 2001). Local nanovolume glutamate microinjection into PPT of anesthetized rats (Saponjić et al, 2003a) additionally evidenced P-wave and respiratory regulating neuronal subpopulation within the cholinergic compartment of PPT (apneogenic neuronal zone). Local microinjection of serotonin and noradrenaline into cholinergic PPT apneogenic zone evidenced their opposed impact through PPT on breathing, in contrast to their convergent regulatory role in behavioral state control

  10. Accuracy for detection of simulated lesions: comparison of fluid-attenuated inversion-recovery, proton density--weighted, and T2-weighted synthetic brain MR imaging

    NASA Technical Reports Server (NTRS)

    Herskovits, E. H.; Itoh, R.; Melhem, E. R.

    2001-01-01

    OBJECTIVE: The objective of our study was to determine the effects of MR sequence (fluid-attenuated inversion-recovery [FLAIR], proton density--weighted, and T2-weighted) and of lesion location on sensitivity and specificity of lesion detection. MATERIALS AND METHODS: We generated FLAIR, proton density-weighted, and T2-weighted brain images with 3-mm lesions using published parameters for acute multiple sclerosis plaques. Each image contained from zero to five lesions that were distributed among cortical-subcortical, periventricular, and deep white matter regions; on either side; and anterior or posterior in position. We presented images of 540 lesions, distributed among 2592 image regions, to six neuroradiologists. We constructed a contingency table for image regions with lesions and another for image regions without lesions (normal). Each table included the following: the reviewer's number (1--6); the MR sequence; the side, position, and region of the lesion; and the reviewer's response (lesion present or absent [normal]). We performed chi-square and log-linear analyses. RESULTS: The FLAIR sequence yielded the highest true-positive rates (p < 0.001) and the highest true-negative rates (p < 0.001). Regions also differed in reviewers' true-positive rates (p < 0.001) and true-negative rates (p = 0.002). The true-positive rate model generated by log-linear analysis contained an additional sequence-location interaction. The true-negative rate model generated by log-linear analysis confirmed these associations, but no higher order interactions were added. CONCLUSION: We developed software with which we can generate brain images of a wide range of pulse sequences and that allows us to specify the location, size, shape, and intrinsic characteristics of simulated lesions. We found that the use of FLAIR sequences increases detection accuracy for cortical-subcortical and periventricular lesions over that associated with proton density- and T2-weighted sequences.

  11. Arithmetic and Brain Connectivity: Mental Calculation in Adolescents with Periventricular Lesions

    ERIC Educational Resources Information Center

    Pavlova, Marina; Sokolov, Alexander N.; Krageloh-Mann, Ingeborg

    2009-01-01

    The ability for mental calculation represents a fundamental prerequisite for development of intelligence, which is predictive for educational and professional success in life. Many individuals with calculation difficulties are survivors of premature birth. The brain mechanisms of these deficits are, however, largely unknown. In this work, we…

  12. A probabilistic framework for the spatio-temporal segmentation of multiple sclerosis lesions in MR images of the brain

    NASA Astrophysics Data System (ADS)

    Greenspan, Hayit; Mayer, Arnaldo; Shahar, Allon

    2003-05-01

    In this paper we describe the application of a novel statistical image-sequence (video) modeling scheme to sequences of multiple sclerosis (MS) images taken over time. A unique key feature of the proposed framework is the analysis of the image-sequence input as a single entity as opposed to a sequence of separate frames. The extracted space-time regions allow for the detection and identification of disease events and processes, such as the appearance and progression of lesions. According to the proposed methodology, coherent space-time regions in the feature space, and corresponding coherent segments in the video content are extracted by unsupervised clustering via Gaussian mixture modeling (GMM). The parameters of the GMM are determined via the maximum likelihood principle and the Expectation-Maximization (EM) algorithm. The clustering of the image sequence yields a collection of regions (blobs) in a four-dimensional feature space (including intensity, position (x,y), and time). Regions corresponding to MS lesions are automatically identified based on criteria regarding the mean intensity and the size variability over time. The proposed methodology was applied to a registered sequence of 24 T2-weighted MR images acquired from an MS patient over a period of approximately a year. Examples of preliminary qualitative results are shown.

  13. Rare and challenging extra-axial brain lesions: CT and MRI findings with clinico-radiological differential diagnosis and pathological correlation

    PubMed Central

    Demir, Mustafa Kemal; Yapıcıer, Özlem; Onat, Elif; Toktaş, Zafer Orkun; Akakın, Akın; Urgun, Kamran; Kılıç, Türker

    2014-01-01

    There are many kinds of extra-axial brain tumors and tumor-like lesions, and definitive diagnosis is complicated in some cases. In this pictorial essay, we present rare and challenging extra-axial brain lesions including neuroenteric cyst, primary leptomeningeal melanomatosis, isolated dural neurosarcoidosis, intradiploic epidermoid cyst, ruptured dermoid cyst, intraventricular cavernoma, and cavernous hemangioma of the skull with imaging findings and clinico-radiological differential diagnosis, including the pathologic correlation. Familiarity with these entities may improve diagnostic accuracy and patient management. PMID:25010368

  14. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity

    PubMed Central

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S.; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N.

    2015-01-01

    Aim To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Methods Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen–Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Results Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. Conclusion The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure–function relationships but requires further validation in other populations of CP. PMID:26106533

  15. [Late sequelae of intrauterine and birth-related lesions of the brain].

    PubMed

    Asanova, L M; Makshantseva, N V

    1987-01-01

    The article analyzes the characteristics of the motor and mental development of children with a history of intrauterine and birth-related damage to the brain. On the basis of a long-term follow-up the authors have identified correlation between the severity of cerebral damage and the course of pregnancy and parturition and describe characteristics of the psychomotor development of children with a history of brain damage of varying degree. An emphasis is made on the necessity of prolonged observation of children with a history of perinatal encephalopathy and of the conduction of adequate rehabilitative therapy of patients with a curable form of childhood cerebral paralysis, which is conducive to the better social adaptation of such patients. PMID:3425065

  16. [New approaches in the treatment of speech disorders in children with an organic brain lesion].

    PubMed

    Dubovtseva, O A; Evtushenko, S K; Omel'ianenko, A A; Sazhneva, I A

    1999-01-01

    Speech disorders encountered in children presenting with neurological pathology make their medical and social rehabilitation a real challenge. Overall sixty children were examined. Of these, 38 had infantile cerebral paralysis, 22 that being presented with sequelae of the hypoxic affection of the brain in ante- and perinatal period, who exhibited speech disorders (alalia, dysarthria, retarded speech development). Described in the paper are features of bloodflow disorders in intracranial and vertebral arteries as evidenced by ultrasonic Doppler technique and changes in brain bioelectrical activity according to findings from electroencephalomapping. In 53 patients, a positive effect was obtained as a result of therapy conducted in accordance with the stimulation type techniques (electroscalp therapy against the background of intramuscular administration of nicotinic acid plus laser therapy, transcutaneous electrostimulation, employment of such drug preparations as cogitum, nero-force, sirdalud). PMID:10474956

  17. Is the Motor System Necessary for Processing Action and Abstract Emotion Words? Evidence from Focal Brain Lesions.

    PubMed

    Dreyer, Felix R; Frey, Dietmar; Arana, Sophie; von Saldern, Sarah; Picht, Thomas; Vajkoczy, Peter; Pulvermüller, Friedemann

    2015-01-01

    Neuroimaging and neuropsychological experiments suggest that modality-preferential cortices, including motor- and somatosensory areas, contribute to the semantic processing of action related concrete words. Still, a possible role of sensorimotor areas in processing abstract meaning remains under debate. Recent fMRI studies indicate an involvement of the left sensorimotor cortex in the processing of abstract-emotional words (e.g., "love") which resembles activation patterns seen for action words. But are the activated areas indeed necessary for processing action-related and abstract words? The current study now investigates word processing in two patients suffering from focal brain lesion in the left frontocentral motor system. A speeded Lexical Decision Task on meticulously matched word groups showed that the recognition of nouns from different semantic categories - related to food, animals, tools, and abstract-emotional concepts - was differentially affected. Whereas patient HS with a lesion in dorsolateral central sensorimotor systems next to the hand area showed a category-specific deficit in recognizing tool words, patient CA suffering from lesion centered in the left supplementary motor area was primarily impaired in abstract-emotional word processing. These results point to a causal role of the motor cortex in the semantic processing of both action-related object concepts and abstract-emotional concepts and therefore suggest that the motor areas previously found active in action-related and abstract word processing can serve a meaning-specific necessary role in word recognition. The category-specific nature of the observed dissociations is difficult to reconcile with the idea that sensorimotor systems are somehow peripheral or 'epiphenomenal' to meaning and concept processing. Rather, our results are consistent with the claim that cognition is grounded in action and perception and based on distributed action perception circuits reaching into modality

  18. Is the Motor System Necessary for Processing Action and Abstract Emotion Words? Evidence from Focal Brain Lesions

    PubMed Central

    Dreyer, Felix R.; Frey, Dietmar; Arana, Sophie; von Saldern, Sarah; Picht, Thomas; Vajkoczy, Peter; Pulvermüller, Friedemann

    2015-01-01

    Neuroimaging and neuropsychological experiments suggest that modality-preferential cortices, including motor- and somatosensory areas, contribute to the semantic processing of action related concrete words. Still, a possible role of sensorimotor areas in processing abstract meaning remains under debate. Recent fMRI studies indicate an involvement of the left sensorimotor cortex in the processing of abstract-emotional words (e.g., “love”) which resembles activation patterns seen for action words. But are the activated areas indeed necessary for processing action-related and abstract words? The current study now investigates word processing in two patients suffering from focal brain lesion in the left frontocentral motor system. A speeded Lexical Decision Task on meticulously matched word groups showed that the recognition of nouns from different semantic categories – related to food, animals, tools, and abstract-emotional concepts – was differentially affected. Whereas patient HS with a lesion in dorsolateral central sensorimotor systems next to the hand area showed a category-specific deficit in recognizing tool words, patient CA suffering from lesion centered in the left supplementary motor area was primarily impaired in abstract-emotional word processing. These results point to a causal role of the motor cortex in the semantic processing of both action-related object concepts and abstract-emotional concepts and therefore suggest that the motor areas previously found active in action-related and abstract word processing can serve a meaning-specific necessary role in word recognition. The category-specific nature of the observed dissociations is difficult to reconcile with the idea that sensorimotor systems are somehow peripheral or ‘epiphenomenal’ to meaning and concept processing. Rather, our results are consistent with the claim that cognition is grounded in action and perception and based on distributed action perception circuits reaching into

  19. Acquired Cerebral Trauma: Epilogue.

    ERIC Educational Resources Information Center

    Bigler, Erin D., Ed.

    1988-01-01

    The article summarizes a series of articles concerning acquired cerebral trauma. Reviewed are technological advances, treatment, assessment, potential innovative therapies, long-term outcome, family impact of chronic brain injury, and prevention. (DB)

  20. Segmentation and visualization of brain lesions in multispectral magnetic resonance images.

    PubMed

    Holden, M; Steen, E; Lundervold, A

    1995-01-01

    In this study we focus on the problem of segmentation and visualization of soft tissue structures in three-dimensional (3D) magnetic resonance (MR) imaging. We introduce a classification method which is a combination of a recently proposed contour detection algorithm and Haslett's contextual classification method extended to 3D. This classification method is used in the classification step of a rendering model suggested by Drebin et al. for visualizing normal and pathological tissue structures in the brain. We evaluate the combination of these two methodologies, and identify some problems which have to be solved in order to develop a clinical useful tool. PMID:7780944

  1. Clinical usefulness of the pendulum test using a NK table to measure the spasticity of patients with brain lesions.

    PubMed

    Kim, Yong-Wook

    2013-10-01

    . [Purpose] The purpose of the present study was to investigate the clinical usefulness (reliability and validity) of the pendulum test using a Noland-Kuckhoff (NK) table with an attached electrogoniometer to measure the spasticity of patients with brain lesions. [Subjects] The subjects were 31 patients with stroke or traumatic brain injury. [Methods] The intraclass correlation coefficient (ICC) was used to verify the test-retest reliability of spasticity measures obtained using the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test using the amplitude of the patellar tendon reflex (PTR) test, an objective and quantitative measure of spasticity. [Results] The test-retest reliability was high, reflecting a significant correlation between the test and the retest (ICCs = 0.95-0.97). A significant negative correlation was found between the amplitude of the PTR test and the four variables measured in the pendulum test (r = -0.77- -0.85). [Conclusion] The pendulum test using a NK table is an objective measure of spasticity and can be used in the clinical setting in place of more expensive and complicated equipment. Further studies are needed to investigate the therapeutic effect of this method on spasticity.

  2. Clinical usefulness of the pendulum test using a NK table to measure the spasticity of patients with brain lesions.

    PubMed

    Kim, Yong-Wook

    2013-10-01

    . [Purpose] The purpose of the present study was to investigate the clinical usefulness (reliability and validity) of the pendulum test using a Noland-Kuckhoff (NK) table with an attached electrogoniometer to measure the spasticity of patients with brain lesions. [Subjects] The subjects were 31 patients with stroke or traumatic brain injury. [Methods] The intraclass correlation coefficient (ICC) was used to verify the test-retest reliability of spasticity measures obtained using the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test using the amplitude of the patellar tendon reflex (PTR) test, an objective and quantitative measure of spasticity. [Results] The test-retest reliability was high, reflecting a significant correlation between the test and the retest (ICCs = 0.95-0.97). A significant negative correlation was found between the amplitude of the PTR test and the four variables measured in the pendulum test (r = -0.77- -0.85). [Conclusion] The pendulum test using a NK table is an objective measure of spasticity and can be used in the clinical setting in place of more expensive and complicated equipment. Further studies are needed to investigate the therapeutic effect of this method on spasticity. PMID:24259775

  3. Impact of frontal lobe lesions on rehabilitation and recovery from acute brain injury.

    PubMed

    Eslinger, P J; Grattan, L M; Geder, L

    1995-01-01

    The frontal lobe has been viewed historically in very different ways, ranging from enigmatic and mystifying to the crucial neural substrate for higher cognition and social behavior. Frontal lobe damage poses a unique and difficult set of challenges to the patient, their family and the neurorehabilitation team. Because of the role of the frontal lobe in adaptation and adjustment, such damage adversely affects a patient's participation in the process and content of rehabilitation. To aid diagnosis and treatment planning, a model of frontal lobe organization is outlined, focusing on the specific cognitive and behavioral symptom clusters associated with superior mesial, inferior mesial, dorsolateral and orbital frontal lesions. A taxonomy of social executive processes is presented for identifying impairments in social behavior and personality, based upon the domains of social self-regulation, social self-awareness, social-sensitivity (empathy), and social-salience. Specific interventions are described that encompass dopamine agonist therapy for blunted affect, mutism and akinesia, cognitive strategies for improving organization and planning deficits, and evolving treatments for social impairments. PMID:24525496

  4. Brain lesions associated with clostridium perfringens type D epsilon toxin in a Holstein heifer calf.

    PubMed

    Mete, A; Garcia, J; Ortega, J; Lane, M; Scholes, S; Uzal, F A

    2013-09-01

    A 6-month-old dairy heifer calf with no premonitory signs was acutely down after the morning feeding and could not rise. On presentation, the heifer was in right lateral recumbency and moribund with opisthotonus and left hind limb paddling. Following euthanasia, gross examination of the brain revealed multifocal loss of gray-white matter distinction and extensive petechiae throughout the brainstem. On histopathological examination, there was striking white matter edema and marked perivascular proteinaceous edema surrounding many arterioles and venules (microangiopathy), mainly in the white matter of the internal capsule, thalamus, midbrain, cerebellum, and cerebellar peduncles. The perivascular neuropil was strongly positive for Alzheimer precursor protein A4. Clostridium perfringens epsilon toxin was detected in the intestinal contents. This is the first report of microangiopathy in postneonatal cattle associated with the detection of epsilon toxin in the intestinal contents.

  5. Photoacoustic imaging of an inflammatory lesion model in the neonatal rat brain

    NASA Astrophysics Data System (ADS)

    Guevara, Edgar; Berti, Romain; Londono, Irène; Xie, Ningshi; Bellec, Pierre; Lesage, Frédéric; Lodygensky, G. A.

    2014-09-01

    Periventricular leukomalacia (PVL) is a condition that may cause significant neurodevelopmental handicap in premature newborns. It is characterized by white matter injury, associated with inflammation. This work aimed to assess the impact of inflammation on cerebral oxygen saturation (sO2) using depth-sensitive photoacoustic tomography (PAT). The aspects of PVL were reproduced in a rodent model by injection of lipopolysaccharide (LPS) into the corpus callosum. The results of this exploratory work reveal lower sO2 values in LPS group, as compared to sham controls; showing decreased values in the corpus callosum and in the left cortex, ipsilateral to the injection site. Interhemispherical connectivity was not affected by LPS injection, as shown by functional connectivity analysis. This study supports the use of PAT as a non-invasive tool to assess oxygenation values in vivo in the newborn brain.

  6. CD4+ T cell-dependent acquired state of immunity that protects the brain against Cryptococcus neoformans.

    PubMed

    Hill, J O; Aguirre, K M

    1994-03-01

    In immunodeficient hosts, a failure in defense mechanisms allows Cryptococcus neoformans to establish foci of infection in the brain. Immune and nonspecific responses in the primary site of infection in the lung have been described, but those extrapulmonary defense mechanisms that can be mobilized against the yeast have received little attention. This paper describes a response expressed against yeast in the brain of immunocompetent hosts, a response that is weakened in hosts deficient in CD4+ T cells. When a small number of yeast gain access to the vasculature, for example through an i.v. injection, about 0.1% establish themselves in the brain. Normal mice but not SCID mice have the capacity to suppress the multiplication of these yeast cells. The host response is accelerated in mice that are recovering from a primary lung infection, resulting in long term survival without antibiotic chemotherapy. This response is ablated by anti-CD4 mAb treatment and CD4+ cells obtained from infected primed donors are needed to confer immunity on SCID recipients. The critical target for the anti-Cryptococcus immune response are yeast in the brain cortex. However, rather than preventing the colonization of the brain by blood-borne yeast, immunity apparently serves to restrict the growth of yeast in a small number of established foci.

  7. [Impact of acquired brain injury towards the community integration: employment outcome, disability and dependence two years after injury].

    PubMed

    Luna-Lario, P; Ojeda, N; Tirapu-Ustarroz, J; Pena, J

    2016-06-16

    Objetivos. Analizar el impacto del daño cerebral adquirido en la integracion comunitaria (trayectoria laboral, discapacidad y dependencia) en una muestra de sujetos con daño cerebral adquirido de etiologia vascular, traumatica y tumoral, durante un periodo de dos años tras la lesion original, y examinar que variables sociodemograficas, datos clinicos premorbidos y relacionados con la lesion predicen la integracion en la comunidad. Pacientes y metodos. Muestra de 106 sujetos adultos con daño cerebral adquirido, atendidos en el Area de Neuropsicologia y Neuropsiquiatria del Complejo Hospitalario de Navarra, con deficit de memoria como secuela principal. Las diferencias entre grupos se analizan con los tests t de Student, chi al cuadrado y U de Mann-Whitney. Resultados. De los participantes que antes de la lesion se encontraban activos laboralmente, el 19% y 29% recuperaron su estatus previo al año y a los dos años, respectivamente; a un 45% de la muestra total se le reconocio la discapacidad, y a un 17%, la dependencia. No se hallo relacion entre las variables sociodemograficas y clinicas y los parametros funcionales contemplados. Conclusiones. La lesion cerebral adquirida impacta con intensidad en la trayectoria vital de los afectados, aunque no se han estudiado antes en España sus consecuencias en el ajuste sociolaboral en los dos años siguientes al daño a traves de parametros funcionales valorados con instrumentos oficiales estatales en una muestra de etiologia vascular, traumatica y tumoral.

  8. [HYPOFRACTIONATED RADIOSURGERY FOR BENIGN BRAIN LESIONS--THE BEST OF ALL WORLDS].

    PubMed

    Cohen-Inbar, Or

    2016-05-01

    Despite advances in neurosurgical technique, postoperative morbidity continues to taint open complete removal of many benign cranial base tumors (meningioma, pituitary adenomas, schwannomas). The incidence of temporary and permanent cranial nerve deficits is reported to be as high as 44% and 56% respectively, with postoperative mortality rates as high as 9%. As a consequence, many neurosurgeons choose to perform partial resections in order to preserve neurological functions. Progression rates after partial removal of a meningioma with no radiosurgery have been reported to be as high as 70%, compared to > 90% post-radiosurgical progression free survival rates. This resulted in a change of paradigms from an attempted radical resection to a combined neurosurgical-radiosurgical approach due to the high surgical morbidity the former entails. Radiosurgery has traditionally been used to treat lesions < 3.5-4 cm (or 14-16 cm³). Radiosurgery is thought to inactivate target cells regardless of their mitotic activity or inherent radio-sensitivity. When the distance between the tumor and anterior visual pathways is < 3 mm, radiosurgery is contraindicated because of the difficulty in delivering an effective dose to the tumor while maintaining a tolerable dose to the optic apparatus. Fractionated Radiosurgery (Temporal or spatial fractionation) may help overcome these limitations associated with larger volume target and dose fall-off. It should be considered in patients with sellar, parasellar or para-acoustic tumors involving major vasculature or when there is broad contact with the optic apparatus or cranial nerves. Fractionated radiosurgery offers a substantial reduction in radiation-related toxicity and with maintaining high tumor control rates. PMID:27526562

  9. Brain tissue volume changes in relapsing-remitting multiple sclerosis: correlation with lesion load.

    PubMed

    Quarantelli, Mario; Ciarmiello, Andrea; Morra, Vincenzo Brescia; Orefice, Giuseppe; Larobina, Michele; Lanzillo, Roberta; Schiavone, Vittorio; Salvatore, Elena; Alfano, Bruno; Brunetti, Arturo

    2003-02-01

    The aim of this study was to simultaneously measure in vivo volumes of gray matter (GM), normal white matter (WM), abnormal white matter (aWM), and cerebro-spinal fluid (CSF), and to assess their relationship in 50 patients with relapsing-remitting multiple sclerosis (RR-MS) (age range, 21-59; mean EDSS, 2.5; mean disease duration, 9.9 years), using an unsupervised multiparametric segmentation procedure applied to brain MR studies. Tissue volumes were normalized to total intracranial volume providing corresponding fractional volumes (fGM, faWM, fWM, and fCSF), subsequently corrected for aWM-related segmentation inaccuracies and adjusted to mean patients' age according to age-related changes measured in 54 normal volunteers (NV) (age range 16-70). In MS patients aWM was 23.8 +/- 29.8 ml (range 0.4-138.8). A significant decrease in fGM was present in MS patients as compared to NV (49.5 +/- 3.2% vs 53.3 +/- 2.1%; P < 0.0001), with a corresponding increase in fCSF (13.0 +/- 3.8% vs 9.1 +/- 2.4%; P < 0.0001). No difference could be detected between the two groups for fWM (37.5 +/- 2.6% vs 37.6 +/- 2.2%). faWM correlated inversely with fGM (R = -0.434, P < 0.001 at regression analysis), and directly with fCSF (R = 0.473, P < 0.001), but not with fWM. There was a significant correlation between disease duration and EDSS, while no relationship was found between EDSS or disease duration and fractional volumes. Brain atrophy in RR-MS is mainly related to GM loss, which correlates with faWM. Both measures do not appear to significantly affect EDSS, which correlates to disease duration. PMID:12595189

  10. Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain

    PubMed Central

    2014-01-01

    Introduction Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. Results MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks. Conclusions These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients. PMID:24685353

  11. Large focal tumor-like demyelinating lesions of the brain: intermediate entity between multiple sclerosis and acute disseminated encephalomyelitis? A study of 31 patients.

    PubMed

    Kepes, J J

    1993-01-01

    Thirty-one patients with large, focal cerebral demyelinating lesions are reported. Twenty-four patients had solitary lesions and 7 had multiple foci, the latter apparently of identical age. The lesions presented clinically and radiologically as brain tumors (gliomas or metastases) or as multiple cysts. Six patients were older than 57 years (2 in their 70s) at the onset of their symptoms. The demyelinating nature of the lesions was established through biopsy in each patient and all improved significantly after corticosteroid therapy. Three patients developed additional lesions during the follow-up periods ranging from 9 months to 12 years consistent with the course of multiple sclerosis. Twenty-eight patients did not develop additional lesions. These included 6 patients with multiple lesions at the onset. In 1 of the patients, the first symptoms developed 10 days after receiving vaccination against influenza. Two patients had concomitant malignancy (chronic monomyelogenous leukemia and retroperitoneal seminoma respectively) and 1 patient developed immunoblastic sarcoma in the opposite hemisphere after biopsy diagnosis and steroid treatment of her demyelinating lesion. Tumor-like masses of demyelination may occupy an intermediate position between multiple sclerosis and postinfectious/postvaccination encephalitis. The clinical course (history of vaccination in one instance, acute onset, good response to corticosteroids, no clinical or radiological evidence of new lesions in the great majority of patients) favored postinfectious/postvaccination encephalitis. Lesion size however greatly exceeded that of the small foci of perivenous demyelination seen in typical postinfectious/postvaccination encephalitis and tended to present as space-occupying masses.

  12. Exome Sequencing in Classic Hairy Cell Leukaemia Reveals Widespread Variation in Acquired Somatic Mutations between Individual Tumours Apart from the Signature BRAF V(600)E Lesion

    PubMed Central

    Weston-Bell, Nicola J.; Tapper, Will; Gibson, Jane; Bryant, Dean; Moreno, Yurany; John, Melford; Ennis, Sarah; Kluin-Nelemans, Hanneke C.; Collins, Andrew R.; Sahota, Surinder S.

    2016-01-01

    In classic Hairy cell leukaemia (HCLc), a single case has thus far been interrogated by whole exome sequencing (WES) in a treatment naive patient, in which BRAF V(600)E was identified as an acquired somatic mutation and confirmed as occurring near-universally in this form of disease by conventional PCR-based cohort screens. It left open however the question whether other genome-wide mutations may also commonly occur at high frequency in presentation HCLc disease. To address this, we have carried out WES of 5 such typical HCLc cases, using highly purified splenic tumour cells paired with autologous T cells for germline. Apart from BRAF V(600)E, no other recurrent somatic mutation was identified in these HCLc exomes, thereby excluding additional acquired mutations as also prevalent at a near-universal frequency in this form of the disease. These data then place mutant BRAF at the centre of the neoplastic drive in HCLc. A comparison of our exome data with emerging genetic findings in HCL indicates that additional somatic mutations may however occur recurrently in smaller subsets of disease. As mutant BRAF alone is insufficient to drive malignant transformation in other histological cancers, it suggests that individual tumours utilise largely differing patterns of genetic somatic mutations to coalesce with BRAF V(600)E to drive pathogenesis of malignant HCLc disease. PMID:26871591

  13. Narrative Medicine: Suggestions for Clinicians to Help Their Clients Construct a New Identity Following Acquired Brain Injury

    ERIC Educational Resources Information Center

    Fraas, Michael R.

    2015-01-01

    Survivors of brain injury from trauma and stroke often lose their sense of identity and face a series of lifelong obstacles that challenge their ability to integrate back into their communities and live meaningful and productive lives. Their stories provide powerful accounts of these challenges, which can inform clinical decision-making. Arguably,…

  14. Traumatic axonal injury: the prognostic value of lesion load in corpus callosum, brain stem, and thalamus in different magnetic resonance imaging sequences.

    PubMed

    Moen, Kent G; Brezova, Veronika; Skandsen, Toril; Håberg, Asta K; Folvik, Mari; Vik, Anne

    2014-09-01

    The aim of this study was to explore the prognostic value of visible traumatic axonal injury (TAI) loads in different MRI sequences from the early phase after adjusting for established prognostic factors. Likewise, we sought to explore the prognostic role of early apparent diffusion coefficient (ADC) values in normal-appearing corpus callosum. In this prospective study, 128 patients (mean age, 33.9 years; range, 11-69) with moderate (n = 64) and severe traumatic brain injury (TBI) were examined with MRI at a median of 8 days (range, 0-28) postinjury. TAI lesions in fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), and T2*-weighted gradient echo (T2*GRE) sequences were counted and FLAIR lesion volumes estimated. In patients and 47 healthy controls, mean ADC values were computed in 10 regions of interests in the normal-appearing corpus callosum. Outcome measure was the Glasgow Outcome Scale-Extended (GOS-E) at 12 months. In patients with severe TBI, number of DWI lesions and volume of FLAIR lesions in the corpus callosum, brain stem, and thalamus predicted outcome in analyses with adjustment for age, Glasgow Coma Scale score, and pupillary dilation (odds ratio, 1.3-6.9; p = <0.001-0.017). The addition of Rotterdam CT score and DWI lesions in the corpus callosum yielded the highest R2 (0.24), compared to all other MRI variables, including brain stem lesions. For patients with moderate TBI only the number of cortical contusions (p = 0.089) and Rotterdam CT score (p = 0.065) tended to predict outcome. Numbers of T2*GRE lesions did not affect outcome. Mean ADC values in the normal-appearing corpus callosum did not differ from controls. In conclusion, the loads of visible TAI lesions in the corpus callosum, brain stem, and thalamus in DWI and FLAIR were independent prognostic factors in patients with severe TBI. DWI lesions in the corpus callosum were the most important predictive MRI variable. Interestingly, number of cortical

  15. The contribution of the putamen to sensory aspects of pain: insights from structural connectivity and brain lesions

    PubMed Central

    Starr, Christopher J.; Sawaki, Lumy; Wittenberg, George F.; Burdette, Jonathan H.; Oshiro, Yoshitetsu; Quevedo, Alexandre S.; McHaffie, John G.

    2011-01-01

    Cerebral cortical activity is heavily influenced by interactions with the basal ganglia. These interactions occur via cortico-basal ganglia-thalamo-cortical loops. The putamen is one of the major sites of cortical input into basal ganglia loops and is frequently activated during pain. This activity has been typically associated with the processing of pain-related motor responses. However, the potential contribution of putamen to the processing of sensory aspects of pain remains poorly characterized. In order to more directly determine if the putamen can contribute to sensory aspects of pain, nine individuals with lesions involving the putamen underwent both psychophysical and functional imaging assessment of perceived pain and pain-related brain activation. These individuals exhibited intact tactile thresholds, but reduced heat pain sensitivity and widespread reductions in pain-related cortical activity in comparison with 14 age-matched healthy subjects. Using magnetic resonance imaging to assess structural connectivity in healthy subjects, we show that portions of the putamen activated during pain are connected not only with cortical regions involved in sensory-motor processing, but also regions involved in attention, memory and affect. Such a framework may allow cognitive information to flow from these brain areas to the putamen where it may be used to influence how nociceptive information is processed. Taken together, these findings indicate that the putamen and the basal ganglia may contribute importantly to the shaping of an individual subjective sensory experience by utilizing internal cognitive information to influence activity of large areas of the cerebral cortex. PMID:21616963

  16. Comprehensive analysis of human endogenous retrovirus group HERV-W locus transcription in multiple sclerosis brain lesions by high-throughput amplicon sequencing.

    PubMed

    Schmitt, Katja; Richter, Christin; Backes, Christina; Meese, Eckart; Ruprecht, Klemens; Mayer, Jens

    2013-12-01

    Human endogenous retroviruses (HERVs) of the HERV-W group comprise hundreds of loci in the human genome. Deregulated HERV-W expression and HERV-W locus ERVWE1-encoded Syncytin-1 protein have been implicated in the pathogenesis of multiple sclerosis (MS). However, the actual transcription of HERV-W loci in the MS context has not been comprehensively analyzed. We investigated transcription of HERV-W in MS brain lesions and white matter brain tissue from healthy controls by employing next-generation amplicon sequencing of HERV-W env-specific reverse transcriptase (RT) PCR products, thus revealing transcribed HERV-W loci and the relative transcript levels of those loci. We identified more than 100 HERV-W loci that were transcribed in the human brain, with a limited number of loci being predominantly transcribed. Importantly, relative transcript levels of HERV-W loci were very similar between MS and healthy brain tissue samples, refuting deregulated transcription of HERV-W env in MS brain lesions, including the high-level-transcribed ERVWE1 locus encoding Syncytin-1. Quantitative RT-PCR likewise did not reveal differences in MS regarding HERV-W env general transcript or ERVWE1- and ERVWE2-specific transcript levels. However, we obtained evidence for interindividual differences in HERV-W transcript levels. Reporter gene assays indicated promoter activity of many HERV-W long terminal repeats (LTRs), including structurally incomplete LTRs. Our comprehensive analysis of HERV-W transcription in the human brain thus provides important information on the biology of HERV-W in MS lesions and normal human brain, implications for study design, and mechanisms by which HERV-W may (or may not) be involved in MS.

  17. Fully automated rodent brain MR image processing pipeline on a Midas server: from acquired images to region-based statistics

    PubMed Central

    Budin, Francois; Hoogstoel, Marion; Reynolds, Patrick; Grauer, Michael; O'Leary-Moore, Shonagh K.; Oguz, Ipek

    2013-01-01

    Magnetic resonance imaging (MRI) of rodent brains enables study of the development and the integrity of the brain under certain conditions (alcohol, drugs etc.). However, these images are difficult to analyze for biomedical researchers with limited image processing experience. In this paper we present an image processing pipeline running on a Midas server, a web-based data storage system. It is composed of the following steps: rigid registration, skull-stripping, average computation, average parcellation, parcellation propagation to individual subjects, and computation of region-based statistics on each image. The pipeline is easy to configure and requires very little image processing knowledge. We present results obtained by processing a data set using this pipeline and demonstrate how this pipeline can be used to find differences between populations. PMID:23964234

  18. Functional cliques in the amygdala and related brain networks driven by fear assessment acquired during movie viewing.

    PubMed

    Kinreich, Sivan; Intrator, Nathan; Hendler, Talma

    2011-01-01

    One of the greatest challenges involved in studying the brain mechanisms of fear is capturing the individual's unique instantaneous experience. Brain imaging studies to date commonly sacrifice valuable information regarding the individual real-time conscious experience, especially when focusing on elucidating the amygdala's activity. Here, we assumed that by using a minimally intrusive cue along with applying a robust clustering approach to probe the amygdala, it would be possible to rate fear in real time and to derive the related network of activation. During functional magnetic resonance imaging scanning, healthy volunteers viewed two excerpts from horror movies and were periodically auditory cued to rate their instantaneous experience of "I'm scared." Using graph theory and community mathematical concepts, data-driven clustering of the fear-related functional cliques in the amygdala was performed guided by the individually marked periods of heightened fear. Individually tailored functions derived from these amygdala activation cliques were subsequently applied as general linear model predictors to a whole-brain analysis to reveal the correlated networks. Our results suggest that by using a localized robust clustering approach, it is possible to probe activation in the right dorsal amygdala that is directly related to individual real-time emotional experience. Moreover, this fear-evoked amygdala revealed two opposing networks of co-activation and co-deactivation, which correspond to vigilance and rest-related circuits, respectively.

  19. Functional cliques in the amygdala and related brain networks driven by fear assessment acquired during movie viewing.

    PubMed

    Kinreich, Sivan; Intrator, Nathan; Hendler, Talma

    2011-01-01

    One of the greatest challenges involved in studying the brain mechanisms of fear is capturing the individual's unique instantaneous experience. Brain imaging studies to date commonly sacrifice valuable information regarding the individual real-time conscious experience, especially when focusing on elucidating the amygdala's activity. Here, we assumed that by using a minimally intrusive cue along with applying a robust clustering approach to probe the amygdala, it would be possible to rate fear in real time and to derive the related network of activation. During functional magnetic resonance imaging scanning, healthy volunteers viewed two excerpts from horror movies and were periodically auditory cued to rate their instantaneous experience of "I'm scared." Using graph theory and community mathematical concepts, data-driven clustering of the fear-related functional cliques in the amygdala was performed guided by the individually marked periods of heightened fear. Individually tailored functions derived from these amygdala activation cliques were subsequently applied as general linear model predictors to a whole-brain analysis to reveal the correlated networks. Our results suggest that by using a localized robust clustering approach, it is possible to probe activation in the right dorsal amygdala that is directly related to individual real-time emotional experience. Moreover, this fear-evoked amygdala revealed two opposing networks of co-activation and co-deactivation, which correspond to vigilance and rest-related circuits, respectively. PMID:22432905

  20. New England Medical Center Posterior Circulation Stroke Registry: I. Methods, Data Base, Distribution of Brain Lesions, Stroke Mechanisms, and Outcomes

    PubMed Central

    Chung, C-S; Wityk, RJ; Glass, TA; Tapia, J; Pazdera, L; Chang, H-M; Dashe, JF; Chaves, CJ; Vemmos, K; Leary, M; Dewitt, LD; Pessin, MS

    2005-01-01

    Among 407 New England Medical Center Posterior Circulation Registry (NEMC-PCR) patients, 59% had strokes without transient ischemic attacks (TIAs), 24% had TIAs before strokes, and 16% had only posterior circulation TIAs. Embolism was the commonest stroke mechanism accounting for 40% of cases (24% cardiac origin, 14% arterial origin, 2% had potential cardiac and arterial sources). In 32%, large artery occlusive lesions caused hemodynamic brain infarction. Stroke mechanisms in the posterior and anterior circulation are very similar. Infarcts most often included the distal posterior circulation territory (rostral brainstem, superior cerebellum and occipital and temporal lobes), while the proximal (medulla and posterior inferior cerebellum) and middle (pons and anterior inferior cerebellum) territories were equally involved. Infarcts that included the distal territory were twice as common as those that included the proximal or middle territories. Most distal territory infarcts were attributable to embolism. Thirty day mortality was low (3.6%). Embolic stroke mechanism, distal territory location, and basilar artery occlusive disease conveyed the worst prognosis. PMID:20396469

  1. Magnetic resonance imaging and computer tomography of brain lesions in water buffaloes and cattle stunned with handguns or captive bolts.

    PubMed

    Schwenk, Barbara K; Lechner, Isabel; Ross, Steffen G; Gascho, Dominic; Kneubuehl, Beat P; Glardon, Matthieu; Stoffel, Michael H

    2016-03-01

    Owing to the demand for genuine mozzarella, some 330 water buffaloes are being slaughtered every year in Switzerland albeit a stunning procedure meeting animal welfare and occupational safety requirements remains to be established. To provide a basis for improvements, we sized anatomical specifics in water buffaloes and cattle and we assessed brain lesions after stunning with captive bolts or handguns by diagnostic imaging. In water buffaloes and cattle, the median distance from the frontal skin surface to the inner bone table was 74.0mm (56.0-100.0mm) vs 36.6mm (29.3-44.3mm) and from skin to the thalamus 144.8mm (117.1-172.0mm) vs 102.0 (101.0-121.0mm), respectively. Consequently, customary captive bolt stunners may be inadequate. Free bullets are potentially suitable for stunning buffaloes but involve occupational safety hazards. The results of the present study shall be used to develop a device allowing effective and safe stunning of water buffaloes.

  2. Effects of rehabilitative horse riding on the Sit-to-Stand action of the adolescent with brain lesions

    PubMed Central

    Lee, Jang Won; Han, A-reum; Kim, Kihong

    2014-01-01

    The purpose of this study was to investigate the balance abilities of the adolescent girl with brain lesions by Sit-to-Stand (STS) action analysis before and after the rehabilitative horse riding of 16 week program. The subject aged 16 yr old who had the disabilities of spasticity and hemiplegia was recruited with the consent approval. The equilibrium abilities of the subject were tested by Sit-to-Stand examination with Weight Transfer Time (WTT), Mean Rising Index (MRI), Mean Weight Asymmetry (MWA), Max Trunk Flexion Velocity (MTFV), and Max Trunk Extension Velocity (MTEV). Research was designed by AB single subject study with baseline of 3 times of measurement and rehabilitative horse riding treatments. In the results, the enhancement of the subject’s equilibrium ability was shown from the comparisons between baseline and treatment by the STS test that WTT was 2.37 sec faster, MRI was 6.64 N/kg higher, and MWA was 8.12% lower, and MTFV was 0.57°/sec larger than all those means of baseline. It suggested that the subject showed her enhanced balance ability while in sitting and standing after the rehabilitative horse riding treatments. PMID:24678502

  3. Magnetic resonance imaging and computer tomography of brain lesions in water buffaloes and cattle stunned with handguns or captive bolts.

    PubMed

    Schwenk, Barbara K; Lechner, Isabel; Ross, Steffen G; Gascho, Dominic; Kneubuehl, Beat P; Glardon, Matthieu; Stoffel, Michael H

    2016-03-01

    Owing to the demand for genuine mozzarella, some 330 water buffaloes are being slaughtered every year in Switzerland albeit a stunning procedure meeting animal welfare and occupational safety requirements remains to be established. To provide a basis for improvements, we sized anatomical specifics in water buffaloes and cattle and we assessed brain lesions after stunning with captive bolts or handguns by diagnostic imaging. In water buffaloes and cattle, the median distance from the frontal skin surface to the inner bone table was 74.0mm (56.0-100.0mm) vs 36.6mm (29.3-44.3mm) and from skin to the thalamus 144.8mm (117.1-172.0mm) vs 102.0 (101.0-121.0mm), respectively. Consequently, customary captive bolt stunners may be inadequate. Free bullets are potentially suitable for stunning buffaloes but involve occupational safety hazards. The results of the present study shall be used to develop a device allowing effective and safe stunning of water buffaloes. PMID:26610289

  4. Progress and prospects in neurorehabilitation: clinical applications of stem cells and brain-computer interface for spinal cord lesions.

    PubMed

    Gongora, Mariana; Peressutti, Caroline; Machado, Sergio; Teixeira, Silmar; Velasques, Bruna; Ribeiro, Pedro

    2013-04-01

    Spinal cord injury (SCI) is a disease that affects millions of people worldwide, causing a temporary or permanent impairment of neuromotor functions. Mostly associated to traumatic lesions, but also to other forms of disease, the appropriate treatment is still unsure. In this review, several ongoing studies are presented that aim to provide methods of prevention that ensure quality of life, and rehabilitation trends to patients who suffer from this injury. Stem cell research, highlighted in this review, seeks to reduce damage caused to the tissue, as also provide spinal cord regeneration through the application of several types of stem cells. On the other hand, research using brain-computer interface (BCI) technology proposes the development of interfaces based on the interaction of neural networks with artificial tools to restore motor control and full mobility of the injured area. PubMed, MEDLINE and SciELO data basis analyses were performed to identify studies published from 2000 to date, which describe the link between SCI with stem cells and BCI technology.

  5. Is the spatial distribution of brain lesions associated with closed-head injury predictive of subsequent development of attention-deficit/hyperactivity disorder? Analysis with brain-image database

    NASA Technical Reports Server (NTRS)

    Herskovits, E. H.; Megalooikonomou, V.; Davatzikos, C.; Chen, A.; Bryan, R. N.; Gerring, J. P.

    1999-01-01

    PURPOSE: To determine whether there is an association between the spatial distribution of lesions detected at magnetic resonance (MR) imaging of the brain in children after closed-head injury and the development of secondary attention-deficit/hyperactivity disorder (ADHD). MATERIALS AND METHODS: Data obtained from 76 children without prior history of ADHD were analyzed. MR images were obtained 3 months after closed-head injury. After manual delineation of lesions, images were registered to the Talairach coordinate system. For each subject, registered images and secondary ADHD status were integrated into a brain-image database, which contains depiction (visualization) and statistical analysis software. Using this database, we assessed visually the spatial distributions of lesions and performed statistical analysis of image and clinical variables. RESULTS: Of the 76 children, 15 developed secondary ADHD. Depiction of the data suggested that children who developed secondary ADHD had more lesions in the right putamen than children who did not develop secondary ADHD; this impression was confirmed statistically. After Bonferroni correction, we could not demonstrate significant differences between secondary ADHD status and lesion burdens for the right caudate nucleus or the right globus pallidus. CONCLUSION: Closed-head injury-induced lesions in the right putamen in children are associated with subsequent development of secondary ADHD. Depiction software is useful in guiding statistical analysis of image data.

  6. Effects of isoflurane, fentanyl, or thiopental anesthesia on regional cerebral blood flow and brain surface PO2 in the presence of a focal lesion in rabbits.

    PubMed

    Murr, R; Schürer, L; Berger, S; Enzenbach, R; Peter, K; Baethmann, A

    1993-11-01

    These studies were conducted to determine the effect of anesthetic drugs on tissue perfusion and O2 supply in the brain with focal cerebral edema. Using an open cranium preparation, we studied the effects of isoflurane (I; 1 minimum alveolar anesthetic concentration), of fentanyl (F; 0.5-1 microgram.kg-1 x min-1), or of thiopental (T; 32.5 mg.kg-1 x h-1) on regional cerebral blood flow (rCBF) and regional brain tissue PO2 in albino rabbits (n = 6 per group) with a focal brain lesion (cold injury). The doses of anesthetics were sufficient to suppress nociception. rCBF (H2 clearance) and tissue PO2 (multiwire surface electrode) were studied adjacent to and distant from the lesion. Cerebral hyperemia developed immediately after trauma in all groups, although the flow increase did not attain statistical significance. rCBF was subsequently reduced by about 25% in the vicinity of the lesion. Distant from the trauma, a continuing hyperemia (+30%) was later observed in animals with isoflurane, whereas rCBF was decreased then by 10%-20% in animals with fentanyl, or was unchanged with thiopental. Brain tissue PO2 was increased with isoflurane in areas distant from the lesion, but decreased with fentanyl. However, with thiopental, the PO2 level had already been lowered before trauma with a subsequent tendency toward normalization. The heterogeneity of the tissue PO2 in fentanyl anesthesia, as well as the increased frequency of hypoxic PO2 values with thiopental, might have resulted from microcirculatory disturbances. Thus, although isoflurane seemed to facilitate hyperemia with an increased O2 supply to the brain, fentanyl tended to induce the opposite response. Although these properties suggest the potential to manipulate perfusion and O2 supply in cerebral ischemia or hyperemia after head injury, the effects of such measures on intracranial pressure, neurologic status, and outcome have yet to be proven.

  7. [Improvement in spontaneous and acquired spatial behaviors following lesions of septal dopaminergic afferents in mice: possible relations with hippocampal cholinergic activity].

    PubMed

    Galey, D; Durkin, T; Sifakis, G; Jaffard, R

    1984-01-01

    Recent evidence from pharmacological studies support the view that dopaminergic afferents to the septal complex which originate from the mesencephalic A10 area, exert a tonic inhibitory control over the activity of the septal-hippocampal cholinergic neurons. Accordingly one could predict that the release from such an inhibition by lesion of the septal dopaminergic terminals might improve performance in tasks known to be related to hippocampal cholinergic activity. In order to test this hypothesis mice of the C57BL/6 strain received a bilateral injection of 6-hydroxydopamine in the lateral septal nucleus; they were compared to subjects receiving saline and to unoperated control mice in tests performed in a T-maze: spontaneous alternation, acquisition and reversal of spatial discrimination. In all tasks, performance of experimental subjects was improved relative to controls. However, subsequent experiments showed that this improvement was not observed when visual (light/dark) discrimination was used. Finally, 6-hydroxydopamine injected mice exhibited a substantial increase in hippocampal sodium-dependent high affinity choline uptake (+ 16.7%). These results are discussed in relation to the three main theories concerning the role of the septo-hippocampal complex and cholinergic system in the control of behavior (i.e. Pavlovian internal inhibition, spatial mapping and working memory). Only the theory of spatial cognition seems to account for our present findings.

  8. Inherited or acquired metabolic disorders.

    PubMed

    Eichler, Florian; Ratai, Eva; Carroll, Jason J; Masdeu, Joseph C

    2016-01-01

    This chapter starts with a description of imaging of inherited metabolic disorders, followed by a discussion on imaging of acquired toxic-metabolic disorders of the adult brain. Neuroimaging is crucial for the diagnosis and management of a number of inherited metabolic disorders. Among these, inherited white-matter disorders commonly affect both the nervous system and endocrine organs. Magnetic resonance imaging (MRI) has enabled new classifications of these disorders that have greatly enhanced both our diagnostic ability and our understanding of these complex disorders. Beyond the classic leukodystrophies, we are increasingly recognizing new hereditary leukoencephalopathies such as the hypomyelinating disorders. Conventional imaging can be unrevealing in some metabolic disorders, but proton magnetic resonance spectroscopy (MRS) may be able to directly visualize the metabolic abnormality in certain disorders. Hence, neuroimaging can enhance our understanding of pathogenesis, even in the absence of a pathologic specimen. This review aims to present pathognomonic brain MRI lesion patterns, the diagnostic capacity of proton MRS, and information from clinical and laboratory testing that can aid diagnosis. We demonstrate that applying an advanced neuroimaging approach enhances current diagnostics and management. Additional information on inherited and metabolic disorders of the brain can be found in Chapter 63 in the second volume of this series. PMID:27432685

  9. Is the spatial distribution of brain lesions associated with closed-head injury in children predictive of subsequent development of posttraumatic stress disorder?

    NASA Technical Reports Server (NTRS)

    Herskovits, Edward H.; Gerring, Joan P.; Davatzikos, Christos; Bryan, R. Nick

    2002-01-01

    PURPOSE: To determine whether there is an association between the spatial distributions of lesions detected at magnetic resonance (MR) imaging of the brain in children, adolescents, and young adults after closed-head injury (CHI) and development of the reexperiencing symptoms of posttraumatic stress disorder (PTSD). MATERIALS AND METHODS: Data obtained in 94 subjects without a history of PTSD as determined by parental interview were analyzed. MR images were obtained 3 months after CHI. Lesions were manually delineated and registered to the Talairach coordinate system. Mann-Whitney analysis of lesion distribution and PTSD status at 1 year (again, as determined by parental interview) was performed, consisting of an analysis of lesion distribution versus the major symptoms of PTSD: reexperiencing, hyperarousal, and avoidance. RESULTS: Of the 94 subjects, 41 met the PTSD reexperiencing criterion and nine met all three PTSD criteria. Subjects who met the reexperiencing criterion had fewer lesions in limbic system structures (eg, the cingulum) on the right than did subjects who did not meet this criterion (Mann-Whitney, P =.003). CONCLUSION: Lesions induced by CHI in the limbic system on the right may inhibit subsequent manifestation of PTSD reexperiencing symptoms in children, adolescents, and young adults. Copyright RSNA, 2002.

  10. Combined 192 IgG-saporin and 5,7-dihydroxytryptamine lesions in the male rat brain: a neurochemical and behavioral study.

    PubMed

    Lehmann, Olivia; Jeltsch, Hélène; Lazarus, Christine; Tritschler, Laurent; Bertrand, Fabrice; Cassel, Jean-Christophe

    2002-07-01

    In a previous experiment [Eur J Neurosci 12 (2000) 79], combined intracerebroventricular injections of 5,7-dihydroxytryptamine (5,7-DHT; 150 microg) and 192 IgG-saporin (2 microg) in female rats produced working memory impairments, which neither single lesion induced. In the present experiment, we report on an identical approach in male rats. Behavioral variables were locomotor activity, T-maze alternation, beam-walking, Morris water-maze (working and reference memory) and radial-maze performances. 192 IgG-saporin reduced cholinergic markers in the frontoparietal cortex and the hippocampus. 5,7-DHT lesions reduced serotonergic markers in the cortex, hippocampus and striatum. Cholinergic lesions induced motor deficits, hyperactivity and reduced T-maze alternation, but had no other effect. Serotonergic lesions only produced hyperactivity and reduced T-maze alternation. Beside the deficits due to cholinergic lesions, rats with combined lesions also showed impaired radial-maze performances. We confirm that 192 IgG-saporin and 5,7-DHT injections can be combined to produce concomitant damage to cholinergic and serotonergic neurons in the brain. In female rats, this technique enabled to show that interactions between serotonergic and basal forebrain cholinergic mechanisms play an important role in cognitive functions. The results of the present experiment in male rats are not as clear-cut, although they are not in obvious contradiction with our previous results in females. PMID:12062580

  11. Neuroanatomical localization and quantification of amyloid precursor protein mRNA by in situ hybridization in the brains of normal, aneuploid, and lesioned mice

    SciTech Connect

    Bendotti, C.; Forloni, G.L.; Morgan, R.A.; O'Hara, B.F.; Oster-Granite, M.L.; Reeves, R.H.; Gearhart, J.D.; Coyle, J.T. )

    1988-05-01

    Amyloid precursor protein mRNA was localized in frozen sections from normal and experimentally lesioned adult mouse brain and from normal and aneuploid fetal mouse brain by in situ hybridization with a {sup 35}S-labeled mouse cDNA probe. The highest levels of hybridization in adult brain were associated with neurons, primarily in telencephalic structures. The dense labeling associated with hippocampal pyramidal cells was reduced significantly when the cells were eliminated by injection of the neurotoxin ibotenic acid but was not affected when electrolytic lesions were placed in the medial septum. Since the gene encoding amyloid precursor protein has been localized to mouse chromosome 16, the authors also examined the expression of this gene in the brains of mouse embryos with trisomy 16 and trisomy 19 at 15 days of gestation. RNA gel blot analysis and in situ hybridization showed a marked increase in amyloid precursor protein mRNA in the trisomy 16 mouse head and brain when compared with euploid littermates or with trisomy 19 mice.

  12. Multiple Meningioma in a Patient of Bipolar Disorder: The Dilemma of Detecting Structural Brain Lesions in the Backdrop of a Long Standing Psychiatric Illness

    PubMed Central

    Sood, Mamta; Khandelwal, Sudhir Kumar

    2016-01-01

    Multiple meningioma often can be clinically silent and may present with only psychiatric symptoms. We report a case of 43-year-old, right handed woman with a 23 year history of long standing bipolar affective disorder, who presented with a mixed episode with psychotic symptoms which did not respond to usual treatment and was further complicated with a different set of symptomatology. MRI brain revealed multiple dural based mass lesions identified to be multiple meningiomas. Patient’s symptoms improved after gamma knife stereotactic radiosurgery for the multiple meningioma. Our finding illustrates the need to assess for brain lesions in presence of atypical symptoms, along with unresponsiveness to traditional management with psychotropic medications in patients with bipolar affective disorders. PMID:27656537

  13. Fusing Markov random fields with anatomical knowledge and shape-based analysis to segment multiple sclerosis white matter lesions in magnetic resonance images of the brain

    NASA Astrophysics Data System (ADS)

    AlZubi, Stephan; Toennies, Klaus D.; Bodammer, N.; Hinrichs, Herman

    2002-05-01

    This paper proposes an image analysis system to segment multiple sclerosis lesions of magnetic resonance (MR) brain volumes consisting of 3 mm thick slices using three channels (images showing T1-, T2- and PD -weighted contrast). The method uses the statistical model of Markov Random Fields (MRF) both at low and high levels. The neighborhood system used in this MRF is defined in three types: (1) Voxel to voxel: a low-level heterogeneous neighborhood system is used to restore noisy images. (2) Voxel to segment: a fuzzy atlas, which indicates the probability distribution of each tissue type in the brain, is registered elastically with the MRF. It is used by the MRF as a-priori knowledge to correct miss-classified voxels. (3) Segment to segment: Remaining lesion candidates are processed by a feature based classifier that looks at unary and neighborhood information to eliminate more false positives. An expert's manual segmentation was compared with the algorithm.

  14. Multiple Meningioma in a Patient of Bipolar Disorder: The Dilemma of Detecting Structural Brain Lesions in the Backdrop of a Long Standing Psychiatric Illness.

    PubMed

    Mahapatra, Ananya; Sood, Mamta; Khandelwal, Sudhir Kumar

    2016-08-01

    Multiple meningioma often can be clinically silent and may present with only psychiatric symptoms. We report a case of 43-year-old, right handed woman with a 23 year history of long standing bipolar affective disorder, who presented with a mixed episode with psychotic symptoms which did not respond to usual treatment and was further complicated with a different set of symptomatology. MRI brain revealed multiple dural based mass lesions identified to be multiple meningiomas. Patient's symptoms improved after gamma knife stereotactic radiosurgery for the multiple meningioma. Our finding illustrates the need to assess for brain lesions in presence of atypical symptoms, along with unresponsiveness to traditional management with psychotropic medications in patients with bipolar affective disorders. PMID:27656537

  15. MR Imaging Evaluation of Intracerebral Hemorrhages and T2 Hyperintense White Matter Lesions Appearing after Radiation Therapy in Adult Patients with Primary Brain Tumors

    PubMed Central

    Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Park, Chul-Kee; Kim, Il Han; Choi, Seung Hong

    2015-01-01

    The purpose of our study was to determine the frequency and severity of intracerebral hemorrhages and T2 hyperintense white matter lesions (WMLs) following radiation therapy for brain tumors in adult patients. Of 648 adult brain tumor patients who received radiation therapy at our institute, magnetic resonance (MR) image data consisting of a gradient echo (GRE) and FLAIR T2-weighted image were available three and five years after radiation therapy in 81 patients. Intracerebral hemorrhage was defined as a hypointense dot lesion appearing on GRE images after radiation therapy. The number and size of the lesions were evaluated. The T2 hyperintense WMLs observed on the FLAIR sequences were graded according to the extent of the lesion. Intracerebral hemorrhage was detected in 21 (25.9%) and 35 (43.2) patients in the three- and five-year follow-up images, respectively. The number of intracerebral hemorrhages per patient tended to increase as the follow-up period increased, whereas the size of the intracerebral hemorrhages exhibited little variation over the course of follow-up. T2 hyperintense WMLs were observed in 27 (33.3%) and 32 (39.5) patients in the three and five year follow-up images, respectively. The age at the time of radiation therapy was significantly higher (p < 0.001) in the patients with T2 hyperintense WMLs than in those without lesions. Intracerebral hemorrhages are not uncommon in adult brain tumor patients undergoing radiation therapy. The incidence and number of intracerebral hemorrhages increased over the course of follow-up. T2 hyperintense WMLs were observed in more than one-third of the study population. PMID:26322780

  16. SU-E-T-542: Comparison of Stereotactic Radiosurgery (SRS) of Brain Lesions Using Gamma Knife, VMAT, IMRT, and Conformal Arcs

    SciTech Connect

    Li, S; Charpentier, P; Chan, P; Neicu, T; Miyamoto, C

    2014-06-01

    Purpose: To compare dose distributions in stereotactic radiation surgery of brain lesions using gamma Knife, VMAT, conformal arcs, and IMRT in order to provide an optimal treatment. Methods: Dose distributions from single shot of 4C model of Gamma Knife at the helmet collimation sizes of 4, 8, 14, and 18 mm in diameter were compared with full arcs with the square shapes of 4×4 (or 5×5), 8×8 (or 10×10), and spherical shapes of 16 or 20 mm in diameter using EDR3 films in the same gamma knife QA phantom. Plans for ten SRS cases with single and multiple lesions were created in gamma knife plans and Pinnacle plans. The external beam plans had enlarged field size by 2-mm and used single conformal full circle arc for solitary lesion and none coplanar arcs/beams for multiple lesions. Coverage, conformity index, dose to critical organs, and integral dose to the brain and nearby critical structures were compared on all plans. Structures and dose matrices were registered in a Velocity deformable image registration system. Results: Single full circle arc from Elekta beam-modulate MLC (4-mm leaf thickness) and agility MLC (5-mm leaf thickness) have larger penumbra and less flatness than that of Gamma Knife single shot. None-coplanar arcs or beams were required to achieve similar dose distribution. In general, Gamma Knife plans provided significant less integral dose than that of linac-based plans. Benefits of IMRT and VMAT versus gamma Knife and conformal arcs were not significant. Conclusion: Our dose measurement and treatment planning evaluation clearly demonstrated dose distribution differences amount current popular SRS modalities for small solitary and multiple brain lesions. The trend of using MLC shape beams or arcs to replace conventional cones should be revisited in order to keep lower integral dose if the late correlates with some radiation-induced side effects. Pilot grant from Elekta LLC.

  17. Peripheral-type benzodiazepine receptor binding 4{prime}-IODO-PK11195: A new radioiodinated ligand for detecting lesioned brain areas

    SciTech Connect

    Saji, H.; Iida, Y.; Nakatsuka, I.

    1995-05-01

    An increase in the peripheral-type benzodiazepine binding sites (PBBS) has recently been reported in excitotoxic and ischaemic lesions in the brain. Thus, PBBS visualization has been of greater interest due to the possibility of imaging the lesioned area as positive image. In this study, our interest is focussed in the development of a radioiodinated compound for the SPECT study of PBBS function. Taking account of the environment of binding sites and the stability in vivo, we selected the 4{prime}position of C-1 phenyl moiety of the isoqunoline derivative PK11195 as the best exploitable site for the iodination. The no-carrier-added I-125 labeled 4{prime}-iodo-PK11195 (IPK) was synthesized by the bromine-iodine exchange reaction in 60% radiochemical yield and > 98% radiochemical purity. In vitro competitive binding studies with H-3-PI11195 using rat kidney membranes shows that IPK has high affinity for PBBS as much as PK11195. The in vivo biodistribution in mice showed high uptake of I-125-IPK in the kidney, lung, heart and adrenal, organs reported as containing high PBBS, which were reduced by the treatment with cold PK11195. Furthermore, autoradiographic studies in transient middle cerebral arteries occlusion in rats showed high accumulation of I-125-IPK in lesioned sites, in contrast to the decease of radioactivity of Tc-99m-HM-PAO. Gathered data indicated that the newly designed IPK holds to great potential for detecting the lesioned brain areas as positive image.

  18. Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.

    PubMed

    Fiot, Jean-Baptiste; Cohen, Laurent D; Raniga, Parnesh; Fripp, Jurgen

    2013-09-01

    Support vector machines (SVM) are machine learning techniques that have been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in this paper combines advanced pre-processing, tissue-based feature selection and SVM classification to obtain efficient and accurate WMH segmentation. Features from 125 patients, generated from up to four MR modalities [T1-w, T2-w, proton-density and fluid attenuated inversion recovery(FLAIR)], differing neighbourhood sizes and the use of multi-scale features were compared. We found that although using all four modalities gave the best overall classification (average Dice scores of 0.54  ±  0.12, 0.72  ±  0.06 and 0.82  ±  0.06 respectively for small, moderate and severe lesion loads); this was not significantly different (p = 0.50) from using just T1-w and FLAIR sequences (Dice scores of 0.52  ±  0.13, 0.71  ±  0.08 and 0.81  ±  0.07). Furthermore, there was a negligible difference between using 5 × 5 × 5 and 3 × 3 × 3 features (p = 0.93). Finally, we show that careful consideration of features and pre-processing techniques not only saves storage space and computation time but also leads to more efficient classification, which outperforms the one based on all features with post-processing. PMID:23303595

  19. Further developments in summarising and meta-analysing single-case data: An illustration with neurobehavioural interventions in acquired brain injury.

    PubMed

    Manolov, Rumen; Rochat, Lucien

    2015-01-01

    Data analysis for single-case designs is an issue that has prompted many researchers to propose a variety of alternatives, including use of randomisation tests, regression-based procedures, and standardised mean difference. Another option consists in computing unstandardised or raw differences between conditions: the changes in slope and in level, or the difference between the projected baseline (including trend) and the actual treatment phase measurements. Apart from the strengths of these procedures (potentially easier interpretation clinically, separate estimations and an overall quantification of effects, reasonable performance), they require further development, such as (a) creating extensions for dealing with methodologically strong designs such as multiple baseline, (b) achieving comparability across studies and making possible meta-analytical integrations, and (c) implementing software for the extensions. The proposals are illustrated herein in the context of a meta-analysis of 28 studies on (neuro)behavioural interventions in adults who have challenging behaviours after acquired brain injury.

  20. Large-Volume Reconstruction of Brain Tissue from High-Resolution Serial Section Images Acquired by SEM-Based Scanning Transmission Electron Microscopy

    PubMed Central

    Kuwajima, Masaaki; Mendenhall, John M.; Harris, Kristen M.

    2013-01-01

    With recent improvements in instrumentation and computational tools, serial section electron microscopy has become increasingly straightforward. A new method for imaging ultrathin serial sections is developed based on a field emission scanning electron microscope fitted with a transmitted electron detector. This method is capable of automatically acquiring high-resolution serial images with a large field size and very little optical and physical distortions. In this chapter, we describe the procedures leading to the generation and analyses of a large-volume stack of high-resolution images (64 μm × 64 μm × 10 μm, or larger, at 2 nm pixel size), including how to obtain large-area serial sections of uniform thickness from well-preserved brain tissue that is rapidly perfusion-fixed with mixed aldehydes, processed with a microwave-enhanced method, and embedded into epoxy resin. PMID:23086880

  1. Large-volume reconstruction of brain tissue from high-resolution serial section images acquired by SEM-based scanning transmission electron microscopy.

    PubMed

    Kuwajima, Masaaki; Mendenhall, John M; Harris, Kristen M

    2013-01-01

    With recent improvements in instrumentation and computational tools, serial section electron microscopy has become increasingly straightforward. A new method for imaging ultrathin serial sections is developed based on a field emission scanning electron microscope fitted with a transmitted electron detector. This method is capable of automatically acquiring high-resolution serial images with a large field size and very little optical and physical distortions. In this chapter, we describe the procedures leading to the generation and analyses of a large-volume stack of high-resolution images (64 μm × 64 μm × 10 μm, or larger, at 2 nm pixel size), including how to obtain large-area serial sections of uniform thickness from well-preserved brain tissue that is rapidly perfusion-fixed with mixed aldehydes, processed with a microwave-enhanced method, and embedded into epoxy resin.

  2. [Analysis of the effect of physical group activities in patients with acquired brain injury in the subacute phase].

    PubMed

    García-Hernández, Juan José; Mediavilla-Saldaña, Lázaro; Pérez-Rodríguez, Pérez-Rodríguez; Pérez-Tejero, Javier; González-Alted, Carlos

    2013-07-16

    Introduccion. El daño cerebral adquirido (DCA) hace referencia a cualquier tipo de lesion no degenerativa que se produce en el cerebro. Las actividades fisicas grupales (AFG) se presentan como un tratamiento efectivo para la mejora de la capacidad funcional. Objetivo. Analizar la eficacia de un programa de AFG en personas con DCA en fase subaguda para su integracion fisica en la comunidad. Pacientes y metodos. Treinta y tres pacientes con DCA, con una edad de 33,18 ± 10,39 años, participaron en un programa de AFG (talleres de circuito, equilibrio simple, equilibrio dual, desplazamiento dual y actividades fisico-deportivas) de 10 semanas. Al comenzar y concluir el programa se evaluaron las variables de velocidad (prueba de velocidad de la marcha en 10 metros), resistencia (prueba de marcha de seis minutos), equilibrio dinamico (Step Test), capacidad funcional (Timed Up and Go), escala de percepcion de seguridad (Activities-specific Balance Confidence Scale) y Physical Activity and Disability Survey (PADS), el promedio por hora de la intensidad de la actividad y el numero de pasos fuera del centro de rehabilitacion (usando monitores de actividad fisica). La prueba t para muestras relacionadas se utilizo para evaluar las diferencias en las variables. Resultados. Se hallaron diferencias significativas (p <= 0,05) en las variables de velocidad, resistencia, equilibrio, capacidad funcional, percepcion de seguridad, percepcion de realizacion de actividad general (pregunta 3 del PADS) y numero de pasos. Conclusion. Los programas de AFG mejoran las capacidades fisicas, percepcion de seguridad, realizacion de actividad en general y numero de pasos, lo que puede conllevar una mayor participacion en la comunidad.

  3. Brain lesions comprised of aluminum-rich cells that lack microtubules may be associated with the cognitive deficit of Alzheimer's disease.

    PubMed

    Walton, J R

    2009-11-01

    A recent longitudinal study described an inducible rodent model for age-related cognitive deterioration. This model was produced by chronically feeding rats aluminum, from age 12 months onwards, in measured amounts equivalent to total aluminum levels ingested by Americans from their food, beverages and aluminum additives. The rats performed a hippocampal-dependent spatial memory discrimination task weekly throughout middle age and old age. One-third of the rats attained significantly lower mean performance scores in old age than middle age, in an aluminum dose-dependent manner, and exhibited behavioral signs observed in dementia. The present study used histological and immunohistochemical techniques to identify neuropathological difference between brains of rats that showed cognitive deterioration and the cognitively intact controls. Most aged rat brains had large numbers of aluminum-loaded pyramidal cells in their entorhinal cortex and temporal association cortex but the cognitively deteriorated rats had threefold more such cells than controls (p<0.01). A distinguishing feature was that all brains of the cognitively deteriorated rats, and none of controls, had at least one substantial hippocampal lesion that consisted of aluminum-rich microtubule-depleted pyramidal cells with shriveled processes, and loss of synapse density. Corticolimbic sections from brains of humans with Alzheimer's disease also showed neuropathology consistent with this type of damage. The evidence suggests bioavailable aluminum gradually accumulates in cortical and limbic regions of susceptible subjects' brains, eventually producing hippocampal lesions consisting of dysfunctional aluminum-rich microtubule-depleted pyramidal cells with damaged neurites and synapse loss. These lesions expand over time, disrupting afferent and efferent hippocampal circuitry with the development of clinically overt dementia.

  4. Hematogenous Pasteurella multocida brain abscess

    SciTech Connect

    Wallace, M.; Lipsky, B.A.

    1985-10-01

    A case of hematogenously acquired brain abscess caused by Pasteurella multocida is described. CT scans of the head revealed the lesions in a 67 year old man with mild alcoholic liver disease and severe chronic obstructive pulmonary disease. Ultrasound examinations of the abdomen and chest and an echocardiogram failed to reveal a source for the abscess. On autopsy examination three encapsulated brain abscesses were found. 34 references, 2 figures, 1 table.

  5. Anatomo-clinical overlapping maps (AnaCOM): a new method to create anatomo-functional maps from neuropsychological tests and structural MRI scan of subjects with brain lesions

    NASA Astrophysics Data System (ADS)

    Kinkingnehun, Serge R. J.; du Boisgueheneuc, Foucaud; Golmard, Jean-Louis; Zhang, Sandy X.; Levy, Richard; Dubois, Bruno

    2004-04-01

    We have developed a new technique to analyze correlations between brain anatomy and its neurological functions. The technique is based on the anatomic MRI of patients with brain lesions who are administered neuropsychological tests. Brain lesions of the MRI scans are first manually segmented. The MRI volumes are then normalized to a reference map, using the segmented area as a mask. After normalization, the brain lesions of the MRI are segmented again in order to redefine the border of the lesions in the context of the normalized brain. Once the MRI is segmented, the patient's score on the neuropsychological test is assigned to each voxel in the lesioned area, while the rest of the voxels of the image are set to 0. Subsequently, the individual patient's MRI images are superimposed, and each voxel is reassigned the average score of the patients who have a lesion at that voxel. A threshold is applied to remove regions having less than three overlaps. This process leads to an anatomo-functional map that links brain areas to functional loss. Other maps can be created to aid in analyzing the functional maps, such as one that indicates the 95% confidence interval of the averaged scores for each area. This anatomo-clinical overlapping map (AnaCOM) method was used to obtain functional maps from patients with lesions in the superior frontal gyrus. By finding particular subregions more responsible for a particular deficit, this method can generate new hypotheses to be tested by conventional group methods.

  6. Ecologically valid assessment of executive dysfunction using a novel virtual reality task in patients with acquired brain injury.

    PubMed

    Jovanovski, Diana; Zakzanis, Konstantine; Ruttan, Lesley; Campbell, Zachariah; Erb, Suzanne; Nussbaum, David

    2012-01-01

    The current investigation sought to further establish the psychometric properties and ecological validity of the Multitasking in the City Test (MCT) in a clinical population. Ecological validity was addressed via correlational analyses between performance on this test and a subjective measure of everyday executive functioning (Frontal Systems Behavior Scale; FrSBe). The sample was composed of 13 individuals (11 males) who suffered a stroke or traumatic brain injury. A neuropsychological test battery consisting of the MCT and common executive and nonexecutive measures was administered. The only executive function tests that were significantly related to the FrSBe were the MCT and a semantic fluency test. Compared with a sample of normal participants, the patient group produced better plans but completed fewer tasks on the MCT. Patients made similar types of errors as normals, although some of these errors occurred more frequently in the patient sample. This study demonstrated the ecological validity of the MCT and suggested that patients can be differentiated from healthy individuals by quantitative (i.e., number of errors) rather than qualitative (i.e., type of errors) aspects of performance. Further interpretation of MCT performance and comparison with existing executive function tests is discussed.

  7. Rehabilitation of Executive Functions in Patients with Chronic Acquired Brain Injury with Goal Management Training, External Cuing, and Emotional Regulation: A Randomized Controlled Trial.

    PubMed

    Tornås, Sveinung; Løvstad, Marianne; Solbakk, Anne-Kristin; Evans, Jonathan; Endestad, Tor; Hol, Per Kristian; Schanke, Anne-Kristine; Stubberud, Jan

    2016-04-01

    Executive dysfunction is a common consequence of acquired brain injury (ABI), causing significant disability in daily life. This randomized controlled trial investigated the efficacy of Goal Management Training (GMT) in improving executive functioning in patients with chronic ABI. Seventy patients with a verified ABI and executive dysfunction were randomly allocated to GMT (n=33) or a psycho-educative active control condition, Brain Health Workshop (BHW) (n=37). In addition, all participants received external cueing by text messages. Neuropsychological tests and self-reported questionnaires of executive functioning were administered pre-intervention, immediately after intervention, and at 6 months follow-up. Assessors were blinded to group allocation. Questionnaire measures indicated significant improvement of everyday executive functioning in the GMT group, with effects lasting at least 6 months post-treatment. Both groups improved on the majority of the applied neuropsychological tests. However, improved performance on tests demanding executive attention was most prominent in the GMT group. The results indicate that GMT combined with external cueing is an effective metacognitive strategy training method, ameliorating executive dysfunction in daily life for patients with chronic ABI. The strongest effects were seen on self-report measures of executive functions 6 months post-treatment, suggesting that strategies learned in GMT were applied and consolidated in everyday life after the end of training. Furthermore, these findings show that executive dysfunction can be improved years after the ABI.

  8. Time resolved optical detection for white matter lesion detection: preclinical tests on macaque brains and MRI co-registration

    NASA Astrophysics Data System (ADS)

    Planat-Chrétien, A.; Berger, M.; Hervé, L.; Watroba, L.; Demilly, J.; Flament, J.; Stimmer, L.; Aubourg, P.; Dinten, J.-M.

    2015-07-01

    We conducted a preclinical assessment on young macaques aimed at detecting white matter lesions. We present the protocol we implemented to achieve the lesions detection using a bedside non-invasive optical-based Time-Resolved instrumentation we have optimized for this purpose. We validated the reconstructed 3D absorption map with co-registration of MRI data.

  9. The Impact of Frontal and Non-Frontal Brain Tumor Lesions on Wisconsin Card Sorting Test Performance

    ERIC Educational Resources Information Center

    Goldstein, B.; Obrzut, J. E.; John, C.; Ledakis, G.; Armstrong, C. L.

    2004-01-01

    Several lesion and imaging studies have suggested that the Wisconsin Card Sorting Test (WCST) is a measure of executive dysfunction. However, some studies have reported that this measure has poor anatomical specificity because patients with either frontal or non-frontal focal lesions exhibit similar performance. This study examined 25 frontal, 20…

  10. Reorganization of the Cerebro-Cerebellar Network of Language Production in Patients with Congenital Left-Hemispheric Brain Lesions

    ERIC Educational Resources Information Center

    Lidzba, K.; Wilke, M.; Staudt, M.; Krageloh-Mann, I.; Grodd, W.

    2008-01-01

    Patients with congenital lesions of the left cerebral hemisphere may reorganize language functions into the right hemisphere. In these patients, language production is represented homotopically to the left-hemispheric language areas. We studied cerebellar activation in five patients with congenital lesions of the left cerebral hemisphere to assess…

  11. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer

    PubMed Central

    Mansfield, A. S.; Aubry, M. C.; Moser, J. C.; Harrington, S. M.; Dronca, R. S.; Park, S. S.; Dong, H.

    2016-01-01

    Background The dynamics of PD-L1 expression may limit its use as a tissue-based predictive biomarker. We sought to expand our understanding of the dynamics of PD-L1 expression and tumor-infiltrating lymphocytes (TILs) in patients with lung cancer-related brain metastases. Experimental design Paired primary lung cancers and brain metastases were identified and assessed for PD-L1 and CD3 expression by immunohistochemistry. Lesions with 5% or greater PD-L1 expression were considered positive. Agreement statistics and the χ2 or Fisher's exact test were used for analysis. Results We analyzed 146 paired lesions from 73 cases. There was disagreement of tumor cell PD-L1 expression in 10 cases (14%, κ = 0.71), and disagreement of TIL PD-L1 expression in 19 cases (26%, κ = 0.38). Most paired lesions with discordant tumor cell expression of PD-L1 were obtained 6 or more months apart. When specimens were categorized using a proposed tumor microenvironment categorization scheme based on PD-L1 expression and TILs, there were significant changes in the classifications because many of the brain metastases lacked either PD-L1 expression, tumor lymphocyte infiltration or both even when they were present in the primary lung cancer specimens (P = 0.009). Conclusions We identified that there are significant differences between the tumor microenvironment of paired primary lung cancers and brain metastases. When physicians decide to treat patients with lung cancer with a PD-1 or PD-L1 inhibitor, they must do so in the context of the spatial and temporal heterogeneity of the tumor microenvironment. PMID:27502709

  12. Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn and P in a 6-hydroxydopamine lesioned mouse brain.

    PubMed

    Hare, Dominic J; George, Jessica L; Grimm, Rudolph; Wilkins, Simon; Adlard, Paul A; Cherny, Robert A; Bush, Ashley I; Finkelstein, David I; Doble, Philip

    2010-11-01

    Three dimensional maps of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and phosphorous (P) in a 6-hydroxydopamine (6-OHDA) lesioned mouse brain were constructed employing a novel quantitative laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method known as elemental bio-imaging. The 3D maps were produced by ablating serial consecutive sections taken from the same animal. Each section was quantified against tissue standards resulting in a three dimensional map that represents the variation of trace element concentrations of the mouse brain in the area surrounding the substantia nigra (SN). Damage caused by the needle or the toxin did not alter the distribution of Zn, and Cu but significantly altered Fe in and around the SN and both Mn and Fe around the needle track. A 20% increase in nigral Fe concentration was observed within the lesioned hemisphere. This technique clearly shows the natural heterogeneous distributions of these elements throughout the brain and the perturbations that occur following trauma or intoxication. The method may applied to three-dimensional modelling of trace elements in a wide range of tissue samples. PMID:21072366

  13. Changes in aspects of social functioning depend upon prior changes in neurodisability in people with acquired brain injury undergoing post-acute neurorehabilitation

    PubMed Central

    Fortune, Dónal G.; Walsh, R. Stephen; Waldron, Brian; McGrath, Caroline; Harte, Maurice; Casey, Sarah; McClean, Brian

    2015-01-01

    Post-acute community-based rehabilitation is effective in reducing disability. However, while social participation and quality of life are valued as distal outcomes of neurorehabilitation, it is often not possible to observe improvements on these outcomes within the limited time-frames used in most investigations of rehabilitation. The aim of the current study was to examine differences in the sequence of attainments for people with acquired brain injury (ABI) undergoing longer term post-acute neurorehabilitation. Participants with ABI who were referred to comprehensive home and community-based neurorehabilitation were assessed at induction to service, at 6 months and again at 1.5 years while still in service on the Mayo-Portland Adaptability Index (MPAI-4), Community Integration Questionnaire, Hospital Anxiety and Depression Scale, and World Health Organisation Quality of Life measure. At 6 months post-induction to service, significant differences were evident in MPAI abilities, adjustment, and total neurodisability; and in anxiety and depression. By contrast, there was no significant effect at 6 months on more socially oriented features of experience namely quality of life (QoL), Community Integration and Participation. Eighteen month follow-up showed continuation of the significant positive effects with the addition of QoL-related to physical health, Psychological health, Social aspects of QoL and Participation at this later time point. Regression analyses demonstrated that change in QoL and Participation were dependent upon prior changes in aspects of neurodisability. Age, severity or type of brain injury did not significantly affect outcome. Results suggest that different constructs may respond to neurorehabilitation at different time points in a dose effect manner, and that change in social aspects of experience may be dependent upon the specific nature of prior neurorehabilitation attainments. PMID:26441744

  14. Interleukin-17- and interleukin-22-secreting myelin-specific CD4(+) T cells resistant to corticoids are related with active brain lesions in multiple sclerosis patients.

    PubMed

    Wing, Ana Cristina; Hygino, Joana; Ferreira, Thais B; Kasahara, Taissa M; Barros, Priscila O; Sacramento, Priscila M; Andrade, Regis M; Camargo, Solange; Rueda, Fernanda; Alves-Leon, Soniza V; Vasconcelos, Claudia Cristina; Alvarenga, Regina; Bento, Cleonice A M

    2016-02-01

    Multiple sclerosis (MS) is thought to be an autoimmune disorder. It is believed that immunological events in the early stages have great impact on the disease course. Therefore, we aimed to evaluate the cytokine profile of myelin basic protein (MBP)-specific T cells from MS patients in the early phase of the disease and correlate it to clinical parameters, as well as to the effect of in vitro corticoid treatment. Peripheral T cells from MS patients were stimulated with MBP with our without hydrocortisone for 5 days. The cytokines level were determined by ELISA. The number of active brain lesions was determined by MRI scans, and the neurological disabilities were assessed by Expanded Disability Status Scale scores. Our results demonstrated that MS-derived T cells responded to MBP by producing high levels of T helper type 1 (Th1) and Th17 cytokines. Although the production of interleukin-6 (IL-6), granulocyte-macrophage colony-stimulating factor, IL-17 and IL-22 was less sensitive to hydrocortisone inhibition, only IL-17 and IL-22 levels correlated with active brain lesions. The ability of hydrocortisone to inhibit IL-17 and IL-22 production by MBP-specific CD4(+) T cells was inversely related to the number of active brain lesions. Finally, the production of both cytokines was significantly higher in cell cultures from Afrodescendant patients and it was less sensitive to hydrocortisone inhibition. In summary, our data suggest that IL-17- and IL-22-secreting CD4(+) T cells resistant to corticoids are associated with radiological activity of the MS in early stages of the disease, mainly among Afrodescendant patients who, normally, have worse prognosis.

  15. Multiple hypertrophic relapsing remitting cranial neuropathies as an initial presentation of primary CNS lymphoma without any brain or spinal cord lesion

    PubMed Central

    Watane, Gaurav V; Pandya, Saumil P; Atre, Isha D; Kothari, Foram N

    2016-01-01

    Cranial nerve thickening as an initial isolated presentation of CNS lymphoma is rare. Once an extremely rare neoplasm, primary lymphoma of the central nervous system (CNS) now ranks only next to meningiomas and low-grade astrocytomas in prevalence. Multiple cranial nerve thickening can be a feature of primary CNS lymphoma. Here we report a case of a 45-year-old immunocompetent female who presented with relapsing remitting multiple cranial nerve thickening as an initial feature of primary CNS lymphoma without any other brain or spinal cord lesions. PMID:27081238

  16. IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI.

    PubMed

    Subbanna, Nagesh; Precup, Doina; Arnold, Douglas; Arbel, Tal

    2015-01-01

    In this paper, we present IMaGe, a new, iterative two-stage probabilistic graphical model for detection and segmentation of Multiple Sclerosis (MS) lesions. Our model includes two levels of Markov Random Fields (MRFs). At the bottom level, a regular grid voxel-based MRF identifies potential lesion voxels, as well as other tissue classes, using local and neighbourhood intensities and class priors. Contiguous voxels of a particular tissue type are grouped into regions. A higher, non-lattice MRF is then constructed, in which each node corresponds to a region, and edges are defined based on neighbourhood relationships between regions. The goal of this MRF is to evaluate the probability of candidate lesions, based on group intensity, texture and neighbouring regions. The inferred information is then propagated to the voxel-level MRF. This process of iterative inference between the two levels repeats as long as desired. The iterations suppress false positives and refine lesion boundaries. The framework is trained on 660 MRI volumes of MS patients enrolled in clinical trials from 174 different centres, and tested on a separate multi-centre clinical trial data set with 535 MRI volumes. All data consists of T1, T2, PD and FLAIR contrasts. In comparison to other MRF methods, such as, and a traditional MRF, IMaGe is much more sensitive (with slightly better PPV). It outperforms its nearest competitor by around 20% when detecting very small lesions (3-10 voxels). This is a significant result, as such lesions constitute around 40% of the total number of lesions. PMID:26221699

  17. Impact of brain tumour location on emotion and personality: a voxel-based lesion-symptom mapping study on mentalization processes.

    PubMed

    Campanella, Fabio; Shallice, Tim; Ius, Tamara; Fabbro, Franco; Skrap, Miran

    2014-09-01

    Patients affected by brain tumours may show behavioural and emotional regulation deficits, sometimes showing flattened affect and sometimes experiencing a true 'change' in personality. However, little evidence is available to the surgeon as to what changes are likely to occur with damage at specific sites, as previous studies have either relied on single cases or provided only limited anatomical specificity, mostly reporting associations rather than dissociations of symptoms. We investigated these aspects in patients undergoing surgery for the removal of cerebral tumours. We argued that many of the problems described can be ascribed to the onset of difficulties in one or more of the different levels of the process of mentalizing (i.e. abstracting and reflecting upon) emotion and intentions, which impacts on everyday behaviour. These were investigated in terms of (i) emotion recognition; (ii) Theory of Mind; (iii) alexithymia; and (iv) self-maturity (personality disorder). We hypothesized that temporo/limbic areas would be critical for processing emotion and intentions at a more perceptual level, while frontal lobe structures would be more critical when higher levels of mentalization/abstraction are required. We administered four different tasks, Task 1: emotion recognition of Ekman faces; Task 2: the Eyes Test (Theory of Mind); Task 3: Toronto Alexithymia Scale; and Task 4: Temperament and Character Inventory (a personality inventory), both immediately before and few days after the operation for the removal of brain tumours in a series of 71 patients (age range: 18-75 years; 33 female) with lesions located in the left or right frontal, temporal and parietal lobes. Lobe-based and voxel-based analysis confirmed that tasks requiring interpretation of emotions and intentions at more basic (less mentalized) levels (Tasks 1 and 2) were more affected by temporo/insular lesions, with emotion recognition (Task 1) being maximally impaired by anterior temporal and amygdala

  18. Impact of brain tumour location on emotion and personality: a voxel-based lesion-symptom mapping study on mentalization processes.

    PubMed

    Campanella, Fabio; Shallice, Tim; Ius, Tamara; Fabbro, Franco; Skrap, Miran

    2014-09-01

    Patients affected by brain tumours may show behavioural and emotional regulation deficits, sometimes showing flattened affect and sometimes experiencing a true 'change' in personality. However, little evidence is available to the surgeon as to what changes are likely to occur with damage at specific sites, as previous studies have either relied on single cases or provided only limited anatomical specificity, mostly reporting associations rather than dissociations of symptoms. We investigated these aspects in patients undergoing surgery for the removal of cerebral tumours. We argued that many of the problems described can be ascribed to the onset of difficulties in one or more of the different levels of the process of mentalizing (i.e. abstracting and reflecting upon) emotion and intentions, which impacts on everyday behaviour. These were investigated in terms of (i) emotion recognition; (ii) Theory of Mind; (iii) alexithymia; and (iv) self-maturity (personality disorder). We hypothesized that temporo/limbic areas would be critical for processing emotion and intentions at a more perceptual level, while frontal lobe structures would be more critical when higher levels of mentalization/abstraction are required. We administered four different tasks, Task 1: emotion recognition of Ekman faces; Task 2: the Eyes Test (Theory of Mind); Task 3: Toronto Alexithymia Scale; and Task 4: Temperament and Character Inventory (a personality inventory), both immediately before and few days after the operation for the removal of brain tumours in a series of 71 patients (age range: 18-75 years; 33 female) with lesions located in the left or right frontal, temporal and parietal lobes. Lobe-based and voxel-based analysis confirmed that tasks requiring interpretation of emotions and intentions at more basic (less mentalized) levels (Tasks 1 and 2) were more affected by temporo/insular lesions, with emotion recognition (Task 1) being maximally impaired by anterior temporal and amygdala

  19. Gait rehabilitation with a high tech platform based on virtual reality conveys improvements in walking ability of children suffering from acquired brain injury.

    PubMed

    Biffi, E; Beretta, E; Diella, E; Panzeri, D; Maghini, C; Turconi, A C; Strazzer, S; Reni, G

    2015-01-01

    The Gait Real-time Analysis Interactive Lab (GRAIL) is an instrumented multi-sensor platform based on immersive virtual reality for gait training and rehabilitation. Few studies have been included GRAIL to evaluate gait patterns in normal and disabled people and to improve gait in adults, while at our knowledge no evidence on its use for the rehabilitation of children is available. In this study, 4 children suffering from acquired brain injury (ABI) underwent a 5 session treatment with GRAIL, to improve walking and balance ability in engaging VR environments. The first and the last sessions were partially dedicated to gait evaluation. Results are promising: improvements were recorded at the ankle level, selectively at the affected side, and at the pelvic level, while small changes were measured at the hip and knee joints, which were already comparable to healthy subjects. All these changes also conveyed advances in the symmetry of the walking pattern. In the next future, a longer intervention will be proposed and more children will be enrolled to strongly prove the effectiveness of GRAIL in the rehabilitation of children with ABI.

  20. Affiliative and "self-as-doer" identities: Relationships between social identity, social support, and emotional status amongst survivors of acquired brain injury (ABI).

    PubMed

    Walsh, R Stephen; Muldoon, Orla T; Gallagher, Stephen; Fortune, Donal G

    2015-01-01

    Social support is an important factor in rehabilitation following acquired brain injury (ABI). Research indicates that social identity makes social support possible and that social identity is made possible by social support. In order to further investigate the reciprocity between social identity and social support, the present research applied the concepts of affiliative and "self-as-doer" identities to an analysis of relationships between social identity, social support, and emotional status amongst a cohort of 53 adult survivors of ABI engaged in post-acute community neurorehabilitation. Path analysis was used to test a hypothesised mediated model whereby affiliative identities have a significant indirect relationship with emotional status via social support and self-as-doer identification. Results support the hypothesised model. Evidence supports an "upward spiral" between social identity and social support such that affiliative identity makes social support possible and social support drives self-as-doer identity. Our discussion emphasises the importance of identity characteristics to social support, and to emotional status, for those living with ABI.

  1. Evaluating the usability of a single UK community acquired brain injury (ABI) rehabilitation service website: implications for research methodology and website design.

    PubMed

    Newby, Gavin; Groom, Christina

    2010-04-01

    Information provision is an important resource for those living with acquired brain injury (ABI) and their families. Web-based health information services are now common additions to health service provision. Ideally, they should be easy to use and provide useful, relevant and accurate information. ABI injuries do not affect individuals in the same way, and survivors can have a wide range of abilities and impairments. Therefore, any informational resource intended for this group should take account of their needs and help to compensate for their limitations. This pilot study recruited a group of individuals with ABI (of a median Extended Glasgow Outcome Scale rating of "lower moderate disability") who were clients of a UK National Health Service rehabilitation service and asked them to assess a specialised website provided by that service and hosted by their employing Primary Care Trust organisation. Participants completed a practical task and then gave their opinions on various aspects of website design, and content. They were also asked to suggest improvements and recommend additions. Overall the results were favourable. However, improvements in the legibility, layout and writing style were identified. There were also requests to add more information on the existing topics and add additional topics. The discussion also evaluates the utility of the methodology and the implications of the results for others considering constructing their own website.

  2. What are the barriers and facilitators to goal-setting during rehabilitation for stroke and other acquired brain injuries? A systematic review and meta-synthesis

    PubMed Central

    Plant, Sarah E; Tyson, Sarah F; Kirk, Susan; Parsons, John

    2016-01-01

    Objective: To identify the barriers and facilitators to goal-setting during rehabilitation for stroke and other acquired brain injuries. Data sources: AMED, Proquest, CINAHL and MEDLINE. Review methods: Two reviewers independently screened, extracted data and assessed study quality using the Mixed Methods Appraisal Tool and undertook thematic content analysis for papers examining the barriers and facilitators to goal-setting during stroke/neurological rehabilitation (any design). Last searches were completed in May 2016. Results: Nine qualitative papers were selected, involving 202 participants in total: 88 patients, 89 health care professionals and 25 relatives of participating patients. Main barriers were: Differences in staff and patients perspectives of goal-setting; patient-related barriers; staff-related barriers, and organisational level barriers. Main facilitators were: individually tailored goal-setting processes, strategies to promote communication and understanding, and strategies to avoid disappointment and unrealistic goals. In addition, patients’ and staff’s knowledge, experience, skill, and engagement with goal-setting could be either a barrier (if these aspects were absent) or a facilitator (if they were present). Conclusion: The main barriers and facilitators to goal-setting during stroke rehabilitation have been identified. They suggest that current methods of goal-setting during inpatient/early stage stroke or neurological rehabilitation are not fit for purpose. PMID:27496701

  3. Return to Work: A Cut-Off of FIM Gain with Montebello Rehabilitation Factor Score in Order to Identify Predictive Factors in Subjects with Acquired Brain Injury

    PubMed Central

    2016-01-01

    Return to work (RTW) for people with acquired brain injury (ABI) represents a main objective of rehabilitation: this work presents a strong correlation between personal well-being and quality of life. The aim of this study is to investigate the prognostic factors that can predict RTW after ABI (traumatic or non- traumatic aetiology) in patients without disorders of consciousness (e.g. coma, vegetative or minimally conscious state) at the beginning of their admission to rehabilitation. At the end of a 6-month follow-up after discharge, data were successfully collected in 69 patients. The rehabilitation effectiveness (functional Recovery) between admission and discharge was assessed by Functional Independent Measure (FIM) gain, through the Montebello Rehabilitation Factor Score (MRFS), which was obtained as follows: (discharge FIM—admission FIM)/(Maximum possible FIM—Admission FIM) x 100. The cut-off value (criterion) deriving from MRFS, which helped identify RTW patients, resulted in .659 (sn 88.9%; sp 52.4%). Considering the Mini Mental State Examination (MMSE) and the MRFS data, the multivariable binary logistic regression analysis presented 62.96% of correct RTW classification cases, 80.95% of non-RTW leading to an overall satisfactory predictability of 73.91%. The results of the present study suggest that occupational therapy intervention could modify cut-off in patients with an MFRS close to target at the end of an in-hospital rehabilitative program thus developing their capabilities and consequently surpassing cut-off itself. PMID:27780215

  4. EXTENDING THE ASSESSMENT OF TECHNOLOGY-AIDED PROGRAMS TO SUPPORT LEISURE AND COMMUNICATION IN PEOPLE WITH ACQUIRED BRAIN INJURY AND EXTENSIVE MULTIPLE DISABILITIES.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'reilly, Mark F; Sigafoos, Jeff; Buonocunto, Francesca; D'amico, Fiora; Quaranta, Sara; Navarro, Jorge; Lanzilotti, Crocifissa; Colonna, Fabio

    2015-10-01

    Intervention programs for people with acquired brain injury and extensive motor and communication impairment need to be diversified according to their characteristics and environment. These two studies assessed two technology-aided programs for supporting leisure (i.e., access to songs and videos) and communication (i.e., expressing needs and feelings and making requests) in six of those people. The three people participating in Study 1 did not possess speech but were able to understand spoken and written sentences. Their program presented leisure and communication options through written phrases appearing on the computer screen. The three people participating in Study 2 did not possess any speech and were unable to understand spoken or written language. Their program presented leisure and communication options through pictorial images. All participants relied on a simple microswitch response to enter the options and activate songs, videos, and communication messages. The data showed that the participants of both studies learned to use the program available to them and to engage in leisure and communication independently. The importance of using programs adapted to the participants and their environment was discussed. PMID:26445152

  5. EXTENDING THE ASSESSMENT OF TECHNOLOGY-AIDED PROGRAMS TO SUPPORT LEISURE AND COMMUNICATION IN PEOPLE WITH ACQUIRED BRAIN INJURY AND EXTENSIVE MULTIPLE DISABILITIES.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'reilly, Mark F; Sigafoos, Jeff; Buonocunto, Francesca; D'amico, Fiora; Quaranta, Sara; Navarro, Jorge; Lanzilotti, Crocifissa; Colonna, Fabio

    2015-10-01

    Intervention programs for people with acquired brain injury and extensive motor and communication impairment need to be diversified according to their characteristics and environment. These two studies assessed two technology-aided programs for supporting leisure (i.e., access to songs and videos) and communication (i.e., expressing needs and feelings and making requests) in six of those people. The three people participating in Study 1 did not possess speech but were able to understand spoken and written sentences. Their program presented leisure and communication options through written phrases appearing on the computer screen. The three people participating in Study 2 did not possess any speech and were unable to understand spoken or written language. Their program presented leisure and communication options through pictorial images. All participants relied on a simple microswitch response to enter the options and activate songs, videos, and communication messages. The data showed that the participants of both studies learned to use the program available to them and to engage in leisure and communication independently. The importance of using programs adapted to the participants and their environment was discussed.

  6. Traumatic Brain Injury: General Information. Fact Sheet Number 18 = Lesion Cerebral: Informacion General. Fact Sheet Number 18.

    ERIC Educational Resources Information Center

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet offers general information about traumatic brain injury. Information includes a definition, incidence, individual characteristics, and educational implications. The fact sheet notes that the designation of traumatic brain injury as a separate category of disability signals that schools should provide children and youth with access…

  7. Brain, Craniofacial, and Dental Lesions of a Free-ranging Gray Wolf (Canis lupus) Implicated in a Human Attack in Minnesota, USA.

    PubMed

    Schwabenlander, Marc; Stepaniuk, Kevin; Carstensen, Michelle; Armién, Aníbal G

    2016-01-01

    We describe significant brain, craniofacial, and dental lesions in a free-ranging wolf (Canis lupus) involved in a human attack. On postmortem examination, the wolf presented asymmetric atrophy and bone remodeling affecting the mandible, incisive, maxilla, lacrimal, palatine, frontal, and ethmoid bones. There was an asymmetrical skeletal malocclusion and dental abnormalities including rotated, malpositioned, partially erupted teeth, and an odontogenic cyst associated with an unerupted canine tooth. Brain changes were bilateral loss and atrophy of extensive cortex regions including olfactory bulb, peduncles, and tract, and the frontal lobe. We highlight the relevance of a thorough postmortem examination of wildlife to elucidate disease-based abnormal behavior as the reason for human-animal conflict. PMID:26540333

  8. Brain, Craniofacial, and Dental Lesions of a Free-ranging Gray Wolf (Canis lupus) Implicated in a Human Attack in Minnesota, USA.

    PubMed

    Schwabenlander, Marc; Stepaniuk, Kevin; Carstensen, Michelle; Armién, Aníbal G

    2016-01-01

    We describe significant brain, craniofacial, and dental lesions in a free-ranging wolf (Canis lupus) involved in a human attack. On postmortem examination, the wolf presented asymmetric atrophy and bone remodeling affecting the mandible, incisive, maxilla, lacrimal, palatine, frontal, and ethmoid bones. There was an asymmetrical skeletal malocclusion and dental abnormalities including rotated, malpositioned, partially erupted teeth, and an odontogenic cyst associated with an unerupted canine tooth. Brain changes were bilateral loss and atrophy of extensive cortex regions including olfactory bulb, peduncles, and tract, and the frontal lobe. We highlight the relevance of a thorough postmortem examination of wildlife to elucidate disease-based abnormal behavior as the reason for human-animal conflict.

  9. Current trends in intraoperative optical imaging for functional brain mapping and delineation of lesions of language cortex.

    PubMed

    Prakash, Neal; Uhlemann, Falk; Sheth, Sameer A; Bookheimer, Susan; Martin, Neil; Toga, Arthur W

    2009-08-01

    Resection of a cerebral arteriovenous malformation (AVM), epileptic focus, or glioma, ideally has a prerequisite of microscopic delineation of the lesion borders in relation to the normal gray and white matter that mediate critical functions. Currently, Wada testing and functional magnetic resonance imaging (fMRI) are used for preoperative mapping of critical function, whereas electrical stimulation mapping (ESM) is used for intraoperative mapping. For lesion delineation, MRI and positron emission tomography (PET) are used preoperatively, whereas microscopy and histological sectioning are used intraoperatively. However, for lesions near eloquent cortex, these imaging techniques may lack sufficient resolution to define the relationship between the lesion and language function, and thus not accurately determine which patients will benefit from neurosurgical resection of the lesion without iatrogenic aphasia. Optical techniques such as intraoperative optical imaging of intrinsic signals (iOIS) show great promise for the precise functional mapping of cortices, as well as delineation of the borders of AVMs, epileptic foci, and gliomas. Here we first review the physiology of neuroimaging, and then progress towards the validation and justification of using intraoperative optical techniques, especially in relation to neurosurgical planning of resection AVMs, epileptic foci, and gliomas near or in eloquent cortex. We conclude with a short description of potential novel intraoperative optical techniques.

  10. Current Trends in Intraoperative Optical Imaging for Functional Brain Mapping and Delineation of Lesions of Language Cortex

    PubMed Central

    Prakash, Neal; Uhleman, Falk; Sheth, Sameer A.; Bookheimer, Susan; Martin, Neil; Toga, Arthur W.

    2009-01-01

    Resection of a cerebral arteriovenous malformation (AVM), epileptic focus, or glioma, ideally has a prerequisite of microscopic delineation of the lesion borders in relation to the normal gray and white matter that mediate critical functions. Currently, Wada testing and functional magnetic resonance imaging (fMRI) are used for preoperative mapping of critical function, whereas electrical stimulation mapping (ESM) is used for intraoperative mapping. For lesion delineation, MRI and positron emission tomography (PET) are used preoperatively, whereas microscopy and histological sectioning are used intraoperatively. However, for lesions near eloquent cortex, these imaging techniques may lack sufficient resolution to define the relationship between the lesion and language function, and thus not accurately determine which patients will benefit from neurosurgical resection of the lesion without iatrogenic aphasia. Optical techniques such as intraoperative optical imaging of intrinsic signals (iOIS) show great promise for the precise functional mapping of cortices, as well as delineation of the borders of AVMs, epileptic foci, and gliomas. Here we first review the physiology of neuroimaging, and then progress towards the validation and justification of using intraoperative optical techniques, especially in relation to neurosurgical planning of resection AVMs, epileptic foci, and gliomas near or in eloquent cortex. We conclude with a short description of potential novel intraoperative optical techniques. PMID:18786643

  11. Lesion Symptom Mapping of Manipulable Object Naming in Nonfluent Aphasia: Can a Brain be both Embodied and Disembodied?

    PubMed Central

    Reilly, Jamie; Harnish, Stacy; Garcia, Amanda; Hung, Jinyi; Rodriguez, Amy D.; Crosson, Bruce

    2014-01-01

    Embodied cognition offers an approach to word meaning firmly grounded in action and perception. A strong prediction of embodied cognition is that sensorimotor simulation is a necessary component of lexical-semantic representation. One semantic distinction where motor imagery is likely to play a key role involves the representation of manufactured artifacts. Many questions remain with respect to the scope of embodied cognition. One dominant unresolved issue is the extent to which motor enactment is necessary for representing and generating words with high motor salience. We investigated lesion correlates of manipulable relative to non-manipulable name generation (e.g., name a school supply; name a mountain range) in patients with nonfluent aphasia (N=14). Lesion volumes within motor (BA4) and premotor (BA6) cortices were not predictive of category discrepancies. Lesion symptom mapping linked impairment for manipulable objects to polymodal convergence zones and to projections of the left, primary visual cortex specialized for motion perception (MT/V5+). Lesions to motor and premotor cortex were not predictive of manipulability impairment. This lesion correlation is incompatible with an embodied perspective premised on necessity of motor cortex for the enactment and subsequent production of motor-related words. These findings instead support a graded or ‘soft’ approach to embodied cognition premised on an ancillary role of modality-specific cortical regions in enriching modality-neutral representations. We discuss a dynamic, hybrid approach to the neurobiology of semantic memory integrating both embodied and disembodied components. PMID:24839997

  12. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  13. Parallel Olfactory Processing in the Honey Bee Brain: Odor Learning and Generalization under Selective Lesion of a Projection Neuron Tract

    PubMed Central

    Carcaud, Julie; Giurfa, Martin; Sandoz, Jean Christophe

    2016-01-01

    The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection) neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT). To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning). Lesioned and intact bees had to learn to associate an odorant (1-nonanol) with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance. PMID:26834589

  14. Parallel Olfactory Processing in the Honey Bee Brain: Odor Learning and Generalization under Selective Lesion of a Projection Neuron Tract.

    PubMed

    Carcaud, Julie; Giurfa, Martin; Sandoz, Jean Christophe

    2015-01-01

    The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection) neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT). To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning). Lesioned and intact bees had to learn to associate an odorant (1-nonanol) with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance. PMID:26834589

  15. Evidence from Auditory Nerve and Brainstem Evoked Responses for an Organic Brain Lesion in Children with Autistic Traits

    ERIC Educational Resources Information Center

    Student, M.; Sohmer, H.

    1978-01-01

    In an attempt to resolve the question as to whether children with autistic traits have an organic nervous system lesion, auditory nerve and brainstem evoked responses were recorded in a group of 15 children (4 to 12 years old) with autistic traits. (Author)

  16. Social Brains in Context: Lesions Targeted to the Song Control System in Female Cowbirds Affect Their Social Network

    PubMed Central

    Maguire, Sarah E.; Schmidt, Marc F.; White, David J.

    2013-01-01

    Social experiences can organize physiological, neural, and reproductive function, but there are few experimental preparations that allow one to study the effect individuals have in structuring their social environment. We examined the connections between mechanisms underlying individual behavior and social dynamics in flocks of brown-headed cowbirds (Molothrus ater). We conducted targeted inactivations of the neural song control system in female subjects. Playback tests revealed that the lesions affected females' song preferences: lesioned females were no longer selective for high quality conspecific song. Instead, they reacted to all cowbird songs vigorously. When lesioned females were introduced into mixed-sex captive flocks, they were less likely to form strong pair-bonds, and they no longer showed preferences for dominant males. This in turn created a cascade of effects through the groups. Social network analyses showed that the introduction of the lesioned females created instabilities in the social structure: males in the groups changed their dominance status and their courtship patterns, and even the competitive behavior of other female group-mates was affected. These results reveal that inactivation of the song control system in female cowbirds not only affects individual behavior, but also exerts widespread effects on the stability of the entire social system. PMID:23650558

  17. Candesartan, an angiotensin II AT₁-receptor blocker and PPAR-γ agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice.

    PubMed

    Villapol, Sonia; Yaszemski, Alexandra K; Logan, Trevor T; Sánchez-Lemus, Enrique; Saavedra, Juan M; Symes, Aviva J

    2012-12-01

    Traumatic brain injury (TBI) results in complex pathological reactions, the initial lesion worsened by secondary inflammation and edema. Angiotensin II (Ang II) is produced in the brain and Ang II receptor type 1 (AT₁R) overstimulation produces vasoconstriction and inflammation. Ang II receptor blockers (ARBs) are neuroprotective in models of stroke but little is known of their effect when administered in TBI models. We therefore performed controlled cortical impact (CCI) injury on mice to investigate whether the ARB candesartan would mitigate any effects of TBI. We administered candesartan or vehicle to mice 5 h before CCI injury. Candesartan treatment reduced the lesion volume after CCI injury by approximately 50%, decreased the number of dying neurons, lessened the number of activated microglial cells, protected cerebral blood flow (CBF), and reduced the expression of the cytokine TGFβ1 while increasing expression of TGFβ3. Candesartan-treated mice also showed better motor skills on the rotarod 3 days after injury, and improved performance in the Morris water maze 4 weeks after injury. These results indicate that candesartan is neuroprotective, reducing neuronal injury, decreasing lesion volume and microglial activation, protecting CBF and improving functional behavior in a mouse model of TBI. Co-treatment with a peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist significantly reduced some of the beneficial effects of candesartan after CCI, suggesting that PPARγ activation may contribute to part or to all of the neuroprotective effect of candesartan. Overall, our data suggest that ARBs with dual AT₁R-blocking and PPARγ activation properties may have therapeutic value in treating TBI.

  18. Acquired hyperpigmentations*

    PubMed Central

    Cestari, Tania Ferreira; Dantas, Lia Pinheiro; Boza, Juliana Catucci

    2014-01-01

    Cutaneous hyperpigmentations are frequent complaints, motivating around 8.5% of all dermatological consultations in our country. They can be congenital, with different patterns of inheritance, or acquired in consequence of skin problems, systemic diseases or secondary to environmental factors. The vast majority of them are linked to alterations on the pigment melanin, induced by different mechanisms. This review will focus on the major acquired hyperpigmentations associated with increased melanin, reviewing their mechanisms of action and possible preventive measures. Particularly prominent aspects of diagnosis and therapy will be emphasized, with focus on melasma, post-inflammatory hyperpigmentation, periorbital pigmentation, dermatosis papulosa nigra, phytophotodermatoses, flagellate dermatosis, erythema dyschromicum perstans, cervical poikiloderma (Poikiloderma of Civatte), acanthosis nigricans, cutaneous amyloidosis and reticulated confluent dermatitis PMID:24626644

  19. Vision and the skin camouflage reactions of Ambystoma larvae: the effects of eye transplants and brain lesions.

    PubMed

    Pietsch, P; Schneider, C W

    1985-08-01

    Salamander larvae typically adapt their dermal melanophores to achieve camouflage, and it has been known for some time that removal of the eyes abolishes the response. Here we survey the contribution of the optic system to the bright and dark camouflage reactions and report that: the stimulus depends on an interaction between the direct and reflected light; an eye mounted atop the head and oriented vertically tended not to support camouflage, even though the animal responded to visual cues and learned a vision-dependent task; deviating the transplanted eye off the vertical axis enhanced the recovery of camouflage reactions; amputating or reorienting the telencephalon, epithalamus, pretectum or tectum did not abolish either camouflage reaction whereas lesions of the ventral optic pathway blocked brightening; transection near the midbrain-hindbrain junction--well posterior to known optic terminals--retarded the dark reaction; when the latter lesion was combined with disconnection of the telencephalon and epithalamus, contrary to predictions from the lesions executed separately, the animals lost the bright reaction; the hypophysis is necessary for darkening, but the organ supported this reaction even though detached, displaced or reoriented; and the pineal body was not essential for the grosser aspects of camouflage in Ambystoma larvae but may play an adjunctive role in fine tuning. PMID:4027646

  20. A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA

    PubMed Central

    Sorrentino, Nicolina Cristina; D'Orsi, Luca; Sambri, Irene; Nusco, Edoardo; Monaco, Ciro; Spampanato, Carmine; Polishchuk, Elena; Saccone, Paola; De Leonibus, Elvira; Ballabio, Andrea; Fraldi, Alessandro

    2013-01-01

    Mucopolysaccharidoses type IIIA (MPS-IIIA) is a neurodegenerative lysosomal storage disorder (LSD) caused by inherited defects of the sulphamidase gene. Here, we used a systemic gene transfer approach to demonstrate the therapeutic efficacy of a chimeric sulphamidase, which was engineered by adding the signal peptide (sp) from the highly secreted iduronate-2-sulphatase (IDS) and the blood-brain barrier (BBB)-binding domain (BD) from the Apolipoprotein B (ApoB-BD). A single intravascular administration of AAV2/8 carrying the modified sulphamidase was performed in adult MPS-IIIA mice in order to target the liver and convert it to a factory organ for sustained systemic release of the modified sulphamidase. We showed that while the IDS sp replacement results in increased enzyme secretion, the addition of the ApoB-BD allows efficient BBB transcytosis and restoration of sulphamidase activity in the brain of treated mice. This, in turn, resulted in an overall improvement of brain pathology and recovery of a normal behavioural phenotype. Our results provide a novel feasible strategy to develop minimally invasive therapies for the treatment of brain pathology in MPS-IIIA and other neurodegenerative LSDs. PMID:23568409

  1. What do brain lesions tell us about theories of embodied semantics and the human mirror neuron system?

    PubMed

    Arévalo, Analia L; Baldo, Juliana V; Dronkers, Nina F

    2012-02-01

    Recent work has been mixed with respect to the notion of embodied semantics, which suggests that processing linguistic stimuli referring to motor-related concepts recruits the same sensorimotor regions of cortex involved in the execution and observation of motor acts or the objects associated with those acts. In this study, we asked whether lesions to key sensorimotor regions would preferentially impact the comprehension of stimuli associated with the use of the hand, mouth or foot. Twenty-seven patients with left-hemisphere strokes and 10 age- and education-matched controls were presented with pictures and words representing objects and actions typically associated with the use of the hand, mouth, foot or no body part at all (i.e., neutral). Picture/sound pairs were presented simultaneously, and participants were required to press a space bar only when the item pairs matched (i.e., congruent trials). We conducted two different analyses: 1) we compared task performance of patients with and without lesions in several key areas previously implicated in the putative human mirror neuron system (i.e., Brodmann areas 4/6, 1/2/3, 21 and 44/45), and 2) we conducted Voxel-based Lesion-Symptom Mapping analyses (VLSM; Bates et al., 2003) to identify additional regions associated with the processing of effector-related versus neutral stimuli. Processing of effector-related stimuli was associated with several regions across the left hemisphere, and not solely with premotor/motor or somatosensory regions. We also did not find support for a somatotopically-organized distribution of effector-specific regions. We suggest that, rather than following the strict interpretation of homuncular somatotopy for embodied semantics, these findings support theories proposing the presence of a greater motor-language network which is associated with, but not restricted to, the network responsible for action execution and observation.

  2. Hospital Acquired Pneumonia is an Independent Predictor of Poor Global Outcome in Severe Traumatic Brain Injury up to 5 Years after Discharge

    PubMed Central

    Kesinger, Matthew R.; Kumar, Raj G.; Wagner, Amy K.; Puyana, Juan C.; Peitzman, Andrew P.; Billiar, Timothy R.; Sperry, Jason L.

    2016-01-01

    Objectives Long-term outcomes following traumatic brain injury (TBI) correlate with initial head injury severity and other acute factors. Hospital-acquired pneumonia (HAP) is a common complication in TBI. Little information exists regarding the significance of infectious complications on long-term outcomes post-TBI. We sought to characterize risks associated with HAP on outcomes 5 years post-TBI. Methods Ddata from the merger of an institutional trauma registry and the TBI Model Systems outcome data. Individuals with severe head injuries (Abbreviated Injury Scale≥4), who survived to rehabilitation were analyzed. Primary outcome was Glasgow Outcome Scaled-Extended (GOSE) at 1, 2, and 5 years. GOSE was dichotomized into LOW (GOSE<6) and HIGH (GOSE≥6). Logistic regression was utilized to determine adjusted odds of LOW-GOSE associated with HAP after controlling for age, sex, head and overall injury severity, cranial surgery, Glasgow Coma Scale (GCS), ventilation days, and other important confounders. A general estimating equation (GEE) model was used to analyze all outcome observations simultaneously while controlling for within-patient correlation. Results A total of 141 individuals met inclusion criteria, with a 30% incidence of HAP. Individuals with and without HAP had similar demographic profiles, presenting vitals, head injury severity, and prevalence of cranial surgery. Individuals with HAP had lower presenting GCS. Logistic regression demonstrated that HAP was independently associated with LOW-GOSE scores at follow-up (1year: OR=6.39, 95%CI: 1.76-23.14, p=0.005; 2-years: OR=7.30, 95%CI 1.87-27.89, p=0.004; 5-years: OR=6.89, 95%CI: 1.42-33.39, p=0.017). Stratifying by GCS≤8 and early intubation, HAP remained a significant independent predictor of LOW-GOSE in all strata. In the GEE model, HAP continued to be an independent predictor of LOW-GOSE (OR: 4.59; 95%CI: 1.82-11.60′ p=0.001). Conclusion HAP is independently associated with poor outcomes in severe

  3. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury

    PubMed Central

    2011-01-01

    Background Acquired brain injury (ABI) is the main cause of death and disability among young adults. In most cases, survivors can experience balance instability, resulting in functional impairments that are associated with diminished health-related quality of life. Traditional rehabilitation therapy may be tedious. This can reduce motivation and adherence to the treatment and thus provide a limited benefit to patients with balance disorders. We present eBaViR (easy Balance Virtual Rehabilitation), a system based on the Nintendo® Wii Balance Board® (WBB), which has been designed by clinical therapists to improve standing balance in patients with ABI through motivational and adaptative exercises. We hypothesize that eBaViR, is feasible, safe and potentially effective in enhancing standing balance. Methods In this contribution, we present a randomized and controlled single blinded study to assess the influence of a WBB-based virtual rehabilitation system on balance rehabilitation with ABI hemiparetic patients. This study describes the eBaViR system and evaluates its effectiveness considering 20 one-hour-sessions of virtual reality rehabilitation (n = 9) versus standard rehabilitation (n = 8). Effectiveness was evaluated by means of traditional static and dynamic balance scales. Results The final sample consisted of 11 men and 6 women. Mean ± SD age was 47.3 ± 17.8 and mean ± SD chronicity was 570.9 ± 313.2 days. Patients using eBaViR had a significant improvement in static balance (p = 0.011 in Berg Balance Scale and p = 0.011 in Anterior Reaches Test) compared to patients who underwent traditional therapy. Regarding dynamic balance, the results showed significant improvement over time in all these measures, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. There were no serious adverse events during treatment in either group. Conclusions The results suggest that e

  4. Delayed Methylene Blue Improves Lesion Volume, Multi-Parametric Quantitative Magnetic Resonance Imaging Measurements, and Behavioral Outcome after Traumatic Brain Injury.

    PubMed

    Talley Watts, Lora; Long, Justin Alexander; Boggs, Robert Cole; Manga, Hemanth; Huang, Shiliang; Shen, Qiang; Duong, Timothy Q

    2016-01-15

    Traumatic brain injury (TBI) remains a primary cause of death and disability in both civilian and military populations worldwide. There is a critical need for the development of neuroprotective agents that can circumvent damage and provide functional recovery. We previously showed that methylene blue (MB), a U.S. Food and Drug Administration-grandfathered drug with energy-enhancing and antioxidant properties, given 1 and 3 h post-TBI, had neuroprotective effects in rats. This study aimed to further investigate the neuroprotection of delayed MB treatment (24 h postinjury) post-TBI as measured by lesion volume and functional outcomes. Comparisons were made with vehicle and acute MB treatment. Multi-modal magnetic resonance imaging and behavioral studies were performed at 1 and 3 h and 2, 7, and 14 days after an impact to the primary forelimb somatosensory cortex. We found that delaying MB treatment 24 h postinjury still minimized lesion volume and functional deficits, compared to vehicle-treated animals. The data further support the potential for MB as a neuroprotective treatment, especially when medical teatment is not readily available. MB has an excellent safety profile and is clinically approved for other indications. MB clinical trials on TBI can thus be readily explored. PMID:25961471

  5. Delayed Methylene Blue Improves Lesion Volume, Multi-Parametric Quantitative Magnetic Resonance Imaging Measurements, and Behavioral Outcome after Traumatic Brain Injury.

    PubMed

    Talley Watts, Lora; Long, Justin Alexander; Boggs, Robert Cole; Manga, Hemanth; Huang, Shiliang; Shen, Qiang; Duong, Timothy Q

    2016-01-15

    Traumatic brain injury (TBI) remains a primary cause of death and disability in both civilian and military populations worldwide. There is a critical need for the development of neuroprotective agents that can circumvent damage and provide functional recovery. We previously showed that methylene blue (MB), a U.S. Food and Drug Administration-grandfathered drug with energy-enhancing and antioxidant properties, given 1 and 3 h post-TBI, had neuroprotective effects in rats. This study aimed to further investigate the neuroprotection of delayed MB treatment (24 h postinjury) post-TBI as measured by lesion volume and functional outcomes. Comparisons were made with vehicle and acute MB treatment. Multi-modal magnetic resonance imaging and behavioral studies were performed at 1 and 3 h and 2, 7, and 14 days after an impact to the primary forelimb somatosensory cortex. We found that delaying MB treatment 24 h postinjury still minimized lesion volume and functional deficits, compared to vehicle-treated animals. The data further support the potential for MB as a neuroprotective treatment, especially when medical teatment is not readily available. MB has an excellent safety profile and is clinically approved for other indications. MB clinical trials on TBI can thus be readily explored.

  6. Pericentric inversion of chromosome 11 (p14.3q21) associated with developmental delays, hypopigmented skin lesions and abnormal brain MRI findings - a new case report

    SciTech Connect

    Zachor, D.A.; Lofton, M.

    1994-09-01

    We report 3 year old male, referred for evaluation of developmental delays. Pregnancy was complicated by oligohydramnios, proteinuria and prematurity. Medical history revealed: bilateral inguinal hernia, small scrotal sac, undescended testes, developmental delays and behavioral problems. The child had: microcephaly, facial dysmorphic features, single palmar creases, hypopigmented skin lesions of variable size, intermittent exotropia and small retracted testes. Neurological examination was normal. Cognitive level was at the average range with mild delay in his adaptive behavior. Expressive language delays and severe articulation disorder were noted, as well as clumsiness, poor control and precision of gross and fine motor skills. Chromosomal analysis of peripheral leukocytes indicated that one of the number 11 chromosomes had undergone a pericentric inversion with breakpoints on the short (p) arm at band p14.3 and the long (q) arm at band q21. An MRI of the brain showed mild delay in myelinization pattern of white matter. Chromosome 11 inversion in other sites was associated with Beckwith-Wiedemann syndrome and several malignancies. To our knowledge this is the first description of inv(11)(p14.3q21) that is associated with microcephaly, dysmorphic features, hypopigmented skin lesions and speech delay. This inversion may disrupt the expression of the involved genes. However, additional cases with the same cytogenetic anomaly are needed to explore the phenotypic significance of this disorder.

  7. Spinal cord toxoplasmosis in human immunodeficiency virus infection/acquired immunodeficiency syndrome.

    PubMed

    García-García, Concepción; Castillo-Álvarez, Federico; Azcona-Gutiérrez, José M; Herraiz, María J; Ibarra, Valvanera; Oteo, José A

    2015-05-01

    Neurological complications in patients with human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) are still common, even in the era of highly active antiretroviral therapy. Opportunistic infections, immune reconstitution, the virus itself, antiretroviral drugs and neurocognitive disorders have to be considered when establishing the differential diagnosis. Toxoplasmic encephalitis remains the major cause of space-occupying lesions in the brain of patients with HIV/AIDS; however, spinal cord involvement has been reported infrequently. Here, we review spinal cord toxoplasmosis in HIV infection and illustrate the condition with a recent case from our hospital. We suggest that most patients with HIV/AIDS and myelitis with enhanced spine lesions, multiple brain lesions and positive serology for Toxoplasma gondii should receive immediate empirical treatment for toxoplasmosis, and a biopsy should be performed in those cases without clinical improvement or with deterioration.

  8. Comparison of two fat-suppressed magnetic resonance imaging pulse sequences to standard t2-weighted images for brain parenchymal contrast and lesion detection in dogs with inflammatory intracranial disease.

    PubMed

    Young, Benjamin D; Mankin, Joseph M; Griffin, John F; Fosgate, Geoffrey T; Fowler, Jennifer L; Levine, Jonathan M

    2015-01-01

    T2-weighted (T2w) sequences are commonly relied upon in magnetic resonance imaging protocols for the detection of brain lesions in dogs. Previously, the effect of fluid suppression via fluid-attenuated inversion recovery (FLAIR) has been compared to T2-weighting with mixed results. Short tau inversion recovery (STIR) has been reported to increase the detection of some CNS lesions in people. The purpose of the current study was to evaluate the effect of fat suppression on brain parenchymal contrast resolution and lesion detection in dogs. We compared three sequences: T2w images, STIR, and T2w FLAIR with chemical fat suppression (T2-FLAIR-FS) in dogs with meningoencephalitis. Dogs with meningoencephalitis and dogs with idiopathic epilepsy were retrospectively identified and anonymized. Evaluators recorded the presence or absence of lesions within 12 predetermined brain regions on randomized sequences, viewing and scoring each sequence individually. Additionally, signal-to-noise ratios, contrast-to-noise ratios, and relative contrast (RC) were measured in a reference population. Short tau inversion recovery sequences had the highest RC between gray and white matter. While descriptively more lesions were identified by evaluators on T2-FLAIR-FS images, there was no statistical difference in the relative sensitivity of lesion detection between the sequences. Nor was there a statistical difference in false lesion detection within our reference population. Short tau inversion recovery may be favored for enhanced anatomic contrast depiction in brain imaging. No benefit of the inclusion of a fat-suppressed T2-FLAIR sequence was found.

  9. Comparison of two fat-suppressed magnetic resonance imaging pulse sequences to standard t2-weighted images for brain parenchymal contrast and lesion detection in dogs with inflammatory intracranial disease.

    PubMed

    Young, Benjamin D; Mankin, Joseph M; Griffin, John F; Fosgate, Geoffrey T; Fowler, Jennifer L; Levine, Jonathan M

    2015-01-01

    T2-weighted (T2w) sequences are commonly relied upon in magnetic resonance imaging protocols for the detection of brain lesions in dogs. Previously, the effect of fluid suppression via fluid-attenuated inversion recovery (FLAIR) has been compared to T2-weighting with mixed results. Short tau inversion recovery (STIR) has been reported to increase the detection of some CNS lesions in people. The purpose of the current study was to evaluate the effect of fat suppression on brain parenchymal contrast resolution and lesion detection in dogs. We compared three sequences: T2w images, STIR, and T2w FLAIR with chemical fat suppression (T2-FLAIR-FS) in dogs with meningoencephalitis. Dogs with meningoencephalitis and dogs with idiopathic epilepsy were retrospectively identified and anonymized. Evaluators recorded the presence or absence of lesions within 12 predetermined brain regions on randomized sequences, viewing and scoring each sequence individually. Additionally, signal-to-noise ratios, contrast-to-noise ratios, and relative contrast (RC) were measured in a reference population. Short tau inversion recovery sequences had the highest RC between gray and white matter. While descriptively more lesions were identified by evaluators on T2-FLAIR-FS images, there was no statistical difference in the relative sensitivity of lesion detection between the sequences. Nor was there a statistical difference in false lesion detection within our reference population. Short tau inversion recovery may be favored for enhanced anatomic contrast depiction in brain imaging. No benefit of the inclusion of a fat-suppressed T2-FLAIR sequence was found. PMID:25395066

  10. Effect of micro lesions of the basal ganglia on ballistic movements in patients with deep brain stimulation.

    PubMed

    Singh, Arun; Mehrkens, Jan H; Bötzel, Kai

    2012-03-15

    Bradykinesia and hypokinesia are the prominent symptoms of substantia nigra degeneration in Parkinson's disease (PD). In segmental dystonia, movements of not affected limbs are not impaired. Here we studied the impact of the mere implantation of stimulation electrodes on the performance of fast movements in these two groups. We investigated 9 PD patients with subthalamic electrodes and 9 patients with segmental dystonia with electrodes in the globus pallidus internum. Patients were studied on the first postoperative day without electrical stimulation of the electrodes. Subjects had to perform boxing movements with either touching the target or stopping the fist in front of the target. PD subjects performed significantly faster movements in the touch-task only as compared to dystonic patients. No difference was seen in the stopping task. In conclusion, our findings suggest that a small subthalamic lesion in individuals with PD specifically reverses bradykinesia during simple ballistic movements (touch) but not during complex ones requiring more pre-programming (no-touch paradigm).

  11. Reversible restricted-diffusion lesion representing transient intramyelinic cytotoxic edema in a patient with traumatic brain injury.

    PubMed

    Al Brashdi, Yahya H; Albayram, Mehmet S

    2015-08-01

    We report this case to increase the awareness of magnetic resonance imaging (MRI) features of reversible white matter abnormalities in diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps in a patient with traumatic brain injury (TBI). An eight-year-old girl, who was hit by a truck, was brought to the emergency department by the emergency medical service (EMS). Eleven days later, she experienced cognitive impairment requiring MRI evaluation. DWI and ADC maps showed restricted diffusion in the white matter of the corpus callosum, peri-atrial white matter, and in the right centrum semiovale. There were no significant hemorrhagic foci in these regions, which showed complete resolution on follow up DWI MRI 13 days later. This reported case revealed TBI-related transient reversible intramyelinic cytotoxic edema. PMID:26306930

  12. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic

  13. Spreading brain lesions in a familial Creutzfeldt-Jakob disease with V180I mutation over 4 years

    PubMed Central

    2012-01-01

    Background We report a female patient with familial Creutzfeldt-Jakob disease with V180I mutation (fCJD with V180I), who was serially followed up with magnetic resonance imaging (MRI) and electroencephalogram (EEG) for up to four years. Case presentation At 6 months after the onset, diffusion-weighted images (DWI) and fluid-attenuated inversion recovery (FLAIR) of brain MRI revealed an increased signal intensity in the bilateral frontal, temporal, and parietal cerebral cortex with left dominancy except for the occipital lobe. However, her follow-up MRI at four years showed the high-signal regions spreading to the occipital cerebral cortex in DWI and FLAIR images, and bilateral frontal cerebral white matter in FLAIR images. EEG showed a progressive and general slow high-voltage rhythm from 7–8 to 3–5 c/s over four years, without evidence of periodic synchronous discharge. These findings correspond to the symptom progression even after akinetic mutism at 18 months. Conclusion We suggest that serial MRI and EEG examinations are useful for early diagnosis of fCJD with V180I and for monitoring disease progression. PMID:23176099

  14. Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion.

    PubMed

    Edrissi, Hamidreza; Schock, Sarah C; Cadonic, Robert; Hakim, Antoine M; Thompson, Charlie S

    2016-09-01

    Cerebral small vessel disease (CSVD) is a pathological process leading to lacunar infarcts, leukoaraiosis and cerebral microbleeds. Dysfunction of the blood brain barrier (BBB) has been proposed as a mechanism in the progression cerebral small vessel disease. A rodent model commonly used to study some aspects of CSVD is bilateral common carotid artery occlusion (BCCAO) in the rat. In the present study it was determined that gait impairment, as determined by a tapered beam test, and BBB permeability increased following BCCAO. Cilostazol, a type III phosphodiesterase inhibitor, has been shown to have anti-apoptotic effects and prevent white matter vacuolation and rarefaction induced by BCCAO in rats. In this study the protective effect of cilostazol administration on the increase BBB permeability following BCCAO was determined as well as the effect on plasma levels of circulating microparticles (MPs), cerebral white matter rarefaction, glial activation and gait disturbance. The effect of cilostazol on in vitro endothelial barriers was also evaluated. Cilostazol treatment improved BBB permeability and reduced gait disturbance, visual impairment and microglial activation in optic tract following BCCAO in vivo. It also reduced the degree of cell death and the reduction in trans-endothelial electrical resistance (TEER) in artificial endothelial barriers in vitro induced by MP treatment of in vitro barriers. PMID:27350079

  15. A short-term scan-rescan reliability test measuring brain tissue and subcortical hyperintensity volumetrics obtained using the lesion explorer structural MRI processing pipeline.

    PubMed

    Ramirez, Joel; Scott, Christopher J M; Black, Sandra E

    2013-01-01

    Lesion Explorer (LE) is a reliable and comprehensive MRI-derived tissue segmentation and brain region parcellation processing pipeline for obtaining intracranial tissue and subcortical hyperintensity (SH) volumetrics. The processing pipeline segments: gray (GM) and white matter (WM); sulcal (sCSF) and ventricular cerebrospinal fluid (vCSF); periventricular (pvSH) and deep white subcortical hyperintensities (dwSH); and cystic fluid filled lacunar-like infarcts (Lacunar); into 26 regions of interest. A short-term scan-rescan reliability test was performed on 20 healthy volunteers: 10 older (mean = 77.7 years, SD = 11.1) and 10 younger (mean = 29.4 years, SD = 7.1). Each participant was scanned twice with an average interscan interval of 15.4 days (range: 29 min-50 days). Results suggest low technique-related error as indicated by excellent intraclass correlation coefficient (ICC) results, with ICCs above 0.90 (p < 0.05) for GM, WM, and CSF, in all 26 regions of interest (13 per hemisphere). Ventricular and lesion sub-type (pvSH, dwSH, and Lacunar) volumes also showed high scan-rescan reliability (dwSH = 0.9998, pvSH = 0.9998, Lacunar = 0.9859, p < 0.01). As indicated by the results of this short-term scan-rescan study, the LE structural MRI processing pipeline can be applied for longitudinal volumetric analyses with confidence.

  16. Fos Protein Expression in Olfactory-Related Brain Areas after Learning and after Reactivation of a Slowly Acquired Olfactory Discrimination Task in the Rat

    ERIC Educational Resources Information Center

    Roullet, Florence; Lienard, Fabienne; Datiche, Frederique; Cattarelli, Martine

    2005-01-01

    Fos protein immunodetection was used to investigate the neuronal activation elicited in some olfactory-related areas after either learning of an olfactory discrimination task or its reactivation 10 d later. Trained rats (T) progressively acquired the association between one odor of a pair and water-reward in a four-arm maze. Two groups of…

  17. Neonatal Amygdala Lesions Lead to Increased Activity of Brain CRF Systems and Hypothalamic-Pituitary-Adrenal Axis of Juvenile Rhesus Monkeys

    PubMed Central

    Stephens, Shannon B.Z.; Henry, Amy; Villarreal, Trina; Bachevalier, Jocelyne; Wallen, Kim; Sanchez, Mar M.

    2014-01-01

    The current study examined the long-term effects of neonatal amygdala (Neo-A) lesions on brain corticotropin-releasing factor (CRF) systems and hypothalamic-pituitary-adrenal (HPA) axis function of male and female prepubertal rhesus monkeys. At 12-months-old, CSF levels of CRF were measured and HPA axis activity was characterized by examining diurnal cortisol rhythm and response to pharmacological challenges. Compared with controls, Neo-A animals showed higher cortisol secretion throughout the day, and Neo-A females also showed higher CRF levels. Hypersecretion of basal cortisol, in conjunction with blunted pituitary-adrenal responses to CRF challenge, suggest HPA axis hyperactivity caused by increased CRF hypothalamic drive leading to downregulation of pituitary CRF receptors in Neo-A animals. This interpretation is supported by the increased CRF CSF levels, suggesting that Neo-A damage resulted in central CRF systems overactivity. Neo-A animals also exhibited enhanced glucocorticoid negative feedback, as reflected by an exaggerated cortisol suppression following dexamethasone administration, indicating an additional effect on glucocorticoid receptor (GR) function. Together these data demonstrate that early amygdala damage alters the typical development of the primate HPA axis resulting in increased rather than decreased activity, presumably via alterations in central CRF and GR systems in neural structures that control its activity. Thus, in contrast to evidence that the amygdala stimulates both CRF and HPA axis systems in the adult, our data suggest an opposite, inhibitory role of the amygdala on the HPA axis during early development, which fits with emerging literature on “developmental switches” in amygdala function and connectivity with other brain areas. PMID:25143624

  18. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction.

    PubMed

    Weissberg, Itai; Wood, Lydia; Kamintsky, Lyn; Vazquez, Oscar; Milikovsky, Dan Z; Alexander, Allyson; Oppenheim, Hannah; Ardizzone, Carolyn; Becker, Albert; Frigerio, Federica; Vezzani, Annamaria; Buckwalter, Marion S; Huguenard, John R; Friedman, Alon; Kaufer, Daniela

    2015-06-01

    Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE.

  19. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction.

    PubMed

    Weissberg, Itai; Wood, Lydia; Kamintsky, Lyn; Vazquez, Oscar; Milikovsky, Dan Z; Alexander, Allyson; Oppenheim, Hannah; Ardizzone, Carolyn; Becker, Albert; Frigerio, Federica; Vezzani, Annamaria; Buckwalter, Marion S; Huguenard, John R; Friedman, Alon; Kaufer, Daniela

    2015-06-01

    Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE. PMID:25836421

  20. Cognitive reserve and preinjury educational attainment: effects on outcome of community-based rehabilitation for longer-term individuals with acquired brain injury.

    PubMed

    Fortune, Dónal G; Walsh, R Stephen; Richards, Helen L

    2016-09-01

    The cognitive reserve hypothesis has been proposed to account for the mismatch between brain pathology and its clinical expression. The aim of the current research was to explore, in a longitudinal data set, the effects of level of educational attainment before brain injury (cognitive reserve) and clinical factors on the level of rehabilitation-induced changes in disability and community integration. Participants in receipt of postacute rehabilitation were assessed at induction to the service and again at between 14 and 18 months of follow-up while still in service on changes in aspects of their abilities, adjustment and participation (Mayo Portland Adaptability Indices) and community integration (Community Integration Questionnaire). Controlling for type and severity of injury, age at onset of injury and duration of time since injury, participants with higher previous educational attainment showed significantly greater changes over the course of rehabilitation on adjustment to their injury and participation, but not on abilities, or community integration following postacute rehabilitation. Level of education would appear to be an important element of cognitive reserve in brain injury that serves to aid responses to postacute rehabilitation in terms of an individual's adjustment to disability and participation.

  1. Right inferior longitudinal fasciculus lesions disrupt visual-emotional integration.

    PubMed

    Fischer, David B; Perez, David L; Prasad, Sashank; Rigolo, Laura; O'Donnell, Lauren; Acar, Diler; Meadows, Mary-Ellen; Baslet, Gaston; Boes, Aaron D; Golby, Alexandra J; Dworetzky, Barbara A

    2016-06-01

    The mechanism by which the brain integrates visual and emotional information remains incompletely understood, and can be studied through focal lesions that selectively disrupt this process. To date, three reported cases of visual hypoemotionality, a vision-specific form of derealization, have resulted from lesions of the temporo-occipital junction. We present a fourth case of this rare phenomenon, and investigate the role of the inferior longitudinal fasciculus (ILF) in the underlying pathophysiology. A 50-year-old right-handed male was found to have a right medial temporal lobe tumor following new-onset seizures. Interstitial laser ablation of the lesion was complicated by a right temporo-parieto-occipital intraparenchymal hemorrhage. The patient subsequently experienced emotional estrangement from visual stimuli. A lesion overlap analysis was conducted to assess involvement of the ILF by this patient's lesion and those of the three previously described cases, and diffusion tensor imaging was acquired in our case to further investigate ILF disruption. All four lesions specifically overlapped with the expected trajectory of the right ILF, and diminished structural integrity of the right ILF was observed in our case. These findings implicate the ILF in visual hypoemotionality, suggesting that the ILF is critical for integrating visual information with its emotional content. PMID:26940563

  2. Human Brain Atlas-based Multimodal MRI Analysis of Volumetry, Diffusimetry, Relaxometry and Lesion Distribution in Multiple Sclerosis Patients and Healthy Adult Controls: Implications for understanding the Pathogenesis of Multiple Sclerosis and Consolidation of Quantitative MRI Results in MS

    PubMed Central

    Hasan, Khader M.; Walimuni, Indika S.; Abid, Humaira; Datta, Sushmita; Wolinsky, Jerry S.; Narayana, Ponnada A.

    2011-01-01

    Multiple sclerosis (MS) is the most common immune-mediated disabling neurological disease of the central nervous system. The pathogenesis of MS is not fully understood. Histopathology implicates both demyelination and axonal degeneration as the major contributors to the accumulation of disability. The application of several in vivo quantitative magnetic resonance imaging (MRI) methods to both lesioned and normal-appearing brain tissue has not yet provided a solid conclusive support of the hypothesis that MS might be a diffuse disease. In this work, we adopted FreeSurfer to provide standardized macrostructure or volumetry of lesion free normal-appearing brain tissue in combination with multiple quantitative MRI metrics (T2 relaxation time, diffusion tensor anisotropy and diffusivities) that characterize tissue microstructural integrity. By incorporating a large number of healthy controls, we have attempted to separate the natural age-related change from the disease-induced effects. Our work shows elevation in diffusivity and relaxation times and reduction in volume in a number of normal-appearing white matter and gray matter structures in relapsing-remitting multiple sclerosis patients. These changes were related in part with the spatial distribution of lesions. The whole brain lesion load and age-adjusted expanded disability status score showed strongest correlations in regions such as corpus callosum with qMRI metrics that are believed to be specific markers of axonal dysfunction, consistent with histologic data of others indicating axonal loss that is independent of focal lesions. Our results support that MS at least in part has a neurodegenerative component. PMID:21978603

  3. Visual hallucinations of autobiographic memory and asomatognosia: a case of epilepsy due to brain cysticercosis.

    PubMed

    Orjuela-Rojas, Juan Manuel; Ramírez-Bermúdez, Jesús; Martínez-Juárez, Iris E; Kerik, Nora Estela; Diaz Meneses, Iván; Pérez-Gay, Fernanda Juárez

    2015-01-01

    The current study describes the case of a woman with symptomatic epilepsy due to brain cysticercosis acquired during childhood. During her adolescence, she developed seizures characterized by metamorphopsia, hallucinations of autobiographic memory and, finally, asomatognosia. Magnetic brain imaging showed a calcified lesion in the right occipitotemporal cortex, and positron emission tomography imaging confirmed the presence of interictal hypometabolism in two regions: the right parietal cortex and the right lateral and posterior temporal cortex. We discuss the link between these brain areas and the symptoms described under the concepts of epileptogenic lesion, epileptogenic zone, functional deficit zone, and symptomatogenic zone.

  4. Indices of impaired self-awareness in traumatic brain injury patients with focal frontal lesions and executive deficits: implications for outcome measurement.

    PubMed

    Spikman, Jacoba M; van der Naalt, Joukje

    2010-07-01

    In patients with moderate to severe traumatic brain injury (TBI), impairments of self-awareness are frequently found and associated with worse functional outcome and poor compliance with rehabilitation. The aim of this study was to investigate whether indications of impaired self-awareness could be found in TBI patients with frontal lesions and executive function deficits. Twenty-two TBI patients with focal frontal injuries were compared to 29 TBI patients without focal frontal injuries visible on neuroimaging. No differences were found on several outcome measures, including the Glasgow Outcome Scale-Extended (GOS-E), the Differential Outcome Scale (DOS), and return to work (RTW), although the frontal injury patients were more severely injured as indicated by the Glasgow Coma Scale (GCS) and duration of post-traumatic amnesia (PTA), and had impaired performance on a neuropsychological test of executive functioning. Even more so, the frontal injury group had a significantly lower score on the Sickness Impact Profile (SIP), indicating that they had fewer complaints than the patients without frontal injury, and scored significantly higher on the percentage of recovery (PoR) score, which expresses the extent of recovery as a percentage of their previous level of functioning. In contrast to the non-frontal-injury group, their PoR scores were not related to RTW, reflecting an erroneous perception of their actual working status. The positive results on these different outcome measures, which are partly or entirely self-reported, were seen as an indication of an impaired self-evaluative ability in the frontal injury patients. To determine outcome in a patient with frontal injuries and executive dysfunction, the judgment of several relevant other persons in the patient's life (e.g., partners, therapists, and employers) of the patient's daily life functioning should be sought. PMID:20380551

  5. Voxelwise Bayesian Lesion Deficit Analysis

    PubMed Central

    Chen, Rong; Hillis, Argye E.; Pawlak, Mikolaj; Herskovits, Edward H

    2008-01-01

    Relating cognitive deficits to the presence of lesions has been an important means of delineating structure-function associations in the human brain. We propose a voxel-based Bayesian method for lesion-deficit analysis, which identifies complex linear or nonlinear associations among brain-lesion locations, and neurological status. We validated this method using a simulated data set, and we applied this algorithm to data obtained from an acute-stroke study to identify associations among voxels with infarct or hypoperfusion, and impaired word reading. We found that a distributed region involving Brodmann areas (BA) 22, 37, 39, and 40 was implicated in word reading. PMID:18328733

  6. Critical appraisal of RapidArc radiosurgery with flattening filter free photon beams for benign brain lesions in comparison to GammaKnife: a treatment planning study

    PubMed Central

    2014-01-01

    Background To evaluate the role of RapidArc (RA) for stereotactic radiosurgery (SRS) of benign brain lesions in comparison to GammaKnife (GK) based technique. Methods Twelve patients with vestibular schwannoma (VS, n = 6) or cavernous sinus meningioma (CSM, n = 6) were planned for both SRS using volumetric modulated arc therapy (VMAT) by RA. 104 MV flattening filter free photon beams with a maximum dose rate of 2400 MU/min were selected. Data were compared against plans optimised for GK. A single dose of 12.5 Gy was prescribed. The primary objective was to assess treatment plan quality. Secondary aim was to appraise treatment efficiency. Results For VS, comparing best GK vs. RA plans, homogeneity was 51.7 ± 3.5 vs. 6.4 ± 1.5%; Paddick conformity Index (PCI) resulted 0.81 ± 0.03 vs. 0.84 ± 0.04. Gradient index (PGI) was 2.7 ± 0.2 vs. 3.8 ± 0.6. Mean target dose was 17.1 ± 0.9 vs. 12.9 ± 0.1 Gy. For the brain stem, D1cm3 was 5.1 ± 2.0 Gy vs 4.8 ± 1.6 Gy. For the ipsilateral cochlea, D0.1cm3 was 1.7 ± 1.0 Gy vs. 1.8 ± 0.5 Gy. For CSM, homogeneity was 52.3 ± 2.4 vs. 12.4 ± 0.6; PCI: 0.86 ± 0.05 vs. 0.88 ± 0.05; PGI: 2.6 ± 0.1 vs. 3.8 ± 0.5; D1cm3 to brain stem was 5.4 ± 2.8 Gy vs. 5.2 ± 2.8 Gy; D0.1cm3 to ipsi-lateral optic nerve was 4.2 ± 2.1 vs. 2.1 ± 1.5 Gy; D0.1cm3 to optic chiasm was 5.9 ± 3.1 vs. 4.5 ± 2.1 Gy. Treatment time was 53.7 ± 5.8 (64.9 ± 24.3) minutes for GK and 4.8 ± 1.3 (5.0 ± 0.7) minutes for RA for schwannomas (meningiomas). Conclusions SRS with RA and FFF beams revealed to be adequate and comparable to GK in terms of target coverage, homogeneity, organs at risk sparing with some gain in terms of treatment efficiency. PMID:24884967

  7. Acquired dyslexia in three writing systems: study of a Portuguese-Japanese bilingual aphasic patient.

    PubMed

    Senaha, Mirna Lie Hosogi; de Mattos Pimenta Parente, Maria Alice

    2012-01-01

    The Japanese language is represented by two different codes: syllabic and logographic while Portuguese employs an alphabetic writing system. Studies on bilingual Portuguese-Japanese individuals with acquired dyslexia therefore allow an investigation of the interaction between reading strategies and characteristics of three different writing codes. The aim of this study was to examine the differential impact of an acquired brain lesion on the reading of the logographic, syllabic and alphabetic writing systems of a bilingual Portuguese-Japanese aphasic patient (PF). Results showed impaired reading in the logographic system and when reading irregularly spelled Portuguese words but no effects on reading regular words and nonwords in syllabic and alphabetic writing systems. These dissociations are interpreted according to a multi-route cognitive model of reading assuming selective damage in the lexical route can result in acquired dyslexia across at least three different writing codes.

  8. [Spanish validation of the Iowa Rating Scale for Personality Change (IRSPC) for the appraisal of changes in personality in patients with acquired brain injury].

    PubMed

    Guallart-Balet, María; Jiménez-Cortés, Marta P; Tuquet-Calvo, Helena; Pelegrín-Valero, Carmelo; Olivera-Pueyo, Javier; Benabarre-Ciria, Sergio; Tirapu-Ustárroz, Javier

    2015-01-01

    Introduccion. La Iowa Rating Scale for Personality Change (IRSPC) presenta una serie de caracteristicas (enfasis en las funciones motivacionales y emocionales, evaluacion de las funciones ejecutivas 'cognitivas' en la vida cotidiana, estimacion de la personalidad premorbida, valoracion de la fiabilidad del informador) que hacen muy interesante su utilizacion tanto en la clinica como en la investigacion. Objetivo. Validar en castellano la IRSPC para la evaluacion de los 'cambios de personalidad' secundarios a las lesiones cerebrales de la corteza prefrontal en general y del area ventromedial en particular. Pacientes y metodos. Tras el proceso de traduccion y adaptacion de la guia de la escala al castellano, se realizo un estudio de validacion con 31 pacientes con daño cerebral traumatico y se obtuvieron unos resultados de fiabilidad muy adecuados. Resultados. Los resultados obtenidos al medir la consistencia interna de la IRSPC y los coeficientes de fiabilidad interobservadores y test-retest apoyan dicha afirmacion. La validez del instrumento es confirmada por la validez concurrente (comparandolo con el inventario neuropsiquiatrico) y la validez de constructo (comparando las puntuaciones de los pacientes antes y despues del traumatismo). Conclusiones. La IRSPC es un instrumento fiable y valido para la exploracion clinica, en el contexto de una evaluacion integral de los sintomas derivados de las enfermedades neurologicas en general, y en particular de aquellas en las que se encuentra involucrada la corteza prefrontal ventromedial.

  9. [Is the early brain organisation of spatial information conveyed by tactile stimuli performed in different ways in congenital and acquired blind children? A pilot study].

    PubMed

    Ortiz, Tomás; Santos, Juan M; Ortiz-Teran, Laura; Nogales, Ramón; Serrano-Marugán, Isabel; Martínez, José M; Minguito-García, Carlos; Requena, Carmen; Poch-Broto, Joaquín

    2013-02-22

    Cortical reorganization after congenital blindness is not sufficiently known yet it does offer an optimum window of opportunity to study the effects of absolute sensorial deprivation. Cross-modality in people with blindness has been documented, but it may differ in congenital blindness and in early blindness. Vibrotactile passive stimulation of lines and letters generates different electroencephalographic patterns with different source localizations in two children with blindness, aged 9 and 10, respectively with congenital blindness and early blindness with some remnants of vision. Most of the brain electrical activity is centered in auditive areas in P50 and P100 in the case of the child with congenital blindness, while the other shows activity in multiple areas. Reaction times to letters are shorter than to lines of different orientation in both children.

  10. P08.11SURGICAL MANAGEMENT OF BRAIN METASTASES FROM LUNG ADENOCARCINOMA: A SINGLE CENTER EXPERIENCE AND REFLECTIONS ON MULTIPLE LESIONS

    PubMed Central

    Fornaro, R.; Agnoletti, A.; Specchia, F.M. Calamo; Garbossa, D.; Lanotte, M.; Ducati, A.

    2014-01-01

    INTRODUCTION: Metastases are the most common intracerebral tumors, and they're expected to increase in the next years. Prognosis is linked to the progression of systemic and cerebral disease. Among patients in good conditions, removal of the cerebral metastasis represents the first treatment to apply. To evaluate the ideal conditions for surgery and its results we performed this single-center study on patients with solitary and multiple cerebral metastases. MATERIALS AND METHODS: We analyzed patients treated for cerebral metastasis between January 2004 and 2011. We considered only cases with non-small cell lung carcinoma (NSCLC) as primary tumor. We collected mortality and complication rates and analyzed the early outcomes before adjuvant therapy. Finally we used a χ2 test (p = 0.05) to assess if better early outcomes (improved or stable KPS) were significantly related to the presence of solitary VS multiple lesions. RESULTS: Our series included 199 patients; mean survival was 11.08 months. 95 patients harbored a single brain metastasis (Group 1) and 104 had more than one localization (Group 2). 67 patients underwent surgical operation. The mean pre-operative KPS was 75/100 in Group 1 and 65/100 in Group 2. After surgery in Group 1 the score improved in 69% of patients, was unchanged in 20% and worsened in 11%. In Group 2 the post-operative KPS was increased in 66% of cases, unchanged in 17% and worsened in 17% of cases. Statistical analysis did not show significant differences in the rates of good (KPS improved or stable) and poor outcomes in the two groups of operated patients. Patients with lesions in the posterior fossa improved after surgery more than those with supratentorial metastases. DISCUSSION: Observation of an high mortality for not-neurological causes confirms that modern treatments allow a significant control of the disease within the nervous system. Surgery entails the additional advantage of large tissue-samples availability for histological

  11. Grammaticality Sensitivity in Children with Early Focal Brain Injury and Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Wulfeck, Beverly; Bates, Elizabeth; Krupa-Kwiatkowski, Magda; Saltzman, Danna

    2004-01-01

    Grammaticality judgments and processing times associated with violation detection were examined in typically developing children, children with focal brain lesions (FL) acquired early in life, and children with specific language impairment (SLI). Grammatical sensitivity in the FL group, while below typically developing children, was above levels…

  12. Classification of multiple sclerosis lesions using adaptive dictionary learning.

    PubMed

    Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian

    2015-12-01

    This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification.

  13. Classification of multiple sclerosis lesions using adaptive dictionary learning.

    PubMed

    Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian

    2015-12-01

    This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification. PMID:26055435

  14. Simultaneous two-voxel localized 1H-observed 13C-edited spectroscopy for in vivo MRS on rat brain at 9.4 T: Application to the investigation of excitotoxic lesions

    NASA Astrophysics Data System (ADS)

    Doan, Bich-Thuy; Autret, Gwennhael; Mispelter, Joël; Méric, Philippe; Même, William; Montécot-Dubourg, Céline; Corrèze, Jean-Loup; Szeremeta, Frédéric; Gillet, Brigitte; Beloeil, Jean-Claude

    2009-05-01

    13C spectroscopy combined with the injection of 13C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of 13C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references. Two sequences were developed at 9.4 T: a bi-voxel 1H-( 13C) STEAM-POCE (Proton Observed Carbon Edited) sequence and a bi-voxel 1H-( 13C) PRESS-POCE adiabatically decoupled sequence with Hadamard encoding. Hadamard encoding allows both voxels to be recorded simultaneously, with the same acquisition time as that required for a single voxel. The method was validated in a biological investigation into the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions. Following an excitotoxic quinolinate-induced localized lesion in the rat cortex and the infusion of U- 13C glucose, two 1H-( 13C) spectra of distinct (4 × 4 × 4 mm 3) voxels, one centred on the injured hemisphere and the other on the contralateral hemisphere, were recorded simultaneously. Two 1H bi-voxel spectra were also recorded and showed a significant decrease in N-acetyl aspartate, and an accumulation of lactate in the ipsilateral hemisphere. The 1H-( 13C) spectra could be recorded dynamically as a function of time, and showed a fall in the glutamate/glutamine ratio and the presence of a stable glutamine pool, with a permanent increase of lactate in the ipsilateral hemisphere. This bi-voxel 1H-( 13C) method can be used to investigate simultaneously both brain hemispheres, and to perform dynamic studies. We report here the neuronal damage and the

  15. The formation of inflammatory demyelinated lesions in cerebral white matter

    PubMed Central

    Maggi, Pietro; Cummings Macri, Sheila M.; Gaitán, María I.; Leibovitch, Emily; Wholer, Jillian E; Knight, Heather L.; Ellis, Mary; Wu, Tianxia; Silva, Afonso C.; Massacesi, Luca; Jacobson, Steven; Westmoreland, Susan; Reich, Daniel S.

    2016-01-01

    Objective Vascular permeability and inflammatory demyelination are intimately linked in the brain, but what is their temporal relationship? We aimed to determine the radiological correlates of the earliest tissue changes accompanying demyelination in a primate model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE) in the common marmoset. Methods At 7 tesla MRI, T1 maps, proton density and T2-weighted images were acquired before and after EAE induction in 5 marmosets (every other week before lesions appeared, weekly thereafter). From scans before and after intravenous injection of contrast material, we measured the evolution of lesional blood-brain-barrier (BBB) permeability, comparing in vivo MRI to postmortem tissue examination. Results On average, BBB permeability increased 3.5 fold (p<0.0001) over the 4 weeks prior to lesion appearance. Permeability gradually decreased after lesion appearance, with attendant changes in the distribution of inflammatory cells (predominantly macrophages and microglia) and demyelination. On tissue analysis, we also identified small perivascular foci of microglia and T cells without blood-derived macrophages or demyelination. These foci had no visible MRI correlates, though permeability within the foci, but not outside, increased in the weeks before the animals died (p<0.0001). Interpretation This study provides compelling evidence that in marmoset EAE, which forms lesions strongly resembling those of MS, early changes in vascular permeability are associated with perivascular inflammatory cuffing and parenchymal microglial activation but precede the arrival of blood-derived monocytes that accompany demyelination. Prospective detection of transient permeability changes could afford an opportunity for early intervention to forestall tissue damage in newly forming lesions. PMID:25088017

  16. [Community-based rehabilitation and outpatient care for patients with acquired brain injury and chronic neurological disability in Germany: continuing support for social participation and re-integration in the neurological care system?].

    PubMed

    Reuther, P; Hendrich, A; Kringler, W; Vespo, E

    2012-12-01

    In Germany a number of patients who are suffering from acquired brain injury and chronic neurological disability are either undersupplied or exposed to inappropriate care in their social environment. The number of these patients is increasing due to the changes in the procedures of care and due to demographic factors. While acute medical care and early rehabilitative treatment is accessible throughout the German health care system the necessary multimodal and competent care is rare or absent in the social participative sites such as life and occupational environments of the patients. The complex impairment of the brain, the central organ for sensorial, executive and other cognitive functions of human beings, renders the affected patient an exception in the system of medical and social care - this has only inadequately been considered in the past. The authors explain the necessity to disclose the status of a "human-with acquired-brain damage (Mensch-mit-erworbener-Hirnschädigung, MeH)" explicitly as severely disabled. The paper recommends a number of structural and procedural elements that have proven to overcome the insufficient or inappropriate support in integrating the patients suffering from acquired brain injury and chronic neurological disability in their social environment as well as for a demand-focused support with sustainable rehabilitative and ambulant follow-up procedures. Comparisons with other developed health care systems and international guidelines show that with organizing of early-supported-discharge, community-ambulation, shared-care and community-based-rehabilitation these problems have long since been identified elsewhere. Community-based and resident-oriented concepts have already been systematically implemented. In order to achieve the necessary support for the individual patient, a nation-wide development is necessary in Germany to perform the principles of the German social code and the principles of the Convention on the Rights of

  17. Combined lesions of cholinergic and serotonergic neurons in the rat brain using 192 IgG-saporin and 5,7-dihydroxytryptamine: neurochemical and behavioural characterization.

    PubMed

    Lehmann, O; Jeltsch, H; Lehnardt, O; Pain, L; Lazarus, C; Cassel, J C

    2000-01-01

    This study assessed behavioural and neurochemical effects of i.c.v. injections of both the cholinergic toxin 192 IgG-saporin (2 microgram) and the serotonergic toxin 5,7-dihydroxytryptamine (5,7-DHT; 150 microgram) in Long-Evans female rats. Dependent behavioural variables were locomotor activity, forced T-maze alternation, beam walking, Morris water-maze (working and reference memory) and radial-maze performances. After killing by microwave irradiation, the concentrations of acetylcholine, monoamines and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the hippocampus, frontoparietal cortex and striatum. 192 IgG-saporin reduced the concentration of acetylcholine by approximately 40% in the frontoparietal cortex and hippocampus, but had no effect in the striatum. 5,7-DHT lesions reduced the concentration of serotonin by 60% in the frontoparietal cortex and 80% in the hippocampus and striatum. Noradrenaline was unchanged in all structures except the ventral hippocampus where it was slightly increased in rats given 192 IgG-saporin. Cholinergic lesions induced severe motor deficits but had no other effect. Serotonergic lesions produced diurnal and nocturnal hyperactivity but had no other effect. Rats with combined lesions were more active than those with only serotonergic lesions, showed motor dysfunctions similar to those found in rats with cholinergic lesions alone, and exhibited impaired performances in the T-maze alternation test, the water-maze working memory test and the radial-maze. Taken together and although cholinergic lesions were not maximal, these data show that 192 IgG-saporin and 5,7-DHT lesions can be combined to selectively damage cholinergic and serotonergic neurons, and confirm that cholinergic-serotonergic interactions play an important role in some aspects of memory, particularly in spatial working memory. PMID:10651861

  18. Density abnormalities in normal-appearing gray matter in the middle-aged brain with white matter hyperintense lesions: a DARTEL-enhanced voxel-based morphometry study

    PubMed Central

    Peng, Yan; Li, Shenhong; Zhuang, Ying; Liu, Xiaojia; Wu, Lin; Gong, Honghan; Liu, Dewu; Zhou, Fuqing

    2016-01-01

    Background and purpose Little is known about the structural alterations within gray matter (GM) in middle-aged subjects with white matter hyperintense (WMH) lesions. Here, we aimed to examine the anatomical changes within the GM and their relationship to WMH lesion loads in middle-aged subjects. Participants and methods Twenty-three middle-aged subjects with WMH lesions (WMH group) and 23 demographically matched healthy control subjects participated in the study. A Diffeomorphic Anatomical Registration Through Exponentiated Liealgebra-enhanced voxel-based morphometry was used to measure the GM density, and the correlations between WMH lesion volume and extracted GM values in abnormal regions were identified by voxel-based morphometry analysis. Results Compared with the healthy control subjects, the WMH group had a significantly decreased GM density in the left middle frontal gyrus, bilateral anterior cingulate cortex, left and right premotor cortex, and left and right middle cingulate cortex and an increased GM density in the bilateral cerebellum anterior lobe, left middle temporal gyrus, right temporoparietal junction, left and right prefrontal cortex (PFC), and left inferior parietal lobule. A relationship was observed between the normalized WMH lesion volume and the decreased GM density, including the left middle frontal gyrus (ρ=−0.629, P=0.002), bilateral anterior cingulate cortex (ρ=−0.507, P=0.019), right middle cingulate cortex (ρ=−0.484, P=0.026), and right premotor cortex (ρ=−0.438, P=0.047). The WMH lesion loads also negatively correlated with increased GM density in the right temporoparietal junction (ρ=−0.484, P=0.026), left PFC (ρ=−0.469, P=0.032), and right PFC (ρ=−0.438, P=0.047). Conclusion We observed that lesion load-associated structural plasticity corresponds to bidirectional changes in regional GM density in the WMH group. PMID:27274211

  19. The anatomical foundations of acquired reading disorders: a neuropsychological verification of the dual-route model of reading.

    PubMed

    Ripamonti, E; Aggujaro, S; Molteni, F; Zonca, G; Frustaci, M; Luzzatti, C

    2014-07-01

    In this study we investigated the neural correlates of acquired reading disorders through an anatomo-correlative procedure of the lesions of 59 focal brain damaged patients suffering from acquired surface, phonological, deep, undifferentiated dyslexia and pure alexia. Two reading tasks, one of words and nonwords and one of words with unpredictable stress position, were used for this study. We found that surface dyslexia was predominantly associated with left temporal lesions, while in phonological dyslexia the lesions overlapped in the left insula and the left inferior frontal gyrus (pars opercularis) and that pure alexia was associated with lesions in the left fusiform gyrus. A number of areas and white matter tracts, which seemed to involve processing along both the lexical and the sublexical routes, were identified for undifferentiated dyslexia. Two cases of deep dyslexia with relatively dissimilar anatomical correlates were studied, one compatible with Coltheart's right-hemisphere hypothesis (1980) whereas the other could be interpreted in the context of Morton and Patterson's (1980), multiply-damaged left-hemisphere hypothesis. In brief, the results of this study are only partially consistent with the current state of the art, and propose new and stimulating challenges; indeed, based on these results we suggest that different types of acquired dyslexia may ensue after different cortical damage, but white matter disconnection may play a crucial role in some cases.

  20. Vascular Lesions.

    PubMed

    Jahnke, Marla N

    2016-08-01

    Vascular lesions in childhood are comprised of vascular tumors and vascular malformations. Vascular tumors encompass neoplasms of the vascular system, of which infantile hemangiomas (IHs) are the most common. Vascular malformations, on the other hand, consist of lesions due to anomalous development of the vascular system, including the capillary, venous, arterial, and lymphatic systems. Capillary malformations represent the most frequent type of vascular malformation. IHs and vascular malformations tend to follow relatively predictable growth patterns in that IHs grow then involute during early childhood, whereas vascular malformations tend to exhibit little change. Both vascular tumors and vascular malformations can demonstrate a wide range of severity and potential associated complications necessitating specialist intervention when appropriate. Evaluation and treatment of the most common types of vascular lesions are discussed in this article. [Pediatr Ann. 2016;45(8):e299-e305.]. PMID:27517358

  1. Effects of Diclofenac, L-NAME, L-Arginine, and Pentadecapeptide BPC 157 on Gastrointestinal, Liver, and Brain Lesions, Failed Anastomosis, and Intestinal Adaptation Deterioration in 24 Hour-Short-Bowel Rats.

    PubMed

    Lojo, Nermin; Rasic, Zarko; Zenko Sever, Anita; Kolenc, Danijela; Vukusic, Darko; Drmic, Domagoj; Zoricic, Ivan; Sever, Marko; Seiwerth, Sven; Sikiric, Predrag

    2016-01-01

    Stable gastric pentadecapeptide BPC 157 was previously used to ameliorate wound healing following major surgery and counteract diclofenac toxicity. To resolve the increasing early risks following major massive small bowel resectioning surgery, diclofenac combined with nitric oxide (NO) system blockade was used, suggesting therapy with BPC 157 and the nitric oxide synthase (NOS substrate) L-arginine, is efficacious. Immediately after anastomosis creation, short-bowel rats were untreated or administered intraperitoneal diclofenac (12 mg/kg), BPC 157 (10 μg/kg or 10 ng/kg), L-NG-nitroarginine methyl ester (L-NAME, 5 mg/kg), L-arginine (100 mg/kg) alone or combined, and assessed 24 h later. Short-bowel rats exhibited poor anastomosis healing, failed intestine adaptation, and gastrointestinal, liver, and brain lesions, which worsened with diclofenac. This was gradually ameliorated by immediate therapy with BPC 157 and L-arginine. Contrastingly, NOS-blocker L-NAME induced further aggravation and lesions gradually worsened. Specifically, rats with surgery alone exhibited mild stomach/duodenum lesions, considerable liver lesions, and severe cerebral/hippocampal lesions while those also administered diclofenac showed widespread severe lesions in the gastrointestinal tract, liver, cerebellar nuclear/Purkinje cells, and cerebrum/hippocampus. Rats subjected to surgery, diclofenac, and L-NAME exhibited the mentioned lesions, worsening anastomosis, and macro/microscopical necrosis. Thus, rats subjected to surgery alone showed evidence of deterioration. Furtheremore, rats subjected to surgery and administered diclofenac showed worse symptoms, than the rats subjected to surgery alone did. Rats subjected to surgery combined with diclofenac and L-NAME showed the worst deterioration. Rats subjected to surgery exhibited habitual adaptation of the remaining small intestine, which was markedly reversed in rats subjected to surgery and diclofenac, and those with surgery, diclofenac, and

  2. In Children and Youth with Mild and Moderate Traumatic Brain Injury, Glial Fibrillary Acidic Protein Out-Performs S100β in Detecting Traumatic Intracranial Lesions on Computed Tomography.

    PubMed

    Papa, Linda; Mittal, Manoj K; Ramirez, Jose; Ramia, Michelle; Kirby, Sara; Silvestri, Salvatore; Giordano, Philip; Weber, Kurt; Braga, Carolina F; Tan, Ciara N; Ameli, Neema J; Lopez, Marco; Zonfrillo, Mark

    2016-01-01

    In adults, glial fibrillary acidic protein (GFAP) has been shown to out-perform S100β in detecting intracranial lesions on computed tomography (CT) in mild traumatic brain injury (TBI). This study examined the ability of GFAP and S100β to detect intracranial lesions on CT in children and youth involved in trauma. This prospective cohort study enrolled a convenience sample of children and youth at two pediatric and one adult Level 1 trauma centers following trauma, including both those with and without head trauma. Serum samples were obtained within 6 h of injury. The primary outcome was the presence of traumatic intracranial lesions on CT scan. There were 155 pediatric trauma patients enrolled, 114 (74%) had head trauma and 41 (26%) had no head trauma. Out of the 92 patients who had a head CT, eight (9%) had intracranial lesions. The area under the receiver operating characteristic curve (AUC) for distinguishing head trauma from no head trauma for GFAP was 0.84 (0.77-0.91) and for S100β was 0.64 (0.55-0.74; p<0.001). Similarly, the AUC for predicting intracranial lesions on CT for GFAP was 0.85 (0.72-0.98) versus 0.67 (0.50-0.85) for S100β (p=0.013). Additionally, we assessed the performance of GFAP and S100β in predicting intracranial lesions in children ages 10 years or younger and found the AUC for GFAP was 0.96 (95% confidence interval [CI] 0.86-1.00) and for S100β was 0.72 (0.36-1.00). In children younger than 5 years old, the AUC for GFAP was 1.00 (95% CI 0.99-1.00) and for S100β 0.62 (0.15-1.00). In this population with mild TBI, GFAP out-performed S100β in detecting head trauma and predicting intracranial lesions on head CT. This study is among the first published to date to prospectively compare these two biomarkers in children and youth with mild TBI.

  3. Effects of Diclofenac, L-NAME, L-Arginine, and Pentadecapeptide BPC 157 on Gastrointestinal, Liver, and Brain Lesions, Failed Anastomosis, and Intestinal Adaptation Deterioration in 24 Hour-Short-Bowel Rats

    PubMed Central

    Lojo, Nermin; Rasic, Zarko; Zenko Sever, Anita; Kolenc, Danijela; Vukusic, Darko; Drmic, Domagoj; Zoricic, Ivan; Sever, Marko; Seiwerth, Sven; Sikiric, Predrag

    2016-01-01

    Stable gastric pentadecapeptide BPC 157 was previously used to ameliorate wound healing following major surgery and counteract diclofenac toxicity. To resolve the increasing early risks following major massive small bowel resectioning surgery, diclofenac combined with nitric oxide (NO) system blockade was used, suggesting therapy with BPC 157 and the nitric oxide synthase (NOS substrate) L-arginine, is efficacious. Immediately after anastomosis creation, short-bowel rats were untreated or administered intraperitoneal diclofenac (12 mg/kg), BPC 157 (10 μg/kg or 10 ng/kg), L-NG-nitroarginine methyl ester (L-NAME, 5 mg/kg), L-arginine (100 mg/kg) alone or combined, and assessed 24 h later. Short-bowel rats exhibited poor anastomosis healing, failed intestine adaptation, and gastrointestinal, liver, and brain lesions, which worsened with diclofenac. This was gradually ameliorated by immediate therapy with BPC 157 and L-arginine. Contrastingly, NOS-blocker L-NAME induced further aggravation and lesions gradually worsened. Specifically, rats with surgery alone exhibited mild stomach/duodenum lesions, considerable liver lesions, and severe cerebral/hippocampal lesions while those also administered diclofenac showed widespread severe lesions in the gastrointestinal tract, liver, cerebellar nuclear/Purkinje cells, and cerebrum/hippocampus. Rats subjected to surgery, diclofenac, and L-NAME exhibited the mentioned lesions, worsening anastomosis, and macro/microscopical necrosis. Thus, rats subjected to surgery alone showed evidence of deterioration. Furtheremore, rats subjected to surgery and administered diclofenac showed worse symptoms, than the rats subjected to surgery alone did. Rats subjected to surgery combined with diclofenac and L-NAME showed the worst deterioration. Rats subjected to surgery exhibited habitual adaptation of the remaining small intestine, which was markedly reversed in rats subjected to surgery and diclofenac, and those with surgery, diclofenac, and

  4. Radiosynthesis, In Vivo Biological Evaluation, and Imaging of Brain Lesions with [123I]-CLINME, a New SPECT Tracer for the Translocator Protein

    PubMed Central

    Mattner, F.; Quinlivan, M.; Greguric, I.; Pham, T.; Liu, X.; Jackson, T.; Berghofer, P.; Fookes, C. J. R.; Dikic, B.; Gregoire, M.-C.; Dolle, F.; Katsifis, A.

    2015-01-01

    The high affinity translocator protein (TSPO) ligand 6-chloro-2-(4′-iodophenyl)-3-(N,N-methylethyl)imidazo[1,2-a]pyridine-3-acetamide (CLINME) was radiolabelled with iodine-123 and assessed for its sensitivity for the TSPO in rodents. Moreover neuroinflammatory changes on a unilateral excitotoxic lesion rat model were detected using SPECT imaging. [123I]-CLINME was prepared in 70–80% radiochemical yield. The uptake of [123I]-CLINME was evaluated in rats by biodistribution, competition, and metabolite studies. The unilateral excitotoxic lesion was performed by injection of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid unilaterally into the striatum. The striatum lesion was confirmed and correlated with TSPO expression in astrocytes and activated microglia by immunohistochemistry and autoradiography. In vivo studies with [123I]-CLINME indicated a biodistribution pattern consistent with TPSO distribution and the competition studies with PK11195 and Ro 5-4864 showed that [123I]-CLINME is selective for this site. The metabolite study showed that the extractable radioactivity was unchanged [123I]-CLINME in organs which expresses TSPO. SPECT/CT imaging on the unilateral excitotoxic lesion indicated that the mean ratio uptake in striatum (lesion : nonlesion) was 2.2. Moreover, TSPO changes observed by SPECT imaging were confirmed by immunofluorescence, immunochemistry, and autoradiography. These results indicated that [123I]-CLINME is a promising candidate for the quantification and visualization of TPSO expression in activated astroglia using SPECT. PMID:26199457

  5. UP-BEAT (Upper Limb Baby Early Action–observation Training): protocol of two parallel randomised controlled trials of action–observation training for typically developing infants and infants with asymmetric brain lesions

    PubMed Central

    Guzzetta, Andrea; Boyd, Roslyn N; Perez, Micah; Ziviani, Jenny; Burzi, Valentina; Slaughter, Virginia; Rose, Stephen; Provan, Kerry; Findlay, Lisa; Fisher, Imogen; Colombini, Francesca; Tealdi, Gessica; Marchi, Viviani; Whittingham, Koa

    2013-01-01

    Introduction Infants with asymmetric brain lesions are at high risk of developing congenital hemiplegia. Action–observation training (AOT) has been shown to effectively improve upper limb motor function in adults with chronic stroke. AOT is based on action observation, whereby new motor skills can be learnt by observing motor actions. This process is facilitated by the Mirror Neuron System, which matches observed and performed motor actions. This study aims to determine the efficacy of AOT in: (1) influencing the early development of reaching and grasping of typically developing infants and (2) improving the upper limb activity of infants with asymmetric brain lesions. Methods and analysis This study design comprises two parallel randomised sham-controlled trials (RCTs) in: (1) typically developing infants (cohort I) and (2) infants with asymmetric brain lesions (eg, arterial stroke, venous infarction, intraventricular haemorrhage or periventricular leukomalacia; cohort II). Cohort II will be identified through a neonatal ultrasound or neonatal MRI. A sham control will be used for both RCTs, taking into consideration that it would be unethical to give no intervention to an at-risk population. Based on a two-tailed t test of two independent means, with a significance (α) level of 0.05, 80% power, predicted effect size of 0.8 and a 90% retention rate, we require 20 participants in each group (total sample of 40) for cohort I. The sample size for cohort II was based on the assumption that the effect size of the proposed training would be similar to that found by Heathcock et al in preterm born infants (n=26) with a mean effect size of 2.4. Given the high effect size, the calculation returned a sample of only four participants per group, on a two-tailed t test, with a significance (α) level of 0.05 and 80% power. As cohort II will consist of two subgroups of lesion type (ie, arterial stroke and venous infarction), we have quadrupled the sample to include 16

  6. Elementary lesions in dermatological semiology: literature review*

    PubMed Central

    Cardili, Renata Nahas; Roselino, Ana Maria

    2016-01-01

    Discrepancies in the terminology of elementary lesions persist when texts from Dermatology and Semiology books are compared, which can cause some confusion in both the teaching of undergraduate medical students and the learning acquired by professionals in the field. This review aims to compare and clarify the differences in the description of elementary lesions by many authors, used as references for specialists in dermatology.

  7. Acquired agraphia caused by focal brain damage.

    PubMed

    Anderson, S W; Saver, J; Tranel, D; Damasio, H

    1993-03-01

    Motor and linguistic aspects of writing were evaluated in 31 subjects with focal damage in 1 of 3 regions of the left hemisphere: (1) dorsolateral frontal lobe sparing primary motor cortex (group FL), (2) parietal lobe (group PL), or (3) temporal lobe (group TL). A standard procedure was used to evaluate writing for grapheme formation, spatial arrangement, spelling, word selection, grammar, and perseveration. It was predicted that agraphia would be observed in all 3 groups, and that the most severe impairments would be associated with frontal lobe damage, particularly in aspects of writing dependent on sequencing (grapheme formation, spelling, and grammar). It was found that agraphia was common in all groups, particularly in the acute epoch, and that all groups showed considerable recovery of writing by the chronic epoch. Few differences were found between groups. However, the FL group was impaired on spelling and grammar relative to the PL group in the acute epoch and impaired on grammar relative to the TL group in the chronic epoch. The findings are consistent with the notion that writing relies on a distributed neuroanatomical network, which acts in concert to link fragments of visuomotor activity with component linguistic elements.

  8. The Functional Organization of Trial-Related Activity in Lexical Processing after Early Left Hemispheric Brain Lesions: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B. L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2010-01-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In…

  9. Late effects of enriched environment (EE) plus multimodal early onset stimulation (MEOS) after traumatic brain injury in rats: Ongoing improvement of neuromotor function despite sustained volume of the CNS lesion.

    PubMed

    Lippert-Gruener, Marcela; Maegele, Marc; Garbe, Janika; Angelov, Doychin N

    2007-01-01

    Recently we showed that the combination between MEOS and EE applied to rats for 7-15 days after traumatic brain injury (TBI) was associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction. In a continuation of this work, we tested whether these effects persisted for longer post-operative periods, e.g. 30 days post-injury (dpi). Rats were subjected to lateral fluid percussion (LFP) or to sham injury. After LFP, one third of the animals (injured and sham) was placed under conditions of standard housing (SH), one third was kept in EE-only, and one third received EE+MEOS. Standardized composite neuroscore (NS) for neurological functions and computerized analysis of the vibrissal motor performance were used to assess post-traumatic neuromotor deficits. These were followed by evaluation of the cortical lesion volume (CLV) after immunostaining for neuron-specific enolase, caspase 3 active, and GFAP. Finally, the volume of cortical lesion containing regeneration-associated proteins (CLV-RAP) was determined in sections stained for GAP-43, MAP2, and neuronal class III beta-tubulin. We found (i) no differences in the vibrissal motor performance; (ii) EE+MEOS rats performed significantly better than SH rats in NS; (iii) EE-only and EE+MEOS animals, but not SH rats, showed better recovery at 30 dpi than at 15 dpi; (iv) no differences among all groups in CLV (larger than that at 15 dpi) and CLV-RAP, despite a clear tendency to reduction in the EE-only and EE+MEOS rats. We conclude that EE+MEOS retards, but cannot prevent the increase of lesion volume. This retardation is sufficient for a continuous restoration of neurological functions.

  10. Can Small Lesions Induce Language Reorganization as Large Lesions Do?

    ERIC Educational Resources Information Center

    Maestu, Fernando; Saldana, Cristobal; Amo, Carlos; Gonzalez-Hidalgo, Mercedes; Fernandez, Alberto; Fernandez, Santiago; Mata, Pedro; Papanicolaou, Andrew; Ortiz, Tomas

    2004-01-01

    Shift of the cortical mechanisms of language from the usually dominant left to the non-dominant right hemisphere has been demonstrated in the presence of large brain lesions. Here, we report a similar phenomenon in a patient with a cavernoma over the anterolateral superior temporal gyrus associated with epilepsy. Language mapping was performed by…

  11. Neural organization of spoken language revealed by lesion-symptom mapping.

    PubMed

    Mirman, Daniel; Chen, Qi; Zhang, Yongsheng; Wang, Ze; Faseyitan, Olufunsho K; Coslett, H Branch; Schwartz, Myrna F

    2015-01-01

    Studies of patients with acquired cognitive deficits following brain damage and studies using contemporary neuroimaging techniques form two distinct streams of research on the neural basis of cognition. In this study, we combine high-quality structural neuroimaging analysis techniques and extensive behavioural assessment of patients with persistent acquired language deficits to study the neural basis of language. Our results reveal two major divisions within the language system-meaning versus form and recognition versus production-and their instantiation in the brain. Phonological form deficits are associated with lesions in peri-Sylvian regions, whereas semantic production and recognition deficits are associated with damage to the left anterior temporal lobe and white matter connectivity with frontal cortex, respectively. These findings provide a novel synthesis of traditional and contemporary views of the cognitive and neural architecture of language processing, emphasizing dual routes for speech processing and convergence of white matter tracts for semantic control and/or integration.

  12. Neural Organization of Spoken Language Revealed by Lesion-Symptom Mapping

    PubMed Central

    Mirman, Daniel; Chen, Qi; Zhang, Yongsheng; Wang, Ze; Faseyitan, Olufunsho K.; Coslett, H. Branch; Schwartz, Myrna F.

    2015-01-01

    Studies of patients with acquired cognitive deficits following brain damage and studies using contemporary neuroimaging techniques form two distinct streams of research on the neural basis of cognition. In this study, we combine high-quality structural neuroimaging analysis techniques and extensive behavioral assessment of patients with persistent acquired language deficits to study the neural basis of language. Our results reveal two major divisions within the language system – meaning vs. form and recognition vs. production – and their instantiation in the brain. Phonological form deficits are associated with lesions in peri-Sylvian regions, whereas semantic production and recognition deficits are associated with damage to the left anterior temporal lobe and white matter connectivity with frontal cortex, respectively. These findings provide a novel synthesis of traditional and contemporary views of the cognitive and neural architecture of language processing, emphasizing dual-routes for speech processing and convergence of white matter tracts for semantic control and/or integration. PMID:25879574

  13. Neural organization of spoken language revealed by lesion-symptom mapping.

    PubMed

    Mirman, Daniel; Chen, Qi; Zhang, Yongsheng; Wang, Ze; Faseyitan, Olufunsho K; Coslett, H Branch; Schwartz, Myrna F

    2015-01-01

    Studies of patients with acquired cognitive deficits following brain damage and studies using contemporary neuroimaging techniques form two distinct streams of research on the neural basis of cognition. In this study, we combine high-quality structural neuroimaging analysis techniques and extensive behavioural assessment of patients with persistent acquired language deficits to study the neural basis of language. Our results reveal two major divisions within the language system-meaning versus form and recognition versus production-and their instantiation in the brain. Phonological form deficits are associated with lesions in peri-Sylvian regions, whereas semantic production and recognition deficits are associated with damage to the left anterior temporal lobe and white matter connectivity with frontal cortex, respectively. These findings provide a novel synthesis of traditional and contemporary views of the cognitive and neural architecture of language processing, emphasizing dual routes for speech processing and convergence of white matter tracts for semantic control and/or integration. PMID:25879574

  14. Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model.

    PubMed

    Khayati, Rasoul; Vafadust, Mansur; Towhidkhah, Farzad; Nabavi, Massood

    2008-03-01

    In this paper, an approach is proposed for fully automatic segmentation of MS lesions in fluid attenuated inversion recovery (FLAIR) Magnetic Resonance (MR) images. The proposed approach, based on a Bayesian classifier, utilizes the adaptive mixtures method (AMM) and Markov random field (MRF) model to obtain and upgrade the class conditional probability density function (CCPDF) and the a priori probability of each class. To compare the performance of the proposed approach with those of previous approaches including manual segmentation, the similarity criteria of different slices related to 20 MS patients were calculated. Also, volumetric comparison of lesions volume between the fully automated segmentation and the gold standard was performed using correlation coefficient (CC). The results showed a better performance for the proposed approach, compared to those of previous works.

  15. Evolution of early hemiplegic signs in full-term infants with unilateral brain lesions in the neonatal period: a prospective study.

    PubMed

    Bouza, H; Rutherford, M; Acolet, D; Pennock, J M; Dubowitz, L M

    1994-08-01

    Neonates with unilateral hemispheric lesions detected by imaging in the newborn period are at risk for developing hemiplegia. Five full-term infants with predominantly unilateral lesions identified by cranial ultrasound in the neonatal period and confirmed with MRI were examined clinically at regular intervals in order to establish the development, incidence and evolution of later hemiplegia and the evolution of hemiplegic signs. In the neonatal period the infants had either a normal examination or subtle transient abnormalities. Abnormalities were not seen until 6 months of age in infants who developed hemiplegia. The number of hemiplegic signs in each child increased with time, the earlier the signs appeared the more severe the hemiplegia. In some infants deterioration with loss of preexisting skills was observed. At 24 months two of the infants were normal, one had a mild and two a moderate hemiplegia. PMID:7824092

  16. Brain imaging

    SciTech Connect

    Bradshaw, J.R.

    1989-01-01

    This book presents a survey of the various imaging tools with examples of the different diseases shown best with each modality. It includes 100 case presentations covering the gamut of brain diseases. These examples are grouped according to the clinical presentation of the patient: headache, acute headache, sudden unilateral weakness, unilateral weakness of gradual onset, speech disorders, seizures, pituitary and parasellar lesions, sensory disorders, posterior fossa and cranial nerve disorders, dementia, and congenital lesions.

  17. Acquired progressive lymphangioma of the nipple

    PubMed Central

    Alkhalili, Eyas; Ayoubieh, Houriya; O'Brien, William; Billings, Steven D

    2014-01-01

    A 47-year-old woman presented with left nipple itch and discomfort. On physical examination she was found to have a 7 mm lesion. She underwent bilateral mammography and bilateral breast ultrasound which were normal. A punch biopsy of the lesion was performed in the office and the specimen submitted to pathology. Histopathological examination showed ectatic vascular spaces lined by flattened, cytologically bland endothelial cells dissecting the dermal collagen. Evident lymphatic valves were present within the vascular spaces confirming that the vessels were lymphatic in nature. The diagnosis of acquired progressive lymphangioma (benign lymphangioendothelioma) was rendered. PMID:25246470

  18. Effect of Treatment with Interferon Beta-1a on Changes in Voxel-Wise Magnetization Transfer Ratio in Normal Appearing Brain Tissue and Lesions of Patients with Relapsing–Remitting Multiple Sclerosis: A 24-Week, Controlled Pilot Study

    PubMed Central

    Zivadinov, Robert; Dwyer, Michael G.; Markovic-Plese, Silva; Kennedy, Cheryl; Bergsland, Niels; Ramasamy, Deepa P.; Durfee, Jacqueline; Hojnacki, David; Hayward, Brooke; Dangond, Fernando; Weinstock-Guttman, Bianca

    2014-01-01

    Background This pilot study investigated changes in remyelinating and demyelinating activity in normal appearing brain tissue (NABT) and lesions, by using voxel-wise magnetization transfer ratio (VW-MTR), in patients with relapsing–remitting multiple sclerosis (RRMS) receiving interferon beta-1a 44 mcg subcutaneously (IFN β-1a SC) three times weekly versus healthy controls (HCs) (NCT01085318). Methods Increasing (suggestive of remyelination) and decreasing (suggestive of demyelination) VW-MTR changes in NABT and in T2, T1 and gadolinium (Gd)-enhancing lesion volume were measured over 24 weeks in 23 patients treated with IFN β-1a SC and in 15 HCs (where applicable). VW-MTR changes were tested using the Wilcoxon signed–rank or Wilcoxon rank–sum test. Results A trend for greater volume of NABT with increasing VW-MTR at 24 weeks was observed for patients versus HCs (median [range] 1206 [0–15278]; 342 [0–951] mm3; p = 0.061). NABT volume with increasing VW-MTR at 12 weeks was significantly greater in patients than in HCs (852 [6–11577]; 360 [0–1755] mm3; p = 0.028). Similar findings were detected for lesion volumes. Two patients with notably high numbers of Gd-enhancing lesions at baseline had a markedly greater volume of tissue with increasing VW-MTR compared with other patients. Volume of NABT tissue with decreasing VW-MTR was significantly greater in patients versus HCs at 24 weeks (942 [0–6141]; 297 [0–852] mm3; p<0.001). Conclusions The significant change in NABT volume with increasing VW-MTR at 12 weeks suggests that active remyelination in patients with RRMS may occur during treatment with IFN β-1a SC. Findings from two patients with the highest number of Gd-enhancing lesions at baseline suggest that extensive remyelination in NABT may occur in patients with high disease activity. Tissue volume with decreasing VW-MTR was greater in patients than in HCs, despite treatment, validating the sensitivity of this technique for detecting MS

  19. Intraventricular CNS lesions: A pictorial essay.

    PubMed

    Watts, Jane; Yap, Kelvin K; Ou, Daniel; Tartaglia, Con; Trost, Nicholas; Sutherland, Tom

    2015-08-01

    Intraventricular lesions of the central nervous system (CNS) can present a diagnostic challenge due to a range of differential diagnoses and radiological appearances. Both CT and MRI imaging findings, in combination with location and patient's age, can help limit the differentials. This pictorial essay presents the salient radiological features, location and demographics of the more common intraventricular lesions of the brain.

  20. Gross morphology and morphometric sequelae in the hippocampus, fornix, and corpus callosum of patients with severe non-missile traumatic brain injury without macroscopically detectable lesions: a T1 weighted MRI study

    PubMed Central

    Tomaiuolo, F; Carlesimo, G; Di, P; Petrides, M; Fera, F; Bonanni, R; Formisano, R; Pasqualetti, P; Caltagirone, C

    2004-01-01

    Objective: The gross morphology and morphometry of the hippocampus, fornix, and corpus callosum in patients with severe non-missile traumatic brain injury (nmTBI) without obvious neuroradiological lesions was examined and the volumes of these structures were correlated with performance on memory tests. In addition, the predictability of the length of coma from the selected anatomical volumes was examined. Method: High spatial resolution T1 weighted MRI scans of the brain (1 mm3) and neuropsychological evaluations with standardised tests were performed at least 3 months after trauma in 19 patients. Results: In comparison with control subjects matched in terms of gender and age, volume reduction in the hippocampus, fornix, and corpus callosum of the nmTBI patients was quantitatively significant. The length of coma correlated with the volume reduction in the corpus callosum. Immediate free recall of word lists correlated with the volume of the fornix and the corpus callosum. Delayed recall of word lists and immediate recall of the Rey figure both correlated with the volume of the fornix. Delayed recall of the Rey figure correlated with the volume of the fornix and the right hippocampus. Conclusion: These findings demonstrate that in severe nmTBI without obvious neuroradiological lesions there is a clear hippocampal, fornix, and callosal volume reduction. The length of coma predicts the callosal volume reduction, which could be conside