Science.gov

Sample records for acquired cns gene

  1. Clinical Applications Involving CNS Gene Transfer

    PubMed Central

    Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.

    2015-01-01

    Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921

  2. Systemic Gene Therapy for Targeting the CNS.

    PubMed

    Gombash, Sara E; Foust, Kevin D

    2016-01-01

    Systemic gene delivery is useful for modeling and treatment of a body-wide disease. Recently, it has been shown that certain agents, when delivered systemically, can efficiently target the central nervous system. This technique has been used to model and treat rodent models of neurological disease with unprecedented success. Here, we describe intravenous delivery in neonate and adult mice. These techniques are easily learned and have minimal equipment requirements.

  3. Virally mediated gene manipulation in the adult CNS

    PubMed Central

    Edry, Efrat; Lamprecht, Raphael; Wagner, Shlomo; Rosenblum, Kobi

    2011-01-01

    Understanding how the CNS functions poses one of the greatest challenges in modern life science and medicine. Studying the brain is especially challenging because of its complexity, the heterogeneity of its cellular composition, and the substantial changes it undergoes throughout its life-span. The complexity of adult brain neural networks results also from the diversity of properties and functions of neuronal cells, governed, inter alia, by temporally and spatially differential expression of proteins in mammalian brain cell populations. Hence, research into the biology of CNS activity and its implications to human and animal behavior must use novel scientific tools. One source of such tools is the field of molecular genetics—recently utilized more and more frequently in neuroscience research. Transgenic approaches in general, and gene targeting in rodents have become fundamental tools for elucidating gene function in the CNS. Although spectacular progress has been achieved over recent decades by using these approaches, it is important to note that they face a number of restrictions. One of the main challenges is presented by the temporal and spatial regulation of introduced genetic manipulations. Viral vectors provide an alternative approach to temporally regulated, localized delivery of genetic modifications into neurons. In this review we describe available technologies for gene transfer into the adult mammalian CNS that use both viral and non-viral tools. We discuss viral vectors frequently used in neuroscience, with emphasis on lentiviral vector (LV) systems. We consider adverse effects of LVs, and the use of LVs for temporally and spatially controllable manipulations. Especially, we highlight the significance of viral vector-mediated genetic manipulations in studying learning and memory processes, and how they may be effectively used to separate out the various phases of learning: acquisition, consolidation, retrieval, and maintenance. PMID:22207836

  4. Gene therapy for CNS diseases – Krabbe disease

    PubMed Central

    Rafi, Mohammad A.

    2016-01-01

    Summary This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  5. Acquired CNS Demyelinating Syndrome in Children Referred to ShirazPediatric Neurology Ward

    PubMed Central

    INALOO, Soroor; HAGHBIN, Saeedeh; MORADI, Mehrpoor; DASHTI, Hassan; SAFARI, Nazila

    2014-01-01

    Objective Incidence of CNS acquired demyelinating syndrome (ADS), especially multiple sclerosis (MS) in children, appears to be on the rise worldwide. The objective of this study was to determine prevalence, clinical presentation, neuroimaging features, and prognosis of different types of ADS in Iranian children. Materials & Methods During the period 2002-2012, all the patients (aged 1-18 years) with ADS, such as MS, acute disseminated encephalomyelitis (ADEM), optic neurotic (ON), Devic disease, and transverse myelitis (TM), referred to the pediatric neurology ward, Nemazee Hospital, Shiraz University of Medical Sciences, were included in this study. Demographic data, clinical signs and symptoms, past and family history, preclinical findings, clinical course, and outcome were obtained. Results We identified 88 patients with ADS in our center. The most prevalent disease was MS with 36.5% (n=32), followed by AEDM 26.1% (n=31), ON 17% (n=13), TM 15.9% (n=14), and Devic disease 4.5% (n=4). MS, ON, TM were more common among females while ADEM was more common in males. Children with ADEM were significantly younger than those with other types of ADS. Family history was positive in 10% of patients with MS. Previous history of recent infection was considerably seen in cases with ADEM. Clinical presentation and prognosis in this study was in accordance with those in previous studies on children. Conclusion In this study, the most common type of ADS was MS, which was more common in female and older age cases. ADEM was more common in male and younger children. ADEM and ON had the best and Devic disease had the worst prognosis. PMID:24949046

  6. Viral vectors and delivery strategies for CNS gene therapy

    PubMed Central

    Gray, Steven J; Woodard, Kenton T; Samulski, R Jude

    2015-01-01

    This review aims to provide a broad overview of the targets, challenges and potential for gene therapy in the CNS, citing specific examples. There are a broad range of therapeutic targets, with very different requirements for a suitable viral vector. By utilizing different vector tropisms, novel routes of administration and engineered promoter control, transgenes can be targeted to specific therapeutic applications. Viral vectors have proven efficacious in preclinical models for several disease applications, spurring several clinical trials. While the field has pushed the limits of existing adeno-associated virus-based vectors, a next generation of vectors based on rational engineering of viral capsids should expand the application of gene therapy to be more effective in specific therapeutic applications. PMID:22833965

  7. Evolution of the CNS myelin gene regulatory program.

    PubMed

    Li, Huiliang; Richardson, William D

    2016-06-15

    Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Acquired Antibiotic Resistance Genes: An Overview

    PubMed Central

    van Hoek, Angela H. A. M.; Mevius, Dik; Guerra, Beatriz; Mullany, Peter; Roberts, Adam Paul; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria. PMID:22046172

  9. Acquired macrolide resistance genes in Haemophilus influenzae?

    PubMed

    Atkinson, Christopher T; Kunde, Dale A; Tristram, Stephen G

    2015-08-01

    The objective of this study was to determine the prevalence of specific acquired macrolide resistance genes previously reported as present in clinical isolates of Haemophilus influenzae. A collection of 172 clinical respiratory isolates of H. influenzae, including 59 isolates from cystic fibrosis patients and 27 from non-cystic fibrosis bronchiectasis patients with significant prior macrolide use, was established. This collection was tested for azithromycin susceptibility using Etest and screened for the presence of erm(A), erm(B), erm(C), erm(F), mef(A) and mef(E) using locked nucleic acid dual-labelled hydrolysis probes. The azithromycin MICs ranged from 0.09 to >256 mg/L, with 2 (1.2%) isolates susceptible, 163 (94.8%) intermediate and 7 (4%) resistant according to EUCAST breakpoints (susceptible, ≤0.12 mg/L; resistant, >4 mg/L). None of the acquired macrolide resistance genes erm(A), erm(B), erm(C), erm(F), mef(A) or mef(E) was detected in any of the isolates. The specific acquired macrolide resistance genes are not widespread in H. influenzae and the high prevalence of these genes previously reported might be unique to the specific circumstances of that study. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases

    PubMed Central

    Hocquemiller, Michaël; Giersch, Laura; Audrain, Mickael; Parker, Samantha; Cartier, Nathalie

    2016-01-01

    Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery. PMID:27267688

  11. LIS1 Lissencephaly gene CNS expression: Relation to neuronal migration

    SciTech Connect

    Reiner, O. |; Gal-Gerber, O.; Sapir, T.

    1994-09-01

    Lis1 is the murine gene corresponding to human LIS1 gene involved in Miller-Dieker lissencephaly located on chromosome 17p13.3 as demonstrated by cDNA cloning, sequence analysis and genetic mapping. Lis1 expression was studied in developing mouse brain using in situ hybridization. At embryonic day 15, Lis1 expression was most prominently localized in the neuronal layer of the retina, the developing hippocampus, doral root ganglia, cranial ganglia and the thalamus. At postnatal day 5 a unique pattern of expression was detected in the developing cerebellum. Lis1 was expressed at high levels in the Purkinje cell layer when the granule cells were migrating through the Purkinje cell layer inwards. The expression of Lis1 in Purkinje cells in the adult is markedly reduced. Similarly, Lis1 was expressed in the ontogenetically older layers of the neocortex (layers 5 and 6) where younger neurons have to migrate through to settle in the superficial layers. Thus, at both sites a link between expression and neuronal migration was demonstrated. These studies on the expression pattern of Lis1 could be useful in understanding abnormalities in Miller-Dieker lissencephaly syndrome (MDS) patients.

  12. Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates

    PubMed Central

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2015-01-01

    The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy. PMID:26022732

  13. Intrathecal Gene Therapy Corrects CNS Pathology in a Feline Model of Mucopolysaccharidosis I

    PubMed Central

    Hinderer, Christian; Bell, Peter; Gurda, Brittney L; Wang, Qiang; Louboutin, Jean-Pierre; Zhu, Yanqing; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Haskins, Mark E; Wilson, James M

    2014-01-01

    Enzyme replacement therapy has revolutionized the treatment of the somatic manifestations of lysosomal storage diseases (LSD), although it has been ineffective in treating central nervous system (CNS) manifestations of these disorders. The development of neurotrophic vectors based on novel serotypes of adeno-associated viruses (AAV) such as AAV9 provides a potential platform for stable and efficient delivery of enzymes to the CNS. We evaluated the safety and efficacy of intrathecal delivery of AAV9 expressing α-l-iduronidase (IDUA) in a previously described feline model of mucopolysaccharidosis I (MPS I). A neurological phenotype has not been defined in these animals, so our analysis focused on the biochemical and histological CNS abnormalities characteristic of MPS I. Five MPS I cats were dosed with AAV9 vector at 4–7 months of age and followed for 6 months. Treated animals demonstrated virtually complete correction of biochemical and histological manifestations of the disease throughout the CNS. There was a range of antibody responses against IDUA in this cohort which reduced detectable enzyme without substantially reducing efficacy; there was no evidence of toxicity. This first demonstration of the efficacy of intrathecal gene therapy in a large animal model of a LSD should pave the way for translation into the clinic. PMID:25027660

  14. Developmental alterations in CNS stress-related gene expression following postnatal immune activation.

    PubMed

    Amath, A; Foster, J A; Sidor, M M

    2012-09-18

    Early-life adversity is associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and increased susceptibility to later-life psychopathology. Specifically, there is mounting evidence suggesting that the immune system plays an important role in central nervous system (CNS) development and in the programing of behavior. The current study investigated how early-life immune challenge affects the development of CNS stress neurocircuitry by examining the gene expression profile of corticotropin-releasing hormone (CRH), CRH receptors, and the major corticosteroid receptors within the limbic-hypothalamic circuit of the developing rodent brain. Mice were administered a 0.05 mg/kg lipopolysaccharide (LPS) injection on postnatal day (P) 3 and 5 and gene expression was assessed using in situ hybridization from P14 to P28. Target genes investigated were CRH, CRH receptor-1 (CRHR1), CRH receptor-2, the mineralocorticoid receptor, and the glucocorticoid receptor (GR). Early LPS challenge resulted in a transient decrease in CRHR1 mRNA expression in the cornuammonis 1 (CA1) and CA3 regions of the hippocampus that were accompanied by increased hippocampal GR mRNA expression in the CA1 region between P14 and P21. This was followed by increased hypothalamic CRH expression in LPS-mice on P28. Our current findings suggest that early-life LPS challenge impacts the developmental trajectory of CNS stress neurocircuitry. These results lend insight into the molecular basis for the later development of stress-related behaviors as previously described in early immune challenge rodents.

  15. Dual DNA methylation patterns in the CNS reveal developmentally poised chromatin and monoallelic expression of critical genes.

    PubMed

    Wang, Jinhui; Valo, Zuzana; Bowers, Chauncey W; Smith, David D; Liu, Zheng; Singer-Sam, Judith

    2010-11-04

    As a first step towards discovery of genes expressed from only one allele in the CNS, we used a tiling array assay for DNA sequences that are both methylated and unmethylated (the MAUD assay). We analyzed regulatory regions of the entire mouse brain transcriptome, and found that approximately 10% of the genes assayed showed dual DNA methylation patterns. They include a large subset of genes that display marks of both active and silent, i.e., poised, chromatin during development, consistent with a link between differential DNA methylation and lineage-specific differentiation within the CNS. Sixty-five of the MAUD hits and 57 other genes whose function is of relevance to CNS development and/or disorders were tested for allele-specific expression in F(1) hybrid clonal neural stem cell (NSC) lines. Eight MAUD hits and one additional gene showed such expression. They include Lgi1, which causes a subtype of inherited epilepsy that displays autosomal dominance with incomplete penetrance; Gfra2, a receptor for glial cell line-derived neurotrophic factor GDNF that has been linked to kindling epilepsy; Unc5a, a netrin-1 receptor important in neurodevelopment; and Cspg4, a membrane chondroitin sulfate proteoglycan associated with malignant melanoma and astrocytoma in human. Three of the genes, Camk2a, Kcnc4, and Unc5a, show preferential expression of the same allele in all clonal NSC lines tested. The other six genes show a stochastic pattern of monoallelic expression in some NSC lines and bi-allelic expression in others. These results support the estimate that 1-2% of genes expressed in the CNS may be subject to allelic exclusion, and demonstrate that the group includes genes implicated in major disorders of the CNS as well as neurodevelopment.

  16. Activity-Dependent Plasticity and Gene Expression Modifications in the Adult CNS

    PubMed Central

    Carulli, Daniela; Foscarin, Simona; Rossi, Ferdinando

    2011-01-01

    Information processing, memory formation, or functional recovery after nervous system damage depend on the ability of neurons to modify their functional properties or their connections. At the cellular/molecular level, structural modifications of neural circuits are finely regulated by intrinsic neuronal properties and growth-regulatory cues in the extracellular milieu. Recently, it has become clear that stimuli coming from the external world, which comprise sensory inflow, motor activity, cognitive elaboration, or social interaction, not only provide the involved neurons with instructive information needed to shape connection patterns to sustain adaptive function, but also exert a powerful influence on intrinsic and extrinsic growth-related mechanisms, so to create permissive conditions for neuritic remodeling. Here, we present an overview of recent findings concerning the effects of experience on molecular mechanisms underlying CNS structural plasticity, both in physiological conditions and after damage, with particular focus on activity-dependent modulation of growth-regulatory genes and epigenetic modifications. PMID:22144945

  17. Peripheral nerve graft with immunosuppression modifies gene expression in axotomized CNS neurons.

    PubMed

    Murray, Marion; Santi, Lauren; Monaghan, Rebecca; Houle, John D; Barr, Gordon A

    2011-12-01

    Adult central nervous system (CNS) neurons do not regenerate severed axons unaided but may regenerate axons into apposed predegenerated peripheral nerve grafts (PNGs). We examined gene expression by using microarray technology in laser-dissected lateral vestibular (LV) neurons whose axons were severed by a lateral hemisection at C3 (HX) and in lateral vestibular nucleus (LVN) neurons that were hemisected at C3 and that received immunosuppression with cyclosporine A (CsA) and a predegenerated PNG (termed I-PNG) into the lesion site. The results provide an expression analysis of temporal changes that occur in LVN neurons in nonregenerative and potentially regenerative states and over a period of 42 days. Axotomy alone resulted in a prolonged change in regulation of probe sets, with more being upregulated than downregulated. Apposition of a PNG with immunosuppression muted gene expression overall. Axotomized neurons (HX) upregulated genes commonly associated with axonal growth, whereas axotomized neurons whose axons were apposed to the PNG showed diminished expression of many of these genes but greater expression of genes related to energy production. The results suggest that axotomized LVN neurons express many genes thought to be associated with regeneration to a greater extent than LVN neurons that are apposed to a PNG. Thus the LVN neurons remain in a regenerative state following axotomy but the conditions provided by the I-PNG appear to be neuroprotective, preserving or enhancing mitochondrial activity, which may provide required energy for regeneration. We speculate that the graft also enables sufficient axonal synthesis of cytoskeletal components to allow axonal growth without marked increase in expression of genes normally associated with regeneration. Copyright © 2011 Wiley-Liss, Inc.

  18. Human-specific transcriptional regulation of CNS development genes by FOXP2.

    PubMed

    Konopka, Genevieve; Bomar, Jamee M; Winden, Kellen; Coppola, Giovanni; Jonsson, Zophonias O; Gao, Fuying; Peng, Sophia; Preuss, Todd M; Wohlschlegel, James A; Geschwind, Daniel H

    2009-11-12

    The signalling pathways controlling both the evolution and development of language in the human brain remain unknown. So far, the transcription factor FOXP2 (forkhead box P2) is the only gene implicated in Mendelian forms of human speech and language dysfunction. It has been proposed that the amino acid composition in the human variant of FOXP2 has undergone accelerated evolution, and this two-amino-acid change occurred around the time of language emergence in humans. However, this remains controversial, and whether the acquisition of these amino acids in human FOXP2 has any functional consequence in human neurons remains untested. Here we demonstrate that these two human-specific amino acids alter FOXP2 function by conferring differential transcriptional regulation in vitro. We extend these observations in vivo to human and chimpanzee brain, and use network analysis to identify novel relationships among the differentially expressed genes. These data provide experimental support for the functional relevance of changes in FOXP2 that occur on the human lineage, highlighting specific pathways with direct consequences for human brain development and disease in the central nervous system (CNS). Because FOXP2 has an important role in speech and language in humans, the identified targets may have a critical function in the development and evolution of language circuitry in humans.

  19. Transcriptome profiling analysis reveals region-distinctive changes of gene expression in the CNS in response to different moderate restraint stress.

    PubMed

    Wang, Ke; Xiang, Xiao-Hui; He, Fei; Lin, Li-Bo; Zhang, Rong; Ping, Xing-Jie; Han, Ji-Sheng; Guo, Ning; Zhang, Qing-Hua; Cui, Cai-Lian; Zhao, Guo-Ping

    2010-06-01

    It is generally believed that temporary moderate stress to a living organism has protective and adaptive effects, but little is known about the responses of CNS to the moderate stresses at molecular level. This study aims to investigate the gene expression changes induced by moderate stress in CNS stress- and nociception-related regions of rats. Moderate restraint was applied to rats for 50 min and cDNA microarrays were used to detect the differential gene expression in different CNS regions. Transcriptome profiling analysis showed that at acute stage stress-related genes were up-regulated in arcuate nucleus; fight-or-flight behavior-related genes were up-regulated in periaqueductal gray, while nitric oxide and GABA signal transmission-related genes were up-regulated in spinal dorsal horn. In addition, immune-related genes were broadly regulated, especially at the late stage. These results suggested that specific genes of certain gene ontology categories were spatiotemporally regulated in specific CNS regions related to relevant functions under moderate external stimuli at acute stage, while immune response was broadly regulated at the late stage. The co-regulated genes among the three different CNS regions may play general roles in CNS when exposed to moderate stress. Furthermore, these results will help to elucidate the physiological processes involved in moderate stress in CNS.

  20. Targeting of the CNS in MPS-IH Using a Nonviral Transferrin-α-l-iduronidase Fusion Gene Product

    PubMed Central

    Osborn, Mark J; McElmurry, Ron T; Peacock, Brandon; Tolar, Jakub; Blazar, Bruce R

    2008-01-01

    Mucopolysaccharidosis type I (Hurler syndrome) is caused by a deficiency of the enzyme α-l-iduronidase (IDUA), and is characterized by widespread lysosomal glycosaminoglycan (GAG) accumulation. Successful treatment of central nervous system (CNS) diseases is limited by the presence of the blood–brain barrier, which prevents penetration of the therapeutic enzyme. Given that the brain capillary endothelial cells that form this barrier express high levels of the transferrin receptor (TfR), we hypothesized that the coupling of IDUA to transferrin (Tf) would facilitate IDUA delivery to the CNS. A plasmid bearing a fusion gene consisting of Tf and IDUA was constructed which, when delivered in vivo, resulted in the production of high levels of an enzymatically active protein that was transported into the CNS by TfR-mediated endocytosis. Short-term treatment resulted in a decrease in GAGs in the cerebellum of mucopolysaccharidosis type I (MPS I) mice. This approach, therefore, represents a potential strategy for the delivery of therapeutic enzyme to the CNS. PMID:18523448

  1. Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila

    PubMed Central

    Urbach, Rolf; Jussen, David; Technau, Gerhard M.

    2016-01-01

    The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, partially, to suppression of neuroblast formation and induction of programmed cell death by the Hox gene Deformed. Neuroblast patterns are further influenced by segmental modifications in dorsoventral and proneural gene expression. With the previously published neuroblast maps and those presented here for the gnathal region, all neuroectodermal neuroblasts building the CNS of the fly (ventral nerve cord and brain, except optic lobes) are now individually identified (in total 2×567 neuroblasts). This allows, for the first time, a comparison of the characteristics of segmental populations of stem cells and to screen for serially homologous neuroblasts throughout the CNS. We show that approximately half of the deutocerebral and all of the tritocerebral (posterior brain) and gnathal neuroblasts, but none of the protocerebral (anterior brain) neuroblasts, display serial homology to neuroblasts in thoracic/abdominal neuromeres. Modifications in the molecular signature of serially homologous neuroblasts are likely to determine the segment-specific characteristics of their lineages. PMID:27095493

  2. Tumor necrosis factor-alpha regulation of the Id gene family in astrocytes and microglia during CNS inflammatory injury.

    PubMed

    Tzeng, S F; Kahn, M; Liva, S; De Vellis, J

    1999-04-01

    The inhibitors of DNA binding (Id) gene family is highly expressed during embryogenesis and throughout adulthood in the rat central nervous system (CNS). In vitro studies suggest that the Id gene family is involved in the regulation of cell proliferation and differentiation. Recently, Id gene expression was shown to be expressed in immature and mature astrocytes during development and upregulated in reactive astrocytes after spinal cord injury. These results suggest that the Id gene family may play an important role in regulating astrocyte development and reactivity; however, the factors regulating Id expression in astrocytes remain undefined. Tumor necrosis factor-alpha (TNF alpha), a proinflammatory cytokine, is thought to play a crucial role in astrocyte/microglia activation after injury to the CNS. To determine if TNF alpha plays a role in Id gene expression, we exogenously administered TNF alpha into developing postnatal rats. We report that TNF alpha injections resulted in a rapid and transient increase in both cell number and mRNA expression for Id2 and Id3 when compared to levels observed in noninjected or control-injected animals. Id1 mRNA levels were also upregulated after TNF alpha treatment, but to a lesser degree. Significant increases in TNF alpha-induced Id2 and Id3 mRNA were observed in the ventricular/subventricular zone, cingulum and corpus callosum. TNF alpha also increased Id2 mRNA expression in the caudate putamen and hippocampus at the injection site. Id2 and Id3 mRNA+ cells were identified as GFAP+ and S100 alpha + astrocytes as well as ED1+ microglia. This is the first report to show TNF-alpha-induced modulation of the Id gene family and suggests that Id may be involved in the formation of reactive astrocytes and activated microglia in the rodent brain. These results suggest a putative role for the Id family in the molecular mechanisms regulating cellular responsiveness to TNF alpha and CNS inflammation.

  3. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    PubMed Central

    2012-01-01

    Background Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal

  4. Evaluation of cell proliferation, apoptosis, and DNA-repair genes as potential biomarkers for ethanol-induced CNS alterations.

    PubMed

    Hicks, Steven D; Lewis, Lambert; Ritchie, Julie; Burke, Patrick; Abdul-Malak, Ynesse; Adackapara, Nyssa; Canfield, Kelly; Shwarts, Erik; Gentile, Karen; Meszaros, Zsuzsa Szombathyne; Middleton, Frank A

    2012-10-25

    Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal gyrus and

  5. Horizontally Acquired Genes Are Often Shared between Closely Related Bacterial Species.

    PubMed

    Bolotin, Evgeni; Hershberg, Ruth

    2017-01-01

    Horizontal gene transfer (HGT) serves as an important source of innovation for bacterial species. We used a pangenome-based approach to identify genes that were horizontally acquired by four closely related bacterial species, belonging to the Enterobacteriaceae family. This enabled us to examine the extent to which such closely related species tend to share horizontally acquired genes. We find that a high percent of horizontally acquired genes are shared among these closely related species. Furthermore, we demonstrate that the extent of sharing of horizontally acquired genes among these four closely related species is predictive of the extent to which these genes will be found in additional bacterial species. Finally, we show that acquired genes shared by more species tend to be better optimized for expression within the genomes of their new hosts. Combined, our results demonstrate the existence of a large pool of frequently horizontally acquired genes that have distinct characteristics from horizontally acquired genes that are less frequently shared between species.

  6. The feasibility of using 5D CNS software in obtaining standard fetal head measurements from volumes acquired by three-dimensional ultrasonography: comparison with two-dimensional ultrasound.

    PubMed

    Rizzo, Giuseppe; Aiello, Elisa; Pietrolucci, Maria Elena; Arduini, Domenico

    2016-01-01

    To evaluate the performance of a new software (5D CNS) developed to automatically recognize the axial planes of the fetal brain from three-dimensional volumes and to obtain the basic standard biometric measurements. The accuracy, reproducibility, and time required for analysis of 5D CNS were compared with that of two-dimensional (2D) ultrasound. This was a prospective study of 120 uncomplicated singleton pregnancies undergoing routine second trimester examination. For every pregnancy standard biometric measurements including biparietal diameter, head circumference, distal lateral ventricle width, transverse cerebellar diameter and cisterna magna width were obtained using 2D ultrasound and three-dimensional (3D) ultrasound with 5D CNS software. Reliability and agreement of the two techniques were evaluated using intraclass correlation coefficients (ICCs) and proportionate Bland-Altman plots were constructed. The time necessary to complete the measurements with either technique was compared and intraobserver and interobserver agreements of measurements calculated. In 118/120 (98.3%), 5D CNS successfully reconstructed the axial diagnostic planes and calculated all the basic biometric head and brain measurements. The agreement between the two techniques was high for all the measurements considered (all ICCS > 0.920). The time necessary to measure the biometric variables considered was significantly shorter with 5D CNS (54 versus 115 s, p < 0.0001) than with 2D ultrasonography. No significant differences were found in 5D CNS repeated measurements obtained either by the same observer or by two independent observers. 5D CNS software allows us to obtain reliable biometric measurements of the fetal brain and to reduce the examination time. Its application may improve work-flow efficiency in ultrasonographic practices.

  7. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan

    PubMed Central

    Weismann, Cara M.; Ferreira, Jennifer; Keeler, Allison M.; Su, Qin; Qui, Linghua; Shaffer, Scott A.; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-01-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal−/−) at 1 × 1011 or 3 × 1011 vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36–76% reduction in GM1-ganglioside content in the brain and 75–86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 1011 vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 1011 vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316–576 days) was significantly increased over controls (250–264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan. PMID:25964428

  8. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  9. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy

    PubMed Central

    Passini, Marco A.; Bu, Jie; Roskelley, Eric M.; Richards, Amy M.; Sardi, S. Pablo; O’Riordan, Catherine R.; Klinger, Katherine W.; Shihabuddin, Lamya S.; Cheng, Seng H.

    2010-01-01

    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture. Treated mice also displayed substantial improvements on behavioral tests of muscle strength, coordination, and locomotion, indicating that the neuromuscular junction was functional. Treatment with AAV8-hSMN increased the median life span of mice with SMA-like disease to 50 days compared with 15 days for untreated controls. Moreover, injecting mice with SMA-like disease with a human SMN–expressing self-complementary AAV vector — a vector that leads to earlier onset of gene expression compared with standard AAV vectors — led to improved efficacy of gene therapy, including a substantial extension in median survival to 157 days. These data indicate that CNS-directed, AAV-mediated SMN augmentation is highly efficacious in addressing both neuronal and muscular pathologies in a severe mouse model of SMA. PMID:20234094

  10. Specificity of CNS and PNS regulatory subelements comprising pan-neural enhancers of the deadpan and scratch genes is achieved by repression.

    PubMed

    Emery, J F; Bier, E

    1995-11-01

    The Drosophila pan-neural genes deadpan (dpn) and scratch (scrt) are expressed in most or all developing neural precursor cells of the central nervous system (CNS) and peripheral nervous system (PNS). We have identified a cis-acting enhancer element driving full pan-neural expression of the dpn gene which is composed of independent CNS- and PNS-specific subelements. We have also identified CNS- and PNS-specific subelements of the scrt enhancer. Deletion analysis of the dpn and scrt PNS-specific subelements reveals that PNS specificity of these two evolutionarily unrelated enhancers is achieved in part by repression of CNS expression. We discuss the implications of the striking organizational similarities of the dpn, scrt, and sna pan-neural enhancers.

  11. Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families.

    PubMed

    Li, Sierra M; Valo, Zuzana; Wang, Jinhui; Gao, Hanlin; Bowers, Chauncey W; Singer-Sam, Judith

    2012-01-01

    Monoallelic expression is an integral component of regulation of a number of essential genes and gene families. To probe for allele-specific expression in cells of CNS origin, we used next-generation sequencing (RNA-seq) to analyze four clonal neural stem cell (NSC) lines derived from Mus musculus C57BL/6 (B6)×Mus musculus molossinus (JF1) adult female mice. We established a JF1 cSNP library, then ascertained transcriptome-wide expression from B6 vs. JF1 alleles in the NSC lines. Validating the assay, we found that 262 of 268 X-linked genes evaluable in at least one cell line showed monoallelic expression (at least 85% expression of the predominant allele, p-value<0.05). For autosomal genes 170 of 7,198 genes (2.4% of the total) showed monoallelic expression in at least 2 evaluable cell lines. The group included eight known imprinted genes with the expected pattern of allele-specific expression. Among the other autosomal genes with monoallelic expression were five members of the glutathione transferase gene superfamily, which processes xenobiotic compounds as well as carcinogens and cancer therapeutic agents. Monoallelic expression within this superfamily thus may play a functional role in the response to diverse and potentially lethal exogenous factors, as is the case for the immunoglobulin and olfactory receptor superfamilies. Other genes and gene families showing monoallelic expression include the annexin gene family and the Thy1 gene, both linked to inflammation and cancer, as well as genes linked to alcohol dependence (Gabrg1) and epilepsy (Kcnma1). The annotated set of genes will provide a resource for investigation of mechanisms underlying certain cases of these and other major disorders.

  12. Automated conserved non-coding sequence (CNS) discovery reveals differences in gene content and promoter evolution among grasses.

    PubMed

    Turco, Gina; Schnable, James C; Pedersen, Brent; Freeling, Michael

    2013-01-01

    Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by >12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize.

  13. Brain-derived neurotrophic factor (BDNF) gene delivery into the CNS using bone marrow cells as vehicles in mice.

    PubMed

    Makar, T K; Trisler, D; Eglitis, M A; Mouradian, M M; Dhib-Jalbut, S

    2004-02-19

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is protective in animal models of neurodegenerative diseases. However, BDNF has a short half-life and its efficacy in the CNS when delivered peripherally is limited due to the blood-brain barrier. In the present study, bone marrow cells were used as vehicles to deliver the BDNF gene into the CNS. Marrow cells obtained from 6 to 8 week-old SJL/J mice were transduced with BDNF expressing pro-virus. RT-PCR analysis revealed that BDNF mRNA was expressed in transduced but not in non-transduced marrow cells. Additionally, virus transduced marrow cells expressed the BDNF protein (296+/-1.2 unit/ml). BDNF-transduced marrow cells were then transplanted into irradiated mice through the tail vein. Three months post-transplantation, significant increases in BDNF as well as glutamic acid decarboxylase (GAD(67)) mRNA were detected in the brains of BDNF transplanted mice compared to untransplanted animals, indicating biological activity of the BDNF transgene. Thus, bone marrow cells can be used as vehicles to deliver the BDNF gene into the brain with implications for the treatment of neurological diseases.

  14. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  15. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila.

    PubMed

    Becker, Henrike; Renner, Simone; Technau, Gerhard M; Berger, Christian

    2016-03-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  16. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila

    PubMed Central

    Becker, Henrike; Renner, Simone; Technau, Gerhard M.; Berger, Christian

    2016-01-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  17. Expression and localization of the Parkin co-regulated gene in mouse CNS suggests a role in ependymal cilia function.

    PubMed

    Wilson, Gabrielle R; Tan, Jacqueline T; Brody, Kate M; Taylor, Juliet M; Delatycki, Martin B; Lockhart, Paul J

    2009-08-21

    Parkin Co-Regulated Gene (PACRG) is a gene that shares a bi-directional promoter with the Parkinson's disease associated gene parkin. The functional role of PACRG is not well understood, although the gene has been associated with parkinsonian syndromes and more recently with eukaryotic cilia and flagella. We investigated the expression of Pacrg in the mouse brain by in situ hybridization and observed robust expression of Pacrg in the cells associated with the lateral, third and fourth ventricle, in addition to the aqueduct of Sylvius and choroid plexus. For all regions of Pacrg expression identified, strong expression was observed in the newborn period and this was maintained into adulthood. Immunohistochemical analysis showed that Pacrg was a component of the ependymal cells and cilia lining the ventricles. Based on our results and the previous association of PACRG homologues with cilia and flagella, we propose that Pacrg is a component of the ependymal cilia and may play an important role in motile cilia development and/or function in the CNS.

  18. Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution.

    PubMed

    Marlétaz, Ferdinand; Maeso, Ignacio; Faas, Laura; Isaacs, Harry V; Holland, Peter W H

    2015-08-01

    The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates.

  19. Expression and functional analysis of musashi-like genes in planarian CNS regeneration.

    PubMed

    Higuchi, Sayaka; Hayashi, Tetsutaro; Tarui, Hiroshi; Nishimura, Osamu; Nishimura, Kaneyasu; Shibata, Norito; Sakamoto, Hiroshi; Agata, Kiyokazu

    2008-07-01

    The remarkable regenerative ability of planarians is made possible by a system of pluripotent stem cells. Recent molecular biological and ultrastructural studies have revealed that planarian stem cells consist of heterogeneous populations, which can be classified into several subsets according to their differential expression of RNA binding protein genes. In this study, we focused on planarian musashi family genes. Musashi encodes an evolutionarily conserved RNA binding protein known to be expressed in neural lineage cells, including neural stem cells, in many animals. Here, we investigated whether planarian musashi-like genes can be used as markers for detecting neural fate-restricted cells. Three musashi family genes, DjmlgA, DjmlgB and DjmlgC (Dugesia japonica musashi-like gene A, B, C), and Djdmlg (Dugesia japonica DAZAP-like/musashi-like gene) were obtained by searching a planarian EST database and 5' RACE, and each was found to have two RNA recognition motifs. We analyzed the types of cells expressing DjmlgA, DjmlgB, DjmlgC and Djdmlg by in situ hybridization, RT-PCR and single-cell RT-PCR analysis. Although Djdmlg was expressed in X-ray-sensitive stem cells and various types of differentiated cells, expression of the other three musashi-like genes was restricted to neural cells, as we expected. Further detailed analyses yielded the unexpected finding that these three planarian musashi family genes were predominantly expressed in X-ray-resistant differentiated neurons, but not in X-ray-sensitive stem cells. RNAi experiments suggested that these planarian musashi family genes might be involved in neural cell differentiation after neural cell-fate commitment.

  20. Viral vectors for neurotrophic factor delivery: A gene therapy approach for neurodegenerative diseases of the CNS

    PubMed Central

    Lim, Seung; Airavaara, Mikko; Harvey, Brandon K.

    2009-01-01

    The clinical manifestation of most diseases of the central nervous system results from neuronal dysfunction or loss. Diseases such a stroke, epilepsy and neurodegeneration (e.g. Alzheimer’s disease and Parkinson’s disease) share common cellular and molecular mechanisms (e.g. oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction) that contribute to the loss of neuronal function. Neurotrophic factors (NTFs) are secreted proteins that regulate multiple aspects of neuronal development including neuronal maintenance, survival, axonal growth and synaptic plasticity. These properties of NTFs make them likely candidates for preventing neurodegeneration and promoting neuroregeneration. One approach to delivering NTFs to diseased neurons is through viral vector-mediated gene delivery. Viral vectors are now routinely used as tools for studying gene function as well as developing gene-based therapies for a variety of diseases. Currently, many clinical trials using viral vectors in the nervous system are underway or completed, and seven of these trials involve NTFs for neurodegeneration. In this review, we discuss viral vector-mediated gene transfer of NTFs to treat neurodegenerative diseases of the central nervous system. PMID:19840853

  1. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity.

    PubMed

    Bearoff, F; Del Rio, R; Case, L K; Dragon, J A; Nguyen-Vu, T; Lin, C-Y; Blankenhorn, E P; Teuscher, C; Krementsov, D N

    2016-12-01

    Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naive immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific and sex-specific. Bioinformatic analysis of the genetically controlled transcript networks reveals reduced cell type specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS (genome-wide association study candidate genes for MS susceptibility) genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared with PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T-cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease.

  2. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity

    PubMed Central

    Bearoff, Frank; del Rio, Roxana; Case, Laure K.; Dragon, Julie A.; Nguyen-Vu, Trang; Lin, Chin-Yo; Blankenhorn, Elizabeth P.; Teuscher, Cory; Krementsov, Dimitry N.

    2016-01-01

    Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases, such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naïve immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific, and sex-specific. Bioinformatic analysis of the genetically-controlled transcript networks reveals reduced cell type-specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared to PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease. PMID:27653816

  3. CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome)

    PubMed Central

    Motas, Sandra; Haurigot, Virginia; Garcia, Miguel; Marcó, Sara; Ribera, Albert; Roca, Carles; Sánchez, Víctor; Molas, Maria; Bertolin, Joan; Maggioni, Luca; León, Xavier; Ruberte, Jesús; Bosch, Fatima

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-Ids) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9-Ids-treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment. PMID:27699273

  4. Direct gene transfer in the Gottingen minipig CNS using stereotaxic lentiviral microinjections.

    PubMed

    Norgaard Glud, Andreas; Hedegaard, Claus; Nielsen, Mette Slot; Sørensen, Jens Christian; Bendixen, Christian; Jensen, Poul Henning; Larsen, Knud; Bjarkam, Carsten Reidies

    2010-01-01

    We aim to induce direct viral mediated gene transfer in the substantia nigra (SN) of the Gottingen minipig using MRI guided stereotaxic injections of lentiviral vectors encoding enhanced green fluorescent protein (EGFP). Nine female Gottingen minipigs were injected unilaterally into the SN with 6 per 2.5 microliters lentivirus capable of transducing cells and mediating expression of recombinant EGFP. The animals were euthanized after four (n=3) or twenty weeks (n=6). Fresh brain tissue from three animals was used for PCR. The remaining six brains were cryo- or paraffin-sectioned for fluorescence, Nissl-, and immunohistochemical EGFP visualization. EGFP was seen in nigral neurons, axons, glial cells, endothelial cells, and in nigral fibers targeting the striatum. PCR-based detection confirmed the presence of the transgene in SN, whereas all other examined brain areas were negative, indicating that the immunohistochemically detected EGFP in the striatum derived from transfected nigral cells.

  5. Vitamin B(12) synthesis and salvage pathways were acquired by horizontal gene transfer to the Thermotogales.

    PubMed

    Swithers, Kristen S; Petrus, Amanda K; Secinaro, Michael A; Nesbø, Camilla L; Gogarten, J Peter; Noll, Kenneth M; Butzin, Nicholas C

    2012-01-01

    The availability of genome sequences of Thermotogales species from across the order allows an examination of the evolutionary origins of phenotypic characteristics in this lineage. Several studies have shown that the Thermotogales have acquired large numbers of genes from distantly related lineages, particularly Firmicutes and Archaea. Here, we report the finding that some Thermotogales acquired the ability to synthesize vitamin B(12) by acquiring the requisite genes from these distant lineages. Thermosipho species, uniquely among the Thermotogales, contain genes that encode the means to synthesize vitamin B(12) de novo from glutamate. These genes are split into two gene clusters: the corrinoid synthesis gene cluster, that is unique to the Thermosipho and the cobinamide salvage gene cluster. The corrinoid synthesis cluster was acquired from the Firmicutes lineage, whereas the salvage pathway is an amalgam of bacteria- and archaea-derived proteins. The cobinamide salvage gene cluster has a patchy distribution among Thermotogales species, and ancestral state reconstruction suggests that this pathway was present in the common Thermotogales ancestor. We show that Thermosipho africanus can grow in the absence of vitamin B(12), so its de novo pathway is functional. We detected vitamin B(12) in the extracts of T. africanus cells to verify the synthetic pathway. Genes in T. africanus with apparent B(12) riboswitches were found to be down-regulated in the presence of vitamin B(12) consistent with their roles in B(12) synthesis and cobinamide salvage.

  6. Vitamin B12 Synthesis and Salvage Pathways Were Acquired by Horizontal Gene Transfer to the Thermotogales

    PubMed Central

    Swithers, Kristen S.; Petrus, Amanda K.; Secinaro, Michael A.; Nesbø, Camilla L.; Gogarten, J. Peter; Noll, Kenneth M.; Butzin, Nicholas C.

    2012-01-01

    The availability of genome sequences of Thermotogales species from across the order allows an examination of the evolutionary origins of phenotypic characteristics in this lineage. Several studies have shown that the Thermotogales have acquired large numbers of genes from distantly related lineages, particularly Firmicutes and Archaea. Here, we report the finding that some Thermotogales acquired the ability to synthesize vitamin B12 by acquiring the requisite genes from these distant lineages. Thermosipho species, uniquely among the Thermotogales, contain genes that encode the means to synthesize vitamin B12 de novo from glutamate. These genes are split into two gene clusters: the corrinoid synthesis gene cluster, that is unique to the Thermosipho and the cobinamide salvage gene cluster. The corrinoid synthesis cluster was acquired from the Firmicutes lineage, whereas the salvage pathway is an amalgam of bacteria- and archaea-derived proteins. The cobinamide salvage gene cluster has a patchy distribution among Thermotogales species, and ancestral state reconstruction suggests that this pathway was present in the common Thermotogales ancestor. We show that Thermosipho africanus can grow in the absence of vitamin B12, so its de novo pathway is functional. We detected vitamin B12 in the extracts of T. africanus cells to verify the synthetic pathway. Genes in T. africanus with apparent B12 riboswitches were found to be down-regulated in the presence of vitamin B12 consistent with their roles in B12 synthesis and cobinamide salvage. PMID:22798452

  7. Gene transfer to the CNS is efficacious in immune-primed mice harboring physiologically relevant titers of anti-AAV antibodies.

    PubMed

    Treleaven, Christopher M; Tamsett, Thomas J; Bu, Jie; Fidler, Jonathan A; Sardi, S Pablo; Hurlbut, Gregory D; Woodworth, Lisa A; Cheng, Seng H; Passini, Marco A; Shihabuddin, Lamya S; Dodge, James C

    2012-09-01

    Central nervous system (CNS)-directed gene therapy with recombinant adeno-associated virus (AAV) vectors has been used effectively to slow disease course in mouse models of several neurodegenerative diseases. However, these vectors were typically tested in mice without prior exposure to the virus, an immunological scenario unlikely to be duplicated in human patients. Here, we examined the impact of pre-existing immunity on AAV-mediated gene delivery to the CNS of normal and diseased mice. Antibody levels in brain tissue were determined to be 0.6% of the levels found in systemic circulation. As expected, transgene expression in brains of mice with relatively high serum antibody titers was reduced by 59-95%. However, transduction activity was unaffected in mice that harbored more clinically relevant antibody levels. Moreover, we also showed that markers of neuroinflammation (GFAP, Iba1, and CD3) and histopathology (hematoxylin and eosin (H&E)) were not enhanced in immune-primed mice (regardless of pre-existing antibody levels). Importantly, we also demonstrated in a mouse model of Niemann Pick Type A (NPA) disease that pre-existing immunity did not preclude either gene transfer to the CNS or alleviation of disease-associated neuropathology. These findings support the continued development of AAV-based therapies for the treatment of neurological disorders.

  8. Long-term replacement of a mutated nonfunctional CNS gene: reversal of hypothalamic diabetes insipidus using an EIAV-based lentiviral vector expressing arginine vasopressin.

    PubMed

    Bienemann, Alison S; Martin-Rendon, Enca; Cosgrave, Anna S; Glover, Colin P J; Wong, Liang-Fong; Kingsman, Susan M; Mitrophanous, Kyriacos A; Mazarakis, Nicholas D; Uney, James B

    2003-05-01

    Due to the complexity of brain function and the difficulty in monitoring alterations in neuronal gene expression, the potential of lentiviral gene therapy vectors to treat disorders of the CNS has been difficult to fully assess. In this study, we have assessed the utility of a third-generation equine infectious anemia virus (EIAV) in the Brattleboro rat model of diabetes insipidus, in which a mutation in the arginine vasopressin (AVP) gene results in the production of nonfunctional mutant AVP precursor protein. Importantly, by using this model it is possible to monitor the success of the gene therapy treatment by noninvasive assays. Injection of an EIAV-CMV-AVP vector into the supraoptic nuclei of the hypothalamus resulted in expression of functional AVP peptide in magnocellular neurons. This was accompanied by a 100% recovery in water homeostasis as assessed by daily water intake, urine production, and urine osmolality lasting for a 1-year measurement period. These data show that a single gene defect leading to a neurological disorder can be corrected with a lentiviral-based strategy. This study highlights the potential of using viral gene therapy for the long-term treatment of disorders of the CNS.

  9. Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expressing arginine vasopressin.

    PubMed

    Geddes, B J; Harding, T C; Lightman, S L; Uney, J B

    1997-12-01

    The ability of adenovirus (Ad) to transfect most cell types efficiently has already resulted in human gene therapy trials involving the systemic administration of adenoviral constructs. However, because of the complexity of brain function and the difficulty in noninvasively monitoring alterations in neuronal gene expression, the potential of Ad gene therapy strategies for treating disorders of the CNS has been difficult to assess. In the present study, we have used an Ad encoding the arginine vasopressin cDNA (AdAVP) in an AVP-deficient animal model of diabetes insipidus (the Brattleboro rat), which allowed us to monitor chronically the success of the gene therapy treatment by noninvasive assays. Injection of AdAVP into the supraoptic nuclei (SON) of the hypothalamus resulted in expression of AVP in magnocellular neurons. This was accompanied by reduced daily water intake and urine volume, as well as increased urine osmolality lasting 4 months. These data show that a single gene defect leading to a neurological disorder can be corrected with an adenovirus-based strategy. This study highlights the potential of using Ad gene therapy for the long-term treatment of disorders of the CNS.

  10. Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3 gene.

    PubMed

    Sondhi, Dolan; Scott, Emma C; Chen, Alvin; Hackett, Neil R; Wong, Andrew M S; Kubiak, Agnieszka; Nelvagal, Hemanth R; Pearse, Yewande; Cotman, Susan L; Cooper, Jonathan D; Crystal, Ronald G

    2014-03-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL or CLN3 disease) is an autosomal recessive lysosomal storage disease resulting from mutations in the CLN3 gene that encodes a lysosomal membrane protein. The disease primarily affects the brain with widespread intralysosomal accumulation of autofluorescent material and fibrillary gliosis, as well as the loss of specific neuronal populations. As an experimental treatment for the CNS manifestations of JNCL, we have developed a serotype rh.10 adeno-associated virus vector expressing the human CLN3 cDNA (AAVrh.10hCLN3). We hypothesized that administration of AAVrh.10hCLN3 to the Cln3(Δex7/8) knock-in mouse model of JNCL would reverse the lysosomal storage defect, as well as have a therapeutic effect on gliosis and neuron loss. Newborn Cln3(Δex7/8) mice were administered 3 × 10(10) genome copies of AAVrh.10hCLN3 to the brain, with control groups including untreated Cln3(Δex7/8) mice and wild-type littermate mice. After 18 months, CLN3 transgene expression was detected in various locations throughout the brain, particularly in the hippocampus and deep anterior cortical regions. Changes in the CNS neuronal lysosomal accumulation of storage material were assessed by immunodetection of subunit C of ATP synthase, luxol fast blue staining, and periodic acid-Schiff staining. For all parameters, Cln3(Δex7/8) mice exhibited abnormal lysosomal accumulation, but AAVrh.10hCLN3 administration resulted in significant reductions in storage material burden. There was also a significant decrease in gliosis in AAVrh.10hCLN3-treated Cln3(Δex7/8) mice, and a trend toward improved neuron counts, compared with their untreated counterparts. These data demonstrate that AAVrh.10 delivery of a wild-type cDNA to the CNS is not harmful and instead provides a partial correction of the neurological lysosomal storage defect of a disease caused by a lysosomal membrane protein, indicating that this may be an effective therapeutic strategy for JNCL and

  11. A recently transferred cluster of bacterial genes in Trichomonas vaginalis - lateral gene transfer and the fate of acquired genes

    PubMed Central

    2014-01-01

    Background Lateral Gene Transfer (LGT) has recently gained recognition as an important contributor to some eukaryote proteomes, but the mechanisms of acquisition and fixation in eukaryotic genomes are still uncertain. A previously defined norm for LGTs in microbial eukaryotes states that the majority are genes involved in metabolism, the LGTs are typically localized one by one, surrounded by vertically inherited genes on the chromosome, and phylogenetics shows that a broad collection of bacterial lineages have contributed to the transferome. Results A unique 34 kbp long fragment with 27 clustered genes (TvLF) of prokaryote origin was identified in the sequenced genome of the protozoan parasite Trichomonas vaginalis. Using a PCR based approach we confirmed the presence of the orthologous fragment in four additional T. vaginalis strains. Detailed sequence analyses unambiguously suggest that TvLF is the result of one single, recent LGT event. The proposed donor is a close relative to the firmicute bacterium Peptoniphilus harei. High nucleotide sequence similarity between T. vaginalis strains, as well as to P. harei, and the absence of homologs in other Trichomonas species, suggests that the transfer event took place after the radiation of the genus Trichomonas. Some genes have undergone pseudogenization and degradation, indicating that they may not be retained in the future. Functional annotations reveal that genes involved in informational processes are particularly prone to degradation. Conclusions We conclude that, although the majority of eukaryote LGTs are single gene occurrences, they may be acquired in clusters of several genes that are subsequently cleansed of evolutionarily less advantageous genes. PMID:24898731

  12. CNS Tumors in Neurofibromatosis.

    PubMed

    Campian, Jian; Gutmann, David H

    2017-07-20

    Neurofibromatosis (NF) encompasses a group of distinct genetic disorders in which affected children and adults are prone to the development of benign and malignant tumors of the nervous system. The purpose of this review is to discuss the spectrum of CNS tumors arising in individuals with NF type 1 (NF1) and NF type 2 (NF2), their pathogenic etiologies, and the rational treatment options for people with these neoplasms. This article is a review of preclinical and clinical data focused on the treatment of the most common CNS tumors encountered in children and adults with NF1 and NF2. Although children with NF1 are at risk for developing low-grade gliomas of the optic pathway and brainstem, individuals with NF2 typically manifest low-grade tumors affecting the cranial nerves (vestibular schwannomas), meninges (meningiomas), and spinal cord (ependymomas). With the identification of the NF1 and NF2 genes, molecularly targeted therapies are beginning to emerge, as a result of a deeper understanding of the mechanisms underlying NF1 and NF2 protein function. As we enter into an era of precision oncology, a more comprehensive awareness of the factors that increase the risk of developing CNS cancers in affected individuals, coupled with a greater appreciation of the cellular and molecular determinants that maintain tumor growth, will undoubtedly yield more effective therapies for these cancer predisposition syndromes.

  13. Found and Lost: The Fates of Horizontally Acquired Genes in Arthropod-Symbiotic Spiroplasma

    PubMed Central

    Lo, Wen-Sui; Gasparich, Gail E.; Kuo, Chih-Horng

    2015-01-01

    Horizontal gene transfer (HGT) is an important mechanism that contributed to biological diversity, particularly in bacteria. Through acquisition of novel genes, the recipient cell may change its ecological preference and the process could promote speciation. In this study, we determined the complete genome sequence of two Spiroplasma species for comparative analyses and inferred the putative gene gains and losses. Although most Spiroplasma species are symbionts of terrestrial insects, Spiroplasma eriocheiris has evolved to be a lethal pathogen of freshwater crustaceans. We found that approximately 7% of the genes in this genome may have originated from HGT and these genes expanded the metabolic capacity of this organism. Through comparison with the closely related Spiroplasma atrichopogonis, as well as other more divergent lineages, our results indicated that these HGT events could be traced back to the most recent common ancestor of these two species. However, most of these horizontally acquired genes have been pseudogenized in S. atrichopogonis, suggesting that they did not contribute to the fitness of this lineage that maintained the association with terrestrial insects. Thus, accumulation of small deletions that disrupted these foreign genes was not countered by natural selection. On the other hand, the long-term survival of these horizontally acquired genes in the S. eriocheiris genome hinted that they might play a role in the ecological shift of this species. Finally, the implications of these findings and the conflicts among gene content, 16S rRNA gene sequencing, and serological typing, are discussed in light of defining bacterial species. PMID:26254485

  14. Genome Sequence of an Acinetobacter baumannii Strain Carrying Three Acquired Carbapenemase Genes

    PubMed Central

    Oinuma, Ken-Ichi; Suzuki, Masato; Sato, Kanako; Nakaie, Kiyotaka; Niki, Makoto; Takizawa, Etsuko; Niki, Mamiko; Shibayama, Keigo; Yamada, Koichi; Kakeya, Hiroshi

    2016-01-01

    The emergence of multiple-carbapenemase-producing Acinetobacter strains has been a serious concern during the past decade. Here, we report the draft genome sequence of an Acinetobacter baumannii strain isolated from a Japanese patient with three acquired carbapenemase genes: blaNDM-1, blaTMB-1, and blaOXA-58. PMID:27856588

  15. STARs in the CNS.

    PubMed

    Ehrmann, Ingrid; Fort, Philippe; Elliott, David J

    2016-08-15

    STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system). © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Cell-type-specific Jumonji histone demethylase gene expression in the healthy rat CNS: detection by a novel flow cytometry method.

    PubMed

    Smith, Stephanie M C; Kimyon, Rebecca S; Watters, Jyoti J

    2014-05-27

    Our understanding of how histone demethylation contributes to the regulation of basal gene expression in the brain is largely unknown in any injury model, and especially in the healthy adult brain. Although Jumonji genes are often regulated transcriptionally, cell-specific gene expression of Jumonji histone demethylases in the brain remains poorly understood. Thus, in the present study we profiled the mRNA levels of 26 Jumonji genes in microglia (CD11b+), neurons (NeuN+) and astrocytes (GFAP+) from the healthy adult rat brain. We optimized a method combining a mZBF (modified zinc-based fixative) and FCM (flow cytometry) to simultaneously sort cells from non-transgenic animals. We evaluated cell-surface, intracellular and nuclear proteins, including histones, as well as messenger- and micro-RNAs in different cell types simultaneously from a single-sorted sample. We found that 12 Jumonji genes were differentially expressed between adult microglia, neurons and astrocytes. While JMJD2D was neuron-restricted, PHF8 and JMJD1C were expressed in all three cell types although the expression was highest in neurons. JMJD3 and JMJD5 were expressed in all cell types, but were highly enriched in microglia; astrocytes had the lowest expression of UTX and JHDM1D. Levels of global H3K27 (H3 lysine 27) methylation varied among cell types and appeared to be lowest in microglia, indicating that differences in basal gene expression of specific Jumonji histone demethylases may contribute to cell-specific gene expression in the CNS (central nervous system). This multiparametric technique will be valuable for simultaneously assaying chromatin modifications and gene regulation in the adult CNS.

  17. A functional difference between native and horizontally acquired genes in bdelloid rotifers.

    PubMed

    Barbosa, Elton G G; Crisp, Alastair; Broadbent, Sarah E; Carrillo, Martina; Boschetti, Chiara; Tunnacliffe, Alan

    2016-09-15

    The form of RNA processing known as SL trans-splicing involves the transfer of a short conserved sequence, the spliced leader (SL), from a noncoding SL RNA to the 5' ends of mRNA molecules. SL trans-splicing occurs in several animal taxa, including bdelloid rotifers (Rotifera, Bdelloidea). One striking feature of these aquatic microinvertebrates is the large proportion of foreign genes, i.e. those acquired by horizontal gene transfer from other organisms, in their genomes. However, whether such foreign genes behave similarly to native genes has not been tested in bdelloids or any other animal. We therefore used a combination of experimental and computational methods to examine whether transcripts of foreign genes in bdelloids were SL trans-spliced, like their native counterparts. We found that many foreign transcripts contain SLs, use similar splice acceptor sequences to native genes, and are able to undergo alternative trans-splicing. However, a significantly lower proportion of foreign mRNAs contains SL sequences than native transcripts. This demonstrates a novel functional difference between foreign and native genes in bdelloids and suggests that SL trans-splicing is not essential for the expression of foreign genes, but is acquired during their domestication.

  18. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation.

    PubMed

    Goldmann, Tobias; Wieghofer, Peter; Müller, Philippe F; Wolf, Yochai; Varol, Diana; Yona, Simon; Brendecke, Stefanie M; Kierdorf, Katrin; Staszewski, Ori; Datta, Moumita; Luedde, Tom; Heikenwalder, Mathias; Jung, Steffen; Prinz, Marco

    2013-11-01

    Microglia are brain macrophages and, as such, key immune-competent cells that can respond to environmental changes. Understanding the mechanisms of microglia-specific responses during pathologies is hence vital for reducing disease burden. The definition of microglial functions has so far been hampered by the lack of genetic in vivo approaches that allow discrimination of microglia from closely related peripheral macrophage populations in the body. Here we introduce a mouse experimental system that specifically targets microglia to examine the role of a mitogen-associated protein kinase kinase kinase (MAP3K), transforming growth factor (TGF)-β-activated kinase 1 (TAK1), during autoimmune inflammation. Conditional depletion of TAK1 in microglia only, not in neuroectodermal cells, suppressed disease, significantly reduced CNS inflammation and diminished axonal and myelin damage by cell-autonomous inhibition of the NF-κB, JNK and ERK1/2 pathways. Thus, we found TAK1 to be pivotal in CNS autoimmunity, and we present a tool for future investigations of microglial function in the CNS.

  19. Natural replacement of vertically inherited lux-rib genes of Photobacterium aquimaris by horizontally acquired homologues.

    PubMed

    Urbanczyk, Henryk; Furukawa, Takashi; Yamamoto, Yuki; Dunlap, Paul V

    2012-08-01

    We report here the first instance of a complete replacement of vertically inherited luminescence genes by horizontally acquired homologues. Different strains of Photobacterium aquimaris contain homologues of the lux-rib genes that have a different evolutionary history. Strain BS1 from the Black Sea contains a vertically inherited lux-rib operon, which presumably arose in the ancestor of this species, whereas the type strain NBRC 104633(T) , from Sagami Bay, lacks the vertically inherited lux-rib operon and instead carries a complete and functional lux-rib operon acquired horizontally from a bacterium related to Photobacterium mandapamensis. The results indicate that the horizontal acquisition of the lux genes expanded the pan-genome of P. aquimaris, but it did not influence the phylogenetic divergence of this species.

  20. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range

    PubMed Central

    Tatineni, Satyanarayana; Robertson, Cecile J.; Garnsey, Stephen M.; Dawson, William O.

    2011-01-01

    Viruses have evolved as combinations of genes whose products interact with cellular components to produce progeny virus throughout the plants. Some viral genes, particularly those that are involved in replication and assembly, tend to be relatively conserved, whereas other genes that have evolved for interactions with the specific host for movement and to counter host–defense systems tend to be less conserved. Closteroviridae encode 1–5 nonconserved ORFs. Citrus tristeza virus (CTV), a Closterovirus, possesses nonconserved p33, p18, and p13 genes that are expendable for systemic infection of the two laboratory hosts, Citrus macrophylla and Mexican lime. In this study, we show that the extended host range of CTV requires these nonconserved genes. The p33 gene was required to systemically infect sour orange and lemon trees, whereas either the p33 or the p18 gene was sufficient for systemic infection of grapefruit trees and the p33 or the p13 gene was sufficient for systemic infection of calamondin plants. Thus, these three genes are required for systemic infection of the full host range of CTV, but different genes were specific for different hosts. Remarkably, either of two genes was sufficient for infection of some citrus hybrids. These findings suggest that CTV acquired multiple nonconserved genes (p33, p18, and p13) and, as a result, gained the ability to interact with multiple hosts, thus extending its host range during the course of evolution. These results greatly extend the complexity of known virus–plant interactions. PMID:21987809

  1. More signs of neurotoxicity of surfactants and flame retardants - Neonatal PFOS and PBDE 99 cause transcriptional alterations in cholinergic genes in the mouse CNS.

    PubMed

    Hallgren, Stefan; Fredriksson, Anders; Viberg, Henrik

    2015-09-01

    Maternally and lactionally transferred persistent organic pollutants may interfere with CNS development. Here, 10-day-old male mice were exposed to single oral doses of PFOS (perflourooctanosulphonate) or PBDE 99 (2,2',4,4',5-penta-bromodiphenyl ether), and examined for changes in cholinergic gene transcription in the CNS 24h and 7 weeks later. 24h after exposure qPCR analyses revealed decreased transcription of nAChR-β2 and AChE in cortex, and increased mAChR-5 in hippocampus of PFOS treated mice. Neonatal PFOS treatment altered spontaneous behaviour at 2 months of age but did not affect gene transcription in adults. At 2 months of age neonatally PBDE 99 treated mice had altered spontaneous behaviour, and cortical transcription of AChE, nAChR-α4, nAChR-β2 and mAChR-5 were elevated. Our results indicate that PFOS and PBDE 99 affects the developing central cholinergic system by altering gene transcription in cortex and hippocampus, which may in part account for mechanisms causing changes in spontaneous behaviour.

  2. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy.

    PubMed

    Meneghini, Vasco; Lattanzi, Annalisa; Tiradani, Luigi; Bravo, Gabriele; Morena, Francesco; Sanvito, Francesca; Calabria, Andrea; Bringas, John; Fisher-Perkins, Jeanne M; Dufour, Jason P; Baker, Kate C; Doglioni, Claudio; Montini, Eugenio; Bunnell, Bruce A; Bankiewicz, Krystof; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2016-05-01

    Metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD or Krabbe disease) are severe neurodegenerative lysosomal storage diseases (LSD) caused by arylsulfatase A (ARSA) and galactosylceramidase (GALC) deficiency, respectively. Our previous studies established lentiviral gene therapy (GT) as a rapid and effective intervention to provide pervasive supply of therapeutic lysosomal enzymes in CNS tissues of MLD and GLD mice. Here, we investigated whether this strategy is similarly effective in juvenile non-human primates (NHP). To provide proof of principle for tolerability and biological efficacy of the strategy, we established a comprehensive study in normal NHP delivering a clinically relevant lentiviral vector encoding for the human ARSA transgene. Then, we injected a lentiviral vector coding for the human GALC transgene in Krabbe-affected rhesus macaques, evaluating for the first time the therapeutic potential of lentiviral GT in this unique LSD model. We showed favorable safety profile and consistent pattern of LV transduction and enzyme biodistribution in the two models, supporting the robustness of the proposed GT platform. We documented moderate inflammation at the injection sites, mild immune response to vector particles in few treated animals, no indication of immune response against transgenic products, and no molecular evidence of insertional genotoxicity. Efficient gene transfer in neurons, astrocytes, and oligodendrocytes close to the injection sites resulted in robust production and extensive spreading of transgenic enzymes in the whole CNS and in CSF, leading to supraphysiological ARSA activity in normal NHP and close to physiological GALC activity in the Krabbe NHP, in which biological efficacy was associated with preliminary indication of therapeutic benefit. These results support the rationale for the clinical translation of intracerebral lentiviral GT to address CNS pathology in MLD, GLD, and other neurodegenerative LSD. © 2016

  3. Hsp27 gene in Drosophila ananassae subgroup was split by a recently acquired intron.

    PubMed

    Zhang, Li; Kang, Han; Jin, Shan; Zeng, Qing Tao; Yang, Yong

    2016-06-01

    In Drosophila, heat shock protein 27 (Hsp27) is a critical single-copy intron-free nuclear gene involved in the defense response against fungi and bacteria, and is a regulator of adult lifespan. In the present study, 33 homologous Hsp27 nucleotide sequences from different Drosophila species were amplified by PCR and reverse transcription PCR, and the phylogenetic relationships were analysed using neighbour-joining, maximum-likelihood and Bayesian methods. The phylogenetic topologies from analysis with different algorithms were similar, suggesting that the Hsp27 gene was split by a recently acquired intron during the evolution of the Drosophila ananassae subgroup.

  4. Nanomedicines for the Treatment of CNS Diseases.

    PubMed

    Reynolds, Jessica L; Mahato, Ram I

    2017-03-01

    Targeting and delivering macromolecular therapeutics to the central nervous system (CNS) has been a major challenge. The blood-brain barrier (BBB) is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Therefore, much effort has been channelled into improving transport of therapeutics across the BBB and into the CNS including the use of nanoparticles. In this thematic issue, several reviews and original research are presented that address "Nanomedicines for CNS Diseases." The articles in this issue are concentrated on either CNS-HIV disease or CNS tumors. In regards to CNS-HIV disease, there are two reviews that discuss the role of nanoparticles for improving the delivery of HIV therapeutics to the CNS. In addition, there are two original articles focusing on therapies for CNS-HIV, one of them uses nanoparticles for delivery of siRNA specific to a key protein in autophagy to microglia, and another discusses nanoparticle delivery of a soluble mediator to suppress neuroinflammation. Furthermore, a comprehensive review about gene therapy for CNS neurological diseases is also included. Finally, this issue also includes review articles on enhanced drug targeting to CNS tumors. These articles include a review on the use of nanoparticles for CNS tumors, a review on functionalization (ligands) of nanoparticles for drug targeting to the brain tumor by overcoming BBB, and the final review discusses the use of macrophages as a delivery vehicle to CNS tumors. This thematic issue provides a wealth of knowledge on using nanomedicines for CNS diseases.

  5. Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase.

    PubMed

    Lamberte, Lisa E; Baniulyte, Gabriele; Singh, Shivani S; Stringer, Anne M; Bonocora, Richard P; Stracy, Mathew; Kapanidis, Achillefs N; Wade, Joseph T; Grainger, David C

    2017-01-09

    Horizontal gene transfer permits rapid dissemination of genetic elements between individuals in bacterial populations. Transmitted DNA sequences may encode favourable traits. However, if the acquired DNA has an atypical base composition, it can reduce host fitness. Consequently, bacteria have evolved strategies to minimize the harmful effects of foreign genes. Most notably, xenogeneic silencing proteins bind incoming DNA that has a higher AT content than the host genome. An enduring question has been why such sequences are deleterious. Here, we showed that the toxicity of AT-rich DNA in Escherichia coli frequently results from constitutive transcription initiation within the coding regions of genes. Left unchecked, this causes titration of RNA polymerase and a global downshift in host gene expression. Accordingly, a mutation in RNA polymerase that diminished the impact of AT-rich DNA on host fitness reduced transcription from constitutive, but not activator-dependent, promoters.

  6. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells

    PubMed Central

    Haaber, Jakob; Leisner, Jørgen J.; Cohn, Marianne T.; Catalan-Moreno, Arancha; Nielsen, Jesper B.; Westh, Henrik; Penadés, José R.; Ingmer, Hanne

    2016-01-01

    Prophages are quiescent viruses located in the chromosomes of bacteria. In the human pathogen, Staphylococcus aureus, prophages are omnipresent and are believed to be responsible for the spread of some antibiotic resistance genes. Here we demonstrate that release of phages from a subpopulation of S. aureus cells enables the intact, prophage-containing population to acquire beneficial genes from competing, phage-susceptible strains present in the same environment. Phage infection kills competitor cells and bits of their DNA are occasionally captured in viral transducing particles. Return of such particles to the prophage-containing population can drive the transfer of genes encoding potentially useful traits such as antibiotic resistance. This process, which can be viewed as ‘auto-transduction', allows S. aureus to efficiently acquire antibiotic resistance both in vitro and in an in vivo virulence model (wax moth larvae) and enables it to proliferate under strong antibiotic selection pressure. Our results may help to explain the rapid exchange of antibiotic resistance genes observed in S. aureus. PMID:27819286

  7. Annotated embryonic CNS expression patterns of 5000 GMR GAL4 lines: a resource for manipulating gene expression and analyzing cis-regulatory modules

    PubMed Central

    Manning, Laurina; Heckscher, Ellie S.; Purice, Maria D.; Roberts, Jourdain; Bennett, Alysha L.; Kroll, Jason R.; Pollard, Jill L.; Strader, Marie E.; Lupton, Josh R.; Dyukareva, Anna V.; Doan, Phuong Nam; Bauer, David M.; Wilbur, Allison N.; Tanner, Stephanie; Kelly, Jimmy J.; Lai, Sen-Lin; Tran, Khoa D.; Kohwi, Minoree; Laverty, Todd R.; Pearson, Joseph C.; Crews, Stephen T.; Rubin, Gerald M.; Doe, Chris Q.

    2012-01-01

    Here we describe the embryonic CNS expression of 5,000 GAL4 lines made using molecularly defined cis-regulatory DNA inserted into a single attP genomic location. We document and annotate the patterns in early embryos when neurogenesis is at its peak, and in older embryos where there is maximal neuronal diversity and the first neural circuits are established. We note expression in other tissues such as the lateral body wall (muscle, sensory neurons, trachea) and viscera. Companion papers report on the adult brain and larval imaginal discs, and the integrated datasets are available online (www.janelia.org/flylight/gal4-gen1). This collection of embryonically-expressed GAL4 lines will be valuable for determining neuronal morphology and function; the 1862 lines expressed in small subsets of neurons (<20/segment) will be especially valuable for characterizing interneuronal diversity and function, as interneurons comprise the majority of all CNS neurons, yet their gene expression profile and function remain virtually unexplored. PMID:23063363

  8. Global CNS Gene Delivery and Evasion of Anti-AAV Neutralizing Antibodies by Intrathecal AAV Administration in Non-Human Primates

    PubMed Central

    Gray, Steven J.; Kalburgi, Sahana Nagabhushan; McCown, Thomas J.; Samulski, R. Jude

    2012-01-01

    Injection of AAV into the cerebrospinal fluid (CSF) offers a means to achieve widespread transgene delivery to the central nervous system, where the doses can be readily translated from small to large animals. In contrast to studies with other serotypes (AAV2, AAV4, AAV5) in rodents, we report that a naturally-occurring capsid (AAV9) and rationally-engineered capsid (AAV2.5) are able to achieve broad transduction throughout the brain and spinal cord parenchyma following a single injection into the CSF (via cisterna magna or lumbar cistern) in non-human primates (NHP). Using either vector at a dose of ~2×1012 vg per 3-6 kg animal, approximately 2% of the entire brain and spinal cord was transduced, covering all regions of the CNS. AAV9 in particular displayed efficient transduction of spinal cord motor neurons. The peripheral organ biodistribution was highly reduced compared to intravascular delivery, and the presence of circulating anti-AAV neutralizing antibodies up to a 1:128 titer had no inhibitory effect on CNS gene transfer. Intra-CSF delivery effectively translates from rodents to NHPs, which provides encouragement for the use of this approach in humans to treat motor neuron and lysosomal storage diseases. PMID:23303281

  9. Efficient CNS targeting in adult mice by intrathecal infusion of single-stranded AAV9-GFP for gene therapy of neurological disorders.

    PubMed

    Bey, K; Ciron, C; Dubreil, L; Deniaud, J; Ledevin, M; Cristini, J; Blouin, V; Aubourg, P; Colle, M-A

    2017-05-01

    Adeno-associated virus (AAV) gene therapy constitutes a powerful tool for the treatment of neurodegenerative diseases. While AAVs are generally administered systemically to newborns in preclinical studies of neurological disorders, in adults the maturity of the blood-brain barrier (BBB) must be considered when selecting the route of administration. Delivery of AAVs into the cerebrospinal fluid (CSF) represents an attractive approach to target the central nervous system (CNS) and bypass the BBB. In this study, we investigated the efficacy of intra-CSF delivery of a single-stranded (ss) AAV9-CAG-GFP vector in adult mice via intracisternal (iCist) or intralumbar (it-Lumb) administration. It-Lumb ssAAV9 delivery resulted in greater diffusion throughout the entire spinal cord and green fluorescent protein (GFP) expression mainly in the cerebellum, cortex and olfactory bulb. By contrast, iCist delivery led to strong GFP expression throughout the entire brain. Comparison of the transduction efficiency of ssAAV9-CAG-GFP versus ssAAV9-SYN1-GFP following it-Lumb administration revealed widespread and specific GFP expression in neurons and motoneurons of the spinal cord and brain when the neuron-specific synapsin 1 (SYN1) promoter was used. Our findings demonstrate that it-Lumb ssAAV9 delivery is a safe and highly efficient means of targeting the CNS in adult mice.

  10. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications.

    PubMed

    Salnikova, Lyubov E; Smelaya, Tamara V; Golubev, Arkadiy M; Rubanovich, Alexander V; Moroz, Viktor V

    2013-11-01

    This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.

  11. Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

    PubMed

    Weber, Marlen; Apostolova, Galina; Widera, Darius; Mittelbronn, Michel; Dechant, Georg; Kaltschmidt, Barbara; Rohrer, Hermann

    2015-02-01

    Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage.

  12. Homeotic function of Drosophila Bithorax-complex miRNAs mediates fertility by restricting multiple Hox genes and TALE cofactors in the CNS.

    PubMed

    Garaulet, Daniel L; Castellanos, Monica C; Bejarano, Fernando; Sanfilippo, Piero; Tyler, David M; Allan, Douglas W; Sánchez-Herrero, Ernesto; Lai, Eric C

    2014-06-23

    The Drosophila Bithorax complex (BX-C) Hox cluster contains a bidirectionally transcribed miRNA locus, and a deletion mutant (Δmir) lays no eggs and is completely sterile. We show these miRNAs are expressed and active in distinct spatial registers along the anterior-posterior axis in the CNS. Δmir larvae derepress a network of direct homeobox gene targets in the posterior ventral nerve cord (VNC), including BX-C genes and their TALE cofactors. These are phenotypically critical targets, because sterility of Δmir mutants was substantially rescued by heterozygosity of these genes. The posterior VNC contains Ilp7+ oviduct motoneurons, whose innervation and morphology are defective in Δmir females, and substantially rescued by heterozygosity of Δmir targets, especially within the BX-C. Collectively, we reveal (1) critical roles for Hox miRNAs that determine segment-specific expression of homeotic genes, which are not masked by transcriptional regulation; and (2) that BX-C miRNAs are essential for neural patterning and reproductive behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector

    PubMed Central

    Murlidharan, Giridhar; Sakamoto, Kensuke; Rao, Lavanya; Corriher, Travis; Wang, Dan; Gao, Guangping; Sullivan, Patrick; Asokan, Aravind

    2016-01-01

    Gene therapy using recombinant adeno-associated viral (AAV) vectors is emerging as a promising approach to treat central nervous system disorders such as Spinal muscular atrophy, Batten, Parkinson and Alzheimer disease amongst others. A critical remaining challenge for central nervous system-targeted gene therapy, silencing or gene editing is to limit potential vector dose-related toxicity in off-target cells and organs. Here, we characterize a lab-derived AAV chimeric (AAV2g9), which displays favorable central nervous system attributes derived from both parental counterparts, AAV2 and AAV9. This synthetic AAV strain displays preferential, robust, and widespread neuronal transduction within the brain and decreased glial tropism. Importantly, we observed minimal systemic leakage, decreased sequestration and gene transfer in off-target organs with AAV2g9, when administered into the cerebrospinal fluid. A single intracranial injection of AAV2g9 vectors encoding guide RNAs targeting the schizophrenia risk gene MIR137 (encoding MIR137) in CRISPR/Cas9 knockin mice resulted in brain-specific gene deletion with no detectable events in the liver. This engineered AAV vector is a promising platform for treating neurological disorders through gene therapy, silencing or editing modalities. PMID:27434683

  14. Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution.

    PubMed

    Llorente, Briardo; de Souza, Flavio S J; Soto, Gabriela; Meyer, Cristian; Alonso, Guillermo D; Flawiá, Mirtha M; Bravo-Almonacid, Fernando; Ayub, Nicolás D; Rodríguez-Concepción, Manuel

    2016-01-11

    The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.

  15. Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution

    PubMed Central

    Llorente, Briardo; de Souza, Flavio S. J.; Soto, Gabriela; Meyer, Cristian; Alonso, Guillermo D.; Flawiá, Mirtha M.; Bravo-Almonacid, Fernando; Ayub, Nicolás D.; Rodríguez-Concepción, Manuel

    2016-01-01

    The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution. PMID:26750147

  16. Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution

    NASA Astrophysics Data System (ADS)

    Llorente, Briardo; de Souza, Flavio S. J.; Soto, Gabriela; Meyer, Cristian; Alonso, Guillermo D.; Flawiá, Mirtha M.; Bravo-Almonacid, Fernando; Ayub, Nicolás D.; Rodríguez-Concepción, Manuel

    2016-01-01

    The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.

  17. Gene expression profiling of mononuclear cells from patients with sepsis secondary to community-acquired pneumonia.

    PubMed

    Severino, Patricia; Silva, Eliezer; Baggio-Zappia, Giovana Lotici; Brunialti, Milena Karina Colo; Nucci, Laura Alejandra; Junior, Otelo Rigato; da Silva, Ismael Dale Cotrim Guerreiro; Machado, Flavia Ribeiro; Salomao, Reinaldo

    2014-12-01

    Mechanisms governing the inflammatory response during sepsis involve crosstalk between diverse signaling pathways, but current knowledge provides an incomplete picture of the syndrome. Microarray-based expression profiling is a powerful approach for the investigation of complex clinical conditions such as sepsis. In this study, we investigated whole-genome expression profiles in mononuclear cells from septic patients admitted in intensive care units with community-acquired pneumonia. Blood samples were collected at the time of sepsis diagnosis and seven days later since we aimed to evaluate the role of biological processes or genes possibly involved in patient recovery. Here we provide a detailed description of the study design, including clinical information, experimental methods and procedures regarding data analysis. Metadata corresponding to microarray results deposited in the database Gene Expression Omnibus (GEO) under the accession number GSE48080 are also described in this report. Our dataset allows the identification of genes possibly associated with host defense to infection as well as gene expression patterns associated with patient outcome.

  18. Systemic acquired resistance delays race shifts to major resistance genes in bell pepper.

    PubMed

    Romero, A M; Ritchie, D F

    2004-12-01

    ABSTRACT The lack of durability of host plant disease resistance is a major problem in disease control. Genotype-specific resistance that involves major resistance (R) genes is especially prone to failure. The compatible (i.e., disease) host-pathogen interaction with systemic acquired resistance (SAR) has been studied extensively, but the incompatible (i.e., resistant) interaction less so. Using the pepper-bacterial spot (causal agent, Xanthomonas axonopodis pv. vesicatoria) pathosystem, we examined the effect of SAR in reducing the occurrence of race-change mutants that defeat R genes in laboratory, greenhouse, and field experiments. Pepper plants carrying one or more R genes were sprayed with the plant defense activator acibenzolar-S-methyl (ASM) and challenged with incompatible strains of the pathogen. In the greenhouse, disease lesions first were observed 3 weeks after inoculation. ASM-treated plants carrying a major R gene had significantly fewer lesions caused by both the incompatible (i.e., hypersensitive) and compatible (i.e., disease) responses than occurred on nonsprayed plants. Bacteria isolated from the disease lesions were confirmed to be race-change mutants. In field experiments, there was a delay in the detection of race-change mutants and a reduction in disease severity. Decreased disease severity was associated with a reduction in the number of race-change mutants and the suppression of disease caused by the race-change mutants. This suggests a possible mechanism related to a decrease in the pathogen population size, which subsequently reduces the number of race-change mutants for the selection pressure of R genes. Thus, inducers of SAR are potentially useful for increasing the durability of genotype-specific resistance conferred by major R genes.

  19. Cooperativity of imprinted genes inactivated by acquired chromosome 20q deletions

    PubMed Central

    Aziz, Athar; Baxter, E. Joanna; Edwards, Carol; Cheong, Clara Yujing; Ito, Mitsuteru; Bench, Anthony; Kelley, Rebecca; Silber, Yvonne; Beer, Philip A.; Chng, Keefe; Renfree, Marilyn B.; McEwen, Kirsten; Gray, Dionne; Nangalia, Jyoti; Mufti, Ghulam J.; Hellstrom-Lindberg, Eva; Kiladjian, Jean-Jacques; McMullin, Mary Frances; Campbell, Peter J.; Ferguson-Smith, Anne C.; Green, Anthony R.

    2013-01-01

    Large regions of recurrent genomic loss are common in cancers; however, with a few well-characterized exceptions, how they contribute to tumor pathogenesis remains largely obscure. Here we identified primate-restricted imprinting of a gene cluster on chromosome 20 in the region commonly deleted in chronic myeloid malignancies. We showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus. Concomitant loss of both L3MBTL1 and SGK2 dysregulated erythropoiesis and megakaryopoiesis, 2 lineages commonly affected in chronic myeloid malignancies, with distinct consequences in each lineage. We demonstrated that L3MBTL1 and SGK2 collaborated in the transcriptional regulation of MYC by influencing different aspects of chromatin structure. L3MBTL1 is known to regulate nucleosomal compaction, and we here showed that SGK2 inactivated BRG1, a key ATP-dependent helicase within the SWI/SNF complex that regulates nucleosomal positioning. These results demonstrate a link between an imprinted gene cluster and malignancy, reveal a new pathogenetic mechanism associated with acquired regions of genomic loss, and underline the complex molecular and cellular consequences of “simple” cancer-associated chromosome deletions. PMID:23543057

  20. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization

    PubMed Central

    Kazi, Misha I.; Conrado, Aaron R.; Mey, Alexandra R.; Payne, Shelley M.; Davies, Bryan W.

    2016-01-01

    The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in V. cholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxT, ompT, ompU and ctxA. Here, we determine ToxR’s genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae’s major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in V. cholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for V. cholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters. PMID:27070545

  1. Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency

    PubMed Central

    Ohmine, Seiga; Squillace, Karen A.; Hartjes, Katherine A.; Deeds, Michael C.; Armstrong, Adam S.; Thatava, Tayaramma; Sakuma, Toshie; Terzic, Andre; Kudva, Yogish; Ikeda, Yasuhiro

    2012-01-01

    Nuclear reprogramming enables patient-specific derivation of induced pluripotent stem (iPS) cells from adult tissue. Yet, iPS generation from patients with type 2 diabetes (T2D) has not been demonstrated. Here, we report reproducible iPS derivation of epidermal keratinocytes (HK) from elderly T2D patients. Transduced with human OCT4, SOX2, KLF4 and c-MYC stemness factors under serum-free and feeder-free conditions, reprogrammed cells underwent dedifferentiation with mitochondrial restructuring, induction of endogenous pluripotency genes - including NANOG, LIN28, and TERT, and down-regulation of cytoskeletal, MHC class I- and apoptosis-related genes. Notably, derived iPS clones acquired a rejuvenated state, characterized by elongated telomeres and suppressed senescence-related p15INK4b/p16INK4a gene expression and oxidative stress signaling. Stepwise guidance with lineage-specifying factors, including Indolactam V and GLP-1, redifferentiated HK-derived iPS clones into insulin-producing islet-like progeny. Thus, in elderly T2D patients, reprogramming of keratinocytes ensures a senescence-privileged status yielding iPS cells proficient for regenerative applications. PMID:22308265

  2. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization.

    PubMed

    Kazi, Misha I; Conrado, Aaron R; Mey, Alexandra R; Payne, Shelley M; Davies, Bryan W

    2016-04-01

    The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in V. cholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxT, ompT, ompU and ctxA. Here, we determine ToxR's genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae's major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in V. cholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for V. cholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters.

  3. Heroin self-administration: II. CNS gene expression following withdrawal and cue-induced drug-seeking behavior.

    PubMed

    Kuntz, Kara L; Patel, Kruti M; Grigson, Patricia S; Freeman, Willard M; Vrana, Kent E

    2008-09-01

    In the accompanying paper, we described incubation of heroin-seeking behavior in rats following 14 days of abstinence. To gain an understanding of genomic changes that accompany this behavioral observation, we measured the expression of genes previously reported to respond to drugs of abuse. Specifically, after 1 or 14 days of abstinence, mRNA expression was measured for 11 genes in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) immediately following a single 90 min extinction session. Additionally, the role of contingency was examined in control rats that received yoked, response-independent heroin administration. Gene expression was quantified by real-time quantitative PCR. Expression of five genes (Arc, EGR1, EGR2, Fos, and Homer1b/c) was changed in the mPFC. EGR1 and EGR2 expression was increased following the 90 min extinction session in a contingency-specific manner and this increase persisted through the 14 days of abstinence. Fos expression was also increased after 1 and 14 days of abstinence, but at 14 days this increase was response-independent (i.e., it occurred in both the rats with a history of heroin self-administration and in the yoked controls). Arc expression increased following the extinction session only in rats with a history of heroin self-administration and only when tested following 1, but not 14, days of abstinence. Homer 1 b/c decreased after 14 days of enforced abstinence in rats that received non-contingent heroin. Expression of only a single gene (EGR2) was increased in the NAc. These data demonstrate that behavioral incubation is coincident with altered levels of specific transcripts and that this response is contingently-specific. Moreover, EGR1 and EGR2 are specifically upregulated in self-administering rats following extinction and this finding persists through 14 days of abstinence, suggesting that these genes are particularly associated with the incubation phenomenon. These latter observations of persistent changes

  4. Prodrug approaches for CNS delivery.

    PubMed

    Rautio, Jarkko; Laine, Krista; Gynther, Mikko; Savolainen, Jouko

    2008-01-01

    Central nervous system (CNS) drug delivery remains a major challenge, despite extensive efforts that have been made to develop novel strategies to overcome obstacles. Prodrugs are bioreversible derivatives of drug molecules that must undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which subsequently exerts the desired pharmacological effect. In both drug discovery and drug development, prodrugs have become an established tool for improving physicochemical, biopharmaceutical or pharmacokinetic properties of pharmacologically active agents that overcome barriers to a drug's usefulness. This review provides insight into various prodrug strategies explored to date for CNS drug delivery, including lipophilic prodrugs, carrier- and receptor-mediated prodrug delivery systems, and gene-directed enzyme prodrug therapy.

  5. Fraction of cases of acquired immunodeficiency syndrome prevented by the interactions of identified restriction gene variants.

    PubMed

    Silverberg, M J; Smith, M W; Chmiel, J S; Detels, R; Margolick, J B; Rinaldo, C R; O'Brien, S J; Muñoz, A

    2004-02-01

    Previous research has demonstrated isolated effects of host genetic factors on the progression of human immunodeficiency virus type 1 (HIV-1) infection. In this paper, the authors present a novel use of multivariable methods for estimating the prevented fraction of acquired immunodeficiency syndrome (AIDS) cases attributable to six restriction genes after accounting for their epidemiologic interactions. The methods presented will never yield a prevented fraction above 1. The study population consisted of a well-characterized cohort of 525 US men with HIV-1 seroconversion documented during follow-up (1984-1996). On the basis of a regression tree approach using a Cox proportional hazards model for times to clinical AIDS, the combinations of genes associated with the greatest protection, relative to the lack of a protective genotype, consisted of: 1) C-C chemokine receptor 5 (CCR5)-Delta 32 and C-C chemokine receptor 2 (CCR2)-64I (relative hazard = 0.44); 2) interleukin 10 (IL10)-+/+ in combination with CCR5-Delta 32 or CCR2-64I (relative hazard = 0.45); and 3) IL10-+/+ in combination with stromal-derived factor (SDF1)-3 'A and CCR5 promoter P1/approximately P1 (relative hazard = 0.37). Overall, 30% of potential AIDS cases were prevented by the observed combinations of restriction genes (95% confidence interval: 7, 47). However, the combined effect was confined to the first 4 years following HIV-1 seroconversion. Additional research is needed to identify AIDS restriction genes with stronger and long-lasting protection to better characterize the genetic epidemiology of HIV-1.

  6. CNS development: an overview

    NASA Technical Reports Server (NTRS)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  7. CNS development: an overview

    NASA Technical Reports Server (NTRS)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  8. CNS and spinal tumors.

    PubMed

    Furtado, Andre D; Panigrahy, Ashok; Fitz, Charles R

    2016-01-01

    Primary CNS tumors consist of a diverse group of neoplasms originating from various cell types in the CNS. Brain tumors are the most common solid malignancy in children under the age of 15 years and the second leading cause of cancer death after leukemia. The most common brain neoplasms in children differ consistently from those in older age groups. Pediatric brain tumors demonstrate distinct patterns of occurrence and biologic behavior according to sex, age, and race. This chapter highlights the imaging features of the most common tumors that affect the child's CNS (brain and spinal cord).

  9. RNAi therapeutics for CNS disorders.

    PubMed

    Boudreau, Ryan L; Davidson, Beverly L

    2010-06-18

    RNA interference (RNAi) is a process of sequence-specific gene silencing and serves as a powerful molecular tool to manipulate gene expression in vitro and in vivo. RNAi technologies have been applied to study gene function and validate drug targets. Researchers are investigating RNAi-based compounds as novel therapeutics to treat a variety of human diseases that are currently lacking sufficient treatment. To date, numerous studies support that RNAi therapeutics can improve disease phenotypes in various rodent models of human disease. Here, we focus on the development of RNAi-based therapies aimed at treating neurological disorders for which reduction of mutant or toxic gene expression may provide clinical benefit. We review RNAi-based gene-silencing strategies, proof-of-concept studies testing therapeutic RNAi for CNS disorders, and highlight the most recent research aimed at transitioning RNAi-based therapeutics toward clinical trials.

  10. Sequencing of the Reannotated LMNB2 Gene Reveals Novel Mutations in Patients with Acquired Partial Lipodystrophy

    PubMed Central

    Hegele, Robert A.; Cao, Henian; Liu, Dora M.; Costain, Gary A.; Charlton-Menys, Valentine; Rodger, N. Wilson; Durrington, Paul N.

    2006-01-01

    The etiology of acquired partial lipodystrophy (APL, also called “Barraquer-Simons syndrome”) is unknown. Genomic DNA mutations affecting the nuclear lamina protein lamin A cause inherited partial lipodystrophy but are not found in patients with APL. Because it also encodes a nuclear lamina protein (lamin B2) and its genomic structure was recently reannotated, we sequenced LMNB2 as a candidate gene in nine white patients with APL. In four patients, we found three new rare mutations in LMNB2: intron 1 −6G→T, exon 5 c.643G→A (p.R215Q; in two patients), and exon 8 c.1218G→A (p.A407T). The combined frequency of these mutations was 0.222 in the patients with APL, compared with 0.0018 in a multiethnic control sample of 1,100 subjects (P=2.1×10-7) and 0.0045 in a sample of 330 white controls (P=1.2×10-5). These novel heterozygous mutations are the first reported for LMNB2, are the first reported among patients with APL, and indicate how sequencing of a reannotated candidate gene can reveal new disease-associated mutations. PMID:16826530

  11. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy.

    PubMed

    Hegele, Robert A; Cao, Henian; Liu, Dora M; Costain, Gary A; Charlton-Menys, Valentine; Rodger, N Wilson; Durrington, Paul N

    2006-08-01

    The etiology of acquired partial lipodystrophy (APL, also called "Barraquer-Simons syndrome") is unknown. Genomic DNA mutations affecting the nuclear lamina protein lamin A cause inherited partial lipodystrophy but are not found in patients with APL. Because it also encodes a nuclear lamina protein (lamin B2) and its genomic structure was recently reannotated, we sequenced LMNB2 as a candidate gene in nine white patients with APL. In four patients, we found three new rare mutations in LMNB2: intron 1 -6G-->T, exon 5 c.643G-->A (p.R215Q; in two patients), and exon 8 c.1218G-->A (p.A407T). The combined frequency of these mutations was 0.222 in the patients with APL, compared with 0.0018 in a multiethnic control sample of 1,100 subjects (P = 2.1 x 10-7) and 0.0045 in a sample of 330 white controls (P = 1.2 x 10-5). These novel heterozygous mutations are the first reported for LMNB2, are the first reported among patients with APL, and indicate how sequencing of a reannotated candidate gene can reveal new disease-associated mutations.

  12. The intellectual capacity of patients with Laron syndrome (LS) differs with various molecular defects of the growth hormone receptor gene. Correlation with CNS abnormalities.

    PubMed

    Shevah, O; Kornreich, L; Galatzer, A; Laron, Z

    2005-12-01

    The correlation between the molecular defects of the GH receptor (R), psychosocial development and brain abnormalities were evaluated in 10 patients with Laron syndrome (LS), in whom all data were available. The findings revealed that the intelligence quotient (IQ) and abnormalities in the brain of the patients with LS differ with various molecular defects of the GH-receptor. The most severe mental deficits and brain pathology occurred in patients with 3, 5, 6 exon deletion. Patients with point mutations in exons 2, 4 and 7 presented various degrees of medium to mild CNS abnormalities that correlated with the IQ. Notably, the patient with the E180 splice mutation in exon 6 had a normal IQ, which fits the report on normal IQ in a large Ecuadorian cohort with the same mutation. This is the first report to support a correlation between IQ, brain abnormalities and localization of the molecular defects in the GH-R gene. As all patients with LS are IGF-I-deficient, it must be assumed that other as yet unknown factors related to the molecular defects in the GH-R are the major cause of the differences in intellect and brain abnormalities.

  13. Tuba1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish.

    PubMed

    Veldman, Matthew B; Bemben, Michael A; Goldman, Daniel

    2010-04-01

    We report that knockdown of the alpha1 tubulin isoform Tuba1a, but not the highly related Tuba1b, dramatically impedes nervous system formation during development and RGC axon regeneration following optic nerve injury in adults. Within the tuba1a promoter, a G/C-rich element was identified that is necessary for tuba1a induction during RGC differentiation and optic axon regeneration. KLF6a and 7a, which we previously reported are essential for optic axon regeneration (Veldman et al., 2007), bind this G/C-rich element and transactivate the tuba1a promoter. In vivo knockdown of KLF6a and 7a attenuate regeneration-dependent activation of the endogenous tuba1a and p27 genes. These results suggest tuba1a expression is necessary for CNS development and regeneration and that KLF6a and 7a mediate their effects, at least in part, via transcriptional control of tuba1a promoter activity.

  14. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury*

    PubMed Central

    Coulson-Thomas, Vivien J.; Lauer, Mark E.; Soleman, Sara; Zhao, Chao; Hascall, Vincent C.; Day, Anthony J.; Fawcett, James W.

    2016-01-01

    Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP+ and CD44+ astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6−/− mice present a reduced number of GFAP+ astrocytes when compared with the littermate TSG-6+/− mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration. PMID:27435674

  15. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury.

    PubMed

    Coulson-Thomas, Vivien J; Lauer, Mark E; Soleman, Sara; Zhao, Chao; Hascall, Vincent C; Day, Anthony J; Fawcett, James W

    2016-09-16

    Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP(+) and CD44(+) astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6(-/-) mice present a reduced number of GFAP(+) astrocytes when compared with the littermate TSG-6(+/-) mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Nanotechnology-novel therapeutics for CNS disorders.

    PubMed

    Srikanth, Maya; Kessler, John A

    2012-04-24

    Research into treatments for diseases of the CNS has made impressive strides in the past few decades, but therapeutic options are limited for many patients with CNS disorders. Nanotechnology has emerged as an exciting and promising new means of treating neurological disease, with the potential to fundamentally change the way we approach CNS-targeted therapeutics. Molecules can be nanoengineered to cross the blood-brain barrier, target specific cell or signalling systems, respond to endogenous stimuli, or act as vehicles for gene delivery, or as a matrix to promote axon elongation and support cell survival. The wide variety of available nanotechnologies allows the selection of a nanoscale material with the characteristics best suited to the therapeutic challenges posed by an individual CNS disorder. In this Review, we describe recent advances in the development of nanotechnology for the treatment of neurological disorders-in particular, neurodegenerative disease and malignant brain tumours-and for the promotion of neuroregeneration.

  17. Nanotechnology—novel therapeutics for CNS disorders

    PubMed Central

    Srikanth, Maya; Kessler, John A.

    2013-01-01

    Research into treatments for diseases of the CNS has made impressive strides in the past few decades, but therapeutic options are limited for many patients with CNS disorders. Nanotechnology has emerged as an exciting and promising new means of treating neurological disease, with the potential to fundamentally change the way we approach CNS-targeted therapeutics. Molecules can be nanoengineered to cross the blood–brain barrier, target specific cell or signalling systems, respond to endogenous stimuli, or act as vehicles for gene delivery, or as a matrix to promote axon elongation and support cell survival. The wide variety of available nanotechnologies allows the selection of a nanoscale material with the characteristics best suited to the therapeutic challenges posed by an individual CNS disorder. In this Review, we describe recent advances in the development of nanotechnology for the treatment of neurological disorders—in particular, neurodegenerative disease and malignant brain tumours—and for the promotion of neuroregeneration. PMID:22526003

  18. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  19. Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells.

    PubMed

    Kujuro, Yuki; Suzuki, Norihiro; Kondo, Toru

    2010-05-04

    Mammalian aging is thought to be partially caused by the diminished capacity of stem/precursor cells to undergo self-renewing divisions. Although many cell-cycle regulators are involved in this process, it is unknown to what extent cell senescence, first identified as irreversible growth arrest in vitro, contributes to the aging process. Here, using a serum-induced mouse oligodendrocyte precursor cell (mOPC) senescence model, we identified esophageal cancer-related gene 4 (Ecrg4) as a senescence inducer with implications for the senescence-like state of postmitotic cells in the aging brain. Although mOPCs could proliferate indefinitely when cultured using the appropriate medium (OPC medium), they became senescent in the presence of serum and maintained their senescent phenotype even when the serum was subsequently replaced by OPC medium. We show that Ecrg4 was up-regulated in the senescent OPCs, its overexpression in OPCs induced senescence by accelerating the proteasome-dependent degradation of cyclins D1 and D3, and that its knockdown by a specific short hairpin RNA prevented these phenotypes. We also show that senescent OPCs secreted Ecrg4 and that recombinant Ecrg4 induced OPC senescence in culture. Moreover, increased Ecrg4 expression was observed in the OPCs and neural precursor cells in the aged mouse brain; this was accompanied by the expression of senescence-associated beta-galactosidase activity, indicating the cells' entrance into senescence. These results suggest that Ecrg4 is a factor linking neural-cell senescence and aging.

  20. Alterations in CNS gene expression in a rodent model of moderate traumatic brain injury complicated by acute alcohol intoxication.

    PubMed

    Sall, J M; Morehead, M; Murphy, S; Goldman, H; Walker, P D

    1996-06-01

    The combined effects of acute alcoholic intoxication and moderate traumatic brain injury (TBI) on zif/268, glial fibrillary acidic protein (GFAP), and preproenkephalin (PPE) mRNA expression were examined. Adult male Wistar rats received ip injections of a 5% alcohol solution (2.4 g/kg in a final volume of 20 ml isotonic saline) 10 min prior to fixed-head, mechanical injury. Using Northern analysis, a transient three- to fourfold induction of zif/268 mRNA levels was observed 45 min after injury in both TBI and alcohol-treated rats. This induction occurred in regions close to the impact site, namely, the olfactory bulb (OB) and frontal cortex (FTCTX) but not in the more distal piriform/amygdala cortex (P/A). No PPE mRNA changes were observed at 45 min for any experimental group. By 6 h, zif/268 transcript levels returned to or fell below basal levels in the OB and FTCTX while GFAP mRNA levels began to increase in TBI rats. At 24 h, GFAP mRNA levels were greatly increased in all three brain regions of TBI rats. However, alcohol inhibited the temporal induction of GFAP mRNA in the FTCTX and P/A triggered by TBI at 6 and 24 h. These results suggest that although acute alcohol intoxication prior to TBI does not influence gene expression patterns immediately after injury, it may minimize the transcriptional activation of astrocytes particularly in more distant brain regions that were influenced by the impact in nonintoxicated rats.

  1. ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons

    PubMed Central

    May, Melanie; Hwang, Kyu-Seok; Miles, Judith; Williams, Charlie; Niranjan, Tejasvi; Kahler, Stephen G.; Chiurazzi, Pietro; Steindl, Katharina; Van Der Spek, Peter J.; Swagemakers, Sigrid; Mueller, Jennifer; Stefl, Shannon; Alexov, Emil; Ryu, Jeong-Im; Choi, Jung-Hwa; Kim, Hyun-Taek; Tarpey, Patrick; Neri, Giovanni; Holloway, Lynda; Skinner, Cindy; Stevenson, Roger E.; Dorsky, Richard I.; Wang, Tao; Schwartz, Charles E.; Kim, Cheol-Hee

    2015-01-01

    Miles–Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits. PMID:26056227

  2. ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons.

    PubMed

    May, Melanie; Hwang, Kyu-Seok; Miles, Judith; Williams, Charlie; Niranjan, Tejasvi; Kahler, Stephen G; Chiurazzi, Pietro; Steindl, Katharina; Van Der Spek, Peter J; Swagemakers, Sigrid; Mueller, Jennifer; Stefl, Shannon; Alexov, Emil; Ryu, Jeong-Im; Choi, Jung-Hwa; Kim, Hyun-Taek; Tarpey, Patrick; Neri, Giovanni; Holloway, Lynda; Skinner, Cindy; Stevenson, Roger E; Dorsky, Richard I; Wang, Tao; Schwartz, Charles E; Kim, Cheol-Hee

    2015-09-01

    Miles-Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits.

  3. Novel deletion mutation of HLA-B*40:02 gene in acquired aplastic anemia.

    PubMed

    Jeong, T-D; Mun, Y-C; Chung, H-S; Seo, D; Im, J; Huh, J

    2017-01-01

    Despite prevalence of clonal evolution in patients with aplastic anemia (AA), somatic mutation of human leukocyte antigen (HLA) gene is rarely reported. Herein, we reported a case of acquired AA (aAA) harboring a new four-base-pair deletion mutation within exon 4 of HLA-B*40:02 leading to frameshift and premature stop codon. The HLA-B*40:02 mutant allele was detected in the patient's peripheral blood sample not in patient's buccal epithelial cells. The patient received allogenic hematopoietic stem cell transplantation (HSCT) from HLA-matched sibling donor. On day 30 after HSCT, the mutant HLA allele was not detected by high-resolution sequence-based HLA typing. Serial chimerism analyses showed mixed chimeric status indicative of coexisting donor and recipient hematopoietic cells. Our data could provide additional support in view of pathophysiology of aAA that somatic mutation of HLA-B*40:02 allele is one of the possible origin of clonal escape to evade immune attack in patient with aAA. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Polymorphisms of the TGF-β1 gene and the risk of acquired aplastic anemia in a Chinese population.

    PubMed

    Liang, Xue-Hong; Rong, Liucheng; He, Guangsheng; He, Hailong; Lin, Shengyun; Yang, Yan; Xue, Yao; Fang, Yongjun

    2017-03-01

    Acquired aplastic anemia (AA) is a hematological disease characterized by failure of bone marrow hematopoiesis resulting in pancytopenia. While immune-mediated destruction of hematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired AA, the transforming growth factor-β1 (TGF-β1) is crucial in adjusting the immune system. The aim of our study was to investigate the role of TGF-β1 gene polymorphisms rs1800469 and rs2317130 in susceptibility to acquired AA. Via the approach of SNaPshot, we genotyped rs1800469 and rs2317130 in 101 patients with acquired AA and 165 controls. It derived us to the conclusion that the genotype TT of rs1800469 (C/T) was significantly associated with decreased risk of acquired AA (adjusted OR = 0.39, 95% CI = 0.18-0.83, P = 0.014). Furthermore, this decreased risk was more pronounced among male patients (adjusted OR = 0.35, 95% CI = 0.13-0.95, P = 0.038) and SAA/vSAA (severe AA/very severe AA) patients (adjusted OR = 0.31, 95% CI = 0.12-0.77, P = 0.02) compared with controls in subgroup analysis. However, a significant increased risk was observed in the genotype distributions of rs2317130 for TT genotype (adjusted OR = 2.52, 95% CI = 1.03-6.19, P = 0.04) compared with the CC genotype among the SAA/vSAA patients and controls in the severity stratification analysis. Our results indicated that TGF-β1 gene polymorphisms might be involved in the munity of acquired AA in a Chinese population. This initial analysis provides valuable clues for further study of TGF-β1 pathway genes in acquired AA.

  5. Neural Stem Cell Transplantation and CNS Diseases.

    PubMed

    Gonzalez, Rodolfo; Hamblin, Milton H; Lee, Jean-Pyo

    2016-01-01

    In neurological disorders, pathological lesions in the central nervous system (CNS) may be globally dispersed throughout the brain or localized to specific regions. Although native neural stem cells (NSCs) are present in the adult mammalian brain, intrinsic self-repair of injured adult CNS tissue is inadequate or ineffective. The brain's poor regenerative ability may be due to the fact that NSCs are restricted to discrete locations, are few in number, or are surrounded by a microenvironment that does not support neuronal differentiation. Therapeutic potential of NSC transplantation in CNS diseases characterized by global degeneration requires that gene products and/or replaced cells be widely distributed. Global degenerative CNS diseases include inherited pediatric neurodegenerative diseases (inborn errors of metabolism, including lysosomal storage disorders (LSDs), such as Tay-Sachs-related Sandhoff disease), hypoxic or ischemic encephalopathy, and some adult CNS diseases (such as multiple sclerosis). Both mouse and human NSCs express many chemokines and chemokine receptors (including CXCR4 and adhesion molecules, such as integrins, selectins, and immunoglobulins) that mediate homing to sources of inflammatory chemokines, such as SDF-1α. In mammalian brains of all ages, NSCs may be attracted even at a great distance to regions of neurodegeneration. Consequently, NSC transplantation presents a promising strategy for treating many CNS diseases.

  6. Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides.

    PubMed

    Alexander, William G; Wisecaver, Jennifer H; Rokas, Antonis; Hittinger, Chris Todd

    2016-04-12

    Horizontal gene transfer (HGT) among bacteria, archaea, and viruses is widespread, but the extent of transfers from these lineages into eukaryotic organisms is contentious. Here we systematically identify hundreds of genes that were likely acquired horizontally from a variety of sources by the early-diverging fungal phyla Microsporidia and Cryptomycota. Interestingly, the Microsporidia have acquired via HGT several genes involved in nucleic acid synthesis and salvage, such as those encoding thymidine kinase (TK), cytidylate kinase, and purine nucleotide phosphorylase. We show that these HGT-derived nucleic acid synthesis genes tend to function at the interface between the metabolic networks of the host and pathogen. Thus, these genes likely play vital roles in diversifying the useable nucleic acid components available to the intracellular parasite, often through the direct capture of resources from the host. Using an in vivo viability assay, we also demonstrate that one of these genes, TK, encodes an enzyme that is capable of activating known prodrugs to their active form, which suggests a possible treatment route for microsporidiosis. We further argue that interfacial genes with well-understood activities, especially those horizontally transferred from bacteria or viruses, could provide medical treatments for microsporidian infections.

  7. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer

    PubMed Central

    Pauchet, Yannick; Heckel, David G.

    2013-01-01

    The primary plant cell wall comprises the most abundant polysaccharides on the Earth and represents a rich source of energy for organisms which have evolved the ability to digest them. Enzymes able to degrade plant cell wall polysaccharides are widely distributed in micro-organisms but are generally absent in animals, although their presence in insects, especially phytophagous beetles from the superfamilies Chrysomeloidea and Curculionoidea, has recently begun to be appreciated. The observed patchy distribution of endogenous genes encoding these enzymes in animals has raised questions about their evolutionary origins. Recent evidence suggests that endogenous plant cell wall degrading enzymes-encoding genes have been acquired by animals through a mechanism known as horizontal gene transfer (HGT). HGT describes how genetic material is moved by means other than vertical inheritance from a parent to an offspring. Here, we provide evidence that the mustard leaf beetle, Phaedon cochleariae, possesses in its genome genes encoding active xylanases from the glycoside hydrolase family 11 (GH11). We also provide evidence that these genes were originally acquired by P. cochleariae from a species of gammaproteobacteria through HGT. This represents the first example of the presence of genes from the GH11 family in animals. PMID:23698014

  8. Neuronal K+/Cl- co-transporter (KCC2) transgenes lacking neurone restrictive silencer element recapitulate CNS neurone-specific expression and developmental up-regulation of endogenous KCC2 gene.

    PubMed

    Uvarov, Pavel; Pruunsild, Priit; Timmusk, Tõnis; Airaksinen, Matti S

    2005-11-01

    The K+/Cl- co-transporter KCC2 maintains the low intracellular chloride concentration required for fast synaptic inhibition and is exclusively expressed in neurones of the CNS. Here, we show that the KCC2 gene (alias SLC12a5) has multiple transcription start sites and characterize the activity of 6.8 kb of mouse KCC2 gene regulatory sequence (spanning 1.4 kb upstream from exon 1 to exon 2) using luciferase reporters. Overexpression of neurone-restrictive silencer factor repressed the reporter activity in vitro, apparently via a neurone restrictive silencer element (NRSE(KCC2)) within intron 1 of the mouse KCC2 gene. In transgenic mice, however, KCC2 reporters with or without deletion of the NRSE(KCC2) were expressed exclusively in neurones and predominantly in the CNS with a similar pattern and developmental up-regulation as endogenous KCC2. Moreover, a third transgene with just a 1.4-kb KCC2 promoter region lacking the NRSE(KCC2)-bearing intron 1 was still expressed predominantly in neural tissues. Thus, developmental up-regulation of the KCC2 gene does not require NRSE(KCC2) and the 1.4-kb KCC2 promoter is largely sufficient for neurone-specific expression of KCC2.

  9. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer

    PubMed Central

    Azad, A. K. M.; Keith, Jonathan M.

    2017-01-01

    Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links

  10. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer.

    PubMed

    Azad, A K M; Lawen, Alfons; Keith, Jonathan M

    2017-01-01

    Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links

  11. A Complete Set of Flagellar Genes Acquired by Horizontal Transfer Coexists with the Endogenous Flagellar System in Rhodobacter sphaeroides▿ †

    PubMed Central

    Poggio, Sebastian; Abreu-Goodger, Cei; Fabela, Salvador; Osorio, Aurora; Dreyfus, Georges; Vinuesa, Pablo; Camarena, Laura

    2007-01-01

    Bacteria swim in liquid environments by means of a complex rotating structure known as the flagellum. Approximately 40 proteins are required for the assembly and functionality of this structure. Rhodobacter sphaeroides has two flagellar systems. One of these systems has been shown to be functional and is required for the synthesis of the well-characterized single subpolar flagellum, while the other was found only after the genome sequence of this bacterium was completed. In this work we found that the second flagellar system of R. sphaeroides can be expressed and produces a functional flagellum. In many bacteria with two flagellar systems, one is required for swimming, while the other allows movement in denser environments by producing a large number of flagella over the entire cell surface. In contrast, the second flagellar system of R. sphaeroides produces polar flagella that are required for swimming. Expression of the second set of flagellar genes seems to be positively regulated under anaerobic growth conditions. Phylogenic analysis suggests that the flagellar system that was initially characterized was in fact acquired by horizontal transfer from a γ-proteobacterium, while the second flagellar system contains the native genes. Interestingly, other α-proteobacteria closely related to R. sphaeroides have also acquired a set of flagellar genes similar to the set found in R. sphaeroides, suggesting that a common ancestor received this gene cluster. PMID:17293429

  12. CNS Diseases and Uveitis

    PubMed Central

    Allegri, Pia; Rissotto, Roberto; Herbort, Carl P.; Murialdo, Ugo

    2011-01-01

    A number of inflammatory, infectious, neoplastic and idiopathic disorders affect the eye and the central nervous system (CNS) concurrently or at different time frames. These conditions pose a diagnostic challenge to the clinician since they may present with similar ocular and neurological manifestations. The purpose of this review is to describe major neurological syndromes including multiple sclerosis, Vogt-Koyanagi-Harada disease, other autoimmune syndromes, and several infectious diseases which may affect the eye. This article may serve as a guide for the diagnosis and treatment of such disorders. It should be noted that these conditions have been viewed from a neurologist’s perspective thereby neurologic involvement is stressed. PMID:22454751

  13. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication.

    PubMed

    Zhang, Fantao; Xu, Tao; Mao, Linyong; Yan, Shuangyong; Chen, Xiwen; Wu, Zhenfeng; Chen, Rui; Luo, Xiangdong; Xie, Jiankun; Gao, Shan

    2016-04-26

    It is widely accepted that cultivated rice (Oryza sativa L.) was domesticated from common wild rice (Oryza rufipogon Griff.). Compared to other studies which concentrate on rice origin, this study is to genetically elucidate the substantially phenotypic and physiological changes from wild rice to cultivated rice at the whole genome level. Instead of comparing two assembled genomes, this study directly compared the Dongxiang wild rice (DXWR) Illumina sequencing reads with the Nipponbare (O. sativa) complete genome without assembly of the DXWR genome. Based on the results from the comparative genomics analysis, structural variations (SVs) between DXWR and Nipponbare were determined to locate deleted genes which could have been acquired by Nipponbare during rice domestication. To overcome the limit of the SV detection, the DXWR transcriptome was also sequenced and compared with the Nipponbare transcriptome to discover the genes which could have been lost in DXWR during domestication. Both 1591 Nipponbare-acquired genes and 206 DXWR-lost transcripts were further analyzed using annotations from multiple sources. The NGS data are available in the NCBI SRA database with ID SRP070627. These results help better understanding the domestication from wild rice to cultivated rice at the whole genome level and provide a genomic data resource for rice genetic research or breeding. One finding confirmed transposable elements contribute greatly to the genome evolution from wild rice to cultivated rice. Another finding suggested the photophosphorylation and oxidative phosphorylation system in cultivated rice could have adapted to environmental changes simultaneously during domestication.

  14. Patterns of gene expression in peripheral blood mononuclear cells and outcomes from patients with sepsis secondary to community acquired pneumonia.

    PubMed

    Severino, Patricia; Silva, Eliézer; Baggio-Zappia, Giovana Lotici; Brunialti, Milena Karina Coló; Nucci, Laura Alejandra; Rigato, Otelo; da Silva, Ismael Dale Cotrim Guerreiro; Machado, Flávia Ribeiro; Salomao, Reinaldo

    2014-01-01

    Mechanisms governing the inflammatory response during sepsis have been shown to be complex, involving cross-talk between diverse signaling pathways. Current knowledge regarding the mechanisms underlying sepsis provides an incomplete picture of the syndrome, justifying additional efforts to understand this condition. Microarray-based expression profiling is a powerful approach for the investigation of complex clinical conditions such as sepsis. In this study, we investigate whole-genome expression profiles in mononuclear cells from survivors (n = 5) and non-survivors (n = 5) of sepsis. To circumvent the heterogeneity of septic patients, only patients admitted with sepsis caused by community-acquired pneumonia were included. Blood samples were collected at the time of sepsis diagnosis and seven days later to evaluate the role of biological processes or genes possibly involved in patient recovery. Principal Components Analysis (PCA) profiling discriminated between patients with early sepsis and healthy individuals. Genes with differential expression were grouped according to Gene Ontology, and most genes related to immune defense were up-regulated in septic patients. Additionally, PCA in the early stage was able to distinguish survivors from non-survivors. Differences in oxidative phosphorylation seem to be associated with clinical outcome because significant differences in the expression profile of genes related to mitochondrial electron transport chain (ETC) I-V were observed between survivors and non-survivors at the time of patient enrollment. Global gene expression profiles after seven days of sepsis progression seem to reproduce, to a certain extent, patterns collected at the time of diagnosis. Gene expression profiles comparing admission and follow-up samples differed between survivors and non-survivors, with decreased expression of genes related to immune functions in non-survivors. In conclusion, genes related to host defense and inflammatory response

  15. Biologic scaffold for CNS repair.

    PubMed

    Meng, Fanwei; Modo, Michel; Badylak, Stephen F

    2014-05-01

    Injury to the CNS typically results in significant morbidity and endogenous repair mechanisms are limited in their ability to restore fully functional CNS tissue. Biologic scaffolds composed of individual purified components have been shown to facilitate functional tissue reconstruction following CNS injury. Extracellular matrix scaffolds derived from mammalian tissues retain a number of bioactive molecules and their ability for CNS repair has recently been recognized. In addition, novel biomaterials for dural mater repairs are of clinical interest as the dura provides barrier function and maintains homeostasis to CNS. The present article describes the application of regenerative medicine principles to the CNS tissues and dural mater repair. While many approaches have been exploring the use of cells and/or therapeutic molecules, the strategies described herein focus upon the use of extracellular matrix scaffolds derived from mammalian tissues that are free of cells and exogenous factors.

  16. Gene-based immunotherapy for human immunodeficiency virus infection and acquired immunodeficiency syndrome.

    PubMed

    Dropulic, Boro; June, Carl H

    2006-06-01

    More than 40 million people are infected with human immunodeficiency virus (HIV), and a successful vaccine is at least a decade away. Although highly active antiretroviral therapy prolongs life, the maintenance of viral latency requires life-long treatment and results in cumulative toxicities and viral escape mutants. Gene therapy offers the promise to cure or prevent progressive HIV infection by interfering with HIV replication and CD4+ cell decline long term in the absence of chronic chemotherapy, and approximately 2 million HIV-infected individuals live in settings where there is sufficient infrastructure to support its application with current technology. Although the development of HIV/AIDS gene therapy has been slow, progress in a number of areas is evident, so that studies to date have significantly advanced the field of gene-based immunotherapy. Advances have helped to define a series of ongoing and planned trials that may shed light on potential mechanisms for the successful clinical gene therapy of HIV.

  17. A Genome-Wide Knockout Screen to Identify Genes Involved in Acquired Carboplatin Resistance

    DTIC Science & Technology

    2016-07-01

    or set of genes that were consistently altered in all 6 pairs (14). Other expression profiling and systems biology approaches based on expression...Chemother Pharmacol 2006;58(3):384-95. 15. Chen JY, Yan Z, Shen C, Fitzpatrick DP, Wang M. A systems biology approach to the study of cisplatin drug...Integrative Gene Set Analysis: Application to Platinum Pharmacogenomics. Omics : a journal of integrative biology 2013. 17. Oliver TG, Mercer KL, Sayles LC

  18. Characterization of Genes Encoding for Acquired Bacitracin Resistance in Clostridium perfringens

    PubMed Central

    Charlebois, Audrey; Jalbert, Louis-Alexandre; Harel, Josée; Masson, Luke; Archambault, Marie

    2012-01-01

    Phenotypic bacitracin resistance has been reported in Clostridium perfringens. However, the genes responsible for the resistance have not yet been characterized. Ninety-nine C. perfringens isolates recovered from broilers and turkeys were tested for phenotypic bacitracin resistance. Bacitracin MIC90 (>256 µg/ml) was identical for both turkey and chicken isolates; whereas MIC50 was higher in turkey isolates (6 µg/ml) than in chicken isolates (3 µg/ml). Twenty-four of the 99 isolates showed high-level bacitracin resistance (MIC breakpoint >256 µg/ml) and the genes encoding for this resistance were characterized in C. perfringens c1261_A strain using primer walking. Sequence analysis and percentages of amino acid identity revealed putative genes encoding for both an ABC transporter and an overproduced undecaprenol kinase in C. perfringens c1261_A strain. These two mechanisms were shown to be both encoded by the putative bcrABD operon under the control of a regulatory gene, bcrR. Efflux pump inhibitor thioridazine was shown to increase significantly the susceptibility of strain c1261_A to bacitracin. Upstream and downstream from the bcr cluster was an IS1216-like element, which may play a role in the dissemination of this resistance determinant. Pulsed-field gel electrophoresis with prior double digestion with I-CeuI/MluI enzymes followed by hybridization analyses revealed that the bacitracin resistance genes bcrABDR were located on the chromosome. Semi-quantitative RT-PCR demonstrated that this gene cluster is expressed under bacitracin stress. Microarray analysis revealed the presence of these genes in all bacitracin resistant strains. This study reports the discovery of genes encoding for a putative ABC transporter and an overproduced undecaprenol kinase associated with high-level bacitracin resistance in C. perfringens isolates from turkeys and broiler chickens. PMID:22970221

  19. Against All Odds: Trehalose-6-Phosphate Synthase and Trehalase Genes in the Bdelloid Rotifer Adineta vaga Were Acquired by Horizontal Gene Transfer and Are Upregulated during Desiccation

    PubMed Central

    Hespeels, Boris; Li, Xiang; Flot, Jean-François; Pigneur, Lise-Marie; Malaisse, Jeremy; Da Silva, Corinne; Van Doninck, Karine

    2015-01-01

    The disaccharide sugar trehalose is essential for desiccation resistance in most metazoans that survive dryness; however, neither trehalose nor the enzymes involved in its metabolism have ever been detected in bdelloid rotifers despite their extreme resistance to desiccation. Here we screened the genome of the bdelloid rotifer Adineta vaga for genes involved in trehalose metabolism. We discovered a total of four putative trehalose-6-phosphate synthase (TPS) and seven putative trehalase (TRE) gene copies in the genome of this ameiotic organism; however, no trehalose-6-phosphate phosphatase (TPP) gene or domain was detected. The four TPS copies of A. vaga appear more closely related to plant and fungi proteins, as well as to some protists, whereas the seven TRE copies fall in bacterial clades. Therefore, A. vaga likely acquired its trehalose biosynthesis and hydrolysis genes by horizontal gene transfers. Nearly all residues important for substrate binding in the predicted TPS domains are highly conserved, supporting the hypothesis that several copies of the genes might be functional. Besides, RNAseq library screening showed that trehalase genes were highly expressed compared to TPS genes, explaining probably why trehalose had not been detected in previous studies of bdelloids. A strong overexpression of their TPS genes was observed when bdelloids enter desiccation, suggesting a possible signaling role of trehalose-6-phosphate or trehalose in this process. PMID:26161530

  20. CNS regulation of appetite.

    PubMed

    Harrold, Joanne A; Dovey, Terry M; Blundell, John E; Halford, Jason C G

    2012-07-01

    This article reviews the regulation of appetite from a biopsychological perspective. It considers psychological experiences and peripheral nutritional systems (both episodic and tonic) and addresses their relationship with the CNS networks that process and integrate their input. Whilst such regulatory aspects of obesity focus on homeostatic control mechanisms, in the modern environment hedonic aspects of appetite are also critical. Enhanced knowledge of the complexity of appetite regulation and the mechanisms that sustain obesity indicate the challenge presented by management of the obesity epidemic. Nonetheless, effective control of appetite expression remains a critical therapeutic target for weight management. Currently, strategies which utilise a combination of agents to target both homeostatic and hedonic control mechanisms represent the most promising approaches. This article is part of a Special Issue entitled 'Central Control of Food Intake'.

  1. Comparative Genomics Suggests That the Human Pathogenic Fungus Pneumocystis jirovecii Acquired Obligate Biotrophy through Gene Loss

    PubMed Central

    Cissé, Ousmane H.; Pagni, Marco; Hauser, Philippe M.

    2014-01-01

    Pneumocystis jirovecii is a fungal parasite that colonizes specifically humans and turns into an opportunistic pathogen in immunodeficient individuals. The fungus is able to reproduce extracellularly in host lungs without eliciting massive cellular death. The molecular mechanisms that govern this process are poorly understood, in part because of the lack of an in vitro culture system for Pneumocystis spp. In this study, we explored the origin and evolution of the putative biotrophy of P. jirovecii through comparative genomics and reconstruction of ancestral gene repertoires. We used the maximum parsimony method and genomes of related fungi of the Taphrinomycotina subphylum. Our results suggest that the last common ancestor of Pneumocystis spp. lost 2,324 genes in relation to the acquisition of obligate biotrophy. These losses may result from neutral drift and affect the biosyntheses of amino acids and thiamine, the assimilation of inorganic nitrogen and sulfur, and the catabolism of purines. In addition, P. jirovecii shows a reduced panel of lytic proteases and has lost the RNA interference machinery, which might contribute to its genome plasticity. Together with other characteristics, that is, a sex life cycle within the host, the absence of massive destruction of host cells, difficult culturing, and the lack of virulence factors, these gene losses constitute a unique combination of characteristics which are hallmarks of both obligate biotrophs and animal parasites. These findings suggest that Pneumocystis spp. should be considered as the first described obligate biotrophs of animals, whose evolution has been marked by gene losses. PMID:25062922

  2. CNS development under altered gravity

    NASA Astrophysics Data System (ADS)

    Sajdel-Sulkowska, E.

    The future of space exploration depends on a solid understanding of the developmental process under microgravity. In furtherance of this goal, the present studies assessed the impact of altered gravity on the developing rat cerebellum. Specifically, the expression of selected cerebellar proteins and corresponding genes was compared in rat neonates exposed to hypergravity (1.5G) from embryonic day (E) 11 to postnatal day (P) 6 and P9 against their expression in rat neonates developing under normal gravity. Cerebellar proteins were analyzed by quantitative western blots of cerebellar homogenates; RNA analysis was performed in the same samples using ribonuclease protection assay (RPA). Densitometric analysis of western blots suggested 21% to 31% reduction in neuronal cell adhesion molecule (NCAM) and 31% to 45% reduction in glial acidic protein (GFAP). RPA results suggested a small reduction (<10%) in NCAM mRNA and a moderate reduction (<25%) in GFAP mRNA. These data indicate that the expression of selected cerebellar proteins may be affected at both the transcriptional and translational/postranslational level. Furthermore, these results suggest that changes in expression of selected genes may underlie hypergravity's effect on the developing CNS. (Supported by NASA grant NCC2-1042 and BWH Psychiatry Fund).

  3. [Imaging features of CNS tuberculosis].

    PubMed

    Semlali, S; El Kharras, A; Mahi, M; Hsaini, Y; Benameur, M; Aziz, N; Chaouir, S; Akjouj, S

    2008-02-01

    CNS tuberculosis remains relatively frequent in endemic regions. Both CT and MRI are valuable for diagnosis. Even though non-specific, MRI including diffusion-weighted imaging and proton spectroscopy is more sensitive than CT for detection of some lesions. The purpose of this paper is to illustrate the imaging features of CNS tuberculosis.

  4. Elastin-like recombinamers with acquired functionalities for gene-delivery applications.

    PubMed

    Piña, Maria J; Alex, Susan M; Arias, Francisco J; Santos, Mercedes; Rodriguez-Cabello, Jose C; Ramesan, Rekha M; Sharma, Chandra P

    2015-10-01

    In this work, well-defined elastin-like recombinamers (ELRs) were studied as a choice to the existing nonviral vectors due to their biocompatibility and ease of scale-up. Functional motifs, namely penetratin and LAEL fusogenic peptides were incorporated into a basic ELR sequence, and imidazole groups were subsequently covalently bound obtaining ELRs with new functionalities. Stable polyplexes composed of plasmid DNA and ELRs were formed. A particle size around 200 nm and a zeta potential up to nearly +24 mV made them suitable for gene delivery purposes. Additionally, viability and transfection assays with C6 rat glioma cell line showed an increase in the cellular uptake and transfection levels for the construction containing the LAEL motif. This study highlights the importance of controlling the polymer functionality using recombinant techniques and establishes the utility of ELRs as biocompatible nonviral systems for gene-therapy applications.

  5. Arabidopsis flowering locus D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes.

    PubMed

    Singh, Vijayata; Roy, Shweta; Singh, Deepjyoti; Nandi, Ashis Kumar

    2014-03-01

    A plant that is in part infected by a pathogen is more resistant throughout its whole body to subsequent infections--a phenomenon known as systemic acquired resistance (SAR). Mobile signals are synthesized at the site of infection and distributed throughout the plant through vascular tissues. Mechanism of SAR development subsequent to reaching the mobile signal in the distal tissue is largely unknown. Recently we showed that flowering locus D (FLD) gene of Arabidopsis thaliana is required in the distal tissue to activate SAR. FLD codes for a homologue of human-lysine-specific histone demethylase. Here we show that FLD function is required for priming (SAR induced elevated expression during challenge inoculation) of WRKY29 and WRKY6 genes. FLD also differentially influences basal and SAR-induced expression of WRKY38, WRKY65 and WRKY53 genes. In addition, we also show that FLD partly localizes in nucleus and influences histone modifications at the promoters of WRKY29 and WRKY6 genes. The results altogether indicate to the possibility of FLD's involvement in epigenetic regulation of SAR.

  6. Prevalence of Acquired Carbapenemase Genes in Klebsiella Pneumoniae by Multiplex PCR in Isfahan

    PubMed Central

    Khorvash, Farzin; Yazdani, Mohammed Reza; Soudi, Ali Asghar; Shabani, Shiva; Tavahen, Nirvana

    2017-01-01

    Background: Multi-drug resistant Klebsiella pneumoniae has been considered as a serious global threat. This study was done to investigate carbapenemase producing genomes among K. pneumoniae isolates in Isfahan, Central Iran. Materials and Methods: In a cross-sectional study from 2011 to 2012, 29 carbapenem resistant (according to disc diffusion method) carbapenemase producing (according to modified Hodge test) K. pneumoniae strains were collected from Intensive Care Unit (ICUs) of Al-Zahra referral Hospital. In the strains with the lack of sensitivity to one or several carbapenems, beta-lactams, or beta-lactamases, there has been performed modified Hodge test to investigate carbapenmase and then only strains producing carbapenmases were selected for molecular methods. Results: In this study, there have been 29 cases of K. pneumoniae isolated from hospitalized patients in the (ICU). Three cases (10.3%) contained blaVIM, 1 case (3.4%) contained blaIMP, and 1 case (3.4%) contained blaOXA. The genes blaNDM and blaKPC were not detected. Then, 16 cases (55.2%) from positive cases of K. pneumoniae were related to the chip, 4 cases (13.8%) to catheter, 6 cases (20.7%) to urine, and 3 cases (10.3%) to wound. Conclusion: It is necessary to monitor the epidemiologic changes of these carbapenemase genes in K. pneumoniae in our Hospital. More attention should be paid to nosocomial infection control measures. Other carbapenemase producing genes should be investigated. PMID:28503496

  7. Prevalence of Acquired Carbapenemase Genes in Klebsiella Pneumoniae by Multiplex PCR in Isfahan.

    PubMed

    Khorvash, Farzin; Yazdani, Mohammed Reza; Soudi, Ali Asghar; Shabani, Shiva; Tavahen, Nirvana

    2017-01-01

    Multi-drug resistant Klebsiella pneumoniae has been considered as a serious global threat. This study was done to investigate carbapenemase producing genomes among K. pneumoniae isolates in Isfahan, Central Iran. In a cross-sectional study from 2011 to 2012, 29 carbapenem resistant (according to disc diffusion method) carbapenemase producing (according to modified Hodge test) K. pneumoniae strains were collected from Intensive Care Unit (ICUs) of Al-Zahra referral Hospital. In the strains with the lack of sensitivity to one or several carbapenems, beta-lactams, or beta-lactamases, there has been performed modified Hodge test to investigate carbapenmase and then only strains producing carbapenmases were selected for molecular methods. In this study, there have been 29 cases of K. pneumoniae isolated from hospitalized patients in the (ICU). Three cases (10.3%) contained blaVIM, 1 case (3.4%) contained blaIMP, and 1 case (3.4%) contained blaOXA. The genes blaNDM and blaKPC were not detected. Then, 16 cases (55.2%) from positive cases of K. pneumoniae were related to the chip, 4 cases (13.8%) to catheter, 6 cases (20.7%) to urine, and 3 cases (10.3%) to wound. It is necessary to monitor the epidemiologic changes of these carbapenemase genes in K. pneumoniae in our Hospital. More attention should be paid to nosocomial infection control measures. Other carbapenemase producing genes should be investigated.

  8. Disruption of an Enterococcus faecium Species-Specific Gene, a Homologue of Acquired Macrolide Resistance Genes of Staphylococci, Is Associated with an Increase in Macrolide Susceptibility

    PubMed Central

    Singh, Kavindra V.; Malathum, Kumthorn; Murray, Barbara E.

    2001-01-01

    The complete sequence (1,479 nucleotides) of msrC, part of which was recently reported by others using a different strain, was determined. This gene was found in 233 of 233 isolates of Enterococcus faecium but in none of 265 other enterococci. Disruption of msrC was associated with a two- to eightfold decrease in MICs of erythromycin azithromycin, tylosin, and quinupristin, suggesting that it may explain in part the apparent greater intrinsic resistance to macrolides of isolates of E. faecium relative to many streptococci. This endogenous, species-specific gene of E. faecium is 53% identical to msr(A), suggesting that it may be a remote progenitor of the acquired macrolide resistance gene found in some isolates of staphylococci. PMID:11120975

  9. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases

    PubMed Central

    Reiser, Jakob; Zhang, Xian-Yang; Hemenway, Charles S; Mondal, Debasis; Pradhan, Leena; La Russa, Vincent F

    2005-01-01

    The intriguing biology of stem cells and their vast clinical potential is emerging rapidly for gene therapy. Bone marrow stem cells, including the pluripotent haematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and possibly the multipotent adherent progenitor cells (MAPCs), are being considered as potential targets for cell and gene therapy-based approaches against a variety of different diseases. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineagesn and, at least in vitro, have significant expansion capability. The apparently high self-renewal potential makes them strong candidates for delivering genes and restoring organ systems function. However, the high proliferative potential of MSCs, now presumed to be self-renewal, may be more apparent than real. Although expanded MSCs have great proliferation and differentiation potential in vitro, there are limitations with the biology of these cells in vivo. So far, expanded MSCs have failed to induce durable therapeutic effects expected from a true self-renewing stem cell population. The loss of in vivo self-renewal may be due to the extensive expansion of MSCs in existing in vitro expansion systems, suggesting that the original stem cell population and/or properties may no longer exist. Rather, the expanded population may indeed be heterogeneous and represents several generations of different types of mesenchymal cell progeny that have retained a limited proliferation potential and responsiveness for terminal differentiation and maturation along mesenchymal and non-mesenchymal lineages. Novel technology that allows MSCs to maintain their stem cell function in vivo is critical for distinguishing the elusive stem cell from its progenitor cell populations. The ultimate dream is to use MSCs in various forms of cellular therapies, as well as genetic tools that can be used to better understand the mechanisms leading to repair and regeneration

  10. Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes.

    PubMed

    García-Valtanen, Pablo; Martínez-López, Alicia; López-Muñoz, Azucena; Bello-Perez, Melissa; Medina-Gali, Regla M; Ortega-Villaizán, María Del Mar; Varela, Monica; Figueras, Antonio; Mulero, Víctoriano; Novoa, Beatriz; Estepa, Amparo; Coll, Julio

    2017-01-01

    To investigate fish innate immunity, we have conducted organ and cell immune-related transcriptomic as well as immunohistologic analysis in mutant zebra fish (Danio rerio) lacking adaptive immunity (rag1(-/-)) at different developmental stages (egg, larvae, and adult), before and after infection with spring viremia carp virus (SVCV). The results revealed that, compared to immunocompetent zebra fish (rag1(+/+) ), rag1(-/-) acquired increased resistance to SVCV with age, correlating with elevated transcript levels of immune genes in skin/fins and lymphoid organs (head kidney and spleen). Gene sets corresponding to apoptotic functions, immune-related multigene families, and interferon-related genes were constitutively upregulated in uninfected adult rag1(-/-) zebra fish. Overexpression of activated CASPASE-3 in different tissues before and after infection with SVCV further confirmed increased apoptotic function in rag1(-/-) zebra fish. Concurrently, staining of different tissue samples with a pan-leukocyte antibody marker showed abundant leukocyte infiltrations in SVCV-infected rag1(-/-) fish, coinciding with increased transcript expression of genes related to NK-cells and macrophages, suggesting that these genes played a key role in the enhanced immune response of rag1(-/-) zebra fish to SVCV lethal infection. Overall, we present evidence that indicates that rag1(-/-) zebra fish acquire an antiviral alert state while they reach adulthood in the absence of adaptive immunity. This antiviral state was characterized by (i) a more rapid response to viral infection, which resulted in increased survival, (ii) the involvement of NK-cell- and macrophage-mediated transcript responses rather than B- and/or T-cell dependent cells, and (iii) enhanced apoptosis, described here for the first time, as well as the similar modulation of multigene family/interferon-related genes previously associated to fish that survived lethal viral infections. From this and other studies, it might

  11. Acquired Complement Regulatory Gene Mutations and Hematopoietic Stem Cell Transplant-Related Thrombotic Microangiopathy.

    PubMed

    Ardissino, Gianluigi; Salardi, Stefania; Berra, Silvia; Colussi, Giacomo; Cugno, Massimo; Zecca, Marco; Giglio, Fabio; Peccatori, Jacopo; Diral, Elisa; Tel, Francesca; Clivio, Alberto; Tedeschi, Silvana

    2017-09-01

    Hematopoietic stem cell transplant-related thrombotic microangiopathy (HSCT-TMA) is a severe complication whose pathophysiology is unknown. We describe 6 patients in which the disease was associated with complement regulatory gene abnormalities received from their respective donors. It is suggested that mutated and transplanted monocyte-derived cells are responsible for production of abnormal proteins, complement dysregulation, and, ultimately, for the disease. This observation might have important drawbacks as far as HSCT-TMA pathophysiology and treatment are concerned. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  12. Gene clusters FDB1 and FDB2 in Fusarium verticillioides were acquired through multiple horizontal gene transfer events

    USDA-ARS?s Scientific Manuscript database

    The corn pathogen Fusarium verticillioides is of significant importance because of its deleterious effects on plant and animal health and on the quality of their products due to mycotoxin contamination. The fungus is known to metabolize antimicrobial compounds produced by corn using genes within t...

  13. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation

    PubMed Central

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru

    2016-01-01

    Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  14. A Laterally Acquired Galactose Oxidase-Like Gene Is Required for Aerial Development during Osmotic Stress in Streptomyces coelicolor

    PubMed Central

    Liman, Recep; Facey, Paul D.; van Keulen, Geertje; Dyson, Paul J.; Del Sol, Ricardo

    2013-01-01

    Phylogenetic reconstruction revealed that most Actinobacterial orthologs of S. coelicolor SCO2837, encoding a metal-dependent galactose oxidase-like protein, are found within Streptomyces and were probably acquired by horizontal gene transfer from fungi. Disruption of SCO2837 (glxA) caused a conditional bld phenotype that could not be reversed by extracellular complementation. Studies aimed at characterising the regulation of expression of glxA showed that it is not a target for other bld genes. We provide evidence that glxA is required for osmotic adaptation, although independently from the known osmotic stress response element SigB. glxA has been predicted to be part of an operon with the transcription unit comprising the upstream cslA gene and glxA. However, both phenotypic and expression studies indicate that it is also expressed from an independent promoter region internal to cslA. GlxA displays an in situ localisation pattern similar to that one observed for CslA at hyphal tips, but localisation of the former is independent of the latter. The functional role of GlxA in relation to CslA is discussed. PMID:23326581

  15. cJun promotes CNS axon growth

    PubMed Central

    Lerch, Jessica K; Martinez, Yania; Bixby, John L; Lemmon, Vance P

    2014-01-01

    A number of genes regulate regeneration of peripheral axons, but their ability to drive axon growth and regeneration in the central nervous system (CNS) remains largely untested. To address this question we overexpressed eight transcription factors and one small GTPase alone and in pairwise combinations to test whether combinatorial overexpression would have a synergistic impact on CNS neuron neurite growth. The Jun oncogene/signal transducer and activator of transcription 6 (JUN/STAT6) combination increased neurite growth in dissociated cortical neurons and in injured cortical slices. In injured cortical slices, JUN overexpression increased axon growth to a similar extent as JUN and STAT6 together. Interestingly, JUN overexpression was not associated with increased growth associated protein 43 (GAP43) or integrin alpha 7 (ITGA7) expression, though these are predicted transcriptional targets. This study demonstrates that JUN overexpression in cortical neurons stimulates axon growth, but does so independently of changes in expression of genes thought to be critical for JUN’s effects on axon growth. We conclude that JUN activity underlies this CNS axonal growth response, and that it is mechanistically distinct from peripheral regeneration responses, in which increases in JUN expression coincide with increases in GAP43 expression. PMID:24521823

  16. How I treat CNS lymphomas

    PubMed Central

    Gupta, Neel K.; Mannis, Gabriel N.; LaMarre, Amanda K.; Treseler, Patrick

    2013-01-01

    The pathogenesis of primary and secondary central nervous system (CNS) lymphoma poses a unique set of diagnostic, prognostic, and therapeutic challenges. During the past 10 years, there has been significant progress in the elucidation of the molecular properties of CNS lymphomas and their microenvironment, as well as evolution in the development of novel treatment strategies. Although a CNS lymphoma diagnosis was once assumed to be uniformly associated with a dismal prognosis, it is now reasonable to anticipate long-term survival, and possibly a cure, for a significant fraction of CNS lymphoma patients. The pathogenesis of CNS lymphomas affects multiple compartments within the neuroaxis, and proper treatment of the CNS lymphoma patient requires a multidisciplinary team with expertise not only in hematology/oncology but also in neurology, neuroradiology, neurosurgery, clinical neuropsychology, ophthalmology, pathology, and radiation oncology. Given the evolving principles of management and the evidence for improvements in survival, our goal is to provide an overview of current knowledge regarding the pathogenesis of CNS lymphomas and to highlight promising strategies that we believe to be most effective in establishing diagnosis, staging, and therapeutic management. PMID:23963042

  17. Genetic diversity of Streptococcus suis isolated from three pig farms of China obtained by acquiring antibiotic resistance genes.

    PubMed

    Huang, Jinhu; Shang, Kexin; Kashif, Jam; Wang, Liping

    2015-05-01

    Acquiring antibiotic resistance genes may change an organism's genetic characteristics and the effect of antibiotics, resulting in a rapid transmission of microbial pathogens. The objectives of this experiment were to identify the features of Streptococcus suis (S. suis) isolated from three pig farms in China which are geographically isolated. Among the isolates, 56.52% were sequence type 7 (ST7), followed by ST1 (26.09%), indicating that ST7 prevails in China, as revealed by multi-locus sequence typing (MLST). Statistical analysis indicated an association between geography, sequence types and antibiotic resistance genotypes. 66.67% of the isolates in Sichuan province presented a (ermB(-) + mefA(-) + tetO(-) + tetM(-)) + ST7 type. The tetM(+) +ST7 type was the most prevalent in Jiangsu province, whereas the strains from Hebei province had a phenotype ermB(+) +tetO(+) +ST1 (63.64%). Pulsed-field gel electrophoresis (PGFE) pattern A2 with 100% similarity reflected the clonal dissemination between Sichuan and Jiangsu provinces. Strains carrying or not carrying antibiotic resistance genes presented different PFGE patterns in Hebei province. ST7 is widespread in many regions of China and a clonal dissemination occurred between Sichuan and Jiangsu provinces in diseased pigs. However, ST1 strains with macrolide and tetracycline resistance (ermB(+) +tetO(+) +ST1) isolated from a farm in Hebei province demonstrated that the genetic diversity was contributed by horizontal acquiring of ermB and tetO carrying elements. © 2014 Society of Chemical Industry.

  18. Utp14b: a unique retrogene within a gene that has acquired multiple promoters and a specific function in spermatogenesis.

    PubMed

    Zhao, Ming; Rohozinski, Jan; Sharma, Manju; Ju, Jun; Braun, Robert E; Bishop, Colin E; Meistrich, Marvin L

    2007-04-15

    The mouse retrogene Utp14b is essential for male fertility, and a mutation in its sequence results in the sterile juvenile spermatogonial depletion (jsd) phenotype. It is a retrotransposed copy of the Utp14a gene, which is located on the X chromosome, and is inserted within an intron of the autosomal acyl-CoA synthetase long-chain family member 3 (Acsl3) gene. To elucidate the roles of the Utp14 genes in normal spermatogenic cell development as a basis for understanding the defects that result in the jsd phenotype, we analyzed the various mRNAs produced from the Utp14b retrogene and their expression in different cell types. Two classes of transcripts were identified: variant 1, a transcript driven by the host gene promoter, that is predominantly found in germ cells but is ubiquitously expressed at low levels; and variants 2-5, a group of alternatively spliced transcripts containing some unique untranslated exons that are transcribed from a novel promoter that is germ-cell-specific. Utp14b (predominantly variant 1) is expressed at moderately high levels in pachytene spermatocytes, the developmental stage at which the expression of the X-linked Utp14a is suppressed. The levels of both classes of Utp14b transcripts were highest in round spermatids despite the transcription of Utp14a in these cells. We propose that when Utp14b initially inserted into Acsl3, it utilized the Acsl3 promoter to drive expression in pachytene spermatocytes to compensate for inactivation of Utp14a expression. The novel cell-type-specific promoter for Utp14b likely evolved later, as the protein may have acquired a germ cell-specific function in spermatid development.

  19. The ancestor of modern Holozoa acquired the CCA-adding enzyme from Alphaproteobacteria by horizontal gene transfer.

    PubMed

    Betat, Heike; Mede, Tobias; Tretbar, Sandy; Steiner, Lydia; Stadler, Peter F; Mörl, Mario; Prohaska, Sonja J

    2015-08-18

    Transfer RNAs (tRNAs) require the absolutely conserved sequence motif CCA at their 3'-ends, representing the site of aminoacylation. In the majority of organisms, this trinucleotide sequence is not encoded in the genome and thus has to be added post-transcriptionally by the CCA-adding enzyme, a specialized nucleotidyltransferase. In eukaryotic genomes this ubiquitous and highly conserved enzyme family is usually represented by a single gene copy. Analysis of published sequence data allows us to pin down the unusual evolution of eukaryotic CCA-adding enzymes. We show that the CCA-adding enzymes of animals originated from a horizontal gene transfer event in the stem lineage of Holozoa, i.e. Metazoa (animals) and their unicellular relatives, the Choanozoa. The tRNA nucleotidyltransferase, acquired from an α-proteobacterium, replaced the ancestral enzyme in Metazoa. However, in Choanoflagellata, the group of Choanozoa that is closest to Metazoa, both the ancestral and the horizontally transferred CCA-adding enzymes have survived. Furthermore, our data refute a mitochondrial origin of the animal tRNA nucleotidyltransferases.

  20. The ancestor of modern Holozoa acquired the CCA-adding enzyme from Alphaproteobacteria by horizontal gene transfer

    PubMed Central

    Betat, Heike; Mede, Tobias; Tretbar, Sandy; Steiner, Lydia; Stadler, Peter F.; Mörl, Mario; Prohaska, Sonja J.

    2015-01-01

    Transfer RNAs (tRNAs) require the absolutely conserved sequence motif CCA at their 3′-ends, representing the site of aminoacylation. In the majority of organisms, this trinucleotide sequence is not encoded in the genome and thus has to be added post-transcriptionally by the CCA-adding enzyme, a specialized nucleotidyltransferase. In eukaryotic genomes this ubiquitous and highly conserved enzyme family is usually represented by a single gene copy. Analysis of published sequence data allows us to pin down the unusual evolution of eukaryotic CCA-adding enzymes. We show that the CCA-adding enzymes of animals originated from a horizontal gene transfer event in the stem lineage of Holozoa, i.e. Metazoa (animals) and their unicellular relatives, the Choanozoa. The tRNA nucleotidyltransferase, acquired from an α-proteobacterium, replaced the ancestral enzyme in Metazoa. However, in Choanoflagellata, the group of Choanozoa that is closest to Metazoa, both the ancestral and the horizontally transferred CCA-adding enzymes have survived. Furthermore, our data refute a mitochondrial origin of the animal tRNA nucleotidyltransferases. PMID:26117543

  1. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    PubMed

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  2. Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes

    PubMed Central

    García-Valtanen, Pablo; Martínez-López, Alicia; López-Muñoz, Azucena; Bello-Perez, Melissa; Medina-Gali, Regla M.; Ortega-Villaizán, María del Mar; Varela, Monica; Figueras, Antonio; Mulero, Víctoriano; Novoa, Beatriz; Estepa, Amparo; Coll, Julio

    2017-01-01

    To investigate fish innate immunity, we have conducted organ and cell immune-related transcriptomic as well as immunohistologic analysis in mutant zebra fish (Danio rerio) lacking adaptive immunity (rag1−/−) at different developmental stages (egg, larvae, and adult), before and after infection with spring viremia carp virus (SVCV). The results revealed that, compared to immunocompetent zebra fish (rag1+/+), rag1−/− acquired increased resistance to SVCV with age, correlating with elevated transcript levels of immune genes in skin/fins and lymphoid organs (head kidney and spleen). Gene sets corresponding to apoptotic functions, immune-related multigene families, and interferon-related genes were constitutively upregulated in uninfected adult rag1−/− zebra fish. Overexpression of activated CASPASE-3 in different tissues before and after infection with SVCV further confirmed increased apoptotic function in rag1−/− zebra fish. Concurrently, staining of different tissue samples with a pan-leukocyte antibody marker showed abundant leukocyte infiltrations in SVCV-infected rag1−/− fish, coinciding with increased transcript expression of genes related to NK-cells and macrophages, suggesting that these genes played a key role in the enhanced immune response of rag1−/− zebra fish to SVCV lethal infection. Overall, we present evidence that indicates that rag1−/− zebra fish acquire an antiviral alert state while they reach adulthood in the absence of adaptive immunity. This antiviral state was characterized by (i) a more rapid response to viral infection, which resulted in increased survival, (ii) the involvement of NK-cell- and macrophage-mediated transcript responses rather than B- and/or T-cell dependent cells, and (iii) enhanced apoptosis, described here for the first time, as well as the similar modulation of multigene family/interferon-related genes previously associated to fish that survived lethal viral infections. From this and other studies

  3. Overcoming H-NS-mediated Transcriptional Silencing of Horizontally Acquired Genes by the PhoP and SlyA Proteins in Salmonella enterica*S⃞

    PubMed Central

    Perez, J. Christian; Latifi, Tammy; Groisman, Eduardo A.

    2008-01-01

    The acquisition of new traits through horizontal gene transfer depends on the ability of the recipient organism to express the incorporated genes. However, foreign DNA appears to be silenced by the histone-like nucleoid-structuring protein (H-NS) in several enteric pathogens, raising the question of how this silencing is overcome and the acquired genes are expressed at the right time and place. To address this question, we investigated transcription of the horizontally acquired ugtL and pagC genes from Salmonella enterica, which is dependent on the regulatory DNA-binding proteins PhoP and SlyA. We reconstituted transcription of the ugtL and pagC genes in vitro and determined occupancy of their respective promoters by PhoP, H-NS, and RNA polymerase in vivo. The SlyA protein counteracted H-NS-promoted repression in vitro but could not promote gene transcription by itself. PhoP-promoted transcription required SlyA when H-NS was present but not in its absence. In vivo, H-NS remained bound to the ugtL and pagC promoters under inducing conditions that promoted RNA polymerase recruitment and transcription of the ugtL and pagC genes. Our results indicate that relief of H-NS repression and recruitment of RNA polymerase are controlled by different regulatory proteins that act in concert to express horizontally acquired genes. PMID:18270203

  4. AAV1/2-mediated CNS gene delivery of dominant-negative CCL2 mutant suppresses gliosis, beta-amyloidosis, and learning impairment of APP/PS1 mice.

    PubMed

    Kiyota, Tomomi; Yamamoto, Masaru; Schroder, Bryce; Jacobsen, Michael T; Swan, Russell J; Lambert, Mary P; Klein, William L; Gendelman, Howard E; Ransohoff, Richard M; Ikezu, Tsuneya

    2009-05-01

    Accumulation of aggregated amyloid-beta (Abeta) peptide was studied as an initial step for Alzheimer's disease (AD) pathogenesis. Following amyloid plaque formation, reactive microglia and astrocytes accumulate around plaques and cause neuroinflammation. Here brain chemokines play a major role for the glial accumulation. We have previously shown that transgenic overexpression of chemokine CCL2 in the brain results in increased microglial accumulation and diffuse amyloid plaque deposition in a transgenic mouse model of AD expressing Swedish amyloid precursor protein (APP) mutant. Here, we report that adeno-associated virus (AAV) serotype 1 and 2 hybrid efficiently deliver 7ND gene, a dominant-negative CCL2 mutant, in a dose-response manner and express >1,000-fold higher recombinant CCL2 than basal levels after a single administration. AAV1/2 hybrid virus principally infected neurons without neuroinflammation with sustained expression for 6-months. 7ND expressed in APP/presenilin-1 (APP/PS1) bigenic mice reduced astro/microgliosis, beta-amyloidosis, including suppression of both fibrillar and oligomer Abeta accumulation, and improved spatial learning. Our data support the idea that the AAV1/2 system is a useful tool for CNS gene delivery, and suppression of CCL2 may be a therapeutic target for the amelioration of AD-related neuroinflammation.

  5. AAV1/2-mediated CNS Gene Delivery of Dominant-negative CCL2 Mutant Suppresses Gliosis, β-amyloidosis, and Learning Impairment of APP/PS1 Mice.

    PubMed

    Kiyota, Tomomi; Yamamoto, Masaru; Schroder, Bryce; Jacobsen, Michael T; Swan, Russell J; Lambert, Mary P; Klein, William L; Gendelman, Howard E; Ransohoff, Richard M; Ikezu, Tsuneya

    2009-05-01

    Accumulation of aggregated amyloid-β (Aβ) peptide was studied as an initial step for Alzheimer's disease (AD) pathogenesis. Following amyloid plaque formation, reactive microglia and astrocytes accumulate around plaques and cause neuroinflammation. Here brain chemokines play a major role for the glial accumulation. We have previously shown that transgenic overexpression of chemokine CCL2 in the brain results in increased microglial accumulation and diffuse amyloid plaque deposition in a transgenic mouse model of AD expressing Swedish amyloid precursor protein (APP) mutant. Here, we report that adeno-associated virus (AAV) serotype 1 and 2 hybrid efficiently deliver 7ND gene, a dominant-negative CCL2 mutant, in a dose-response manner and express >1,000-fold higher recombinant CCL2 than basal levels after a single administration. AAV1/2 hybrid virus principally infected neurons without neuroinflammation with sustained expression for 6-months. 7ND expressed in APP/presenilin-1 (APP/PS1) bigenic mice reduced astro/microgliosis, β-amyloidosis, including suppression of both fibrillar and oligomer Aβ accumulation, and improved spatial learning. Our data support the idea that the AAV1/2 system is a useful tool for CNS gene delivery, and suppression of CCL2 may be a therapeutic target for the amelioration of AD-related neuroinflammation.

  6. Non-Viral, Lipid-Mediated DNA and mRNA Gene Therapy of the Central Nervous System (CNS): Chemical-Based Transfection.

    PubMed

    Hecker, James G

    2016-01-01

    Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Cationic lipid-mediated delivery is an alternative to viral vector-mediated gene delivery. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, because transit across the nuclear membrane is not necessary and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Here, we describe techniques for cationic lipid-mediated delivery of nucleic acids encoding reporter genes in a variety of cell lines. We describe optimized formulations and transfection procedures that we previously assessed by bioluminescence and flow cytometry. RNA transfection demonstrates increased efficiency relative to DNA transfection in non-dividing cells. Delivery of mRNA results in onset of expression within 1 h after transfection and a peak in expression 5-7 h after transfection. Duration of expression in eukaryotic cells after mRNA transcript delivery depends on multiple factors, including transcript stability, protein turnover, and cell type. Delivery of DNA results in onset of expression within 5 h after transfection, a peak in expression 24-48 h after transfection, and a return to baseline that can be as long as several weeks after transfection. In vitro results are consistent with our in vivo delivery results, techniques for which are described as well. RNA delivery is suitable for short-term transient gene expression due to its rapid onset, short duration of expression and greater efficiency, particularly in non-dividing cells, while the longer duration and

  7. Transgenic Petunia with the Iron(III)-Phytosiderophore Transporter Gene Acquires Tolerance to Iron Deficiency in Alkaline Environments

    PubMed Central

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2′-deoxymugineic acid complex, free 2′-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2′-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to

  8. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development.

    PubMed

    Howerton, Christopher L; Morgan, Christopher P; Fischer, David B; Bale, Tracy L

    2013-03-26

    Maternal stress is a key risk factor for neurodevelopmental disorders, including schizophrenia and autism, which often exhibit a sex bias in rates of presentation, age of onset, and symptom severity. The placenta is an endocrine tissue that functions as an important mediator in responding to perturbations in the intrauterine environment and is accessible for diagnostic purposes, potentially providing biomarkers predictive of disease. Therefore, we have used a genome-wide array approach to screen placental expression across pregnancy for gene candidates that are sex-biased and stress-responsive in mice and translate to human tissue. We identifed O-linked-N-acetylglucosamine (O-GlcNAc) transferase (OGT), an X-linked gene important in regulating proteins involved in chromatin remodeling, as fitting these criteria. Levels of both OGT and its biochemical mark, O-GlcNAcylation, were significantly lower in males and further reduced by prenatal stress. Examination of human placental tissue found similar patterns related to X chromosome dosage. As a demonstration of the importance of placental OGT in neurodevelopment, we found that hypothalamic gene expression and the broad epigenetic microRNA environment in the neonatal brain of placental-specific hemizygous OGT mice was substantially altered. These studies identified OGT as a promising placental biomarker of maternal stress exposure that may relate to sex-biased outcomes in neurodevelopment.

  9. Multiple Notch signaling events control Drosophila CNS midline neurogenesis, gliogenesis and neuronal identity

    PubMed Central

    Wheeler, Scott R.; Stagg, Stephanie B.; Crews, Stephen T.

    2009-01-01

    The study of how transcriptional control and cell signaling influence neurons and glia to acquire their differentiated properties is fundamental to understanding CNS development and function. The Drosophila CNS midline cells are an excellent system for studying these issues because they consist of a small population of diverse cells with well-defined gene expression profiles. In this paper, the origins and differentiation of midline neurons and glia were analyzed. Midline precursor (MP) cells each divide once giving rise to two neurons; here, we use a combination of single-cell gene expression mapping and time-lapse imaging to identify individual MPs, their locations, movements and stereotyped patterns of division. The role of Notch signaling was investigated by analyzing 37 midline-expressed genes in Notch pathway mutant and misexpression embryos. Notch signaling had opposing functions: it inhibited neurogenesis in MP1,3,4 and promoted neurogenesis in MP5,6. Notch signaling also promoted midline glial and median neuroblast cell fate. This latter result suggests that the median neuroblast resembles brain neuroblasts that require Notch signaling, rather than nerve cord neuroblasts, the formation of which is inhibited by Notch signaling. Asymmetric MP daughter cell fates also depend on Notch signaling. One member of each pair of MP3–6 daughter cells was responsive to Notch signaling. By contrast, the other daughter cell asymmetrically acquired Numb, which inhibited Notch signaling, leading to a different fate choice. In summary, this paper describes the formation and division of MPs and multiple roles for Notch signaling in midline cell development, providing a foundation for comprehensive molecular analyses. PMID:18701546

  10. Basic Concepts of CNS Development.

    ERIC Educational Resources Information Center

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  11. Basic Concepts of CNS Development.

    ERIC Educational Resources Information Center

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  12. Pathology of CNS parasitic infections.

    PubMed

    Pittella, José Eymard Homem

    2013-01-01

    Parasitic infections of the central nervous system (CNS) include two broad categories of infectious organisms: single-celled protozoa and multicellular metazoa. The protozoal infections include malaria, American trypanosomiasis, human African trypanosomiasis, toxoplasmosis, amebiasis, microsporidiasis, and leishmaniasis. The metazoal infections are grouped into flatworms, which include trematoda and cestoda, and roundworms or nematoda. Trematoda infections include schistosomiasis and paragonimiasis. Cestoda infections include cysticercosis, coenurosis, hydatidosis, and sparganosis. Nematoda infections include gnathostomiasis, angiostrongyliasis, toxocariasis, strongyloidiasis, filariasis, baylisascariasis, dracunculiasis, micronemiasis, and lagochilascariasis. The most common route of CNS invasion is through the blood. In some cases, the parasite invades the olfactory neuroepithelium in the nasal mucosa and penetrates the brain via the subarachnoid space or reaches the CNS through neural foramina of the skull base around the cranial nerves or vessels. The neuropathological changes vary greatly, depending on the type and size of the parasite, geographical strain variations in parasitic virulence, immune evasion by the parasite, and differences in host immune response. Congestion of the leptomeninges, cerebral edema, hemorrhage, thrombosis, vasculitis, necrosis, calcification, abscesses, meningeal and perivascular polymorphonuclear and mononuclear inflammatory infiltrate, microglial nodules, gliosis, granulomas, and fibrosis can be found affecting isolated or multiple regions of the CNS, or even diffusely spread. Some infections may be present as an expanding mass lesion. The parasites can be identified by conventional histology, immunohistochemistry, in situ hybridization, and PCR. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Molecular diagnostics of CNS embryonal tumors.

    PubMed

    Pfister, Stefan M; Korshunov, Andrey; Kool, Marcel; Hasselblatt, Martin; Eberhart, Charles; Taylor, Michael D

    2010-11-01

    Tremendous progress has recently been made in both molecular subgrouping, and the establishment of prognostic biomarkers for embryonal brain tumors, particularly medulloblastoma. Several prognostic biomarkers that were initially identified in retrospective cohorts of medulloblastoma, including MYC and MYCN amplification, nuclear β-catenin accumulation, and chromosome 17 aberrations have now been validated in clinical trials. Moreover, molecular subgroups based on distinct transcriptome profiles have been consistently reported from various groups on different platforms demonstrating that the concept of distinct medulloblastoma subgroups is very robust. Well-described subgroups of medulloblastomas include tumors showing wingless signaling pathway (Wnt) activation, and another characterized by sonic hedgehog pathway activity. Two or more additional subgroups were consistently reported to contain the vast majority of high-risk tumors, including most tumors with metastatic disease at diagnosis and/or large cell/anaplastic histology. Several years ago, atypical teratoid rhabdoid tumor (AT/RT) was recognized as a separate entity based on its distinct biology and particularly aggressive clinical behavior. These tumors may occur supra or infratentorially and are usually found to have genetic alterations of SMARCB1 (INI1/hSNF5), a tumor suppressor gene located on chromosome 22q. Subsequent loss of SMARCB1 protein expression comprises a relatively specific and sensitive diagnostic marker for AT/RT. For CNS primitive neuroectodermal tumors (CNS PNETs), a consistent finding has been that they are molecularly distinct from medulloblastoma. Furthermore, a distinct fraction of CNS PNETs with particularly poor prognosis only occurring in young children was delineated, which was previously labeled ependymoblastoma or embryonal tumor with abundant neuropil and true rosettes (ETANTR) and which is morphologically characterized by the presence of multilayered "ependymoblastic" rosettes

  14. CNS demyelination in autoimmune diseases.

    PubMed

    Brinar, Vesna V; Petelin, Zeljka; Brinar, Marko; Djaković, Visnja; Zadro, Ivana; Vranjes, Davorka

    2006-03-01

    Autoimmune diseases represent a diverse group of disorders that have generally of unknown etiology and poorly understood pathogenesis. They may be organ-specific or systemic, giving rise to overlapping syndromes; more than one autoimmune disease may occur in the same patient. Numerous case reports have documented that multiple sclerosis (MS) may be present concurrently with other autoimmune diseases, most commonly rheumatoid arthritis, autoimmune thyroid disease, type I diabetes mellitus and pernicious anemia. Case reports of disseminated encephalomyelitis (DEM) coincidental with other autoimmune diseases are rare. Many of systemic autoimmune diseases cause central nervous system (CNS) demyelination and are frequently then diagnosed as MS, whereas they often are instances of DEM, the result of vascular, granulomatous or postinfectious manifestations. We have reviewed 15 patients with autoimmune diseases and CNS demyelination in order to determine the nature of the demyelinating process.

  15. Prospects for the development of epigenetic drugs for CNS conditions.

    PubMed

    Szyf, Moshe

    2015-07-01

    Advances in our understanding of the epigenetic mechanisms that control gene expression in the central nervous system (CNS) and their role in neuropsychiatric disorders are paving the way for a potential new therapeutic approach that is focused on reversing the epigenetic underpinnings of neuropsychiatric conditions. In this article, the complexity of epigenetic processes and the current level of proof for their involvement in CNS disorders are discussed. The preclinical evidence for efficacy of pharmacological approaches that target epigenetics in the CNS and the particular challenges of this approach are also examined. Finally, strategies to address these challenges through the development of improved evidence-based epigenetic therapeutics and through combining pharmacological and behavioural approaches are presented.

  16. Can injured adult CNS axons regenerate by recapitulating development?

    PubMed

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  17. Acquired resistance of pancreatic cancer cells to cisplatin is multifactorial with cell context-dependent involvement of resistance genes

    PubMed Central

    Mezencev, R; Matyunina, L V; Wagner, G T; McDonald, J F

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal of malignancies, in large measure, due to the propensity of PDAC cells to acquire resistance to chemotherapeutic agents. A better understanding of the molecular basis of acquired resistance is a major focus of contemporary PDAC research. We report here the results of a study to independently develop cisplatin resistance in two distinct parental PDAC cell lines, AsPC1 and BxPC3, and to subsequently examine the molecular mechanisms associated with the acquired resistance. Cisplatin resistance in both resistant cell lines was found to be multifactorial and to be associated with mechanisms related to drug transport, drug inactivation, DNA damage response, DNA repair and the modulation of apoptosis. Our results demonstrate that the two resistant cell lines employed alternative molecular strategies in acquiring resistance dictated, in part, by pre-existing molecular differences between the parental cell lines. Collectively, our findings indicate that strategies to inhibit or reverse acquired resistance of PDAC cells to cisplatin, and perhaps other chemotherapeutic agents, may not be generalized but will require individual molecular profiling and analysis to be effective. PMID:27910856

  18. Occurrence and analysis of irp2 virulence gene in isolates of Klebsiella pneumoniae and Enterobacter spp. from microbiota and hospital and community-acquired infections.

    PubMed

    Souza Lopes, Ana Catarina; Rodrigues, Juliana Falcão; Cabral, Adriane Borges; da Silva, Maíra Espíndola; Leal, Nilma Cintra; da Silveira, Vera Magalhães; de Morais Júnior, Marcos Antônio

    2016-07-01

    Eighty-five isolates of Klebsiella pneumoniae and Enterobacter spp., originating from hospital- and community-acquired infections and from oropharyngeal and faecal microbiota from patients in Recife-PE, Brazil, were analyzed regarding the presence of irp2 gene. This is a Yersinia typical gene involved in the synthesis of siderophore yersiniabactin. DNA sequencing confirmed the identity of irp2 gene in five K. pneumoniae, five Enterobacter aerogenes and one Enterobacter amnigenus isolates. To our knowledge in the current literature, this is the first report of the irp2 gene in E. amnigenus, a species considered an unusual human pathogen, and in K. pneumoniae and E. aerogenes isolates from the normal microbiota and from community infections, respectively. Additionally, the analyses of nucleotide and amino acid sequences suggest the irp2 genes derived from isolates used in this study are more closely related to that of Yersinia pestis P.CE882 than to that of Yersinia enterocolitica 8081. These data demonstrated that K. pneumoniae and Enterobacter spp. from normal microbiota and from community- and hospital-acquired infections possess virulence factors important for the establishment of extra-intestinal infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. CNS reservoirs for HIV: implications for eradication.

    PubMed

    Hellmuth, Joanna; Valcour, Victor; Spudich, Serena

    2015-04-01

    Controversy exists as to whether the central nervous system (CNS) serves as a reservoir site for HIV, in part reflecting the varying perspectives on what constitutes a 'reservoir' versus a mere site of latent viral integration. However, if the CNS proves to be a site of HIV persistence capable of replicating and reseeding the periphery, leading to failure of virological control, this privileged anatomical site would need dedicated consideration during the development of HIV cure strategies. In this review we discuss the current literature focused on the question of the CNS as a reservoir for HIV, covering the clinical evidence for continued CNS involvement despite suppressive therapy, the theorised dynamics of HIV integration into the CNS, as well as studies indicating that HIV can replicate independently and compartmentalise in the CNS. The unique cellular and anatomical sites of HIV integration in the CNS are also reviewed, as are the potential implications for HIV cure strategies.

  20. Multiple occurrences of giant virus core genes acquired by eukaryotic genomes: the visible part of the iceberg?

    PubMed

    Filée, Jonathan

    2014-10-01

    Giant Viruses are a widespread group of viruses, characterized by huge genomes composed of a small subset of ancestral, vertically inherited core genes along with a large body of highly variable genes. In this study, I report the acquisition of 23 core ancestral Giant Virus genes by diverse eukaryotic species including various protists, a moss and a cnidarian. The viral genes are inserted in large scaffolds or chromosomes with intron-rich, eukaryotic-like genomic contexts, refuting the possibility of DNA contaminations. Some of these genes are expressed and in the cryptophyte alga Guillardia theta, a possible non-homologous displacement of the eukaryotic DNA primase by a viral D5 helicase/primase is documented. As core Giant Virus genes represent only a tiny fraction of the total genomic repertoire of these viruses, these results suggest that Giant Viruses represent an underestimated source of new genes and functions for their hosts. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease.

    PubMed

    Logan, Grant J; de Alencastro, Gustavo; Alexander, Ian E; Yeoh, George C

    2014-11-01

    The number of genetic or acquired diseases of the liver treatable by organ transplantation is ever-increasing as transplantation techniques improve placing additional demands on an already limited organ supply. While cell and gene therapies are distinctly different modalities, they offer a synergistic alternative to organ transplant due to distinct architectural and physiological properties of the liver. The hepatic blood supply and fenestrated endothelial system affords relatively facile accessibility for cell and/or gene delivery. More importantly, however, the remarkable capacity of hepatocytes to proliferate and repopulate the liver creates opportunities for new treatments based on emerging technologies. This review will summarise current understanding of liver regeneration, describe clinical and experimental cell and gene therapeutic modalities and discuss critical challenges to translate these new technologies to wider clinical utility. This article is part of a Directed Issue entitled: "Regenerative Medicine: the challenge of translation".

  2. Gas Diffusion in the CNS.

    PubMed

    Rodriguez-Grande, Beatriz; Konsman, Jan-Pieter

    2017-05-15

    Gases have been long known to have essential physiological functions in the CNS such as respiration or regulation of vascular tone. Since gases have been classically considered to freely diffuse, research in gas biology has so far focused on mechanisms of gas synthesis and gas reactivity, rather than gas diffusion and transport. However, the discovery of gas pores during the last two decades and the characterization of diverse diffusion patterns through different membranes has raised the possibility that modulation of gas diffusion is also a physiologically relevant parameter. Here we review the means of gas movement into and within the brain through "free" diffusion and gas pores, notably aquaporins, discussing the role that gas diffusion may play in the modulation of gas function. We highlight how diffusion is relevant to neuronal signaling, volume transmission, and cerebrovascular control in the case of NO, one of the most extensively studied gases. We point out how facilitated transport can be especially relevant for gases with low permeability in lipid membranes like NH3 and discuss the possible implications of NH3 -permeable channels in physiology and hyperammonemic encephalopathy. We identify novel research questions about how modulation of gas diffusion could intervene in CNS pathologies. This emerging area of research can provide novel and interesting insights in the field of gas biology. © 2017 Wiley Periodicals, Inc.

  3. Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage

    PubMed Central

    Leijten, Jeroen C. H.; Decker, Eva; Sticht, Carsten; van Houwelingen, Johannes C.; Goeman, Jelle J.; Kleijburg, Carin; Scherjon, Sicco A.; Gretz, Norbert; Wit, Jan Maarten; Rappold, Gudrun; Post, Janine N.; Karperien, Marcel

    2012-01-01

    We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development. PMID:23144774

  4. Acquired hyperpigmentations*

    PubMed Central

    Cestari, Tania Ferreira; Dantas, Lia Pinheiro; Boza, Juliana Catucci

    2014-01-01

    Cutaneous hyperpigmentations are frequent complaints, motivating around 8.5% of all dermatological consultations in our country. They can be congenital, with different patterns of inheritance, or acquired in consequence of skin problems, systemic diseases or secondary to environmental factors. The vast majority of them are linked to alterations on the pigment melanin, induced by different mechanisms. This review will focus on the major acquired hyperpigmentations associated with increased melanin, reviewing their mechanisms of action and possible preventive measures. Particularly prominent aspects of diagnosis and therapy will be emphasized, with focus on melasma, post-inflammatory hyperpigmentation, periorbital pigmentation, dermatosis papulosa nigra, phytophotodermatoses, flagellate dermatosis, erythema dyschromicum perstans, cervical poikiloderma (Poikiloderma of Civatte), acanthosis nigricans, cutaneous amyloidosis and reticulated confluent dermatitis PMID:24626644

  5. Palmitoylethanolamide in CNS health and disease.

    PubMed

    Mattace Raso, Giuseppina; Russo, Roberto; Calignano, Antonio; Meli, Rosaria

    2014-08-01

    The existence of acylethanolamides (AEs) in the mammalian brain has been known for decades. Among AEs, palmitoylethanolamide (PEA) is abundant in the central nervous system (CNS) and conspicuously produced by neurons and glial cells. Antihyperalgesic and neuroprotective properties of PEA have been mainly related to the reduction of neuronal firing and to control of inflammation. Growing evidence suggest that PEA may be neuroprotective during CNS neurodegenerative diseases. Advances in the understanding of the physiology and pharmacology of PEA have potentiated its interest as useful biological tool for disease management. Several rapid non-genomic and delayed genomic mechanisms of action have been identified for PEA as peroxisome proliferator-activated receptor (PPAR)-α dependent. First, an early molecular control, through Ca(+2)-activated intermediate- and/or big-conductance K(+) channels opening, drives to rapid neuronal hyperpolarization. This is reinforced by the increase of the inward Cl(-) currents due to the modulation of the gamma aminobutyric acid A receptor and by the desensitization of the transient receptor potential channel type V1. Moreover, the gene transcription-mediated mechanism sustains the long-term anti-inflammatory effects, by reducing pro-inflammatory enzyme expression and increasing neurosteroid synthesis. Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis. In this review, we will discuss the effect of PEA on metabolism, behavior, inflammation and pain perception, related to the control of central functions and the emerging evidence demonstrating its therapeutic efficacy in several neurodegenerative diseases.

  6. Requirements for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise

    2017-01-01

    Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.

  7. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    SciTech Connect

    Doi, Nobutaka; Ogawa, Ryohei; Cui, Zheng-Guo; Morii, Akihiro; Watanabe, Akihiko; Kanayama, Shinji; Yoneda, Yuko; Kondo, Takashi

    2015-05-01

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl{sub 2} confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype.

  8. Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes.

    PubMed

    Wägele, Heike; Deusch, Oliver; Händeler, Katharina; Martin, Rainer; Schmitt, Valerie; Christa, Gregor; Pinzger, Britta; Gould, Sven B; Dagan, Tal; Klussmann-Kolb, Annette; Martin, William

    2011-01-01

    Sacoglossan sea slugs are unique in the animal kingdom in that they sequester and maintain active plastids that they acquire from the siphonaceous algae upon which they feed, making the animals photosynthetic. Although most sacoglossan species digest their freshly ingested plastids within hours, four species from the family Plakobranchidae retain their stolen plastids (kleptoplasts) in a photosynthetically active state on timescales of weeks to months. The molecular basis of plastid maintenance within the cytosol of digestive gland cells in these photosynthetic metazoans is yet unknown but is widely thought to involve gene transfer from the algal food source to the slugs based upon previous investigations of single genes. Indeed, normal plastid development requires hundreds of nuclear-encoded proteins, with protein turnover in photosystem II in particular known to be rapid under various conditions. Moreover, only algal plastids, not the algal nuclei, are sequestered by the animals during feeding. If algal nuclear genes are transferred to the animal either during feeding or in the germ line, and if they are expressed, then they should be readily detectable with deep-sequencing methods. We have sequenced expressed mRNAs from actively photosynthesizing, starved individuals of two photosynthetic sea slug species, Plakobranchus ocellatus Van Hasselt, 1824 and Elysia timida Risso, 1818. We find that nuclear-encoded, algal-derived genes specific to photosynthetic function are expressed neither in P. ocellatus nor in E. timida. Despite their dramatic plastid longevity, these photosynthetic sacoglossan slugs do not express genes acquired from algal nuclei in order to maintain plastid function.

  9. Transcriptomic Evidence That Longevity of Acquired Plastids in the Photosynthetic Slugs Elysia timida and Plakobranchus ocellatus Does Not Entail Lateral Transfer of Algal Nuclear Genes

    PubMed Central

    Wägele, Heike; Deusch, Oliver; Händeler, Katharina; Martin, Rainer; Schmitt, Valerie; Christa, Gregor; Pinzger, Britta; Gould, Sven B.; Dagan, Tal; Klussmann-Kolb, Annette; Martin, William

    2011-01-01

    Sacoglossan sea slugs are unique in the animal kingdom in that they sequester and maintain active plastids that they acquire from the siphonaceous algae upon which they feed, making the animals photosynthetic. Although most sacoglossan species digest their freshly ingested plastids within hours, four species from the family Plakobranchidae retain their stolen plastids (kleptoplasts) in a photosynthetically active state on timescales of weeks to months. The molecular basis of plastid maintenance within the cytosol of digestive gland cells in these photosynthetic metazoans is yet unknown but is widely thought to involve gene transfer from the algal food source to the slugs based upon previous investigations of single genes. Indeed, normal plastid development requires hundreds of nuclear-encoded proteins, with protein turnover in photosystem II in particular known to be rapid under various conditions. Moreover, only algal plastids, not the algal nuclei, are sequestered by the animals during feeding. If algal nuclear genes are transferred to the animal either during feeding or in the germ line, and if they are expressed, then they should be readily detectable with deep-sequencing methods. We have sequenced expressed mRNAs from actively photosynthesizing, starved individuals of two photosynthetic sea slug species, Plakobranchus ocellatus Van Hasselt, 1824 and Elysia timida Risso, 1818. We find that nuclear-encoded, algal-derived genes specific to photosynthetic function are expressed neither in P. ocellatus nor in E. timida. Despite their dramatic plastid longevity, these photosynthetic sacoglossan slugs do not express genes acquired from algal nuclei in order to maintain plastid function. PMID:20829345

  10. A case of familial transmission of community-acquired methicillin-resistant Staphylococcus aureus carrying the Inu(A) gene in Santa Fe city, Argentina.

    PubMed

    Méndez, Emilce de Los A; Roldán, María L; Baroni, María R; Mendosa, María A; Cristóbal, Sabrina A; Virgolini, Stella M; Faccone, Diego

    2012-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is increasingly recognized as an important pathogen causing skin and soft tissue infections as well as necrotizing pneumonia. We describe a case of familial transmission of CA-MRSA between a 6-month-old boy and his mother in Santa Fe City, Argentina. Both isolates showed an identical antimicrobial susceptibility profile, carried type IV SCCmec and harboured the pvl and the lnu(A) genes. Isolates showed indistinguishable SmaI-PFGE patterns confirming their genetic relationship. These results corroborate the intrafamilial transmission of CA-MRSA and might associate this strain with the repetitive events of furunculosis within the family.

  11. High Polyhydroxybutyrate Production in Pseudomonas extremaustralis Is Associated with Differential Expression of Horizontally Acquired and Core Genome Polyhydroxyalkanoate Synthase Genes

    PubMed Central

    Catone, Mariela V.; Ruiz, Jimena A.; Castellanos, Mildred; Segura, Daniel; Espin, Guadalupe; López, Nancy I.

    2014-01-01

    Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB), a short chain length polyhydroxyalkanoate (sclPHA) infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA). All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI) associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC) in comparison with the mclPHA core genome genes (phaC1 and phaC2) indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases. PMID:24887088

  12. Co-existence of clonal expanded autologous and transplacental-acquired maternal T cells in recombination activating gene-deficient severe combined immunodeficiency

    PubMed Central

    Lev, A; Simon, A J; Ben-Ari, J; Takagi, D; Stauber, T; Trakhtenbrot, L; Rosenthal, E; Rechavi, G; Amariglio, N; Somech, R

    2014-01-01

    It is commonly accepted that the presence of high amounts of maternal T cells excludes Omenn syndrome (OS) in severe combined immunodeficiency (SCID). We report a SCID patient with a novel mutation in the recombination activating gene (RAG)1 gene (4-BP DEL.1406 TTGC) who presented with immunodeficiency and OS. Several assays, including representatives of specific T cell receptors (TCR), Vβ families and TCR-γ rearrangements, were performed in order to understand more clearly the nature and origin of the patient's T cells. The patient had oligoclonal T cells which, based on the patient–mother human leucocyte antigen (HLA)-B50 mismatch, were either autologous or of maternal origin. These cell populations were different in their numbers of regulatory T cells (Treg) and the diversity of TCR repertoires. This is the first description of the co-existence of large amounts of clonal expanded autologous and transplacental-acquired maternal T cells in RAG1-deficient SCID. PMID:24666246

  13. Co-existence of clonal expanded autologous and transplacental-acquired maternal T cells in recombination activating gene-deficient severe combined immunodeficiency.

    PubMed

    Lev, A; Simon, A J; Ben-Ari, J; Takagi, D; Stauber, T; Trakhtenbrot, L; Rosenthal, E; Rechavi, G; Amariglio, N; Somech, R

    2014-06-01

    It is commonly accepted that the presence of high amounts of maternal T cells excludes Omenn syndrome (OS) in severe combined immunodeficiency (SCID). We report a SCID patient with a novel mutation in the recombination activating gene (RAG)1 gene (4-BP DEL.1406 TTGC) who presented with immunodeficiency and OS. Several assays, including representatives of specific T cell receptors (TCR), Vβ families and TCR-γ rearrangements, were performed in order to understand more clearly the nature and origin of the patient's T cells. The patient had oligoclonal T cells which, based on the patient-mother human leucocyte antigen (HLA)-B50 mismatch, were either autologous or of maternal origin. These cell populations were different in their numbers of regulatory T cells (T(reg)) and the diversity of TCR repertoires. This is the first description of the co-existence of large amounts of clonal expanded autologous and transplacental-acquired maternal T cells in RAG1-deficient SCID.

  14. Tandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor

    PubMed Central

    Huang, Chien Yu; Chen, Pei-Ying; Huang, Ming-Der; Tsou, Chih-Hua; Jane, Wann-Neng; Huang, Anthony H. C.

    2013-01-01

    During evolution, genomes expanded via whole-genome, segmental, tandem, and individual-gene duplications, and the emerged redundant paralogs would be eliminated or retained owing to selective neutrality or adaptive benefit and further functional divergence. Here we show that tandem paralogs can contribute adaptive quantitative benefit and thus have been retained in a lineage-specific manner. In Brassicaceae, a tandem oleosin gene cluster of five to nine paralogs encodes ample tapetum-specific oleosins located in abundant organelles called tapetosomes in flower anthers. Tapetosomes coordinate the storage of lipids and flavonoids and their transport to the adjacent maturing pollen as the coat to serve various functions. Transfer-DNA and siRNA mutants of Arabidopsis thaliana with knockout and knockdown of different tandem oleosin paralogs had quantitative and correlated loss of organized structures of the tapetosomes, pollen-coat materials, and pollen tolerance to dehydration. Complementation with the knockout paralog restored the losses. Cleomaceae is the family closest to Brassicaceae. Cleome species did not contain the tandem oleosin gene cluster, tapetum oleosin transcripts, tapetosomes, or pollen tolerant to dehydration. Cleome hassleriana transformed with an Arabidopsis oleosin gene for tapetum expression possessed primitive tapetosomes and pollen tolerant to dehydration. We propose that during early evolution of Brassicaceae, a duplicate oleosin gene mutated from expression in seed to the tapetum. The tapetum oleosin generated primitive tapetosomes that organized stored lipids and flavonoids for their effective transfer to the pollen surface for greater pollen vitality. The resulting adaptive benefit led to retention of tandem-duplicated oleosin genes for production of more oleosin and modern tapetosomes. PMID:23940319

  15. Magic shotgun methods for developing drugs for CNS disorders.

    PubMed

    Musk, Philip

    2004-10-01

    Extract: Development of novel therapeutic entities with which to treat disorders of the central nervous system (CNS) that are both more effective and more specific, poses significant challenges to the drug discovery industry. The normal focus of drug research is the search for a "magic bullet," which acts on a specific protein (or receptor), ideally with no other interactions with other proteins. These are termed "clean" drugs, as they have a single action with few side effects. However, most common CNS disorders are highly polygenic in nature, i.e., they are controlled by complex interactions between numerous gene products. As such, these conditions do not exhibit the single gene defect basis that is so attractive for the development of highly-specific drugs largely free of major undesirable side effects ("the magic bullet"). Secondly, the exact nature of the interactions that occur between the numerous gene products typically involved in CNS disorders remain elusive, and the biological mechanisms underlying mental illnesses are poorly understood.

  16. Antibacterial resistance, genes encoding toxins and genetic background among Staphylococcus aureus isolated from community-acquired skin and soft tissue infections in France: a national prospective survey.

    PubMed

    Lamy, B; Laurent, F; Gallon, O; Doucet-Populaire, F; Etienne, J; Decousser, J-W

    2012-06-01

    The epidemiology of staphylococcal community-acquired skin and soft tissues infections (CA-SSTIs) has changed dramatically. We described prospectively the characteristics of the Staphylococcus aureus isolated from 71 non-teaching French hospitals and implicated in CA-SSTIs: antimicrobial susceptibility (mecA polymerase chain reaction [PCR], disk diffusion method), virulence factor gene (sea, tst, pvl) prevalence and genetic background (agr allele). During November 2006, 235 strains were collected (wound infection: 51%, abscess: 21%, whitlow: 8%, diabetic foot: 7%, furunculosis: 3%). sea, tst and pvl were identified in 22.1, 13.2 and 8.9% strains, respectively. agr allele 1 was the most frequently encountered genetic background, whatever the methicillin susceptibility. Among the 34 methicillin-resistant S. aureus (MRSA, 14.5% of all S. aureus), only one strain (2.9%) harboured pvl (belonging to the European ST80 clone), four (11.8%) tst (belonging to two endemic French clones) and 18 (52.9%) sea gene (mainly the Lyon clone). According to their in vitro activity, pristinamycin or trimethoprim/sulfamethoxazole could be considered as first-choice antibiotics. To date, the international pvl-positive MRSA clones have not spread in France. MRSA strains isolated from putative CA-SSTIs exhibited a genetic and phenotypic background of hospital-acquired (HA) clones. National survey should be continued, in order to monitor the emergence of virulent clones.

  17. Web-based networking in CNS education.

    PubMed

    Owens, Jacqueline K; Jacobson, Ann F; Flenoury, Yolanda; Hughes, Suzanne; Long, Patricia; Thornton, Marleen; Weinberg, Maria

    2005-01-01

    An important component of the clinical nurse specialist (CNS) educational program involves anticipatory guidance for students assimilating the CNS role. This article describes a strategy for facilitating this transition through online discussion about CNS practice among students and experienced CNSs. Six students in the final semester of their CNS program and 5 CNSs from across the country used the WebCT platform to participate in an online learning experience. This article outlines the process of structuring an online discussion, soliciting an expert panel, and preparing the participants. Students' concerns and panelists' responses are presented. Themes that emerged from students' questions to the panelists were certification and title protection; developing a career trajectory, including tips for interviewing and negotiation; and current and future trends in CNS practice. Benefits to participants are described, as well as suggestions for using Web-based discussion in other applications.

  18. Revisiting the concept of CNS immune privilege

    PubMed Central

    Louveau, Antoine; Harris, Tajie H.; Kipnis, Jonathan

    2015-01-01

    Whereas the study of the interactions between the immune system and the central nervous system (CNS) has often focused on pathological conditions, the importance of neuroimmune communication in CNS homeostasis and function has become clear over that last two decades. Here we discuss the progression of our understanding of the interaction between the peripheral immune system and the CNS. We examine the notion of immune privilege of the CNS in light of both earlier findings and recent studies revealing a functional meningeal lymphatic system that drains cerebrospinal fluid (CSF) to the deep cervical lymph nodes, and consider the implications of a revised perspective on the immune privilege of the CNS on the etiology and pathology of different neurological disorders. PMID:26431936

  19. Trypanosoma cruzi meningoencephalitis in a patient with acquired immunodeficiency syndrome.

    PubMed

    Yasukawa, Kosuke; Patel, Shital M; Flash, Charlene A; Stager, Charles E; Goodman, Jerry C; Woc-Colburn, Laila

    2014-07-01

    As a result of global migration, a significant number of people with Trypanosoma cruzi infection now live in the United States, Canada, many countries in Europe, and other non-endemic countries. Trypanosoma cruzi meningoencephalitis is a rare cause of ring-enhancing lesions in patients with acquired immunodeficiency syndrome (AIDS) that can closely mimic central nervous system (CNS) toxoplasmosis. We report a case of CNS Chagas reactivation in an AIDS patient successfully treated with benznidazole and antiretroviral therapy in the United States.

  20. Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum.

    PubMed

    Lee, Sung Chul; Hwang, Byung Kook

    2005-08-01

    The inoculation of primary pepper leaves with an avirulent strain of Xanthomonas campestris pv. vesicatoria induced systemic acquired resistance (SAR) in the non-inoculated, secondary leaves. This SAR response was accompanied by the systemic expression of the defense-related genes, a systemic microoxidative burst generating H2O2, and the systemic induction of both ion-leakage and callose deposition in the non-inoculated, secondary leaves. Some defense-related genes including those encoding PR-1, chitinase, osmotin, peroxidase, PR10, thionin, and SAR8.2 were markedly induced in the systemic leaves. The conspicuous systemic accumulation of H2O2 and the strong increase in peroxidase activity in the pepper leaves was suggested to play a role in the cell death process in the systemic micro-hypersensitive responses (HR), leading to the induction of the SAR. Treatment of the primary leaves with diphenylene iodinium (DPI), an inhibitor of oxidative burst, substantially reduced the induction of some of the defense-related genes, and lowered the activation of the oxidative bursts in the systemic leaves distant from the site of the avirulent pathogen inoculation and subsequently SAR. Overall, these results suggest that the induction of some defense-related genes as well as a rapid increase in oxidative burst is essential for establishing SAR in pepper plants.

  1. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  2. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients

    PubMed Central

    Howe, Steven J.; Mansour, Marc R.; Schwarzwaelder, Kerstin; Bartholomae, Cynthia; Hubank, Michael; Kempski, Helena; Brugman, Martijn H.; Pike-Overzet, Karin; Chatters, Stephen J.; de Ridder, Dick; Gilmour, Kimberly C.; Adams, Stuart; Thornhill, Susannah I.; Parsley, Kathryn L.; Staal, Frank J.T.; Gale, Rosemary E.; Linch, David C.; Bayford, Jinhua; Brown, Lucie; Quaye, Michelle; Kinnon, Christine; Ancliff, Philip; Webb, David K.; Schmidt, Manfred; von Kalle, Christof; Gaspar, H. Bobby; Thrasher, Adrian J.

    2008-01-01

    X-linked SCID (SCID-X1) is amenable to correction by gene therapy using conventional gammaretroviral vectors. Here, we describe the occurrence of clonal T cell acute lymphoblastic leukemia (T-ALL) promoted by insertional mutagenesis in a completed gene therapy trial of 10 SCID-X1 patients. Integration of the vector in an antisense orientation 35 kb upstream of the protooncogene LIM domain only 2 (LMO2) caused overexpression of LMO2 in the leukemic clone. However, leukemogenesis was likely precipitated by the acquisition of other genetic abnormalities unrelated to vector insertion, including a gain-of-function mutation in NOTCH1, deletion of the tumor suppressor gene locus cyclin-dependent kinase 2A (CDKN2A), and translocation of the TCR-β region to the STIL-TAL1 locus. These findings highlight a general toxicity of endogenous gammaretroviral enhancer elements and also identify a combinatorial process during leukemic evolution that will be important for risk stratification and for future protocol design. PMID:18688286

  3. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients.

    PubMed

    Howe, Steven J; Mansour, Marc R; Schwarzwaelder, Kerstin; Bartholomae, Cynthia; Hubank, Michael; Kempski, Helena; Brugman, Martijn H; Pike-Overzet, Karin; Chatters, Stephen J; de Ridder, Dick; Gilmour, Kimberly C; Adams, Stuart; Thornhill, Susannah I; Parsley, Kathryn L; Staal, Frank J T; Gale, Rosemary E; Linch, David C; Bayford, Jinhua; Brown, Lucie; Quaye, Michelle; Kinnon, Christine; Ancliff, Philip; Webb, David K; Schmidt, Manfred; von Kalle, Christof; Gaspar, H Bobby; Thrasher, Adrian J

    2008-09-01

    X-linked SCID (SCID-X1) is amenable to correction by gene therapy using conventional gammaretroviral vectors. Here, we describe the occurrence of clonal T cell acute lymphoblastic leukemia (T-ALL) promoted by insertional mutagenesis in a completed gene therapy trial of 10 SCID-X1 patients. Integration of the vector in an antisense orientation 35 kb upstream of the protooncogene LIM domain only 2 (LMO2) caused overexpression of LMO2 in the leukemic clone. However, leukemogenesis was likely precipitated by the acquisition of other genetic abnormalities unrelated to vector insertion, including a gain-of-function mutation in NOTCH1, deletion of the tumor suppressor gene locus cyclin-dependent kinase 2A (CDKN2A), and translocation of the TCR-beta region to the STIL-TAL1 locus. These findings highlight a general toxicity of endogenous gammaretroviral enhancer elements and also identify a combinatorial process during leukemic evolution that will be important for risk stratification and for future protocol design.

  4. Alpha-tocopherol transfer protein gene inhibition enhances the acquired immune response during malaria infection in mice.

    PubMed

    Herbas, Maria Shirley; Natama, Magloire Hamtandi; Suzuki, Hiroshi

    2014-03-01

    Immune response to malaria infection is complex and seems to be regulated by innate and adaptive immune response as well as environmental factors such as host genetics and nutritional status. Previously, we have reported that α-tocopherol transfer protein knockout (α-ttp(Δ)) mice, showing low concentrations of α-tocopherol in circulation, infected with Plasmodium berghei NK65 survived significantly longer as compared with the wild-type mice. In addition, Plasmodium yoelii XL-17, a lethal strain, showed non-lethal virulence in α-ttp(Δ) mice. Thus, we hypothesized that the ability of the α-ttp(Δ) mice to control P. yoelli XL-17 proliferation may allow them to build an efficient immune response against murine malaria infection. On 15 days after infection with P. yoelli XL-17, α-ttp(Δ) mice were challenged to infection with P. berghei NK65. Results indicated that α-ttp(Δ) mice infected with P. yoelli XL-17 built a protective immunity against P. berghei NK65 associated to extremely low levels of parasitemia, a controlled inflammatory response, and a robust antibody response. Moreover, the importance of α-tocopherol for parasite proliferation was remarkable. The results suggest that inhibition of α-tocopherol transfer protein activity is effective for the enhancement of acquired immunity in murine malaria infection.

  5. Clitoria ternatea and the CNS.

    PubMed

    Jain, Neeti N; Ohal, C C; Shroff, S K; Bhutada, R H; Somani, R S; Kasture, V S; Kasture, S B

    2003-06-01

    The present investigation was aimed at determining the spectrum of activity of the methanolic extract of Clitoria ternatea (CT) on the CNS. The CT was studied for its effect on cognitive behavior, anxiety, depression, stress and convulsions induced by pentylenetetrazol (PTZ) and maximum electroshock (MES). To explain these effects, the effect of CT was also studied on behavior mediated by dopamine (DA), noradrenaline, serotonin and acetylcholine. The extract decreased time required to occupy the central platform (transfer latency, TL) in the elevated plus maze (EPM) and increased discrimination index in the object recognition test, indicating nootropic activity. The extract was more active in the object recognition test than in the EPM. The extract increased occupancy in the open arm of EPM by 160% and in the lit box of the light/dark exploration test by 157%, indicating its anxiolytic activity. It decreased the duration of immobility in tail suspension test (suggesting its antidepressant activity), reduced stress-induced ulcers and reduced the convulsing action of PTZ and MES. The extract exhibited tendency to reduce the intensity of behavior mediated via serotonin and acetylcholine. The effect on DA- and noradrenaline-mediated behavior was not significant. In conclusion, the extract was found to possess nootropic, anxiolytic, antidepressant, anticonvulsant and antistress activity. Further studies are necessary to isolate the active principle responsible for the activities and to understand its mode of action.

  6. Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians.

    PubMed

    Irie, Masahito; Yoshikawa, Masanobu; Ono, Ryuichi; Iwafune, Hirotaka; Furuse, Tamio; Yamada, Ikuko; Wakana, Shigeharu; Yamashita, Yui; Abe, Takaya; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2015-09-01

    Gene targeting of mouse Sushi-ichi-related retrotransposon homologue 11/Zinc finger CCHC domain-containing 16 (Sirh11/Zcchc16) causes abnormal behaviors related to cognition, including attention, impulsivity and working memory. Sirh11/Zcchc16 encodes a CCHC type of zinc-finger protein that exhibits high homology to an LTR retrotransposon Gag protein. Upon microdialysis analysis of the prefrontal cortex region, the recovery rate of noradrenaline (NA) was reduced compared with dopamine (DA) after perfusion of high potassium-containing artificial cerebrospinal fluid in knockout (KO) mice. These data indicate that Sirh11/Zcchc16 is involved in cognitive function in the brain, possibly via the noradrenergic system, in the contemporary mouse developmental systems. Interestingly, it is highly conserved in three out of the four major groups of the eutherians, euarchontoglires, laurasiatheria and afrotheria, but is heavily mutated in xenarthran species such as the sloth and armadillo, suggesting that it has contributed to brain evolution in the three major eutherian lineages, including humans and mice. Sirh11/Zcchc16 is the first SIRH gene to be involved in brain function, instead of just the placenta, as seen in the case of Peg10, Peg11/Rtl1 and Sirh7/Ldoc1.

  7. Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians

    PubMed Central

    Irie, Masahito; Yoshikawa, Masanobu; Ono, Ryuichi; Iwafune, Hirotaka; Furuse, Tamio; Yamada, Ikuko; Wakana, Shigeharu; Yamashita, Yui; Abe, Takaya; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2015-01-01

    Gene targeting of mouse S ushi- i chi-related r etrotransposon h omologue 11 / Z inc finger CCHC domain-containing 16 (Sirh11/Zcchc16) causes abnormal behaviors related to cognition, including attention, impulsivity and working memory. Sirh11/Zcchc16 encodes a CCHC type of zinc-finger protein that exhibits high homology to an LTR retrotransposon Gag protein. Upon microdialysis analysis of the prefrontal cortex region, the recovery rate of noradrenaline (NA) was reduced compared with dopamine (DA) after perfusion of high potassium-containing artificial cerebrospinal fluid in knockout (KO) mice. These data indicate that Sirh11/Zcchc16 is involved in cognitive function in the brain, possibly via the noradrenergic system, in the contemporary mouse developmental systems. Interestingly, it is highly conserved in three out of the four major groups of the eutherians, euarchontoglires, laurasiatheria and afrotheria, but is heavily mutated in xenarthran species such as the sloth and armadillo, suggesting that it has contributed to brain evolution in the three major eutherian lineages, including humans and mice. Sirh11/Zcchc16 is the first SIRH gene to be involved in brain function, instead of just the placenta, as seen in the case of Peg10, Peg11/Rtl1 and Sirh7/Ldoc1. PMID:26402067

  8. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    PubMed Central

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  9. Apoptosis in the mammalian CNS: Lessons from animal models.

    PubMed

    Lossi, L; Cantile, C; Tamagno, I; Merighi, A

    2005-07-01

    It is generally assumed that about half of the neurons produced during neurogenesis die before completion of maturation of the central nervous system (CNS). Neural cell death is also relevant in aging and several neurodegenerative diseases. Among the modalities by which neurons die, apoptosis has very much attracted the interest of investigators because in this type of cell death neurons are actively responsible for their own demise by switching on a number of genes and activating a series of specific intracellular pathways. This review focuses on the cellular and molecular mechanisms of apoptosis in normal and transgenic animal models related to naturally occurring neuronal death within the CNS. We will also consider some examples of apoptotic cell death in canine neuropathologies. A thorough analysis of naturally occurring neuronal death in vivo will offer a basis for parallel and future studies involving secondary neuronal loss such as those in neurodegenerative disorders, trauma or ischaemia.

  10. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance

    PubMed Central

    Miller, Todd W.; Balko, Justin M.; Ghazoui, Zara; Dunbier, Anita; Anderson, Helen; Dowsett, Mitch; González-Angulo, Ana M.; Mills, Gordon B.; Miller, William R.; Wu, Huiyun; Shyr, Yu; Arteaga, Carlos L.

    2011-01-01

    Purpose Although most patients with estrogen receptor α (ER)-positive breast cancer initially respond to endocrine therapy, many ultimately develop resistance to antiestrogens. However, mechanisms of antiestrogen resistance and biomarkers predictive of such resistance are underdeveloped. Experimental Design We adapted four ER+ human breast cancer cell lines to grow in an estrogen-depleted medium. A gene signature of estrogen independence was developed by comparing expression profiles of long-term estrogen-deprived (LTED) cells to their parental counterparts. We evaluated the ability of the LTED signature to predict tumor response to neoadjuvant therapy with an aromatase inhibitor, and disease outcome following adjuvant tamoxifen. We utilized Gene Set Analysis (GSA) of LTED cell gene expression profiles and a loss-of-function approach to identify pathways causally associated with resistance to endocrine therapy. Results The LTED gene expression signature was predictive of high tumor cell proliferation following neoadjuvant therapy with anastrozole and letrozole, each in different patient cohorts. This signature was also predictive of poor recurrence-free survival in two studies of patients treated with adjuvant tamoxifen. Bioinformatic interrogation of expression profiles in LTED cells revealed a signature of MYC activation. The MYC activation signature and high MYC protein levels were both predictive of poor outcome following tamoxifen therapy. Finally, knockdown of MYC inhibited LTED cell growth. Conclusions A gene expression signature derived from ER+ breast cancer cells with acquired hormone independence predicted tumor response to aromatase inhibitors and associated with clinical markers of resistance to tamoxifen. In some cases, activation of the MYC pathway was associated with this resistance. PMID:21346144

  11. Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes.

    PubMed

    Chen, Qiang; de Larraya, Uxua Pérez; Garmendia, Nere; Lasheras-Zubiate, María; Cordero-Arias, Luis; Virtanen, Sannakaisa; Boccaccini, Aldo R

    2014-06-01

    This study presents the electrophoretic deposition (EPD) of cellulose nanocrystals (CNs) and CNs-based alginate composite coatings for biomedical applications. The mechanism of anodic deposition of CNs and co-deposition of CNs/alginate composites was analyzed based on the results of zeta-potential, Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analyses. The capability of the EPD technique for manipulating the orientation of CNs and for the preparation of multilayer CNs coatings was demonstrated. The nanotopographic surface roughness and hydrophilicity of the deposited coatings were measured and discussed. Electrochemical testing demonstrated that a significant degree of corrosion protection of stainless steel could be achieved when CNs-containing coatings were present. Additionally, the one-step EPD-based processing of free-standing CNs/alginate membranes was demonstrated confirming the versatility of EPD to fabricate free-standing membrane structures compared to a layer-by-layer deposition technique. CNs and CNs/alginate nanocomposite coatings produced by EPD are potential candidates for biomedical, cell technology and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Distribution of virulence genes and genotyping of CTX-M-15-producing Klebsiella pneumoniae isolated from patients with community-acquired urinary tract infection (CA-UTI).

    PubMed

    Ranjbar, Reza; Memariani, Hamed; Sorouri, Rahim; Memariani, Mojtaba

    2016-11-01

    Klebsiella pneumoniae is one of the most important agents of community-acquired urinary tract infection (CA-UTI). In addition to extended-spectrum β-lactamases (ESBLs), a number of virulence factors have been shown to play an important role in the pathogenesis of K. pneumoniae, including capsule, siderophores, and adhesins. Little is known about the genetic diversity and virulence content of the CTX-M-15-producing K. pneumoniae isolated from CA-UTI in Iran. A total of 152 K. pneumoniae isolates were collected from CA-UTI patients in Tehran from September 2015 through April 2016. Out of 152 isolates, 40 (26.3%) carried blaCTX-M-15. PCR was performed for detection of virulence genes in CTX-M-15-producing isolates. Furthermore, all of these isolates were subjected to multiple-locus variable-number of tandem repeat (VNTR) analysis (MLVA). Using MLVA method, 36 types were identified. CTX-M-15-producing K. pneumoniae isolates were grouped into 5 clonal complexes (CCs). Of these isolates, mrkD was the most prevalent virulence gene (95%), followed by kpn (60%), rmpA (37.5%), irp (35%), and magA (2.5%). No correlation between MLVA types or CCs and virulence genes or antibiotic resistance patterns was observed. Overall, it is thought that CTX-M-15-producing K. pneumoniae strains isolated from CA-UTI have arisen from different clones.

  13. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon.

    PubMed

    Ylera, Bhavna; Ertürk, Ali; Hellal, Farida; Nadrigny, Fabien; Hurtado, Andres; Tahirovic, Sabina; Oudega, Martin; Kirchhoff, Frank; Bradke, Frank

    2009-06-09

    Several experimental manipulations result in axonal regeneration in the central nervous system (CNS) when applied before or at the time of injury but not when initiated after a delay, which would be clinically more relevant. As centrally injured neurons show signs of atrophy and degeneration, it raises the question whether chronically injured neurons are able to regenerate. To address this question, we used adult rodent primary sensory neurons that regenerate their central axon when their peripheral axon is cut (called conditioning) beforehand but not afterwards. We found that primary sensory neurons express regeneration-associated genes and efficiently regrow their axon in cell culture two months after a central lesion upon conditioning. Moreover, conditioning enables central axons to regenerate through a fresh lesion independent of a previous central lesion. Using in vivo imaging we demonstrated that conditioned neurons rapidly regrow their axons through a fresh central lesion. Finally, when single sensory axons were cut with a two-photon laser, they robustly regenerate within days after attaining growth competence through conditioning. We conclude that sensory neurons can acquire the intrinsic potential to regenerate their axons months after a CNS lesion, which they implement in the absence of traumatic tissue.

  14. DNA methylation functions as a critical regulator of Kir4.1 expression during CNS development.

    PubMed

    Nwaobi, Sinifunanya E; Lin, Erica; Peramsetty, Sasank R; Olsen, Michelle L

    2014-03-01

    Kir4.1, a glial-specific K+ channel, is critical for normal CNS development. Studies using both global and glial-specific knockout of Kir4.1 reveal abnormal CNS development with the loss of the channel. Specifically, Kir4.1 knockout animals are characterized by ataxia, severe hypomyelination, and early postnatal death. Additionally, Kir4.1 has emerged as a key player in several CNS diseases. Notably, decreased Kir4.1 protein expression occurs in several human CNS pathologies including CNS ischemic injury, spinal cord injury, epilepsy, ALS, and Alzheimer's disease. Despite the emerging significance of Kir4.1 in normal and pathological conditions, its mechanisms of regulation are unknown. Here, we report the first epigenetic regulation of a K+ channel in the CNS. Robust developmental upregulation of Kir4.1 expression in rats is coincident with reductions in DNA methylation of the Kir4.1 gene, KCNJ10. Chromatin immunoprecipitation reveals a dynamic interaction between KCNJ10 and DNA methyltransferase 1 during development. Finally, demethylation of the KCNJ10 promoter is necessary for transcription. These findings indicate DNA methylation is a key regulator of Kir4.1 transcription. Given the essential role of Kir4.1 in normal CNS development, understanding the regulation of this K+ channel is critical to understanding normal glial biology.

  15. Comparative Efficacy and Safety of Multiple Routes of Direct CNS Administration of Adeno-Associated Virus Gene Transfer Vector Serotype rh.10 Expressing the Human Arylsulfatase A cDNA to Nonhuman Primates

    PubMed Central

    Rosenberg, Jonathan B.; Sondhi, Dolan; Rubin, David G.; Monette, Sébastien; Chen, Alvin; Cram, Sara; De, Bishnu P.; Kaminsky, Stephen M.; Sevin, Caroline; Aubourg, Patrick

    2014-01-01

    Abstract Metachromatic leukodystrophy (MLD), a fatal disorder caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA), is associated with an accumulation of sulfatides, causing widespread demyelination in both central and peripheral nervous systems. On the basis of prior studies demonstrating that adeno-associated virus AAVrh.10 can mediate widespread distribution in the CNS of a secreted lysosomal transgene, and as a prelude to human trials, we comparatively assessed the optimal CNS delivery route of an AAVrh.10 vector encoding human ARSA in a large animal model for broadest distribution of ARSA enzyme. Five routes were tested (each total dose, 1.5×1012 genome copies of AAVrh.10hARSA-FLAG): (1) delivery to white matter centrum ovale; (2) deep gray matter delivery (putamen, thalamus, and caudate) plus overlying white matter; (3) convection-enhanced delivery to same deep gray matter locations; (4) lateral cerebral ventricle; and (5) intraarterial delivery with hyperosmotic mannitol to the middle cerebral artery. After 13 weeks, the distribution of ARSA activity subsequent to each of the three direct intraparenchymal administration routes was significantly higher than in phosphate-buffered saline-administered controls, but administration by the intraventricular and intraarterial routes failed to demonstrate measurable levels above controls. Immunohistochemical staining in the cortex, white matter, deep gray matter of the striatum, thalamus, choroid plexus, and spinal cord dorsal root ganglions confirmed these results. Of the five routes studied, administration to the white matter generated the broadest distribution of ARSA, with 80% of the brain displaying more than a therapeutic (10%) increase in ARSA activity above PBS controls. No significant toxicity was observed with any delivery route as measured by safety parameters, although some inflammatory changes were seen by histopathology. We conclude that AAVrh.10-mediated delivery of ARSA via CNS

  16. Comparative efficacy and safety of multiple routes of direct CNS administration of adeno-associated virus gene transfer vector serotype rh.10 expressing the human arylsulfatase A cDNA to nonhuman primates.

    PubMed

    Rosenberg, Jonathan B; Sondhi, Dolan; Rubin, David G; Monette, Sébastien; Chen, Alvin; Cram, Sara; De, Bishnu P; Kaminsky, Stephen M; Sevin, Caroline; Aubourg, Patrick; Crystal, Ronald G

    2014-09-01

    Metachromatic leukodystrophy (MLD), a fatal disorder caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA), is associated with an accumulation of sulfatides, causing widespread demyelination in both central and peripheral nervous systems. On the basis of prior studies demonstrating that adeno-associated virus AAVrh.10 can mediate widespread distribution in the CNS of a secreted lysosomal transgene, and as a prelude to human trials, we comparatively assessed the optimal CNS delivery route of an AAVrh.10 vector encoding human ARSA in a large animal model for broadest distribution of ARSA enzyme. Five routes were tested (each total dose, 1.5 × 10(12) genome copies of AAVrh.10hARSA-FLAG): (1) delivery to white matter centrum ovale; (2) deep gray matter delivery (putamen, thalamus, and caudate) plus overlying white matter; (3) convection-enhanced delivery to same deep gray matter locations; (4) lateral cerebral ventricle; and (5) intraarterial delivery with hyperosmotic mannitol to the middle cerebral artery. After 13 weeks, the distribution of ARSA activity subsequent to each of the three direct intraparenchymal administration routes was significantly higher than in phosphate-buffered saline-administered controls, but administration by the intraventricular and intraarterial routes failed to demonstrate measurable levels above controls. Immunohistochemical staining in the cortex, white matter, deep gray matter of the striatum, thalamus, choroid plexus, and spinal cord dorsal root ganglions confirmed these results. Of the five routes studied, administration to the white matter generated the broadest distribution of ARSA, with 80% of the brain displaying more than a therapeutic (10%) increase in ARSA activity above PBS controls. No significant toxicity was observed with any delivery route as measured by safety parameters, although some inflammatory changes were seen by histopathology. We conclude that AAVrh.10-mediated delivery of ARSA via CNS

  17. ABC transporters in the CNS - an inventory.

    PubMed

    Hartz, A M S; Bauer, B

    2011-04-01

    In the present review we provide a summary of ATP-binding cassette (ABC) transporters in the central nervous system (CNS). Our review is focused on transporters of the ABC A, B, C, D, and G families that have been detected in the cells of the neurovascular unit/blood-brain barrier including brain capillary endothelial cells, pericytes, astrocytes, and neurons, as well as in other brain cells, such as microglia, oligodendrocytes, and choroid plexus epithelial cells. In this review, we provide an overview, organized by ABC family, of transporter expression, localization, and function. We summarize recent findings on ABC transporter regulation in the CNS and address the role of ABC transporters in CNS diseases including brain cancer, seizures/epilepsy, and Alzheimer's disease. Finally, we discuss new therapeutic strategies focused on ABC transporters in CNS disease.

  18. Air Pollution: Mechanisms of Neuroinflammation & CNS Disease

    PubMed Central

    Block, Michelle L.; Calderón-Garcidueñas, Lilian

    2009-01-01

    Emerging evidence implicates air pollution as a chronic source of neuroinflammation, reactive oxygen species (ROS), and neuropathology instigating central nervous system (CNS) disease. Stroke incidence, and Alzheimer’s and Parkinson’s disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain. Further, systemic effects known to impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that activation of microglia and changes in the blood brain barrier may be key to this process. Here, we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS culpable in CNS disease. PMID:19716187

  19. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): Unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer

    PubMed Central

    Brouard, Jean-Simon; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2008-01-01

    include the retention of psaM, rpl32 and trnL(caa), the loss of petA, the disruption of three ancestral clusters and the presence of five derived gene clusters. Conclusion The Oedogonium chloroplast genome disclosed additional characters that bolster the evidence for a close alliance between the Oedogoniales and Chaetophorales. Our unprecedented finding of int and dpoB in this cpDNA provides a clear example that novel genes were acquired by the chloroplast genome through horizontal transfers, possibly from a mitochondrial genome donor. PMID:18558012

  20. Siglec-H is a microglia-specific marker that discriminates microglia from CNS-associated macrophages and CNS-infiltrating monocytes.

    PubMed

    Konishi, Hiroyuki; Kobayashi, Masaaki; Kunisawa, Taikan; Imai, Kenta; Sayo, Akira; Malissen, Bernard; Crocker, Paul R; Sato, Katsuaki; Kiyama, Hiroshi

    2017-08-24

    Several types of myeloid cell are resident in the CNS. In the steady state, microglia are present in the CNS parenchyma, whereas macrophages reside in boundary regions of the CNS, such as perivascular spaces, the meninges and choroid plexus. In addition, monocytes infiltrate into the CNS parenchyma from circulation upon blood-brain barrier breakdown after CNS injury and inflammation. Although several markers, such as CD11b and ionized calcium-binding adapter molecule 1 (Iba1), are frequently used as microglial markers, they are also expressed by other types of myeloid cell and microglia-specific markers were not defined until recently. Previous transcriptome analyses of isolated microglia identified a transmembrane lectin, sialic acid-binding immunoglobulin-like lectin H (Siglec-H), as a molecular signature for microglia; however, this was not confirmed by histological studies in the nervous system and the reliability of Siglec-H as a microglial marker remained unclear. Here, we demonstrate that Siglec-H is an authentic marker for microglia in mice by immunohistochemistry using a Siglec-H-specific antibody. Siglec-H was expressed by parenchymal microglia from developmental stages to adulthood, and the expression was maintained in activated microglia under injury or inflammatory condition. However, Siglec-H expression was absent from CNS-associated macrophages and CNS-infiltrating monocytes, except for a minor subset of cells. We also show that the Siglech gene locus is a feasible site for specific targeting of microglia in the nervous system. In conclusion, Siglec-H is a reliable marker for microglia that will allow histological identification of microglia and microglia-specific gene manipulation in the nervous system. © 2017 Wiley Periodicals, Inc.

  1. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery

    PubMed Central

    2011-01-01

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer’s disease (AD), Parkinson’s disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood–brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å2 (25–60 Å2), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740–970 Å3, (vi) solvent accessible surface area of 460–580 Å2, and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  2. Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis

    PubMed Central

    Daneman, Richard; Agalliu, Dritan; Zhou, Lu; Kuhnert, Frank; Kuo, Calvin J.; Barres, Ben A.

    2009-01-01

    Despite the importance of CNS blood vessels, the molecular mechanisms that regulate CNS angiogenesis and blood−brain barrier (BBB) formation are largely unknown. Here we analyze the role of Wnt/β-catenin signaling in regulating the formation of CNS blood vessels. First, through the analysis of TOP-Gal Wnt reporter mice, we identify that canonical Wnt/β-catenin signaling is specifically activated in CNS, but not non-CNS, blood vessels during development. This activation correlates with the expression of different Wnt ligands by neural progenitor cells in distinct locations throughout the CNS, including Wnt7a and Wnt7b in ventral regions and Wnt1, Wnt3, Wnt3a, and Wnt4 in dorsal regions. Blockade of Wnt/β-catenin signaling in vivo specifically disrupts CNS, but not non-CNS, angiogenesis. These defects include reduction in vessel number, loss of capillary beds, and the formation of hemorrhagic vascular malformations that remain adherent to the meninges. Furthermore, we demonstrate that Wnt/β-catenin signaling regulates the expression of the BBB-specific glucose transporter glut-1. Taken together these experiments reveal an essential role for Wnt/β-catenin signaling in driving CNS-specific angiogenesis and provide molecular evidence that angiogenesis and BBB formation are in part linked. PMID:19129494

  3. Glucocortiocoid Treatment of MCMV Infected Newborn Mice Attenuates CNS Inflammation and Limits Deficits in Cerebellar Development

    PubMed Central

    Kosmac, Kate; Bantug, Glenn R.; Pugel, Ester P.; Cekinovic, Djurdjica; Jonjic, Stipan; Britt, William J.

    2013-01-01

    Infection of the developing fetus with human cytomegalovirus (HCMV) is a major cause of central nervous system disease in infants and children; however, mechanism(s) of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV) results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC) proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ) in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV. PMID:23505367

  4. The role of MeCP2 in CNS development and function

    PubMed Central

    Na, Elisa S.; Monteggia, Lisa M.

    2010-01-01

    Rett syndrome is a neurodevelopmental disorder that is a direct consequence of functional mutations in the methyl-CpG-binding protein-2 (MeCP2) gene, which has focused attention on epigenetic mechanisms in neurons. MeCP2 is widely believed to be a transcriptional repressor although it may have additional functions in the CNS. Genetic mouse models that compromise MeCP2 function demonstrate that homeostatic regulation of MeCP2 is necessary for normal CNS functioning. Recent work has also demonstrated that MeCP2 plays an important role in mediating synaptic transmission in the CNS in particular, spontaneous neurotransmission and short-term synaptic plasticity. This review will discuss the role of MeCP2 in CNS development and function, as well as a potential important role for MeCP2 and epigenetic processes involved in mediating transcriptional repression in Rett syndrome. PMID:20515694

  5. Impact of dual expression of MYC and BCL2 by immunohistochemistry on the risk of CNS relapse in DLBCL.

    PubMed

    Savage, Kerry J; Slack, Graham W; Mottok, Anja; Sehn, Laurie H; Villa, Diego; Kansara, Roopesh; Kridel, Robert; Steidl, Christian; Ennishi, Daisuke; Tan, King L; Ben-Neriah, Susana; Johnson, Nathalie A; Connors, Joseph M; Farinha, Pedro; Scott, David W; Gascoyne, Randy D

    2016-05-05

    Dual expression of MYC and BCL2 by immunohistochemistry (IHC) is associated with poor outcome in diffuse large B-cell lymphoma (DLBCL). Dual translocation of MYC and BCL2, so-called "double-hit lymphoma," has been associated with a high risk of central nervous system (CNS) relapse; however, the impact of dual expression of MYC and BCL2 (dual expressers) on the risk of CNS relapse remains unknown. Pretreatment formalin-fixed paraffin-embedded DLBCL biopsies derived from patients subsequently treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) were assembled on tissue microarrays from 2 studies and were evaluated for expression of MYC and BCL2 by IHC. In addition, cell of origin was determined by IHC and the Lymph2Cx gene expression assay in a subset of patients. We identified 428 patients who met the inclusion criteria. By the recently described CNS risk score (CNS-International Prognostic Index [CNS-IPI]), 34% were low risk (0 to 1), 45% were intermediate risk (2 to 3), and 21% were high risk (4 or greater). With a median follow-up of 6.8 years, the risk of CNS relapse was higher in dual expressers compared with non-dual expressers (2-year risk, 9.7% vs 2.2%; P = .001). Patients with activated B-cell or non-germinal center B-cell type DLBCL also had an increased risk of CNS relapse. However, in multivariate analysis, only dual expresser status and CNS-IPI were associated with CNS relapse. Dual expresser MYC(+) BCL2(+) DLBCL defines a group at high risk of CNS relapse, independent of CNS-IPI score and cell of origin. Dual expresser status may help to identify a high-risk group who should undergo CNS-directed evaluation and consideration of prophylactic strategies.

  6. Chlorate reduction in Shewanella algae ACDC is a recently acquired metabolism characterized by gene loss, suboptimal regulation and oxidative stress.

    PubMed

    Clark, Iain C; Melnyk, Ryan A; Iavarone, Anthony T; Novichkov, Pavel S; Coates, John D

    2014-10-01

    Previous work on respiratory chlorate reduction has biochemically identified the terminal reductase ClrABC and the chlorite detoxifying enzyme Cld. In Shewanella algae ACDC, genes encoding these enzymes reside on composite transposons whose core we refer to as the chlorate reduction composite transposon interior (CRI). To better understand this metabolism in ACDC, we used RNA-seq and proteomics to predict carbon and electron flow during chlorate reduction and posit that formate is an important electron carrier with lactate as the electron donor, but that NADH predominates on acetate. Chlorate-specific transcription of electron transport chain components or the CRI was not observed, but clr and cld transcription was attenuated by oxygen. The major chlorate-specific response related to oxidative stress and was indicative of reactive chlorine species production. A genetic system based on rpsL-streptomycin counter selection was developed to further dissect the metabolism, but ACDC readily lost the CRI via homologous recombination of the composite transposon's flanking insertion sequences. An engineered strain containing a single chromosomal CRI did not grow on chlorate, but overexpression of cld and its neighbouring cytochrome c restored growth. We postulate that the recently acquired CRI underwent copy-number expansion to circumvent insufficient expression of key genes in the pathway.

  7. Incidence of community-acquired methicillin-resistant Staphylococcus aureus carrying Pantone-Valentine leucocidin gene at a referral hospital in United Arab Emirates.

    PubMed

    Dash, Nihar; Panigrahi, Debadatta; Al Zarouni, Mansour; Yassin, Faten; Al-Shamsi, Moza

    2014-04-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging pathogen in hospitalized patients worldwide. The present study was undertaken to identify CA-MRSA in hospitalized patients in a 350-bed tertiary care hospital in Sharjah, UAE over a 2-year period from January 2011 to December 2012. CA-MRSA was defined based on identification within first 48 h of admission in the hospital. Staphylococcal cassette chromosome (SCC) mec typing of the CA-MRSA isolates was carried out by multiplex polymerase chain reaction (PCR). Detection of PVL and mecA genes was done by PCR using the GenoType(®) MRSA test system (Hain Lifescience). Patient's clinical data and antimicrobial susceptibility pattern of the CA-MRSA isolates were also evaluated. Fifty seven of the 187 MRSA isolates were identified as CA-MRSA. All the CA-MRSA strains in our study belonged to SCCmecIV type and were positive for both PVL and mecA genes. The patients with CA-MRSA infections were young (median age, 32 years) and the majority of infections involved the skin and soft tissue (36%). Antimicrobial susceptibility pattern of the CA-MRSA isolates showed a better susceptibility profile to the non-beta-lactam antimicrobials with the exception of ciprofloxacin having 28% resistance. This study evidently strengthens the recent observation of an increase in CA-MRSA emergence among hospitalized patients in the UAE. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  8. Presence of Genes Encoding Panton-Valentine Leukocidin Is Not the Primary Determinant of Outcome in Patients with Hospital-Acquired Pneumonia Due to Staphylococcus aureus

    PubMed Central

    Sharma-Kuinkel, Batu K.; Ahn, Sun H.; Rude, Thomas H.; Zhang, Yurong; Tong, Steven Y. C.; Ruffin, Felicia; Genter, Fredric C.; Braughton, Kevin R.; DeLeo, Frank R.; Barriere, Steven L.

    2012-01-01

    The impact of Panton-Valentine leukocidin (PVL) on the outcome in Staphylococcus aureus pneumonia is controversial. We genotyped S. aureus isolates from patients with hospital-acquired pneumonia (HAP) enrolled in two registrational multinational clinical trials for the genetic elements carrying pvl and 30 other virulence genes. A total of 287 isolates (173 methicillin-resistant S. aureus [MRSA] and 114 methicillin-susceptible S. aureus [MSSA] isolates) from patients from 127 centers in 34 countries for whom clinical outcomes of cure or failure were available underwent genotyping. Of these, pvl was detected by PCR and its product confirmed in 23 isolates (8.0%) (MRSA, 18/173 isolates [10.4%]; MSSA, 5/114 isolates [4.4%]). The presence of pvl was not associated with a higher risk for clinical failure (4/23 [17.4%] versus 48/264 [18.2%]; P = 1.00) or mortality. These findings persisted after adjustment for multiple potential confounding variables. No significant associations between clinical outcome and (i) presence of any of the 30 other virulence genes tested, (ii) presence of specific bacterial clone, (iii) levels of alpha-hemolysin, or (iv) delta-hemolysin production were identified. This study suggests that neither pvl presence nor in vitro level of alpha-hemolysin production is the primary determinant of outcome among patients with HAP caused by S. aureus. PMID:22205797

  9. Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic Trichoderma koningii inhibiting phytopathogen Rhizoctonia solani Kuhn.

    PubMed

    Gajera, H P; Hirpara, Darshna G; Katakpara, Zinkal A; Patel, S V; Golakiya, B A

    2016-11-01

    The biocontrol agent Trichoderma (T. harzianum, T. viride, T. virens, T. hamantum, T. koningii, T. pseudokoningii and Trichoderma species) inhibited variably (15.32 - 88.12%) the in vitro growth of Rhizoctonia solani causing root rot in cotton. The T. koningii MTCC 796 evidenced highest (88.12%) growth inhibition of test pathogen followed by T. viride NBAII Tv23 (85.34%). Scanning electron microscopic study confirmed mycoparasitism for MTCC 796 and Tv23 which were capable of completely overgrowing on R. solani by degrading mycelia, coiling around the hyphae with hook-like structures. The antagonists T. harzianum NBAII Th1 and, T. virens NBAII Tvs12 exhibited strong antibiosis and formed 2-4 mm zone of inhibition for 70.28% and 46.62%, respectively growth inhibition of test pathogen. Mycoparasitism is a strong mode of action for biocontrol activity compared with antibiosis. The antagonists Trichoderma strains were performed for start codon targeted (SCoT) polymorphism to acquire biocontrol genes from potent antagonist. The six unique SCoT fragments amplified by genomic DNA of best mycoparasitic antagonist MTCC 796 strain are subjected to DNA sequencing resulted to confirm two functional sequences for activity related to biocontrol genes. The phylogenetic and molecular evolution of functional 824 bp of SCoT-3(920) and 776 bp of SCoT-6(806) fragments signify sequence homology with biocontrol genes endochitinase (partial cds of 203 amino acids) and novel hmgR genes (partial cds of 239 amino acids), respectively and the same were annotated and deposited in NCBI GenBank database. The hmgR gene is liable to be express hmg - CoA reductase which is a key enzyme for regulation of terpene biosynthesis and mycoparasitic strains produced triterpenes during antagonism to inhibit growth of fungal pathogen as evidenced with GC-MS profile. The biocontrol genes are found in best antagonist T. koningii MTCC 796 for mycoparasitic activity to restrain the growth of test pathogen R

  10. HIV-1 target cells in the CNS.

    PubMed

    Joseph, Sarah B; Arrildt, Kathryn T; Sturdevant, Christa B; Swanstrom, Ronald

    2015-06-01

    HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the "immune privileged" CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout the CNS. These cells likely express CD4 densities that are too low to facilitate efficient entry or allow sustained replication by most HIV-1 isolates. Examination of CNS viral populations reveals that late in disease the CNS of some individuals contains HIV-1 lineages that have evolved the ability to enter cells expressing low levels of CD4 and are well-adapted to entering macrophages. These macrophage-tropic (M-tropic) viruses are able to maintain sustained replication in the CNS for many generations, and their presence is associated with severe neurocognitive impairment. Whether conditions such as pleocytosis are necessary for macrophage-tropic viruses to emerge in the CNS is unknown, and extensive examinations of macrophage-tropic variants have not revealed a genetic signature of this phenotype. It is clear, however, that macrophage tropism is rare among HIV-1 isolates and is not transmitted, but is important due to its pathogenic effects on hosts. Prior to the evolution of macrophage-tropic variants, the viruses that are predominately infecting T cells (R5 T cell-tropic) may infect macrophages at a low level and inefficiently, but this could contribute to the reservoir.

  11. HIV-1 target cells in the CNS

    PubMed Central

    Joseph, Sarah B.; Arrildt, Kathryn T.; Sturdevant, Christa B.; Swanstrom, Ronald

    2014-01-01

    HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the “immune privileged” CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout the CNS. These cells likely express CD4 densities that are too low to facilitate efficient entry or allow sustained replication by most HIV-1 isolates. Examination of CNS viral populations reveals that late in disease the CNS of some individuals contains HIV-1 lineages that have evolved the ability to enter cells expressing low levels of CD4 and are well-adapted to entering macrophages. These macrophage-tropic (M-tropic) viruses are able to maintain sustained replication in the CNS for many generations, and their presence is associated with severe neurocognitive impairment. Whether conditions such as pleocytosis are necessary for macrophage-tropic viruses to emerge in the CNS is unknown, and extensive examinations of macrophage-tropic variants have not revealed a genetic signature of this phenotype. It is clear, however, that macrophage tropism is rare among HIV-1 isolates and is not transmitted, but is important due to its pathogenic effects on hosts. Prior to the evolution of macrophage-tropic variants, the viruses that are predominately infecting T cells (R5 T cell-tropic) may infect macrophages at a low level and inefficiently, but this could contribute to the reservoir. PMID:25236812

  12. Desmosomes in acquired disease.

    PubMed

    Stahley, Sara N; Kowalczyk, Andrew P

    2015-06-01

    Desmosomes are cell-cell junctions that mediate adhesion and couple the intermediate filament cytoskeleton to sites of cell-cell contact. This architectural arrangement integrates adhesion and cytoskeletal elements of adjacent cells. The importance of this robust adhesion system is evident in numerous human diseases, both inherited and acquired, which occur when desmosome function is compromised. This review focuses on autoimmune and infectious diseases that impair desmosome function. In addition, we discuss emerging evidence that desmosomal genes are often misregulated in cancer. The emphasis of our discussion is placed on the way in which human diseases can inform our understanding of basic desmosome biology and in turn, the means by which fundamental advances in the cell biology of desmosomes might lead to new treatments for acquired diseases of the desmosome.

  13. Desmosomes in acquired disease

    PubMed Central

    Stahley, Sara N.; Kowalczyk, Andrew P.

    2015-01-01

    Desmosomes are cell-cell junctions that mediate adhesion and couple the intermediate filament cytoskeleton to sites of cell-cell contact. This architectural arrangement functions to integrate adhesion and cytoskeletal elements of adjacent cells. The importance of this robust adhesion system is evident in numerous human diseases, both inherited and acquired, that occur when desmosome function is compromised. This review focuses on autoimmune and infectious diseases that impair desmosome function. In addition, we discuss emerging evidence that desmosomal genes are often misregulated in cancer. The emphasis of our discussion is placed on how human diseases inform our understanding of basic desmosome biology, and in turn, how fundamental advances in the cell biology of desmosomes may lead to new treatments for acquired diseases of the desmosome. PMID:25795143

  14. Monocyte/macrophage trafficking in acquired immunodeficiency syndrome encephalitis: Lessons from human and nonhuman primate studies

    PubMed Central

    Fischer-Smith, Tracy; Bell, Christie; Croul, Sidney; Lewis, Mark; Rappaport, Jay

    2009-01-01

    Here the authors discuss evidence in human and animal models supporting two opposing views regarding the pathogenesis of human immunodeficiency virus (HIV) in the central nervous system (CNS): (1) HIV infection in the CNS is a compartmentalized infection, with the virus-infected macrophages entering the CNS early, infecting resident microglia and astrocytes, and achieving a state of latency with evolution toward a fulminant CNS infection late in the course of disease; or alternatively, (2) events in the periphery lead to altered monocyte/macrophage (MΦ) homeostasis, with increased CNS invasion of infected and/or uninfected MΦs. Here the authors have reevaluated evidence presented in the favor of the latter model, with a discussion of phenotypic characteristics distinguishing normal resident microglia with those accumulating in HIV encephalitis (HIVE). CD163 is normally expressed by perivascular MΦs but not resident microglia in normal CNS of humans and rhesus macaques. In agreement with other studies, the authors demonstrate expression of CD163 by brain MΦs in HIVE and simian immunodeficiency virus encephalitis (SIVE). CNS tissues from HIV-sero positive individuals with HIVE or HIV-associated progressive multifocal leukoencephalopathy (PML) were also examined. In HIVE, the authors further demonstrate colocalization of CD163 and CD16 (FcγIII recptor) gene expression, the latter marker associated with HIV infection of monocyte in vivo and permissivity of infection. Indeed, CD163+ MΦs and microglia are often productively infected in HIVE CNS. In SIV infected rhesus macaques, CD163+ cells accumulate perivascularly, within nodular lesions and the parenchyma in animals with encephalitis. Likewise, parenchymal microglia and perivascular MΦs are CD163+ in HIVE. In contrast to HIVE, CD163+perivascular and parenchymal MΦs in HIV-associated PML were only associated with areas of demyelinating lesions. Interestingly, SIV-infected rhesus macaques whose viral burden was

  15. Monocyte/macrophage trafficking in acquired immunodeficiency syndrome encephalitis: lessons from human and nonhuman primate studies.

    PubMed

    Fischer-Smith, Tracy; Bell, Christie; Croul, Sidney; Lewis, Mark; Rappaport, Jay

    2008-08-01

    Here the authors discuss evidence in human and animal models supporting two opposing views regarding the pathogenesis of human immunodeficiency virus (HIV) in the central nervous system (CNS): (1) HIV infection in the CNS is a compartmentalized infection, with the virus-infected macrophages entering the CNS early, infecting resident microglia and astrocytes, and achieving a state of latency with evolution toward a fulminant CNS infection late in the course of disease; or alternatively, (2) events in the periphery lead to altered monocyte/macrophage (MPhi) homeostasis, with increased CNS invasion of infected and/or uninfected MPhis. Here the authors have reevaluated evidence presented in the favor of the latter model, with a discussion of phenotypic characteristics distinguishing normal resident microglia with those accumulating in HIV encephalitis (HIVE). CD163 is normally expressed by perivascular MPhi s but not resident microglia in normal CNS of humans and rhesus macaques. In agreement with other studies, the authors demonstrate expression of CD163 by brain MPhi s in HIVE and simian immunodeficiency virus encephalitis (SIVE). CNS tissues from HIV-sero positive individuals with HIVE or HIV-associated progressive multifocal leukoencephalopathy (PML) were also examined. In HIVE, the authors further demonstrate colocalization of CD163 and CD16 (Fcgamma III recptor) gene expression, the latter marker associated with HIV infection of monocyte in vivo and permissivity of infection. Indeed, CD163(+) MPhis and microglia are often productively infected in HIVE CNS. In SIV infected rhesus macaques, CD163(+) cells accumulate perivascularly, within nodular lesions and the parenchyma in animals with encephalitis. Likewise, parenchymal microglia and perivascular MPhi s are CD163(+) in HIVE. In contrast to HIVE, CD163(+)perivascular and parenchymal MPhi s in HIV-associated PML were only associated with areas of demyelinating lesions. Interestingly, SIV-infected rhesus macaques

  16. Identification of representative genes of the central nervous system of the locust, Locusta migratoria manilensis by deep sequencing.

    PubMed

    Zhang, Zhengyi; Peng, Zhi-Yu; Yi, Kang; Cheng, Yanbing; Xia, Yuxian

    2012-01-01

    The shortage of available genomic and transcriptomic data hampers the molecular study on the migratory locust, Locusta migratoria manilensis (L.) (Orthoptera: Acrididae) central nervous system (CNS). In this study, locust CNS RNA was sequenced by deep sequencing. 41,179 unigenes were obtained with an average length of 570 bp, and 5,519 unigenes were longer than 1,000 bp. Compared with an EST database of another locust species Schistocerca gregaria Forsskåi, 9,069 unigenes were found conserved, while 32,110 unigenes were differentially expressed. A total of 15,895 unigenes were identified, including 644 nervous system relevant unigenes. Among the 25,284 unknown unigenes, 9,482 were found to be specific to the CNS by filtering out the previous ESTs acquired from locust organs without CNS's. The locust CNS showed the most matches (18%) with Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) sequences. Comprehensive assessment reveals that the database generated in this study is broadly representative of the CNS of adult locust, providing comprehensive gene information at the transcriptional level that could facilitate research of the locust CNS, including various physiological aspects and pesticide target finding.

  17. Requirements for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred; Jain, Raj; Sheffield, Greg; Taboso, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service. Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.

  18. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  19. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  20. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  1. Progressive multifocal leukoencephalopathy occurring with the acquired immune deficiency syndrome.

    PubMed

    England, J D; Hsu, C Y; Garen, P D; Goust, J M; Biggs, P J

    1984-08-01

    A 33-year-old homosexual man with symptoms and signs of a focal brain process was subsequently found to have an acquired immune deficiency syndrome (AIDS) with biopsy-proven progressive multifocal leukoencephalopathy. This report reemphasizes the association of progressive multifocal leukoencephalopathy with AIDS and probably is best viewed as another example of an opportunistic CNS infection complicating deficient cell-mediated immunity.

  2. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  3. Delusional Disorder Arising From a CNS Neoplasm.

    PubMed

    Stupinski, John; Kim, Jihye; Francois, Dimitry

    2017-01-01

    Erotomania arising from a central nervous system (CNS) neoplasm has not been previously described. Here, we present the first known case, to our knowledge, of erotomania with associated persecutory delusions arising following diagnosis and treatment of a left frontal lobe brain tumor.

  4. Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS.

    PubMed

    Silva, Gabriel A

    2008-12-10

    Nanotechnologies are materials and devices that have a functional organization in at least one dimension on the nanometer (one billionth of a meter) scale, ranging from a few to about 100 nanometers. Nanoengineered materials and devices aimed at biologic applications and medicine in general, and neuroscience in particular, are designed fundamentally to interface and interact with cells and their tissues at the molecular level. One particularly important area of nanotechnology application to the central nervous system (CNS) is the development of technologies and approaches for delivering drugs and other small molecules such as genes, oligonucleotides, and contrast agents across the blood brain barrier (BBB). The BBB protects and isolates CNS structures (i.e. the brain and spinal cord) from the rest of the body, and creates a unique biochemical and immunological environment. Clinically, there are a number of scenarios where drugs or other small molecules need to gain access to the CNS following systemic administration, which necessitates being able to cross the BBB. Nanotechnologies can potentially be designed to carry out multiple specific functions at once or in a predefined sequence, an important requirement for the clinically successful delivery and use of drugs and other molecules to the CNS, and as such have a unique advantage over other complimentary technologies and methods. This brief review introduces emerging work in this area and summarizes a number of example applications to CNS cancers, gene therapy, and analgesia.

  5. Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases.

    PubMed

    Bar-Or, Amit; Hintzen, Rogier Q; Dale, Russell C; Rostasy, Kevin; Brück, Wolfgang; Chitnis, Tanuja

    2016-08-30

    Elucidating pathophysiologic mechanisms underlying the spectrum of pediatric-onset CNS demyelinating diseases, particularly those that may distinguish multiple sclerosis (MS) from other entities, promises to both improve diagnostics and guide more-informed therapeutic decisions. Observations that pediatric- and adult-onset MS share the same genetic and environmental risk factors support the view that these conditions represent essentially the same illness manifesting at different ages. Nonetheless, special consideration must be given when CNS inflammation manifests in early life, at a time when multiple organs (including immune and nervous systems) are actively maturing. CSF analysis in pediatric-onset MS points to chronic CNS inflammation, supported by observations from limited pathologic material available for study. Emerging results implicate abnormalities in both effector and regulatory T cell subsets, and potentially immune senescence, in children with MS. Although CNS-directed antibodies (including antibodies recognizing myelin antigens; Kir4.1) can be documented in pediatric-onset MS, their pathophysiologic significance (as in adults) remains unclear. This is in contrast to the presence of serum and/or CSF antibodies recognizing aquaporin-4, which, when measured using validated cell-based assays, supports the diagnosis of a neuromyelitis optica spectrum disorder, distinct from MS. Presence of anti-myelin oligodendrocyte glycoprotein antibodies documented with similar cell-based assays may also be associated with pathophysiologically distinct disease phenotypes in children. The substantial impact of pediatric-onset MS on normal brain development and function underscores the importance of elucidating both the immunobiology and neurobiology of disease. Ongoing efforts are aimed at developing and validating biological measures that define pathophysiologically distinct monophasic and chronic forms of pediatric CNS demyelination.

  6. Analysis of miRNA in Normal Appearing White Matter to Identify Altered CNS Pathways in Multiple Sclerosis

    PubMed Central

    Guerau-de-Arellano, Mireia; Liu, Yue; Meisen, Walter H; Pitt, David; Racke, Michael K; Lovett-Racke, Amy E

    2016-01-01

    Genetic studies suggest that the immune system is the greatest genetic contributor to multiple sclerosis (MS) susceptibility. Yet, these immune-related genes do not explain why inflammation is limited to the CNS in MS. We hypothesize that there is an underlying dysregulation in the CNS of MS patients that makes them more vulnerable to CNS inflammation. The sparsity of CNS-related genes associated with MS suggests that epigenetic changes in the CNS may play a role. Thus, a miRNA profiling study was performed in NAWM of MS patients and control subjects to determine if specific CNS pathways can be identified that may be altered due to miRNA-mediated post-transcriptional dysregulation. There were 15 differentially expressed miRNAs found in the MS patients’ NAWM. Pathway analysis indicated that the MAPK pathway and pathways associated with the blood-brain barrier were predicted to be significantly affected by these miRNAs. Using target predication and mRNA analysis, an inverse relationship was found between miR-191 and BDNF, SOX4, FZD5 and WSB1. The pathway and target analysis of the MS-associated miRNAs suggests that MS patients’ CNS is more prone to inflammation and less capable of repair, yet enriched in neuroprotective mechanisms. PMID:26894232

  7. Preservation of Dendritic Cell Function during Vesicular Stomatitis Virus Infection Reflects both Intrinsic and Acquired Mechanisms of Resistance to Suppression of Host Gene Expression by Viral M Protein

    PubMed Central

    Ahmed, Maryam; Smedberg, Jason R.; Rajani, Karishma R.; Hiltbold, Elizabeth M.; Lyles, Douglas S.

    2013-01-01

    Inhibition of host-directed gene expression by the matrix (M) protein of vesicular stomatitis virus (VSV) effectively blocks host antiviral responses, promotes virus replication, and disables the host cell. However, dendritic cells (DC) have the capacity to resist these effects and remain functional during VSV infection. Here, the mechanisms of DC resistance to M protein and their subsequent maturation were addressed. Flt3L-derived murine bone marrow dendritic cells (FDC), which phenotypically resemble resident splenic DC, continued to synthesize cellular proteins and matured during single-cycle (high-multiplicity) and multicycle (low-multiplicity) infection with VSV. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived myeloid DC (GDC), which are susceptible to M protein effects, were nevertheless capable of maturing, but the response was delayed and occurred only during multicycle infection. FDC resistance was manifested early and was type I interferon (IFN) receptor (IFNAR) and MyD88 independent, but sustained resistance required IFNAR. MyD88-dependent signaling contributed to FDC maturation during single-cycle infection but was dispensable during multicycle infection. Similar to FDC, splenic DC were capable of maturing in vivo during the first 24 h of infection with VSV, and neither Toll-like receptor 7 (TLR7) nor MyD88 was required. We conclude that FDC resistance to M protein is controlled by an intrinsic, MyD88-independent mechanism that operates early in infection and is augmented later in infection by type I IFN. In contrast, while GDC are not intrinsically resistant, they can acquire resistance during multicycle infection. In vivo, splenic DC resist the inhibitory effects of VSV, and as in multicycle FDC infection, MyD88-independent signaling events control their maturation. PMID:23986580

  8. Preservation of dendritic cell function during vesicular stomatitis virus infection reflects both intrinsic and acquired mechanisms of resistance to suppression of host gene expression by viral M protein.

    PubMed

    Westcott, Marlena M; Ahmed, Maryam; Smedberg, Jason R; Rajani, Karishma R; Hiltbold, Elizabeth M; Lyles, Douglas S

    2013-11-01

    Inhibition of host-directed gene expression by the matrix (M) protein of vesicular stomatitis virus (VSV) effectively blocks host antiviral responses, promotes virus replication, and disables the host cell. However, dendritic cells (DC) have the capacity to resist these effects and remain functional during VSV infection. Here, the mechanisms of DC resistance to M protein and their subsequent maturation were addressed. Flt3L-derived murine bone marrow dendritic cells (FDC), which phenotypically resemble resident splenic DC, continued to synthesize cellular proteins and matured during single-cycle (high-multiplicity) and multicycle (low-multiplicity) infection with VSV. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived myeloid DC (GDC), which are susceptible to M protein effects, were nevertheless capable of maturing, but the response was delayed and occurred only during multicycle infection. FDC resistance was manifested early and was type I interferon (IFN) receptor (IFNAR) and MyD88 independent, but sustained resistance required IFNAR. MyD88-dependent signaling contributed to FDC maturation during single-cycle infection but was dispensable during multicycle infection. Similar to FDC, splenic DC were capable of maturing in vivo during the first 24 h of infection with VSV, and neither Toll-like receptor 7 (TLR7) nor MyD88 was required. We conclude that FDC resistance to M protein is controlled by an intrinsic, MyD88-independent mechanism that operates early in infection and is augmented later in infection by type I IFN. In contrast, while GDC are not intrinsically resistant, they can acquire resistance during multicycle infection. In vivo, splenic DC resist the inhibitory effects of VSV, and as in multicycle FDC infection, MyD88-independent signaling events control their maturation.

  9. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology

    PubMed Central

    Moffett, John R.; Ross, Brian; Arun, Peethambaran; Madhavarao, Chikkathur N.; Namboodiri, M. A. A.

    2007-01-01

    The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal CNS development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research

  10. Primary Central Nervous System (CNS) Lymphoma B Cell Receptors Recognize CNS Proteins.

    PubMed

    Montesinos-Rongen, Manuel; Purschke, Frauke G; Brunn, Anna; May, Caroline; Nordhoff, Eckhard; Marcus, Katrin; Deckert, Martina

    2015-08-01

    Primary lymphoma of the CNS (PCNSL) is a diffuse large B cell lymphoma confined to the CNS. To elucidate its peculiar organ tropism, we generated recombinant Abs (recAbs) identical to the BCR of 23 PCNSLs from immunocompetent patients. Although none of the recAbs showed self-reactivity upon testing with common autoantigens, they recognized 1547 proteins present on a large-scale protein microarray, indicating polyreactivity. Interestingly, proteins (GRINL1A, centaurin-α, BAIAP2) recognized by the recAbs are physiologically expressed by CNS neurons. Furthermore, 87% (20/23) of the recAbs, including all Abs derived from IGHV4-34 using PCNSL, recognized galectin-3, which was upregulated on microglia/macrophages, astrocytes, and cerebral endothelial cells upon CNS invasion by PCNSL. Thus, PCNSL Ig may recognize CNS proteins as self-Ags. Their interaction may contribute to BCR signaling with sustained NF-κB activation and, ultimately, may foster tumor cell proliferation and survival. These data may also explain, at least in part, the affinity of PCNSL cells for the CNS.

  11. Considerations for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navigation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of

  12. Considerations for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navitation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of

  13. Trypanosoma cruzi Meningoencephalitis in a Patient with Acquired Immunodeficiency Syndrome

    PubMed Central

    Yasukawa, Kosuke; Patel, Shital M.; Flash, Charlene A.; Stager, Charles E.; Goodman, Jerry C.; Woc-Colburn, Laila

    2014-01-01

    As a result of global migration, a significant number of people with Trypanosoma cruzi infection now live in the United States, Canada, many countries in Europe, and other non-endemic countries. Trypanosoma cruzi meningoencephalitis is a rare cause of ring-enhancing lesions in patients with acquired immunodeficiency syndrome (AIDS) that can closely mimic central nervous system (CNS) toxoplasmosis. We report a case of CNS Chagas reactivation in an AIDS patient successfully treated with benznidazole and antiretroviral therapy in the United States. PMID:24891470

  14. Long-term fate of neural precursor cells following transplantation into developing and adult CNS.

    PubMed

    Lepore, A C; Neuhuber, B; Connors, T M; Han, S S W; Liu, Y; Daniels, M P; Rao, M S; Fischer, I

    2006-05-12

    Successful strategies for transplantation of neural precursor cells for replacement of lost or dysfunctional CNS cells require long-term survival of grafted cells and integration with the host system, potentially for the life of the recipient. It is also important to demonstrate that transplants do not result in adverse outcomes. Few studies have examined the long-term properties of transplanted neural precursor cells in the CNS, particularly in non-neurogenic regions of the adult. The aim of the present study was to extensively characterize the fate of defined populations of neural precursor cells following transplantation into the developing and adult CNS (brain and spinal cord) for up to 15 months, including integration of graft-derived neurons with the host. Specifically, we employed neuronal-restricted precursors and glial-restricted precursors, which represent neural precursor cells with lineage restrictions for neuronal and glial fate, respectively. Transplanted cells were prepared from embryonic day-13.5 fetal spinal cord of transgenic donor rats that express the marker gene human placental alkaline phosphatase to achieve stable and reliable graft tracking. We found that in both developing and adult CNS grafted cells showed long-term survival, morphological maturation, extensive distribution and differentiation into all mature CNS cell types (neurons, astrocytes and oligodendrocytes). Graft-derived neurons also formed synapses, as identified by electron microscopy, suggesting that transplanted neural precursor cells integrated with adult CNS. Furthermore, grafts did not result in any apparent deleterious outcomes. We did not detect tumor formation, cells did not localize to unwanted locations and no pronounced immune response was present at the graft sites. The long-term stability of neuronal-restricted precursors and glial-restricted precursors and the lack of adverse effects suggest that transplantation of lineage-restricted neural precursor cells can

  15. Hypothalamic obesity syndrome: rare presentation of CNS+ B-cell lymphoblastic lymphoma.

    PubMed

    Quigg, Troy C; Haddad, Nadine G; Buchsbaum, Jeffrey C; Shih, Chie-Schin

    2012-11-01

    Hypothalamic obesity syndrome can affect brain tumor patients following surgical intervention and irradiation. This syndrome is rare at diagnosis in childhood cancer, but has been reported with relapse of acute lymphoblastic leukemia. Here we present a case of hypothalamic obesity syndrome as the primary presentation of a toddler found to have CNS+ B-cell lymphoblastic lymphoma. Cytogenetic studies on diagnostic cerebrospinal fluid revealed MLL gene rearrangement (11q23). Hyperphagia and obesity dramatically improved following induction and consolidation chemotherapy. We describe a novel presentation of hypothalamic obesity syndrome in CNS B-cell lymphoblastic lymphoma, responsive to chemotherapy. Copyright © 2011 Wiley Periodicals, Inc.

  16. Intravascular AAV9 preferentially targets neonatal-neurons and adult-astrocytes in CNS

    PubMed Central

    Foust, Kevin D.; Nurre, Emily; Montgomery, Chrystal L.; Hernandez, Anna; Chan, Curtis M.; Kaspar, Brian K.

    2010-01-01

    Delivery of therapeutics to the brain and spinal cord remains a challenge for neurodegenerative diseases, such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). The blood-brain-barrier (BBB) hampers delivery of therapeutics to neurons, glia, and surrounding cell types of the central nervous system (CNS) that may be involved in disease progression. Here, we describe an intravenous injection of adeno-associated-virus-9 (AAV-9) in mouse that efficiently targets brain, dorsal root ganglia and spinal cord motor neurons in neonatal animals and astrocytes in adult mouse brain and spinal cords, offering a new therapeutic delivery approach to deliver genes to widespread regions within the CNS. PMID:19098898

  17. Cerebral blood flow variations in CNS lupus

    SciTech Connect

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M. )

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.

  18. Experimental Study of Stellar Reactions at CNS

    SciTech Connect

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.

    2006-11-02

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O({alpha},p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  19. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  20. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  1. Decellularization technology in CNS tissue repair.

    PubMed

    Wang, Hui; Lin, Xian-Feng; Wang, Li-Ren; Lin, Yi-Qian; Wang, Jiang-Tao; Liu, Wen-Yue; Zhu, Gui-Qi; Braddock, Martin; Zhong, Ming; Zheng, Ming-Hua

    2015-05-01

    Decellularization methodologies have been successfully used in a variety of tissue engineering and regenerative technologies and methods of decellularization have been developed for target tissues and organs of interest. The technology to promote regeneration and functional recovery in the CNS, including brain and spinal cord, has, however, made slow progress mainly because the intrinsic regenerative potential of the CNS is regarded as low. To date, currently available therapies have been unable to provide significant functional recovery and successful therapies, which could provide functional restoration to the injured brain and spinal cord are controversial. In this review, the authors provide a critical analysis, comparing the advantages and limitations of the major decellularization methods and considering the effects of these methods upon the biologic scaffold material. The authors also review studies that supplement decellularized grafts with exogenous factors, such as stem cells and growth factors, to both promote and enhance regeneration through decellularized allografts.

  2. Target identification for CNS diseases by transcriptional profiling.

    PubMed

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2009-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  3. Target Identification for CNS Diseases by Transcriptional Profiling

    PubMed Central

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2008-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer’s disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to τ, amyloid-β precursor protein, and amyloid-β peptides (Aβ), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson’s disease (PD) include the ubiquitin–proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  4. Antiretroviral therapy CNS penetration and HIV-1–associated CNS disease

    PubMed Central

    Winston, A.; Walsh, J.; Post, F.; Porter, K.; Gazzard, B.; Fisher, M.; Leen, C.; Pillay, D.; Hill, T.; Johnson, M.; Gilson, R.; Anderson, J.; Easterbrook, P.; Bansi, L.; Orkin, C.; Ainsworth, J.; Palfreeman, A.; Gompels, M.; Phillips, A.N.; Sabin, C.A.

    2011-01-01

    Objective: The impact of different antiretroviral agents on the risk of developing or surviving CNS disease remains unknown. The aim of this study was to investigate whether using antiretroviral regimens with higher CNS penetration effectiveness (CPE) scores was associated with reduced incidence of CNS disease and improved survival in the UK Collaborative HIV Cohort (CHIC) Study. Methods: Adults without previous CNS disease, who commenced combination antiretroviral therapy (cART) between 1996 and 2008, were included (n = 22,356). Initial and most recent cART CPE scores were calculated. CNS diseases were HIV encephalopathy (HIVe), progressive multifocal leukoencephalopathy (PML), cerebral toxoplasmosis (TOXO), and cryptococcal meningitis (CRYPTO). Incidence rates and overall survival were stratified by CPE score. A multivariable Poisson regression model was used to identify independent associations. Results: The median (interquartile range) CPE score for initial cART regimen increased from 7 (5–8) in 1996–1997 to 9 (8–10) in 2000–2001 and subsequently declined to 6 (7–8) in 2006–2008. Differences in gender, HIV acquisition risk group, and ethnicity existed between CPE score strata. A total of 251 subjects were diagnosed with a CNS disease (HIVe 80; TOXO 59; CRYPTO 56; PML 54). CNS diseases occurred more frequently in subjects prescribed regimens with CPE scores ≤4, and less frequently in those with scores ≥10; however, these differences were nonsignificant. Initial and most recent cART CPE scores ≤4 were independently associated with increased risk of death. Conclusion: Clinical status at time of commencing cART influences antiretroviral selection and CPE score. This information should be considered when utilizing CPE scores for retrospective analyses. PMID:21339496

  5. Agile delivery of protein therapeutics to CNS.

    PubMed

    Yi, Xiang; Manickam, Devika S; Brynskikh, Anna; Kabanov, Alexander V

    2014-09-28

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.

  6. Targeting PPAR isoforms following CNS injury.

    PubMed

    Yonutas, Heather M; Sullivan, Patrick G

    2013-06-01

    A major focus has developed for the discovery of proregenerative and neuroprotective therapeutic agents to help the millions of Americans who receive a CNS injury annually. Tribulations have been encountered along the way due to the complicated set of pathways that are initiated post-injury. To target this complicated multifaceted signaling cascade, the most promising therapeutics target multiple pathways involved in the secondary injury cascade, such as neuroinflammation, the generation of ROS and mitochondrial dysfunction. Compelling experimental data demonstrates that mitochondrial dysfunction is a pivotal link in the neuropathological sequelae of brain injury. A group of PPAR agonists, specifically rosiglitazone and pioglitazone, have shown an extreme amount of promise in the realm of drug discovery for CNS injury due to their ability to increase functional recovery and decrease lesion volumes following injury. The therapeutic effects of these PPAR agonists are thought to be a direct result of PPAR activity however new data is arising that shows some of the effects may be independent of PPAR activity, targeting a novel mitochondrial protein called mitoNEET. In this review, a thorough evaluation of the role of PPAR and mitoNEET in rosiglitazone and pioglitazone mediated neuroprotection will be completed in order to shed light on the mechanism of a new possible therapeutic intervention for CNS injury.

  7. Histamine and Immune Biomarkers in CNS Disorders

    PubMed Central

    Cacabelos, Ramón; Torrellas, Clara; Fernández-Novoa, Lucía; López-Muñoz, Francisco

    2016-01-01

    Neuroimmune dysregulation is a common phenomenon in different forms of central nervous system (CNS) disorders. Cross-links between central and peripheral immune mechanisms appear to be disrupted as reflected by a series of immune markers (CD3, CD4, CD7, HLA-DR, CD25, CD28, and CD56) which show variability in brain disorders such as anxiety, depression, psychosis, stroke, Alzheimer's disease, Parkinson's disease, attention-deficit hyperactivity disorder, migraine, epilepsy, vascular dementia, mental retardation, cerebrovascular encephalopathy, multiple sclerosis, brain tumors, cranial nerve neuropathies, mental retardation, and posttraumatic brain injury. Histamine (HA) is a pleiotropic monoamine involved in several neurophysiological functions, neuroimmune regulation, and CNS pathogenesis. Changes in brain HA show an age- and sex-related pattern, and alterations in brain HA levels are present in different CNS regions of patients with Alzheimer's disease (AD). Brain HA in neuronal and nonneuronal compartments plays a dual role (neurotrophic versus neurotoxic) in a tissue-specific manner. Pathogenic mechanisms associated with neuroimmune dysregulation in AD involve HA, interleukin-1β, and TNF-α, whose aberrant expression contributes to neuroinflammation as an aggravating factor for neurodegeneration and premature neuronal death. PMID:27190492

  8. Agile Delivery of Protein Therapeutics to CNS

    PubMed Central

    Yi, Xiang; Manickam, Devika S.; Brynskikh, Anna; Kabanov, Alexander V.

    2014-01-01

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. PMID:24956489

  9. Histoplasmosis with Deep CNS Involvement: Case Presentation with Discussion and Literature Review

    PubMed Central

    Hariri, Omid R.; Minasian, Tanya; Quadri, Syed A.; Dyurgerova, Anya; Farr, Saman; Miulli, Dan E.; Siddiqi, Javed

    2015-01-01

    Central nervous system (CNS) histoplasmosis is rare and difficult to diagnose because it is often overlooked or mistaken for other pathologies due to its nonspecific symptoms. A 32-year-old Hispanic man with advanced acquired immunodeficiency virus presented with altered mental status and reported confusion for the past 3 months. He had a Glasgow Coma Scale of 12, repetitive nonfluent speech, and a disconjugate gaze with a right gaze preference. Lung computed tomography (CT) findings indicated a pulmonary histoplasmosis infection. Magnetic resonance imaging of the brain revealed a ring-enhancing lesion in the left caudate nucleus. A CT-guided left retroperitoneal node biopsy was performed and indicated a benign inflammatory process with organisms compatible with fungal yeast. Treatment with amphotericin B followed by itraconazole was initiated in spite of negative cerebrospinal fluid (CSF) cultures and proved effective in mitigating associated CNS lesions and resolving neurologic deficits. The patient was discharged 3 weeks later in stable condition. Six weeks later, his left basal ganglia mass decreased. Early recognition of symptoms and proper steps is key in improving outcomes of CNS histoplasmosis. Aggressive medical management is possible in the treatment of intracranial deep mass lesions, and disseminated histoplasmosis with CNS involvement can be appropriately diagnosed and treated, despite negative CSF and serology studies. PMID:26251798

  10. Alpha-mannosidosis: characterization of CNS pathology and correlation between CNS pathology and cognitive function.

    PubMed

    Borgwardt, L; Danielsen, E R; Thomsen, C; Månsson, J E; Taouatas, N; Thuesen, A M; Olsen, K J; Fogh, J; Dali, C I; Lund, A M

    2015-07-23

    Alpha-mannosidosis (AM) (OMIM 248500) is a rare lysosomal storage disease. The understanding of the central nervous system (CNS) pathology is limited. This study is the first describing the CNS pathology and the correlation between the CNS pathology and intellectual disabilities in human AM. Thirty-four patients, aged 6-35 years, with AM were included. Data from 13 healthy controls were included in the analysis of the magnetic resonance spectroscopy (MRS). Measurements of CNS neurodegeneration biomarkers in cerebrospinal fluid (CSF), CSF-oligosaccharides, and performance of cerebral magnetic resonance imaging (MRI) and MRS were carried out. On MRI, 5 of 10 patients had occipital white matter (WM) signal abnormalities, and 6 of 10 patients had age-inappropriate myelination. MRS demonstrated significantly elevated mannose complex in gray matter and WM. We found elevated concentrations of tau-protein, glial fibrillary acidic protein and neurofilament light protein in 97 patients, 74% and 41% of CSF samples, respectively. A negative correlation between CSF-biomarkers and cognitive function and CSF-oligosaccharides and cognitive function was found. The combination of MRS/MRI changes, elevated concentrations of CSF-biomarkers and CSF-oligosaccharides suggests gliosis and reduced myelination, as part of the CNS pathology in AM. Our data demonstrate early neuropathological changes, which may be taken into consideration when planning initiation of treatment.

  11. Biomedical Application Of Polymers: A Case Study Of Non-Cns Drugs Becoming Cns Acting Drugs.

    PubMed

    Saganuwan, Saganuwan Alhaji

    2017-08-20

    The transport of CNS acting drugs across blood-brain barrier is complex and guided by the molecular weight, PH, physicochemical and pathological state of the BBB among others. In view of this, literatures were assessed for possible conversion of Non-CNS to CNS acting drugs, whose ability to penetrate CNS can be improved using polymers for biomedical applications. The findings have shown that compounds with pyridine, pyrrole, carboxamide, pyridone among others can be converted to CNS acting drugs that can be loaded in specialized carrier polymers for transportation across BBB. Such carriers are polymers, co-polymers, nanopolymers and polymeric miscelles that have amine, around and pyridine as their hydrophobic site and carboxylic acid as their hydrophilic site. But balanced hydrophilic/hydrophobic site (amphiphilic) may not increase the transport rate of the carrier molecule. Polymeric nanoparticles and copolymers can be used. Examples of such polymers are poly (lactic-co-glycolic acid), polylactic and poly (propyleneglycol, poly (DI)-lactide, polycaprolactone, and polyethylene glycol (hydrophilic). They are non-soluble, biodegradable, release the entrapped drug as they degrade via passive diffusion from polymeric core. Some of their degradation products can be converted to glycolic acid and lactic acid which are converted to carbon dioxide and water through the Kreb's cycle and finally eliminated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. The movers and shapers in immune privilege of the CNS.

    PubMed

    Engelhardt, Britta; Vajkoczy, Peter; Weller, Roy O

    2017-02-01

    Discoveries leading to an improved understanding of immune surveillance of the central nervous system (CNS) have repeatedly provoked dismissal of the existence of immune privilege of the CNS. Recent rediscoveries of lymphatic vessels within the dura mater surrounding the brain, made possible by modern live-cell imaging technologies, have revived this discussion. This review emphasizes the fact that understanding immune privilege of the CNS requires intimate knowledge of its unique anatomy. Endothelial, epithelial and glial brain barriers establish compartments in the CNS that differ strikingly with regard to their accessibility to immune-cell subsets. There is a unique system of lymphatic drainage from the CNS to the peripheral lymph nodes. We summarize current knowledge on the cellular and molecular mechanisms involved in immune-cell trafficking and lymphatic drainage from the CNS, and we take into account differences in rodent and human CNS anatomy.

  13. Chromatin profiling of Drosophila CNS subpopulations identifies active transcriptional enhancers.

    PubMed

    Pearson, Joseph C; McKay, Daniel J; Lieb, Jason D; Crews, Stephen T

    2016-10-15

    One of the key issues in studying transcriptional regulation during development is how to employ genome-wide assays that reveals sites of open chromatin and transcription factor binding to efficiently identify biologically relevant genes and enhancers. Analysis of Drosophila CNS midline cell development provides a useful system for studying transcriptional regulation at the genomic level due to a large, well-characterized set of midline-expressed genes and in vivo validated enhancers. In this study, FAIRE-seq on FACS-purified midline cells was performed and the midline FAIRE data were compared with whole-embryo FAIRE data. We find that regions of the genome with a strong midline FAIRE peak and weak whole-embryo FAIRE peak overlap with known midline enhancers and provide a useful predictive tool for enhancer identification. In a complementary analysis, we compared a large dataset of fragments that drive midline expression in vivo with the FAIRE data. Midline enhancer fragments with a midline FAIRE peak tend to be near midline-expressed genes, whereas midline enhancers without a midline FAIRE peak were often distant from midline-expressed genes and unlikely to drive midline transcription in vivo.

  14. Incidence of CNS tumors in Appalachian children.

    PubMed

    Huang, Bin; Luo, Alice; Durbin, Eric B; Lycan, Ellen; Tucker, Thomas; Chen, Quan; Horbinski, Craig; Villano, John L

    2017-03-11

    Determine whether the risk of astrocytomas in Appalachian children is higher than the national average. We compared the incidence of pediatric brain tumors in Appalachia versus non-Appalachia regions, covering years 2000-2011. The North American Association of Central Cancer Registries (NAACCR) collects population-based data from 55 cancer registries throughout U.S. and Canada. All invasive primary (i.e. non-metastatic tumors), with age at diagnosis 0-19 years old, were included. Nearly 27,000 and 2200 central nervous system (CNS) tumors from non-Appalachia and Appalachia, respectively comprise the cohorts. Age-adjusted incidence rates of each main brain tumor subtype were compared. The incidence rate of pediatric CNS tumors was 8% higher in Appalachia, 3.31 [95% CI 3.17-3.45] versus non-Appalachia, 3.06, [95% CI 3.02-3.09] for the years 2001-2011, all rates are per 100,000 population. Astrocytomas accounted for the majority of this difference, with the rate being 16% higher in Appalachian children, 1.77, [95% CI 1.67-1.87] versus non-Appalachian children, 1.52, [95% CI 1.50-1.55]. Among astrocytomas, World Health Organization (WHO) grade I astrocytomas were 41% higher in Appalachia, 0.63 [95% CI 0.56-0.70] versus non-Appalachia 0.44 [95% CI 0.43-0.46] for the years 2004-2011. This is the first study to demonstrate that Appalachian children are at greater risk of CNS neoplasms, and that much of this difference is in WHO grade I astrocytomas, 41% more common. The cause of this increased incidence is unknown and we discuss the importance of this in relation to genetic and environmental findings in Appalachia.

  15. Draft Genome Sequence of a Pathogenic O86:H25 Sequence Type 57 Escherichia coli Strain Isolated from Poultry and Carrying 12 Acquired Antibiotic Resistance Genes.

    PubMed

    Jones-Dias, Daniela; Manageiro, Vera; Sampaio, Daniel Ataíde; Vieira, Luís; Caniça, Manuela

    2015-09-24

    Escherichia coli is a commensal bacterium that is frequently associated with multidrug-resistant zoonotic and foodborne infections. Here, we report the 5.6-Mbp draft genome sequence of an E. coli recovered from poultry, which encodes multiple acquired antibiotic resistance determinants, virulence factors, pathogenicity determinants, and mobile genetic elements. Copyright © 2015 Jones-Dias et al.

  16. Draft Genome Sequence of a Pathogenic O86:H25 Sequence Type 57 Escherichia coli Strain Isolated from Poultry and Carrying 12 Acquired Antibiotic Resistance Genes

    PubMed Central

    Jones-Dias, Daniela; Sampaio, Daniel Ataíde; Vieira, Luís; Caniça, Manuela

    2015-01-01

    Escherichia coli is a commensal bacterium that is frequently associated with multidrug-resistant zoonotic and foodborne infections. Here, we report the 5.6-Mbp draft genome sequence of an E. coli recovered from poultry, which encodes multiple acquired antibiotic resistance determinants, virulence factors, pathogenicity determinants, and mobile genetic elements. PMID:26404585

  17. Obstructive hydrocephalus due to CNS toxocariasis.

    PubMed

    Choi, Jae-Hwan; Cho, Jae-Wook; Lee, Jae-Hyeok; Lee, Sang Weon; Kim, Hak-Jin; Choi, Kwang-Dong

    2013-06-15

    A 46-year-old man developed intermittent headache, diplopia, and visual obscuration for two months. Funduscopic examination showed optic disk swelling in both eyes. Brain MRI exhibited hydrocephalus and leptomeningeal enhancement at the prepontine cistern, left cerebellopontine angle cistern and bilateral cerebral hemisphere, and hemosiderin deposition along the cerebellar folia. CSF analysis revealed an elevated opening pressure with xanthochromic appearance and small amount of red blood cells. Antibody titer against Toxocariasis using ELISA was elevated both in blood and CSF. Obstructive hydrocephalus and hemosiderin deposition in this case may result from the active inflammatory process due to CNS toxocariasis within the subarachnoid space.

  18. Human African trypanosomiasis, chemotherapy and CNS disease.

    PubMed

    Rodgers, Jean

    2009-06-25

    Trypanosomes have been recognised as human pathogens for over a century. Human African trypanosomiasis is endemic in an area sustaining 60 million people and is fatal without chemotherapeutic intervention. Available trypanocidal drugs require parenteral administration and are associated with adverse reactions including the development of a severe post-treatment reactive encephalopathy (PTRE). Following infection the parasites proliferate in the systemic compartment before invading the CNS where a cascade of events results in neuroinflammation. This review summarises the clinical manifestations of the infection and chemotherapeutic regimens as well as the current research findings and hypotheses regarding the neuropathogenesis of the disease.

  19. Roles of AEG-1 in CNS neurons and astrocytes during noncancerous processes.

    PubMed

    Yin, Xiang; Feng, Honglin

    2017-03-30

    Since its initial identification, Astrocyte Elevated Gene-1 (AEG-1) has been recognized as a "star" gene detected in most of the analyzed cancers; AEG-1 can interact with signaling transduction molecules, such as PI3K/Akt and MAPK, to affect the function and viability of cells. Furthermore, its multiple other functions are also gradually being recognized. AEG-1 participates in several biological processes, including embryonic development, glutamate excitotoxicity, inflammation, and endoplasmic reticulum stress. Most of the noncancerous roles of the AEG-1 were identified in studies of the neurological disorders of the CNS. As an oncogene that promotes aberrant cellular processes within the CNS, AEG-1 may also represent an important therapeutic target for the treatment of neurological disease. However, the exact role of the AEG-1 in CNS under normal conditions is still unknown. This review will focus on the literature describing the role of this molecule in CNS neurons and astrocytes during noncancerous processes. © 2017 Wiley Periodicals, Inc.

  20. Immune cell trafficking from the brain maintains CNS immune tolerance.

    PubMed

    Mohammad, Mohammad G; Tsai, Vicky W W; Ruitenberg, Marc J; Hassanpour, Masoud; Li, Hui; Hart, Prue H; Breit, Samuel N; Sawchenko, Paul E; Brown, David A

    2014-03-01

    In the CNS, no pathway dedicated to immune surveillance has been characterized for preventing the anti-CNS immune responses that develop in autoimmune neuroinflammatory disease. Here, we identified a pathway for immune cells to traffic from the brain that is associated with the rostral migratory stream (RMS), which is a forebrain source of newly generated neurons. Evaluation of fluorescently labeled leukocyte migration in mice revealed that DCs travel via the RMS from the CNS to the cervical LNs (CxLNs), where they present antigen to T cells. Pharmacologic interruption of immune cell traffic with the mononuclear cell-sequestering drug fingolimod influenced anti-CNS T cell responses in the CxLNs and modulated experimental autoimmune encephalomyelitis (EAE) severity in a mouse model of multiple sclerosis (MS). Fingolimod treatment also induced EAE in a disease-resistant transgenic mouse strain by altering DC-mediated Treg functions in CxLNs and disrupting CNS immune tolerance. These data describe an immune cell pathway that originates in the CNS and is capable of dampening anti-CNS immune responses in the periphery. Furthermore, these data provide insight into how fingolimod treatment might exacerbate CNS neuroinflammation in some cases and suggest that focal therapeutic interventions, outside the CNS have the potential to selectively modify anti-CNS immunity.

  1. Detection of allergenic compounds using an IL-4/luciferase/CNS-1 transgenic mice model.

    PubMed

    Bae, Chang Joon; Lee, Jae Won; Bae, Hee Sook; Shim, Sun Bo; Jee, Seung Wan; Lee, Su Hae; Lee, Chang Kyu; Hong, Jin Tae; Hwang, Dae Youn

    2011-04-01

    The interleukin-4 (IL-4) signaling cascade has been identified as a potentially important pathway in the development of allergies. The principal objective of this study was to produce novel transgenic (Tg) mice harboring the luciferase gene under the control of the human IL-4 promoter and the enhancer of IL-4 (CNS-1), in an effort to evaluate three types of allergens including a respiratory sensitizer, vaccine additives, and crude extracts of natural allergens in vivo. A new lineage of Tg mice was generated by the microinjection of pIL-4/Luc/CNS-1 constructs into a fertilized mice egg. The luciferase activity was successfully regulated by the IL-4 promoter in splenocytes cultured from IL-4/Luc/CNS-1 Tg mice. From the first five founder lines, one (#57) evidencing a profound response to ovalbumin was selected for use in evaluating the allergens. Additionally, the lungs, thymus, and lymph nodes of IL-4/Luc/CNS-1 Tg mice evidenced high luciferase activity in response to allergens such as phthalic anhydride (PA), trimellitic anhydride, ovalbumin, gelatin, Dermatophagoides pteronyssinus extracts, and Japanese cedar pollen, whereas key allergy-related indicators including ear thickness, Immunoglobulin E concentration, and the infiltration of inflammatory leukocytes in response to PA were unaltered in the Tg mice relative to the non-Tg mice. Furthermore, the expression levels of endogenous type 2 helper T cells cytokines and proinflammatory cytokines were similarly increased in these organs of IL-4/Luc/CNS-1 Tg mice in response to allergens. These results indicate that IL-4/Luc/CNS-1 Tg mice may be used as an animal model for the evaluation and prediction of the human body response to a variety of allergens originating from the environment and from certain industrial products.

  2. CNS depressant effects of volatile organic solvents.

    PubMed

    Evans, E B; Balster, R L

    1991-01-01

    Volatile chemicals used widely as solvents can produce acute effects on the nervous system and behavior after inhalation exposure, and many are subject to abuse. This review considers the nature of the acute effects of volatile organic solvents by comparing their actions to those of classical CNS depressant drugs such as the barbiturates, benzodiazepines and ethanol. Like CNS depressant drugs, selected inhalants have been shown to have biphasic effects on motor activity, disrupt psychomotor performance, have anticonvulsant effects, produce biphasic drug-like effects on rates of schedule-controlled operant behavior, increase rates of punished responding, enhance the effects of depressant drugs, serve as reinforcers in self-administration studies and share discriminative stimulus effects with barbiturates and ethanol. Toluene and 1,1,1-trichloroethane, as well as subanesthetic concentrations of halothane, have been the most extensively studied; however, it is unclear whether important differences may exist among solvents in their ability to produce a depressant profile of acute effects. The possibility that selected solvents can have acute effects similar to those of depressant drugs may shed light on the nature of their acute behavioral toxicology and on their abuse.

  3. Astrocyte scar formation aids CNS axon regeneration

    PubMed Central

    Anderson, Mark A.; Burda, Joshua E.; Ren, Yilong; Ao, Yan; O’Shea, Timothy M.; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S.; Deming, Timothy J.; Sofroniew, Michael V.

    2017-01-01

    Summary Transected axons fail to regrow in the mature central nervous system (CNS). Astrocyte scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or deleting chronic astrocyte scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. In striking contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocyte scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth supporting molecules. Our findings show that contrary to prevailing dogma, astrocyte scar formation aids rather than prevents CNS axon regeneration. PMID:27027288

  4. The energetics of CNS white matter.

    PubMed

    Harris, Julia J; Attwell, David

    2012-01-04

    The energetics of CNS white matter are poorly understood. We derive a signaling energy budget for the white matter (based on data from the rodent optic nerve and corpus callosum) which can be compared with previous energy budgets for the gray matter regions of the brain, perform a cost-benefit analysis of the energetics of myelination, and assess mechanisms for energy production and glucose supply in myelinated axons. We show that white matter synapses consume ≤0.5% of the energy of gray matter synapses and that this, rather than more energy-efficient action potentials, is the main reason why CNS white matter uses less energy than gray matter. Surprisingly, while the energetic cost of building myelin could be repaid within months by the reduced ATP cost of neuronal action potentials, the energetic cost of maintaining the oligodendrocyte resting potential usually outweighs the saving on action potentials. Thus, although it dramatically speeds action potential propagation, myelination need not save energy. Finally, we show that mitochondria in optic nerve axons could sustain measured firing rates with a plausible density of glucose transporters in the nodal membrane, without the need for energy transfer from oligodendrocytes.

  5. Electrophysiological CNS-processes related to associative learning in humans.

    PubMed

    Christoffersen, Gert R J; Schachtman, Todd R

    2016-01-01

    The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Extra-CNS metastasis from glioblastoma: a rare clinical entity.

    PubMed

    Awan, Musaddiq; Liu, Stanley; Sahgal, Arjun; Das, Sunit; Chao, Samuel T; Chang, Eric L; Knisely, Jonathan P S; Redmond, Kristin; Sohn, Jason W; Machtay, Mitchell; Sloan, Andrew E; Mansur, David B; Rogers, Lisa R; Lo, Simon S

    2015-05-01

    Extra-CNS metastasis from glioblastoma (ECMGBM) is an emerging but little known clinical entity. We review pre-clinical and translational publications assessing the ability of GBM to spread locally and outside the CNS. Reported cases demonstrating ECMGBM are reviewed providing a summary of presentations for the entity. Special attention is placed on transmission of GBM through organ transplantation. Finally, predictions are made as to the future significance of ECMGBM, especially in the context of better outcomes in CNS GBM.

  7. Plant sterols: Friend or foe in CNS disorders?

    PubMed

    Vanmierlo, Tim; Bogie, Jeroen F J; Mailleux, Jo; Vanmol, Jasmine; Lütjohann, Dieter; Mulder, Monique; Hendriks, Jerome J A

    2015-04-01

    In mammals, the central nervous system (CNS) is the most cholesterol rich organ by weight. Cholesterol metabolism is tightly regulated in the CNS and all cholesterol available is synthesized in situ. Deficits in cholesterol homeostasis at the level of synthesis, transport, or catabolism result in severe disorders featured by neurological disability. Recent studies indicate that a disturbed cholesterol metabolism is involved in CNS disorders, such as Alzheimer's disease (AD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). In contrast to circulating cholesterol, dietary plant sterols, can cross the blood-brain barrier and accumulate in the membranes of CNS cells. Plant sterols are well-known for their ability to lower circulating cholesterol levels. The finding that they gain access to the CNS has fueled research focusing on the physiological roles of plant sterols in the healthy and diseased CNS. To date, both beneficial and detrimental effects of plant sterols on CNS disorders are defined. In this review, we discuss recent findings regarding the impact of plant sterols on homeostatic and pathogenic processes in the CNS, and elaborate on the therapeutic potential of plant sterols in CNS disorders.

  8. CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity.

    PubMed

    Spence, Tara; Sin-Chan, Patrick; Picard, Daniel; Barszczyk, Mark; Hoss, Katharina; Lu, Mei; Kim, Seung-Ki; Ra, Young-Shin; Nakamura, Hideo; Fangusaro, Jason; Hwang, Eugene; Kiehna, Erin; Toledano, Helen; Wang, Yin; Shi, Qing; Johnston, Donna; Michaud, Jean; La Spina, Milena; Buccoliero, Anna Maria; Adamek, Dariusz; Camelo-Piragua, Sandra; Peter Collins, V; Jones, Chris; Kabbara, Nabil; Jurdi, Nawaf; Varlet, Pascale; Perry, Arie; Scharnhorst, David; Fan, Xing; Muraszko, Karin M; Eberhart, Charles G; Ng, Ho-Keung; Gururangan, Sridharan; Van Meter, Timothy; Remke, Marc; Lafay-Cousin, Lucie; Chan, Jennifer A; Sirachainan, Nongnuch; Pomeroy, Scott L; Clifford, Steven C; Gajjar, Amar; Shago, Mary; Halliday, William; Taylor, Michael D; Grundy, Richard; Lau, Ching C; Phillips, Joanna; Bouffet, Eric; Dirks, Peter B; Hawkins, Cynthia E; Huang, Annie

    2014-08-01

    Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.

  9. Role of GFAP in CNS injuries

    PubMed Central

    Brenner, Michael

    2014-01-01

    The role of GFAP in CNS injury is reviewed as revealed by studies using GFAP null mice. In order to provide background information for these studies, the effects of absence of GFAP in the uninjured astrocyte is also described. Activities attributable to GFAP include suppressing neuronal proliferation and neurite extension in the mature brain, forming a physical barrier to isolate damaged tissue, regulating blood flow following ischemia, contributing to the blood-brain barrier, supporting myelination, and providing mechanical strength. However, findings for many of these roles have been variable among laboratories, pointing to the presence of unappreciated complexity in GFAP function. One complexity may be regional differences in GFAP activities; others are yet to be discovered. PMID:24508671

  10. Biomarkers for CNS involvement in pediatric lupus

    PubMed Central

    Rubinstein, Tamar B; Putterman, Chaim; Goilav, Beatrice

    2015-01-01

    CNS disease, or central neuropsychiatric lupus erythematosus (cNPSLE), occurs frequently in pediatric lupus, leading to significant morbidity and poor long-term outcomes. Diagnosing cNPSLE is especially difficult in pediatrics; many current diagnostic tools are invasive and/or costly, and there are no current accepted screening mechanisms. The most complicated aspect of diagnosis is differentiating primary disease from other etiologies; research to discover new biomarkers is attempting to address this dilemma. With many mechanisms involved in the pathogenesis of cNPSLE, biomarker profiles across several modalities (molecular, psychometric and neuroimaging) will need to be used. For the care of children with lupus, the challenge will be to develop biomarkers that are accessible by noninvasive measures and reliable in a pediatric population. PMID:26079959

  11. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals.

    PubMed

    Fan, G; Beard, C; Chen, R Z; Csankovszki, G; Sun, Y; Siniaia, M; Biniszkiewicz, D; Bates, B; Lee, P P; Kuhn, R; Trumpp, A; Poon, C; Wilson, C B; Jaenisch, R

    2001-02-01

    DNA methyltransferase I (Dnmt1), the maintenance enzyme for DNA cytosine methylation, is expressed at high levels in the CNS during embryogenesis and after birth. Because embryos deficient for Dnmt1 die at gastrulation, the role of Dnmt1 in the development and function of the nervous system could not be studied by using this mutation. We therefore used the cre/loxP system to produce conditional mutants that lack Dnmt1 in neuroblasts of embryonic day 12 embryos or in postmitotic neurons of the postnatal animal. Conditional deletion of the Dnmt1 gene resulted in rapid depletion of Dnmt1 proteins, indicating that the enzyme in postmitotic neurons turns over quickly. Dnmt1 deficiency in postmitotic neurons neither affected levels of global DNA methylation nor influenced cell survival during postnatal life. In contrast, Dnmt1 deficiency in mitotic CNS precursor cells resulted in DNA hypomethylation in daughter cells. Whereas mutant embryos carrying 95% hypomethylated cells in the brain died immediately after birth because of respiratory distress, mosaic animals with 30% hypomethylated CNS cells were viable into adulthood. However, these mutant cells were eliminated quickly from the brain within 3 weeks of postnatal life. Thus, hypomethylated CNS neurons were impaired functionally and were selected against at postnatal stages.

  12. Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic.

    PubMed

    Mi, Sha; Pepinsky, R Blake; Cadavid, Diego

    2013-07-01

    LINGO-1 is a leucine-rich repeat and Ig domain-containing, Nogo receptor interacting protein, selectively expressed in the CNS on both oligodendrocytes and neurons. Its expression is developmentally regulated, and is upregulated in CNS diseases and injury. In animal models, LINGO-1 expression is upregulated in rat spinal cord injury, experimental autoimmune encephalomyelitis, 6-hydroxydopamine neurotoxic lesions and glaucoma models. In humans, LINGO-1 expression is increased in oligodendrocyte progenitor cells from demyelinated white matter of multiple sclerosis post-mortem samples, and in dopaminergic neurons from Parkinson's disease brains. LINGO-1 negatively regulates oligodendrocyte differentiation and myelination, neuronal survival and axonal regeneration by activating ras homolog gene family member A (RhoA) and inhibiting protein kinase B (Akt) phosphorylation signalling pathways. Across diverse animal CNS disease models, targeted LINGO-1 inhibition promotes neuron and oligodendrocyte survival, axon regeneration, oligodendrocyte differentiation, remyelination and functional recovery. The targeted inhibition of LINGO-1 function presents a novel therapeutic approach for the treatment of CNS diseases.

  13. Encephalitis due to emerging viruses: CNS innate immunity and potential therapeutic targets.

    PubMed

    Denizot, M; Neal, J W; Gasque, P

    2012-07-01

    The emerging viruses represent a group of pathogens that are intimately connected to a diverse range of animal vectors. The recent escalation of air travel climate change and urbanization has meant humans will have increased risk of contacting these pathogens resulting in serious CNS infections. Many RNA viruses enter the CNS by evading the BBB due to axonal transport from the periphery. The systemic adaptive and CNS innate immune systems express pattern recognition receptors PRR (TLRs, RiG-1 and MDA-5) that detect viral nucleic acids and initiate host antiviral response. However, several emerging viruses (West Nile Fever, Influenza A, Enterovirus 71 Ebola) are recognized and internalized by host cell receptors (TLR, MMR, DC-SIGN, CD162 and Scavenger receptor B) and escape immuno surveillance by the host systemic and innate immune systems. Many RNA viruses express viral proteins WNF (E protein), Influenza A (NS1), EV71 (protein 3C), Rabies (Glycoprotein), Ebola proteins (VP24 and VP 35) that inhibit the host cell anti-virus Interferon type I response promoting virus replication and encephalitis. The therapeutic use of RNA interference methodologies to silence gene expression of viral peptides and treat emerging virus infection of the CNS is discussed.

  14. Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS).

    PubMed

    Schoeb, Dominik S; Chernin, Gil; Heeringa, Saskia F; Matejas, Verena; Held, Susanne; Vega-Warner, Virginia; Bockenhauer, Detlef; Vlangos, Christopher N; Moorani, Khemchand N; Neuhaus, Thomas J; Kari, Jameela A; MacDonald, James; Saisawat, Pawaree; Ashraf, Shazia; Ovunc, Bugsu; Zenker, Martin; Hildebrandt, Friedhelm

    2010-09-01

    Recessive mutations in the NPHS1 gene encoding nephrin account for approximately 40% of infants with congenital nephrotic syndrome (CNS). CNS is defined as steroid-resistant nephrotic syndrome (SRNS) within the first 90 days of life. Currently, more than 119 different mutations of NPHS1 have been published affecting most exons. We here performed mutational analysis of NPHS1 in a worldwide cohort of 67 children from 62 different families with CNS. We found bi-allelic mutations in 36 of the 62 families (58%) confirming in a worldwide cohort that about one-half of CNS is caused by NPHS1 mutations. In 26 families, mutations were homozygous, and in 10, they were compound heterozygous. In an additional nine patients from eight families, only one heterozygous mutation was detected. We detected 37 different mutations. Nineteen of the 37 were novel mutations (approximately 51.4%), including 11 missense mutations, 4 splice-site mutations, 3 nonsense mutations and 1 small deletion. In an additional patient with later manifestation, we discovered two further novel mutations, including the first one affecting a glycosylation site of nephrin. Our data hereby expand the spectrum of known mutations by 17.6%. Surprisingly, out of the two siblings with the homozygous novel mutation L587R in NPHS1, only one developed nephrotic syndrome before the age of 90 days, while the other one did not manifest until the age of 2 years. Both siblings also unexpectedly experienced an episode of partial remission upon steroid treatment.

  15. Flipping the transcriptional switch from myelin inhibition to axon growth in the CNS

    PubMed Central

    Carmel, Jason B.; Young, Wise; Hart, Ronald P.

    2015-01-01

    Poor regeneration of severed axons in the central nervous system (CNS) limits functional recovery. Regeneration failure involves interplay of inhibitory environmental elements and the growth state of the neuron. To find internal changes in gene expression that might overcome inhibitory environmental cues, we compared several paradigms that allow growth in the inhibitory environment. Conditions that allow axon growth by axotomized and cultured dorsal root ganglion (DRG) neurons on CNS myelin include immaturity (the first few postnatal days), high levels of cyclic adenosine mono phosphate (cAMP), and conditioning with a peripheral nerve lesion before explant. This shift from inhibition to growth depends on transcription. Seeking to understand the transcriptome changes that allow axon growth in the CNS, we collaborated with the Marie Filbin laboratory to identify several mRNAs that are functionally relevant, as determined by gain- and loss-of-function studies. In this Perspective, we review evidence from these experiments and discuss the merits of comparing multiple regenerative paradigms to identify a core transcriptional program for CNS axon regeneration. PMID:26236189

  16. The current development of CNS drug research.

    PubMed

    Wegener, Gregers; Rujescu, Dan

    2013-08-01

    In the past few years, several high profiled pharmaceutical companies have decided to shut down major research activities within the central nervous system (CNS) area. For example, in December 2011 Novartis announced that the company is closing its neuroscience facility in Basel, Switzerland, where Novartis is headquartered (Abbott, 2011). It follows similar moves by GlaxoSmithKline and AstraZeneca, both based in the UK, which in 2010 announced the closure of major parts of their neuroscience research divisions globally (Jack, Financial Times, 4 February 2010). Also companies primarily based in the USA, Pfizer and Merck, as well as the French company Sanofi, have pulled back on research into brain disorders. This development is still proceeding, as e.g. AstraZeneca closed their CNS/pain centres (Fiercebiotech, press release, 2 February 2012). Several of the companies have launched smaller new initiatives based on studies of genetics and biomarkers, but as mental disorders such as unipolar depression impose the largest disease burden worldwide, e.g. 6.2% disability-adjusted life year of total (WHO, 2008), and current treatments do not work particularly well for many patients, this has obviously raised a number of concerns related to how the future developments should be carried out, and whether the genetic approach may be sufficient. In June 2012, the International College of Neuropsychopharmacology (http://www.cinp.org) hosted an international workshop in order to discuss and consider the consequences and implications of the withdrawal of these research activities. This paper presents the problem background together with a summary of the viewpoints of the invited speakers and recommendations for future intervention.

  17. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alternations in CNS Development

    DTIC Science & Technology

    2009-10-01

    Araghi-Niknam, M., Reutiman, T. J., Lee, S., Brooks, A. I., Pearce, D. A., 2005. Reelin signaling is impaired in autism . Biol Psychiatry. 57, 777-87...Am J Psychiatry. 161, 662-9. Serajee, F. J., Zhong, H., Mahbubul Huq, A. H., 2006. Association of Reelin gene polymorphisms with autism . Genomics...1-0702 TITLE: Redox abnormalities as a vulnerability phenotype for Autism and related alternations in CNS development PRINCIPAL

  18. Evidence for host-driven selection of the HIV type 1 vpr gene in vivo during HIV disease progression in a transfusion-acquired cohort.

    PubMed

    Cali, Leon; Wang, Bin; Mikhail, Meriet; Gill, Michael J; Beckthold, Brenda; Salemi, Marco; Jans, David A; Piller, Sabine C; Saksena, Nitin K

    2005-08-01

    An epidemiologically linked HIV-1-infected cohort, in which a nonprogressor donor infected two recipients who progressed to AIDS, was examined. Sequence analysis, over time, of HIV-1 vpr gene quasispecies from uncultured peripheral blood cells revealed an insertion of arginine at position 90 altering a highly conserved C-terminal motif, believed to play a role in Vpr nuclear targeting. Full genome analysis from each patient showed no gene defects in other gene regions, implying that the mutational selection was unique to the vpr gene. A detailed analysis of the vpr quasispecies showed very little amino acid diversity in the nonprogressing donor, whereas, following viral transmission, the amino acid diversity increased dramatically over time in tandem with disease progression in the two recipients. Although the R insertion at position 90 was present in all three individuals, the variable degree of additional amino acid changes over time may have influenced HIV disease in the nonprogressor donor and the two progressing recipients. These data provide the first evidence in favor of vpr gene evolution over time, which was host-driven. The status of the nonprogressing donor was consistent with a highly protective B-57 HLA type, which was absent in the two progressing recipients, implying a role for host HLA type and other immunologic selective pressures in vpr gene selection in vivo.

  19. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications.

    PubMed

    Rexer, Brent N; Arteaga, Carlos L

    2012-01-01

    Approximately 25% of human breast cancers overexpress the HER2 (ErbB2) proto-oncogene, which confers a more aggressive tumor phenotype and associates with a poor prognosis in patients with this disease. Two approved therapies targeting HER2, the monoclonal antibody trastuzumab and the tyrosine kinase inhibitor lapatinib, are clinically active against this type of breast cancer. However, a significant fraction of patients with HER2+ breast cancer treated with these agents eventually relapse or develop progressive disease. This suggests that tumors acquire or possess intrinsic mechanisms of resistance that allow escape from HER2 inhibition. This review focuses on mechanisms of intrinsic and/or acquired resistance to HER2-targeted therapies that have been identified in preclinical and clinical studies. These mechanisms involve alterations to HER2 itself, coexpression or acquisition of bypass signaling through other receptor or intracellular signaling pathways, defects in mechanisms of cell cycle regulation or apoptosis, and host factors that may modulate drug response. Emerging clinical evidence already suggests that combinations of therapies targeting HER2 as well as these resistance pathways will be effective in overcoming or preventing resistance.

  20. Intrinsic and Acquired Resistance to HER2-Targeted Therapies in HER2 Gene-Amplified Breast Cancer: Mechanisms and Clinical Implications

    PubMed Central

    Rexer, Brent N.; Arteaga, Carlos L.

    2012-01-01

    Approximately 25% of human breast cancers overexpress the HER2 (ErbB2) proto-oncogene, which confers a more aggressive tumor phenotype and associates with a poor prognosis in patients with this disease. Two approved therapies targeting HER2, the monoclonal antibody trastuzumab and the tyrosine kinase inhibitor lapatinib, are clinically active against this type of breast cancer. However, a significant fraction of patients with HER2+ breast cancer treated with these agents eventually relapse or develop progressive disease. This suggests that tumors acquire or possess intrinsic mechanisms of resistance that allow escape from HER2 inhibition. This review focuses on mechanisms of intrinsic and/or acquired resistance to HER2-targeted therapies that have been identified in preclinical and clinical studies. These mechanisms involve alterations to HER2 itself, coexpression or acquisition of bypass signaling through other receptor or intracellular signaling pathways, defects in mechanisms of cell cycle regulation or apoptosis, and host factors that may modulate drug response. Emerging clinical evidence already suggests that combinations of therapies targeting HER2 as well as these resistance pathways will be effective in overcoming or preventing resistance. PMID:22471661

  1. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles

    PubMed Central

    Hu, Xiaoming; Liou, Anthony K.F.; Leak, Rehana K.; Xu, Mingyue; An, Chengrui; Suenaga, Jun; Shi, Yejie; Gao, Yanqin; Zheng, Ping; Chen, Jun

    2014-01-01

    Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial ‘On’ or ‘Off’ responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made towards deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, ‘On’ and ‘Off’ receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries. PMID:24923657

  2. LABORATORY-ACQUIRED MYCOSES

    DTIC Science & Technology

    laboratory- acquired mycoses . Insofar as possible, the etiological fungus, type of laboratory, classification of personnel, type of work conducted, and other...pertinent data have been listed in this study. More than 288 laboratory- acquired mycoses are described here, including 108 cases of

  3. Acquired Idiopathic Generalized Anhidrosis.

    PubMed

    Gangadharan, Geethu; Criton, Sebastian; Surendran, Divya

    2015-01-01

    Acquired idiopathic generalized anhidrosis is a rare condition, where the exact pathomechanism is unknown. We report a case of acquired idiopathic generalized anhidrosis in a patient who later developed lichen planus. Here an autoimmune-mediated destruction of sweat glands may be the probable pathomechanism.

  4. IL-6 regulation of synaptic function in the CNS.

    PubMed

    Gruol, Donna L

    2015-09-01

    A growing body of evidence supports a role for glial-produced neuroimmune factors, including the cytokine IL-6, in CNS physiology and pathology. CNS expression of IL-6 has been documented in the normal CNS at low levels and at elevated levels in several neurodegenerative or psychiatric disease states as well as in CNS infection and injury. The altered CNS function associated with these conditions raises the possibility that IL-6 has neuronal or synaptic actions. Studies in in vitro and in vivo models confirmed this possibility and showed that IL-6 can regulate a number of important neuronal and synaptic functions including synaptic transmission and synaptic plasticity, an important cellular mechanism of memory and learning. Behavioral studies in animal models provided further evidence of an important role for IL-6 as a regulator of CNS pathways that are critical to cognitive function. This review summarizes studies that have lead to our current state of knowledge. In spite of the progress that has been made, there is a need for a greater understanding of the physiological and pathophysiological actions of IL-6 in the CNS, the mechanisms underlying these actions, conditions that induce production of IL-6 in the CNS and therapeutic strategies that could ameliorate or promote IL-6 actions. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.

  5. Mechanisms of Hypothermia, Delayed Hyperthermia and Fever Following CNS Injury

    EPA Science Inventory

    Central nervous system (CNS) damage is often associated with robust body temperature changes, such as hypothermia and delayed hyperthermia. Hypothermia is one of the most common body temperature changes to CNS insults in rodents and is often associated with improved outcome. Alth...

  6. The role of dendritic cells in CNS autoimmunity

    PubMed Central

    Zozulya, Alla L.; Clarkson, Benjamin D.; Ortler, Sonja; Fabry, Zsuzsanna

    2010-01-01

    Multiple sclerosis (MS) is a chronic immune-mediated, central nervous system (CNS) demyelinating disease. Clinical and histopathological features suggest an inflammatory etiology involving resident CNS innate cells as well as invading adaptive immune cells. Encephalitogenic myelin-reactive T cells have been implicated in the initiation of an inflammatory cascade, eventually resulting in demyelination and axonal damage (the histological hallmarks of MS). Dendritic cells (DC) have recently emerged as key modulators of this immunopathological cascade, as supported by studies in humans and experimental disease models. In one such model, experimental autoimmune encephalomyelitis (EAE), CNS microvessel-associated DC have been shown to be essential for local antigen recognition by myelin-reactive T cells. Moreover, the functional state and compartmental distribution of DC derived from CNS and associated lymphatics seem to be limiting factors in both the induction and effector phases of EAE. Moreover, DC modulate and balance the recruitment of encephalitogenic and regulatory T cells into CNS tissue. This capacity is critically influenced by DC surface expression of co-stimulatory or co-inhibitory molecules. The fact that DC accumulate in the CNS before T cells and can direct T-cell responses suggests that they are key determinants of CNS autoimmune outcomes. Here we provide a comprehensive review of recent advances in our understanding of CNS-derived DC and their relevance to neuroinflammation. PMID:20217033

  7. Mechanisms of Hypothermia, Delayed Hyperthermia and Fever Following CNS Injury

    EPA Science Inventory

    Central nervous system (CNS) damage is often associated with robust body temperature changes, such as hypothermia and delayed hyperthermia. Hypothermia is one of the most common body temperature changes to CNS insults in rodents and is often associated with improved outcome. Alth...

  8. CNS involvement in hereditary neuropathy with pressure palsies (HNPP).

    PubMed

    Tackenberg, B; Möller, J C; Rindock, H; Bien, S; Sommer, N; Oertel, W H; Rosenow, F; Schepelmann, K; Hamer, H M; Bandmann, O

    2006-12-26

    We assessed seven patients with hereditary neuropathy with liability to pressure palsies (HNPP) with 16 electrophysiological tests and cranial MRI for CNS abnormalities. Mean latencies differed between patients with HNPP and controls for the blink reflex, the jaw-opening reflex, and acoustic evoked potentials. MRI abnormalities were observed in four patients. Our study suggests subclinical but functionally relevant CNS myelin damage in HNPP.

  9. The burden and epidemiology of community-acquired central nervous system infections: a multinational study.

    PubMed

    Erdem, H; Inan, A; Guven, E; Hargreaves, S; Larsen, L; Shehata, G; Pernicova, E; Khan, E; Bastakova, L; Namani, S; Harxhi, A; Roganovic, T; Lakatos, B; Uysal, S; Sipahi, O R; Crisan, A; Miftode, E; Stebel, R; Jegorovic, B; Fehér, Z; Jekkel, C; Pandak, N; Moravveji, A; Yilmaz, H; Khalifa, A; Musabak, U; Yilmaz, S; Jouhar, A; Oztoprak, N; Argemi, X; Baldeyrou, M; Bellaud, G; Moroti, R V; Hasbun, R; Salazar, L; Tekin, R; Canestri, A; Čalkić, L; Praticò, L; Yilmaz-Karadag, F; Santos, L; Pinto, A; Kaptan, F; Bossi, P; Aron, J; Duissenova, A; Shopayeva, G; Utaganov, B; Grgic, S; Ersoz, G; Wu, A K L; Lung, K C; Bruzsa, A; Radic, L B; Kahraman, H; Momen-Heravi, M; Kulzhanova, S; Rigo, F; Konkayeva, M; Smagulova, Z; Tang, T; Chan, P; Ahmetagic, S; Porobic-Jahic, H; Moradi, F; Kaya, S; Cag, Y; Bohr, A; Artuk, C; Celik, I; Amsilli, M; Gul, H C; Cascio, A; Lanzafame, M; Nassar, M

    2017-04-10

    Risk assessment of central nervous system (CNS) infection patients is of key importance in predicting likely pathogens. However, data are lacking on the epidemiology globally. We performed a multicenter study to understand the burden of community-acquired CNS (CA-CNS) infections between 2012 and 2014. A total of 2583 patients with CA-CNS infections were included from 37 referral centers in 20 countries. Of these, 477 (18.5%) patients survived with sequelae and 227 (8.8%) died, and 1879 (72.7%) patients were discharged with complete cure. The most frequent infecting pathogens in this study were Streptococcus pneumoniae (n = 206, 8%) and Mycobacterium tuberculosis (n = 152, 5.9%). Varicella zoster virus and Listeria were other common pathogens in the elderly. Although staphylococci and Listeria resulted in frequent infections in immunocompromised patients, cryptococci were leading pathogens in human immunodeficiency virus (HIV)-positive individuals. Among the patients with any proven etiology, 96 (8.9%) patients presented with clinical features of a chronic CNS disease. Neurosyphilis, neurobrucellosis, neuroborreliosis, and CNS tuberculosis had a predilection to present chronic courses. Listeria monocytogenes, Staphylococcus aureus, M. tuberculosis, and S. pneumoniae were the most fatal forms, while sequelae were significantly higher for herpes simplex virus type 1 (p < 0.05 for all). Tackling the high burden of CNS infections globally can only be achieved with effective pneumococcal immunization and strategies to eliminate tuberculosis, and more must be done to improve diagnostic capacity.

  10. Cognitive Impairment and Persistent CNS Injury in Treated HIV.

    PubMed

    Chan, Phillip; Hellmuth, Joanna; Spudich, Serena; Valcour, Victor

    2016-08-01

    The implementation of combination antiretroviral therapy (cART) has changed HIV infection into a chronic illness, conveying extensive benefits, including greater longevity and advantages for the central nervous system (CNS). However, studies increasingly confirm that the CNS gains are incomplete, with reports of persistent immune activation affecting the CNS despite suppression of plasma HIV RNA. The rate of cognitive impairment is unchanged, although severity is generally milder than in the pre-cART era. In this review, we discuss cognitive outcomes from recently published clinical HIV studies, review observations on HIV biomarkers for cognitive change, and emphasize longitudinal imaging findings. Additionally, we summarize recent studies on CNS viral invasion, CD8 encephalitis, and how CNS involvement during the earliest stages of infection may set the stage for later cognitive manifestations.

  11. Models of CNS radiation damage during space flight

    NASA Astrophysics Data System (ADS)

    Hopewell, J. W.

    1994-10-01

    The primary structural and functional arrangement of the different cell types within the CNS are reviewed. This was undertaken with a view to providing a better understanding of the complex interrelationships that may contribute to the pathogenesis of lesions in this tissue after exposure to ionizing radiation. The spectrum of possible CNS radiation-induced syndromes are discussed although not all have an immediate relevance to exposure during space flight. The specific characteristics of the lesions observed would appear to be dose related. Very high doses may produce an acute CNS syndrome that can cause death. Of the delayed lesions, selective coagulation necrosis of white matter and a later appearing vascular microangiopathy, have been reported in patients after cancer therapy doses. Lower doses, perhaps very low doses, may produce a delayed generalised CNS atrophy; this effect and the probability of the induction of CNS tumors could potentially have the greatest significance for space flight.

  12. Immune surveillance of the CNS following infection and injury

    PubMed Central

    Russo, Matthew; McGavern, Dorian B.

    2015-01-01

    The central nervous system (CNS) contains a sophisticated neural network that must be constantly surveyed in order to detect and mitigate a diverse array of challenges. The innate and adaptive immune systems actively participate in this surveillance, which is critical for the maintenance of CNS homeostasis and can facilitate the resolution of infections, degeneration, and tissue damage. Infections and sterile injuries represent two common challenges imposed on the CNS that require a prompt immune response. While the inducers of these two challenges differ in origin, the resultant responses orchestrated by the CNS share some overlapping features. Here, we review how the CNS immunologically discriminates between pathogens and sterile injuries, mobilizes an immune reaction, and, ultimately, regulates local and peripherally-derived immune cells to provide a supportive milieu for tissue repair. PMID:26431941

  13. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery

    PubMed Central

    Davis, Thomas P.; Sanchez-Covarubias, Lucy; Tome, Margaret E.

    2014-01-01

    The primary function of the blood-brain barrier (BBB) /neurovascular unit is to protect the CNS from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain induced changes in P-gp trafficking are associated with changes in P-gp’s association with caveolin-1, a key scaffolding/trafficking protein that co-localizes with P-gp at the luminal membrane of brain microvessels. Changes in co-localization with the phosphorylated and non-phosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization and activation of P-gp “pools” between microvascular endothelial cell subcellular compartments. Since redox sensitive processes may be involved in signaling disassembly of higher order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface providing improved CNS drug delivery. The advantage of therapeutic drug “relocalization” of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. PMID:25307213

  14. Ex Vivo Generated Natural Killer Cells Acquire Typical Natural Killer Receptors and Display a Cytotoxic Gene Expression Profile Similar to Peripheral Blood Natural Killer Cells

    PubMed Central

    Lehmann, Dorit; Spanholtz, Jan; Osl, Markus; Tordoir, Marleen; Lipnik, Karoline; Bilban, Martin; Schlechta, Bernhard; Dolstra, Harry

    2012-01-01

    Ex vivo differentiation systems of natural killer (NK) cells from CD34+ hematopoietic stem cells are of potential importance for adjuvant immunotherapy of cancer. Here, we analyzed ex vivo differentiation of NK cells from cord blood-derived CD34+ stem cells by gene expression profiling, real-time RT-PCR, flow cytometry, and functional analysis. Additionally, we compared the identified characteristics to peripheral blood (PB) CD56bright and CD56dim NK cells. The data show sequential expression of CD56 and the CD94 and NKG2 receptor chains during ex vivo NK cell development, resulting finally in the expression of a range of genes with partial characteristics of CD56bright and CD56dim NK cells from PB. Expression of characteristic NK cell receptors and cytotoxic genes was mainly found within the predominant ex vivo generated population of NKG2A+ NK cells, indicating the importance of NKG2A expression during NK cell differentiation and maturation. Furthermore, despite distinct phenotypic characteristics, the detailed analysis of cytolytic genes expressed within the ex vivo differentiated NK cells revealed a pattern close to CD56dim NK cells. In line with this finding, ex vivo generated NK cells displayed potent cytotoxicity. This supports that the ex vivo differentiation system faithfully reproduces major steps of the differentiation of NK cells from their progenitors, constitutes an excellent model to study NK cell differentiation, and is valuable to generate large-scale NK cells appropriate for immunotherapy. PMID:22571679

  15. Ex vivo generated natural killer cells acquire typical natural killer receptors and display a cytotoxic gene expression profile similar to peripheral blood natural killer cells.

    PubMed

    Lehmann, Dorit; Spanholtz, Jan; Osl, Markus; Tordoir, Marleen; Lipnik, Karoline; Bilban, Martin; Schlechta, Bernhard; Dolstra, Harry; Hofer, Erhard

    2012-11-01

    Ex vivo differentiation systems of natural killer (NK) cells from CD34+ hematopoietic stem cells are of potential importance for adjuvant immunotherapy of cancer. Here, we analyzed ex vivo differentiation of NK cells from cord blood-derived CD34+ stem cells by gene expression profiling, real-time RT-PCR, flow cytometry, and functional analysis. Additionally, we compared the identified characteristics to peripheral blood (PB) CD56(bright) and CD56(dim) NK cells. The data show sequential expression of CD56 and the CD94 and NKG2 receptor chains during ex vivo NK cell development, resulting finally in the expression of a range of genes with partial characteristics of CD56(bright) and CD56(dim) NK cells from PB. Expression of characteristic NK cell receptors and cytotoxic genes was mainly found within the predominant ex vivo generated population of NKG2A+ NK cells, indicating the importance of NKG2A expression during NK cell differentiation and maturation. Furthermore, despite distinct phenotypic characteristics, the detailed analysis of cytolytic genes expressed within the ex vivo differentiated NK cells revealed a pattern close to CD56(dim) NK cells. In line with this finding, ex vivo generated NK cells displayed potent cytotoxicity. This supports that the ex vivo differentiation system faithfully reproduces major steps of the differentiation of NK cells from their progenitors, constitutes an excellent model to study NK cell differentiation, and is valuable to generate large-scale NK cells appropriate for immunotherapy.

  16. Multi-locus sequence typing of Escherichia coli isolates with acquired ampC genes and ampC promoter mutations.

    PubMed

    Lewis, Jonathan A; Moore, Philippa C L; Arnold, Dawn L; Lawrance, Lynne M

    2016-11-01

    Multi-locus sequence typing was used to reveal a high degree of diversity amongst the E. coli isolates with AmpC plasmid genes, and a high prevalence of the -32 mutation present. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A philosophy for CNS radiotracer design.

    PubMed

    Van de Bittner, Genevieve C; Ricq, Emily L; Hooker, Jacob M

    2014-10-21

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test-retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available

  18. A philosophy for CNS radiotracer design

    SciTech Connect

    Van de Bittner, Genevieve C.; Ricq, Emily L.; Hooker, Jacob M.

    2014-10-01

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test–retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are

  19. A philosophy for CNS radiotracer design

    DOE PAGES

    Van de Bittner, Genevieve C.; Ricq, Emily L.; Hooker, Jacob M.

    2014-10-01

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfallsmore » of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test–retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are

  20. A Philosophy for CNS Radiotracer Design

    PubMed Central

    2015-01-01

    Conspectus Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test–retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods

  1. MRI of fetal acquired brain lesions.

    PubMed

    Prayer, Daniela; Brugger, Peter C; Kasprian, Gregor; Witzani, Linde; Helmer, Hanns; Dietrich, Wolfgang; Eppel, Wolfgang; Langer, Martin

    2006-02-01

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  2. Acquired inflammatory demyelinating neuropathies.

    PubMed

    Ensrud, E R; Krivickas, L S

    2001-05-01

    The acquired demyelinating neuropathies can be divided into those with an acute onset and course and those with a more chronic course. The acute neuropathies present as Guillain-Barré syndrome and include acute inflammatory demyelinating polyradiculoneuropathy (AIDP), Miller Fisher syndrome, acute motor axonal neuropathy (AMAN), acute motor and sensory axonal neuropathy (AMSAN), and acute pandysautonomia. The chronic neuropathies are collectively known as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and include MADSAM (multifocal acquired demyelinating sensory and motor neuropathy, also know as Lewis-Sumner syndrome) and DADS (distal acquired demyelinating symmetric neuropathy) as variants. The clinical features, pathology, pathogenesis, diagnosis, treatment, rehabilitation, and prognosis of these neuropathies are discussed.

  3. 3-D imaging of the CNS.

    PubMed

    Runge, V M; Gelblum, D Y; Wood, M L

    1990-01-01

    3-D gradient echo techniques, and in particular FLASH, represent a significant advance in MR imaging strategy allowing thin section, high resolution imaging through a large region of interest. Anatomical areas of application include the brain, spine, and extremities, although the majority of work to date has been performed in the brain. Superior T1 contrast and thus sensitivity to the presence of GdDTPA is achieved with 3-D FLASH when compared to 2-D spin echo technique. There is marked arterial and venous enhancement following Gd DTPA administration on 3-D FLASH, a less common finding with 2-D spin echo. Enhancement of the falx and tentorium is also more prominent. From a single data acquisition, requiring less than 11 min of scan time, high resolution reformatted sagittal, coronal, and axial images can obtained in addition to sections in any arbitrary plane. Tissue segmentation techniques can be applied and lesions displayed in three dimensions. These results may lead to the replacement of 2-D spin echo with 3-D FLASH for high resolution T1-weighted MR imaging of the CNS, particularly in the study of mass lesions and structural anomalies. The application of similar T2-weighted gradient echo techniques may follow, however the signal-to-noise ratio which can be achieved remains a potential limitation.

  4. CNS depressant activity of Lecaniodiscus cupanioides.

    PubMed

    Yemitan, O K; Adeyemi, O O

    2005-07-01

    The aqueous root extract of Lecaniodiscus cupanioides was used to study the central nervous system depressant activity pattern of the plant. The extract protected mice from strychnine-induced convulsion at 400 mg/kg p.o. and 100 mg/kg i.p. A dose-dependent prolongation of seizure latency was produced at 400 mg/kg, p.o. and 100 mg/kg i.p. for strychnine-induced seizure; and at 400 mg/kg p.o. and 100 mg/kg i.p. for picrotoxin-induced seizure. Moreover, the CNS depressant activity of the extract (200 mg/kg p.o. and 50 mg/kg i.p.) was demonstrated by a significant prolongation of 40 mg/kg, pentobarbitone sleeping time, and significant reduction in exploratory behavior of mice at a dose of 400 mg/kg p.o., with both effects comparable to effects produced by 4 mg/kg chlorpromazine. Acute oral toxicity test, up to 14 days, did not produce any visible signs of toxicity; however, acute (24 h) i.p toxicity test produced a dose-dependent mortality with LD50 of 455.2 mg/kg.

  5. Endocannabinoids and synaptic function in the CNS.

    PubMed

    Hashimotodani, Yuki; Ohno-Shosaku, Takako; Kano, Masanobu

    2007-04-01

    Marijuana affects neural functions through the binding of its active component (Delta(9)-THC) to cannabinoid receptors in the CNS. Recent studies have elucidated that endogenous ligands for cannabinoid receptors, endocannabinoids, serve as retrograde messengers at central synapses. Endocannabinoids are produced on demand in activity-dependent manners and released from postsynaptic neurons. The released endocannabinoids travel backward across the synapse, activate presynaptic CB1 cannabinoid receptors, and modulate presynaptic functions. Retrograde endocannabinoid signaling is crucial for certain forms of short-term and long-term synaptic plasticity at excitatory or inhibitory synapses in many brain regions, and thereby contributes to various aspects of brain function including learning and memory. Molecular identities of the CB1 receptor and enzymes involved in production and degradation of endocannabinoids have been elucidated. Anatomical studies have demonstrated unique distributions of these molecules around synapses, which provide morphological bases for the roles of endocannabinoids as retrograde messengers. CB1-knockout mice exhibit various behavioral abnormalities and multiple defects in synaptic plasticity, supporting the notion that endocannabinoid signaling is involved in various aspects of neural function. In this review article, the authors describe molecular mechanisms of the endocannabinoid-mediated synaptic modulation and its possible physiological significance.

  6. Application of Nanomedicine to the CNS Diseases.

    PubMed

    Carradori, D; Gaudin, A; Brambilla, D; Andrieux, K

    2016-01-01

    Drug delivery to the brain is a challenge because of the many mechanisms that protect the brain from the entry of foreign substances. Numerous molecules which could be active against brain disorders are not clinically useful due to the presence of the blood-brain barrier. Nanoparticles can be used to deliver these drugs to the brain. Encapsulation within colloidal systems can allow the passage of nontransportable drugs across this barrier by masking their physicochemical properties. It should be noted that the status of the blood-brain barrier is different depending on the brain disease. In fact, in some pathological situations such as tumors or inflammatory disorders, its permeability is increased allowing very easy translocation of carriers. This chapter gathers the promising results obtained by using nanoparticles as drug delivery systems with the aim to improve the therapy of some CNS diseases such as brain tumor, Alzheimer's disease, and stroke. The data show that several approaches can be investigated: (1) carrying drug through a permeabilized barrier, (2) crossing the barrier thanks to receptor-mediated transcytosis pathway in order to deliver drug into the brain parenchyma, and also (3) targeting and treating the endothelial cells themselves to preserve locally the brain tissue. The examples given in this chapter contribute to demonstrate that delivering drugs into the brain is one of the most promising applications of nanotechnology in clinical neuroscience. © 2016 Elsevier Inc. All rights reserved.

  7. Hospital-acquired pneumonia

    MedlinePlus

    ... levels in the blood Sputum culture or sputum gram stain , to check what germs are causing the pneumonia ... Aspiration Immunodeficiency disorders Pneumonia - adults (community acquired) Patient Instructions Pneumonia in adults - discharge Review Date 2/2/ ...

  8. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Acquired Cerebral Trauma: Epilogue.

    ERIC Educational Resources Information Center

    Bigler, Erin D., Ed.

    1988-01-01

    The article summarizes a series of articles concerning acquired cerebral trauma. Reviewed are technological advances, treatment, assessment, potential innovative therapies, long-term outcome, family impact of chronic brain injury, and prevention. (DB)

  10. Pneumonia - children - community acquired

    MedlinePlus

    ... CL, Bradley JS. Pediatric community-acquired pneumonia. In: Cherry JD, Harrison GJ, Kaplan SL, Steinback WJ, and Hotez PJ, eds. Feigin and Cherry's Textbook of Pediatric Infectious Diseases. 7th ed. Philadelphia, ...

  11. Risk and survival outcomes of radiation-induced CNS tumors.

    PubMed

    Lee, Jessica W; Wernicke, A Gabriella

    2016-08-01

    Patients treated with cranial radiation are at risk of developing secondary CNS tumors. Understanding the incidence, treatment, and long-term outcomes of radiation-induced CNS tumors plays a role in clinical decision-making and patient education. Additionally, as meningiomas and pituitary tumors have been detected at increasing rates across all ages and may potentially be treated with radiation, it is important to know and communicate the risk of secondary tumors in children and adults. After conducting an extensive literature search, we identified publications that report incidence and long-term outcomes of radiation-induced CNS tumors. We reviewed 14 studies in children, which reported that radiation confers a 7- to 10-fold increase in subsequent CNS tumors, with a 20-year cumulative incidence ranging from 1.03 to 28.9 %. The latency period for secondary tumors ranged from 5.5 to 30 years, with gliomas developing in 5-10 years and meningiomas developing around 15 years after radiation. We also reviewed seven studies in adults, where the two strongest studies showed no increased risk while the remaining studies found a higher risk compared to the general population. The latency period for secondary CNS tumors in adults ranged from 5 to 34 years. Treatment and long-term outcomes of radiation-induced CNS tumors have been documented in four case series, which did not conclusively demonstrate that secondary CNS tumors fared worse than primary CNS tumors. Radiation-induced CNS tumors remain a rare occurrence that should not by itself impede radiation treatment. Additional investigation is needed on the risk of radiation-induced tumors in adults and the long-term outcomes of these tumors.

  12. Are there negative CNS impacts of aluminum adjuvants used in vaccines and immunotherapy?

    PubMed

    Shaw, Christopher A; Li, Dan; Tomljenovic, Lucija

    2014-01-01

    In spite of a common view that aluminum (Al) salts are inert and therefore harmless as vaccine adjuvants or in immunotherapy, the reality is quite different. In the following article we briefly review the literature on Al neurotoxicity and the use of Al salts as vaccine adjuvants and consider not only direct toxic actions on the nervous system, but also the potential impact for triggering autoimmunity. Autoimmune and inflammatory responses affecting the CNS appear to underlie some forms of neurological disease, including developmental disorders. Al has been demonstrated to impact the CNS at every level, including by changing gene expression. These outcomes should raise concerns about the increasing use of Al salts as vaccine adjuvants and for the application as more general immune stimulants.

  13. MULTIPLE NEUROFILAMENT SUBUNITS ARE PRESENT IN LAMPREY CNS

    PubMed Central

    Jin, Li-Qing; Zhang, Guixin; Pennicooke, Brenton; Laramore, Cindy; Selzer, Michael E.

    2010-01-01

    In mammals, there are three neurofilament (NF) subunits (NF-L, NF-M, and NF-H), but it was thought that only a single NF, NF180, exists in lamprey. However, NF180 lacked the ability to self-assemble, suggesting that like mammalian NFs, lamprey NFs are heteropolymers, and that additional NF subunits may exist. The present study provides evidence for the existence of a lamprey NF-L homolog (L-NFL). Genes encoding two new NF-M isoforms (NF132 and NF95) also have been isolated and characterized. With NF180, this makes three NF-M-like isoforms. In situ hybridization showed that all three newly cloned NFs are expressed in spinal cord neurons and in spinal-projecting neurons of the brainstem. Like NF180, there were no KSP multiphosphorylation repeat motifs in the tail regions of NF132 or NF95. NF95 was highly identical to homologous parts of NF180, sharing 2 common pieces of DNA with it. Northern blots suggested that NF95 may be expressed at very low levels in older larvae. The presence of L-NFL in lamprey CNS may support the hypothesis that as in mammals, NFs in lamprey are obligate heteropolymers, in which NF-L is a required subunit. PMID:21081119

  14. CNS Vasculitis Associated with Waldenström Macroglobulinemia.

    PubMed

    Riangwiwat, Tanawan; Wu, Chris Y; Santos-Ocampo, Alberto S; Liu, Randal J; McMurtray, Aaron M; Nakamoto, Beau K

    2016-01-01

    Waldenström macroglobulinemia (WM) is an indolent B cell lymphoproliferative disorder with monoclonal IgM secretion. We present a patient with WM who presented with multifocal acute cortical ischemic strokes and was found to have central nervous system (CNS) vasculitis. Workup was negative for cryoglobulins and hyperviscosity syndrome. Immunosuppression with intravenous steroids and cyclophosphamide stabilized the patient's mental status and neurologic deficits. On followup over 7 years, patient gained independence from walking aids and experienced no recurrences of CNS vasculitis. To our knowledge, CNS vasculitis in a WM patient, in the absence of cryoglobulins, has not been reported. Immunosuppression is the preferred treatment.

  15. LINGO-1 and its role in CNS repair.

    PubMed

    Mi, Sha; Sandrock, Alfred; Miller, Robert H

    2008-01-01

    LINGO-1 is selectively expressed in the CNS on both oligodendrocyte precursor cells (OPCs) and neurons. Its expression is developmentally regulated in the normal CNS, as well as up-regulated in human or rat models of neuropathologies. LINGO-1 functions as a negative regulator of oligodendrocyte differentiation and myelination, neuronal survival and axonal regeneration. Across diverse animal CNS disease models, targeted LINGO-1 inhibition was found to promote neuron and oligodendrocyte survival, axon regeneration, oligodendrocyte differentiation, remyelination and improved functional recovery. The targeted inhibition of LINGO-1 therefore presents a novel therapeutic approach for the treatment of neurological diseases.

  16. CNS Vasculitis Associated with Waldenström Macroglobulinemia

    PubMed Central

    Riangwiwat, Tanawan; Wu, Chris Y.; Santos-Ocampo, Alberto S.; Liu, Randal J.

    2016-01-01

    Waldenström macroglobulinemia (WM) is an indolent B cell lymphoproliferative disorder with monoclonal IgM secretion. We present a patient with WM who presented with multifocal acute cortical ischemic strokes and was found to have central nervous system (CNS) vasculitis. Workup was negative for cryoglobulins and hyperviscosity syndrome. Immunosuppression with intravenous steroids and cyclophosphamide stabilized the patient's mental status and neurologic deficits. On followup over 7 years, patient gained independence from walking aids and experienced no recurrences of CNS vasculitis. To our knowledge, CNS vasculitis in a WM patient, in the absence of cryoglobulins, has not been reported. Immunosuppression is the preferred treatment. PMID:27818812

  17. Integrated Stress Response as a Therapeutic Target for CNS Injuries.

    PubMed

    Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Barreda-Manso, M Asunción

    2017-01-01

    Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.

  18. Axon-glial interactions at the Drosophila CNS midline.

    PubMed

    Crews, Stephen T

    2010-01-01

    The glia that reside at the midline of the Drosophila CNS are an important embryonic signaling center and also wrap the axons that cross the CNS. The development of the midline glia (MG) is characterized by migration, ensheathment, subdivision of axon commissures, apoptosis, and the extension of glial processes. All of these events are characterized by cell-cell contact between MG and adjacent neurons. Cell adhesion and signaling proteins that mediate different aspects of MG development and MG-neuron interactions have been identified. This provides a foundation for ultimately obtaining an integrated picture of how the MG assemble into a characteristic axonal support structure in the CNS.

  19. Gasmin (BV2-5), a polydnaviral-acquired gene in Spodoptera exigua. Trade-off in the defense against bacterial and viral infections.

    PubMed

    Gasmi, Laila; Jakubowska, Agata K; Herrero, Salvador

    2016-03-01

    Thousands of Hymenopteran endoparasitoids have developed a unique symbiotic relationship with viruses named polydnavirus (PDVs). These viruses immunocompromise the lepidopteran host allowing the survival of the wasp eggs. In a previous work, we have shown the horizontal transfer of some polydnaviral genes into the genome of the Lepidoptera, Spodoptera exigua. One of these genes, BV2-5 (named gasmin) interferes with actin polymerization, negatively affecting the multiplication of baculovirus in cell culture. In this work, we have focused in the study of the effect of Gasmin expression on different aspects of the baculovirus production. In addition, and since actin polymerization is crucial for phagocytosis, we have studied the effect of Gasmin expression on the larval interaction with bacterial pathogens. Over-expression of Gasmin on hemocytes significantly reduces their capacity to phagocytize the pathogenic bacteria Bacillus thuringiensis. According to these results, gasmin domestication negatively affects baculovirus replication, but increases larvae susceptibility to bacterial infections as pay off. Although the effect of Gasmin on the insect interaction with other pathogens or parasitoids remain unknown, the opposite effects described here could shape the biological history of this species based on the abundance of certain type of pathogens as suggested by the presence of truncated forms of this protein in several regions of the world.

  20. Early CNS neurodegeneration in radiologically isolated syndrome

    PubMed Central

    Overton, Eve; Khadka, Sankalpa; Buckley, Jessica; Liu, Shuang; Sampat, Mehul; Kantarci, Orhun; Lebrun Frenay, Christine; Siva, Aksel; Okuda, Darin T.; Pelletier, Daniel

    2015-01-01

    Objective: Increasing evidence indicates that the thalamus may be a location of early neurodegeneration in multiple sclerosis (MS). Our objective was to identify the presence of gray matter volume loss and thinning in patients with radiologically isolated syndrome (RIS). Methods: Sixty-three participants were included in this case-control study. Twenty-one patients with RIS were age- and sex-matched to 42 healthy controls in a 1:2 ratio. All participants underwent brain MRIs on a single 3T scanner. After lesion segmentation and inpainting, 1 mm3-isometric T1-weighted images were submitted to FreeSurfer (v5.2). Normalized cortical and deep gray matter volumes were compared between patients with RIS and controls using t tests, and thalamic volumes were correlated with white matter lesion volumes using Pearson correlation. Exploratory cortical thickness maps were created. Results: Although traditional normalized total gray and white matter volumes were not statistically different between patients with RIS and controls, normalized left (0.0046 ± 0.0005 vs 0.0049 ± 0.0004, p = 0.006), right (0.0045 ± 0.0005 vs 0.0048 ± 0.0004, p = 0.008), and mean (0.0045 ± 0.0005 vs 0.0049 ± 0.0004, p = 0.004) thalamic volumes were significantly lower in patients with RIS (n = 21, mean age 41.9 ± 12.7 years) than in controls (n = 42, mean age 41.4 ± 11.2 years). Thalamic volumes correlated modestly with white matter lesion volumes (range: r = −0.35 to −0.47). Conclusion: Our data provide novel evidence of thalamic atrophy in RIS and are consistent with previous reports in early MS stages. Thalamic volume loss is present early in CNS demyelinating disease and should be further investigated as a metric associated with neurodegeneration. PMID:25884012

  1. Loss of Coupling Distinguishes GJB1 Mutations Associated with CNS Manifestations of CMT1X from Those Without CNS Manifestations.

    PubMed

    Abrams, Charles K; Goman, Mikhail; Wong, Sarah; Scherer, Steven S; Kleopa, Kleopas A; Peinado, Alejandro; Freidin, Mona M

    2017-01-10

    CMT1X, an X-linked inherited neuropathy, is caused by mutations in GJB1, which codes for Cx32, a gap junction protein expressed by Schwann cells and oligodendrocytes. Many GJB1 mutations cause central nervous system (CNS) abnormality in males, including stable subclinical signs and, less often, short-duration episodes characterized by motor difficulties and altered consciousness. However, some mutations have no apparent CNS effects. What distinguishes mutations with and without CNS manifestations has been unclear. Here we studied a total of 14 Cx32 mutations, 10 of which are associated with florid episodic CNS clinical syndromes in addition to peripheral neuropathy. The other 4 mutations exhibit neuropathy without clinical or subclinical CNS abnormalities. These "PNS-only" mutations (Y151C, V181M, R183C and L239I) form gap junction plaques and produce levels of junctional coupling similar to those for wild-type Cx32. In contrast, mutants with CNS manifestations (F51L, E102del, V139M, R142Q, R142W, R164W T55I, R164Q and C168Y) either form no morphological gap junction plaques or, if they do, produce little or no detectable junctional coupling. Thus, PNS and CNS abnormalities may involve different aspects of connexin function.

  2. Loss of Coupling Distinguishes GJB1 Mutations Associated with CNS Manifestations of CMT1X from Those Without CNS Manifestations

    PubMed Central

    Abrams, Charles K.; Goman, Mikhail; Wong, Sarah; Scherer, Steven S.; Kleopa, Kleopas A.; Peinado, Alejandro; Freidin, Mona M.

    2017-01-01

    CMT1X, an X-linked inherited neuropathy, is caused by mutations in GJB1, which codes for Cx32, a gap junction protein expressed by Schwann cells and oligodendrocytes. Many GJB1 mutations cause central nervous system (CNS) abnormality in males, including stable subclinical signs and, less often, short-duration episodes characterized by motor difficulties and altered consciousness. However, some mutations have no apparent CNS effects. What distinguishes mutations with and without CNS manifestations has been unclear. Here we studied a total of 14 Cx32 mutations, 10 of which are associated with florid episodic CNS clinical syndromes in addition to peripheral neuropathy. The other 4 mutations exhibit neuropathy without clinical or subclinical CNS abnormalities. These “PNS-only” mutations (Y151C, V181M, R183C and L239I) form gap junction plaques and produce levels of junctional coupling similar to those for wild-type Cx32. In contrast, mutants with CNS manifestations (F51L, E102del, V139M, R142Q, R142W, R164W T55I, R164Q and C168Y) either form no morphological gap junction plaques or, if they do, produce little or no detectable junctional coupling. Thus, PNS and CNS abnormalities may involve different aspects of connexin function. PMID:28071741

  3. Cns1 Is an Essential Protein Associated with the Hsp90 Chaperone Complex in Saccharomyces cerevisiae That Can Restore Cyclophilin 40-Dependent Functions in cpr7Δ Cells

    PubMed Central

    Marsh, James A.; Kalton, Helen M.; Gaber, Richard F.

    1998-01-01

    Saccharomyces cerevisiae harbors two cyclophilin 40-type enzymes, Cpr6 and Cpr7, which are components of the Hsp90 molecular chaperone machinery. Cpr7 is required for normal growth and is required for maximal activity of heterologous Hsp90-dependent substrates, including glucocorticoid receptor (GR) and the oncogenic tyrosine kinase pp60v-src. In addition, it has recently been shown that Cpr7 plays a major role in negative regulation of the S. cerevisiae heat shock transcription factor (HSF). To better understand functions associated with Cpr7, a search was undertaken for multicopy suppressors of the cpr7Δ slow-growth phenotype. The screen identified a single gene, designated CNS1 (for cyclophilin seven suppressor), capable of suppressing the cpr7Δ growth defect. Overexpression of CNS1 in cpr7Δ cells also largely restored GR activity and negative regulation of HSF. In vitro protein retention experiments in which Hsp90 heterocomplexes were precipitated resulted in coprecipitation of Cns1. Interaction between Cns1 and the carboxy terminus of Hsp90 was also shown by two-hybrid analysis. The functional consequences of CNS1 overexpression and its physical association with the Hsp90 machinery indicate that Cns1 is a previously unidentified component of molecular chaperone complexes. Thus far, Cns1 is the only tetratricopeptide repeat-containing component of Hsp90 heterocomplexes found to be essential for cell viability under all conditions tested. PMID:9819422

  4. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair

    PubMed Central

    London, Anat; Cohen, Merav; Schwartz, Michal

    2013-01-01

    Functional macrophage heterogeneity is recognized outside the central nervous system (CNS), where alternatively activated macrophages can perform immune-resolving functions. Such functional heterogeneity was largely ignored in the CNS, with respect to the resident microglia and the myeloid-derived cells recruited from the blood following injury or disease, previously defined as blood-derived microglia; both were indistinguishably perceived detrimental. Our studies have led us to view the myeloid-derived infiltrating cells as functionally distinct from the resident microglia, and accordingly, to name them monocyte-derived macrophages (mo-MΦ). Although microglia perform various maintenance and protective roles, under certain conditions when they can no longer provide protection, mo-MΦ are recruited to the damaged CNS; there, they act not as microglial replacements but rather assistant cells, providing activities that cannot be timely performed by the resident cells. Here, we focus on the functional heterogeneity of microglia/mo-MΦ, emphasizing that, as opposed to the mo-MΦ, microglia often fail to timely acquire the phenotype essential for CNS repair. PMID:23596391

  5. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair.

    PubMed

    London, Anat; Cohen, Merav; Schwartz, Michal

    2013-01-01

    Functional macrophage heterogeneity is recognized outside the central nervous system (CNS), where alternatively activated macrophages can perform immune-resolving functions. Such functional heterogeneity was largely ignored in the CNS, with respect to the resident microglia and the myeloid-derived cells recruited from the blood following injury or disease, previously defined as blood-derived microglia; both were indistinguishably perceived detrimental. Our studies have led us to view the myeloid-derived infiltrating cells as functionally distinct from the resident microglia, and accordingly, to name them monocyte-derived macrophages (mo-MΦ). Although microglia perform various maintenance and protective roles, under certain conditions when they can no longer provide protection, mo-MΦ are recruited to the damaged CNS; there, they act not as microglial replacements but rather assistant cells, providing activities that cannot be timely performed by the resident cells. Here, we focus on the functional heterogeneity of microglia/mo-MΦ, emphasizing that, as opposed to the mo-MΦ, microglia often fail to timely acquire the phenotype essential for CNS repair.

  6. Acquired Immunity to Malaria

    PubMed Central

    Doolan, Denise L.; Dobaño, Carlota; Baird, J. Kevin

    2009-01-01

    Naturally acquired immunity to falciparum malaria protects millions of people routinely exposed to Plasmodium falciparum infection from severe disease and death. There is no clear concept about how this protection works. There is no general agreement about the rate of onset of acquired immunity or what constitutes the key determinants of protection; much less is there a consensus regarding the mechanism(s) of protection. This review summarizes what is understood about naturally acquired and experimentally induced immunity against malaria with the help of evolving insights provided by biotechnology and places these insights in the context of historical, clinical, and epidemiological observations. We advocate that naturally acquired immunity should be appreciated as being virtually 100% effective against severe disease and death among heavily exposed adults. Even the immunity that occurs in exposed infants may exceed 90% effectiveness. The induction of an adult-like immune status among high-risk infants in sub-Saharan Africa would greatly diminish disease and death caused by P. falciparum. The mechanism of naturally acquired immunity that occurs among adults living in areas of hyper- to holoendemicity should be understood with a view toward duplicating such protection in infants and young children in areas of endemicity. PMID:19136431

  7. The Processing of Airspace Concept Evaluations Using FASTE-CNS as a Pre- or Post-Simulation CNS Analysis Tool

    NASA Technical Reports Server (NTRS)

    Mainger, Steve

    2004-01-01

    As NASA speculates on and explores the future of aviation, the technological and physical aspects of our environment increasing become hurdles that must be overcome for success. Research into methods for overcoming some of these selected hurdles have been purposed by several NASA research partners as concepts. The task of establishing a common evaluation environment was placed on NASA's Virtual Airspace Simulation Technologies (VAST) project (sub-project of VAMS), and they responded with the development of the Airspace Concept Evaluation System (ACES). As one examines the ACES environment from a communication, navigation or surveillance (CNS) perspective, the simulation parameters are built with assumed perfection in the transactions associated with CNS. To truly evaluate these concepts in a realistic sense, the contributions/effects of CNS must be part of the ACES. NASA Glenn Research Center (GRC) has supported the Virtual Airspace Modeling and Simulation (VAMS) project through the continued development of CNS models and analysis capabilities which supports the ACES environment. NASA GRC initiated the development a communications traffic loading analysis tool, called the Future Aeronautical Sub-network Traffic Emulator for Communications, Navigation and Surveillance (FASTE-CNS), as part of this support. This tool allows for forecasting of communications load with the understanding that, there is no single, common source for loading models used to evaluate the existing and planned communications channels; and that, consensus and accuracy in the traffic load models is a very important input to the decisions being made on the acceptability of communication techniques used to fulfill the aeronautical requirements. Leveraging off the existing capabilities of the FASTE-CNS tool, GRC has called for FASTE-CNS to have the functionality to pre- and post-process the simulation runs of ACES to report on instances when traffic density, frequency congestion or aircraft spacing

  8. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    PubMed Central

    Babalola, Chinedum Peace; Morse, Gene D.; Taiwo, Babafemi

    2016-01-01

    Neurological complications associated with the human immunodeficiency virus (HIV) are a matter of great concern. While antiretroviral (ARV) drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity. PMID:27777797

  9. Combination therapies in the CNS: engineering the environment.

    PubMed

    McCreedy, Dylan A; Sakiyama-Elbert, Shelly E

    2012-06-25

    The inhibitory extracellular environment that develops in response to traumatic brain injury and spinal cord injury hinders axon growth thereby limiting restoration of function. Several strategies have been developed to engineer a more permissive central nervous system (CNS) environment to promote regeneration and functional recovery. The multi-faced inhibitory nature of the CNS lesion suggests that therapies used in combination may be more effective. In this mini-review we summarize the most recent attempts to engineer the CNS extracellular environment after injury using combinatorial strategies. The advantages and limits of various combination therapies utilizing neurotrophin delivery, cell transplantation, and biomaterial scaffolds are discussed. Treatments that reduce the inhibition by chondroitin sulfate proteoglycans, myelin-associated inhibitors, and other barriers to axon regeneration are also reviewed. Based on the current state of the field, future directions are suggested for research on combination therapies in the CNS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    PubMed Central

    Vigneswara, Vasanthy; Kundi, Sarina; Ahmed, Zubair

    2012-01-01

    The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration. PMID:22848811

  11. Contribution of CNS cells in NeuroAIDS

    PubMed Central

    Verma, Ashish Swarup; Singh, Udai Pratap; Dwivedi, Premendra Dhar; Singh, Anchal

    2010-01-01

    NeuroAIDS is becoming a major health problem among AIDS patients and long-term HIV survivors. As per 2009 estimates of UNAIDS report, more than 34 million people have been infected with HIV out of which ≥ 50% show signs and symptoms of neuropsychiatric disorders. These disorders affect central nervous system (CNS) and peripheral nervous systems (PNS). CNS is one of the most protected organ systems in body which is protected by blood-brain barrier (BBB). Not only this, most of the cells of CNS are negative for receptors and co-receptors for HIV infections. Neurons have been found to be completely nonpermissive for HIV infection. These facts suggest that neurotoxicity could be an indirect mechanism responsible for neuropsychiatric complications. In this review, we will discuss the importance of different cell types of CNS and their contribution toward neurotoxicity. PMID:21180461

  12. Cellular Mechanisms of CNS Repair by Natural Autoreactive Monoclonal Antibodies

    PubMed Central

    Wright, Brent R.; Warrington, Arthur E.; Edberg, Dale E.; Rodriguez, Moses

    2009-01-01

    Natural autoreactive monoclonal IgMs have demonstrated potential as therapeutic agents for CNS disease. These antibodies bind surface antigens on specific CNS cells activating intracellular repair-promoting signals. IgMs that bind to surface antigens on oligodendrocytes enhanced remyelination in animal models of multiple sclerosis. IgMs that bind to neurons stimulate neurite outgrowth and prevent neuron apoptosis. The neuron-binding IgMs may have utility in CNS axon- or neuron-damaging diseases such as amyotrophic lateral sclerosis, stroke, spinal cord injury or secondary progressive multiple sclerosis. Recombinant remyelination-promoting IgMs have been generated for formal toxicology studies and, after FDA approval, a Phase I clinical trial. Natural autoreactive monoclonal antibodies directed against CNS cells represent novel therapeutic molecules to induce repair of the nervous system. PMID:20008649

  13. B cells and Autoantibodies: Complex Roles in CNS Injury

    PubMed Central

    Ankeny, Daniel P.; Popovich, Phillip G.

    2010-01-01

    Emerging data indicate that traumatic injury to the brain or spinal cord activates B lymphocytes, culminating in the production of antibodies specific for antigens found within and outside the central nervous system (CNS). In this article, we summarize what is known about the effects of CNS injury on B cells. We outline the potential mechanisms for CNS trauma-induced B cell activation and discuss the potential consequences of these injury-induced B cell responses. Based on recent data, we hypothesize that a subset of autoimmune B cell responses initiated by CNS injury are pathogenic and that targeted inhibition of B cells could improve recovery in brain and spinal cord injured patients. PMID:20691635

  14. [Influence of a CNS pathology on the electrocochleography response].

    PubMed

    Arslan, E; Lupi, G; Rosignoli, M

    1994-01-01

    This study analyzed 73 electrocochleographic recordings made in children with a normal hearing threshold, selected retrospectively from 1563 recordings made between 1973 and 1990. The aim of the study was to check the original findings for any correlation between the various response parameters which might be indicative of a pathological condition. Compound action potential (AP) latency and amplitude, presynaptic summation potential (SP) and cochlear microphonic (CM) amplitudes and AP rapid adaptation behavior were calculated and recordings were associated with clinical information on aetiologic diagnosis, otoscopic examination, impedance measurement data and the finding of any central nervous system (CNS) pathology. The trend of the amplitudes as a function of the intensity of all three potentials (input-output functions), CM and SP in particular, demonstrated unexpected scattered values especially towards the high intensities. This was found correlated to the presence of CNS pathology. The comparison between the two groups (with vs without CNS pathology) with the aid of the Student's t-test proved statically significant, especially for CM and SP amplitudes while rather less so for AP amplitude. In particular, all CM and SP amplitude values outside the confidence intervals (calculated as 95% of normal cases) revealed CNS pathology. It has been suggested that the influence of the CNS on cochlear function is due to a disturbed function of the olicocochlear bundle, which is known to have an inhibitory effect on cochlear dynamics; furthermore, there is also proof that it can be activated regardless of any ipso-and/or contra-lateral acoustic stimulation. The effects observed on the electrocochleography in cases with CNS disorders would thus be explained by an interruption of the olivocochlear bundle at the CNS level or a disruption of the CNS mechanism capable of controlling its activation.

  15. Human African trypanosomiasis of the CNS: current issues and challenges

    PubMed Central

    Kennedy, Peter G.E.

    2004-01-01

    Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. Current therapy with melarsoprol for CNS HAT has unacceptable side-effects with an overall mortality of 5%. This review discusses the issues of diagnosis and staging of CNS disease, its neuropathogenesis, and the possibility of new therapies for treating late-stage disease. PMID:14966556

  16. Community-acquired pneumonia.

    PubMed

    Falguera, M; Ramírez, M F

    2015-11-01

    This article not only reviews the essential aspects of community-acquired pneumonia for daily clinical practice, but also highlights the controversial issues and provides the newest available information. Community-acquired pneumonia is considered in a broad sense, without excluding certain variants that, in recent years, a number of authors have managed to delineate, such as healthcare-associated pneumonia. The latter form is nothing more than the same disease that affects more frail patients, with a greater number of risk factors, both sharing an overall common approach.

  17. Acquired hypofibrinogenemia: current perspectives

    PubMed Central

    Besser, Martin W; MacDonald, Stephen G

    2016-01-01

    Acquired hypofibrinogenemia is most frequently caused by hemodilution and consumption of clotting factors. The aggressive replacement of fibrinogen has become one of the core principles of modern management of massive hemorrhage. The best method for determining the patient’s fibrinogen level remains controversial, and particularly in acquired dysfibrinogenemia, could have major therapeutic implications depending on which quantification method is chosen. This review introduces the available laboratory and point-of-care methods and discusses the relative advantages and limitations. It also discusses current strategies for the correction of hypofibrinogenemia. PMID:27713652

  18. The role of inflammation in CNS injury and disease.

    PubMed

    Lucas, Sian-Marie; Rothwell, Nancy J; Gibson, Rosemary M

    2006-01-01

    For many years, the central nervous system (CNS) was considered to be 'immune privileged', neither susceptible to nor contributing to inflammation. It is now appreciated that the CNS does exhibit features of inflammation, and in response to injury, infection or disease, resident CNS cells generate inflammatory mediators, including proinflammatory cytokines, prostaglandins, free radicals and complement, which in turn induce chemokines and adhesion molecules, recruit immune cells, and activate glial cells. Much of the key evidence demonstrating that inflammation and inflammatory mediators contribute to acute, chronic and psychiatric CNS disorders is summarised in this review. However, inflammatory mediators may have dual roles, with detrimental acute effects but beneficial effects in long-term repair and recovery, leading to complications in their application as novel therapies. These may be avoided in acute diseases in which treatment administration might be relatively short-term. Targeting interleukin (IL)-1 is a promising novel therapy for stroke and traumatic brain injury, the naturally occurring antagonist (IL-1ra) being well tolerated by rheumatoid arthritis patients. Chronic disorders represent a greater therapeutic challenge, a problem highlighted in Alzheimer's disease (AD); significant data suggested that anti-inflammatory agents might reduce the probability of developing AD, or slow its progression, but prospective clinical trials of nonsteroidal anti-inflammatory drugs or cyclooxygenase inhibitors have been disappointing. The complex interplay between inflammatory mediators, ageing, genetic background, and environmental factors may ultimately regulate the outcome of acute CNS injury and progression of chronic neurodegeneration, and be critical for development of effective therapies for CNS diseases.

  19. Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

    PubMed Central

    Dionne, Kalen R.; Tyler, Kenneth L.

    2016-01-01

    The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease. Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize “CNS-specific” cytokine production, and (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology. PMID:23975824

  20. Camel Streptococcus agalactiae populations are associated with specific disease complexes and acquired the tetracycline resistance gene tetM via a Tn916-like element

    PubMed Central

    2013-01-01

    Camels are the most valuable livestock species in the Horn of Africa and play a pivotal role in the nutritional sustainability for millions of people. Their health status is therefore of utmost importance for the people living in this region. Streptococcus agalactiae, a Group B Streptococcus (GBS), is an important camel pathogen. Here we present the first epidemiological study based on genetic and phenotypic data from African camel derived GBS. Ninety-two GBS were characterized using multilocus sequence typing (MLST), capsular polysaccharide typing and in vitro antimicrobial susceptibility testing. We analysed the GBS using Bayesian linkage, phylogenetic and minimum spanning tree analyses and compared them with human GBS from East Africa in order to investigate the level of genetic exchange between GBS populations in the region. Camel GBS sequence types (STs) were distinct from other STs reported so far. We mapped specific STs and capsular types to major disease complexes caused by GBS. Widespread resistance (34%) to tetracycline was associated with acquisition of the tetM gene that is carried on a Tn916-like element, and observed primarily among GBS isolated from mastitis. The presence of tetM within different MLST clades suggests acquisition on multiple occasions. Wound infections and mastitis in camels associated with GBS are widespread and should ideally be treated with antimicrobials other than tetracycline in East Africa. PMID:24083845

  1. Acquired Brain Injury Program.

    ERIC Educational Resources Information Center

    Schwartz, Stacey Hunter

    This paper reviews the Acquired Brain Injury (ABI) Program at Coastline Community College (California). The ABI Program is a two-year, for-credit educational curriculum designed to provide structured cognitive retraining for adults who have sustained an ABI due to traumatic (such as motor vehicle accident or fall) or non-traumatic(such as…

  2. Laboratory-acquired Brucellosis

    PubMed Central

    Gallo, Richard; Kelly, Molly; Limberger, Ronald J.; DeAngelis, Karen; Cain, Louise; Wallace, Barbara; Dumas, Nellie

    2004-01-01

    We report two laboratory-acquired Brucella melitensis infections that were shown to be epidemiologically related. Blood culture isolates were initially misidentified because of variable Gram stain results, which led to misdiagnoses and subsequent laboratory exposures. Notifying laboratory personnel who unknowingly processed cultures from brucellosis patients is an important preventive measure. PMID:15504276

  3. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective

    PubMed Central

    Soni, Shringika; Ruhela, Rakesh Kumar; Medhi, Bikash

    2016-01-01

    Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go. PMID:27766216

  4. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective.

    PubMed

    Soni, Shringika; Ruhela, Rakesh Kumar; Medhi, Bikash

    2016-09-01

    Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go.

  5. Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS.

    PubMed

    Skeath, J B; Doe, C Q

    1998-05-01

    In Drosophila, most neuronal siblings have different fates ('A/B'). Here we demonstrate that mutations in sanpodo, a tropomodulin actin-binding protein homologue, equalize a diverse array of sibling neuron fates ('B/B'). Loss of Notch signaling gives the same phenotype, whereas loss of numb gives the opposite phenotype ('A/A'). The identical effect of removing either sanpodo or Notch function on the fates of sibling CNS neurons indicates that sanpodo may act in the Notch signaling pathway. In addition, sanpodo and numb show dosage-sensitive interactions and epistasis experiments indicate that sanpodo acts downstream of numb. Taken together, these results show that interactions between sanpodo, the Notch signaling pathway and numb enable CNS sibling neurons to acquire different fates.

  6. CNS accumulation of regulatory B cells is VLA-4-dependent

    PubMed Central

    Lehmann-Horn, Klaus; Sagan, Sharon A.; Winger, Ryan C.; Spencer, Collin M.; Bernard, Claude C.A.; Sobel, Raymond A.

    2016-01-01

    Objective: To investigate the role of very late antigen-4 (VLA-4) on regulatory B cells (Breg) in CNS autoimmune disease. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in mice selectively deficient for VLA-4 on B cells (CD19cre/α4f/f) by immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p)35–55 or recombinant human (rh) MOG protein. B-cell and T-cell populations were examined by flow cytometry and immunohistochemistry. Breg were evaluated by intracellular IL-10 staining of B cells and, secondly, by coexpression of CD1d and CD5. Results: As previously reported, EAE was less severe in B-cell VLA-4-deficient vs control CD19cre mice when induced by rhMOG, a model that is B-cell-dependent and leads to efficient B-cell activation and antibody production. Paradoxically, B-cell VLA-4-deficient mice developed more severe clinical disease than control mice when EAE was induced with MOG p35-55, a B-cell-independent encephalitogen that does not efficiently activate B cells. Peripheral T-cell and humoral immune responses were not altered in B-cell VLA-4-deficient mice. In MOG p35-55-induced EAE, B-cell VLA-4 deficiency reduced CNS accumulation of B but not T cells. Breg were detected in the CNS of control mice with MOG p35-55-induced EAE. However, more severe EAE in B-cell VLA-4-deficient mice was associated with virtual absence of CNS Breg. Conclusions: Our results demonstrate that CNS accumulation of Breg is VLA-4-dependent and suggest that Breg may contribute to regulation of CNS autoimmunity in situ. These observations underscore the need to choose the appropriate encephalitogen when studying how B cells contribute to pathogenesis or regulation of CNS autoimmunity. PMID:27027096

  7. Magnetic resonance microscopy and immunohistochemistry of the CNS of the mutant SOD murine model of ALS reveals widespread neural deficits.

    PubMed

    Petrik, M S; Wilson, J M B; Grant, S C; Blackband, S J; Tabata, R C; Shan, X; Krieger, C; Shaw, C A

    2007-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily affects motor neurons and descending motor tracts of the CNS. We have evaluated the CNS of a murine model of familial ALS based on the over-expression of mutant human superoxide dismutase (mSOD; G93A) using magnetic resonance microscopy (MRM) and immunohistochemistry (IHC). Three-dimensional volumetric analysis was performed from 3D T2*-weighted images acquired at 17.6 T at isotropic resolutions of 40 mum. Compared to controls, mSOD mice had significant reductions in the volumes of total brain, substantia nigra, striatum, hippocampus, and internal capsule, with decreased cortical thickness in primary motor and somatosensory cortices. In the spinal cord, mSOD mice had significantly decreased volume of both the total grey and white matter; in the latter case, the volume change was confined to the dorsal white matter. Increased apoptosis, GFAP positive astrocytes, and/or activated microglia were observed in all those CNS regions that showed volume loss except for the hippocampus. The MRM findings in mSOD over-expressing mice are similar to data previously obtained from a model of ALS-parkinsonism dementia complex (ALS-PDC), in which neural damage occurred following a diet of washed cycad flour containing various neurotoxins. The primary difference between the two models involves a significantly greater decrease in spinal cord white matter volume in mSOD mice, perhaps reflecting variations in degeneration of the descending motor tracts. The extent to which several CNS structures are impacted in both murine models of ALS argues for a reevaluation of the nature of the pathogenesis of ALS since CNS structures involved in Parkinson's and Alzheimer's diseases appear to be affected as well.

  8. Airspace Concept Evaluation System (ACES), Concept Simulations using Communication, Navigation and Surveillance (CNS) System Models

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don

    2006-01-01

    Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.

  9. MyD88 expression by CNS-resident cells is pivotal for eliciting protective immunity in brain abscesses.

    PubMed

    Garg, Sarita; Nichols, Jessica R; Esen, Nilufer; Liu, Shuliang; Phulwani, Nirmal K; Syed, Mohsin Md; Wood, William H; Zhang, Yongqing; Becker, Kevin G; Aldrich, Amy; Kielian, Tammy

    2009-05-05

    MyD88 KO (knockout) mice are exquisitely sensitive to CNS (central nervous system) infection with Staphylococcus aureus, a common aetiological agent of brain abscess, exhibiting global defects in innate immunity and exacerbated tissue damage. However, since brain abscesses are typified by the involvement of both activated CNS-resident and infiltrating immune cells, in our previous studies it has been impossible to determine the relative contribution of MyD88-dependent signalling in the CNS compared with the peripheral immune cell compartments. In the present study we addressed this by examining the course of S. aureus infection in MyD88 bone marrow chimaera mice. Interestingly, chimaeras where MyD88 was present in the CNS, but not bone marrow-derived cells, mounted pro-inflammatory mediator expression profiles and neutrophil recruitment equivalent to or exceeding that detected in WT (wild-type) mice. These results implicate CNS MyD88 as essential in eliciting the initial wave of inflammation during the acute response to parenchymal infection. Microarray analysis of infected MyD88 KO compared with WT mice revealed a preponderance of differentially regulated genes involved in apoptotic pathways, suggesting that the extensive tissue damage characteristic of brain abscesses from MyD88 KO mice could result from dysregulated apoptosis. Collectively, the findings of the present study highlight a novel mechanism for CNS-resident cells in initiating a protective innate immune response in the infected brain and, in the absence of MyD88 in this compartment, immunity is compromised.

  10. Hospital-acquired thrombocytopenia.

    PubMed

    McMahon, Christine M; Cuker, Adam

    2014-10-01

    The development of thrombocytopenia is common in hospitalized patients and is associated with increased mortality. Frequent and important causes of thrombocytopenia in hospitalized patients include etiologies related to the underlying illness for which the patient is admitted, such as infection and disseminated intravascular coagulation, and iatrogenic etiologies such as drug-induced immune thrombocytopenia, heparin-induced thrombocytopenia, posttransfusion purpura, hemodilution, major surgery, and extracorporeal circuitry. This review presents a brief discussion of the pathophysiology, distinguishing clinical features, and management of these etiologies, and provides a diagnostic approach to hospital-acquired thrombocytopenia that considers the timing and severity of the platelet count fall, the presence of hemorrhage or thrombosis, the clinical context, and the peripheral blood smear. This approach may offer guidance to clinicians in distinguishing among the various causes of hospital-acquired thrombocytopenia and providing management appropriate to the etiology.

  11. Community-Acquired urinary tract infection by pseudomonas oryzihabitans.

    PubMed

    Bhatawadekar, Sunita M

    2013-04-01

    Pseudomonas oryzihabitans and Chrysomonas luteola has been placed in CDC group Ve2 and Ve1 respectively. These bacteria appear to be emerging pathogens. P. oryzihabitans was isolated from cases of bacteremia, CNS infections, wound infections, peritonitis, sinusitis, catheter associated infections in AIDS patient, and pneumonia. Most of the reports of P. oryzihabitans infection were of nosocomial origin in individuals with some predisposing factors. We report here a case of community acquired UTI by P. oryzihabitans in an immune-competent patient with stricture of urethra.

  12. CNS Anticancer Drug Discovery and Development Conference White Paper

    PubMed Central

    Levin, Victor A.; Tonge, Peter J.; Gallo, James M.; Birtwistle, Marc R.; Dar, Arvin C.; Iavarone, Antonio; Paddison, Patrick J.; Heffron, Timothy P.; Elmquist, William F.; Lachowicz, Jean E.; Johnson, Ted W.; White, Forest M.; Sul, Joohee; Smith, Quentin R.; Shen, Wang; Sarkaria, Jann N.; Samala, Ramakrishna; Wen, Patrick Y.; Berry, Donald A.; Petter, Russell C.

    2015-01-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric “Accelerating Drug Discovery and Development for Brain Tumors,” further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. PMID:26403167

  13. CNS Anticancer Drug Discovery and Development Conference White Paper.

    PubMed

    Levin, Victor A; Tonge, Peter J; Gallo, James M; Birtwistle, Marc R; Dar, Arvin C; Iavarone, Antonio; Paddison, Patrick J; Heffron, Timothy P; Elmquist, William F; Lachowicz, Jean E; Johnson, Ted W; White, Forest M; Sul, Joohee; Smith, Quentin R; Shen, Wang; Sarkaria, Jann N; Samala, Ramakrishna; Wen, Patrick Y; Berry, Donald A; Petter, Russell C

    2015-11-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.

  14. Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes.

    PubMed

    Chen, Yuan; Ding, Yun; Zhang, Zuming; Wang, Wen; Chen, Jun-Yuan; Ueno, Naoto; Mao, Bingyu

    2011-12-20

    The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes. Copyright © 2011. Published by Elsevier Ltd.

  15. Synaptogenesis in the CNS: An Odyssey from Wiring Together to Firing Together

    PubMed Central

    Munno, David W; Syed, Naweed I

    2003-01-01

    To acquire a better comprehension of nervous system function, it is imperative to understand how synapses are assembled during development and subsequently altered throughout life. Despite recent advances in the fields of neurodevelopment and synaptic plasticity, relatively little is known about the mechanisms that guide synapse formation in the central nervous system (CNS). Although many structural components of the synaptic machinery are pre-assembled prior to the arrival of growth cones at the site of their potential targets, innumerable changes, central to the proper wiring of the brain, must subsequently take place through contact-mediated cell-cell communications. Identification of such signalling molecules and a characterization of various events underlying synaptogenesis are pivotal to our understanding of how a brain cell completes its odyssey from ‘wiring together to firing together’. Here we attempt to provide a comprehensive overview that pertains directly to the cellular and molecular mechanisms of selection, formation and refinement of synapses during the development of the CNS in both vertebrates and invertebrates. PMID:12897180

  16. Screening for ALK abnormalities in central nervous system metastases of non-small-cell lung cancer: ALK abnormalities in CNS metastases of NSCLC.

    PubMed

    Nicoś, Marcin; Jarosz, Bożena; Krawczyk, Paweł; Wojas-Krawczyk, Kamila; Kucharczyk, Tomasz; Sawicki, Marek; Pankowski, Juliusz; Trojanowski, Tomasz; Milanowski, Janusz

    2016-11-23

    Anaplastic lymphoma kinase (ALK) gene rearrangement was reported in 3-7% of primary non-small-cell lung cancer (NSCLC) and its presence is commonly associated with adenocarcinoma (AD) type and non-smoking history. ALK tyrosine kinase inhibitors (TKIs) such as crizotinib, alectinib and ceritinib showed efficiency in patients with primary NSCLC harboring ALK gene rearrangement. Moreover, response to ALK TKIs was observed in central nervous system (CNS) metastatic lesions of NSCLC. However, there are no reports concerning the frequency of ALK rearrangement in CNS metastases. We assessed the frequency of ALK abnormalities in 145 formalin fixed paraffin embedded (FFPE) tissue samples from CNS metastases of NSCLC using immunohistochemical (IHC) automated staining (BenchMark GX, Ventana, USA) and fluorescence in situ hybridization (FISH) technique (Abbot Molecular, USA). The studied group was heterogeneous in terms of histopathology and smoking status. ALK abnormalities were detected in 4.8% (7/145) of CNS metastases. ALK abnormalities were observed in six AD (7.5%; 6/80) and in single patients with adenosuqamous lung carcinoma. Analysis of clinical and demographic factors indicated that expression of abnormal ALK was significantly more frequently observed (p=0.0002; χ(2) =16.783) in former-smokers. Comparison of IHC and FISH results showed some discrepancies, which were caused by unspecific staining of macrophages and glial/nerve cells, which constitute the background of CNS tissues. Our results indicate high frequency of ALK gene rearrangement in CNS metastatic sites of NSCLC that are in line with prior studies concerning evaluation of the presence of ALK abnormalities in such patients. However, we showed that assessment of ALK by IHC and FISH methods in CNS tissues require additional standardizations. This article is protected by copyright. All rights reserved.

  17. Focal neurological disease in patients with acquired immunodeficiency syndrome.

    PubMed

    Skiest, Daniel J

    2002-01-01

    Focal neurological disease in patients with acquired immunodeficiency syndrome may be caused by various opportunistic pathogens and malignancies, including Toxoplasma gondii, progressive multifocal leukoencephalopathy (PML), cytomegalovirus (CMV), and Epstein-Barr virus-related primary central nervous system (CNS) lymphoma. Diagnosis may be difficult, because the findings of lumbar puncture, computed tomography (CT), and magnetic resonance imaging are relatively nonspecific. Newer techniques have led to improved diagnostic accuracy of these conditions. Polymerase chain reaction (PCR) of cerebrospinal fluid specimens is useful for diagnosis of PML, CNS lymphoma, and CMV encephalitis. Recent studies have indicated the diagnostic utility of new neuroimaging techniques, such as single-photon emission CT and positron emission tomography. The combination of PCR and neuroimaging techniques may obviate the need for brain biopsy in selected cases. However, stereotactic brain biopsy, which is associated with relatively low morbidity rates, remains the reference standard for diagnosis. Highly active antiretroviral therapy has improved the prognosis of several focal CNS processes, most notably toxoplasmosis, PML, and CMV encephalitis.

  18. Restoring axonal localization and transport of transmembrane receptors to promote repair within the injured CNS: a critical step in CNS regeneration

    PubMed Central

    Forbes, Lindsey H.; Andrews, Melissa R.

    2017-01-01

    Each neuronal subtype is distinct in how it develops, responds to environmental cues, and whether it is capable of mounting a regenerative response following injury. Although the adult central nervous system (CNS) does not regenerate, several experimental interventions have been trialled with successful albeit limited instances of axonal repair. We highlight here some of these approaches including extracellular matrix (ECM) modification, cellular grafting, gene therapy-induced replacement of proteins, as well as application of biomaterials. We also review the recent report demonstrating the failure of axonal localization and transport of growth-promoting receptors within certain classes of mature neurons. More specifically, we discuss an inability of integrin receptors to localize within the axonal compartment of mature motor neurons such as in the corticospinal and rubrospinal tracts, whereas in immature neurons of those pathways and in mature sensory tracts such as in the optic nerve and dorsal column pathways these receptors readily localize within axons. Furthermore we assert that this failure of axonal localization contributes to the intrinsic inability of axonal regeneration. We conclude by highlighting the necessity for both combined therapies as well as a targeted approach specific to both age and neuronal subtype will be required to induce substantial CNS repair. PMID:28250734

  19. Therapeutic immune clearance of rabies virus from the CNS.

    PubMed

    Hooper, D Craig; Roy, Anirban; Kean, Rhonda B; Phares, Timothy W; Barkhouse, Darryll A

    2011-03-01

    The long-held concept that rabies infection is lethal in humans once the causative rabies virus has reached the CNS has been called into question by the recent survival of a number of patients with clinical rabies. Studies in animal models provide insight into why survival from a rabies virus infection that has spread to the CNS is possible and the immune mechanisms involved. In the CNS, both innate mechanisms capable of inhibiting virus replication and the activity of infiltrating rabies virus-specific T and B cells with the capacity to clear the virus are required. Deficiencies in the induction of either aspect of rabies immunity can lead to lethal consequences but may be overcome by novel approaches to active and passive immunization.

  20. Cellular Compensatory Mechanisms in the CNS of Dysmyelinated Rats

    PubMed Central

    Kwiecien, Jacek M

    2010-01-01

    Loss or absolute lack of myelin in the CNS results in remarkable compensation at the cellular level. In this study on the natural progression of neuropathology in the CNS in 2 related but distinct long-lived dysmyelinated rats, total lack of myelin was associated with remarkable glial cell proliferation and ineffective myelinating activity throughout life in Long Evans Bouncer (LE-bo) rats; conversely, in Long Evans Shaker (LES) rats, futile myelinating activity ceased when rats were advanced in age. Progressively severe astrogliosis separates individual axons from each other and coincides with widespread, abundant axonal sprouting throughout the life in both rat strains. Severely dysmyelinated Long Evans rats can serve as excellent models to elucidate the cellular and molecular mechanisms of neuroglial compensation to lack or loss of myelin in vivo and to study axonal plasticity in the adult demyelinated CNS. PMID:20579436

  1. Disruption of Microtubule Integrity Initiates Mitosis during CNS Repair

    PubMed Central

    Bossing, Torsten; Barros, Claudia S.; Fischer, Bettina; Russell, Steven; Shepherd, David

    2012-01-01

    Summary Mechanisms of CNS repair have vital medical implications. We show that traumatic injury to the ventral midline of the embryonic Drosophila CNS activates cell divisions to replace lost cells. A pilot screen analyzing transcriptomes of single cells during repair pointed to downregulation of the microtubule-stabilizing GTPase mitochondrial Rho (Miro) and upregulation of the Jun transcription factor Jun-related antigen (Jra). Ectopic Miro expression can prevent midline divisions after damage, whereas Miro depletion destabilizes cortical β-tubulin and increases divisions. Disruption of cortical microtubules, either by chemical depolymerization or by overexpression of monomeric tubulin, triggers ectopic mitosis in the midline and induces Jra expression. Conversely, loss of Jra renders midline cells unable to replace damaged siblings. Our data indicate that upon injury, the integrity of the microtubule cytoskeleton controls cell division in the CNS midline, triggering extra mitosis to replace lost cells. The conservation of the identified molecules suggests that similar mechanisms may operate in vertebrates. PMID:22841498

  2. How Do Meningeal Lymphatic Vessels Drain the CNS?

    PubMed

    Raper, Daniel; Louveau, Antoine; Kipnis, Jonathan

    2016-09-01

    The many interactions between the nervous and the immune systems, which are active in both physiological and pathological states, have recently become more clearly delineated with the discovery of a meningeal lymphatic system capable of carrying fluid, immune cells, and macromolecules from the central nervous system (CNS) to the draining deep cervical lymph nodes. However, the exact localization of the meningeal lymphatic vasculature and the path of drainage from the cerebrospinal fluid (CSF) to the lymphatics remain poorly understood. Here, we discuss the potential differences between peripheral and CNS lymphatic vessels and examine the purported mechanisms of CNS lymphatic drainage, along with how these may fit into established patterns of CSF flow. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Therapeutic immune clearance of rabies virus from the CNS

    PubMed Central

    Hooper, D Craig; Roy, Anirban; Kean, Rhonda B; Phares, Timothy W; Barkhouse, Darryll A

    2011-01-01

    The long-held concept that rabies infection is lethal in humans once the causative rabies virus has reached the CNS has been called into question by the recent survival of a number of patients with clinical rabies. Studies in animal models provide insight into why survival from a rabies virus infection that has spread to the CNS is possible and the immune mechanisms involved. In the CNS, both innate mechanisms capable of inhibiting virus replication and the activity of infiltrating rabies virus-specific T and B cells with the capacity to clear the virus are required. Deficiencies in the induction of either aspect of rabies immunity can lead to lethal consequences but may be overcome by novel approaches to active and passive immunization. PMID:21686076

  4. Glial Connexins and Gap Junctions in CNS inflammation and disease

    PubMed Central

    Kielian, Tammy

    2009-01-01

    Gap junctions facilitate direct cytoplasmic communication between neighboring cells, facilitating the transfer of small molecular weight molecules involved in cell signaling and metabolism. Gap junction channels are formed by the joining of two hemichannels from adjacent cells, each composed of six oligomeric protein subunits called connexins (Cx). Of paramount importance to CNS homeostasis are astrocyte networks formed by gap junctions, which play a critical role in maintaining the homeostatic regulation of extracellular pH, K+, and glutamate levels. Inflammation is a hallmark of several diseases afflicting the CNS. Within the past several years, the number of publications reporting effects of cytokines and pathogenic stimuli on glial gap junction communication has increased dramatically. The purpose of this review is to discuss recent observations characterizing the consequences of inflammatory stimuli on homocellular gap junction coupling in astrocytes and microglia as well as changes in connexin expression during various CNS inflammatory conditions. PMID:18410504

  5. Mechanisms regulating regional localization of inflammation during CNS autoimmunity

    PubMed Central

    Pierson, Emily; Simmons, Sarah B.; Castelli, Luca; Goverman, Joan M.

    2013-01-01

    Summary Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by inflammatory, demyelinating lesions localized in the brain and spinal cord. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is induced by activating myelin-specific T cells and exhibits immune cell infiltrates in the CNS similar to those seen in MS. Both MS and EAE exhibit disease heterogeneity, reflecting variations in clinical course and localization of lesions within the CNS. Collectively, the differences seen in MS and EAE suggest that the brain and spinal cord function as unique microenvironments that respond differently to infiltrating immune cells. This review addresses the roles of the cytokines interferon-γ and interleukin-17 in determining the localization of inflammation to the brain or spinal cord in EAE. PMID:22725963

  6. NanoART, neuroAIDS and CNS drug delivery

    PubMed Central

    Nowacek, Ari; Gendelman, Howard E

    2009-01-01

    A broad range of nanomedicines is being developed to improve drug delivery for CNS disorders. The structure of the blood–brain barrier (BBB), the presence of efflux pumps and the expression of metabolic enzymes pose hurdles for drug-brain entry. Nanoformulations can circumvent the BBB to improve CNS-directed drug delivery by affecting such pumps and enzymes. Alternatively, they can be optimized to affect their size, shape, and protein and lipid coatings to facilitate drug uptake, release and ingress across the barrier. This is important as the brain is a sanctuary for a broad range of pathogens including HIV-1. Improved drug delivery to the CNS would affect pharmacokinetic and drug biodistribution properties. This article focuses on how nanotechnology can serve to improve the delivery of antiretroviral medicines, termed nanoART, across the BBB and affect the biodistribution and clinical benefit for HIV-1 disease. PMID:19572821

  7. Case report of unusual leukoencephalopathy preceding primary CNS lymphoma

    PubMed Central

    Brecher, K.; Hochberg, F.; Louis, D.; de la Monte, S.; Riskind, P.

    1998-01-01

    A previously healthy 35 year old woman presented with bilateral uveitus associated with multiple, evolving, non-enhancing white matter lesions consistent with a progressive leukoencephalopathy such as multiple sclerosis. Thirty months after her initial presentation, she was diagnosed with primary CNS lymphoma and died 14 months later. The unusual clinical course preceding the diagnosis suggests that a demyelinating disease may have preceded, and possibly heralded, the development of primary CNS lymphoma. Cases of "sentinel lesions" heralding the diagnosis of primary CNS lymphoma have been reported, and this case further corroborates such instances and raises further issues regarding possible neoplastic transformation occurring in inflammatory diseases such as multiple sclerosis.

 PMID:9854972

  8. Neuronal intrinsic barriers for axon regeneration in the adult CNS

    PubMed Central

    Sun, Fang; He, Zhigang

    2010-01-01

    A major reason for the devastating and permanent disabilities after spinal cord and other types of CNS injury is the failure of injured axons to regenerate and to re-build the functional circuits. Thus, a long-standing goal has been to develop strategies that could promote axon regeneration and restore functions. Recent studies revealed that simply removing extracellular inhibitory activities is insufficient for successful axon regeneration in the adult CNS. On the other side, evidence from different species and different models is accumulating to support the notion that diminished intrinsic regenerative ability of mature neurons is a major contributor to regeneration failure. This review will summarize the molecular mechanisms regulating intrinsic axon growth capacity in the adult CNS and discuss potential implications for therapeutic strategies. PMID:20418094

  9. The inhibition of acquired fear.

    PubMed

    Izquierdo, Iván; Cammarota, Martín; Vianna, Mónica M R; Bevilaqua, Lía R M

    2004-01-01

    A conditioned stimulus (CS) associated with a fearsome unconditioned stimulus (US) generates learned fear. Acquired fear is at the root of a variety of mental disorders, among which phobias, generalized anxiety, the posttraumatic stress disorder (PTSD) and some forms of depression. The simplest way to inhibit learned fear is to extinguish it, which is usually done by repeatedly presenting the CS alone, so that a new association, CS-"no US", will eventually overcome the previously acquired CS-US association. Extinction was first described by Pavlov as a form of "internal inhibition" and was recommended by Freud and Ferenczi in the 1920s (who called it "habituation") as the treatment of choice for phobic disorders. It is used with success till this day, often in association with anxiolytic drugs. Extinction has since then been applied, also successfully and also often in association with anxiolytics, to the treatment of panic, generalized anxiety disorders and, more recently, PTSD. Extinction of learned fear involves gene expression, protein synthesis, N-methyl-D-aspartate (NMDA) receptors and signaling pathways in the hippocampus and the amygdala at the time of the first CS-no US association. It can be enhanced by increasing the exposure to the "no US" component at the time of behavioral testing, to the point of causing the complete uninstallment of the original fear response. Some theorists have recently proposed that reiteration of the CS alone may induce a reconsolidation of the learned behavior instead of its extinction. Reconsolidation would preserve the original memory from the labilization induced by its retrieval. If true, this would of course be disastrous for the psychotherapy of fear-motivated disorders. Here we show that neither the CS nor retrieval cause anything remotely like reconsolidation, but just extinction. In fact, our findings indicate that the reconsolidation hypothesis is essentially incorrect, at least for the form of contextual fear most

  10. Isolated CNS Hodgkin's lymphoma: implications for tissue diagnosis.

    PubMed

    Martinez, Derek L; Gujrati, Meena; Geoffroy, Francois; Tsung, Andrew J

    2014-11-01

    CNS involvement in the setting of lymphoid neoplasia is a clinical situation that requires specific diagnosis due to the disparate treatment regimens recommended for neoplasms of specific lymphoid cell types. Cerebrospinal fluid (CSF) sampling may provide sufficient information to determine the presence of abnormal lymphoid cells but may not be able to further specify the malignant cellular population. In cases where abnormal clinical or radiographic features are present, accurate tissue diagnosis is essential. In this report, we define a rare case of primary CNS intramedullary Hodgkin's lymphoma without leptomeningeal dissemination diagnosed via resectional biopsy of a conus medullaris lesion. The patient received post-resection radiation therapy and subsequently demonstrated radiographic and clinical improvement. Lymphoid neoplasia within the CNS comprises a diverse group with varying response and survival rates. Treatment hinges upon accurate diagnosis as chemotherapy varies widely among Hodgkin's and non-Hodgkin's lymphoma. While CSF sampling may yield a positive result with sufficiency to diagnose an abnormal lymphoid cell population, tissue is necessary for further defining cellular pathology. In this report, we define a rare case of primary CNS intramedullary Hodgkin's lymphoma without leptomeningeal dissemination via resectional biopsy of a conus medullaris lesion. In cases where abnormal enhancement is found in eloquent CNS regions and lymphoid neoplasia is suspected, management often entails either stereotactic biopsy or CSF sampling. While CSF analysis may differentiate malignancy at a low rate, tissue diagnosis via paraffin block immunohistochemistry is necessary to further classify malignancy as primary or peripheral, Hodgkin's or non-Hodgkin's lymphoma, or other such as metastatic leptomeningeal dissemination and glioma. Within the subtypes of lymphoid neoplasms, treatment regimens vastly differ and thus accurate tissue diagnosis is paramount. We

  11. Risk of subsequent cancer following a primary CNS tumor.

    PubMed

    Strodtbeck, Kyle; Sloan, Andrew; Rogers, Lisa; Fisher, Paul Graham; Stearns, Duncan; Campbell, Laura; Barnholtz-Sloan, Jill

    2013-04-01

    Improvements in survival among central nervous system (CNS) tumor patients has made the risk of developing a subsequent cancer an important survivorship issue. Such a risk is likely influenced by histological and treatment differences between CNS tumors. De-identified data for 41,159 patients with a primary CNS tumor diagnosis from 9 Surveillance, Epidemiology and End Results (SEER) registries were used to calculate potential risk for subsequent cancer development. Relative risk (RR) and 95 % confidence interval (CI) of subsequent cancer was calculated using SEER*Stat 7.0.9, comparing observed number of subsequent cancers versus expected in the general United States population. For all CNS tumors studied, there were 830 subsequent cancers with a RR of 1.26 (95 % CI, 1.18-1.35). Subsequent cancers were observed in the CNS, digestive system, bones/joints, soft tissue, thyroid and leukemia. Radiotherapy was associated with an elevated risk, particularly in patients diagnosed with a medulloblastoma/primitive neuroectodermal tumor (MPNET). MPNET patients who received radiotherapy were at a significant risk for development of cancers of the digestive system, leukemia, bone/joint and cranial nerves. Glioblastoma multiforme patients who received radiotherapy were at lower risks for female breast and prostate cancers, though at an elevated risk for cancers of the thyroid and brain. Radiotherapy is associated with subsequent cancer development, particularly for sites within the field of radiation, though host susceptibility and post-treatment status underlie this risk. Variation in subsequent cancer risk among different CNS tumor histological subtypes indicate a complex interplay between risk factors in subsequent cancer development.

  12. Acquired Factor V Inhibitor

    PubMed Central

    Hirai, Daisuke; Yamashita, Yugo; Masunaga, Nobutoyo; Katsura, Toshiaki; Akao, Masaharu; Okuno, Yoshiaki; Koyama, Hiroshi

    2016-01-01

    Inhibitors directed against factor V rarely occur, and the clinical symptoms vary. We herein report the case of a patient who presented with a decreased factor V activity that had decreased to <3 %. We administered vitamin K and 6 units of fresh frozen plasma, but she thereafter developed an intracerebral hemorrhage. It is unclear whether surgery >10 years earlier might have caused the development of a factor V inhibitor. The treatment of acquired factor V inhibitors is mainly the transfusion of platelet concentrates and corticosteroids. Both early detection and the early initiation of the treatment of factor V inhibitor are thus considered to be important. PMID:27746446

  13. Synthesis of some substituted benzodiazepines as possible CNS depressant drugs.

    PubMed

    Dhasmana, A; Mehrotra, S; Gupta, T K; Bhargava, K P; Parmar, S S; Barthwal, J P

    1984-01-01

    A new series of 2,3-cyclopentano-3,4-dihydro-4-spirocyclopentano-1,5-benzodi azepine which are substituted in 5-position with beta-N-heterocycloethyl or gamma-N-heterocyclo-n-propyl groups have been synthesized and evaluated for their CNS depressant activity including anticonvulsant, analgesic and pentobarbital induced hypnosis. These compounds were also investigated for their ability to inhibit in vitro succinate dehydrogenase (SDH). In most of the compounds an appreciable CNS depressant activity has been found to be associated with the compounds possessing good SDH inhibitory activity. Low toxicity of these compounds was reflected by their high approximate LD50 values.

  14. In vivo imaging of the neurovascular unit in CNS disease

    PubMed Central

    Merlini, Mario; Davalos, Dimitrios; Akassoglou, Katerina

    2014-01-01

    The neurovascular unit—comprised of glia, pericytes, neurons and cerebrovasculature—is a dynamic interface that ensures physiological central nervous system (CNS) functioning. In disease dynamic remodeling of the neurovascular interface triggers a cascade of responses that determine the extent of CNS degeneration and repair. The dynamics of these processes can be adequately captured by imaging in vivo, which allows the study of cellular responses to environmental stimuli and cell-cell interactions in the living brain in real time. This perspective focuses on intravital imaging studies of the neurovascular unit in stroke, multiple sclerosis (MS) and Alzheimer disease (AD) models and discusses their potential for identifying novel therapeutic targets. PMID:25197615

  15. Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna

    PubMed Central

    Hinderer, Christian; Bell, Peter; Vite, Charles H; Louboutin, Jean-Pierre; Grant, Rebecca; Bote, Erin; Yu, Hongwei; Pukenas, Bryan; Hurst, Robert; Wilson, James M

    2014-01-01

    Adeno-associated virus serotype 9 (AAV9) vectors have recently been shown to transduce cells throughout the central nervous system of nonhuman primates when injected into the cerebrospinal fluid (CSF), a finding which could lead to a minimally invasive approach to treat genetic and acquired diseases affecting the entire CNS. We characterized the transduction efficiency of two routes of vector administration into the CSF of cynomolgus macaques—lumbar puncture, which is typically used in clinical practice, and suboccipital puncture, which is more commonly used in veterinary medicine. We found that delivery of vector into the cisterna magna via suboccipital puncture is up to 100-fold more efficient for achieving gene transfer to the brain. In addition, we evaluated the inflammatory response to AAV9-mediated GFP expression in the nonhuman primate CNS. We found that while CSF lymphocyte counts increased following gene transfer, there were no clinical or histological signs of immune toxicity. Together these data indicate that delivery of AAV9 into the cisterna magna is an effective method for achieving gene transfer in the CNS, and suggest that adapting this uncommon injection method for human trials could vastly increase the efficiency of gene delivery. PMID:26052519

  16. A Novel CNS-Restricted Isoform of the IL-1R Accessory Protein Modulates Neuronal Responses to IL-1

    PubMed Central

    Smith, Dirk E.; Lipsky, Brian P.; Russell, Chris; Ketchem, Randal R.; Kirchner, Jacqueline; Hensley, Kelly; Boissonneault, Vincent; Plante, Marie-Michèle; Rivest, Serge; Huang, Yangyang; Friedman, Wilma; Sims, John E.

    2014-01-01

    SUMMARY IL-1 has multiple functions in both the periphery and the central nervous system (CNS) and is regulated at many levels. We identified a novel isoform of the IL-1R Accessory Protein (termed AcPb) that is expressed exclusively in the CNS. AcPb interacted with IL-1 and the IL-1 receptor but was unable to mediate canonical IL-1 responses. AcPb expression, however, modulated neuronal gene expression in response to IL-1 treatment in vitro. Animals lacking AcPb demonstrated an intact peripheral IL-1 response and developed experimental autoimmune encephalomyelitis (EAE) similarly to wild type mice. AcPb-deficient mice were instead more vulnerable to local inflammatory challenge in the CNS and suffered enhanced neuronal degeneration as compared to AcP-deficient or wild type mice. These findings implicate AcPb as an additional component of the highly regulated IL-1 system and suggest it may play a role in modulating CNS responses to IL-1 and the interplay between inflammation and neuronal survival. PMID:19481478

  17. [Acquired coagulant factor inhibitors].

    PubMed

    Nogami, Keiji

    2015-02-01

    Acquired coagulation factor inhibitors are an autoimmune disease causing bleeding symptoms due to decreases in the corresponding factor (s) which result from the appearance of autoantibodies against coagulation factors (inhibitor). This disease is quite different from congenital coagulation factor deficiencies based on genetic abnormalities. In recent years, cases with this disease have been increasing, and most have anti-factor VIII autoantibodies. The breakdown of the immune control mechanism is speculated to cause this disease since it is common in the elderly, but the pathology and pathogenesis are presently unclear. We herein describe the pathology and pathogenesis of factor VIII and factor V inhibitors. Characterization of these inhibitors leads to further analysis of the coagulation process and the activation mechanisms of clotting factors. In the future, with the development of new clotting examination method (s), we anticipate that further novel findings will be obtained in this field through inhibitor analysis. In addition, detailed elucidation of the coagulation inhibitory mechanism possibly leading to hemostatic treatment strategies for acquired coagulation factor disorders will be developed.

  18. The risk of CNS involvement in aggressive lymphomas in the rituximab era.

    PubMed

    Benevolo, Giulia; Chiappella, Annalisa; Vitolo, Umberto

    2013-12-01

    The risk of CNS dissemination and CNS prophylaxis strategies in aggressive non-Hodgkin lymphoma (NHL) is still debated. CNS dissemination is a rare but fatal event. A CNS prophylaxis is common for Burkitt and B-cell lymphoblastic lymphoma; however, in other NHLs, prophylactic treatments are not systematically warranted. Current risk models showed low sensitivity in predicting CNS involvement, implying overtreatment in roughly 70% of high-risk patients. Risk models in the rituximab era were modulated for the detection of occult CNS disease at diagnosis using flow cytometry. The optimal regimen for CNS prophylaxis in aggressive lymphoma patients has not been established thus far and should be modulated at different levels of 'intensity' such as standard intrathecal chemotherapy, 'active' intrathecal chemotherapy with liposomal cytarabine or more aggressive systemic treatment with high doses of drugs having good CNS bioavailability reserved for patients who are truly at high risk of CNS dissemination.

  19. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Control of CNS Neuronal Excitability by Estrogens via Membrane Initiated Signaling

    PubMed Central

    Kelly, Martin J.; Rønnekleiv, Oline K.

    2009-01-01

    It is well known that many of the actions of 17β-estradiol (E2) in the central nervous system (CNS) are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane-associated steroid receptors for E2 in hypothalamic and other brain neurons. Indeed, we are just beginning to understand how E2 signals via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. We know that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. This review will concentrate on rapid membrane-initiated and intracellular signaling by E2 in the hypothalamus and hippocampus, the nature of receptors involved and how they contribute to CNS functions. PMID:19549588

  1. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  2. CNS Control of Glucose Metabolism: Response to Environmental Challenges

    PubMed Central

    Arble, Deanna M.; Sandoval, Darleen A.

    2013-01-01

    Over the last 15 years, considerable work has accumulated to support the role of the CNS in regulating postprandial glucose levels. As discussed in the first section of this review, the CNS receives and integrates information from afferent neurons, circulating hormones, and postprandially generated nutrients to subsequently direct changes in glucose output by the liver and glucose uptake by peripheral tissues. The second major component of this review focuses on the effects of external pressures, including high fat diet and changes to the light:dark cycle on CNS-regulating glucose homeostasis. We also discuss the interaction between these different pressures and how they contribute to the multifaceted mechanisms that we hypothesize contribute to the dysregulation of glucose in type 2 diabetes mellitus (T2DM). We argue that while current peripheral therapies serve to delay the progression of T2DM, generating combined obesity and T2DM therapies targeted at the CNS, the primary site of dysfunction for both diseases, would lead to a more profound impact on the progression of both diseases. PMID:23550218

  3. CNS control of glucose metabolism: response to environmental challenges.

    PubMed

    Arble, Deanna M; Sandoval, Darleen A

    2013-01-01

    Over the last 15 years, considerable work has accumulated to support the role of the CNS in regulating postprandial glucose levels. As discussed in the first section of this review, the CNS receives and integrates information from afferent neurons, circulating hormones, and postprandially generated nutrients to subsequently direct changes in glucose output by the liver and glucose uptake by peripheral tissues. The second major component of this review focuses on the effects of external pressures, including high fat diet and changes to the light:dark cycle on CNS-regulating glucose homeostasis. We also discuss the interaction between these different pressures and how they contribute to the multifaceted mechanisms that we hypothesize contribute to the dysregulation of glucose in type 2 diabetes mellitus (T2DM). We argue that while current peripheral therapies serve to delay the progression of T2DM, generating combined obesity and T2DM therapies targeted at the CNS, the primary site of dysfunction for both diseases, would lead to a more profound impact on the progression of both diseases.

  4. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  5. HIV-associated opportunistic CNS infections: pathophysiology, diagnosis and treatment.

    PubMed

    Bowen, Lauren N; Smith, Bryan; Reich, Daniel; Quezado, Martha; Nath, Avindra

    2016-10-27

    Nearly 30 years after the advent of antiretroviral therapy (ART), CNS opportunistic infections remain a major cause of morbidity and mortality in HIV-positive individuals. Unknown HIV-positive disease status, antiretroviral drug resistance, poor drug compliance, and recreational drug abuse are factors that continue to influence the morbidity and mortality of infections. The clinical and radiographic pattern of CNS opportunistic infections is unique in the setting of HIV infection: opportunistic infections in HIV-positive patients often have characteristic clinical and radiological presentations that can differ from the presentation of opportunistic infections in immunocompetent patients and are often sufficient to establish the diagnosis. ART in the setting of these opportunistic infections can lead to a paradoxical worsening caused by an immune reconstitution inflammatory syndrome (IRIS). In this Review, we discuss several of the most common CNS opportunistic infections: cerebral toxoplasmosis, progressive multifocal leukoencephalopathy (PML), tuberculous meningitis, cryptococcal meningitis and cytomegalovirus infection, with an emphasis on clinical pearls, pathological findings, MRI findings and treatment. Moreover, we discuss the risk factors, pathophysiology and management of IRIS. We also summarize the challenges that remain in management of CNS opportunistic infections, which includes the lack of phase II and III clinical trials, absence of antimicrobials for infections such as PML, and controversy regarding the use of corticosteroids for treatment of IRIS.

  6. A treatment accessory for CNS irradiation in children.

    PubMed

    Bukovitz, A G; Timo, J

    1975-09-01

    A treatment accessory for use in CNS radiotherapy of small children enables the head and spinal fields to be treated while the child lies supine. Children are not moved during therapy which minimizes the problem of gaps between the head and spinal fields.

  7. On the resemblance of synapse formation and CNS myelination.

    PubMed

    Almeida, R G; Lyons, D A

    2014-09-12

    The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Subacute CNS Demyelination after Treatment with Nivolumab for Melanoma.

    PubMed

    Maurice, Catherine; Schneider, Raphael; Kiehl, Tim-Rasmus; Bavi, Prashant; Roehrl, Michael H A; Mason, Warren P; Hogg, David

    2015-12-01

    Immunotherapy with monoclonal antibodies targeting cytotoxic T-lymphocyte antigen 4 (CTLA-4) or programmed cell death 1 (PD-1) has improved the survival of patients with metastatic melanoma. These agents carry a certain risk of adverse immune-related events. We present a patient with widely metastatic melanoma who was initially treated with ipilimumab and subsequently with nivolumab. After four infusions of nivolumab, he developed subacute multifocal central nervous system (CNS) demyelination. Nivolumab was discontinued and, despite immunosuppressive therapy, the largest lesion progressed significantly, whereas another lesion showed radiographic improvement. After further progression, the patient succumbed to his CNS lesions 4 months later. Autopsy revealed extensive demyelination, a mild multifocal T-cell-rich perivascular lymphoid infiltrate, abundant macrophages, and necrosis. There was no metastatic melanoma in the brain. CNS demyelination has not been described in association with nivolumab. We hypothesize that the combination therapy of ipilimumab and subsequent nivolumab accounted for the severity of the demyelinating process in this patient. This case, with comprehensive clinical, molecular, and neuropathologic characterization, illustrates the need for awareness of these potential CNS complications with the use of multiple checkpoint inhibitors.

  9. Delivery of therapeutic peptides and proteins to the CNS.

    PubMed

    Salameh, Therese S; Banks, William A

    2014-01-01

    Peptides and proteins have potent effects on the brain after their peripheral administration, suggesting that they may be good substrates for the development of CNS therapeutics. Major hurdles to such development include their relation to the blood-brain barrier (BBB) and poor pharmacokinetics. Some peptides cross the BBB by transendothelial diffusion and others cross in the blood-to-brain direction by saturable transporters. Some regulatory proteins are also transported across the BBB and antibodies can enter the CNS via the extracellular pathways. Glycoproteins and some antibody fragments can be taken up and cross the BBB by mechanisms related to adsorptive endocytosis/transcytosis. Many peptides and proteins are transported out of the CNS by saturable efflux systems and enzymatic activity in the blood, CNS, or BBB are substantial barriers to others. Both influx and efflux transporters are altered by various substances and in disease states. Strategies that manipulate these interactions between the BBB and peptides and proteins provide many opportunities for the development of therapeutics. Such strategies include increasing transendothelial diffusion of small peptides, upregulation of saturable influx transporters with allosteric regulators and other posttranslational means, use of vectors and other Trojan horse strategies, inhibition of efflux transporters including with antisense molecules, and improvement in pharmacokinetic parameters to overcome short half-lives, tissue sequestration, and enzymatic degradation.

  10. Causes of CNS inflammation and potential targets for anticonvulsants.

    PubMed

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  11. Regeneration of Zebrafish CNS: Adult Neurogenesis

    PubMed Central

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  12. Acquired Porphyria Cutanea Tarda

    PubMed Central

    Koval, Andrew; Danby, C. W. E.; Petermann, H.

    1965-01-01

    Currently, the porphyrias are classified in four main groups: congenital porphyria, acute intermittent porphyria, porphyria cutanea tarda hereditaria, and porphyria cutanea tarda symptomatica. The acquired form of porphyria (porphyria cutanea tarda symptomatica) occurs in older males and is nearly always associated with chronic alcoholism and hepatic cirrhosis. The main clinical changes are dermatological, with excessive skin fragility and photosensitivity resulting in erosions and bullae. Biochemically, high levels of uroporphyrin are found in the urine and stools. Treatment to date has been symptomatic and usually unsuccessful. A case of porphyria cutanea tarda symptomatica is presented showing dramatic improvement of both the skin lesions and porphyrin levels in urine and blood following repeated phlebotomy. Possible mechanisms of action of phlebotomy on porphyria cutanea tarda symptomatica are discussed. ImagesFig. 1Fig. 2 PMID:14341652

  13. AIDS: acquired immunodeficiency syndrome.

    PubMed Central

    Gilmore, N. J.; Beaulieu, R.; Steben, M.; Laverdière, M.

    1983-01-01

    Acquired immunodeficiency syndrome, or AIDS, is a new illness that occurs in previously healthy individuals. It is characterized by immunodeficiency, opportunistic infections and unusual malignant diseases. Life-threatening single or multiple infections with viruses, mycobacteria, fungi or protozoa are common. A rare neoplasm, Kaposi's sarcoma, has developed in approximately one third of patients with AIDS. More than 800 cases of AIDS have been reported in North America, over 24 of them in Canada. The majority of patients are male homosexuals, although AIDS has also developed in abusers of intravenously administered drugs, Haitian immigrants, individuals with hemophilia, recipients of blood transfusions, prostitutes, and infants, spouses and partners of patients with AIDS. The cause of AIDS is unknown, but the features are consistent with an infectious process. Early diagnosis can be difficult owing to the nonspecific symptoms and signs of the infections and malignant diseases. Therefore, vigilance by physicians is of utmost importance. PMID:6342737

  14. AIDS: acquired immunodeficiency syndrome *

    PubMed Central

    Gilmore, N.J.; Beaulieu, R.; Steben, M.; Laverdière, M.

    1992-01-01

    Acquired immunodeficiency syndrome, or AIDS, is a new illness that occurs in previously healthy individuals. It is characterized by immunodeficiency, opportunistic infections and unusual malignant diseases. Life-threatening single or multiple infections with viruses, mycobacteria, fungi or protozoa are common. A rare neoplasm, Kaposi's sarcoma, has developed in approximately one third of patients with AIDS. More than 800 cases of AIDS have been reported in North America, over 24 of them in Canada. The majority of patients are male homosexuals, although AIDS has also developed in abusers of intravenously administered drugs, Haitian immigrants, individuals with hemophilia, recipients of blood transfusions, prostitutes, and infants, spouses and partners of patients with AIDS. The cause of AIDS is unknown, but the features are consistent with an infectious process. Early diagnosis can be difficult owing to the nonspecific symptoms and signs of the infections and malignant diseases. Therefore, vigilance by physicians is of the utmost importance. PMID:1544049

  15. Acquired epidermodysplasia verruciformis.

    PubMed

    Rogers, Heather D; Macgregor, Jennifer L; Nord, Kristin M; Tyring, Stephen; Rady, Peter; Engler, Danielle E; Grossman, Marc E

    2009-02-01

    Epidermodysplasia verruciformis (EV) is a rare autosomal recessive genodermatosis with an increased susceptibility to specific human papillomavirus (HPV) genotypes. Classically, this viral infection leads to the development of tinea versicolor-like macules on the trunk, neck, arms, and face during childhood, and over time, these lesions can progress to squamous cell carcinoma. More recently, an EV-like syndrome has been described in patients with impaired cell-mediated immunity. We describe two cases of EV-like syndrome in HIV-positive patients, review all previously reported cases of EV in patients with impaired cell-mediated immunity, introduce the term "acquired epidermodysplasia verruciformis" to describe EV developing in the immunocompromised host and examine the limited treatment options for these patients.

  16. CNS Multiparameter Optimization Approach: Is it in Accordance with Occam's Razor Principle?

    PubMed

    Raevsky, Oleg A

    2016-04-01

    A detailed analysis of the possibility of using the Multiparameter Optimization approach (MPO) for CNS/non-CNS classification of drugs was carried out. This work has shown that MPO descriptors are able to describe only part of chemical transport in the CNS connected with transmembrane diffusion. Hence the "intuitive" CNS MPO approach with arbitrary selection of descriptors and calculations of score functions, search of thresholds of classification, and absence of any chemometric procedures, leads to rather modest accuracy of CNS/non-CNS classification models.

  17. The spectrum of post-vaccination inflammatory CNS demyelinating syndromes.

    PubMed

    Karussis, Dimitrios; Petrou, Panayiota

    2014-03-01

    A wide variety of inflammatory diseases temporally associated with the administration of various vaccines, has been reported in the literature. A PubMed search from 1979 to 2013 revealed seventy one (71) documented cases. The most commonly reported vaccinations that were associated with CNS demyelinating diseases included influenza (21 cases), human papilloma virus (HPV) (9 cases), hepatitis A or B (8 cases), rabies (5 cases), measles (5 cases), rubella (5 cases), yellow fever (3 cases), anthrax (2 cases),meningococcus (2 cases) and tetanus (2 cases). The vast majority of post-vaccination CNS demyelinating syndromes, are related to influenza vaccination and this could be attributed to the high percentage of the population that received the vaccine during the HI1N1 epidemia from 2009 to 2012. Usually the symptoms of the CNS demyelinating syndrome appear few days following the immunization (mean: 14.2 days) but there are cases where the clinical presentation was delayed (more than 3 weeks or even up to 5 months post-vaccination) (approximately a third of all the reported cases). In terms of the clinical presentation and the affected CNS areas, there is a great diversity among the reported cases of post-vaccination acute demyelinating syndromes. Optic neuritis was the prominent clinical presentation in 38 cases, multifocal disseminated demyelination in 30, myelitis in 24 and encephalitis in 17. Interestingly in a rather high proportion of the patients (and especially following influenza and human papiloma virus vaccination-HPV) the dominant localizations of demyelination were the optic nerves and the myelon, presenting as optic neuritis and myelitis (with or without additional manifestations of ADEM), reminiscent to neuromyelitic optica (or, more generally, the NMO-spectrum of diseases). Seven patients suffered an NMO-like disease following HPV and we had two similar cases in our Center. One patient with post-vaccination ADEM, subsequently developed NMO. Overall, the

  18. Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats

    PubMed Central

    Nikodemova, Maria; Small, Alissa L.; Smith, Stephanie M.C.; Mitchell, Gordon S.; Watters, Jyoti J.

    2014-01-01

    Activation of microglia, CNS resident immune cells, is a pathological hallmark of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder affecting motor neurons. Despite evidence that microglia contribute to disease progression, the exact role of these cells in ALS pathology remains unknown. We immunomagnetically isolated microglia from different CNS regions of SOD1G93A rats at three different points in disease progression: presymptomatic, symptom onset and end-stage. We observed no differences in microglial number or phenotype in presymptomatic rats compared to wild-type controls. Although after disease onset there was no macrophage infiltration, there were significant increases in microglial numbers in the spinal cord, but not cortex. At disease end-stage, microglia were characterized by high expression of galectin-3, osteopontin and VEGF, and concomitant downregulated expression of TNFα, IL-6, BDNF and arginase-1. Flow cytometry revealed the presence of at least two phenotypically distinct microglial populations in the spinal cord. Immunohistochemistry showed that galectin-3/osteopontin positive microglia were restricted to the ventral horns of the spinal cord, regions with severe motor neuron degeneration. End-stage SOD1G93A microglia from the cortex, a less affected region, displayed similar gene expression profiles to microglia from wild-type rats, and displayed normal responses to systemic inflammation induced by LPS. On the other hand, end-stage SOD1G93A spinal microglia had blunted responses to systemic LPS suggesting that in addition to their phenotypic changes, they may also be functionally impaired. Thus, after disease onset, microglia acquired unique characteristics that do not conform to typical M1 (inflammatory) or M2 (anti-inflammatory) phenotypes. This transformation was observed only in the most affected CNS regions, suggesting that overexpression of mutated hSOD1 is not sufficient to trigger these changes in microglia. These novel

  19. Myelin damage and repair in pathologic CNS: challenges and prospects

    PubMed Central

    Alizadeh, Arsalan; Dyck, Scott M.; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  20. Surgical treatment of acquired tracheocele.

    PubMed

    Porubsky, Edward A; Gourin, Christine G

    2006-06-01

    Acquired tracheoceles are rare clinical entities that can cause a variety of chronic and recurrent aerodigestive tract symptoms. The management of acquired tracheoceles is primarily conservative, but surgical intervention may be indicated for patients with refractory symptoms. We present a case of acquired tracheocele and describe a method of successful surgical management.

  1. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    PubMed

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  2. Transneuronal tracing of diverse CNS circuits by Cre-mediated induction of wheat germ agglutinin in transgenic mice

    PubMed Central

    Braz, Joao M.; Rico, Beatriz; Basbaum, Allan I.

    2002-01-01

    Systems neuroscience addresses the complex circuits made by populations of neurons in the CNS and the cooperative function of these neurons. Improved approaches to the neuroanatomical analysis of CNS circuits are thus of great interest. In fact, significant advances in tract-tracing methods have recently been made by using transgenic mice that express transneuronal lectin tracers under the control of neuron-specific promoters. The utility of those animals, however, is limited to the CNS circuit influenced by the particular promoter. Here, we describe a new transgenic mouse that can be used for transneuronal tracing analysis of circuits in any region of the brain or spinal cord. The transgene in these mice results in expression of LacZ in neurons throughout the CNS. Excision of the LacZ gene by Cre-mediated recombination initiates expression of the lectin, wheat germ agglutinin (WGA). To illustrate the diverse uses of these ZW (LacZ-WGA) mice, we triggered WGA expression either by crossing the mice with two Cre-expressing transgenic mouse lines or by microinjecting a Cre-expressing adeno-associated virus into the cerebellum or cerebral cortex. Both approaches resulted in extensive WGA expression in the cell bodies and dendrites of neurons in which the recombination event occurred, as well as anterograde and transneuronal transport of the lectin to second and third order neurons. Because the lectin can be induced in developing and adult animals, and in all regions of the brain and spinal cord, these ZW may prove extremely valuable for numerous studies of CNS circuit analysis. PMID:12391304

  3. Transneuronal tracing of diverse CNS circuits by Cre-mediated induction of wheat germ agglutinin in transgenic mice.

    PubMed

    Braz, Joao M; Rico, Beatriz; Basbaum, Allan I

    2002-11-12

    Systems neuroscience addresses the complex circuits made by populations of neurons in the CNS and the cooperative function of these neurons. Improved approaches to the neuroanatomical analysis of CNS circuits are thus of great interest. In fact, significant advances in tract-tracing methods have recently been made by using transgenic mice that express transneuronal lectin tracers under the control of neuron-specific promoters. The utility of those animals, however, is limited to the CNS circuit influenced by the particular promoter. Here, we describe a new transgenic mouse that can be used for transneuronal tracing analysis of circuits in any region of the brain or spinal cord. The transgene in these mice results in expression of LacZ in neurons throughout the CNS. Excision of the LacZ gene by Cre-mediated recombination initiates expression of the lectin, wheat germ agglutinin (WGA). To illustrate the diverse uses of these ZW (LacZ-WGA) mice, we triggered WGA expression either by crossing the mice with two Cre-expressing transgenic mouse lines or by microinjecting a Cre-expressing adeno-associated virus into the cerebellum or cerebral cortex. Both approaches resulted in extensive WGA expression in the cell bodies and dendrites of neurons in which the recombination event occurred, as well as anterograde and transneuronal transport of the lectin to second and third order neurons. Because the lectin can be induced in developing and adult animals, and in all regions of the brain and spinal cord, these ZW may prove extremely valuable for numerous studies of CNS circuit analysis.

  4. Reprogramming of plants during systemic acquired resistance

    PubMed Central

    Gruner, Katrin; Griebel, Thomas; Návarová, Hana; Attaran, Elham; Zeier, Jürgen

    2013-01-01

    Genome-wide microarray analyses revealed that during biological activation of systemic acquired resistance (SAR) in Arabidopsis, the transcript levels of several hundred plant genes were consistently up- (SAR+ genes) or down-regulated (SAR− genes) in systemic, non-inoculated leaf tissue. This transcriptional reprogramming fully depended on the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1). Functional gene categorization showed that genes associated with salicylic acid (SA)-associated defenses, signal transduction, transport, and the secretory machinery are overrepresented in the group of SAR+ genes, and that the group of SAR− genes is enriched in genes activated via the jasmonate (JA)/ethylene (ET)-defense pathway, as well as in genes associated with cell wall remodeling and biosynthesis of constitutively produced secondary metabolites. This suggests that SAR-induced plants reallocate part of their physiological activity from vegetative growth towards SA-related defense activation. Alignment of the SAR expression data with other microarray information allowed us to define three clusters of SAR+ genes. Cluster I consists of genes tightly regulated by SA. Cluster II genes can be expressed independently of SA, and this group is moderately enriched in H2O2- and abscisic acid (ABA)-responsive genes. The expression of the cluster III SAR+ genes is partly SA-dependent. We propose that SA-independent signaling events in early stages of SAR activation enable the biosynthesis of SA and thus initiate SA-dependent SAR signaling. Both SA-independent and SA-dependent events tightly co-operate to realize SAR. SAR+ genes function in the establishment of diverse resistance layers, in the direct execution of resistance against different (hemi-)biotrophic pathogen types, in suppression of the JA- and ABA-signaling pathways, in redox homeostasis, and in the containment of defense response activation. Our data further indicated that SAR-associated defense priming can be

  5. Mechanisms underlying sexual and affiliative behaviors of mice: relation to generalized CNS arousal

    PubMed Central

    Shelley, Deborah N.; Choleris, Elena; Kavaliers, Martin

    2006-01-01

    The field of social neuroscience has grown dramatically in recent years and certain social responses have become amenable to mechanistic investigations. Toward that end, there has been remarkable progress in determining mechanisms for a simple sexual behavior, lordosis behavior. This work has proven that specific hormone-dependent biochemical reactions in specific parts of the mammalian brain regulate a biologically important behavior. On one hand, this sex behavior depends on underlying mechanisms of CNS arousal. On the other hand, it serves as a prototypical social behavior. The same sex hormones and the genes that encode their receptors as are involved in lordosis, also affect social recognition. Here we review evidence for a micronet of genes promoting social recognition in mice and discuss their biological roles. PMID:18985112

  6. RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer.

    PubMed

    Ahlers, Katelin E; Chakravarti, Bandana; Fisher, Rory A

    2016-05-01

    Regulator of G protein signaling (RGS) proteins are gatekeepers regulating the cellular responses induced by G protein-coupled receptor (GPCR)-mediated activation of heterotrimeric G proteins. Specifically, RGS proteins determine the magnitude and duration of GPCR signaling by acting as a GTPase-activating protein for Gα subunits, an activity facilitated by their semiconserved RGS domain. The R7 subfamily of RGS proteins is distinguished by two unique domains, DEP/DHEX and GGL, which mediate membrane targeting and stability of these proteins. RGS6, a member of the R7 subfamily, has been shown to specifically modulate Gαi/o protein activity which is critically important in the central nervous system (CNS) for neuronal responses to a wide array of neurotransmitters. As such, RGS6 has been implicated in several CNS pathologies associated with altered neurotransmission, including the following: alcoholism, anxiety/depression, and Parkinson's disease. In addition, unlike other members of the R7 subfamily, RGS6 has been shown to regulate G protein-independent signaling mechanisms which appear to promote both apoptotic and growth-suppressive pathways that are important in its tumor suppressor function in breast and possibly other tissues. Further highlighting the importance of RGS6 as a target in cancer, RGS6 mediates the chemotherapeutic actions of doxorubicin and blocks reticular activating system (Ras)-induced cellular transformation by promoting degradation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to prevent its silencing of pro-apoptotic and tumor suppressor genes. Together, these findings demonstrate the critical role of RGS6 in regulating both G protein-dependent CNS pathology and G protein-independent cancer pathology implicating RGS6 as a novel therapeutic target.

  7. Hox genes and brain development in Drosophila.

    PubMed

    Reichert, Heinrich; Bello, Bruno

    2010-01-01

    Hox genes are prominently expressed in the developing brain and ventral ganglia of Drosophila. In the embryonic brain, the Hox genes labial and Deformed are essential for the establishment of regionalized neuronal identity; in their absence cells are generated in the brain but fail to acquire appropriate neuronal features. Genetic analyses reveal that Hox proteins are largely equivalent in their action in embryonic brain development and that their expression is under the control of cross-regulatory interactions among Hox genes that are similar to those found in embryogenesis of trunk segments. Hox genes have a different role in postembryonic brain development. During the larval phase of CNS development, reactivation of specific Hox genes terminates neural proliferation by induction of apoptotic cell death in neural stem cell-like progenitors called neuroblasts. This reactivation process is tightly controlled by epigenetic mechanisms requiring the Polycomb group of genes. Many features of Hox gene action in Drosophila brain development are evolutionarily conserved and are manifest in brain development of vertebrates.

  8. Acquired spatial dyslexia.

    PubMed

    Siéroff, E

    2015-08-10

    Acquired spatial dyslexia is a reading disorder frequently occurring after left or right posterior brain lesions. This article describes several types of spatial dyslexia with an attentional approach. After right posterior lesions, patients show left neglect dyslexia with errors on the left side of text, words, and non-words. The deficit is frequently associated with left unilateral spatial neglect. Severe left neglect dyslexia can be detected with unlimited exposure duration of words or non-words. Minor neglect dyslexia is detected with brief presentation of bilateral words, one in the left and one in the right visual field (phenomenon of contralesional extinction). Neglect dyslexia can be explained as a difficulty in orienting attention to the left side of verbal stimuli. With left posterior lesions, spatial dyslexia is also frequent but multiform. Right neglect dyslexia is frequent, but right unilateral spatial neglect is rare. Attentional dyslexia represents difficulty in selecting a stimulus, letter or word among other similar stimuli; it is a deficit of attentional selection, and the left hemisphere plays a crucial role in selection. Two other types of spatial dyslexia can be found after left posterior lesions: paradoxical ipsilesional extinction and stimulus-centred neglect dyslexia. Disconnections between left or right parietal attentional areas and the left temporal visual word form area could explain these deficits. Overall, a model of attention dissociating modulation, selection control, and selection positioning can help in understanding these reading disorders.

  9. Acquired aplastic anemia.

    PubMed

    Keohane, Elaine M

    2004-01-01

    Acquired aplastic anemia (AA) is a disorder characterized by a profound deficit of hematopoietic stem and progenitor cells, bone marrow hypocellularity, and peripheral blood pancytopenia. It primarily affects children, young adults, and those over 60 years of age. The majority of cases are idiopathic; however, idiosyncratic reactions to some drugs, chemicals, and viruses have been implicated in its etiology. An autoimmune T-cell reaction likely causes the stem cell depletion, but the precise mechanism, as well as the eliciting and target antigens, is unknown. Symptoms vary from severe life-threatening cytopenias to moderate or non-severe disease that does not require transfusion support. The peripheral blood typically exhibits pancytopenia, reticulocytopenia, and normocytic or macrocytic erythrocytes. The bone marrow is hypocellular and may exhibit dysplasia of the erythrocyte precursors. First line treatment for severe AA consists of hematopoietic stem cell transplantation in young patients with HLA identical siblings, while immunosuppression therapy is used for older patients and for those of any age who lack a HLA matched donor. Patients with AA have an increased risk of developing paroxysmal nocturnal hemoglobinuria (PNH), myelodysplastic syndrome (MDS), or acute leukemia. Further elucidation of the pathophysiology of this disease will result in a better understanding of the interrelationship among AA, PNH, and MDS, and may lead to novel targeted therapies.

  10. ICU-Acquired Weakness.

    PubMed

    Jolley, Sarah E; Bunnell, Aaron E; Hough, Catherine L

    2016-11-01

    Survivorship after critical illness is an increasingly important health-care concern as ICU use continues to increase while ICU mortality is decreasing. Survivors of critical illness experience marked disability and impairments in physical and cognitive function that persist for years after their initial ICU stay. Newfound impairment is associated with increased health-care costs and use, reductions in health-related quality of life, and prolonged unemployment. Weakness, critical illness neuropathy and/or myopathy, and muscle atrophy are common in patients who are critically ill, with up to 80% of patients admitted to the ICU developing some form of neuromuscular dysfunction. ICU-acquired weakness (ICUAW) is associated with longer durations of mechanical ventilation and hospitalization, along with greater functional impairment for survivors. Although there is increasing recognition of ICUAW as a clinical entity, significant knowledge gaps exist concerning identifying patients at high risk for its development and understanding its role in long-term outcomes after critical illness. This review addresses the epidemiologic and pathophysiologic aspects of ICUAW; highlights the diagnostic challenges associated with its diagnosis in patients who are critically ill; and proposes, to our knowledge, a novel strategy for identifying ICUAW. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. The role of IL-17 in CNS diseases.

    PubMed

    Waisman, Ari; Hauptmann, Judith; Regen, Tommy

    2015-05-01

    Cytokines of the IL-17 family are uniquely placed on the border between immune cells and tissue. Although IL-17 was originally found to induce the activation and mobilization of neutrophils to sites of inflammation, its tissue-specific function is not yet fully understood. The best-studied IL-17 family members, IL-17A and IL-17F, are both typically produced by immune cells such as Th17, γδ T cells and innate lymphoid cells group 3. However, the cells that respond to these cytokines are mostly found in inflamed tissue. As seen in psoriatic skin lesions or in joints of rheumatoid arthritis patients, high levels of IL-17 have been detected in the central nervous system (CNS) during inflammatory responses. Here, we provide a general review of the molecular function of IL-17 and its role in the CNS in particular. Of the different inflammatory conditions of the CNS, we found multiple sclerosis (MS) to be the one most associated with the presence of Th17 cells and IL-17. In particular, many studies using the murine model for MS, experimental autoimmune encephalomyelitis, found a clear association of Th17 and IL-17 with disease severity and progression. We summarize the recent advances made in correlating the presence of IL-17 with impaired blood-brain barrier integrity as well as the activation of astrocytes and microglia and the consequences for disease progression. There is also evidence that IL-17 plays a pathogenic role in the post-ischemic phase of stroke as well as its experimental model. We review the limited but promising data on the sources of post-stroke IL-17 production and its effects on CNS-resident target cells. In addition to MS and stroke, there is also evidence linking high levels of IL-17 to depression, as a frequent comorbidity of several inflammatory diseases, as well as to different types of infections of the CNS. The evidence we supply here suggests that inhibiting the function of the IL-17 cytokine family could have a beneficial effect on

  12. Intrinsic and acquired resistance mechanisms in enterococcus.

    PubMed

    Hollenbeck, Brian L; Rice, Louis B

    2012-08-15

    Enterococci have the potential for resistance to virtually all clinically useful antibiotics. Their emergence as important nosocomial pathogens has coincided with increased expression of antimicrobial resistance by members of the genus. The mechanisms underlying antibiotic resistance in enterococci may be intrinsic to the species or acquired through mutation of intrinsic genes or horizontal exchange of genetic material encoding resistance determinants. This paper reviews the antibiotic resistance mechanisms in Enterococcus faecium and Enterococcus faecalis and discusses treatment options.

  13. Apoptosis in acquired and genetic hearing impairment

    PubMed Central

    de Beeck, Ken Op; Schacht, Jochen; Van Camp, Guy

    2012-01-01

    Apoptosis is an important physiological process. Normally, a healthy cell maintains a delicate balance between pro- and anti-apoptotic factors, allowing it to live and proliferate. It is thus not surprising that disturbance of this delicate balance may result in disease. It is a well known fact that apoptosis also contributes to several acquired forms of hearing impairment. Noise-induced hearing loss is the result of prolonged exposure to excessive noise, triggering apoptosis in terminally differentiated sensory hair cells. Moreover, hearing loss caused by the use of therapeutic drugs such as aminoglycoside antibiotics and cisplatin potentially may result in the activation of apoptosis in sensory hair cells leading to hearing loss due to the “ototoxicity” of the drugs. Finally, apoptosis is a key contributor to the development of presbycusis, age-related hearing loss. Recently, several mutations in apoptosis genes were identified as the cause of monogenic hearing impairment. These genes are TJP2, DFNA5 and MSRB3. This implies that apoptosis not only contributes to the pathology of acquired forms of hearing impairment, but also to genetic hearing impairment as well. We believe that these genes constitute a new functional class within the hearing loss field. Here, the contribution of apoptosis in the pathology of both acquired and genetic hearing impairment is reviewed. PMID:21782914

  14. Acquired reactive perforating collagenosis

    PubMed Central

    Fei, Chengwen; Wang, Yao; Gong, Yu; Xu, Hui; Yu, Qian; Shi, Yuling

    2016-01-01

    Abstract Background: Reactive perforating collagenosis (RPC) is a rare form of transepithelial elimination, in which altered collagen is extruded through the epidermis. There are 2 types of RPC, acquired RPC (ARPC) and inherited RPC, while the latter is extremely rare. Here we report on 1 case of ARPC. Methods: A 73-year-old female was presented with strongly itchy papules over her back and lower limbs for 3 months. She denied the history of oozing or vesiculation. A cutaneous examination showed diffusely distributed multiple well-defined keratotic papules, 4 to 10 mm in diameter, on the bilateral lower limbs and back as well as a few papules on her chest and forearm. Scratching scars were over the resolved lesions while Koebner phenomenon was negative. The patient had a history of type 2 diabetes for 15 years. Laboratory examinations showed elevated blood glucose level. Skin lesion biopsy showed a well-circumscribed area of necrosis filled with a keratotic plug. Parakeratotic cells and lymphocytic infiltration could be seen in the necrosed area. In dermis, sparse fiber bundles were seen perforating the epidermis. These degenerated fiber bundles were notarized as collagen fiber by elastic fiber stain, suggesting a diagnosis of RPC. Results: Then a diagnosis of ARPC was made according to the onset age and the history of diabetes mellitus. She was treated with topical application of corticosteroids twice a day and oral antihistamine once a day along with compound glycyrrhizin tablets 3 times a day. And the blood glucose was controlled in a satisfying range. Two months later, a significant improvement was seen in this patient. Conclusion: Since there is no efficient therapy to RPC, moreover, ARPC is considered to be associated with some systemic diseases, the management of the coexisting disease is quite crucial. The patient in this case received a substantial improvement due to the control of blood glucose and application of compound glycyrrhizin tablets. PMID

  15. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice

    PubMed Central

    Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A.; Stumpf, Sina K.; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine

    2016-01-01

    Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions. PMID:28149504

  16. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    The NSCOR program project is transitioning from establishing the existence of CNS responses to low doses of charged particles, to an investigation of mechanisms underlying these changes and extending the irradiation paradigm to more space-like exposures. In earlier experiments we examined radiation responses of the mouse brain (hippocampus) following exposure to 250 MeV protons and 600 MeV/n iron ions. Our key findings on structural changes were: 1) Significant dose and time dependent loss of en-dothelial cells and microvessel network remodeling occurs suggesting that vascular insufficiency is produced. 2) Significant dose dependent losses of neural precursor cells were observed in a lineage specific pattern which may be associated with cognitive impairment. 3) Evaluation of DNA damage showed dose and time dependent accumulation of mutations with region-specific mutation structures and gene expression profiling demonstrated activation of neurotrophic and adhesion factors as well as chemokine receptors associated with inflammation. Our key find-ings on functional changes were: 1) Time and dose dependent modifications to neural output expressed as enhanced excitability but reduced synaptic efficacy and plasticity (including long term potentiation). 2) Intrinsic membrane properties of neurons were not significantly modi-fied by radiation exposure but pharmacological treatments demonstrated changes in inhibitory synapses. 3) MRI imaging visualized brain structural changes based on altered water diffu-sion properties and patterns were consistent with demyelination or gliosis. Our key findings on neurodegeneration and fidelity of homeostasis were: 1) APP23 transgenic mice exhibited accelerated APP-type electrophysiological pathology over several months. 2) Microvessel net-work changes following irradiation were suggestive of poor tissue oxygenation. 3) The ability of the brain to respond a controlled septic shock was altered by irradiation; the septic shock reactions

  17. Chemical constituents of Gentianaceae XIX: CNS-depressant effects of swertiamarin.

    PubMed

    Bhattacharya, S K; Reddy, P K; Ghosal, S; Singh, A K; Sharma, P V

    1976-10-01

    CNS activity of swertiamarin, a secoiridoid glucoside from Swertia chirata, was evaluated. An apparent anomaly, associated with the unanticipated finding that the alcoholic extracts (excluding mangiferin) of S. chirata significantly reversed the mangiferin-induced CNS-stimulating effects in albino mice and rats, was resolved. The results indicate that swertiamarin and mangiferin antagonize each other in vivo and thereby reverse their CNS effects.

  18. In Vivo Piroxicam Metabolites: Possible Source for Synthesis of Central Nervous System (CNS) Acting Depressants.

    PubMed

    Saganuwan, Saganuwan Alhaji

    2016-11-10

    Piroxicam has been reported to be convertible to central nervous system (CNS) acting agents. It has serious depressant effects at high doses. In view of this structures of piroxicam metabolites were assessed for possible conversion to CNS depressants. Structural barbituric compounds, carboxamide, cyclohydrated, benzothiazone and carboxybenzothiazone metabolites which may act via dopamine and adrenergic receptors causing depression of CNS activities.

  19. Kynurenines in the CNS: recent advances and new questions.

    PubMed

    Vécsei, László; Szalárdy, Levente; Fülöp, Ferenc; Toldi, József

    2013-01-01

    Various pathologies of the central nervous system (CNS) are accompanied by alterations in tryptophan metabolism. The main metabolic route of tryptophan degradation is the kynurenine pathway; its metabolites are responsible for a broad spectrum of effects, including the endogenous regulation of neuronal excitability and the initiation of immune tolerance. This Review highlights the involvement of the kynurenine system in the pathology of neurodegenerative disorders, pain syndromes and autoimmune diseases through a detailed discussion of its potential implications in Huntington's disease, migraine and multiple sclerosis. The most effective preclinical drug candidates are discussed and attention is paid to currently under-investigated roles of the kynurenine pathway in the CNS, where modulation of kynurenine metabolism might be of therapeutic value.

  20. Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide

    SciTech Connect

    Shaffer, M.M.; Moody, T.W.

    1986-03-01

    Receptors for VIP were characterized in the rat CNS. /sup 125/I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific /sup 125/I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.

  1. Positron emission tomography in CNS drug discovery and drug monitoring.

    PubMed

    Piel, Markus; Vernaleken, Ingo; Rösch, Frank

    2014-11-26

    Molecular imaging methods such as positron emission tomography (PET) are increasingly involved in the development of new drugs. Using radioactive tracers as imaging probes, PET allows the determination of the pharmacokinetic and pharmacodynamic properties of a drug candidate, via recording target engagement, the pattern of distribution, and metabolism. Because of the noninvasive nature and quantitative end point obtainable by molecular imaging, it seems inherently suited for the examination of a pharmaceutical's behavior in the brain. Molecular imaging, most especially PET, can therefore be a valuable tool in CNS drug research. In this Perspective, we present the basic principles of PET, the importance of appropriate tracer selection, the impact of improved radiopharmaceutical chemistry in radiotracer development, and the different roles that PET can fulfill in CNS drug research.

  2. Cytokines and effector T cell subsets causing autoimmune CNS disease.

    PubMed

    Petermann, Franziska; Korn, Thomas

    2011-12-01

    Although experimental autoimmune encephalomyelitis (EAE) is limited in its potency to reproduce the entirety of clinical and histopathologic features of multiple sclerosis (MS), this model has been successfully used to prove that MS like autoimmunity in the CNS is orchestrated by autoantigen specific T cells. EAE was also very useful to refute the idea that IFN-γ producing T helper type 1 (Th1) cells were the sole players within the pathogenic T cell response. Rather, "new" T cell lineages such as IL-17 producing Th17 cells or IL-9 producing Th9 cells have been first discovered in the context of EAE. Here, we will summarize new concepts of early and late T cell plasticity and the cytokine network that shapes T helper cell responses and lesion development in CNS specific autoimmunity.

  3. Histone regulation in the CNS: basic principles of epigenetic plasticity.

    PubMed

    Maze, Ian; Noh, Kyung-Min; Allis, C David

    2013-01-01

    Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders.

  4. Imaging of CNS Tumors in Children: Advances and Limitations

    PubMed Central

    Vézina, Louis-Gilbert

    2009-01-01

    MR technology is constantly improving. Functional imaging techniques such as MR spectroscopy, perfusion imaging, diffusion imaging and diffusion tensor imaging are increasingly utilized in the pediatric patient with a brain tumor. However estimate of tumor size remains the primary imaging endpoint in the evaluation of response to treatment; validation across institutions and vendor platforms of MRI functional parameters is necessary given the relative uncommon occurrence of brain tumors in children. Pediatric neuroimaging can be challenging, and the optimal way to image children with CNS tumors is not uniformly applied across all centers. Application of proper scanning techniques and validation of functional imaging techniques should lead to improved care of children with CNS tumors PMID:18952579

  5. Severe CNS involvement in WWOX mutations: Description of five new cases.

    PubMed

    Tabarki, Brahim; AlHashem, Amal; AlShahwan, Saad; Alkuraya, Fowzan S; Gedela, Satyanarayana; Zuccoli, Giulio

    2015-12-01

    Recently, mutations in WWOX have been identified in the setting of central nervous system (CNS) disorders, highlighting a previously unrevealed role of this gene in the normal development and function of the CNS. In this report, we add five patients from two seemingly unrelated families presenting with a primarily neurological phenotype. All the children were product of consanguineous marriages. Whole exome sequencing revealed the same homozygous mutation (NM_016373.3:c.606-1G>A) of WWOX in all five patients. All patients and carriers in the family share the same haplotype indicating the families are in fact related to one another. The clinical presentation included progressive microcephaly, early onset of spasticity in the first 3 months of life, intractable epilepsy, severe failure to thrive, and profound developmental delay. Retinopathy was observed in two patients. All five patients died before their third birthday. Neuroimaging showed extensive neurodegeneration characterized by periventricular white matter volume loss and atrophy of the corpus callosum. Additional degeneration selectively affecting the mediodorsal nucleus of the thalamus was observed in one patient. Our findings in five new patients affected by WWOX mutation with early infantile phenotype confirm the features of the disease represented by early infantile epileptic encephalopathy. We suggest that neuroimaging in these patients reveals a characteristic pattern of neurodegeneration in which the cerebellum is spared that could help with early diagnosis in the appropriate clinical setting. © 2015 Wiley Periodicals, Inc.

  6. CNS repair and axon regeneration: Using genetic variation to determine mechanisms.

    PubMed

    Tedeschi, Andrea; Omura, Takao; Costigan, Michael

    2017-01-01

    The importance of genetic diversity in biological investigation has been recognized since the pioneering studies of Gregor Johann Mendel and Charles Darwin. Research in this area has been greatly informed recently by the publication of genomes from multiple species. Genes regulate and create every part and process in a living organism, react with the environment to create each living form and morph and mutate to determine the history and future of each species. The regenerative capacity of neurons differs profoundly between animal lineages and within the mammalian central and peripheral nervous systems. Here, we discuss research that suggests that genetic background contributes to the ability of injured axons to regenerate in the mammalian central nervous system (CNS), by controlling the regulation of specific signaling cascades. We detail the methods used to identify these pathways, which include among others Activin signaling and other TGF-β superfamily members. We discuss the potential of altering these pathways in patients with CNS damage and outline strategies to promote regeneration and repair by combinatorial manipulation of neuron-intrinsic and extrinsic determinants.

  7. Leptin and the CNS Control of Glucose Metabolism

    PubMed Central

    Morton, Gregory J.; Schwartz, Michael W.

    2012-01-01

    The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system (CNS) plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders. PMID:21527729

  8. CNS Masson Tumors: Frequent Association With Therapeutic Radiation.

    PubMed

    Mann, Patrick; Kleinschmidt-DeMasters, Bette K

    2016-01-01

    Masson tumor (MT, papillary endothelial hyperplasia) is an exaggerated form of thrombus reorganization rarely occurring in the central nervous system (CNS), where it presents as a mass or hemorrhage in parenchyma, meninges, or venous sinuses. MT is subclassified as type 1 arising within a histologically normal vessel, type 2 associated with a ruptured vascular malformation, and extravascular. Limited reports of CNS MT after radiosurgery, or especially external radiation therapy, have emerged. We searched our databases for cases reported from 2008 to present. Nine cases were identified, 6 of which were associated with receipt of therapeutic radiation for known lesions, with intervals of 1 to 25+ years to MT development (4 neoplasms=external beam radiation; 1 neoplasm=external beam radiation+radiosurgery, 1 arteriovenous malformation=radiosurgery). MTs were coassociated with radiation-induced vascular malformations (1 cavernoma-like, 1 massive) only in 2 of 6 irradiated patients, whereas the other 4 had MTs only. The 3 MTs in nonirradiated patients were extravascular, with 1 spontaneously developing in a hemangioblastoma. Seven of 9 MTs were intracerebral, 1 was within the spinal cord, and 1 was subdural. Papillary MT architecture was best appreciated by CD31 or CD34 immunohistochemistry, although ERG verified the endothelial monolayer population. Most CNS MTs at our institution have arisen in patients who have received therapeutic cranial radiation, many of whom received only external beam radiation. Although MTs could conceivably represent early, severe phases in radiation-induced cavernoma development, most were not found coassociated with the latter. This study further extends our knowledge of types of radiation-induced CNS vascular abnormalities.

  9. Reassembly of Excitable Domains after CNS Axon Regeneration

    PubMed Central

    Marin, Miguel A.; de Lima, Silmara; Gilbert, Hui-Ya; Giger, Roman J.; Benowitz, Larry

    2016-01-01

    Action potential initiation and propagation in myelinated axons require ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Disruption of these domains after injury impairs nervous system function. Traditionally, injured CNS axons are considered refractory to regeneration, but some recent approaches challenge this view by showing robust long-distance regeneration. However, whether these approaches allow remyelination and promote the reestablishment of AIS and nodes of Ranvier is unknown. Using mouse optic nerve crush as a model for CNS traumatic injury, we performed a detailed analysis of AIS and node disruption after nerve crush. We found significant disruption of AIS and loss of nodes within days of the crush, and complete loss of nodes 1 week after injury. Genetic deletion of the tumor suppressor phosphatase and tensin homolog (Pten) in retinal ganglion cells (RGCs), coupled with stimulation of RGCs by inflammation and cAMP, dramatically enhanced regeneration. With this treatment, we found significant reestablishment of RGC AIS, remyelination, and even reassembly of nodes in regions proximal, within, and distal to the crush site. Remyelination began near the retina, progressed distally, and was confirmed by electron microscopy. Although axons grew rapidly, remyelination and nodal ion channel clustering was much slower. Finally, genetic deletion of ankyrinG from RGCs to block AIS reassembly did not affect axon regeneration, indicating that preservation of neuronal polarity is not required for axon regeneration. Together, our results demonstrate, for the first time, that regenerating CNS axons can be remyelinated and reassemble new AIS and nodes of Ranvier. SIGNIFICANCE STATEMENT We show, for the first time, that regenerated CNS axons have the capacity to both remyelinate and reassemble the axon initial segments and nodes of Ranvier necessary for rapid and efficient action potential propagation. PMID:27581456

  10. Chapter 3 - Colloidal systems for CNS drug delivery.

    PubMed

    Costantino, Luca; Tosi, Giovanni; Ruozi, Barbara; Bondioli, Lucia; Vandelli, Maria Angela; Forni, Flavio

    2009-01-01

    The pharmaceutical treatment of central nervous system (CNS) disorders is the second largest area of therapy, following cardiovascular diseases. Nowadays, noninvasive drug delivery systems for CNS are actively studied. The development of these new delivery systems started with the discovery that properly surface-engineered colloidal vectors, and in particular liposomes and polymeric nanoparticles, with a diameter approximately 200nm, were shown to be able to cross the blood-brain barrier (BBB) without apparent damage, and to deliver drugs or genetic materials into the brain. However, even if this ability was confirmed by confocal microscopy and measured by biodistribution experiments or by means of the pharmacological effect exerted by the embedded drugs, a clear understanding of the main characteristics of the colloidal systems that are important for BBB crossing is still lacking. It is also shown that the presence of the drug is able to modify the surface of these systems, with unpredictable results on the colloidal systems biodistribution; thus, the results obtained in the absence of the loaded drug have to be taken cautiously. Moreover, since the loaded drug is only a fraction of the colloidal system that is administered, the presence of the carrier in the body and into CNS, especially in the case of long-term therapies, might cause adverse effects not yet fully understood. Thus, even if promising results have been obtained, and some colloidal systems loaded with a drug are the US Food and Drug Administration (FDA) approved for human use (but not for brain targeting), a long way of research has to be done in order to use these drug delivery systems for the treatment of CNS pathologies. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Hyperbaric oxygen preconditioning protects rats against CNS oxygen toxicity.

    PubMed

    Arieli, Yehuda; Kotler, Doron; Eynan, Mirit; Hochman, Ayala

    2014-06-15

    We examined the hypothesis that repeated exposure to non-convulsive hyperbaric oxygen (HBO) as preconditioning provides protection against central nervous system oxygen toxicity (CNS-OT). Four groups of rats were used in the study. Rats in the control and the negative control (Ctl-) groups were kept in normobaric air. Two groups of rats were preconditioned to non-convulsive HBO at 202 kPa for 1h once every other day for a total of three sessions. Twenty-four hours after preconditioning, one of the preconditioned groups and the control rats were exposed to convulsive HBO at 608 kPa, and latency to CNS-OT was measured. Ctl- rats and the second preconditioned group (PrC-) were not subjected to convulsive HBO exposure. Tissues harvested from the hippocampus and frontal cortex were evaluated for enzymatic activity and nitrotyrosine levels. In the group exposed to convulsive oxygen at 608 kPa, latency to CNS-OT increased from 12.8 to 22.4 min following preconditioning. A significant decrease in the activity of glutathione reductase and glucose-6-phosphate dehydrogenase, and a significant increase in glutathione peroxidase activity, was observed in the hippocampus of preconditioned rats. Nitrotyrosine levels were significantly lower in the preconditioned animals, the highest level being observed in the control rats. In the cortex of the preconditioned rats, a significant increase was observed in glutathione S-transferase and glutathione peroxidase activity. Repeated exposure to non-convulsive HBO provides protection against CNS-OT. The protective mechanism involves alterations in the enzymatic activity of the antioxidant system and lower levels of peroxynitrite, mainly in the hippocampus. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cranial radiation necessary for CNS prophylaxis in pediatric NHL

    SciTech Connect

    Mandell, L.R.; Wollner, N.; Fuks, Z.

    1987-03-01

    The records of 95 consecutive children less than or equal to 21 years of age with previously untreated diffuse histology NHL registered in our protocols from 1978 to 1983 were reviewed. Seventy-nine patients were considered eligible for analysis. The histologic subtypes represented included lymphoblastic (LB) 37%; histiocytic (DHL) 29%; undifferentiated (DU) 19%; poorly differentiated (DPDL) 9%; and unclassified (UNHL) 6%. Distribution of the patients according to stage showed Stage I, 0%; Stage II, 11%; Stage III, 53%; Stage IV, 36%. Four different Memorial Hospital protocols for systemic chemotherapy were used (LSA2L2 73%; L10 9%; L17 10%; L17M 8%); however, the IT (intrathecal) chemotherapy was uniform (Methotrexate: 6.0-6.25 mg/M2 per treatment course) and was included in the induction, consolidation, and maintenance phases of all treatment protocols. Cranial radiation was included in the induction, consolidation, and maintenance phases of all treatment protocols. Cranial radiation was not included in the CNS prophylaxis program. The overall median time of follow-up was 43 months. The overall CNS relapse rate was 6.3%; however, the incidence of CNS lymphoma presenting as the first isolated site of relapse in patients in otherwise complete remission (minimum follow-up of 19 months with 97% of patients off treatment) was only 1/58 (1.7%). Our data suggest that IT chemotherapy when given in combination with modern aggressive systemic combination chemotherapy, and without cranial radiation appears to be a highly effective modality for CNS prophylaxis regardless of stage, histology, or bone marrow or mediastinal involvement. (Abstract Truncated)

  13. C.N.S. tumors in eastern Saudi Arabia.

    PubMed

    Ibrahim, A W

    1992-01-01

    In Saudi Arabia, there were no attempts previously to describe a population based frequency or incidence, particularly so the age adjusted incidence of various CNS tumors. This paper presents the primary CNS tumors from a population based tumor registry over two years period, from January 1987 till December 1988. There was a total of 85 cases representing 5.4% of the total captured cases (1,568 cases of malignant tumors at all sites). The population of the Eastern Province is estimated to be 1.37 million, the Saudis forming 80% of the total population. Out of the 85 cases captured over two years, there were 64 cases diagnosed in indigenous Saudi population forming 75%. The remaining occurred in non-Saudi residents. The male/female ratio in Saudis was 1:1.1 with a slight predominance of the female, while the reverse is true in the non-Saudis (2:1). The total captured cases per annum is 43, making the incidence of primary CNS neoplasms in the Eastern Province of Saudi Arabia 3.1/100,000 of all the population and 2.9/100,000 in Saudi nationals. Comparing this incidence to the international figure, it was clear that it is far less than the incidence reported from North America and Europe, particularly in the Caucasian population, but similar to incidences reported in the Chinese, black Americans, Romanians and Yugoslavians, but certainly less than the Ashkenazi or Safari Jews, and slightly higher than the incidence reported in Japan and Southeast Asia. Malignant brain tumors of various types dominated the primary CNS neoplasms reported over these two years forming 69% of the cases and 52% of the primary brain tumors.

  14. The Coordinated Noninvasive Studies (CNS) Project. Phase 1. Appendices

    DTIC Science & Technology

    1991-12-01

    sounds : absolute -nd relative ear advantages. Journal of the Acoustical So;ety of Americ 71, 701-707. Lauter, J.L. (1983) Stimulus characteristics ...71-74. 1980 "Dichotic identification of complex sounds ," to Acoustical Society of America, Atlanta. Abstract: J Acoust Soc Amer 67: S100. 1981...establishing a baseline for experiments on brain asymmetries and complex sounds in the CNS Project" (with E. Plante), to Acoustical Society of

  15. Treatment Options for Medulloblastoma and CNS Primitive Neuroectodermal Tumor (PNET)

    PubMed Central

    Packer, Roger J.

    2016-01-01

    The amount of residual disease after surgery better correlates with survival for medulloblastomas than for CNS PNETs. Maximal surgical resection of tumor should be done, only if additional permanent, neurologic deficits can be spared. Patients should have a staging work-up to assess the extent of disease. This includes postoperative magnetic resonance imaging (MRI) of the brain, MRI of the entire spine and lumbar cerebrospinal fluid (CSF) sampling for cytological examination, if deemed safe. Radiation therapy to the entire CNS axis is required, with a greater dose (boost) given to the region of the primary site or any bulky residual disease for older children. Adjuvant chemotherapy must be given even if no evidence of disease after radiation therapy exists, as the risk of relapse is substantial after radiation alone. Subsets of younger children with medulloblastoma, arbitrarily defined as those younger than 3 years of age in some studies and 4 or even 5 years in other studies, can be effectively treated with chemotherapy alone. Recent genomic studies have revealed further subtypes of disease than previously recognized. Clinical trials to exploit these biologic differences are required to assess potential efficacy of targeted agents. The treatment of medulloblastoma and CNS PNET can cause significant impairment in neurologic function. Evaluations by physical therapy, occupational therapy, speech therapy and neurocognitive assessments should be obtained, as needed. After therapy is completed, survivors need follow-up of endocrine function, surveillance scans and psychosocial support. PMID:23979905

  16. Functional CB2 type cannabinoid receptors at CNS synapses.

    PubMed

    Morgan, Nicola H; Stanford, Ian M; Woodhall, Gavin L

    2009-09-01

    To date, it has been thought that cannabinoid receptors in CNS are primarily of the CB1R subtype, with CB2R expressed only in glia and peripheral tissues. However, evidence for the expression of CB2 type cannabinoid receptors at neuronal sites in the CNS is building through anatomical localization of receptors and mRNA in neurons and behavioural studies of central effects of CB2R agonists. In the medial entorhinal area of the rat, we found that blockade of CB1R did not occlude suppression of GABAergic inhibition by the non-specific endogenous cannabinoid 2-AG, suggesting that CB1R could not account fully for the effects of 2-AG. Suppression could be mimicked using the CB2R agonist JWH-133 and reversed by the CB2R inverse agonist AM-630, indicating the presence of functional CB2R. When we reversed the order of drug application AM-630 blocked the effects of the CB2R agonist JWH-133, but not the CB1R inverse agonist LY320135. JTE-907, a CB2R inverse agonist structurally unrelated to AM-630 elicited increased GABAergic neurotransmission at picomolar concentrations. Analysis of mIPSCs revealed that CB2R effects were restricted to action potential dependent, but not action potential independent GABA release. These data provide pharmacological evidence for functional CB2R at CNS synapses.

  17. Origin, fate and dynamics of macrophages at CNS interfaces

    PubMed Central

    Goldmann, Tobias; Jordão, Marta Joana Costa; Wieghofer, Peter; Prutek, Fabiola; Hagemeyer, Nora; Frenzel, Kathrin; Staszewski, Ori; Kierdorf, Katrin; Amann, Lukas; Krueger, Martin; Locatelli, Giuseppe; Hochgarner, Hannah; Zeiser, Robert; Epelman, Slava; Geissmann, Frederic; Priller, Josef; Rossi, Fabio; Bechmann, Ingo; Kerschensteiner, Martin; Linnarsson, Sten; Jung, Steffen; Prinz, Marco

    2016-01-01

    Perivascular, meningeal and choroid plexus macrophages are non-parenchymal macrophages that mediate immune responses at brain boundaries. Although the origin of parenchymal microglia has recently been elucidated, much less is known about the precursors, the underlying transcriptional program and the dynamics of the other macrophages in the central nervous system (CNS). It has been assumed that they have a high turnover with blood-borne monocytes. However, large scale single-cell RNA-sequencing reveals a striking molecular overlap between perivascular macrophages and microglia but not monocytes. Using several fate mapping approaches and parabiosis we demonstrate that CNS macrophages arise from yolk sac precursors during embryonic development and remain a stable population. Notably, the generation of CNS macrophages relies on the transcription factor Pu.1 whereas myb, Batf3 and Nr4a1 are not required. Upon autoimmune inflammation, macrophages undergo extensive self-renewal by local proliferation. Our data provide challenging new insights into brains innate immune system. PMID:27135602

  18. Adhesion Molecules in CNS Disorders: Biomarker and Therapeutic Targets

    PubMed Central

    Ma, Qingyi; Chen, Sheng; Klebe, Damon; Zhang, John H.; Tang, Jiping

    2015-01-01

    Mounting evidence has been provided regarding the crucial role of leukocyte extravasation and subsequent inflammatory response in several central nervous system (CNS) disorders. The infiltrated leukocytes release pro-inflammatory mediators and activate resident cells, leading to tissue injury. Leukocyte-endothelia interaction is critical for leukocyte extravasation and migration from the intravascular space into the tissue during inflammation. The basic physiology of leukocyte-endothelia interaction has been investigated extensively. Traditionally, three kinds of adhesion molecules, selectin, integrin, and immunoglobulin families, are responsible for this multiple-step interaction. Furthermore, blocking adhesion molecule function by genetic knockout, antagonizing antibodies, or inhibitory pharmacological drugs provides neuroprotection, which is associated with a reduction in leukocyte accumulation with in the tissue. Detection of the soluble form of adhesion molecules has also been proven to predict outcomes in CNS disorders. Lately, vascular adhesion protein-1 (VAP-1), a novel adhesion molecule and endothelial cell surface enzyme, has been implicated as a brake during leukocyte extravasation. In this review, we summarize the functions of traditional adhesion molecules as well as VAP-1 in the leukocyte adhesion cascade. We also discuss the diagnostic and therapeutic potential of adhesion molecules in CNS disorders. PMID:23469854

  19. SPHINGOSINE-1-PHOSPHATE RECEPTORS MEDIATE NEUROMODULATORY FUNCTIONS IN THE CNS

    PubMed Central

    Sim-Selley, Laura J.; Goforth, Paulette B.; Mba, Mba U.; Macdonald, Timothy L.; Lynch, Kevin R.; Milstien, Sheldon; Spiegel, Sarah; Satin, Leslie S.; Welch, Sandra P.; Selley, Dana E.

    2009-01-01

    Sphingosine-1-phosphate is a ubiquitous, lipophilic cellular mediator that acts in part by activation of G-protein-coupled receptors. Modulation of S1P signaling is an emerging pharmacotherapeutic target for immunomodulatory drugs. Although multiple S1P receptor types exist in the CNS, little is known about their function. Here we report that S1P stimulated G- protein activity in the CNS, and results from [35S]GTPγS autoradiography using the S1P1-selective agonist SEW2871 and the S1P1/3-selective antagonist VPC44116 show that in several regions a majority of this activity is mediated by S1P1 receptors. S1P receptor activation inhibited glutamatergic neurotransmission as determined by electrophysiological recordings in cortical neurons in vitro, and this effect was mimicked by SEW2871 and inhibited by VPC44116. Moreover, central administration of S1P produced in vivo effects resembling the actions of cannabinoids, including thermal antinociception, hypothermia, catalepsy and hypolocomotion, but these actions were independent of CB1 receptors. At least one of the central effects of S1P, thermal antinociception, is also at least partly S1P1 receptor mediated because it was produced by SEW2871 and attenuated by VPC44116. These results indicate that CNS S1P receptors are part of a physiologically relevant and widespread neuromodulatory system, and that the S1P1 receptor contributes to S1P-mediated antinociception. PMID:19493165

  20. Mechanisms of CNS invasion and damage by parasites.

    PubMed

    Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina

    2013-01-01

    Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection.

  1. Return on investment: workload, complexity and value of the CNS.

    PubMed

    Oliver, Susan; Leary, Alison

    The rheumatology nurse specialist (RNS) has become an integral and vital part of the multidisciplinary team and is valued by patients. Yet, a number of challenges regularly face all clinical nurse specialists (CNS) in the UK. The perception that CNS are an expensive and poorly defined nursing resource results in regular threats to their sustainability, particularly that of the RNS. This study examined return on investment of the RNS. An interrelational Structured Query Language (SQL) database collected data on the day-to-day activities of the RNS based on previous models of CNS and RNS work, and qualitative narrative data were then subjected to data mining. The RNS represented an excellent return on investment, in terms of income generation activity, patient safety and efficiency. These outcomes were achieved using key principles of proactive case management using vigilance, rescue work and brokering. The mean average per whole time equivalent (WTE) RNS per annum represents £ 175,168 in terms of income/savings to an employing NHS Trust. This figure is likely to be an underestimation, as calculations on reduction in bed days in hospital have not been included.

  2. TSC1/TSC2 Signaling in the CNS

    PubMed Central

    Han, Juliette M.; Sahin, Mustafa

    2011-01-01

    Over the past several years, the study of a hereditary tumor syndrome, tuberous sclerosis complex (TSC), has shed light on the regulation of cellular proliferation and growth. TSC is an autosomal dominant disorder that is due to inactivating mutations in TSC1 or TSC2 and characterized by benign tumors (hamartomas) involving multiple organ systems. The TSC1/2 complex has been found to play a crucial role in an evolutionarily-conserved signaling pathway that regulates cell growth: the mTORC1 pathway. This pathway promotes anabolic processes and inhibits catabolic processes in response to extracellular and intracellular factors. Findings in cancer biology have reinforced the critical role for TSC1/2 in cell growth and proliferation. In contrast to cancer cells, in the CNS, the TSC1/2 complex not only regulates cell growth/proliferation, but also orchestrates an intricate and finely tuned system that has distinctive roles under different conditions, depending on cell type, stage of development, and subcellular localization. Overall, TSC1/2 signaling in the CNS, via its multi-faceted roles, contributes to proper neural connectivity. Here, we will review the TSC signaling in the CNS. PMID:21329690

  3. PPAR agonists as therapeutics for CNS trauma and neurological diseases

    PubMed Central

    Mandrekar-Colucci, Shweta; Sauerbeck, Andrew; Popovich, Phillip G.; McTigue, Dana M.

    2013-01-01

    Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS. PMID:24215544

  4. Primary CNS lymphoproliferative disease, mycophenolate and calcineurin inhibitor usage

    PubMed Central

    Crane, Genevieve M.; Powell, Helen; Kostadinov, Rumen; Rocafort, Patrick Tim; Rifkin, Dena E.; Burger, Peter C.; Ambinder, Richard F.; Swinnen, Lode J.; Borowitz, Michael J.; Duffield, Amy S.

    2015-01-01

    Immunosuppression for solid organ transplantation increases lymphoproliferative disease risk. While central nervous system (CNS) involvement is more rare, we noticed an increase in primary CNS (PCNS) disease. To investigate a potential association with the immunosuppressive regimen we identified all post-transplant lymphoproliferative disease (PTLD) cases diagnosed over a 28-year period at our institution (174 total, 29 PCNS) and all similar cases recorded in a United Network for Organ Sharing-Organ Procurement and Transplant Network (UNOS-OPTN) data file. While no PCNS cases were diagnosed at our institution between 1986 and 1997, they comprised 37% of PTLD cases diagnosed from 2011–2014. PCNS disease was more often associated with renal vs. other organ transplant, Epstein-Barr virus, large B-cell morphology and mycophenolate mofetil (MMF) as compared to PTLD that did not involve the CNS. Calcineurin inhibitors were protective against PCNS disease when given alone or in combination with MMF. A multivariate analysis of a larger UNOS-OPTN dataset confirmed these findings, where both MMF and lack of calcineurin inhibitor usage were independently associated with risk for development of PCNS PTLD. These findings have significant implications for the transplant community, particularly given the introduction of new regimens lacking calcineurin inhibitors. Further investigation into these associations is warranted. PMID:26460822

  5. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    PubMed

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  6. Single Cell Electroporation Method for Mammalian CNS Neurons in Organotypic Slice Cultures

    NASA Astrophysics Data System (ADS)

    Uesaka, Naofumi; Hayano, Yasufumi; Yamada, Akito; Yamamoto, Nobuhiko

    Axon tracing is an essential technique to study the projection pattern of neurons in the CNS. Horse radish peroxidase and lectins have contributed to revealing many neural connection patterns in the CNS (Itaya and van Hoesen, 1982; Fabian and Coulter, 1985; Yoshihara, 2002). Moreover, a tracing method with fluorescent dye has enabled the observation of growing axons in living conditions, and demon strated a lot of developmental aspects in axon growth and guidance (Harris et al., 1987; O'Rourke and Fraser, 1990; Kaethner and Stuermer, 1992; Halloran and Kalil, 1994; Yamamoto et al., 1997). More recently, genetically encoded fluores cent proteins can be used as a powerful tool to observe various biological events. Several gene transfer techniques such as microinjection, biolistic gene gun, viral infection, lipofection and transgenic technology have been developed (Feng et al., 2000; Ehrengruber et al., 2001; O'Brien et al., 2001; Ma et al., 2002; Sahly et al., 2003). In particular, the electroporation technique was proved as a valuable tool, since it can be applied to a wide range of tissues and cell types with little toxicity and can be performed with relative technical easiness. Most methods, including a stand ard electroporation technique, are suitable for gene transfer to a large number of cells. However, this is not ideal for axonal tracing, because observation of individ ual axons is occasionally required. To overcome this problem, we have developed an electroporation method using glass micropipettes containing plasmid solutions and small current injection. Here we introduce the method in detail and exemplified results with some example applications and discuss its usefulness.

  7. MicroRNA (miRNA) Signaling in the Human CNS in Sporadic Alzheimer's Disease (AD)-Novel and Unique Pathological Features.

    PubMed

    Zhao, Yuhai; Pogue, Aileen I; Lukiw, Walter J

    2015-12-17

    Of the approximately ~2.65 × 10³ mature microRNAs (miRNAs) so far identified in Homo sapiens, only a surprisingly small but select subset-about 35-40-are highly abundant in the human central nervous system (CNS). This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs) for productive miRNA-mRNA interactions and the down-regulation of gene expression. In this article we will: (i) consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer's disease (AD) and related forms of chronic neurodegeneration; and (ii) highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS.

  8. Normalization and Improvement of CNS Deficits in Mice With Hurler Syndrome After Long-term Peripheral Delivery of BBB-targeted Iduronidase

    PubMed Central

    El-Amouri, Salim S; Dai, Mei; Han, Jing-Fen; Brady, Roscoe O; Pan, Dao

    2014-01-01

    Mucopolysaccharidosis type I (MPS I) is a progressive lysosomal storage disorder with systemic and central nervous system (CNS) involvement due to deficiency of α-l-iduronidase (IDUA). We previously identified a receptor-binding peptide from apolipoprotein E (e) that facilitated a widespread delivery of IDUAe fusion protein into CNS. In this study, we evaluated the long-term CNS biodistribution, dose-correlation, and therapeutic benefits of IDUAe after systemic, sustained delivery via hematopoietic stem cell (HSC)-mediated gene therapy with expression restricted to erythroid/megakaryocyte lineages. Compared to the highest dosage group treated by nontargeted control IDUAc (165 U/ml), physiological levels of IDUAe in the circulation (12 U/ml) led to better CNS benefits in MPS I mice as demonstrated in glycosaminoglycan accumulation, histopathology analysis, and neurological behavior. Long-term brain metabolic correction and normalization of exploratory behavior deficits in MPS I mice were observed by peripheral enzyme therapy with physiological levels of IDUAe derived from clinically attainable levels of HSC transduction efficiency (0.1). Importantly, these levels of IDUAe proved to be more beneficial on correction of cerebrum pathology and behavioral deficits in MPS I mice than wild-type HSCs fully engrafted in MPS I chimeras. These results provide compelling evidence for CNS efficacy of IDUAe and its prospective translation to clinical application. PMID:25088464

  9. 16 CFR 801.2 - Acquiring and acquired persons.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Acquiring and acquired persons. 801.2 Section 801.2 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.2...

  10. 16 CFR 801.2 - Acquiring and acquired persons.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Acquiring and acquired persons. 801.2 Section 801.2 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.2...

  11. Loss of methylation at the IFNG promoter and CNS-1 is associated with the development of functional IFN-γ memory in human CD4(+) T lymphocytes.

    PubMed

    Dong, Jun; Chang, Hyun-Dong; Ivascu, Claudia; Qian, Yu; Rezai, Soheila; Okhrimenko, Anna; Cosmi, Lorenzo; Maggi, Laura; Eckhardt, Florian; Wu, Peihua; Sieper, Joachim; Alexander, Tobias; Annunziato, Francesco; Gossen, Manfred; Li, Jun; Radbruch, Andreas; Thiel, Andreas

    2013-03-01

    Cytokine memory for IFN-γ production by effector/memory Th1 cells plays a key role in both protective and pathological immune responses. To understand the epigenetic mechanism determining the ontogeny of effector/memory Th1 cells characterized by stable effector functions, we identified a T-cell-specific methylation pattern at the IFNG promoter and CNS-1 in ex vivo effector/memory Th1 cells, and investigated methylation dynamics of these regions during the development of effector/memory Th1 cells. During Th1 differentiation, demethylation occurred at both the promoter and CNS-1 regions of IFNG as early as 16 h, and this process was independent of cell proliferation and DNA synthesis. Using an IFN-γ capture assay, we found early IFN-γ-producing cells from 2-day differentiating cultures acquired "permissive" levels of demethylation and developed into effector/memory Th1 cells undergoing progressive demethylation at the IFNG promoter and CNS-1 when induced by IL-12. Methylation levels of these regions in effector/memory Th1 cells of peripheral blood from rheumatoid arthritis patients correlated inversely with reduced frequencies of IFN-γ-producers, coincident with recruitment of effector/memory Th1 cells to the site of inflammation. Thus, after termination of TCR stimulation, IL-12 signaling potentiates the stable functional IFN-γ memory in effector/memory Th1 cells characterized by hypomethylation at the IFNG promoter and CNS-1.

  12. T-bet Expression by Foxp3+ T Regulatory Cells is Not Essential for Their Suppressive Function in CNS Autoimmune Disease or Colitis

    PubMed Central

    McPherson, Rhoanne C.; Turner, Darryl G.; Mair, Iris; O’Connor, Richard A.; Anderton, Stephen M.

    2015-01-01

    Accumulation of T regulatory (Treg) cells within the central nervous system (CNS) during experimental autoimmune encephalomyelitis (EAE) is essential for the resolution of disease. CNS Treg cells have been shown to uniformly express the Th1-associated molecules, T-bet and CXCR3. Here, we report that the expression of T-bet is not required for the function of these Treg within the CNS. Using mice that lacked T-bet expression specifically within the Treg compartment, we demonstrate that there was no deficit in Treg recruitment into the CNS during EAE and no difference in the resolution of disease compared to control mice. T-bet deficiency did not impact on the in vitro suppressive capacity of Treg. Transfer of T-bet-deficient Treg was able to suppress clinical signs of either EAE or colitis. These observations demonstrate that, although Treg can acquire characteristics associated with pathogenic T effector cells, this process is not necessarily required for their suppressive capacity and the resolution of autoimmune inflammation. PMID:25741342

  13. Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury

    PubMed Central

    2011-01-01

    Background The content and composition of cerebrospinal fluid (CSF) is determined in large part by the choroid plexus (CP) and specifically, a specialized epithelial cell (CPe) layer that responds to, synthesizes, and transports peptide hormones into and out of CSF. Together with ventricular ependymal cells, these CPe relay homeostatic signals throughout the central nervous system (CNS) and regulate CSF hydrodynamics. One new candidate signal is augurin, a newly recognized 14 kDa protein that is encoded by esophageal cancer related gene-4 (Ecrg4), a putative tumor suppressor gene whose presence and function in normal tissues remains unexplored and enigmatic. The aim of this study was to explore whether Ecrg4 and its product augurin, can be implicated in CNS development and the response to CNS injury. Methods Ecrg4 gene expression in CNS and peripheral tissues was studied by in situ hybridization and quantitative RT-PCR. Augurin, the protein encoded by Ecrg4, was detected by immunoblotting, immunohistochemistry and ELISA. The biological consequence of augurin over-expression was studied in a cortical stab model of rat CNS injury by intra-cerebro-ventricular injection of an adenovirus vector containing the Ecrg4 cDNA. The biological consequences of reduced augurin expression were evaluated by characterizing the CNS phenotype caused by Ecrg4 gene knockdown in developing zebrafish embryos. Results Gene expression and immunohistochemical analyses revealed that, the CP is a major source of Ecrg4 in the CNS and that Ecrg4 mRNA is predominantly localized to choroid plexus epithelial (CPe), ventricular and central canal cells of the spinal cord. After a stab injury into the brain however, both augurin staining and Ecrg4 gene expression decreased precipitously. If the loss of augurin was circumvented by over-expressing Ecrg4 in vivo, BrdU incorporation by cells in the subependymal zone decreased. Inversely, gene knockdown of Ecrg4 in developing zebrafish embryos caused

  14. Strain-dependent CNS dissemination in guinea pigs after Mycobacterium tuberculosis aerosol challenge.

    PubMed

    Be, Nicholas A; Klinkenberg, Lee G; Bishai, William R; Karakousis, Petros C; Jain, Sanjay K

    2011-09-01

    Clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with CNS disease. We therefore examined CNS dissemination by different laboratory strains (two M. tuberculosis H37Rv, one CDC1551) in a guinea pig aerosol infection model. Although all strains grew exponentially in lungs, with similar bacterial burdens at the time of extrapulmonary dissemination, M. tuberculosis CDC1551 disseminated to the CNS significantly more than the H37Rv strains. No CNS lesions were observed throughout the study, with only a modest cytokine response. These data suggest that M. tuberculosis may have virulence factors that promote CNS dissemination, distinct from those required for pulmonary TB.

  15. Expression of ataxin-7 in CNS and non-CNS tissue of normal and SCA7 individuals.

    PubMed

    Jonasson, Jenni; Ström, Anna-Lena; Hart, Patricia; Brännström, Thomas; Forsgren, Lars; Holmberg, Monica

    2002-07-01

    Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder primarily affecting the cerebellum, brain stem and retina. The disease is caused by an expanded polyglutamine tract in the protein ataxin-7. In this study we analyzed the expression pattern of ataxin-7 in CNS and non-CNS tissue from three SCA7 patients and age-matched controls. SCA7 is a rare autosomal dominant disorder, limiting the number of patients available for analysis. We therefore compiled data on ataxin-7 expression from all SCA7 patients (n=5) and controls (n=7) published to date, and compared with the results obtained in this study. Expression of ataxin-7 was found in neurons throughout the CNS and was highly abundant in Purkinje cells of the cerebellum, in regions of the hippocampus and in cerebral cortex. Ataxin-7 expression was not restricted to regions of pathology, and there were no apparent regional differences in ataxin-7 expression patterns between patients and controls. The subcellular distribution of ataxin-7 was primarily nuclear in all brain regions studied. In cerebellar Purkinje cells, however, differences in subcellular distribution of ataxin-7 were observed between patients and controls of different ages. Here we provide an increased understanding of the distribution of ataxin-7, and the possible implication of subcellular localization of this protein on disease pathology is discussed.

  16. WWOX At The Crossroads Of Cancer, Metabolic Syndrome Related Traits And CNS Pathologies

    PubMed Central

    Aldaz, C. Marcelo; Ferguson, Brent W.; Abba, Martin C.

    2014-01-01

    germline loss of function WWOX mutations have been identified. These patients are characterized by severe CNS related pathology that includes epilepsy, ataxia and mental retardation. In summary, WWOX is a highly conserved and tightly regulated gene throughout evolution and when defective or deregulated the consequences are important and deleterious as demonstrated by its association not only with poor prognosis in cancer but also with other important human pathologies such as metabolic syndrome and CNS related pathologic conditions. PMID:24932569

  17. WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies.

    PubMed

    Aldaz, C Marcelo; Ferguson, Brent W; Abba, Martin C

    2014-08-01

    germline loss of function WWOX mutations have been identified. These patients are characterized by severe CNS related pathology that includes epilepsy, ataxia and mental retardation. In summary, WWOX is a highly conserved and tightly regulated gene throughout evolution and when defective or deregulated the consequences are important and deleterious as demonstrated by its association not only with poor prognosis in cancer but also with other important human pathologies such as metabolic syndrome and CNS related pathologic conditions. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. CNTNAP1 mutations cause CNS hypomyelination and neuropathy with or without arthrogryposis

    PubMed Central

    Hengel, Holger; Magee, Alex; Mahanjah, Muhammad; Vallat, Jean-Michel; Ouvrier, Robert; Abu-Rashid, Mohammad; Mahamid, Jamal; Schüle, Rebecca; Schulze, Martin; Krägeloh-Mann, Ingeborg; Bauer, Peter; Züchner, Stephan; Sharkia, Rajech

    2017-01-01

    Objective: To explore the phenotypic spectrum and pathophysiology of human disease deriving from mutations in the CNTNAP1 gene. Methods: In a field study on consanguineous Palestinian families, we identified 3 patients carrying homozygous mutations in the CNTNAP1 gene using whole-exome sequencing. An unrelated Irish family was detected by screening the GENESIS database for further CNTNAP1 mutations. Neurophysiology, MRI, and nerve biopsy including electron microscopy were performed for deep phenotyping. Results: We identified 3 novel CNTNAP1 mutations in 5 patients from 2 families: c.2015G>A:p.(Trp672*) in a homozygous state in family 1 and c.2011C>T:p.(Gln671*) in a compound heterozygous state with c.2290C>T:p.(Arg764Cys) in family 2. Affected patients suffered from a severe CNS disorder with hypomyelinating leukodystrophy and peripheral neuropathy of sensory-motor type. Arthrogryposis was present in 2 patients but absent in 3 patients. Brain MRI demonstrated severe hypomyelination and secondary cerebral and cerebellar atrophy as well as a mega cisterna magna and corpus callosum hypoplasia. Nerve biopsy revealed very distinct features with lack of transverse bands at the paranodes and widened paranodal junctional gaps. Conclusions: CNTNAP1 mutations have recently been linked to patients with arthrogryposis multiplex congenita. However, we show that arthrogryposis is not an obligate feature. CNTNAP1-related disorders are foremost severe hypomyelinating disorders of the CNS and the peripheral nervous system. The pathology is partly explained by the involvement of CNTNAP1 in the proper formation and preservation of paranodal junctions and partly by the assumed role of CNTNAP1 as a key regulator in the development of the cerebral cortex. PMID:28374019

  19. Endocytic depletion of L-MAG from CNS myelin in quaking mice

    PubMed Central

    1995-01-01

    Quaking is an autosomal recessive hypo/dysmyelinating mutant mouse which has a 1-Mbp deletion on chromosome 17. The mutation exhibits pleiotrophy and does not include genes encoding characterized myelin proteins. The levels of the 67-kD isoform of the myelin-associated glycoprotein (S-MAG) relative to those of the 72-kD isoform (L-MAG) are increased in the quaking CNS, but not in other dysmyelinating mutants. Abnormal expression of MAG isoforms in quaking may result from altered transcription of the MAG gene or from abnormal sorting, transport, or targeting of L-MAG or S-MAG. To test these hypotheses, we have determined the distribution of L-MAG and S-MAG in cervical spinal cord of 7-, 14-, 21-, 28-, and 35-d-old quaking mice. In 7-d-old quaking and control spinal cord, L- and S-MAG was detectable in periaxonal regions of myelinated fibers and in the perinuclear cytoplasm of oligodendrocytes. Between 7 and 35 d, L-MAG was removed from the periaxonal membrane of quaking but not control mice. Compared to control mice, a significant increase in MAG labeling of endosomes occurred within oligodendrocyte cytoplasm of 35-d-old quaking mice. S- MAG remained in periaxonal membranes of both quaking and control mice. Analysis of the cytoplasmic domain of L-MAG identifies amino acid motifs at tyrosine 35 and tyrosine 65 which meet the criteria for "tyrosine internalization signals" that direct transmembrane glycoproteins into the endocytic pathway. These results establish that L-MAG is selectively removed from the periaxonal membrane of CNS- myelinated fibers by receptor-mediated endocytosis. The loss of L-MAG from quaking periaxonal membranes results from increased endocytosis of L-MAG and possibly a decrease in L-MAG production. PMID:8557747

  20. Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNS.

    PubMed

    Mellerick, Dervla M; Liu, Heather

    2004-09-05

    Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity.

  1. The Gateway Reflex, which is mediated by the inflammation amplifier, directs pathogenic immune cells into the CNS.

    PubMed

    Sabharwal, Lavannya; Kamimura, Daisuke; Meng, Jie; Bando, Hidenori; Ogura, Hideki; Nakayama, Chiemi; Jiang, Jing-Jing; Kumai, Noriko; Suzuki, Hironao; Atsumi, Toru; Arima, Yasunobu; Murakami, Masaaki

    2014-12-01

    The brain-blood barrier (BBB) tightly limits immune cell migration into the central nervous system (CNS), avoiding unwanted inflammation under the normal state. However, immune cells can traverse the BBB when inflammation occurs within the CNS, suggesting a certain signal that creates a gateway that bypasses the BBB might exist. We revealed the inflammation amplifier as a mechanism of this signal, and identified dorsal vessels of the fifth lumber (L5) spinal cord as the gateway. The inflammation amplifier is driven by a simultaneous activation of NF-κB and STATs in non-immune cells, causing the production of a large amount of inflammatory chemokines to open the gateway at L5 vessels. It was found that the activation of the amplifier can be modulated by neural activation and artificially operated by electric pulses followed by establishment of new gateways, Gateway Reflex, at least in mice. Furthermore, genes required for the inflammation amplifier have been identified and are highly associated with various inflammatory diseases and disorders in the CNS. Thus, physical and/or pharmacological manipulation of the inflammation amplifier holds therapeutic value to control neuro-inflammation. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  2. RYR1-related malignant hyperthermia with marked cerebellar involvement - a paradigm of heat-induced CNS injury?

    PubMed

    Forrest, Katharine M L; Foulds, Nicola; Millar, John S; Sutherland, Paul D; Pappachan, V John; Holden, Samantha; Mein, Rachael; Hopkins, Philip M; Jungbluth, Heinz

    2015-02-01

    Heat-induced CNS injury has been recognized for more than 50 years but the biological basis for the marked selectivity of CNS damage is currently uncertain. We present clinical, imaging, autopsy and genetic findings of a 14-year-old male who developed fatal cerebellar swelling in the course of a malignant hyperthermia (MH) episode caused by triggering anaesthetics. Unaccustomed intense exercise in the days prior to general anaesthesia was a probable confounding factor for the MH reaction. Autopsy findings demonstrated pronounced degeneration of cerebellar Purkinje cells. Post mortem genetic analysis revealed a mutation (c.6502G>A; p.Val2168Met) in the skeletal muscle ryanodine receptor (RYR1) gene previously associated with the MH trait. RYR1 mutations appear to be associated with heat-induced CNS injury in a distribution compatible with known expression pattern of the RyR1 isoform in cerebellar Purkinje cells. Recent exercise in genetically predisposed individuals may prime abnormal muscle prior to general anaesthesia and contribute to the severity of MH reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Functional correction of CNS phenotypes in a lysosomal storage disease model using adeno-associated virus type 4 vectors.

    PubMed

    Liu, Gumei; Martins, Inês; Wemmie, John A; Chiorini, John A; Davidson, Beverly L

    2005-10-12

    Lysosomal storage diseases (LSDs) represent a significant portion of inborn metabolic disorders. More than 60% of LSDs have CNS involvement. LSD therapies for systemic diseases have been developed, but efficacy does not extend to the CNS. In this study, we tested whether adeno-associated virus type 4 (AAV4) vectors could mediate global functional and pathological improvements in a murine model of mucopolysaccharidosis type VII (MPS VII) caused by beta-glucuronidase deficiency. Recombinant AAV4 vectors encoding beta-glucuronidase were injected unilaterally into the lateral ventricle of MPS VII mice with established disease. Transduced ependyma expressed high levels of recombinant enzyme, with secreted enzyme penetrating cerebral and cerebellar structures, as well as the brainstem. Immunohistochemical studies revealed close association of recombinant enzyme and brain microvasculature, indicating that beta-glucuronidase reached brain parenchyma via the perivascular spaces lining blood vessels. Aversive associative learning was tested by context fear conditioning. Compared with age-matched heterozygous controls, affected mice showed impaired conditioned fear response and context discrimination. This behavioral deficit was reversed 6 weeks after gene transfer in AAV4 beta-glucuronidase-treated MPS VII mice. Our data show that ependymal cells can serve as a source of enzyme secretion into the surrounding brain parenchyma and CSF. Secreted enzymes subsequently spread via various routes to reach structures throughout the brain and mediated pathological and functional disease correction. Together, our proof-of-principal experiments suggest a unique and efficient manner for treating the global CNS deficits in LSD patients.

  4. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth.

    PubMed

    Rauskolb, Stefanie; Zagrebelsky, Marta; Dreznjak, Anita; Deogracias, Rubén; Matsumoto, Tomoya; Wiese, Stefan; Erne, Beat; Sendtner, Michael; Schaeren-Wiemers, Nicole; Korte, Martin; Barde, Yves-Alain

    2010-02-03

    Although brain-derived neurotrophic factor (BDNF) is linked with an increasing number of conditions causing brain dysfunction, its role in the postnatal CNS has remained difficult to assess. This is because the bdnf-null mutation causes the death of the animals before BDNF levels have reached adult levels. In addition, the anterograde axonal transport of BDNF complicates the interpretation of area-specific gene deletion. The present study describes the generation of a new conditional mouse mutant essentially lacking BDNF throughout the CNS. It shows that BDNF is not essential for prolonged postnatal survival, but that the behavior of such mutant animals is markedly altered. It also reveals that BDNF is not a major survival factor for most CNS neurons and for myelination of their axons. However, it is required for the postnatal growth of the striatum, and single-cell analyses revealed a marked decreased in dendritic complexity and spine density. In contrast, BDNF is dispensable for the growth of the hippocampus and only minimal changes were observed in the dendrites of CA1 pyramidal neurons in mutant animals. Spine density remained unchanged, whereas the proportion of the mushroom-type spine was moderately decreased. In line with these in vivo observations, we found that BDNF markedly promotes the growth of cultured striatal neurons and of their dendrites, but not of those of hippocampal neurons, suggesting that the differential responsiveness to BDNF is part of a neuron-intrinsic program.

  5. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS

    PubMed Central

    Yamanaka, Tomoyuki; Tosaki, Asako; Miyazaki, Haruko; Kurosawa, Masaru; Koike, Masato; Uchiyama, Yasuo; Maity, Sankar N.; Misawa, Hidemi; Takahashi, Ryosuke; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2016-01-01

    The mammalian central nervous system (CNS) contains various types of neurons with different neuronal functions. In contrast to established roles of cell type-specific transcription factors on neuronal specification and maintenance, whether ubiquitous transcription factors have conserved or differential neuronal function remains uncertain. Here, we revealed that inactivation of a ubiquitous factor NF-Y in different sets of neurons resulted in cell type-specific neuropathologies and gene downregulation in mouse CNS. In striatal and cerebellar neurons, NF-Y inactivation led to ubiquitin/p62 pathologies with downregulation of an endoplasmic reticulum (ER) chaperone Grp94, as we previously observed by NF-Y deletion in cortical neurons. In contrast, NF-Y inactivation in motor neurons induced neuronal loss without obvious protein deposition. Detailed analysis clarified downregulation of another ER chaperone Grp78 in addition to Grp94 in motor neurons, and knockdown of both ER chaperones in motor neurons recapitulated the pathology observed after NF-Y inactivation. Finally, additional downregulation of Grp78 in striatal neurons suppressed ubiquitin accumulation induced by NF-Y inactivation, implying that selective ER chaperone downregulation mediates different neuropathologies. Our data suggest distinct roles of NF-Y in protein homeostasis and neuronal maintenance in the CNS by differential regulation of ER chaperone expression. PMID:27687130

  6. A novel GJB1 frameshift mutation produces a transient CNS symptom of X-linked Charcot-Marie-Tooth disease.

    PubMed

    Sakaguchi, Hideya; Yamashita, Satoshi; Miura, Akiko; Hirahara, Tomoo; Kimura, En; Maeda, Yasushi; Terasaki, Tadashi; Hirano, Teruyuki; Uchino, Makoto

    2011-02-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is the second most common variant of CMT and is caused by mutations in the GJB1 gene encoding connexin 32. Some CMT1X patients with GJB1 missense mutations have shown transient central nervous system (CNS) symptoms with abnormal brain magnetic resonance imaging (MRI). Herein we report the first case with a novel GJB1 frameshift mutation that associates with a transient CNS symptom. The patient noticed high-arched feet and limited ankle dorsiflexion in early childhood; he transiently developed numbness and paresis of left face and arm, and dysphagia, with abnormal brain MRI. Although the CNS symptoms recovered within several hours without treatment, intravenous immunoglobulin (IVIg) therapy ameliorated progressing symptoms such as those of toe extensor muscles. His mother had been diagnosed with chronic inflammatory demyelinating polyneuropathy (CIDP), and repetitive IVIg treatments had relieved the symptoms. Therefore, inflammation might be involved in the pathophysiology of CMT1X with the GJB1 mutation, while molecular analysis revealed that the mutant GJB1 was more rapidly degraded by the proteasome pathway known as endoplasmic reticulum (ER)-associated degradation.

  7. Enhancing intrinsic growth capacity promotes adult CNS regeneration.

    PubMed

    Yang, Ping; Yang, Zhong

    2012-01-15

    In the adult mammalian central nervous system (CNS), the axons do not spontaneously regenerate after injury due to the inhibitory extrinsic environment and a diminished intrinsic regenerative capability. Many previous studies focus largely on characterizing the hostile growth inhibitory molecules in the CNS. In fact, blocking such inhibitory activities by either genetic or pharmacological approaches only allows limited sprouting, and majority of the adult neurons fail to regenerate their axons even provided with permissive substrates. Upon the neural circuits established during development, the intrinsic neuronal growth activity is gradually repressed. Little is known to the mechanisms for transition from the robust growth mode of the immature neurons to the poor growth mode of the mature neurons and the way to reactivate the intrinsic growth capacity after injury. The primary sensory neurons with cell bodies in the dorsal root ganglion (DRG) provide a useful model to develop strategies to enhance the intrinsic growth capacity of neurons. The centrally projecting axons in the adult spinal cord do not regenerate, while the peripheral branches regenerate robustly after injury. Regeneration of the central branches can be significantly enhanced after a prior peripheral branch injury, which is defined as conditioning lesion. We reviewed the mode of conditioning lesion reactivating the intrinsic growth program. Importantly, we summarized the intrinsic neuronal determinants for neurite growth such as cAMP, PTEN/mTOR, APC-Cdh1, KLF4, etc., the mechanisms underlying development-dependent decline of CNS neurons growth ability, and procedures to enhance the intrinsic growth potential. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Critical role for prokineticin 2 in CNS autoimmunity

    PubMed Central

    Abou-Hamdan, Mhamad; Costanza, Massimo; Fontana, Elena; Di Dario, Marco; Musio, Silvia; Congiu, Cenzo; Onnis, Valentina; Lattanzi, Roberta; Radaelli, Marta; Martinelli, Vittorio; Salvadori, Severo; Negri, Lucia; Poliani, Pietro Luigi; Farina, Cinthia; Balboni, Gianfranco; Steinman, Lawrence

    2015-01-01

    Objective: To investigate the potential role of prokineticin 2 (PK2), a bioactive peptide involved in multiple biological functions including immune modulation, in CNS autoimmune demyelinating disease. Methods: We investigated the expression of PK2 in mice with experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), and in patients with relapsing-remitting MS. We evaluated the biological effects of PK2 on expression of EAE and on development of T-cell response against myelin by blocking PK2 in vivo with PK2 receptor antagonists. We treated with PK2 immune cells activated against myelin antigen to explore the immune-modulating effects of this peptide in vitro. Results: Pk2 messenger RNA was upregulated in spinal cord and lymph node cells (LNCs) of mice with EAE. PK2 protein was expressed in EAE inflammatory infiltrates and was increased in sera during EAE. In patients with relapsing-remitting MS, transcripts for PK2 were significantly increased in peripheral blood mononuclear cells compared with healthy controls, and PK2 serum concentrations were significantly higher. A PK2 receptor antagonist prevented or attenuated established EAE in chronic and relapsing-remitting models, reduced CNS inflammation and demyelination, and decreased the production of interferon (IFN)-γ and interleukin (IL)-17A cytokines in LNCs while increasing IL-10. PK2 in vitro increased IFN-γ and IL-17A and reduced IL-10 in splenocytes activated against myelin antigen. Conclusion: These data suggest that PK2 is a critical immune regulator in CNS autoimmune demyelination and may represent a new target for therapy. PMID:25884014

  9. Inheritance of acquired traits in plants

    PubMed Central

    2010-01-01

    Since Lamarck proposed the idea of inheritance of acquired traits 200 years ago, much has been said for and against it, but the theory was finally declined after the 1930s. Despite of the negative opinions of the majority of geneticists, botanists and plant breeders have long recognized that altered properties during the growth were occasionally transmitted to the offspring. This was also the case with artificially altered properties such as dwarfism, flowering timing and plant stature, which were induced by a non-mutagenic chemical, 5-azacytidine and its derivatives. As these drugs are powerful inhibitors of DNA methylation in vivo, a close correlation between methylation and phenotypic expression was suggested. Subsequent studies showed that rice plants acquired disease resistance upon demethylation of the corresponding resistant gene, and that both resistant trait and hypomethylated status were inherited by the progeny up to nine generations. Whether or not the methylation pattern changes under natural condition was then questioned, and recent studies have indicated that it indeed naturally changes in response to environmental stresses. Whether or not the altered methylation pattern during the vegetative growth is heritable was also questioned, and studies on toadflax and rice affirmed the question, showing stable maintenance of hypermethylation in the former and hypomethylation in the latter for 250 and 10 years, respectively. The observation strongly suggested that acquired traits can be heritable as far as the acquired methylation pattern is stably transmitted. This concept is consistent with the Lamarck's theory of the inheritance of acquired traits, which therefore should be carefully reevaluated to reestablish his impaired reputation. PMID:20118668

  10. Kynurenines in CNS disease: regulation by inflammatory cytokines

    PubMed Central

    Campbell, Brian M.; Charych, Erik; Lee, Anna W.; Möller, Thomas

    2014-01-01

    The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders. PMID:24567701

  11. CNS depressant activities of roots of Coccos nucifera in mice.

    PubMed

    Pal, Dilipkumar; Sarkar, Abhijit; Gain, Sumanta; Jana, Sandip; Mandal, Soumit

    2011-01-01

    The ethanol extract of Coccos nucifera (EECN) was tested for possible pharmacological effects on experimental animals. EECN significantly potentiated the sleeping time of mice induced by standard hypnotics viz. pentobarbital sodium, diazepam, and meprobamate in a dose dependent manner. EECN showed significant analgesic properties as evidenced by the significant reduction in the number of writhes and stretches induced in mice by 1.2% acetic acid solution. It also potentiated analgesia induced by morphine and pethidine in mice. Pretreatment with EECN caused significant protection against pentylenetetrazole-induced convulsions. The behavioral studies on mice indicate CNS depressant activity of the ethanol extract of C. nucifera.

  12. The kynurenine pathway and parasitic infections that affect CNS function.

    PubMed

    Hunt, Nicholas H; Too, Lay Khoon; Khaw, Loke Tim; Guo, Jintao; Hee, Leia; Mitchell, Andrew J; Grau, Georges E; Ball, Helen J

    2017-01-01

    The kynurenine pathway of tryptophan metabolism has been implicated in brain function, immunoregulation, anti-microbial mechanisms and pregnancy. Some of these actions are due to depletion of tryptophan and others to the formation of biologically active metabolites. This review focuses on the roles of the kynurenine pathway in host responses during two parasitic diseases of major health and economic importance, malaria and toxoplasmosis, with an emphasis on their impacts on CNS function. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Proton therapy for the treatment of children with CNS malignancies.

    Pub