Science.gov

Sample records for acquired cns gene

  1. Clinical Applications Involving CNS Gene Transfer

    PubMed Central

    Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.

    2015-01-01

    Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921

  2. Gene therapy for CNS diseases - Krabbe disease.

    PubMed

    Rafi, Mohammad A

    2016-01-01

    This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  3. Pediatric acquired CNS demyelinating syndromes: Features associated with multiple sclerosis.

    PubMed

    Hintzen, Rogier Q; Dale, Russell C; Neuteboom, Rinze F; Mar, Soe; Banwell, Brenda

    2016-08-30

    Approximately one-third of children with an acquired demyelinating syndrome (ADS) will be diagnosed with multiple sclerosis (MS), either at onset according to the 2010 McDonald criteria, or on the basis of clinical or MRI evidence of relapsing disease, in the majority of patients within 2-4 years. ADS in adolescents, female patients, and patients with polyfocal deficits is associated with the highest likelihood of MS, while children with acute disseminated encephalomyelitis, those with documented preceding infection, and ADS presentation in young children more commonly portends a monophasic outcome. While pediatric MS associates with similar genetic risk alleles as have been documented in adult-onset MS, such associations are not diagnostically valuable at the individual level. The presence of antibodies directed against aquaporin-4 strongly supports a diagnosis of neuromyelitis optica, and should be assayed in children manifesting with severe optic neuritis, longitudinally extensive myelitis, or brainstem/hypothalamic syndromes. Further research will determine whether other antibody signatures are indicative of relapsing demyelination distinct from MS. PMID:27572864

  4. Targeting gene therapy vectors to CNS malignancies.

    PubMed

    Spear, M A; Herrlinger, U; Rainov, N; Pechan, P; Weissleder, R; Breakefield, X O

    1998-04-01

    Gene therapy offers significant advantages to the field of oncology with the addition of specifically and uniquely engineered mechanisms of halting malignant proliferation through cytotoxicity or reproductive arrest. To confer a true benefit to the therapeutic ratio (the relative toxicity to tumor compared to normal tissue) a vector or the transgene it carries must selectively affect or access tumor cells. Beyond the selective toxicities of many transgene products, which frequently parallel that of contemporary chemotherapeutic agents, lies the potential utility of targeting the vector. This review presents an overview of current and potential methods for designing vectors targeted to CNS malignancies through selective delivery, cell entry, transport or transcriptional regulation. The topic of delivery encompasses physical and pharmaceutic means of increasing the relative exposure of tumors to vector. Cell entry based methodologies are founded on increasing relative uptake of vector through the chemical or recombinant addition of ligand and antibody domains which selectively bind receptors expressed on target cells. Targeted transport involves the potential for using cells to selectively carry vectors or transgenes into tumors. Finally, promoter and enhancer systems are discussed which have potential for selectivity activating transcription to produce targeted transgene expression or vector propagation. PMID:9584951

  5. Immortalized neural progenitor cells for CNS gene transfer and repair.

    PubMed

    Martínez-Serrano, A; Björklund, A

    1997-11-01

    Immortalized multipotent neural stem and progenitor cells have emerged as a highly convenient source of tissue for genetic manipulation and ex vivo gene transfer to the CNS. Recent studies show that these cells, which can be maintained and genetically transduced as cell lines in culture, can survive, integrate and differentiate into both neurons and glia after transplantation to the intact or damaged brain. Progenitors engineered to secrete trophic factors, or to produce neurotransmitter-related or metabolic enzymes can be made to repopulate diseased or injured brain areas, thus providing a new potential therapeutic tool for the blockade of neurodegenerative processes and reversal of behavioural deficits in animal models of neurodegenerative diseases. With further technical improvements, the use of immortalized neural progenitors may bring us closer to the challenging goal of targeted and effective CNS repair.

  6. Gene therapy for CNS diseases – Krabbe disease

    PubMed Central

    Rafi, Mohammad A.

    2016-01-01

    Summary This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  7. Viral vectors and delivery strategies for CNS gene therapy

    PubMed Central

    Gray, Steven J; Woodard, Kenton T; Samulski, R Jude

    2015-01-01

    This review aims to provide a broad overview of the targets, challenges and potential for gene therapy in the CNS, citing specific examples. There are a broad range of therapeutic targets, with very different requirements for a suitable viral vector. By utilizing different vector tropisms, novel routes of administration and engineered promoter control, transgenes can be targeted to specific therapeutic applications. Viral vectors have proven efficacious in preclinical models for several disease applications, spurring several clinical trials. While the field has pushed the limits of existing adeno-associated virus-based vectors, a next generation of vectors based on rational engineering of viral capsids should expand the application of gene therapy to be more effective in specific therapeutic applications. PMID:22833965

  8. Evolution of the CNS myelin gene regulatory program.

    PubMed

    Li, Huiliang; Richardson, William D

    2016-06-15

    Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution.

  9. Acquired Antibiotic Resistance Genes: An Overview

    PubMed Central

    van Hoek, Angela H. A. M.; Mevius, Dik; Guerra, Beatriz; Mullany, Peter; Roberts, Adam Paul; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria. PMID:22046172

  10. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases

    PubMed Central

    Hocquemiller, Michaël; Giersch, Laura; Audrain, Mickael; Parker, Samantha; Cartier, Nathalie

    2016-01-01

    Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery. PMID:27267688

  11. Non-neuronal cardiac cholinergic system influences CNS via the vagus nerve to acquire a stress-refractory propensity.

    PubMed

    Oikawa, Shino; Kai, Yuko; Tsuda, Masayuki; Ohata, Hisayuki; Mano, Asuka; Mizoguchi, Naoko; Sugama, Shuei; Nemoto, Takahiro; Suzuki, Kenji; Kurabayashi, Atsushi; Muramoto, Kazuyo; Kaneda, Makoto; Kakinuma, Yoshihiko

    2016-11-01

    We previously developed cardiac ventricle-specific choline acetyltransferase (ChAT) gene-overexpressing transgenic mice (ChAT tgm), i.e. an in vivo model of the cardiac non-neuronal acetylcholine (NNA) system or non-neuronal cardiac cholinergic system (NNCCS). By using this murine model, we determined that this system was responsible for characteristics of resistance to ischaemia, or hypoxia, via the modulation of cellular energy metabolism and angiogenesis. In line with our previous study, neuronal ChAT-immunoreactivity in the ChAT tgm brains was not altered from that in the wild-type (WT) mice brains; in contrast, the ChAT tgm hearts were the organs with the highest expression of the ChAT transgene. ChAT tgm showed specific traits in a central nervous system (CNS) phenotype, including decreased response to restraint stress, less depressive-like and anxiety-like behaviours and anti-convulsive effects, all of which may benefit the heart. These phenotypes, induced by the activation of cardiac NNCCS, were dependent on the vagus nerve, because vagus nerve stimulation (VS) in WT mice also evoked phenotypes similar to those of ChAT tgm, which display higher vagus nerve discharge frequency; in contrast, lateral vagotomy attenuated these traits in ChAT tgm to levels observed in WT mice. Furthermore, ChAT tgm induced several biomarkers of VS responsible for anti-convulsive and anti-depressive-like effects. These results suggest that the augmentation of the NNCCS transduces an effective and beneficial signal to the afferent pathway, which mimics VS. Therefore, the present study supports our hypothesis that activation of the NNCCS modifies CNS to a more stress-resistant state through vagus nerve activity. PMID:27528769

  12. LIS1 Lissencephaly gene CNS expression: Relation to neuronal migration

    SciTech Connect

    Reiner, O. |; Gal-Gerber, O.; Sapir, T.

    1994-09-01

    Lis1 is the murine gene corresponding to human LIS1 gene involved in Miller-Dieker lissencephaly located on chromosome 17p13.3 as demonstrated by cDNA cloning, sequence analysis and genetic mapping. Lis1 expression was studied in developing mouse brain using in situ hybridization. At embryonic day 15, Lis1 expression was most prominently localized in the neuronal layer of the retina, the developing hippocampus, doral root ganglia, cranial ganglia and the thalamus. At postnatal day 5 a unique pattern of expression was detected in the developing cerebellum. Lis1 was expressed at high levels in the Purkinje cell layer when the granule cells were migrating through the Purkinje cell layer inwards. The expression of Lis1 in Purkinje cells in the adult is markedly reduced. Similarly, Lis1 was expressed in the ontogenetically older layers of the neocortex (layers 5 and 6) where younger neurons have to migrate through to settle in the superficial layers. Thus, at both sites a link between expression and neuronal migration was demonstrated. These studies on the expression pattern of Lis1 could be useful in understanding abnormalities in Miller-Dieker lissencephaly syndrome (MDS) patients.

  13. Location of gene expression in CNS using hybridization histochemistry.

    PubMed

    Penschow, J D; Haralambidis, J; Aldred, P; Tregear, G W; Coghlan, J P

    1986-01-01

    In this chapter we have placed heavy emphasis on our own recent work to lay out a workable recipe for hybridization histochemistry. Only a trickle of papers followed the initial benchmark excursions into in situ labeling of tissue sections. Our own entry into this field was as late starters in 1978, but since then a confluence of important questions and technical advances has served to make hybridization histochemistry much more attractive and universally applicable as a research tool. Hybridization histochemistry allows the location of anatomical sites of gene expression and viral replication with unique specificity and is able to solve some problems for which there is no other suitable technique available in the central nervous system. For example, allowing that peptides may enter neurons by a variety of mechanisms and then be christened neuroendocrine peptides, it has become a compelling issue to know which cells are manufacturing the peptide. Thus, much can be learned by the approach elegantly demonstrated by Gee et al., of locating mRNA and its peptide product within the same neuron. The intracellular location of specific mRNA for a neuropeptide in a cell body indicates a very high probability that the peptide is secreted as a neurotransmitter or a neuromodulator from sites associated with the cell body. Our introduction of the use of whole mouse sections and large sections of brain of large animals in hybridization histochemistry has great potential in locating hormonal, enzymatic, and growth factor gene expression. The technique has been applied most elegantly by others to developmental studies and for the examination of viral infection. Resolution down to a single cell in heterogeneous tissue was beyond the original expectation of the capability of 32P-labeled probes and single cells in sections shown in Fig. 2 is probably the limit of resolution with this isotope. There is no reason why other isotopes, fluorescent labels, or labels suitable for EM should

  14. Inflammatory effects of gene transfer into the CNS with defective HSV-1 vectors.

    PubMed

    Wood, M J; Byrnes, A P; Pfaff, D W; Rabkin, S D; Charlton, H M

    1994-09-01

    The use of viral vectors which infect and express genes in post-mitotic neurons is a potential strategy for the treatment of disorders affecting the central nervous system (CNS). However, the inflammatory consequences of such strategies have yet to be systematically examined. Preparations of non-replicating defective herpes simplex virus type 1 (HSV-1) amplicon vectors containing the lacZ gene were obtained by standard methods and stereotaxically injected into the adult rat dentate gyrus (DG). The consequent gene expression and inflammatory effects following microinjection were investigated. beta-Galactosidase activity was detected in neurons of the DG from 24 h to at least 12 days after vector injection. A strong inflammatory response developed within 2 days, characterized by diffuse up-regulation of major histocompatibility complex (MHC) class I antigens and the activation of microglia. After 4 days the recruitment of MHC class II+ cells, activated T lymphocytes and macrophages was detected. These features persisted for at least 31 days. Of importance was the finding of beta-galactosidase activity in a bilateral group of neurons in the supramammillary nuclei (SMN) of the posterior hypothalamus, known to send afferent projections to the DG. The onset of inflammation at this secondary site was delayed, but its cellular characteristics resembled those found at the primary site of injection. Thus, the use of preparations of defective HSV-1 vectors for gene transfer in the CNS has immunological implications both at primary and secondary sites within the CNS.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7584093

  15. Survival Advantage of Neonatal CNS Gene Transfer for Late Infantile Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Sondhi, Dolan; Peterson, Daniel A.; Edelstein, Andrew M.; del Fierro, Katrina; Hackett, Neil R.; Crystal, Ronald G.

    2009-01-01

    Summary Late infantile neuronal ceroid lipofuscinosis (LINCL), a fatal autosomal recessive neurodegenerative lysosomal storage disorder of childhood, is caused by mutations in the CLN2 gene, resulting in deficiency of the protein tripeptidyl peptidase I (TPP-I). We have previously shown that direct CNS administration of AAVrh.10hCLN2 to adult CLN2 knockout mice, a serotype rh.10 adeno-associated virus expressing the wild type CLN2 cDNA, will partially improve neurological function and survival. In this study, we explore the hypothesis that administration of AAVrh.10hCLN2 to the neonatal brain will significantly improve the results of AAVrh.10hCLN2 therapy. To assess this concept, AAVrh.10hCLN2 vector was administered directly to the CNS of CLN2 knockout mice at 2 days, 3 wk and 7 wk of age. While all treatment groups show a marked increase in total TPP-I activity over wild-type mice, neonatally treated mice displayed high levels of TPP-I activity in the CNS 1 yr after administration which was spread throughout the brain. Using behavioral markers, 2 day treated mice demonstrate marked improvement over 3 wk, 7 wk or untreated mice. Finally, neonatal administration of AAVrh.10hCLN2 was associated with markedly enhanced survival, with a median time of death 376 days for neonatal treated mice, 277 days for 3 wk treated mice, 168 days for 7 wk treated mice, and 121 days for untreated mice. These data suggest that neonatal treatment offers many unique advantages, and that early detection and treatment may be essential for maximal gene therapy for childhood lysosomal storage disorders affecting the CNS. PMID:18639872

  16. The Dural AV-Fistula (DAVF), the Most Frequent Acquired Vascular Malformation of the Central Nervous System (CNS).

    PubMed

    Wanke, I; Rüfenacht, D A

    2015-10-01

    Acquired arteriovenous malformations, such as is the case with dural arteriovenous fistulae (DAVF), are the consequence of a pathological new arterial ingrowth into venous spaces that reaches directly the venous lumen, without interposition of a capillary network, thereby creating an AV-shunt.The following concise text will provide elements in regards to diagnosis, indication for treatment discussion and choice of endovascular treatment (EVT) method. PMID:26308245

  17. Human-specific transcriptional regulation of CNS development genes by FOXP2.

    PubMed

    Konopka, Genevieve; Bomar, Jamee M; Winden, Kellen; Coppola, Giovanni; Jonsson, Zophonias O; Gao, Fuying; Peng, Sophia; Preuss, Todd M; Wohlschlegel, James A; Geschwind, Daniel H

    2009-11-12

    The signalling pathways controlling both the evolution and development of language in the human brain remain unknown. So far, the transcription factor FOXP2 (forkhead box P2) is the only gene implicated in Mendelian forms of human speech and language dysfunction. It has been proposed that the amino acid composition in the human variant of FOXP2 has undergone accelerated evolution, and this two-amino-acid change occurred around the time of language emergence in humans. However, this remains controversial, and whether the acquisition of these amino acids in human FOXP2 has any functional consequence in human neurons remains untested. Here we demonstrate that these two human-specific amino acids alter FOXP2 function by conferring differential transcriptional regulation in vitro. We extend these observations in vivo to human and chimpanzee brain, and use network analysis to identify novel relationships among the differentially expressed genes. These data provide experimental support for the functional relevance of changes in FOXP2 that occur on the human lineage, highlighting specific pathways with direct consequences for human brain development and disease in the central nervous system (CNS). Because FOXP2 has an important role in speech and language in humans, the identified targets may have a critical function in the development and evolution of language circuitry in humans.

  18. slc7a6os Gene Plays a Critical Role in Defined Areas of the Developing CNS in Zebrafish

    PubMed Central

    Benini, Anna; Cignarella, Francesca; Calvarini, Laura; Mantovanelli, Silvia; Giacopuzzi, Edoardo; Zizioli, Daniela; Borsani, Giuseppe

    2015-01-01

    The aim of this study is to shed light on the functional role of slc7a6os, a gene highly conserved in vertebrates. The Danio rerio slc7a6os gene encodes a protein of 326 amino acids with 46% identity to human SLC7A6OS and 14% to Saccharomyces cerevisiae polypeptide Iwr1. Yeast Iwr1 specifically binds RNA pol II, interacts with the basal transcription machinery and regulates the transcription of specific genes. In this study we investigated for the first time the biological role of SLC7A6OS in vertebrates. Zebrafish slc7a6os is a maternal gene that is expressed throughout development, with a prevalent localization in the developing central nervous system (CNS). The gene is also expressed, although at different levels, in various tissues of the adult fish. To determine the functional role of slc7a6os during zebrafish development, we knocked-down the gene by injecting a splice-blocking morpholino. At 24 hpf morphants show morphological defects in the CNS, particularly the interface between hindbrain and midbrain is not well-defined. At 28 hpf the morpholino injected embryos present an altered somite morphology and appear partially or completely immotile. At this stage the midbrain, hindbrain and cerebellum are compromised and not well defined compared with control embryos. The observed alterations persist at later developmental stages. Consistently, the expression pattern of two markers specifically expressed in the developing CNS, pax2a and neurod, is significantly altered in morphants. The co-injection of embryos with synthetic slc7a6os mRNA, rescues the morphant phenotype and restores the wild type expression pattern of pax2a and neurod. Our data suggest that slc7a6os might play a critical role in defined areas of the developing CNS in vertebrates, probably by regulating the expression of key genes. PMID:25803583

  19. Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila

    PubMed Central

    Urbach, Rolf; Jussen, David; Technau, Gerhard M.

    2016-01-01

    The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, partially, to suppression of neuroblast formation and induction of programmed cell death by the Hox gene Deformed. Neuroblast patterns are further influenced by segmental modifications in dorsoventral and proneural gene expression. With the previously published neuroblast maps and those presented here for the gnathal region, all neuroectodermal neuroblasts building the CNS of the fly (ventral nerve cord and brain, except optic lobes) are now individually identified (in total 2×567 neuroblasts). This allows, for the first time, a comparison of the characteristics of segmental populations of stem cells and to screen for serially homologous neuroblasts throughout the CNS. We show that approximately half of the deutocerebral and all of the tritocerebral (posterior brain) and gnathal neuroblasts, but none of the protocerebral (anterior brain) neuroblasts, display serial homology to neuroblasts in thoracic/abdominal neuromeres. Modifications in the molecular signature of serially homologous neuroblasts are likely to determine the segment-specific characteristics of their lineages. PMID:27095493

  20. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  1. Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development.

    PubMed

    Ahn, Youngwook; Mullan, Hillary E; Krumlauf, Robb

    2014-04-01

    Retinoic acid (RA) signaling plays an important role in determining the anterior boundary of Hox gene expression in the neural tube during embryogenesis. In particular, RA signaling is implicated in a rostral expansion of the neural expression domain of 5׳ Hoxb genes (Hoxb9-Hoxb5) in mice. However, underlying mechanisms for this gene regulation have remained elusive due to the lack of RA responsive element (RARE) in the 5׳ half of the HoxB cluster. To identify cis-regulatory elements required for the rostral expansion, we developed a recombineering technology to serially label multiple genes with different reporters in a single bacterial artificial chromosome (BAC) vector containing the mouse HoxB cluster. This allowed us to simultaneously monitor the expression of multiple genes. In contrast to plasmid-based reporters, transgenic BAC reporters faithfully recapitulated endogenous gene expression patterns of the Hoxb genes including the rostral expansion. Combined inactivation of two RAREs, DE-RARE and ENE-RARE, in the BAC completely abolished the rostral expansion of the 5׳ Hoxb genes. Knock-out of endogenous DE-RARE lead to significantly reduced expression of multiple Hoxb genes and attenuated Hox gene response to exogenous RA treatment in utero. Regulatory potential of DE-RARE was further demonstrated by its ability to anteriorize 5׳ Hoxa gene expression in the neural tube when inserted into a HoxA BAC reporter. Our data demonstrate that multiple RAREs cooperate to remotely regulate 5׳ Hoxb genes during CNS development, providing a new insight into the mechanisms for gene regulation within the Hox clusters.

  2. Automated conserved non-coding sequence (CNS) discovery reveals differences in gene content and promoter evolution among grasses

    PubMed Central

    Turco, Gina; Schnable, James C.; Pedersen, Brent; Freeling, Michael

    2013-01-01

    Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by >12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize. PMID:23874343

  3. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  4. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila

    PubMed Central

    Becker, Henrike; Renner, Simone; Technau, Gerhard M.; Berger, Christian

    2016-01-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  5. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila.

    PubMed

    Becker, Henrike; Renner, Simone; Technau, Gerhard M; Berger, Christian

    2016-03-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  6. Circadian rhythms in the CNS and peripheral clock disorders: human sleep disorders and clock genes.

    PubMed

    Ebisawa, Takashi

    2007-02-01

    Genetic analyses of circadian rhythm sleep disorders (CRSD), such as familial advanced sleep phase syndrome (ASPS) and delayed sleep phase syndrome (DSPS), and morningness-eveningness revealed the relationship between variations in clock genes and diurnal change in human behaviors. Variations such as T3111C in the Clock gene are reportedly associated with morningness-eveningness. Two of the pedigrees of familial ASPS (FASPS) are caused by mutations in clock genes: the S662G mutation in the Per2 gene or the T44A mutation in the casein kinase 1 delta (CK1delta) gene, although these mutations are not found in other pedigrees of FASPS. As for DSPS, a missense variation in the Per3 gene is identified as a risk factor, while the one in the CK1epsilon gene is thought to be protective. These findings suggest that further, as yet unidentified, gene variations are involved in human circadian activity. Many of the CRSD-relevant variations reported to date seem to affect the phosphorylation status of the clock proteins. A recent study using mathematical models of circadian rhythm generation has provided a new insight into the role of phosphorylation in the molecular mechanisms of these disorders. PMID:17299246

  7. Cloning and Molecular Characterization of Porcine β-casein Gene (CNS2).

    PubMed

    Lee, Sang Mi; Kim, Hye-Min; Moon, Seung Ju; Kang, Man-Jong

    2012-03-01

    The production of therapeutic proteins from transgenic animals is one of the most important successes of animal biotechnology. Milk is presently the most mature system for production of therapeutic proteins from a transgenic animal. Specifically, β-casein is a major component of cow, goat and sheep milk, and its promoter has been used to regulate the expression of transgenic genes in the mammary gland of transgenic animals. Here, we cloned the porcine β-casein gene and analyzed the transcriptional activity of the promoter and intron 1 region of the porcine β-casein gene. Sequence inspection of the 5'-flanking region revealed potential DNA elements including SRY, CdxA, AML-a, GATA-3, GATA-1 and C/EBP β. In addition, the first intron of the porcine β-casein gene contained the transcriptional enhancers Oct-1, SRY, YY1, C/EBP β, and AP-1, as well as the retroviral TATA box. We estimated the transcriptional activity for the 5'-proximal region with or without intron 1 of the porcine β-casein gene in HC11 cells stimulated with lactogenic hormones. High transcriptional activity was obtained for the 5'-proximal region with intron 1 of the porcine β-casein gene. The β-casein gene containing the mutant TATA box (CATAAAA) was also cloned from another individual pig. Promoter activity of the luciferase vector containing the mutant TATA box was weaker than the same vector containing the normal TATA box. Taken together, these findings suggest that the transcription of porcine β-casein gene is regulated by lactogenic hormone via intron 1 and promoter containing a mutant TATA box (CATAAAA) has poor porcine β-casein gene activity.

  8. Gene transfer engineering for astrocyte-specific silencing in the CNS.

    PubMed

    Merienne, N; Delzor, A; Viret, A; Dufour, N; Rey, M; Hantraye, P; Déglon, N

    2015-10-01

    Cell-type-specific gene silencing is critical to understand cell functions in normal and pathological conditions, in particular in the brain where strong cellular heterogeneity exists. Molecular engineering of lentiviral vectors has been widely used to express genes of interest specifically in neurons or astrocytes. However, we show that these strategies are not suitable for astrocyte-specific gene silencing due to the processing of small hairpin RNA (shRNA) in a cell. Here we develop an indirect method based on a tetracycline-regulated system to fully restrict shRNA expression to astrocytes. The combination of Mokola-G envelope pseudotyping, glutamine synthetase promoter and two distinct microRNA target sequences provides a powerful tool for efficient and cell-type-specific gene silencing in the central nervous system. We anticipate our vector will be a potent and versatile system to improve the targeting of cell populations for fundamental as well as therapeutic applications. PMID:26109254

  9. Gene transfer engineering for astrocyte-specific silencing in the CNS.

    PubMed

    Merienne, N; Delzor, A; Viret, A; Dufour, N; Rey, M; Hantraye, P; Déglon, N

    2015-10-01

    Cell-type-specific gene silencing is critical to understand cell functions in normal and pathological conditions, in particular in the brain where strong cellular heterogeneity exists. Molecular engineering of lentiviral vectors has been widely used to express genes of interest specifically in neurons or astrocytes. However, we show that these strategies are not suitable for astrocyte-specific gene silencing due to the processing of small hairpin RNA (shRNA) in a cell. Here we develop an indirect method based on a tetracycline-regulated system to fully restrict shRNA expression to astrocytes. The combination of Mokola-G envelope pseudotyping, glutamine synthetase promoter and two distinct microRNA target sequences provides a powerful tool for efficient and cell-type-specific gene silencing in the central nervous system. We anticipate our vector will be a potent and versatile system to improve the targeting of cell populations for fundamental as well as therapeutic applications.

  10. The LIM class homeobox gene lim5: implied role in CNS patterning in Xenopus and zebrafish.

    PubMed

    Toyama, R; Curtiss, P E; Otani, H; Kimura, M; Dawid, I B; Taira, M

    1995-08-01

    LIM homeobox genes are characterized by encoding proteins in which two cysteine-rich LIM domains are associated with a homeodomain. We report the isolation of a gene, named Xlim-5 in Xenopus and lim5 in the zebrafish, that is highly similar in sequence but quite distinct in expression pattern from the previously described Xlim-1/lim1 gene. In both species studied the lim5 gene is expressed in the entire ectoderm in the early gastrula embryo. The Xlim-5 gene is activated in a cell autonomous manner in ectodermal cells, and this activation is suppressed by the mesoderm inducer activin. During neurulation, expression of the lim5 gene in both the frog and fish embryo is rapidly restricted to an anterior region in the developing neural plate/keel. In the 2-day Xenopus and 24-hr zebrafish embryo, this region becomes more sharply defined, forming a strongly lim5-expressing domain in the diencephalon anterior to the midbrain-forebrain boundary. In addition, regions of less intense lim5 expression are seen in the zebrafish embryo in parts of the telencephalon, in the anterior diencephalon coincident with the postoptic commissure, and in restricted regions of the midbrain, hindbrain, and spinal cord. Expression in ventral forebrain is abolished from the 5-somite stage onward in cyclops mutant fish. These results imply a role for lim5 in the patterning of the nervous system, in particular in the early specification of the diencephalon.

  11. Vitamin B12 Synthesis and Salvage Pathways Were Acquired by Horizontal Gene Transfer to the Thermotogales

    PubMed Central

    Swithers, Kristen S.; Petrus, Amanda K.; Secinaro, Michael A.; Nesbø, Camilla L.; Gogarten, J. Peter; Noll, Kenneth M.; Butzin, Nicholas C.

    2012-01-01

    The availability of genome sequences of Thermotogales species from across the order allows an examination of the evolutionary origins of phenotypic characteristics in this lineage. Several studies have shown that the Thermotogales have acquired large numbers of genes from distantly related lineages, particularly Firmicutes and Archaea. Here, we report the finding that some Thermotogales acquired the ability to synthesize vitamin B12 by acquiring the requisite genes from these distant lineages. Thermosipho species, uniquely among the Thermotogales, contain genes that encode the means to synthesize vitamin B12 de novo from glutamate. These genes are split into two gene clusters: the corrinoid synthesis gene cluster, that is unique to the Thermosipho and the cobinamide salvage gene cluster. The corrinoid synthesis cluster was acquired from the Firmicutes lineage, whereas the salvage pathway is an amalgam of bacteria- and archaea-derived proteins. The cobinamide salvage gene cluster has a patchy distribution among Thermotogales species, and ancestral state reconstruction suggests that this pathway was present in the common Thermotogales ancestor. We show that Thermosipho africanus can grow in the absence of vitamin B12, so its de novo pathway is functional. We detected vitamin B12 in the extracts of T. africanus cells to verify the synthetic pathway. Genes in T. africanus with apparent B12 riboswitches were found to be down-regulated in the presence of vitamin B12 consistent with their roles in B12 synthesis and cobinamide salvage. PMID:22798452

  12. CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome)

    PubMed Central

    Motas, Sandra; Haurigot, Virginia; Garcia, Miguel; Marcó, Sara; Ribera, Albert; Roca, Carles; Sánchez, Víctor; Molas, Maria; Bertolin, Joan; Maggioni, Luca; León, Xavier; Ruberte, Jesús; Bosch, Fatima

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-Ids) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9-Ids-treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment. PMID:27699273

  13. CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome)

    PubMed Central

    Motas, Sandra; Haurigot, Virginia; Garcia, Miguel; Marcó, Sara; Ribera, Albert; Roca, Carles; Sánchez, Víctor; Molas, Maria; Bertolin, Joan; Maggioni, Luca; León, Xavier; Ruberte, Jesús; Bosch, Fatima

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-Ids) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9-Ids-treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment.

  14. A recently transferred cluster of bacterial genes in Trichomonas vaginalis - lateral gene transfer and the fate of acquired genes

    PubMed Central

    2014-01-01

    Background Lateral Gene Transfer (LGT) has recently gained recognition as an important contributor to some eukaryote proteomes, but the mechanisms of acquisition and fixation in eukaryotic genomes are still uncertain. A previously defined norm for LGTs in microbial eukaryotes states that the majority are genes involved in metabolism, the LGTs are typically localized one by one, surrounded by vertically inherited genes on the chromosome, and phylogenetics shows that a broad collection of bacterial lineages have contributed to the transferome. Results A unique 34 kbp long fragment with 27 clustered genes (TvLF) of prokaryote origin was identified in the sequenced genome of the protozoan parasite Trichomonas vaginalis. Using a PCR based approach we confirmed the presence of the orthologous fragment in four additional T. vaginalis strains. Detailed sequence analyses unambiguously suggest that TvLF is the result of one single, recent LGT event. The proposed donor is a close relative to the firmicute bacterium Peptoniphilus harei. High nucleotide sequence similarity between T. vaginalis strains, as well as to P. harei, and the absence of homologs in other Trichomonas species, suggests that the transfer event took place after the radiation of the genus Trichomonas. Some genes have undergone pseudogenization and degradation, indicating that they may not be retained in the future. Functional annotations reveal that genes involved in informational processes are particularly prone to degradation. Conclusions We conclude that, although the majority of eukaryote LGTs are single gene occurrences, they may be acquired in clusters of several genes that are subsequently cleansed of evolutionarily less advantageous genes. PMID:24898731

  15. Found and Lost: The Fates of Horizontally Acquired Genes in Arthropod-Symbiotic Spiroplasma

    PubMed Central

    Lo, Wen-Sui; Gasparich, Gail E.; Kuo, Chih-Horng

    2015-01-01

    Horizontal gene transfer (HGT) is an important mechanism that contributed to biological diversity, particularly in bacteria. Through acquisition of novel genes, the recipient cell may change its ecological preference and the process could promote speciation. In this study, we determined the complete genome sequence of two Spiroplasma species for comparative analyses and inferred the putative gene gains and losses. Although most Spiroplasma species are symbionts of terrestrial insects, Spiroplasma eriocheiris has evolved to be a lethal pathogen of freshwater crustaceans. We found that approximately 7% of the genes in this genome may have originated from HGT and these genes expanded the metabolic capacity of this organism. Through comparison with the closely related Spiroplasma atrichopogonis, as well as other more divergent lineages, our results indicated that these HGT events could be traced back to the most recent common ancestor of these two species. However, most of these horizontally acquired genes have been pseudogenized in S. atrichopogonis, suggesting that they did not contribute to the fitness of this lineage that maintained the association with terrestrial insects. Thus, accumulation of small deletions that disrupted these foreign genes was not countered by natural selection. On the other hand, the long-term survival of these horizontally acquired genes in the S. eriocheiris genome hinted that they might play a role in the ecological shift of this species. Finally, the implications of these findings and the conflicts among gene content, 16S rRNA gene sequencing, and serological typing, are discussed in light of defining bacterial species. PMID:26254485

  16. Partial Correction of the CNS Lysosomal Storage Defect in a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis by Neonatal CNS Administration of an Adeno-Associated Virus Serotype rh.10 Vector Expressing the Human CLN3 Gene

    PubMed Central

    Sondhi, Dolan; Scott, Emma C.; Chen, Alvin; Hackett, Neil R.; Wong, Andrew M.S.; Kubiak, Agnieszka; Nelvagal, Hemanth R.; Pearse, Yewande; Cotman, Susan L.; Cooper, Jonathan D.

    2014-01-01

    Abstract Juvenile neuronal ceroid lipofuscinosis (JNCL or CLN3 disease) is an autosomal recessive lysosomal storage disease resulting from mutations in the CLN3 gene that encodes a lysosomal membrane protein. The disease primarily affects the brain with widespread intralysosomal accumulation of autofluorescent material and fibrillary gliosis, as well as the loss of specific neuronal populations. As an experimental treatment for the CNS manifestations of JNCL, we have developed a serotype rh.10 adeno-associated virus vector expressing the human CLN3 cDNA (AAVrh.10hCLN3). We hypothesized that administration of AAVrh.10hCLN3 to the Cln3Δex7/8 knock-in mouse model of JNCL would reverse the lysosomal storage defect, as well as have a therapeutic effect on gliosis and neuron loss. Newborn Cln3Δex7/8 mice were administered 3×1010 genome copies of AAVrh.10hCLN3 to the brain, with control groups including untreated Cln3Δex7/8 mice and wild-type littermate mice. After 18 months, CLN3 transgene expression was detected in various locations throughout the brain, particularly in the hippocampus and deep anterior cortical regions. Changes in the CNS neuronal lysosomal accumulation of storage material were assessed by immunodetection of subunit C of ATP synthase, luxol fast blue staining, and periodic acid-Schiff staining. For all parameters, Cln3Δex7/8 mice exhibited abnormal lysosomal accumulation, but AAVrh.10hCLN3 administration resulted in significant reductions in storage material burden. There was also a significant decrease in gliosis in AAVrh.10hCLN3-treated Cln3Δex7/8 mice, and a trend toward improved neuron counts, compared with their untreated counterparts. These data demonstrate that AAVrh.10 delivery of a wild-type cDNA to the CNS is not harmful and instead provides a partial correction of the neurological lysosomal storage defect of a disease caused by a lysosomal membrane protein, indicating that this may be an effective therapeutic strategy for JNCL and

  17. Discovery of functional genes for systemic acquired resistance in Arabidopsis thaliana through integrated data mining.

    PubMed

    Pan, Youlian; Pylatuik, Jeffrey D; Ouyang, Junjun; Famili, A Fazel; Fobert, Pierre R

    2004-12-01

    Various data mining techniques combined with sequence motif information in the promoter region of genes were applied to discover functional genes that are involved in the defense mechanism of systemic acquired resistance (SAR) in Arabidopsis thaliana. A series of K-Means clustering with difference-in-shape as distance measure was initially applied. A stability measure was used to validate this clustering process. A decision tree algorithm with the discover-and-mask technique was used to identify a group of most informative genes. Appearance and abundance of various transcription factor binding sites in the promoter region of the genes were studied. Through the combination of these techniques, we were able to identify 24 candidate genes involved in the SAR defense mechanism. The candidate genes fell into 2 highly resolved categories, each category showing significantly unique profiles of regulatory elements in their promoter regions. This study demonstrates the strength of such integration methods and suggests a broader application of this approach.

  18. Nkx2.2:Cre knock-in mouse line: a novel tool for pancreas- and CNS-specific gene deletion.

    PubMed

    Balderes, Dina A; Magnuson, Mark A; Sussel, Lori

    2013-12-01

    Nkx2.2 is a homeodomain-containing transcriptional regulator necessary for the appropriate differentiation of ventral neuronal populations in the spinal cord and hindbrain, and endocrine cell populations in the pancreas and intestine. In each tissue, Nkx2.2 inactivation leads to reciprocal cell fate alterations. To confirm the cell fate changes are due to respecification of Nkx2.2-expressing progenitors and to provide a novel tool for lineage tracing in the pancreas and CNS, we generated an Nkx2.2:Cre mouse line by knocking in a Cre-EGFP cassette into the Nkx2.2 genomic locus and inactivating endogenous Nkx2.2. The R26R-CAG-LSL-tdTomato reporter was used to monitor the specificity and efficiency of Nkx2.2:Cre activity; the tomato reporter faithfully recapitulated endogenous Nkx2.2 expression and could be detected as early as embryonic day (e) 9.25 in the developing CNS and was initiated shortly thereafter at e9.5 in the pancreas. Lineage analyses in the CNS confirmed the cell populations thought to be derived from Nkx2.2-expressing progenitor domains. Furthermore, lineage studies verified Nkx2.2 expression in the earliest pancreatic progenitors that give rise to all cell types of the pancreas; however they also revealed more robust Cre activity in the dorsal versus ventral pancreas. Thus, the Nkx2.2:Cre line provides a novel tool for gene manipulations in the CNS and pancreas.

  19. STARs in the CNS.

    PubMed

    Ehrmann, Ingrid; Fort, Philippe; Elliott, David J

    2016-08-15

    STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system). PMID:27528753

  20. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy.

    PubMed

    Meneghini, Vasco; Lattanzi, Annalisa; Tiradani, Luigi; Bravo, Gabriele; Morena, Francesco; Sanvito, Francesca; Calabria, Andrea; Bringas, John; Fisher-Perkins, Jeanne M; Dufour, Jason P; Baker, Kate C; Doglioni, Claudio; Montini, Eugenio; Bunnell, Bruce A; Bankiewicz, Krystof; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2016-05-02

    Metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD or Krabbe disease) are severe neurodegenerative lysosomal storage diseases (LSD) caused by arylsulfatase A (ARSA) and galactosylceramidase (GALC) deficiency, respectively. Our previous studies established lentiviral gene therapy (GT) as a rapid and effective intervention to provide pervasive supply of therapeutic lysosomal enzymes in CNS tissues of MLD and GLD mice. Here, we investigated whether this strategy is similarly effective in juvenile non-human primates (NHP). To provide proof of principle for tolerability and biological efficacy of the strategy, we established a comprehensive study in normal NHP delivering a clinically relevant lentiviral vector encoding for the human ARSA transgene. Then, we injected a lentiviral vector coding for the human GALC transgene in Krabbe-affected rhesus macaques, evaluating for the first time the therapeutic potential of lentiviral GT in this unique LSD model. We showed favorable safety profile and consistent pattern of LV transduction and enzyme biodistribution in the two models, supporting the robustness of the proposed GT platform. We documented moderate inflammation at the injection sites, mild immune response to vector particles in few treated animals, no indication of immune response against transgenic products, and no molecular evidence of insertional genotoxicity. Efficient gene transfer in neurons, astrocytes, and oligodendrocytes close to the injection sites resulted in robust production and extensive spreading of transgenic enzymes in the whole CNS and in CSF, leading to supraphysiological ARSA activity in normal NHP and close to physiological GALC activity in the Krabbe NHP, in which biological efficacy was associated with preliminary indication of therapeutic benefit. These results support the rationale for the clinical translation of intracerebral lentiviral GT to address CNS pathology in MLD, GLD, and other neurodegenerative LSD.

  1. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy.

    PubMed

    Meneghini, Vasco; Lattanzi, Annalisa; Tiradani, Luigi; Bravo, Gabriele; Morena, Francesco; Sanvito, Francesca; Calabria, Andrea; Bringas, John; Fisher-Perkins, Jeanne M; Dufour, Jason P; Baker, Kate C; Doglioni, Claudio; Montini, Eugenio; Bunnell, Bruce A; Bankiewicz, Krystof; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2016-01-01

    Metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD or Krabbe disease) are severe neurodegenerative lysosomal storage diseases (LSD) caused by arylsulfatase A (ARSA) and galactosylceramidase (GALC) deficiency, respectively. Our previous studies established lentiviral gene therapy (GT) as a rapid and effective intervention to provide pervasive supply of therapeutic lysosomal enzymes in CNS tissues of MLD and GLD mice. Here, we investigated whether this strategy is similarly effective in juvenile non-human primates (NHP). To provide proof of principle for tolerability and biological efficacy of the strategy, we established a comprehensive study in normal NHP delivering a clinically relevant lentiviral vector encoding for the human ARSA transgene. Then, we injected a lentiviral vector coding for the human GALC transgene in Krabbe-affected rhesus macaques, evaluating for the first time the therapeutic potential of lentiviral GT in this unique LSD model. We showed favorable safety profile and consistent pattern of LV transduction and enzyme biodistribution in the two models, supporting the robustness of the proposed GT platform. We documented moderate inflammation at the injection sites, mild immune response to vector particles in few treated animals, no indication of immune response against transgenic products, and no molecular evidence of insertional genotoxicity. Efficient gene transfer in neurons, astrocytes, and oligodendrocytes close to the injection sites resulted in robust production and extensive spreading of transgenic enzymes in the whole CNS and in CSF, leading to supraphysiological ARSA activity in normal NHP and close to physiological GALC activity in the Krabbe NHP, in which biological efficacy was associated with preliminary indication of therapeutic benefit. These results support the rationale for the clinical translation of intracerebral lentiviral GT to address CNS pathology in MLD, GLD, and other neurodegenerative LSD. PMID

  2. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications.

    PubMed

    Salnikova, Lyubov E; Smelaya, Tamara V; Golubev, Arkadiy M; Rubanovich, Alexander V; Moroz, Viktor V

    2013-11-01

    This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.

  3. Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

    PubMed

    Weber, Marlen; Apostolova, Galina; Widera, Darius; Mittelbronn, Michel; Dechant, Georg; Kaltschmidt, Barbara; Rohrer, Hermann

    2015-02-01

    Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage.

  4. Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution

    PubMed Central

    Llorente, Briardo; de Souza, Flavio S. J.; Soto, Gabriela; Meyer, Cristian; Alonso, Guillermo D.; Flawiá, Mirtha M.; Bravo-Almonacid, Fernando; Ayub, Nicolás D.; Rodríguez-Concepción, Manuel

    2016-01-01

    The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution. PMID:26750147

  5. Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution.

    PubMed

    Llorente, Briardo; de Souza, Flavio S J; Soto, Gabriela; Meyer, Cristian; Alonso, Guillermo D; Flawiá, Mirtha M; Bravo-Almonacid, Fernando; Ayub, Nicolás D; Rodríguez-Concepción, Manuel

    2016-01-11

    The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.

  6. The Zebrafish Homologue of the Human DYT1 Dystonia Gene Is Widely Expressed in CNS Neurons but Non-Essential for Early Motor System Development

    PubMed Central

    Sager, Jonathan J.; Torres, Gonzalo E.; Burton, Edward A.

    2012-01-01

    DYT1 dystonia is caused by mutation of the TOR1A gene, resulting in the loss of a single glutamic acid residue near the carboxyl terminal of TorsinA. The neuronal functions perturbed by TorsinA[ΔE] are a major unresolved issue in understanding the pathophysiology of dystonia, presenting a critical roadblock to developing effective treatments. We identified and characterized the zebrafish homologue of TOR1A, as a first step towards elucidating the functions of TorsinA in neurons, in vivo, using the genetically-manipulable zebrafish model. The zebrafish genome was found to contain a single alternatively-spliced tor1 gene, derived from a common ancestral locus shared with the dual TOR1A and TOR1B paralogues found in tertrapods. tor1 was expressed ubiquitously during early embryonic development and in multiple adult tissues, including the CNS. The 2.1 kb tor1 mRNA encodes Torsin1, which is 59% identical and 78% homologous to human TorsinA. Torsin1 was expressed as major 45 kDa and minor 47 kDa glycoproteins, within the cytoplasm of neurons and neuropil throughout the CNS. Similar to previous findings relating to human TorsinA, mutations of the ATP hydrolysis domain of Torsin1 resulted in relocalization of the protein in cultured cells from the endoplasmic reticulum to the nuclear envelope. Zebrafish embryos lacking tor1 during early development did not show impaired viability, overt morphological abnormalities, alterations in motor behavior, or developmental defects in the dopaminergic system. Torsin1 is thus non-essential for early development of the motor system, suggesting that important CNS functions may occur later in development, consistent with the critical time window in late childhood when dystonia symptoms usually emerge in DYT1 patients. The similarities between Torsin1 and human TorsinA in domain organization, expression pattern, and cellular localization suggest that the zebrafish will provide a useful model to understand the neuronal functions of Torsins

  7. Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/transposase hybrid vector.

    PubMed

    Bowers, William J; Mastrangelo, Michael A; Howard, Darlene F; Southerland, Hilary A; Maguire-Zeiss, Kathleen A; Federoff, Howard J

    2006-03-01

    The ability to modify genetically in utero the precursors of neuronal lineage contributing to multiple postmitotic cell types in the adult central nervous system would provide a means to evaluate strategies to ameliorate conditions affecting cellular patterning, metabolism, or survival. The herpes simplex virus (HSV)-derived amplicon, a vector devoid of viral genes and with the largest known payload capacity, normally exists episomally within nuclei of transduced cells, thus precluding conveyance during mitosis. Herein, we modify the Tc1-like Sleeping Beauty (SB) transposon system to create an integrating amplicon vector platform wherein provision of transposase in trans effectively catalyzes integration of a transgenomic segment. Cotransduction with a Rous sarcoma virus promoter-driven beta-galactosidase-neomycin (betageo) fusion flanked by SB terminal repeats (HSVT-betageo) and a second expressing the SB transposase gene under HSV immediate-early 4/5 gene promoter control (HSVsb) resulted in integration and extension of expression duration. Most notably, in utero intraventricular application led to extensive transgene expression within neuronal precursors and their derivatives without attendant adverse consequences, suggesting this new platform could be used to evaluate prenatally the function of gene products in neuronal lineages and evaluate therapeutic strategies for correction of genetic abnormalities affecting the developing CNS. PMID:16412694

  8. Systemic acquired resistance delays race shifts to major resistance genes in bell pepper.

    PubMed

    Romero, A M; Ritchie, D F

    2004-12-01

    ABSTRACT The lack of durability of host plant disease resistance is a major problem in disease control. Genotype-specific resistance that involves major resistance (R) genes is especially prone to failure. The compatible (i.e., disease) host-pathogen interaction with systemic acquired resistance (SAR) has been studied extensively, but the incompatible (i.e., resistant) interaction less so. Using the pepper-bacterial spot (causal agent, Xanthomonas axonopodis pv. vesicatoria) pathosystem, we examined the effect of SAR in reducing the occurrence of race-change mutants that defeat R genes in laboratory, greenhouse, and field experiments. Pepper plants carrying one or more R genes were sprayed with the plant defense activator acibenzolar-S-methyl (ASM) and challenged with incompatible strains of the pathogen. In the greenhouse, disease lesions first were observed 3 weeks after inoculation. ASM-treated plants carrying a major R gene had significantly fewer lesions caused by both the incompatible (i.e., hypersensitive) and compatible (i.e., disease) responses than occurred on nonsprayed plants. Bacteria isolated from the disease lesions were confirmed to be race-change mutants. In field experiments, there was a delay in the detection of race-change mutants and a reduction in disease severity. Decreased disease severity was associated with a reduction in the number of race-change mutants and the suppression of disease caused by the race-change mutants. This suggests a possible mechanism related to a decrease in the pathogen population size, which subsequently reduces the number of race-change mutants for the selection pressure of R genes. Thus, inducers of SAR are potentially useful for increasing the durability of genotype-specific resistance conferred by major R genes.

  9. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization

    PubMed Central

    Kazi, Misha I.; Conrado, Aaron R.; Mey, Alexandra R.; Payne, Shelley M.; Davies, Bryan W.

    2016-01-01

    The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in V. cholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxT, ompT, ompU and ctxA. Here, we determine ToxR’s genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae’s major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in V. cholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for V. cholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters. PMID:27070545

  10. TOPP in the CNS

    NASA Astrophysics Data System (ADS)

    Smart, R. L.; Lattanzi, M. G.; Jahreiss, H.; Bucciarelli, B.; Massone, G.

    2006-08-01

    Introduction: We present the Torino Observatory Parallax Program (TOPP) results for 22 candidates for the Catalog of Nearby Stars (CNS). Methods: Observations were made with the Torino OTAP 1.05m telescope over the period 1996-2001. Results: For the 22 objects examined 12 are within the CNS limit. Discussion: We discuss at length the objects out side the CNS limits which are either misclassified or objects with incorrect trigonometric parallaxes.

  11. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector.

    PubMed

    Murlidharan, Giridhar; Sakamoto, Kensuke; Rao, Lavanya; Corriher, Travis; Wang, Dan; Gao, Guangping; Sullivan, Patrick; Asokan, Aravind

    2016-01-01

    Gene therapy using recombinant adeno-associated viral (AAV) vectors is emerging as a promising approach to treat central nervous system disorders such as Spinal muscular atrophy, Batten, Parkinson and Alzheimer disease amongst others. A critical remaining challenge for central nervous system-targeted gene therapy, silencing or gene editing is to limit potential vector dose-related toxicity in off-target cells and organs. Here, we characterize a lab-derived AAV chimeric (AAV2g9), which displays favorable central nervous system attributes derived from both parental counterparts, AAV2 and AAV9. This synthetic AAV strain displays preferential, robust, and widespread neuronal transduction within the brain and decreased glial tropism. Importantly, we observed minimal systemic leakage, decreased sequestration and gene transfer in off-target organs with AAV2g9, when administered into the cerebrospinal fluid. A single intracranial injection of AAV2g9 vectors encoding guide RNAs targeting the schizophrenia risk gene MIR137 (encoding MIR137) in CRISPR/Cas9 knockin mice resulted in brain-specific gene deletion with no detectable events in the liver. This engineered AAV vector is a promising platform for treating neurological disorders through gene therapy, silencing or editing modalities. PMID:27434683

  12. Heroin self-administration: II. CNS gene expression following withdrawal and cue-induced drug-seeking behavior.

    PubMed

    Kuntz, Kara L; Patel, Kruti M; Grigson, Patricia S; Freeman, Willard M; Vrana, Kent E

    2008-09-01

    In the accompanying paper, we described incubation of heroin-seeking behavior in rats following 14 days of abstinence. To gain an understanding of genomic changes that accompany this behavioral observation, we measured the expression of genes previously reported to respond to drugs of abuse. Specifically, after 1 or 14 days of abstinence, mRNA expression was measured for 11 genes in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) immediately following a single 90 min extinction session. Additionally, the role of contingency was examined in control rats that received yoked, response-independent heroin administration. Gene expression was quantified by real-time quantitative PCR. Expression of five genes (Arc, EGR1, EGR2, Fos, and Homer1b/c) was changed in the mPFC. EGR1 and EGR2 expression was increased following the 90 min extinction session in a contingency-specific manner and this increase persisted through the 14 days of abstinence. Fos expression was also increased after 1 and 14 days of abstinence, but at 14 days this increase was response-independent (i.e., it occurred in both the rats with a history of heroin self-administration and in the yoked controls). Arc expression increased following the extinction session only in rats with a history of heroin self-administration and only when tested following 1, but not 14, days of abstinence. Homer 1 b/c decreased after 14 days of enforced abstinence in rats that received non-contingent heroin. Expression of only a single gene (EGR2) was increased in the NAc. These data demonstrate that behavioral incubation is coincident with altered levels of specific transcripts and that this response is contingently-specific. Moreover, EGR1 and EGR2 are specifically upregulated in self-administering rats following extinction and this finding persists through 14 days of abstinence, suggesting that these genes are particularly associated with the incubation phenomenon. These latter observations of persistent changes

  13. CNS development: an overview

    NASA Technical Reports Server (NTRS)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  14. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury*

    PubMed Central

    Coulson-Thomas, Vivien J.; Lauer, Mark E.; Soleman, Sara; Zhao, Chao; Hascall, Vincent C.; Day, Anthony J.; Fawcett, James W.

    2016-01-01

    Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP+ and CD44+ astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6−/− mice present a reduced number of GFAP+ astrocytes when compared with the littermate TSG-6+/− mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration. PMID:27435674

  15. Staging Primary CNS Lymphoma

    MedlinePlus

    ... large vein near the heart. Having a weakened immune system may increase the risk of developing primary CNS ... immunodeficiency syndrome (AIDS) or other disorders of the immune system or who have had a kidney transplant . For ...

  16. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  17. ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons

    PubMed Central

    May, Melanie; Hwang, Kyu-Seok; Miles, Judith; Williams, Charlie; Niranjan, Tejasvi; Kahler, Stephen G.; Chiurazzi, Pietro; Steindl, Katharina; Van Der Spek, Peter J.; Swagemakers, Sigrid; Mueller, Jennifer; Stefl, Shannon; Alexov, Emil; Ryu, Jeong-Im; Choi, Jung-Hwa; Kim, Hyun-Taek; Tarpey, Patrick; Neri, Giovanni; Holloway, Lynda; Skinner, Cindy; Stevenson, Roger E.; Dorsky, Richard I.; Wang, Tao; Schwartz, Charles E.; Kim, Cheol-Hee

    2015-01-01

    Miles–Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits. PMID:26056227

  18. Multiple horizontally acquired genes from fungal and prokaryotic donors encode cellulolytic enzymes in the bdelloid rotifer Adineta ricciae.

    PubMed

    Szydlowski, L; Boschetti, C; Crisp, A; Barbosa, E G G; Tunnacliffe, A

    2015-07-25

    The bdelloid rotifer, Adineta ricciae, an anhydrobiotic microinvertebrate, exhibits a high rate of horizontal gene transfer (HGT), with as much as 10% of its transcriptome being of foreign origin. Approximately 80% of these foreign transcripts are involved in metabolic processes, and therefore bdelloids represent a useful model for assessing the contribution of HGT to biochemical diversity. To validate this concept, we focused on cellulose digestion, an unusual activity in animals, which is represented by at least 16 genes encoding cellulolytic enzymes in A. ricciae. These genes have been acquired from a variety of different donor organisms among the bacteria and fungi, demonstrating that bdelloids use diverse genetic resources to construct a novel biochemical pathway. A variable complement of the cellulolytic gene set was found in five other bdelloid species, indicating a dynamic process of gene acquisition, duplication and loss during bdelloid evolution. For example, in A. ricciae, gene duplications have led to the formation of three copies of a gene encoding a GH45 family glycoside hydrolase, at least one of which encodes a functional enzyme; all three of these gene copies are present in a close relative, Adineta vaga, but only one copy was found in each of four Rotaria species. Furthermore, analysis of expression levels of the cellulolytic genes suggests that a bacterial-origin cellobiase is upregulated upon desiccation. In summary, bdelloid rotifers have apparently developed cellulolytic functions by the acquisition and domestication of multiple foreign genes.

  19. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer

    PubMed Central

    Pauchet, Yannick; Heckel, David G.

    2013-01-01

    The primary plant cell wall comprises the most abundant polysaccharides on the Earth and represents a rich source of energy for organisms which have evolved the ability to digest them. Enzymes able to degrade plant cell wall polysaccharides are widely distributed in micro-organisms but are generally absent in animals, although their presence in insects, especially phytophagous beetles from the superfamilies Chrysomeloidea and Curculionoidea, has recently begun to be appreciated. The observed patchy distribution of endogenous genes encoding these enzymes in animals has raised questions about their evolutionary origins. Recent evidence suggests that endogenous plant cell wall degrading enzymes-encoding genes have been acquired by animals through a mechanism known as horizontal gene transfer (HGT). HGT describes how genetic material is moved by means other than vertical inheritance from a parent to an offspring. Here, we provide evidence that the mustard leaf beetle, Phaedon cochleariae, possesses in its genome genes encoding active xylanases from the glycoside hydrolase family 11 (GH11). We also provide evidence that these genes were originally acquired by P. cochleariae from a species of gammaproteobacteria through HGT. This represents the first example of the presence of genes from the GH11 family in animals. PMID:23698014

  20. Distribution of acquired AmpC β-lactamase genes in Sydney, Australia.

    PubMed

    Tagg, Kaitlin A; Ginn, Andrew N; Jiang, Xiuhong; Ellem, Justin; Partridge, Sally R; Iredell, Jonathan R

    2015-09-01

    Investigation of plasmid-borne AmpC β-lactamase genes in Escherichia coli and Klebsiella spp. revealed blaCMY-2-like genes predominantly in E. coli and blaDHA genes equally distributed between both species. This distribution remained stable over time, but blaACT/MIR-like genes, initially common in Klebsiella spp., were not identified in more recent isolates. PMID:26099646

  1. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat.

    PubMed Central

    Görlach, J; Volrath, S; Knauf-Beiter, G; Hengy, G; Beckhove, U; Kogel, K H; Oostendorp, M; Staub, T; Ward, E; Kessmann, H; Ryals, J

    1996-01-01

    Systemic acquired resistance is an important component of the disease resistance repertoire of plants. In this study, a novel synthetic chemical, benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), was shown to induce acquired resistance in wheat. BTH protected wheat systemically against powdery mildew infection by affecting multiple steps in the life cycle of the pathogen. The onset of resistance was accompanied by the induction of a number of newly described wheat chemically induced (WCI) genes, including genes encoding a lipoxygenase and a sulfur-rich protein. With respect to both timing and effectiveness, a tight correlation existed between the onset of resistance and the induction of the WCI genes. Compared with other plant activators, such as 2,6-dichloroisonicotinic acid and salicylic acid, BTH was the most potent inducer of both resistance and gene induction. BTH is being developed commercially as a novel type of plant protection compound that works by inducing the plant's inherent disease resistance mechanisms. PMID:8624439

  2. A Complete Set of Flagellar Genes Acquired by Horizontal Transfer Coexists with the Endogenous Flagellar System in Rhodobacter sphaeroides▿ †

    PubMed Central

    Poggio, Sebastian; Abreu-Goodger, Cei; Fabela, Salvador; Osorio, Aurora; Dreyfus, Georges; Vinuesa, Pablo; Camarena, Laura

    2007-01-01

    Bacteria swim in liquid environments by means of a complex rotating structure known as the flagellum. Approximately 40 proteins are required for the assembly and functionality of this structure. Rhodobacter sphaeroides has two flagellar systems. One of these systems has been shown to be functional and is required for the synthesis of the well-characterized single subpolar flagellum, while the other was found only after the genome sequence of this bacterium was completed. In this work we found that the second flagellar system of R. sphaeroides can be expressed and produces a functional flagellum. In many bacteria with two flagellar systems, one is required for swimming, while the other allows movement in denser environments by producing a large number of flagella over the entire cell surface. In contrast, the second flagellar system of R. sphaeroides produces polar flagella that are required for swimming. Expression of the second set of flagellar genes seems to be positively regulated under anaerobic growth conditions. Phylogenic analysis suggests that the flagellar system that was initially characterized was in fact acquired by horizontal transfer from a γ-proteobacterium, while the second flagellar system contains the native genes. Interestingly, other α-proteobacteria closely related to R. sphaeroides have also acquired a set of flagellar genes similar to the set found in R. sphaeroides, suggesting that a common ancestor received this gene cluster. PMID:17293429

  3. Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa

    PubMed Central

    San Millan, Alvaro; Toll-Riera, Macarena; Qi, Qin; MacLean, R. Craig

    2015-01-01

    Horizontal gene transfer (HGT) plays a key role in bacterial evolution, especially with respect to antibiotic resistance. Fitness costs associated with mobile genetic elements (MGEs) are thought to constrain HGT, but our understanding of these costs remains fragmentary, making it difficult to predict the success of HGT events. Here we use the interaction between P. aeruginosa and a costly plasmid (pNUK73) to investigate the molecular basis of the cost of HGT. Using RNA-Seq, we show that the acquisition of pNUK73 results in a profound alteration of the transcriptional profile of chromosomal genes. Mutations that inactivate two genes encoded on chromosomally integrated MGEs recover these fitness costs and transcriptional changes by decreasing the expression of the pNUK73 replication gene. Our study demonstrates that interactions between MGEs can compromise bacterial fitness via altered gene expression, and we argue that conflicts between mobile elements impose a general constraint on evolution by HGT. PMID:25897488

  4. Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation.

    PubMed

    Sun, He; Lang, Zhihong; Zhu, Li; Huang, Dafang

    2012-10-01

    The advantages of gene 'stacking' or 'pyramiding' are obvious in genetically modified (GM) crops, and several different multi-transgene-stacking methods are available. Using linker peptides for multiple gene transformation is considered to be a good method to meet a variety of needs. In our experiment, the Bt cry1Ah gene, which encodes the insect-resistance protein, and the mG ( 2 ) -epsps gene, which encodes the glyphosate-tolerance protein, were connected by a 2A or LP4/2A linker. Linker 2A is a peptide from the foot-and-mouth disease virus (FMDV) that has self-cleavage activity. LP4 is a peptide from Raphanus sativus seeds that has a recognition site and is cleaved by a protease. LP4/2A is a hybrid peptide that contains the first 9 amino acids of LP4 and 20 amino acids from 2A. We used the linker peptide to construct four coordinated expression vectors: pHAG, pHLAG, pGAH and pGLAH. Two single gene expression vectors, pSAh and pSmG(2), were used as controls. The six expression vectors and the pCAMBIA2301 vector were transferred into tobacco by Agrobacterium tumefaciens-mediated transformation, and 529 transformants were obtained. Molecular detection and bioassay detection data demonstrated that the transgenic tobaccos possessed good pest resistance and glyphosate tolerance. The two genes in the fusion vector were expressed simultaneously. The plants with the genes linked by the LP4/2A peptide showed better pest resistance and glyphosate tolerance than the plants with the genes linked by 2A. The expression level of the two genes linked by LP4/2A was not significantly different from the single gene vector. Key message The expression level of the two genes linked by LP4/2A was higher than those linked by 2A and was not significantly different from the single gene vector.

  5. Forced expression of PDX-1 gene makes hepatoma cells to acquire glucose-responsive insulin secretion while maintaining hepatic characteristic.

    PubMed

    Hashimoto, H; Higuchi, Y; Kawai, K

    2015-02-28

    Evidence shows that forced expression of the PDX1 gene converts hepatoma cells, mouse liver epithelial cells (MLECs) and HepaRG cells, into insulin—producing cells, β—cells, or islets of Langerhans. However, no reports have investigated the characteristics of mouse or human hepatocytes introduced with the PDX1 gene over prolonged observation periods. In this study, we immunohistologically and molecularly investigated the alternative processes induced by PDX1 gene introduction in mouse and human hepatocytes over prolonged observation periods using immunocytochemistry, immunofluorescence, polymerase chain reaction (PCR), Western blotting, and flow cytometry (FCM) analysis. Immunocytochemical and immunofluorescent observations showed that MLECs and HepaRG cells on 2 and 21 days after introduction of the PDX1 gene comprised cells double—positive for insulin and albumin. Additionally, they showed MAFA expression and glucose—responsive insulin secretion with glucokinase expression. However mouse embryonic fibroblasts introduced with PDX1—GFP could not acquire glucose—responsive insulin secretion and glucokinase expression. Subsequently, we hypothesized that the number of albumin—positive MLECs and HepaRG cells would decrease after introduction of PDX1 due to the conversion of MLECs and HepaRG cells into insulin—producing cells. However, FCM analysis indicated that the number of albumin—positive MLECs and HepaRG cells was not altered by the introduction of PDX1. We thought that MLECs and HepaRG cells introduced with the PDX1 gene could acquire a functional insulin secretory capacity without conversion to β—cells, or islets of Langerhans, and the acquisition could need glucokinase expression.

  6. Against All Odds: Trehalose-6-Phosphate Synthase and Trehalase Genes in the Bdelloid Rotifer Adineta vaga Were Acquired by Horizontal Gene Transfer and Are Upregulated during Desiccation

    PubMed Central

    Hespeels, Boris; Li, Xiang; Flot, Jean-François; Pigneur, Lise-Marie; Malaisse, Jeremy; Da Silva, Corinne; Van Doninck, Karine

    2015-01-01

    The disaccharide sugar trehalose is essential for desiccation resistance in most metazoans that survive dryness; however, neither trehalose nor the enzymes involved in its metabolism have ever been detected in bdelloid rotifers despite their extreme resistance to desiccation. Here we screened the genome of the bdelloid rotifer Adineta vaga for genes involved in trehalose metabolism. We discovered a total of four putative trehalose-6-phosphate synthase (TPS) and seven putative trehalase (TRE) gene copies in the genome of this ameiotic organism; however, no trehalose-6-phosphate phosphatase (TPP) gene or domain was detected. The four TPS copies of A. vaga appear more closely related to plant and fungi proteins, as well as to some protists, whereas the seven TRE copies fall in bacterial clades. Therefore, A. vaga likely acquired its trehalose biosynthesis and hydrolysis genes by horizontal gene transfers. Nearly all residues important for substrate binding in the predicted TPS domains are highly conserved, supporting the hypothesis that several copies of the genes might be functional. Besides, RNAseq library screening showed that trehalase genes were highly expressed compared to TPS genes, explaining probably why trehalose had not been detected in previous studies of bdelloids. A strong overexpression of their TPS genes was observed when bdelloids enter desiccation, suggesting a possible signaling role of trehalose-6-phosphate or trehalose in this process. PMID:26161530

  7. Against All Odds: Trehalose-6-Phosphate Synthase and Trehalase Genes in the Bdelloid Rotifer Adineta vaga Were Acquired by Horizontal Gene Transfer and Are Upregulated during Desiccation.

    PubMed

    Hespeels, Boris; Li, Xiang; Flot, Jean-François; Pigneur, Lise-Marie; Malaisse, Jeremy; Da Silva, Corinne; Van Doninck, Karine

    2015-01-01

    The disaccharide sugar trehalose is essential for desiccation resistance in most metazoans that survive dryness; however, neither trehalose nor the enzymes involved in its metabolism have ever been detected in bdelloid rotifers despite their extreme resistance to desiccation. Here we screened the genome of the bdelloid rotifer Adineta vaga for genes involved in trehalose metabolism. We discovered a total of four putative trehalose-6-phosphate synthase (TPS) and seven putative trehalase (TRE) gene copies in the genome of this ameiotic organism; however, no trehalose-6-phosphate phosphatase (TPP) gene or domain was detected. The four TPS copies of A. vaga appear more closely related to plant and fungi proteins, as well as to some protists, whereas the seven TRE copies fall in bacterial clades. Therefore, A. vaga likely acquired its trehalose biosynthesis and hydrolysis genes by horizontal gene transfers. Nearly all residues important for substrate binding in the predicted TPS domains are highly conserved, supporting the hypothesis that several copies of the genes might be functional. Besides, RNAseq library screening showed that trehalase genes were highly expressed compared to TPS genes, explaining probably why trehalose had not been detected in previous studies of bdelloids. A strong overexpression of their TPS genes was observed when bdelloids enter desiccation, suggesting a possible signaling role of trehalose-6-phosphate or trehalose in this process.

  8. Comparative Genomics Suggests That the Human Pathogenic Fungus Pneumocystis jirovecii Acquired Obligate Biotrophy through Gene Loss

    PubMed Central

    Cissé, Ousmane H.; Pagni, Marco; Hauser, Philippe M.

    2014-01-01

    Pneumocystis jirovecii is a fungal parasite that colonizes specifically humans and turns into an opportunistic pathogen in immunodeficient individuals. The fungus is able to reproduce extracellularly in host lungs without eliciting massive cellular death. The molecular mechanisms that govern this process are poorly understood, in part because of the lack of an in vitro culture system for Pneumocystis spp. In this study, we explored the origin and evolution of the putative biotrophy of P. jirovecii through comparative genomics and reconstruction of ancestral gene repertoires. We used the maximum parsimony method and genomes of related fungi of the Taphrinomycotina subphylum. Our results suggest that the last common ancestor of Pneumocystis spp. lost 2,324 genes in relation to the acquisition of obligate biotrophy. These losses may result from neutral drift and affect the biosyntheses of amino acids and thiamine, the assimilation of inorganic nitrogen and sulfur, and the catabolism of purines. In addition, P. jirovecii shows a reduced panel of lytic proteases and has lost the RNA interference machinery, which might contribute to its genome plasticity. Together with other characteristics, that is, a sex life cycle within the host, the absence of massive destruction of host cells, difficult culturing, and the lack of virulence factors, these gene losses constitute a unique combination of characteristics which are hallmarks of both obligate biotrophs and animal parasites. These findings suggest that Pneumocystis spp. should be considered as the first described obligate biotrophs of animals, whose evolution has been marked by gene losses. PMID:25062922

  9. CNS Diseases and Uveitis

    PubMed Central

    Allegri, Pia; Rissotto, Roberto; Herbort, Carl P.; Murialdo, Ugo

    2011-01-01

    A number of inflammatory, infectious, neoplastic and idiopathic disorders affect the eye and the central nervous system (CNS) concurrently or at different time frames. These conditions pose a diagnostic challenge to the clinician since they may present with similar ocular and neurological manifestations. The purpose of this review is to describe major neurological syndromes including multiple sclerosis, Vogt-Koyanagi-Harada disease, other autoimmune syndromes, and several infectious diseases which may affect the eye. This article may serve as a guide for the diagnosis and treatment of such disorders. It should be noted that these conditions have been viewed from a neurologist’s perspective thereby neurologic involvement is stressed. PMID:22454751

  10. Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens

    PubMed Central

    Nätt, Daniel; Lindqvist, Niclas; Stranneheim, Henrik; Lundeberg, Joakim; Torjesen, Peter A.; Jensen, Per

    2009-01-01

    Background Environmental challenges may affect both the exposed individuals and their offspring. We investigated possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring. Methodology/Principal Findings Parents were raised in an unpredictable (UL) or in predictable diurnal light rhythm (PL, 12∶12 h light∶dark). In a foraging test, UL birds pecked more at freely available, rather than at hidden and more attractive food, compared to birds from the PL group. Female offspring of UL birds, raised in predictable light conditions without parental contact, showed a similar foraging behavior, differing from offspring of PL birds. Furthermore, adult offspring of UL birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better, and were heavier than offspring of PL parents. Using cDNA microarrays, we found that the differential brain gene expression caused by the challenge was mirrored in the offspring. In particular, several immunoglobulin genes seemed to be affected similarly in both UL parents and their offspring. Estradiol levels were significantly higher in egg yolk from UL birds, suggesting one possible mechanism for these effects. Conclusions/Significance Our findings suggest that unpredictable food access caused seemingly adaptive responses in feeding behavior, which may have been transmitted to the offspring by means of epigenetic mechanisms, including regulation of immune genes. This may have prepared the offspring for coping with an unpredictable environment. PMID:19636381

  11. Disruption of an Enterococcus faecium Species-Specific Gene, a Homologue of Acquired Macrolide Resistance Genes of Staphylococci, Is Associated with an Increase in Macrolide Susceptibility

    PubMed Central

    Singh, Kavindra V.; Malathum, Kumthorn; Murray, Barbara E.

    2001-01-01

    The complete sequence (1,479 nucleotides) of msrC, part of which was recently reported by others using a different strain, was determined. This gene was found in 233 of 233 isolates of Enterococcus faecium but in none of 265 other enterococci. Disruption of msrC was associated with a two- to eightfold decrease in MICs of erythromycin azithromycin, tylosin, and quinupristin, suggesting that it may explain in part the apparent greater intrinsic resistance to macrolides of isolates of E. faecium relative to many streptococci. This endogenous, species-specific gene of E. faecium is 53% identical to msr(A), suggesting that it may be a remote progenitor of the acquired macrolide resistance gene found in some isolates of staphylococci. PMID:11120975

  12. Gene clusters FDB1 and FDB2 in Fusarium verticillioides were acquired through multiple horizontal gene transfer events

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The corn pathogen Fusarium verticillioides is of significant importance because of its deleterious effects on plant and animal health and on the quality of their products due to mycotoxin contamination. The fungus is known to metabolize antimicrobial compounds produced by corn using genes within t...

  13. ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance.

    PubMed

    Liu, Liang; Zuo, Lian Fu; Guo, Jian Wen

    2014-04-01

    Resistance to chemotherapeutic agents is the main reason for treatment failure in patients with cancer. The primary mechanism of multidrug resistance (MDR) is the overexpression of drug efflux transporters, including ATP‑binding cassette transporter G2 (ABCG2). To the best of our knowledge, the MDR mechanisms of esophageal cancer have not been described. An adriamycin (ADM)-resistant subline, Eca109/ADM, was generated from the Eca109 esophageal cancer cell line by a stepwise selection in ADM from 0.002 to 0.02 ng/µl. The resulting subline, designated Eca109/ADM, revealed a 3.29-fold resistance against ADM compared with the Eca109 cell line. The ABCG2 gene expression in the Eca109/ADM cells was increased compared with that of the Eca109 cells. The cellular properties of the Eca109/ADM cells were detected by reverse transcription polymerase chain reaction (RT-PCR), flow cytometry and western blotting. The ABCG2 expression levels were detected by RT-PCR and flow cytometry, and the drug efflux effect was detected by flow cytometry. The present study detected the correlation between ABCG2 and the multidrug resistance of esophageal cancer. ABCG2 gene expression and the drug efflux effect of the Eca109/ADM cells were increased compared with those of the Eca109 cells. Collectively, the results of this study indicated that the overexpression of ABCG2 in the Eca109/ADM cells resulted in drug efflux, which may be responsible for the development of esophageal cancer MDR.

  14. CNS development under altered gravity

    NASA Astrophysics Data System (ADS)

    Sajdel-Sulkowska, E.

    The future of space exploration depends on a solid understanding of the developmental process under microgravity. In furtherance of this goal, the present studies assessed the impact of altered gravity on the developing rat cerebellum. Specifically, the expression of selected cerebellar proteins and corresponding genes was compared in rat neonates exposed to hypergravity (1.5G) from embryonic day (E) 11 to postnatal day (P) 6 and P9 against their expression in rat neonates developing under normal gravity. Cerebellar proteins were analyzed by quantitative western blots of cerebellar homogenates; RNA analysis was performed in the same samples using ribonuclease protection assay (RPA). Densitometric analysis of western blots suggested 21% to 31% reduction in neuronal cell adhesion molecule (NCAM) and 31% to 45% reduction in glial acidic protein (GFAP). RPA results suggested a small reduction (<10%) in NCAM mRNA and a moderate reduction (<25%) in GFAP mRNA. These data indicate that the expression of selected cerebellar proteins may be affected at both the transcriptional and translational/postranslational level. Furthermore, these results suggest that changes in expression of selected genes may underlie hypergravity's effect on the developing CNS. (Supported by NASA grant NCC2-1042 and BWH Psychiatry Fund).

  15. Acquired obesity and poor physical fitness impair expression of genes of mitochondrial oxidative phosphorylation in monozygotic twins discordant for obesity.

    PubMed

    Mustelin, Linda; Pietiläinen, Kirsi H; Rissanen, Aila; Sovijärvi, Anssi R; Piirilä, Päivi; Naukkarinen, Jussi; Peltonen, Leena; Kaprio, Jaakko; Yki-Järvinen, Hannele

    2008-07-01

    Defects in expression of genes of oxidative phosphorylation in mitochondria have been suggested to be a key pathophysiological feature in familial insulin resistance. We examined whether such defects can arise from lifestyle-related factors alone. Fourteen obesity-discordant (BMI difference 5.2 +/- 1.8 kg/m(2)) and 10 concordant (1.0 +/- 0.7 kg/m(2)) monozygotic (MZ) twin pairs aged 24-27 yr were identified among 658 MZ pairs in the population-based FinnTwin16 study. Whole body insulin sensitivity was measured using the euglycemic hyperinsulinemic clamp technique. Transcript profiles of mitochondrial genes were compared using microarray data of fat biopsies from discordant twins. Body composition of twins was determined using DEXA and maximal oxygen uptake (Vo(2max)) and working capacity (W(max)) using a bicycle ergometer exercise test with gas exchange analysis. The obese cotwins had lower insulin sensitivity than their nonobese counterparts (M value 6.1 +/- 2.0 vs. 9.2 +/- 3.2 mg x kg LBM(-1) x min(-1), P < 0.01). Transcript levels of genes involved in the oxidative phosphorylation pathway (GO:0006119) in adipose tissue were lower (P < 0.05) in the obese compared with the nonobese cotwins. The obese cotwins were also less fit, as measured by Vo(2max) (50.6 +/- 6.5 vs. 54.2 +/- 6.4 ml x kg LBM(-1) x min(-1), for obese vs. nonobese, P < 0.05), W(max) (3.9 +/- 0.5 vs. 4.4 +/- 0.7 W/kg LBM, P < 0.01) and also less active, by the Baecke leisure time physical activity index (2.8 +/- 0.5 vs. 3.3 +/- 0.6, P < 0.01). This implies that acquired poor physical fitness is associated with defective expression of the oxidative pathway components in adipose tissue mitochondria.

  16. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    PubMed

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  17. Acquired obesity and poor physical fitness impair expression of genes of mitochondrial oxidative phosphorylation in monozygotic twins discordant for obesity

    PubMed Central

    Mustelin, Linda; Pietiläinen, Kirsi H.; Rissanen, Aila; Sovijärvi, Anssi R.; Piirilä, Päivi; Naukkarinen, Jussi; Peltonen, Leena; Kaprio, Jaakko; Yki-Järvinen, Hannele

    2008-01-01

    Defects in expression of genes of oxidative phosphorylation in mitochondria have been suggested to be a key pathophysiological feature in familial insulin resistance. We examined whether such defects can arise from lifestyle-related factors alone. Fourteen obesity-discordant (BMI difference 5.2 ± 1.8 kg/m2) and 10 concordant (1.0 ± 0.7 kg/m2) monozygotic (MZ) twin pairs aged 24–27 yr were identified among 658 MZ pairs in the population-based FinnTwin16 study. Whole body insulin sensitivity was measured using the euglycemic hyperinsulinemic clamp technique. Transcript profiles of mitochondrial genes were compared using microarray data of fat biopsies from discordant twins. Body composition of twins was determined using DEXA and maximal oxygen uptake (V̇o2max) and working capacity (Wmax) using a bicycle ergometer exercise test with gas exchange analysis. The obese cotwins had lower insulin sensitivity than their nonobese counterparts (M value 6.1 ± 2.0 vs. 9.2 ± 3.2 mg·kg LBM−1·min−1, P < 0.01). Transcript levels of genes involved in the oxidative phosphorylation pathway (GO:0006119) in adipose tissue were lower (P < 0.05) in the obese compared with the nonobese cotwins. The obese cotwins were also less fit, as measured by V̇o2max (50.6 ± 6.5 vs. 54.2 ± 6.4 ml·kg LBM−1·min−1, for obese vs. nonobese, P < 0.05), Wmax (3.9 ± 0.5 vs. 4.4 ± 0.7 W/kg LBM, P < 0.01) and also less active, by the Baecke leisure time physical activity index (2.8 ± 0.5 vs. 3.3 ± 0.6, P < 0.01). This implies that acquired poor physical fitness is associated with defective expression of the oxidative pathway components in adipose tissue mitochondria. PMID:18460597

  18. Transgenic Petunia with the Iron(III)-Phytosiderophore Transporter Gene Acquires Tolerance to Iron Deficiency in Alkaline Environments

    PubMed Central

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2′-deoxymugineic acid complex, free 2′-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2′-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to

  19. Potential and limitations of a gamma 34.5 mutant of herpes simplex 1 as a gene therapy vector in the CNS.

    PubMed

    McMenamin, M M; Byrnes, A P; Pike, F G; Charlton, H M; Coffin, R S; Latchman, D S; Wood, M J

    1998-05-01

    Direct injection of viral vectors into the central nervous system has become a valuable technique for exploring the function of neurological systems and is a potential therapy for neural disease. To this end a number of herpes simplex virus (HSV)-derived vectors are currently being developed for the introduction of foreign DNA into the brain. In this study a non-neurovirulent HSV 17+ mutant, variant 1716, deleted in the gamma 34.5 gene and expressing the marker gene lacZ under the control of the latency-associated transcripts promoter was injected stereotactically into the central nervous system of two strains of rat (AO and PVG). We show (1) that transgene expression was low at the site of injection, in the striatum, at all times studied (12 h to 30 days after injection); (2) dramatically more transgene expression was observed at distant sites which contain neurons projecting directly to the site of injection, with maximal expression at these sites being at 1-2 days; (3) immunostaining with a polyclonal anti-HSV antibody and with an antibody which detects a 65 kDa HSV DNA binding protein (the product of the UL42 gene of the virus) demonstrated that viral gene products could be detected at the injection site as early as 12 h and up to 1 week after injection. Moreover these could also be detected at several secondary sites not all of which have direct connections with the injection site. These findings suggest that gamma 34.5 negative vectors have potential for gene transfer but may require further attenuation to limit viral antigen expression before they can be used successfully for gene therapy in the brain. PMID:9797863

  20. Perispinal Delivery of CNS Drugs.

    PubMed

    Tobinick, Edward Lewis

    2016-06-01

    Perispinal injection is a novel emerging method of drug delivery to the central nervous system (CNS). Physiological barriers prevent macromolecules from efficiently penetrating into the CNS after systemic administration. Perispinal injection is designed to use the cerebrospinal venous system (CSVS) to enhance delivery of drugs to the CNS. It delivers a substance into the anatomic area posterior to the ligamentum flavum, an anatomic region drained by the external vertebral venous plexus (EVVP), a division of the CSVS. Blood within the EVVP communicates with the deeper venous plexuses of the CSVS. The anatomical basis for this method originates in the detailed studies of the CSVS published in 1819 by the French anatomist Gilbert Breschet. By the turn of the century, Breschet's findings were nearly forgotten, until rediscovered by American anatomist Oscar Batson in 1940. Batson confirmed the unique, linear, bidirectional and retrograde flow of blood between the spinal and cerebral divisions of the CSVS, made possible by the absence of venous valves. Recently, additional supporting evidence was discovered in the publications of American neurologist Corning. Analysis suggests that Corning's famous first use of cocaine for spinal anesthesia in 1885 was in fact based on Breschet's anatomical findings, and accomplished by perispinal injection. The therapeutic potential of perispinal injection for CNS disorders is highlighted by the rapid neurological improvement in patients with otherwise intractable neuroinflammatory disorders that may ensue following perispinal etanercept administration. Perispinal delivery merits intense investigation as a new method of enhanced delivery of macromolecules to the CNS and related structures.

  1. Targeting anti-HIV drugs to the CNS

    PubMed Central

    Rao, Kavitha S; Ghorpade, Anuja; Labhasetwar, Vinod

    2009-01-01

    The development of antiretroviral drugs over the past couple of decades has been commendable due to the identification of several new targets within the overall Human Immunodeficiency Virus (HIV) replication cycle. However, complete control over HIV/Acquired Immune Deficiency Syndrome is yet to be achieved. This is because the current anti-HIV drugs, although effective in reducing plasma viral levels, cannot eradicate the virus completely from the body. This occurs because most anti-HIV drugs do not accumulate in certain cellular and anatomical reservoirs including the Central Nervous System (CNS). Insufficient delivery of anti-HIV drugs to the CNS is attributed to their low permeability across the blood-brain-barrier (BBB). Hence, low and sustained viral replication within the CNS continues even during prolonged antiretroviral drug therapy. Therefore, developing novel approaches that are targeted at enhancing the CNS delivery of anti-HIV drugs are required. In this review, we discussed the potential of nanocarriers and the role of cell-penetrating peptides in enhancing drug delivery to the CNS. Such drug delivery approaches could also lead to higher drug delivery to other cellular and anatomical reservoirs where the virus harbor than with conventional treatment, thus providing an effective therapy to eliminate the virus completely from the body. PMID:19566446

  2. Non-Viral, Lipid-Mediated DNA and mRNA Gene Therapy of the Central Nervous System (CNS): Chemical-Based Transfection.

    PubMed

    Hecker, James G

    2016-01-01

    Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Cationic lipid-mediated delivery is an alternative to viral vector-mediated gene delivery. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, because transit across the nuclear membrane is not necessary and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Here, we describe techniques for cationic lipid-mediated delivery of nucleic acids encoding reporter genes in a variety of cell lines. We describe optimized formulations and transfection procedures that we previously assessed by bioluminescence and flow cytometry. RNA transfection demonstrates increased efficiency relative to DNA transfection in non-dividing cells. Delivery of mRNA results in onset of expression within 1 h after transfection and a peak in expression 5-7 h after transfection. Duration of expression in eukaryotic cells after mRNA transcript delivery depends on multiple factors, including transcript stability, protein turnover, and cell type. Delivery of DNA results in onset of expression within 5 h after transfection, a peak in expression 24-48 h after transfection, and a return to baseline that can be as long as several weeks after transfection. In vitro results are consistent with our in vivo delivery results, techniques for which are described as well. RNA delivery is suitable for short-term transient gene expression due to its rapid onset, short duration of expression and greater efficiency, particularly in non-dividing cells, while the longer duration and

  3. Transforming Growth Factor-β1 T869C Gene Polymorphism Is Associated with Acquired Sick Sinus Syndrome via Linking a Higher Serum Protein Level

    PubMed Central

    Chen, Jan-Yow; Liu, Jiung-Hsiun; Wu, Hong-Dar Isaac; Lin, Kuo-Hung; Chang, Kuan-Cheng; Liou, Ying-Ming

    2016-01-01

    Background Familial sick sinus syndrome is associated with gene mutations and dysfunction of ion channels. In contrast, degenerative fibrosis of the sinus node tissue plays an important role in the pathogenesis of acquired sick sinus syndrome. There is a close relationship between transforming growth factor-β1 mediated cardiac fibrosis and acquired arrhythmia. It is of interest to examine whether transforming growth factor-β1 is involved in the pathogenesis of acquired sick sinus syndrome. Methods Overall, 110 patients with acquired SSS and 137 age/gender-matched controls were screened for transforming growth factor-β1 and cardiac sodium channel gene polymorphisms using gene sequencing or restriction fragment length polymorphism methods. An enzyme-linked immunosorbent assay was used to determine the serum level of transforming growth factor-β1. Results Two transforming growth factor-β1 gene polymorphisms (C-509T and T+869C) and one cardiac sodium channel gene polymorphism (H588R) have been identified. The C-dominant CC/CT genotype frequency of T869C was significantly higher in acquired sick sinus syndrome patients than in controls (OR 2.09, 95% CI 1.16–3.75, P = 0.01). Consistently, the level of serum transforming growth factor-β1 was also significantly greater in acquired sick sinus syndrome group than in controls (5.3±3.4 ng/ml vs. 3.7±2.4 ng/ml, P = 0.01). In addition, the CC/CT genotypes showed a higher transforming growth factor-β1 serum level than the TT genotype (4.25 ± 2.50 ng/ml vs. 2.71± 1.76 ng/ml, P = 0.028) in controls. Conclusion Transforming growth factor-β1 T869C polymorphism, correlated with high serum transforming growth factor-β1 levels, is associated with susceptibility to acquired sick sinus syndrome. PMID:27380173

  4. Basic Concepts of CNS Development.

    ERIC Educational Resources Information Center

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  5. Pathology of CNS parasitic infections.

    PubMed

    Pittella, José Eymard Homem

    2013-01-01

    Parasitic infections of the central nervous system (CNS) include two broad categories of infectious organisms: single-celled protozoa and multicellular metazoa. The protozoal infections include malaria, American trypanosomiasis, human African trypanosomiasis, toxoplasmosis, amebiasis, microsporidiasis, and leishmaniasis. The metazoal infections are grouped into flatworms, which include trematoda and cestoda, and roundworms or nematoda. Trematoda infections include schistosomiasis and paragonimiasis. Cestoda infections include cysticercosis, coenurosis, hydatidosis, and sparganosis. Nematoda infections include gnathostomiasis, angiostrongyliasis, toxocariasis, strongyloidiasis, filariasis, baylisascariasis, dracunculiasis, micronemiasis, and lagochilascariasis. The most common route of CNS invasion is through the blood. In some cases, the parasite invades the olfactory neuroepithelium in the nasal mucosa and penetrates the brain via the subarachnoid space or reaches the CNS through neural foramina of the skull base around the cranial nerves or vessels. The neuropathological changes vary greatly, depending on the type and size of the parasite, geographical strain variations in parasitic virulence, immune evasion by the parasite, and differences in host immune response. Congestion of the leptomeninges, cerebral edema, hemorrhage, thrombosis, vasculitis, necrosis, calcification, abscesses, meningeal and perivascular polymorphonuclear and mononuclear inflammatory infiltrate, microglial nodules, gliosis, granulomas, and fibrosis can be found affecting isolated or multiple regions of the CNS, or even diffusely spread. Some infections may be present as an expanding mass lesion. The parasites can be identified by conventional histology, immunohistochemistry, in situ hybridization, and PCR.

  6. Occurrence and analysis of irp2 virulence gene in isolates of Klebsiella pneumoniae and Enterobacter spp. from microbiota and hospital and community-acquired infections.

    PubMed

    Souza Lopes, Ana Catarina; Rodrigues, Juliana Falcão; Cabral, Adriane Borges; da Silva, Maíra Espíndola; Leal, Nilma Cintra; da Silveira, Vera Magalhães; de Morais Júnior, Marcos Antônio

    2016-07-01

    Eighty-five isolates of Klebsiella pneumoniae and Enterobacter spp., originating from hospital- and community-acquired infections and from oropharyngeal and faecal microbiota from patients in Recife-PE, Brazil, were analyzed regarding the presence of irp2 gene. This is a Yersinia typical gene involved in the synthesis of siderophore yersiniabactin. DNA sequencing confirmed the identity of irp2 gene in five K. pneumoniae, five Enterobacter aerogenes and one Enterobacter amnigenus isolates. To our knowledge in the current literature, this is the first report of the irp2 gene in E. amnigenus, a species considered an unusual human pathogen, and in K. pneumoniae and E. aerogenes isolates from the normal microbiota and from community infections, respectively. Additionally, the analyses of nucleotide and amino acid sequences suggest the irp2 genes derived from isolates used in this study are more closely related to that of Yersinia pestis P.CE882 than to that of Yersinia enterocolitica 8081. These data demonstrated that K. pneumoniae and Enterobacter spp. from normal microbiota and from community- and hospital-acquired infections possess virulence factors important for the establishment of extra-intestinal infections. PMID:27133266

  7. Multiple occurrences of giant virus core genes acquired by eukaryotic genomes: the visible part of the iceberg?

    PubMed

    Filée, Jonathan

    2014-10-01

    Giant Viruses are a widespread group of viruses, characterized by huge genomes composed of a small subset of ancestral, vertically inherited core genes along with a large body of highly variable genes. In this study, I report the acquisition of 23 core ancestral Giant Virus genes by diverse eukaryotic species including various protists, a moss and a cnidarian. The viral genes are inserted in large scaffolds or chromosomes with intron-rich, eukaryotic-like genomic contexts, refuting the possibility of DNA contaminations. Some of these genes are expressed and in the cryptophyte alga Guillardia theta, a possible non-homologous displacement of the eukaryotic DNA primase by a viral D5 helicase/primase is documented. As core Giant Virus genes represent only a tiny fraction of the total genomic repertoire of these viruses, these results suggest that Giant Viruses represent an underestimated source of new genes and functions for their hosts.

  8. Acquired lymphangiectasis.

    PubMed

    Celis, A V; Gaughf, C N; Sangueza, O P; Gourdin, F W

    1999-01-01

    Acquired lymphangiectasis is a dilatation of lymphatic vessels that can result as a complication of surgical intervention and radiation therapy for malignancy. Acquired lymphangiectasis shares clinical and histologic features with the congenital lesion, lymphangioma circumscriptum. Diagnosis and treatment of these vesiculo-bullous lesions is important because they may be associated with pain, chronic drainage, and cellulitis. We describe two patients who had these lesions after treatment for cancer and review the pertinent literature. Although a number of treatment options are available, we have found CO2 laser ablation particularly effective. PMID:9932832

  9. Prospects for the development of epigenetic drugs for CNS conditions.

    PubMed

    Szyf, Moshe

    2015-07-01

    Advances in our understanding of the epigenetic mechanisms that control gene expression in the central nervous system (CNS) and their role in neuropsychiatric disorders are paving the way for a potential new therapeutic approach that is focused on reversing the epigenetic underpinnings of neuropsychiatric conditions. In this article, the complexity of epigenetic processes and the current level of proof for their involvement in CNS disorders are discussed. The preclinical evidence for efficacy of pharmacological approaches that target epigenetics in the CNS and the particular challenges of this approach are also examined. Finally, strategies to address these challenges through the development of improved evidence-based epigenetic therapeutics and through combining pharmacological and behavioural approaches are presented.

  10. Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease.

    PubMed

    Logan, Grant J; de Alencastro, Gustavo; Alexander, Ian E; Yeoh, George C

    2014-11-01

    The number of genetic or acquired diseases of the liver treatable by organ transplantation is ever-increasing as transplantation techniques improve placing additional demands on an already limited organ supply. While cell and gene therapies are distinctly different modalities, they offer a synergistic alternative to organ transplant due to distinct architectural and physiological properties of the liver. The hepatic blood supply and fenestrated endothelial system affords relatively facile accessibility for cell and/or gene delivery. More importantly, however, the remarkable capacity of hepatocytes to proliferate and repopulate the liver creates opportunities for new treatments based on emerging technologies. This review will summarise current understanding of liver regeneration, describe clinical and experimental cell and gene therapeutic modalities and discuss critical challenges to translate these new technologies to wider clinical utility. This article is part of a Directed Issue entitled: "Regenerative Medicine: the challenge of translation".

  11. Acquired hyperpigmentations*

    PubMed Central

    Cestari, Tania Ferreira; Dantas, Lia Pinheiro; Boza, Juliana Catucci

    2014-01-01

    Cutaneous hyperpigmentations are frequent complaints, motivating around 8.5% of all dermatological consultations in our country. They can be congenital, with different patterns of inheritance, or acquired in consequence of skin problems, systemic diseases or secondary to environmental factors. The vast majority of them are linked to alterations on the pigment melanin, induced by different mechanisms. This review will focus on the major acquired hyperpigmentations associated with increased melanin, reviewing their mechanisms of action and possible preventive measures. Particularly prominent aspects of diagnosis and therapy will be emphasized, with focus on melasma, post-inflammatory hyperpigmentation, periorbital pigmentation, dermatosis papulosa nigra, phytophotodermatoses, flagellate dermatosis, erythema dyschromicum perstans, cervical poikiloderma (Poikiloderma of Civatte), acanthosis nigricans, cutaneous amyloidosis and reticulated confluent dermatitis PMID:24626644

  12. lambda altSF: a phage variant that acquired the ability to substitute specific sets of genes at high frequency.

    PubMed Central

    Friedman, D; Tomich, P; Parsons, C; Olson, E; Deans, R; Flamm, E

    1981-01-01

    We report the isolation of lambda altSF, a variant of Escherichia coli phage lambda that substitutes sets of genes at high frequency. Two forms of the variant phage have been studied: lambda altSF lambda, which exhibits the immunity (repressor recognition) of phage lambda, and lambda altSF22, which exhibits the immunity of Salmonella phage P22. Lysates made from single plaques of lambda altSF lambda contain 10-30% phage of the P22 form. Similarly, lysates from single plaques of lambda altSF22 contain as much as 1% phage of the lambda form. Heteroduplex analyses reveal the following features of the lambda altSF chromosomes: (i) each form has the immunity genes appropriate to its immune phenotype, (ii) the substituted segments include genes involved in regulation and replication, and (iii) the alt phages have unusual additions and substitutions of DNA not normally found associated with either immunity region. In the case of lambda altSF lambda, there is a small insertion in the region of the cI gene. Because revertants that lose this inserted DNA concomitantly lose the ability to substitute, we conclude that the insertion plays a role in the substitution process. In the case of change from lambda altSF lambda to lambda altSF22, the substituting P22 genes are derived from the E. coli host. We have identified a set of Salmonella phage P22 genes in a standard nonlysogenic strain of E. coli K-12 that is apparently carried in a silent form. The reason for this lack of expression is not obvious, because this P22 material includes structural genes and associated promoters and is potentially active. When this set of genes substitutes for the analogous set of genetic material on the genome of lambda altSF lambda, the P22 genes are expressed in a normal manner. Images PMID:6454136

  13. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    SciTech Connect

    Doi, Nobutaka; Ogawa, Ryohei; Cui, Zheng-Guo; Morii, Akihiro; Watanabe, Akihiko; Kanayama, Shinji; Yoneda, Yuko; Kondo, Takashi

    2015-05-01

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl{sub 2} confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype.

  14. Tandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor

    PubMed Central

    Huang, Chien Yu; Chen, Pei-Ying; Huang, Ming-Der; Tsou, Chih-Hua; Jane, Wann-Neng; Huang, Anthony H. C.

    2013-01-01

    During evolution, genomes expanded via whole-genome, segmental, tandem, and individual-gene duplications, and the emerged redundant paralogs would be eliminated or retained owing to selective neutrality or adaptive benefit and further functional divergence. Here we show that tandem paralogs can contribute adaptive quantitative benefit and thus have been retained in a lineage-specific manner. In Brassicaceae, a tandem oleosin gene cluster of five to nine paralogs encodes ample tapetum-specific oleosins located in abundant organelles called tapetosomes in flower anthers. Tapetosomes coordinate the storage of lipids and flavonoids and their transport to the adjacent maturing pollen as the coat to serve various functions. Transfer-DNA and siRNA mutants of Arabidopsis thaliana with knockout and knockdown of different tandem oleosin paralogs had quantitative and correlated loss of organized structures of the tapetosomes, pollen-coat materials, and pollen tolerance to dehydration. Complementation with the knockout paralog restored the losses. Cleomaceae is the family closest to Brassicaceae. Cleome species did not contain the tandem oleosin gene cluster, tapetum oleosin transcripts, tapetosomes, or pollen tolerant to dehydration. Cleome hassleriana transformed with an Arabidopsis oleosin gene for tapetum expression possessed primitive tapetosomes and pollen tolerant to dehydration. We propose that during early evolution of Brassicaceae, a duplicate oleosin gene mutated from expression in seed to the tapetum. The tapetum oleosin generated primitive tapetosomes that organized stored lipids and flavonoids for their effective transfer to the pollen surface for greater pollen vitality. The resulting adaptive benefit led to retention of tandem-duplicated oleosin genes for production of more oleosin and modern tapetosomes. PMID:23940319

  15. Short communication: Naturally sensitive Bacillus thuringiensis EG10368 produces thurincin H and acquires immunity after heterologous expression of the one-step-amplified thurincin H gene cluster.

    PubMed

    Wang, G; Manns, D C; Churey, J J; Worobo, R W

    2014-07-01

    Heterologous expression of bacteriocin genetic determinants (or operons) has long been a research interest for the functional analysis of genes involved in bacteriocin biosynthesis, regulation, modification, and immunity. Previously, construction of genomic libraries of the bacteriocin producer strains was usually required to identify new bacteriocin operons, a method that is tedious and time consuming. For the first time, we directly amplified an 8.14-kb bioinformatically identified thurincin H gene cluster using a one-step PCR method with 100% accuracy. This amplified gene cluster was cloned into plasmid pHT315, resulting in plasmid pGW139, and subsequently transformed to Bacillus thuringiensis EG10368, a strain naturally sensitive to thurincin H. Heterologous expression of the gene cluster makes the sensitive B. thuringiensis EG10368 produce thurincin H at a higher level compared with the wild-type producer, B. thuringiensis SF361. Moreover, B. thuringiensis EG10368pGW139 acquired complete immunity to thurincin H. The results indicated that one-step PCR is a promising tool to accurately amplify long bacteriocin gene clusters used in bacteriocin functional analysis studies and it is an effective way to produce bacteriocins at a higher level, without the need to clone large chromosomal fragments.

  16. Human Chondrosarcoma Cells Acquire an Epithelial-Like Gene Expression Pattern via an Epigenetic Switch: Evidence for Mesenchymal-Epithelial Transition during Sarcomagenesis.

    PubMed

    Fitzgerald, Matthew P; Gourronc, Francoise; Teoh, Melissa L T; Provenzano, Matthew J; Case, Adam J; Martin, James A; Domann, Frederick E

    2011-01-01

    Chondrocytes are mesenchymally derived cells that reportedly acquire some epithelial characteristics; however, whether this is a progression through a mesenchymal to epithelial transition (MET) during chondrosarcoma development is still a matter of investigation. We observed that chondrosarcoma cells acquired the expression of four epithelial markers, E-cadherin,desmocollin 3, maspin, and 14-3-3σ, all of which are governed epigenetically through cytosine methylation. Indeed, loss of cytosine methylation was tightly associated with acquired expression of both maspin and 14-3-3σ in chondrosarcomas. In contrast, chondrocyte cells were negative for maspin and 14-3-3σ and displayed nearly complete DNA methylation. Robust activation of these genes was also observed in chondrocyte cells following 5-aza-dC treatment. We also examined the transcription factor snail which has been reported to be an important mediator of epithelial to mesenchymal transitions (EMTs). In chondrosarcoma cells snail is downregulated suggesting a role for loss of snail expression in lineage maintenance. Taken together, these results document an epigenetic switch associated with an MET-like phenomenon that accompanies chondrosarcoma progression.

  17. Ontogeny and functions of CNS macrophages

    PubMed Central

    Katsumoto, Atsuko; Lu, Haiyan; Miranda, Aline S.; Ransohoff, Richard M.

    2014-01-01

    Microglia, the only non-neuroepithelial cells found in the parenchyma of the central nervous system (CNS), originate during embryogenesis from the yolk sac and enter the CNS quite early (embryonic day 9.5-10 in mice). Thereafter, microglia are maintained independently of any input from the blood and in particular do not require hematopoietic stem cells as a source of replacement for senescent cells. Monocytes are hematopoietic cells, derived from bone marrow. The ontogeny of microglia and monocytes is important for understanding CNS pathologies. Microglial functions are distinct from those of blood-derived monocytes, which invade the CNS only under pathological conditions. Recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis and synaptic interactions. Here we discuss physiology of microglia and the functions of monocytes in CNS pathology. We address the roles of microglia and monocytes in neurodegenerative diseases as an example of CNS pathology. PMID:25193935

  18. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  19. Trypanosoma cruzi meningoencephalitis in a patient with acquired immunodeficiency syndrome.

    PubMed

    Yasukawa, Kosuke; Patel, Shital M; Flash, Charlene A; Stager, Charles E; Goodman, Jerry C; Woc-Colburn, Laila

    2014-07-01

    As a result of global migration, a significant number of people with Trypanosoma cruzi infection now live in the United States, Canada, many countries in Europe, and other non-endemic countries. Trypanosoma cruzi meningoencephalitis is a rare cause of ring-enhancing lesions in patients with acquired immunodeficiency syndrome (AIDS) that can closely mimic central nervous system (CNS) toxoplasmosis. We report a case of CNS Chagas reactivation in an AIDS patient successfully treated with benznidazole and antiretroviral therapy in the United States.

  20. The Yersinia kristensenii O11 O-antigen gene cluster was acquired by lateral gene transfer and incorporated at a novel chromosomal locus.

    PubMed

    Cunneen, Monica M; Reeves, Peter R

    2007-06-01

    We have sequenced the O-antigen gene clusters for the Escherichia coli O98 and Yersinia kristensenii O11 O antigens. The basic structures of these O antigens are identical, and the sequence data indicate that Y. kristensenii O11 gained its O-antigen gene cluster by lateral gene transfer (LGT). Escherichia coli O98 has a typical O-antigen gene cluster between galF and gnd as is usual in E. coli. However, the O-antigen gene cluster of Y. kristensenii O11 is not located at the traditional Yersinia O-antigen gene cluster locus, between hemH and gsk, but at a novel chromosomal locus between aroA and cmk where it is flanked by remnant galF and gnd genes that indicate the probable source of the gene cluster. Phylogenetic analysis indicated that the source was not E. coli itself but a species in the Escherichia, Salmonella, and Klebsiella group of genera. Although other O-antigen studies imply LGT on the basis of the hypervariability of the loci and GC content, this report also identifies a potential donor and provides evidence for the mechanism involved. Remnant insertion sequence (IS) sequences flank the galF and gnd remnants and suggest that LGT of the gene cluster was IS mediated.

  1. Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians.

    PubMed

    Irie, Masahito; Yoshikawa, Masanobu; Ono, Ryuichi; Iwafune, Hirotaka; Furuse, Tamio; Yamada, Ikuko; Wakana, Shigeharu; Yamashita, Yui; Abe, Takaya; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2015-09-01

    Gene targeting of mouse Sushi-ichi-related retrotransposon homologue 11/Zinc finger CCHC domain-containing 16 (Sirh11/Zcchc16) causes abnormal behaviors related to cognition, including attention, impulsivity and working memory. Sirh11/Zcchc16 encodes a CCHC type of zinc-finger protein that exhibits high homology to an LTR retrotransposon Gag protein. Upon microdialysis analysis of the prefrontal cortex region, the recovery rate of noradrenaline (NA) was reduced compared with dopamine (DA) after perfusion of high potassium-containing artificial cerebrospinal fluid in knockout (KO) mice. These data indicate that Sirh11/Zcchc16 is involved in cognitive function in the brain, possibly via the noradrenergic system, in the contemporary mouse developmental systems. Interestingly, it is highly conserved in three out of the four major groups of the eutherians, euarchontoglires, laurasiatheria and afrotheria, but is heavily mutated in xenarthran species such as the sloth and armadillo, suggesting that it has contributed to brain evolution in the three major eutherian lineages, including humans and mice. Sirh11/Zcchc16 is the first SIRH gene to be involved in brain function, instead of just the placenta, as seen in the case of Peg10, Peg11/Rtl1 and Sirh7/Ldoc1.

  2. Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians.

    PubMed

    Irie, Masahito; Yoshikawa, Masanobu; Ono, Ryuichi; Iwafune, Hirotaka; Furuse, Tamio; Yamada, Ikuko; Wakana, Shigeharu; Yamashita, Yui; Abe, Takaya; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2015-09-01

    Gene targeting of mouse Sushi-ichi-related retrotransposon homologue 11/Zinc finger CCHC domain-containing 16 (Sirh11/Zcchc16) causes abnormal behaviors related to cognition, including attention, impulsivity and working memory. Sirh11/Zcchc16 encodes a CCHC type of zinc-finger protein that exhibits high homology to an LTR retrotransposon Gag protein. Upon microdialysis analysis of the prefrontal cortex region, the recovery rate of noradrenaline (NA) was reduced compared with dopamine (DA) after perfusion of high potassium-containing artificial cerebrospinal fluid in knockout (KO) mice. These data indicate that Sirh11/Zcchc16 is involved in cognitive function in the brain, possibly via the noradrenergic system, in the contemporary mouse developmental systems. Interestingly, it is highly conserved in three out of the four major groups of the eutherians, euarchontoglires, laurasiatheria and afrotheria, but is heavily mutated in xenarthran species such as the sloth and armadillo, suggesting that it has contributed to brain evolution in the three major eutherian lineages, including humans and mice. Sirh11/Zcchc16 is the first SIRH gene to be involved in brain function, instead of just the placenta, as seen in the case of Peg10, Peg11/Rtl1 and Sirh7/Ldoc1. PMID:26402067

  3. Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians

    PubMed Central

    Irie, Masahito; Yoshikawa, Masanobu; Ono, Ryuichi; Iwafune, Hirotaka; Furuse, Tamio; Yamada, Ikuko; Wakana, Shigeharu; Yamashita, Yui; Abe, Takaya; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2015-01-01

    Gene targeting of mouse S ushi- i chi-related r etrotransposon h omologue 11 / Z inc finger CCHC domain-containing 16 (Sirh11/Zcchc16) causes abnormal behaviors related to cognition, including attention, impulsivity and working memory. Sirh11/Zcchc16 encodes a CCHC type of zinc-finger protein that exhibits high homology to an LTR retrotransposon Gag protein. Upon microdialysis analysis of the prefrontal cortex region, the recovery rate of noradrenaline (NA) was reduced compared with dopamine (DA) after perfusion of high potassium-containing artificial cerebrospinal fluid in knockout (KO) mice. These data indicate that Sirh11/Zcchc16 is involved in cognitive function in the brain, possibly via the noradrenergic system, in the contemporary mouse developmental systems. Interestingly, it is highly conserved in three out of the four major groups of the eutherians, euarchontoglires, laurasiatheria and afrotheria, but is heavily mutated in xenarthran species such as the sloth and armadillo, suggesting that it has contributed to brain evolution in the three major eutherian lineages, including humans and mice. Sirh11/Zcchc16 is the first SIRH gene to be involved in brain function, instead of just the placenta, as seen in the case of Peg10, Peg11/Rtl1 and Sirh7/Ldoc1. PMID:26402067

  4. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    PubMed Central

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  5. Applications of Genomic Sequencing in Pediatric CNS Tumors.

    PubMed

    Bavle, Abhishek A; Lin, Frank Y; Parsons, D Williams

    2016-05-01

    Recent advances in genome-scale sequencing methods have resulted in a significant increase in our understanding of the biology of human cancers. When applied to pediatric central nervous system (CNS) tumors, these remarkable technological breakthroughs have facilitated the molecular characterization of multiple tumor types, provided new insights into the genetic basis of these cancers, and prompted innovative strategies that are changing the management paradigm in pediatric neuro-oncology. Genomic tests have begun to affect medical decision making in a number of ways, from delineating histopathologically similar tumor types into distinct molecular subgroups that correlate with clinical characteristics, to guiding the addition of novel therapeutic agents for patients with high-risk or poor-prognosis tumors, or alternatively, reducing treatment intensity for those with a favorable prognosis. Genomic sequencing has also had a significant impact on translational research strategies in pediatric CNS tumors, resulting in wide-ranging applications that have the potential to direct the rational preclinical screening of novel therapeutic agents, shed light on tumor heterogeneity and evolution, and highlight differences (or similarities) between pediatric and adult CNS tumors. Finally, in addition to allowing the identification of somatic (tumor-specific) mutations, the analysis of patient-matched constitutional (germline) DNA has facilitated the detection of pathogenic germline alterations in cancer genes in patients with CNS tumors, with critical implications for genetic counseling and tumor surveillance strategies for children with familial predisposition syndromes. As our understanding of the molecular landscape of pediatric CNS tumors continues to advance, innovative applications of genomic sequencing hold significant promise for further improving the care of children with these cancers. PMID:27188671

  6. CNS disease triggering Takotsubo stress cardiomyopathy.

    PubMed

    Finsterer, Josef; Wahbi, Karim

    2014-12-15

    There are a number of hereditary and non-hereditary central nervous system (CNS) disorders, which directly or indirectly affect the heart (brain-heart disorders). The most well-known of these CNS disorders are epilepsy, stroke, infectious or immunological encephalitis/meningitis, migraine, and traumatic brain injury. In addition, a number of hereditary and non-hereditary neurodegenerative disorders may impair cardiac functions. Affection of the heart may manifest not only as arrhythmias, myocardial infarction, autonomic impairment, systolic dysfunction/heart failure, arterial hypertension, or pulmonary hypertension, but also as stress cardiomyopathy (Takotsubo syndrome, TTS). CNS disease triggering TTS includes subarachnoid bleeding, epilepsy, ischemic stroke, intracerebral bleeding, migraine, encephalitis, traumatic brain injury, PRES syndrome, or ALS. Usually, TTS is acutely precipitated by stress triggered by various different events. TTS is one of the cardiac abnormalities most frequently induced by CNS disorders. Appropriate management of TTS from CNS disorders is essential to improve the outcome of affected patients. PMID:25213573

  7. Chromosomal integration of a cephalosporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to beta-lactams.

    PubMed

    Mammeri, Hedi; Poirel, Laurent; Mangeney, Nicole; Nordmann, Patrice

    2003-05-01

    Clinical Oligella urethralis isolate COH-1, which was uncommonly resistant to penicillins and narrow-spectrum cephalosporins, was recovered from a 55-year-old patient with a urinary tract infection. Shotgun cloning into Escherichia coli and expression experiments gave recombinant clones expressing either an AmpC beta-lactamase-type phenotype of resistance or a carbenicillin-hydrolyzing beta-lactamase-type phenotype of resistance. The AmpC beta-lactamase identified (ABA-1), which had a pI value of 8.2, had 98% amino acid identity with a chromosomally encoded cephalosporinase of Acinetobacter baumannii. A 820-bp insertion sequence element, ISOur1, belonging to the IS6 family of insertion sequence elements, was identified immediately upstream of bla(ABA-1), providing a -35 promoter sequence and likely giving rise to a hybrid promoter region. The carbenicillin-hydrolyzing beta-lactamase identified (CARB-8), which had a pI value of 6.4, differed from CARB-5 by two amino acid substitutions. Hybridization of CeuI fragment I-restricted DNA fragments of O. urethralis COH-1 with bla(ABA-1)-, bla(CARB-8)-, and 16S rRNA-specific probes indicated the chromosomal integration of the beta-lactamase genes. PCR and hybridization experiments failed to detect bla(CARB-8)- and bla(ABA-1)-like genes in three O. urethralis reference strains, indicating that the beta-lactamase genes identified were the source of acquired resistance in O. urethralis COH-1. This is one of the few examples of the interspecies transfer and the chromosomal integration of a gene encoding a naturally occurring beta-lactamase.

  8. Clitoria ternatea and the CNS.

    PubMed

    Jain, Neeti N; Ohal, C C; Shroff, S K; Bhutada, R H; Somani, R S; Kasture, V S; Kasture, S B

    2003-06-01

    The present investigation was aimed at determining the spectrum of activity of the methanolic extract of Clitoria ternatea (CT) on the CNS. The CT was studied for its effect on cognitive behavior, anxiety, depression, stress and convulsions induced by pentylenetetrazol (PTZ) and maximum electroshock (MES). To explain these effects, the effect of CT was also studied on behavior mediated by dopamine (DA), noradrenaline, serotonin and acetylcholine. The extract decreased time required to occupy the central platform (transfer latency, TL) in the elevated plus maze (EPM) and increased discrimination index in the object recognition test, indicating nootropic activity. The extract was more active in the object recognition test than in the EPM. The extract increased occupancy in the open arm of EPM by 160% and in the lit box of the light/dark exploration test by 157%, indicating its anxiolytic activity. It decreased the duration of immobility in tail suspension test (suggesting its antidepressant activity), reduced stress-induced ulcers and reduced the convulsing action of PTZ and MES. The extract exhibited tendency to reduce the intensity of behavior mediated via serotonin and acetylcholine. The effect on DA- and noradrenaline-mediated behavior was not significant. In conclusion, the extract was found to possess nootropic, anxiolytic, antidepressant, anticonvulsant and antistress activity. Further studies are necessary to isolate the active principle responsible for the activities and to understand its mode of action. PMID:12895670

  9. Incidence of community-acquired methicillin-resistant Staphylococcus aureus carrying Pantone-Valentine leucocidin gene at a referral hospital in United Arab Emirates.

    PubMed

    Dash, Nihar; Panigrahi, Debadatta; Al Zarouni, Mansour; Yassin, Faten; Al-Shamsi, Moza

    2014-04-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging pathogen in hospitalized patients worldwide. The present study was undertaken to identify CA-MRSA in hospitalized patients in a 350-bed tertiary care hospital in Sharjah, UAE over a 2-year period from January 2011 to December 2012. CA-MRSA was defined based on identification within first 48 h of admission in the hospital. Staphylococcal cassette chromosome (SCC) mec typing of the CA-MRSA isolates was carried out by multiplex polymerase chain reaction (PCR). Detection of PVL and mecA genes was done by PCR using the GenoType(®) MRSA test system (Hain Lifescience). Patient's clinical data and antimicrobial susceptibility pattern of the CA-MRSA isolates were also evaluated. Fifty seven of the 187 MRSA isolates were identified as CA-MRSA. All the CA-MRSA strains in our study belonged to SCCmecIV type and were positive for both PVL and mecA genes. The patients with CA-MRSA infections were young (median age, 32 years) and the majority of infections involved the skin and soft tissue (36%). Antimicrobial susceptibility pattern of the CA-MRSA isolates showed a better susceptibility profile to the non-beta-lactam antimicrobials with the exception of ciprofloxacin having 28% resistance. This study evidently strengthens the recent observation of an increase in CA-MRSA emergence among hospitalized patients in the UAE. PMID:23919760

  10. Comparative Efficacy and Safety of Multiple Routes of Direct CNS Administration of Adeno-Associated Virus Gene Transfer Vector Serotype rh.10 Expressing the Human Arylsulfatase A cDNA to Nonhuman Primates

    PubMed Central

    Rosenberg, Jonathan B.; Sondhi, Dolan; Rubin, David G.; Monette, Sébastien; Chen, Alvin; Cram, Sara; De, Bishnu P.; Kaminsky, Stephen M.; Sevin, Caroline; Aubourg, Patrick

    2014-01-01

    Abstract Metachromatic leukodystrophy (MLD), a fatal disorder caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA), is associated with an accumulation of sulfatides, causing widespread demyelination in both central and peripheral nervous systems. On the basis of prior studies demonstrating that adeno-associated virus AAVrh.10 can mediate widespread distribution in the CNS of a secreted lysosomal transgene, and as a prelude to human trials, we comparatively assessed the optimal CNS delivery route of an AAVrh.10 vector encoding human ARSA in a large animal model for broadest distribution of ARSA enzyme. Five routes were tested (each total dose, 1.5×1012 genome copies of AAVrh.10hARSA-FLAG): (1) delivery to white matter centrum ovale; (2) deep gray matter delivery (putamen, thalamus, and caudate) plus overlying white matter; (3) convection-enhanced delivery to same deep gray matter locations; (4) lateral cerebral ventricle; and (5) intraarterial delivery with hyperosmotic mannitol to the middle cerebral artery. After 13 weeks, the distribution of ARSA activity subsequent to each of the three direct intraparenchymal administration routes was significantly higher than in phosphate-buffered saline-administered controls, but administration by the intraventricular and intraarterial routes failed to demonstrate measurable levels above controls. Immunohistochemical staining in the cortex, white matter, deep gray matter of the striatum, thalamus, choroid plexus, and spinal cord dorsal root ganglions confirmed these results. Of the five routes studied, administration to the white matter generated the broadest distribution of ARSA, with 80% of the brain displaying more than a therapeutic (10%) increase in ARSA activity above PBS controls. No significant toxicity was observed with any delivery route as measured by safety parameters, although some inflammatory changes were seen by histopathology. We conclude that AAVrh.10-mediated delivery of ARSA via CNS

  11. Air Pollution: Mechanisms of Neuroinflammation & CNS Disease

    PubMed Central

    Block, Michelle L.; Calderón-Garcidueñas, Lilian

    2009-01-01

    Emerging evidence implicates air pollution as a chronic source of neuroinflammation, reactive oxygen species (ROS), and neuropathology instigating central nervous system (CNS) disease. Stroke incidence, and Alzheimer’s and Parkinson’s disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain. Further, systemic effects known to impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that activation of microglia and changes in the blood brain barrier may be key to this process. Here, we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS culpable in CNS disease. PMID:19716187

  12. Treatment Option Overview (Primary CNS Lymphoma)

    MedlinePlus

    ... large vein near the heart. Having a weakened immune system may increase the risk of developing primary CNS ... immunodeficiency syndrome (AIDS) or other disorders of the immune system or who have had a kidney transplant . For ...

  13. Treatment Options for Primary CNS Lymphoma

    MedlinePlus

    ... large vein near the heart. Having a weakened immune system may increase the risk of developing primary CNS ... immunodeficiency syndrome (AIDS) or other disorders of the immune system or who have had a kidney transplant . For ...

  14. Neurotrauma and Inflammation: CNS and PNS Responses

    PubMed Central

    Mietto, Bruno Siqueira; Mostacada, Klauss; Martinez, Ana Maria Blanco

    2015-01-01

    Traumatic injury to the central nervous system (CNS) or the peripheral nervous system (PNS) triggers a cascade of events which culminate in a robust inflammatory reaction. The role played by inflammation in the course of degeneration and regeneration is not completely elucidated. While, in peripheral nerves, the inflammatory response is assumed to be essential for normal progression of Wallerian degeneration and regeneration, CNS trauma inflammation is often associated with poor recovery. In this review, we discuss key mechanisms that trigger the inflammatory reaction after nervous system trauma, emphasizing how inflammations in both CNS and PNS differ from each other, in terms of magnitude, cell types involved, and effector molecules. Knowledge of the precise mechanisms that elicit and maintain inflammation after CNS and PNS tissue trauma and their effect on axon degeneration and regeneration is crucial for the identification of possible pharmacological drugs that can positively affect the tissue regenerative capacity. PMID:25918475

  15. Monocyte/macrophage trafficking in acquired immunodeficiency syndrome encephalitis: lessons from human and nonhuman primate studies.

    PubMed

    Fischer-Smith, Tracy; Bell, Christie; Croul, Sidney; Lewis, Mark; Rappaport, Jay

    2008-08-01

    Here the authors discuss evidence in human and animal models supporting two opposing views regarding the pathogenesis of human immunodeficiency virus (HIV) in the central nervous system (CNS): (1) HIV infection in the CNS is a compartmentalized infection, with the virus-infected macrophages entering the CNS early, infecting resident microglia and astrocytes, and achieving a state of latency with evolution toward a fulminant CNS infection late in the course of disease; or alternatively, (2) events in the periphery lead to altered monocyte/macrophage (MPhi) homeostasis, with increased CNS invasion of infected and/or uninfected MPhis. Here the authors have reevaluated evidence presented in the favor of the latter model, with a discussion of phenotypic characteristics distinguishing normal resident microglia with those accumulating in HIV encephalitis (HIVE). CD163 is normally expressed by perivascular MPhi s but not resident microglia in normal CNS of humans and rhesus macaques. In agreement with other studies, the authors demonstrate expression of CD163 by brain MPhi s in HIVE and simian immunodeficiency virus encephalitis (SIVE). CNS tissues from HIV-sero positive individuals with HIVE or HIV-associated progressive multifocal leukoencephalopathy (PML) were also examined. In HIVE, the authors further demonstrate colocalization of CD163 and CD16 (Fcgamma III recptor) gene expression, the latter marker associated with HIV infection of monocyte in vivo and permissivity of infection. Indeed, CD163(+) MPhis and microglia are often productively infected in HIVE CNS. In SIV infected rhesus macaques, CD163(+) cells accumulate perivascularly, within nodular lesions and the parenchyma in animals with encephalitis. Likewise, parenchymal microglia and perivascular MPhi s are CD163(+) in HIVE. In contrast to HIVE, CD163(+)perivascular and parenchymal MPhi s in HIV-associated PML were only associated with areas of demyelinating lesions. Interestingly, SIV-infected rhesus macaques

  16. Impact of dual expression of MYC and BCL2 by immunohistochemistry on the risk of CNS relapse in DLBCL.

    PubMed

    Savage, Kerry J; Slack, Graham W; Mottok, Anja; Sehn, Laurie H; Villa, Diego; Kansara, Roopesh; Kridel, Robert; Steidl, Christian; Ennishi, Daisuke; Tan, King L; Ben-Neriah, Susana; Johnson, Nathalie A; Connors, Joseph M; Farinha, Pedro; Scott, David W; Gascoyne, Randy D

    2016-05-01

    Dual expression of MYC and BCL2 by immunohistochemistry (IHC) is associated with poor outcome in diffuse large B-cell lymphoma (DLBCL). Dual translocation of MYC and BCL2, so-called "double-hit lymphoma," has been associated with a high risk of central nervous system (CNS) relapse; however, the impact of dual expression of MYC and BCL2 (dual expressers) on the risk of CNS relapse remains unknown. Pretreatment formalin-fixed paraffin-embedded DLBCL biopsies derived from patients subsequently treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) were assembled on tissue microarrays from 2 studies and were evaluated for expression of MYC and BCL2 by IHC. In addition, cell of origin was determined by IHC and the Lymph2Cx gene expression assay in a subset of patients. We identified 428 patients who met the inclusion criteria. By the recently described CNS risk score (CNS-International Prognostic Index [CNS-IPI]), 34% were low risk (0 to 1), 45% were intermediate risk (2 to 3), and 21% were high risk (4 or greater). With a median follow-up of 6.8 years, the risk of CNS relapse was higher in dual expressers compared with non-dual expressers (2-year risk, 9.7% vs 2.2%; P = .001). Patients with activated B-cell or non-germinal center B-cell type DLBCL also had an increased risk of CNS relapse. However, in multivariate analysis, only dual expresser status and CNS-IPI were associated with CNS relapse. Dual expresser MYC(+) BCL2(+) DLBCL defines a group at high risk of CNS relapse, independent of CNS-IPI score and cell of origin. Dual expresser status may help to identify a high-risk group who should undergo CNS-directed evaluation and consideration of prophylactic strategies.

  17. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery.

    PubMed

    Ghose, Arup K; Herbertz, Torsten; Hudkins, Robert L; Dorsey, Bruce D; Mallamo, John P

    2012-01-18

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer's disease (AD), Parkinson's disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood-brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å(2) (25-60 Å(2)), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740-970 Å(3), (vi) solvent accessible surface area of 460-580 Å(2), and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  18. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery.

    PubMed

    Ghose, Arup K; Herbertz, Torsten; Hudkins, Robert L; Dorsey, Bruce D; Mallamo, John P

    2012-01-18

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer's disease (AD), Parkinson's disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood-brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å(2) (25-60 Å(2)), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740-970 Å(3), (vi) solvent accessible surface area of 460-580 Å(2), and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  19. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery

    PubMed Central

    2011-01-01

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer’s disease (AD), Parkinson’s disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood–brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å2 (25–60 Å2), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740–970 Å3, (vi) solvent accessible surface area of 460–580 Å2, and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  20. Expression of the Homeobox Gene HOXA9 in Ovarian Cancer Induces Peritoneal Macrophages to Acquire an M2 Tumor-Promoting Phenotype

    PubMed Central

    Ko, Song Yi; Ladanyi, Andras; Lengyel, Ernst; Naora, Honami

    2015-01-01

    Tumor-associated macrophages (TAMs) exhibit an M2 macrophage phenotype that suppresses anti-tumor immune responses and often correlates with poor outcomes in patients with cancer. Patients with ovarian cancer frequently present with peritoneal carcinomatosis, but the mechanisms that induce naïve peritoneal macrophages into TAMs are poorly understood. In this study, we found an increased abundance of TAMs in mouse i.p. xenograft models of ovarian cancer that expressed HOXA9, a homeobox gene that is associated with poor prognosis in patients with ovarian cancer. HOXA9 expression in ovarian cancer cells stimulated chemotaxis of peritoneal macrophages and induced macrophages to acquire TAM-like features. These features included induction of the M2 markers, CD163 and CD206, and the immunosuppressive cytokines, IL-10 and chemokine ligand 17, and down-regulation of the immunostimulatory cytokine, IL-12. HOXA9-mediated induction of TAMs was primarily due to the combinatorial effects of HOXA9-induced, tumor-derived transforming growth factor-β2 and chemokine ligand 2 levels. High HOXA9 expression in clinical specimens of ovarian cancer was strongly associated with increased abundance of TAMs and intratumoral T-regulatory cells and decreased abundance of CD8+ tumor-infiltrating lymphocytes. Levels of immunosuppressive cytokines were also elevated in ascites fluid of patients with tumors that highly expressed HOXA9. HOXA9 may, therefore, stimulate ovarian cancer progression by promoting an immunosuppressive microenvironment via paracrine effects on peritoneal macrophages. PMID:24332016

  1. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  2. Immunosuppression promotes CNS remyelination in chronic virus-induced demyelinating disease.

    PubMed

    Rodriguez, M; Lindsley, M D

    1992-02-01

    Immunosuppression using cyclophosphamide or anti-T cell monoclonal antibodies (mAbs) directed at CD4 or CD8 promoted remyelination of CNS axons in the spinal cords of mice infected chronically with Theiler's virus. Treatment with a mAb directed at class II major histocompatibility gene products did not increase the extent of CNS remyelination. Following immunosuppressive treatment, quantitative morphometry revealed a five- to sevenfold increase in new myelin synthesis. Proliferating nervous system cells were identified at the edges of remyelinated lesions by their incorporation of [3H]thymidine. CNS remyelination occurred in mice depleted of selected subsets of T lymphocytes despite the local persistence of viral antigen. These findings indicate that CNS remyelination occurs as a normal consequence of primary myelin injury, but factors associated with immune T cells somehow impair remyelination. Interference with the function of immune T cells enhances CNS remyelination by oligodendrocytes. Similar depletion of immune T cells may allow for enhanced remyelination in the CNS of patients with chronic multiple sclerosis.

  3. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  4. Selective vulnerability of mouse CNS neurons to latent infection with a neuroattenuated herpes simplex virus-1.

    PubMed

    Kesari, S; Lee, V M; Brown, S M; Trojanowski, J Q; Fraser, N W

    1996-09-15

    Herpes simplex viruses that lack ICP34.5 are neuroattenuated and are presently being considered for cancer and gene therapy in the nervous system. Previously, we documented the focal presence of the latency-associated transcripts (LATs) in the hippocampi of immunocompromised mice after intracranial (IC) inoculation of an ICP34.5-deficient virus called strain 1716. To characterize further the biological properties of strain 1716 in the CNS of immunocompetent mice, we determined the extent of viral gene expression in different cell types and regions of the CNS after stereotactic IC inoculation of this virus. At survival times of > 30 d after inoculation, we found that (1) infectious virus was not detectable by titration and immunohistochemical studies; (2) neurons harbored virus as demonstrated by the detection of the LATs by in situ hybridization (ISH); (3) transcripts expressed during the lytic cycle of infection were not detected by ISH; and (4) subsets of neurons were selectively vulnerable to latent infection, depending on the site of inoculation. These results suggest that the absence of ICP34.5 does not abrogate latent infection of the CNS by strain 1716. Additional studies of strain 1716 in the model system described here will facilitate the elucidation of the mechanisms that regulate the selective vulnerability of CNS cells to latent viral infection and lead to the development of ICP34.5 mutant viruses as therapeutic vectors for CNS diseases.

  5. School reentry for children with acquired central nervous systems injuries.

    PubMed

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special education is not necessarily a special classroom, but an individualized set of educational needs, determined by a multidisciplinary school team, to promote educational success. The purpose of this article is to inform those pediatricians and pediatric allied health professionals treating children with CNS injury of the systems in place to support successful school reentry and their role in contributing to developing an appropriate educational plan. PMID:19489086

  6. Intraventricular CNS lesions: A pictorial essay.

    PubMed

    Watts, Jane; Yap, Kelvin K; Ou, Daniel; Tartaglia, Con; Trost, Nicholas; Sutherland, Tom

    2015-08-01

    Intraventricular lesions of the central nervous system (CNS) can present a diagnostic challenge due to a range of differential diagnoses and radiological appearances. Both CT and MRI imaging findings, in combination with location and patient's age, can help limit the differentials. This pictorial essay presents the salient radiological features, location and demographics of the more common intraventricular lesions of the brain.

  7. CNS demyelination in fibrodysplasia ossificans progressiva.

    PubMed

    Kan, Lixin; Kitterman, Joseph A; Procissi, Daniele; Chakkalakal, Salin; Peng, Chian-Yu; McGuire, Tammy L; Goldsby, Robert E; Pignolo, Robert J; Shore, Eileen M; Kaplan, Frederick S; Kessler, John A

    2012-12-01

    Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder of progressive heterotopic ossification (HO) caused by a recurrent activating mutation of ACVR1/ALK2, a bone morphogenetic protein (BMP) type I receptor. FOP is characterized by progressive HO, which is associated with inflammation in the setting of dysregulated BMP signaling, however, a variety of atypical neurologic symptoms are also reported by FOP patients. The main objective of this study is to investigate the potential underlying mechanism that is responsible for the observed atypical neurologic symptoms. We evaluated two mouse models of dysregulated BMP signaling for potential CNS pathology through non-invasive magnetic resonance imaging (MRI) studies and histological and immunohistochemical approaches. In one model, BMP4 is over-expressed under the control of the neuron-specific enolase promoter; the second model is a knock-in of a recurrent FOP mutation of ACVR1/ALK2. We also retrospectively examined MRI scans of four FOP patients. We consistently observed demyelinated lesions and focal inflammatory changes of the CNS in both mouse models but not in wild-type controls, and also found CNS white matter lesions in each of the four FOP patients examined. These findings suggest that dysregulated BMP signaling disturbs normal homeostasis of target tissues, including CNS where focal demyelination may manifest as the neurologic symptoms frequently observed in FOP.

  8. Chemokines in CNS injury and repair.

    PubMed

    Jaerve, Anne; Müller, Hans Werner

    2012-07-01

    Recruitment of inflammatory cells is known to drive the secondary damage cascades that are common to injuries of the central nervous system (CNS). Cell activation and infiltration to the injury site is orchestrated by changes in the expression of chemokines, the chemoattractive cytokines. Reducing the numbers of recruited inflammatory cells by the blocking of the action of chemokines has turned out be a promising approach to diminish neuroinflammation and to improve tissue preservation and neovascularization. In addition, several chemokines have been shown to be essential for stem/progenitor cell attraction, their survival, differentiation and cytokine production. Thus, chemokines might indirectly participate in remyelination, neovascularization and neuroprotection, which are important prerequisites for CNS repair after trauma. Moreover, CXCL12 promotes neurite outgrowth in the presence of growth inhibitory CNS myelin and enhances axonal sprouting after spinal cord injury (SCI). Here, we review current knowledge about the exciting functions of chemokines in CNS trauma, including SCI, traumatic brain injury and stroke. We identify common principles of chemokine action and discuss the potentials and challenges of therapeutic interventions with chemokines. PMID:22700007

  9. Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases.

    PubMed

    Bar-Or, Amit; Hintzen, Rogier Q; Dale, Russell C; Rostasy, Kevin; Brück, Wolfgang; Chitnis, Tanuja

    2016-08-30

    Elucidating pathophysiologic mechanisms underlying the spectrum of pediatric-onset CNS demyelinating diseases, particularly those that may distinguish multiple sclerosis (MS) from other entities, promises to both improve diagnostics and guide more-informed therapeutic decisions. Observations that pediatric- and adult-onset MS share the same genetic and environmental risk factors support the view that these conditions represent essentially the same illness manifesting at different ages. Nonetheless, special consideration must be given when CNS inflammation manifests in early life, at a time when multiple organs (including immune and nervous systems) are actively maturing. CSF analysis in pediatric-onset MS points to chronic CNS inflammation, supported by observations from limited pathologic material available for study. Emerging results implicate abnormalities in both effector and regulatory T cell subsets, and potentially immune senescence, in children with MS. Although CNS-directed antibodies (including antibodies recognizing myelin antigens; Kir4.1) can be documented in pediatric-onset MS, their pathophysiologic significance (as in adults) remains unclear. This is in contrast to the presence of serum and/or CSF antibodies recognizing aquaporin-4, which, when measured using validated cell-based assays, supports the diagnosis of a neuromyelitis optica spectrum disorder, distinct from MS. Presence of anti-myelin oligodendrocyte glycoprotein antibodies documented with similar cell-based assays may also be associated with pathophysiologically distinct disease phenotypes in children. The substantial impact of pediatric-onset MS on normal brain development and function underscores the importance of elucidating both the immunobiology and neurobiology of disease. Ongoing efforts are aimed at developing and validating biological measures that define pathophysiologically distinct monophasic and chronic forms of pediatric CNS demyelination. PMID:27572856

  10. Identification of potent CNS-penetrant thiazolidinones as novel CGRP receptor antagonists.

    PubMed

    Joshi, Pramod; Anderson, Corey; Binch, Hayley; Hadida, Sabine; Yoo, Sanghee; Bergeron, Danielle; Decker, Caroline; terHaar, Ernst; Moore, Jonathan; Garcia-Guzman, Miguel; Termin, Andreas

    2014-02-01

    Calcitonin gene-related peptide (CGRP) has been implicated in acute migraine pathogenesis. In an effort to identify novel CGRP receptor antagonists for the treatment of migraine, we have discovered thiazolidinone 49, a potent (Ki=30 pM, IC50=1 nM), orally bioavailable, CNS-penetrant CGRP antagonist with good pharmacokinetic properties. PMID:24405707

  11. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology

    PubMed Central

    Moffett, John R.; Ross, Brian; Arun, Peethambaran; Madhavarao, Chikkathur N.; Namboodiri, M. A. A.

    2007-01-01

    The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal CNS development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research

  12. Primary Central Nervous System (CNS) Lymphoma B Cell Receptors Recognize CNS Proteins.

    PubMed

    Montesinos-Rongen, Manuel; Purschke, Frauke G; Brunn, Anna; May, Caroline; Nordhoff, Eckhard; Marcus, Katrin; Deckert, Martina

    2015-08-01

    Primary lymphoma of the CNS (PCNSL) is a diffuse large B cell lymphoma confined to the CNS. To elucidate its peculiar organ tropism, we generated recombinant Abs (recAbs) identical to the BCR of 23 PCNSLs from immunocompetent patients. Although none of the recAbs showed self-reactivity upon testing with common autoantigens, they recognized 1547 proteins present on a large-scale protein microarray, indicating polyreactivity. Interestingly, proteins (GRINL1A, centaurin-α, BAIAP2) recognized by the recAbs are physiologically expressed by CNS neurons. Furthermore, 87% (20/23) of the recAbs, including all Abs derived from IGHV4-34 using PCNSL, recognized galectin-3, which was upregulated on microglia/macrophages, astrocytes, and cerebral endothelial cells upon CNS invasion by PCNSL. Thus, PCNSL Ig may recognize CNS proteins as self-Ags. Their interaction may contribute to BCR signaling with sustained NF-κB activation and, ultimately, may foster tumor cell proliferation and survival. These data may also explain, at least in part, the affinity of PCNSL cells for the CNS. PMID:26116512

  13. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21.

    PubMed

    Preudhomme, C; Warot-Loze, D; Roumier, C; Grardel-Duflos, N; Garand, R; Lai, J L; Dastugue, N; Macintyre, E; Denis, C; Bauters, F; Kerckaert, J P; Cosson, A; Fenaux, P

    2000-10-15

    The AML1 gene, situated in 21q22, is often rearranged in acute leukemias through t(8;21) translocation, t(12;21) translocation, or less often t(3;21) translocation. Recently, point mutations in the Runt domain of the AML1 gene have also been reported in leukemia patients. Observations for mutations of the Runt domain of the AML1 gene in bone marrow cells were made in 300 patients, including 131 with acute myeloid leukemia (AML), 94 with myelodysplastic syndrome (MDS), 28 with blast crisis chronic myeloid leukemia (CML), 3 with atypical CML, 41 with acute lymphoblastic leukemia (ALL), and 3 with essential thrombocythemia (ET). Forty-one of the patients had chromosome 21 abnormalities, including t(8;21) in 6 of the patients with AML, t(12;21) in 8 patients with ALL, acquired trisomy 21 in 17 patients, tetrasomy 21 in 7 patients, and constitutional trisomy 21 (Down syndrome) in 3 patients. A point mutation was found in 14 cases (4.7%), including 9 (22%) of the 41 patients with AML of the Mo type (MoAML) (none of them had detectable chromosome 21 rearrangement) and 5 (38%) of the 13 myeloid malignancies with acquired trisomy 21 (1 M1AML, 2 M2AML, 1 ET, and 1 atypical CML). In at least 8 of 9 mutated cases of MoAML, both AML alleles were mutated: 3 patients had different stop codon mutations of the 2 AML1 alleles, and 5 patients had the same missense or stop codon mutation in both AML1 alleles, which resulted in at least 3 of the patients having duplication of the mutated allele and deletion of the normal residual allele, as shown by FISH analysis and by comparing microsatellite analyses of several chromosome 21 markers on diagnosis and remission samples. In the remaining mutated cases, with acquired trisomy 21, a missense mutation of AML1, which involved 2 of the 3 copies of the AML1 gene, was found. Four of the 7 mutated cases could be reanalyzed in complete remission, and no AML1 mutation was found, showing that mutations were acquired in the leukemic clone. In

  14. Target Identification for CNS Diseases by Transcriptional Profiling

    PubMed Central

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2008-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer’s disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to τ, amyloid-β precursor protein, and amyloid-β peptides (Aβ), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson’s disease (PD) include the ubiquitin–proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  15. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences.

    PubMed

    Kleinheinz, Kortine Annina; Joensen, Katrine Grimstrup; Larsen, Mette Voldby

    2014-01-01

    Extensive research is currently being conducted on the use of bacteriophages for applications in human medicine, agriculture and food manufacturing. However, phages are important vehicles of horisontal gene transfer and play a significant role in bacterial evolution. As a result, concern has been raised that this increased use and dissemination of phages could result in spread of deleterious genes, e.g., antibiotic resistance and virulence genes. Meanwhile, in the wake of the genomic era, several tools have been developed for characterization of bacterial genomes. Here we describe how two of these tools, ResFinder and VirulenceFinder, can be used to identify acquired antibiotic resistance and virulence genes in phage genomes of interest. The general applicability of the tools is demonstrated on data sets of 1,642 phage genomes and 1,442 predicted prophages.

  16. Experimental Study of Stellar Reactions at CNS

    SciTech Connect

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.

    2006-11-02

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O({alpha},p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  17. Experimental Study of Stellar Reactions at CNS

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.; Pearson, J.

    2006-11-01

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O(α,p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  18. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  19. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  20. Cerebral blood flow variations in CNS lupus

    SciTech Connect

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M. )

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.

  1. Antiretroviral therapy CNS penetration and HIV-1–associated CNS disease

    PubMed Central

    Winston, A.; Walsh, J.; Post, F.; Porter, K.; Gazzard, B.; Fisher, M.; Leen, C.; Pillay, D.; Hill, T.; Johnson, M.; Gilson, R.; Anderson, J.; Easterbrook, P.; Bansi, L.; Orkin, C.; Ainsworth, J.; Palfreeman, A.; Gompels, M.; Phillips, A.N.; Sabin, C.A.

    2011-01-01

    Objective: The impact of different antiretroviral agents on the risk of developing or surviving CNS disease remains unknown. The aim of this study was to investigate whether using antiretroviral regimens with higher CNS penetration effectiveness (CPE) scores was associated with reduced incidence of CNS disease and improved survival in the UK Collaborative HIV Cohort (CHIC) Study. Methods: Adults without previous CNS disease, who commenced combination antiretroviral therapy (cART) between 1996 and 2008, were included (n = 22,356). Initial and most recent cART CPE scores were calculated. CNS diseases were HIV encephalopathy (HIVe), progressive multifocal leukoencephalopathy (PML), cerebral toxoplasmosis (TOXO), and cryptococcal meningitis (CRYPTO). Incidence rates and overall survival were stratified by CPE score. A multivariable Poisson regression model was used to identify independent associations. Results: The median (interquartile range) CPE score for initial cART regimen increased from 7 (5–8) in 1996–1997 to 9 (8–10) in 2000–2001 and subsequently declined to 6 (7–8) in 2006–2008. Differences in gender, HIV acquisition risk group, and ethnicity existed between CPE score strata. A total of 251 subjects were diagnosed with a CNS disease (HIVe 80; TOXO 59; CRYPTO 56; PML 54). CNS diseases occurred more frequently in subjects prescribed regimens with CPE scores ≤4, and less frequently in those with scores ≥10; however, these differences were nonsignificant. Initial and most recent cART CPE scores ≤4 were independently associated with increased risk of death. Conclusion: Clinical status at time of commencing cART influences antiretroviral selection and CPE score. This information should be considered when utilizing CPE scores for retrospective analyses. PMID:21339496

  2. Histoplasmosis with Deep CNS Involvement: Case Presentation with Discussion and Literature Review

    PubMed Central

    Hariri, Omid R.; Minasian, Tanya; Quadri, Syed A.; Dyurgerova, Anya; Farr, Saman; Miulli, Dan E.; Siddiqi, Javed

    2015-01-01

    Central nervous system (CNS) histoplasmosis is rare and difficult to diagnose because it is often overlooked or mistaken for other pathologies due to its nonspecific symptoms. A 32-year-old Hispanic man with advanced acquired immunodeficiency virus presented with altered mental status and reported confusion for the past 3 months. He had a Glasgow Coma Scale of 12, repetitive nonfluent speech, and a disconjugate gaze with a right gaze preference. Lung computed tomography (CT) findings indicated a pulmonary histoplasmosis infection. Magnetic resonance imaging of the brain revealed a ring-enhancing lesion in the left caudate nucleus. A CT-guided left retroperitoneal node biopsy was performed and indicated a benign inflammatory process with organisms compatible with fungal yeast. Treatment with amphotericin B followed by itraconazole was initiated in spite of negative cerebrospinal fluid (CSF) cultures and proved effective in mitigating associated CNS lesions and resolving neurologic deficits. The patient was discharged 3 weeks later in stable condition. Six weeks later, his left basal ganglia mass decreased. Early recognition of symptoms and proper steps is key in improving outcomes of CNS histoplasmosis. Aggressive medical management is possible in the treatment of intracranial deep mass lesions, and disseminated histoplasmosis with CNS involvement can be appropriately diagnosed and treated, despite negative CSF and serology studies. PMID:26251798

  3. Agile Delivery of Protein Therapeutics to CNS

    PubMed Central

    Yi, Xiang; Manickam, Devika S.; Brynskikh, Anna; Kabanov, Alexander V.

    2014-01-01

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. PMID:24956489

  4. Agile delivery of protein therapeutics to CNS.

    PubMed

    Yi, Xiang; Manickam, Devika S; Brynskikh, Anna; Kabanov, Alexander V

    2014-09-28

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.

  5. Histamine and Immune Biomarkers in CNS Disorders

    PubMed Central

    Cacabelos, Ramón; Torrellas, Clara; Fernández-Novoa, Lucía; López-Muñoz, Francisco

    2016-01-01

    Neuroimmune dysregulation is a common phenomenon in different forms of central nervous system (CNS) disorders. Cross-links between central and peripheral immune mechanisms appear to be disrupted as reflected by a series of immune markers (CD3, CD4, CD7, HLA-DR, CD25, CD28, and CD56) which show variability in brain disorders such as anxiety, depression, psychosis, stroke, Alzheimer's disease, Parkinson's disease, attention-deficit hyperactivity disorder, migraine, epilepsy, vascular dementia, mental retardation, cerebrovascular encephalopathy, multiple sclerosis, brain tumors, cranial nerve neuropathies, mental retardation, and posttraumatic brain injury. Histamine (HA) is a pleiotropic monoamine involved in several neurophysiological functions, neuroimmune regulation, and CNS pathogenesis. Changes in brain HA show an age- and sex-related pattern, and alterations in brain HA levels are present in different CNS regions of patients with Alzheimer's disease (AD). Brain HA in neuronal and nonneuronal compartments plays a dual role (neurotrophic versus neurotoxic) in a tissue-specific manner. Pathogenic mechanisms associated with neuroimmune dysregulation in AD involve HA, interleukin-1β, and TNF-α, whose aberrant expression contributes to neuroinflammation as an aggravating factor for neurodegeneration and premature neuronal death. PMID:27190492

  6. Draft Genome Sequence of a Pathogenic O86:H25 Sequence Type 57 Escherichia coli Strain Isolated from Poultry and Carrying 12 Acquired Antibiotic Resistance Genes.

    PubMed

    Jones-Dias, Daniela; Manageiro, Vera; Sampaio, Daniel Ataíde; Vieira, Luís; Caniça, Manuela

    2015-01-01

    Escherichia coli is a commensal bacterium that is frequently associated with multidrug-resistant zoonotic and foodborne infections. Here, we report the 5.6-Mbp draft genome sequence of an E. coli recovered from poultry, which encodes multiple acquired antibiotic resistance determinants, virulence factors, pathogenicity determinants, and mobile genetic elements. PMID:26404585

  7. Sublime microglia: expanding roles for the guardians of the CNS.

    PubMed

    Salter, Michael W; Beggs, Simon

    2014-07-01

    Recent findings challenge the concept that microglia solely function in disease states in the central nervous system (CNS). Rather than simply reacting to CNS injury, infection, or pathology, emerging lines of evidence indicate that microglia sculpt the structure of the CNS, refine neuronal circuitry and network connectivity, and contribute to plasticity. These physiological functions of microglia in the normal CNS begin during development and persist into maturity. Here, we develop a conceptual framework for functions of microglia beyond neuroinflammation and discuss the rich repertoire of signaling and communication motifs in microglia that are critical both in pathology and for the normal physiology of the CNS.

  8. Progressive multifocal leukoencephalopathy occurring with the acquired immune deficiency syndrome.

    PubMed

    England, J D; Hsu, C Y; Garen, P D; Goust, J M; Biggs, P J

    1984-08-01

    A 33-year-old homosexual man with symptoms and signs of a focal brain process was subsequently found to have an acquired immune deficiency syndrome (AIDS) with biopsy-proven progressive multifocal leukoencephalopathy. This report reemphasizes the association of progressive multifocal leukoencephalopathy with AIDS and probably is best viewed as another example of an opportunistic CNS infection complicating deficient cell-mediated immunity. PMID:6540476

  9. Cerebrospinal fluid may mediate CNS ischemic injury

    PubMed Central

    Wang, Yanming F; Gwathmey, Judith K; Zhang, Guorong; Soriano, Sulpicio G; He, Shunli; Wang, Yanguang

    2005-01-01

    Background The central nervous system (CNS) is extremely vulnerable to ischemic injury. The details underlying this susceptibility are not completely understood. Since the CNS is surrounded by cerebrospinal fluid (CSF) that contains a low concentration of plasma protein, we examined the effect of changing the CSF in the evolution of CNS injury during ischemic insult. Methods Lumbar spinal cord ischemia was induced in rabbits by cross-clamping the descending abdominal aorta for 1 h, 2 h or 3 h followed by 7 d of reperfusion. Prior to ischemia, rabbits were subjected to the following procedures; 1) CSF depletion, 2) CSF replenishment at 0 mmHg intracranial pressure (ICP), and 3) replacement of CSF with 8% albumin- or 1% gelatin-modified artificial CSF, respectively. Motor function of the hind limbs and histopathological changes of the spinal cord were scored. Post-ischemic microcirculation of the spinal cord was visualized by fluorescein isothiocyanate (FITC) albumin. Results The severity of histopathological damage paralleled the neurological deficit scores. Paraplegia and associated histopathological changes were accompanied by a clear post-ischemic deficit in blood perfusion. Spinal cord ischemia for 1 h resulted in permanent paraplegia in the control group. Depletion of the CSF significantly prevented paraplegia. CSF replenishment with the ICP reduced to 0 mmHg, did not prevent paraplegia. Replacement of CSF with albumin- or gelatin-modified artificial CSF prevented paraplegia in rabbits even when the ICP was maintained at 10–15 mmHg. Conclusion We conclude that the presence of normal CSF may contribute to the vulnerability of the spinal cord to ischemic injury. Depletion of the CSF or replacement of the CSF with an albumin- or gelatin-modified artificial CSF can be neuroprotective. PMID:16174300

  10. Histamine pharmacology and new CNS drug targets.

    PubMed

    Tiligada, Ekaterini; Kyriakidis, Konstantinos; Chazot, Paul L; Passani, M Beatrice

    2011-12-01

    During the last decade, the identification of a number of novel drug targets led to the development of promising new compounds which are currently under evaluation for their therapeutic prospective in CNS related disorders. Besides the established pleiotropic regulatory functions in the periphery, the interest in the potential homeostatic role of histamine in the brain was revived following the identification of H(3) and H(4) receptors some years ago. Complementing classical CNS pharmacology, the development of selective histamine receptor agonists, antagonists, and inverse agonists provides the lead for the potential exploitation of the histaminergic system in the treatment of brain pathologies. Although no CNS disease entity has been associated directly to brain histamine dysfunction until now, the H(3) receptor is recognized as a drug target for neuropathic pain, sleep-wake disorders, including narcolepsy, and cognitive impairment associated with attention deficit hyperactivity disorder, schizophrenia, Alzheimer's, or Parkinson's disease, while the first H(3) receptor ligands have already entered phase I-III clinical trials. Interestingly, the localization of the immunomodulatory H(4) receptor in the nervous system exposes attractive perspectives for the therapeutic exploitation of this new drug target in neuroimmunopharmacology. This review focuses on a concise presentation of the current "translational research" approach that exploits the latest advances in histamine pharmacology for the development of beneficial drug targets for the treatment of neuronal disorders, such as neuropathic pain, cognitive, and sleep-wake pathologies. Furthermore, the role of the brain histaminergic system(s) in neuroprotection and neuroimmunology/inflammation remains a challenging research area that is currently under consideration.

  11. Development of an Orally Available and Central Nervous System (CNS) Penetrant Toxoplasma gondii Calcium-Dependent Protein Kinase 1 (TgCDPK1) Inhibitor with Minimal Human Ether-a-go-go-Related Gene (hERG) Activity for the Treatment of Toxoplasmosis.

    PubMed

    Vidadala, Rama Subba Rao; Rivas, Kasey L; Ojo, Kayode K; Hulverson, Matthew A; Zambriski, Jennifer A; Bruzual, Igor; Schultz, Tracey L; Huang, Wenlin; Zhang, Zhongsheng; Scheele, Suzanne; DeRocher, Amy E; Choi, Ryan; Barrett, Lynn K; Siddaramaiah, Latha Kallur; Hol, Wim G J; Fan, Erkang; Merritt, Ethan A; Parsons, Marilyn; Freiberg, Gail; Marsh, Kennan; Kempf, Dale J; Carruthers, Vern B; Isoherranen, Nina; Doggett, J Stone; Van Voorhis, Wesley C; Maly, Dustin J

    2016-07-14

    New therapies are needed for the treatment of toxoplasmosis, which is a disease caused by the protozoan parasite Toxoplasma gondii. To this end, we previously developed a potent and selective inhibitor (compound 1) of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) that possesses antitoxoplasmosis activity in vitro and in vivo. Unfortunately, 1 has potent human ether-a-go-go-related gene (hERG) inhibitory activity, associated with long Q-T syndrome, and consequently presents a cardiotoxicity risk. Here, we describe the identification of an optimized TgCDPK1 inhibitor 32, which does not have a hERG liability and possesses a favorable pharmacokinetic profile in small and large animals. 32 is CNS-penetrant and highly effective in acute and latent mouse models of T. gondii infection, significantly reducing the amount of parasite in the brain, spleen, and peritoneal fluid and reducing brain cysts by >85%. These properties make 32 a promising lead for the development of a new antitoxoplasmosis therapy. PMID:27309760

  12. Electrophysiological CNS-processes related to associative learning in humans.

    PubMed

    Christoffersen, Gert R J; Schachtman, Todd R

    2016-01-01

    The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli.

  13. Flipping the transcriptional switch from myelin inhibition to axon growth in the CNS

    PubMed Central

    Carmel, Jason B.; Young, Wise; Hart, Ronald P.

    2015-01-01

    Poor regeneration of severed axons in the central nervous system (CNS) limits functional recovery. Regeneration failure involves interplay of inhibitory environmental elements and the growth state of the neuron. To find internal changes in gene expression that might overcome inhibitory environmental cues, we compared several paradigms that allow growth in the inhibitory environment. Conditions that allow axon growth by axotomized and cultured dorsal root ganglion (DRG) neurons on CNS myelin include immaturity (the first few postnatal days), high levels of cyclic adenosine mono phosphate (cAMP), and conditioning with a peripheral nerve lesion before explant. This shift from inhibition to growth depends on transcription. Seeking to understand the transcriptome changes that allow axon growth in the CNS, we collaborated with the Marie Filbin laboratory to identify several mRNAs that are functionally relevant, as determined by gain- and loss-of-function studies. In this Perspective, we review evidence from these experiments and discuss the merits of comparing multiple regenerative paradigms to identify a core transcriptional program for CNS axon regeneration. PMID:26236189

  14. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function.

    PubMed

    Voulgari-Kokota, A; Fairless, R; Karamita, M; Kyrargyri, V; Tseveleki, V; Evangelidou, M; Delorme, B; Charbord, P; Diem, R; Probert, L

    2012-07-01

    Mesenchymal stem cells (MSC) promote functional recovery in experimental models of central nervous system (CNS) pathology and are currently being tested in clinical trials for stroke, multiple sclerosis and CNS injury. Their beneficial effects are attributed to the activation of endogenous CNS protection and repair processes as well as immune regulation but their mechanisms of action are poorly understood. Here we investigated the neuroprotective effects of mouse MSC in rodent MSC-neuron co-cultures and mice using models of glutamate excitotoxicity. A 24h pre-culture of mouse primary cortical neurons with MSC protected them against glutamate (NMDA) receptor-induced death and conditioned medium from MSC (MSC CM) was sufficient for this effect. Protection by MSC CM was associated with reduced mRNA levels of genes encoding NMDA receptor subunits, and increased levels for genes associated with non-neuronal and stem cell types, as shown by RT-PCR and cDNA microarray analyses. Changes in gene expression were not associated with alterations in cell lineage representation within the cultures. Further, MSC CM-mediated neuroprotection in rat retinal ganglion cells was associated with reduced glutamate-induced calcium influx. The adoptive transfer of EGFP(+)MSC in a mouse kainic acid epilepsy model also provided neuroprotection against glutamate excitotoxicity in vivo, as shown by reduced neuron damage and glial cell activation in the hippocampus. These results show that MSC mediate direct neuroprotection by reducing neuronal sensitivity to glutamate receptor ligands and altering gene expression, and suggest a link between the therapeutic effects of MSC and the activation of cell plasticity in the damaged CNS. PMID:22561409

  15. CNS activity of Calotropis gigantea roots.

    PubMed

    Argal, Ameeta; Pathak, Anupam Kumar

    2006-06-15

    Alcoholic extract of peeled roots of Calotropis gigantea R.Br. (Asclepiadaceae) was tested orally in albino rats at the dose level of 250 and 500 mg/kg bodyweight for CNS activity. Prominent analgesic activity was observed in Eddy's hot plate method and acetic acid induced writhings. The paw licking time was delayed and the numbers of writhings were greatly reduced. Significant anticonvulsant activity was seen as there was a delay in the onset of pentylenetetrazole induced convulsions as well as decrease in its severity. The extract treated rats spent more time in the open arm of EPM showing its antianxiety activity. There was a decrease in the locomotor activity. The fall off time (motor coordination) was also decreased. A potentiation in the pentobarbitone-induced sleep due to the sedative effect of the extract was observed. No mortality was seen upto the dose of 1 g/kg. These results show the analgesic, anticonvulsant, anxiolytic and sedative effect of the extract.

  16. Resistance to methicillin of coagulase-negative staphylococci (CNS) isolated from bovine mastitis.

    PubMed

    Bochniarz, M; Wawron, W; Szczubial, M

    2013-01-01

    The aim of this study was to determine the mechanisms of staphylococcal resistance to methicillin. CNS (n = 100 isolates) were prepared from the mammary inflammatory secretions of 86 cows from farms located in the Lublin region. Methicillin-resistant isolates constituted 20.0% of all CNS. Staphylococcus sciuri (n=8) and Staphylococcus xylosus (n=6) were most abundant, followed by Staphylococcus chromogenes (n=3), Staphylococcus haemolyticus (n=2) and Staphylococcus warned (n=1). The mecA gene was found in 50.0% of MRCNS (10.0% of all CNS isolates) belonging to two species: S. sciuri and S. xylosus. All mecA-positive isolates contained the protein of low affinity to penicillin (penicillin-binding protein 2a - PBP2a). The enzyme hydrolysing the beta-lactam ring in antibiotics was detected in 40.0% of MRCNS; 10.0% of MRCNS isolates were characterised by the presence of the mecA gene and ability to produce beta-lactamase. The remaining 20.0% of MRCNS isolates showing phenotypic resistance to methicillin were mecA gene-negative and were not able to produce beta-lactamase. PMID:24597303

  17. Obese gene expression: reduction by fasting and stimulation by insulin and glucose in lean mice, and persistent elevation in acquired (diet-induced) and genetic (yellow agouti) obesity.

    PubMed Central

    Mizuno, T M; Bergen, H; Funabashi, T; Kleopoulos, S P; Zhong, Y G; Bauman, W A; Mobbs, C V

    1996-01-01

    Mutations in the obese (ob) gene lead to obesity. This gene has been recently cloned, but the factors regulating its expression have not been elucidated. To address the regulation of the ob gene with regard to body weight and nutritional factors, Northern blot analysis was used to assess ob mRNA in adipose tissue from mice [lean, obese due to diet, or genetically (yellow agouti) obese] under different nutritional conditions. ob mRNA was elevated in both forms of obesity, compared to lean controls, correlated with elevations in plasma insulin and body weight, but not plasma glucose. In lean C57BL/6J mice, but not in mice with diet-induced obesity, ob mRNA decreased after a 48-hr fast. Similarly, in lean C57BL/6J controls, but not in obese yellow mice, i.p. glucose injection significantly increased ob mRNA. For up to 30 min after glucose injection, ob mRNA in lean mice significantly correlated with plasma glucose, but not with plasma insulin. In a separate study with only lean mice, ob mRNA was inhibited >90% by fasting, and elevated approximately 2-fold 30 min after i.p. injection of either glucose or insulin. These results suggest that in lean animals glucose and insulin enhance ob gene expression. In contrast to our results in lean mice, in obese animals ob mRNA is elevated and relatively insensitive to nutritional state, possibly due to chronic exposure to elevated plasma insulin and/or glucose. Images Fig. 1 Fig. 4 PMID:8622953

  18. Five novel cell surface antigens of CNS neoplasms.

    PubMed

    Jennings, M T; Jennings, V D; Asadourian, L L; Rosenblum, M; Albino, A P; Cairncross, J G; Old, L J

    1989-01-01

    Optimal monoclonal antibody-mediated immunotherapy requires the identification of tumor-restricted cell surface antigens. We have identified and partially characterized 5 new monoclonal antibodies generated against malignant astrocytoma, medulloblastoma, neuroblastoma and melanoma which were used to define 5 neuroectodermal tumor antigenic systems. CNT/1 identifies a 57-kDa, heat-stable, trypsin-sensitive neuroblastoma surface antigen, which is expressed intracellularly in many malignant gliomas, medulloblastomas, ependymomas, breast and ovarian carcinomas. CNT/2 reacts with a 130-kDa, heat-labile, trypsin- and neuraminidase-resistant antigen restricted to low-grade astrocytomas and malignant gliomas. CNT/11 reacts with a 70-kDa, heat-labile, trypsin-sensitive antigen coded for by a gene on chromosome 12, and is restricted to astrocytomas, neuroblastomas and sarcomas. CNT/8 identifies a heat-labile, trypsin-sensitive antigen whose gene has been localized to chromosome 15 and is expressed by neuroectodermal and mesodermally derived tumors and few epithelial cancers. The B2.6 antigen is identified only in terms of serologic reactivity with a subset of cultured astrocytomas and melanomas. Neuroectodermal tumor-associated antigens may be categorized as lineage-consistent, lineage-independent and putatively tumor-restricted in their expression. These restricted antibodies may be potentially useful reagents to consider for monoclonal antibody-mediated immunotherapy of CNS neoplasms.

  19. Evolutionary diversification of the BetaM interactome acquired through co-option of the ATP1B4 gene in placental mammals

    PubMed Central

    Korneenko, Tatyana V.; Pestov, Nikolay B.; Ahmad, Nisar; Okkelman, Irina A.; Dmitriev, Ruslan I.; Shakhparonov, Mikhail I.; Modyanov, Nikolai N.

    2016-01-01

    ATP1B4 genes represent a rare instance of orthologous vertebrate gene co-option that radically changed properties of the encoded BetaM proteins, which function as Na,K-ATPase subunits in lower vertebrates and birds. Eutherian BetaM has lost its ancestral function and became a muscle-specific resident of the inner nuclear membrane. Our earlier work implicated BetaM in regulation of gene expression through direct interaction with the transcriptional co-regulator SKIP. To gain insight into evolution of BetaM interactome we performed expanded screening of eutherian and avian cDNA libraries using yeast-two-hybrid and split-ubiquitin systems. The inventory of identified BetaM interactors includes lamina-associated protein LAP-1, myocyte nuclear envelope protein Syne1, BetaM itself, heme oxidases HMOX1 and HMOX2; transcription factor LZIP/CREB3, ERGIC3, PHF3, reticulocalbin-3, and β-sarcoglycan. No new interactions were found for chicken BetaM and human Na,K-ATPase β1, β2 and β3 isoforms, indicating the uniqueness of eutherian BetaM interactome. Analysis of truncated forms of BetaM indicates that residues 72-98 adjacent to the membrane in nucleoplasmic domain are important for the interaction with SKIP. These findings demonstrate that evolutionary alterations in structural and functional properties of eutherian BetaM proteins are associated with the increase in its interactome complexity. PMID:26939788

  20. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

  1. Hospital-acquired pneumonia

    MedlinePlus

    ... tends to be more serious than other lung infections because: People in the hospital are often very sick and cannot fight off ... prevent pneumonia. Most hospitals have programs to prevent hospital-acquired infections.

  2. Acquired Cerebral Trauma: Epilogue.

    ERIC Educational Resources Information Center

    Bigler, Erin D., Ed.

    1988-01-01

    The article summarizes a series of articles concerning acquired cerebral trauma. Reviewed are technological advances, treatment, assessment, potential innovative therapies, long-term outcome, family impact of chronic brain injury, and prevention. (DB)

  3. CNS involvement in hemophagocytic lymphohistiocytosis: CT and MR findings.

    PubMed

    Chung, Tae Woong

    2007-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a rare disorder that is characterized by proliferation of benign histiocytes, and this commonly involves the liver, spleen, lymph nodes, bone marrow and central nervous system (CNS). We report here on the CT and MR imaging findings in a case of CNS HLH that showed multiple ring enhancing masses mimicking abscess or another mass on the CT and MR imaging.

  4. Mechanisms of Hypothermia, Delayed Hyperthermia and Fever Following CNS Injury

    EPA Science Inventory

    Central nervous system (CNS) damage is often associated with robust body temperature changes, such as hypothermia and delayed hyperthermia. Hypothermia is one of the most common body temperature changes to CNS insults in rodents and is often associated with improved outcome. Alth...

  5. A Eukaryotic-Acquired Gene by a Biotrophic Phytopathogen Allows Prolonged Survival on the Host by Counteracting the Shut-Down of Plant Photosynthesis

    PubMed Central

    Gottig, Natalia; Dunger, Germán; Garofalo, Cecilia G.; Daurelio, Lucas D.; Ndimba, Bongani; Orellano, Elena G.; Gehring, Chris; Ottado, Jorgelina

    2010-01-01

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization. PMID:20126632

  6. [Acquired haemophilia (acquired factor VIII inhibitor)].

    PubMed

    Ceresetto, José M; Duboscq, Cristina; Fondevila, Carlos; Tezanos Pinto, Miguel

    2015-01-01

    Acquired haemophilia is a rare disorder. The clinical picture ranges from mild ecchymosis and anaemia to life threatening bleeding in up to 20% of patients. The disease is produced by an antibody against Factor VIII and it usually occurs in the elderly, with no previous history of a bleeding disorder. It can be associated to an underlying condition such as cancer, autoimmune disorders, drugs or pregnancy. It has a typical laboratory pattern with isolated prolonged activated partial thromboplastin time (aPTT) that fails to correct upon mixing tests with normal plasma and low levels of factor VIII. Treatment recommendations are based on controlling the acute bleeding episodes with either bypassing agent, recombinant activated factor VII or activated prothrombin complex concentrate, and eradication of the antibody with immunosuppressive therapy.

  7. Immune surveillance of the CNS following infection and injury

    PubMed Central

    Russo, Matthew; McGavern, Dorian B.

    2015-01-01

    The central nervous system (CNS) contains a sophisticated neural network that must be constantly surveyed in order to detect and mitigate a diverse array of challenges. The innate and adaptive immune systems actively participate in this surveillance, which is critical for the maintenance of CNS homeostasis and can facilitate the resolution of infections, degeneration, and tissue damage. Infections and sterile injuries represent two common challenges imposed on the CNS that require a prompt immune response. While the inducers of these two challenges differ in origin, the resultant responses orchestrated by the CNS share some overlapping features. Here, we review how the CNS immunologically discriminates between pathogens and sterile injuries, mobilizes an immune reaction, and, ultimately, regulates local and peripherally-derived immune cells to provide a supportive milieu for tissue repair. PMID:26431941

  8. High Prevalence of Panton-Valentine Leukocidin (PVL) Genes in Nosocomial-Acquired Staphylococcus aureus Isolated from Tertiary Care Hospitals in Nepal

    PubMed Central

    Shrestha, Bidya; Singh, Winny; Raj, V. Samuel; Pokhrel, Bharat Mani; Mohapatra, Tribhuban Mohan

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) carrying the important virulence determinant, Panton-Valentine leukocidin (PVL), is an emerging infectious pathogen associated with skin and soft tissue infections as well as life-threatening invasive diseases. In carrying out the first PVL prevalence study in Nepal, we screened 73 nosocomial isolates of S. aureus from 2 tertiary care Nepali hospitals and obtained an overall PVL-positivity rate of 35.6% among the hospital isolates: 26.1% of MRSA and 51.9% of methicillin sensitive S. aureus (MSSA) isolates were found to be positive for the PVL genes. PVL prevalence was not associated with a specific (i) infection site, (ii) age group, or (iii) hospital of origin. It was found to be positively associated with heterogeneous MRSA (73.3%) compared to homogeneous MRSA (3.2%) and MSSA (51.9%); negatively associated with multiresistant MRSA (22%) compared to nonmultiresistant MRSA (60%) and MSSA (51.9%); and positively associated with macrolide-streptogramin B resistance (93.8%) compared to macrolide-lincosamide-streptogramin B resistance (0%) and no-resistance (45.8%) types. Macrolide-streptogramin B resistance was confirmed by the presence of msr(A) gene. Restriction pattern analyses provided evidence to support the circulation of a limited number of clones of PVL-positive MRSA, arguing for the adaptability of these isolates to a hospital setting. PMID:25045702

  9. A philosophy for CNS radiotracer design.

    PubMed

    Van de Bittner, Genevieve C; Ricq, Emily L; Hooker, Jacob M

    2014-10-21

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test-retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available

  10. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes.

    PubMed

    Aziz, Ramy K; Edwards, Robert A; Taylor, William W; Low, Donald E; McGeer, Allison; Kotb, Malak

    2005-05-01

    The recrudescence of severe invasive group A streptococcal (GAS) diseases has been associated with relatively few strains, including the M1T1 subclone that has shown an unprecedented global spread and prevalence and high virulence in susceptible hosts. To understand its unusual epidemiology, we aimed to identify unique genomic features that differentiate it from the fully sequenced M1 SF370 strain. We constructed DNA microarrays from an M1T1 shotgun library and, using differential hybridization, we found that both M1 strains are 95% identical and that the 5% unique M1T1 clone sequences more closely resemble sequences found in the M3 strain, which is also associated with severe disease. Careful analysis of these unique sequences revealed three unique prophages that we named M1T1.X, M1T1.Y, and M1T1.Z. While M1T1.Y is similar to phage 370.3 of the M1-SF370 strain, M1T1.X and M1T1.Z are novel and encode the toxins SpeA2 and Sda1, respectively. The genomes of these prophages are highly mosaic, with different segments being related to distinct streptococcal phages, suggesting that GAS phages continue to exchange genetic material. Bioinformatic and phylogenetic analyses revealed a highly conserved open reading frame (ORF) adjacent to the toxins in 18 of the 21 toxin-carrying GAS prophages. We named this ORF paratox, determined its allelic distribution among different phages, and found linkage disequilibrium between particular paratox alleles and specific toxin genes, suggesting that they may move as a single cassette. Based on the conservation of paratox and other genes flanking the toxins, we propose a recombination-based model for toxin dissemination among prophages. We also provide evidence that a minor population of the M1T1 clonal isolates have exchanged their virulence module on phage M1T1.Y, replacing it with a different module identical to that found on a related M3 phage. Taken together, the data demonstrate that mosaicism of the GAS prophages has contributed to

  11. Community-acquired pneumonia.

    PubMed

    Falguera, M; Ramírez, M F

    2015-11-01

    This article not only reviews the essential aspects of community-acquired pneumonia for daily clinical practice, but also highlights the controversial issues and provides the newest available information. Community-acquired pneumonia is considered in a broad sense, without excluding certain variants that, in recent years, a number of authors have managed to delineate, such as healthcare-associated pneumonia. The latter form is nothing more than the same disease that affects more frail patients, with a greater number of risk factors, both sharing an overall common approach. PMID:26186969

  12. Acquired hypofibrinogenemia: current perspectives

    PubMed Central

    Besser, Martin W; MacDonald, Stephen G

    2016-01-01

    Acquired hypofibrinogenemia is most frequently caused by hemodilution and consumption of clotting factors. The aggressive replacement of fibrinogen has become one of the core principles of modern management of massive hemorrhage. The best method for determining the patient’s fibrinogen level remains controversial, and particularly in acquired dysfibrinogenemia, could have major therapeutic implications depending on which quantification method is chosen. This review introduces the available laboratory and point-of-care methods and discusses the relative advantages and limitations. It also discusses current strategies for the correction of hypofibrinogenemia. PMID:27713652

  13. Community-acquired pneumonia.

    PubMed

    Falguera, M; Ramírez, M F

    2015-11-01

    This article not only reviews the essential aspects of community-acquired pneumonia for daily clinical practice, but also highlights the controversial issues and provides the newest available information. Community-acquired pneumonia is considered in a broad sense, without excluding certain variants that, in recent years, a number of authors have managed to delineate, such as healthcare-associated pneumonia. The latter form is nothing more than the same disease that affects more frail patients, with a greater number of risk factors, both sharing an overall common approach.

  14. Brief report: autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency.

    PubMed

    Moretti, Paolo; Peters, Sarika U; Del Gaudio, Daniela; Sahoo, Trilochan; Hyland, Keith; Bottiglieri, Teodoro; Hopkin, Robert J; Peach, Elizabeth; Min, Sang Hee; Goldman, David; Roa, Benjamin; Bacino, Carlos A; Scaglia, Fernando

    2008-07-01

    We studied seven children with CNS folate deficiency (CFD). All cases exhibited psychomotor retardation, regression, cognitive delay, and dyskinesia; six had seizures; four demonstrated neurological abnormalities in the neonatal period. Two subjects had profound neurological abnormalities that precluded formal behavioral testing. Five subjects received ADOS and ADI-R testing and met diagnostic criteria for autism or autism spectrum disorders. They exhibited difficulties with transitions, insistence on sameness, unusual sensory interests, and repetitive behaviors. Those with the best language skills largely used repetitive phrases. No mutations were found in folate transporter or folate enzyme genes. These findings demonstrate that autistic features are salient in CFD and suggest that a subset of children with developmental regression, mental retardation, seizures, dyskinesia, and autism may have CNS folate abnormalities. PMID:18027081

  15. Are there negative CNS impacts of aluminum adjuvants used in vaccines and immunotherapy?

    PubMed

    Shaw, Christopher A; Li, Dan; Tomljenovic, Lucija

    2014-01-01

    In spite of a common view that aluminum (Al) salts are inert and therefore harmless as vaccine adjuvants or in immunotherapy, the reality is quite different. In the following article we briefly review the literature on Al neurotoxicity and the use of Al salts as vaccine adjuvants and consider not only direct toxic actions on the nervous system, but also the potential impact for triggering autoimmunity. Autoimmune and inflammatory responses affecting the CNS appear to underlie some forms of neurological disease, including developmental disorders. Al has been demonstrated to impact the CNS at every level, including by changing gene expression. These outcomes should raise concerns about the increasing use of Al salts as vaccine adjuvants and for the application as more general immune stimulants.

  16. Brief Report: Autistic Symptoms, Developmental Regression, Mental Retardation, Epilepsy, and Dyskinesias in CNS Folate Deficiency

    PubMed Central

    Moretti, Paolo; Peters, Sarika U.; del Gaudio, Daniela; Sahoo, Trilochan; Hyland, Keith; Bottiglieri, Teodoro; Hopkin, Robert J.; Peach, Elizabeth; Min, Sang Hee; Goldman, David; Roa, Benjamin

    2014-01-01

    We studied seven children with CNS folate deficiency (CFD). All cases exhibited psychomotor retardation, regression, cognitive delay, and dyskinesia; six had seizures; four demonstrated neurological abnormalities in the neonatal period. Two subjects had profound neurological abnormalities that precluded formal behavioral testing. Five subjects received ADOS and ADI-R testing and met diagnostic criteria for autism or autism spectrum disorders. They exhibited difficulties with transitions, insistence on sameness, unusual sensory interests, and repetitive behaviors. Those with the best language skills largely used repetitive phrases. No mutations were found in folate transporter or folate enzyme genes. These findings demonstrate that autistic features are salient in CFD and suggest that a subset of children with developmental regression, mental retardation, seizures, dyskinesia, and autism may have CNS folate abnormalities. PMID:18027081

  17. Pathogenesis and management of primary CNS lymphoma.

    PubMed

    Roth, Patrick; Korfel, Agnieszka; Martus, Peter; Weller, Michael

    2012-05-01

    Primary CNS lymphoma (PCNSL), a rare variant of extranodal non-Hodgkin's lymphoma, may cause various neurological symptoms and signs. The best therapeutic strategy is still a matter of debate. High-dose methotrexate (HD-MTX) is the most active compound and should be used as the backbone for any chemotherapy applied. Several other chemotherapeutic drugs have been assessed in combination with HD-MTX, but no standard has yet been defined. Whole-brain radiotherapy is active against PCNSL, but typically does not confer long-lasting remission and is associated with significant neurotoxicity in many patients. The recently published G-PCNSL-SG1 trial has shown that consolidating whole-brain radiotherapy after HD-MTX-based chemotherapy does not prolong overall survival and may therefore be deferred. Combined systemic and intraventricular polychemotherapy, or high-dose chemotherapy followed by stem cell transplantation may offer cures to younger patients. Improving treatment regimens without adding significant (neuro-)toxicity should be the focus of ongoing and future studies.

  18. Application of Nanomedicine to the CNS Diseases.

    PubMed

    Carradori, D; Gaudin, A; Brambilla, D; Andrieux, K

    2016-01-01

    Drug delivery to the brain is a challenge because of the many mechanisms that protect the brain from the entry of foreign substances. Numerous molecules which could be active against brain disorders are not clinically useful due to the presence of the blood-brain barrier. Nanoparticles can be used to deliver these drugs to the brain. Encapsulation within colloidal systems can allow the passage of nontransportable drugs across this barrier by masking their physicochemical properties. It should be noted that the status of the blood-brain barrier is different depending on the brain disease. In fact, in some pathological situations such as tumors or inflammatory disorders, its permeability is increased allowing very easy translocation of carriers. This chapter gathers the promising results obtained by using nanoparticles as drug delivery systems with the aim to improve the therapy of some CNS diseases such as brain tumor, Alzheimer's disease, and stroke. The data show that several approaches can be investigated: (1) carrying drug through a permeabilized barrier, (2) crossing the barrier thanks to receptor-mediated transcytosis pathway in order to deliver drug into the brain parenchyma, and also (3) targeting and treating the endothelial cells themselves to preserve locally the brain tissue. The examples given in this chapter contribute to demonstrate that delivering drugs into the brain is one of the most promising applications of nanotechnology in clinical neuroscience. PMID:27678175

  19. Camel Streptococcus agalactiae populations are associated with specific disease complexes and acquired the tetracycline resistance gene tetM via a Tn916-like element

    PubMed Central

    2013-01-01

    Camels are the most valuable livestock species in the Horn of Africa and play a pivotal role in the nutritional sustainability for millions of people. Their health status is therefore of utmost importance for the people living in this region. Streptococcus agalactiae, a Group B Streptococcus (GBS), is an important camel pathogen. Here we present the first epidemiological study based on genetic and phenotypic data from African camel derived GBS. Ninety-two GBS were characterized using multilocus sequence typing (MLST), capsular polysaccharide typing and in vitro antimicrobial susceptibility testing. We analysed the GBS using Bayesian linkage, phylogenetic and minimum spanning tree analyses and compared them with human GBS from East Africa in order to investigate the level of genetic exchange between GBS populations in the region. Camel GBS sequence types (STs) were distinct from other STs reported so far. We mapped specific STs and capsular types to major disease complexes caused by GBS. Widespread resistance (34%) to tetracycline was associated with acquisition of the tetM gene that is carried on a Tn916-like element, and observed primarily among GBS isolated from mastitis. The presence of tetM within different MLST clades suggests acquisition on multiple occasions. Wound infections and mastitis in camels associated with GBS are widespread and should ideally be treated with antimicrobials other than tetracycline in East Africa. PMID:24083845

  20. Camel Streptococcus agalactiae populations are associated with specific disease complexes and acquired the tetracycline resistance gene tetM via a Tn916-like element.

    PubMed

    Fischer, Anne; Liljander, Anne; Kaspar, Heike; Muriuki, Cecilia; Fuxelius, Hans-Henrik; Bongcam-Rudloff, Erik; de Villiers, Etienne P; Huber, Charlotte A; Frey, Joachim; Daubenberger, Claudia; Bishop, Richard; Younan, Mario; Jores, Joerg

    2013-01-01

    Camels are the most valuable livestock species in the Horn of Africa and play a pivotal role in the nutritional sustainability for millions of people. Their health status is therefore of utmost importance for the people living in this region. Streptococcus agalactiae, a Group B Streptococcus (GBS), is an important camel pathogen. Here we present the first epidemiological study based on genetic and phenotypic data from African camel derived GBS. Ninety-two GBS were characterized using multilocus sequence typing (MLST), capsular polysaccharide typing and in vitro antimicrobial susceptibility testing. We analysed the GBS using Bayesian linkage, phylogenetic and minimum spanning tree analyses and compared them with human GBS from East Africa in order to investigate the level of genetic exchange between GBS populations in the region. Camel GBS sequence types (STs) were distinct from other STs reported so far. We mapped specific STs and capsular types to major disease complexes caused by GBS. Widespread resistance (34%) to tetracycline was associated with acquisition of the tetM gene that is carried on a Tn916-like element, and observed primarily among GBS isolated from mastitis. The presence of tetM within different MLST clades suggests acquisition on multiple occasions. Wound infections and mastitis in camels associated with GBS are widespread and should ideally be treated with antimicrobials other than tetracycline in East Africa.

  1. CNS-disease affecting the heart: brain-heart disorders.

    PubMed

    Finsterer, Josef; Wahbi, Karim

    2014-10-15

    There are a number of hereditary and non-hereditary central nervous system (CNS) disorders, which directly or indirectly affect the heart (brain-heart disorders). The most well-known of these CNS-disorders are epilepsy, stroke, subarachanoid bleeding, bacterial meningitis, and head injury. In addition, a number of hereditary and non-hereditary neurodegenerative disorders may impair cardiac functions. Affection of the heart may manifest as arrhythmias, cardiomyopathy, or autonomic dysfunction. Rarer cardiac complications of CNS disorders include heart failure, systolic or diastolic dysfunction, myocardial infarction, arterial hypertension, or pulmonary hypertension. Cardiomyopathy induced by hereditary CNS disease mainly include stress-induced myocardial dysfunction, known as Takotsubo syndrome (TTS). CNS disease triggering TTS includes epilepsy, ischemic stroke, subarachnoid bleeding, or PRES syndrome. Arrhythmias induced by hereditary CNS disease include supraventricular or ventricular arrhythmias leading to palpitations, dizziness, vertigo, fainting, syncope, (near) sudden cardiac death, or sudden unexplained death in epilepsy (SUDEP). Appropriate management of cardiac involvement in CNS-disorders is essential to improve outcome of affected patients. PMID:25034054

  2. Risk and survival outcomes of radiation-induced CNS tumors.

    PubMed

    Lee, Jessica W; Wernicke, A Gabriella

    2016-08-01

    Patients treated with cranial radiation are at risk of developing secondary CNS tumors. Understanding the incidence, treatment, and long-term outcomes of radiation-induced CNS tumors plays a role in clinical decision-making and patient education. Additionally, as meningiomas and pituitary tumors have been detected at increasing rates across all ages and may potentially be treated with radiation, it is important to know and communicate the risk of secondary tumors in children and adults. After conducting an extensive literature search, we identified publications that report incidence and long-term outcomes of radiation-induced CNS tumors. We reviewed 14 studies in children, which reported that radiation confers a 7- to 10-fold increase in subsequent CNS tumors, with a 20-year cumulative incidence ranging from 1.03 to 28.9 %. The latency period for secondary tumors ranged from 5.5 to 30 years, with gliomas developing in 5-10 years and meningiomas developing around 15 years after radiation. We also reviewed seven studies in adults, where the two strongest studies showed no increased risk while the remaining studies found a higher risk compared to the general population. The latency period for secondary CNS tumors in adults ranged from 5 to 34 years. Treatment and long-term outcomes of radiation-induced CNS tumors have been documented in four case series, which did not conclusively demonstrate that secondary CNS tumors fared worse than primary CNS tumors. Radiation-induced CNS tumors remain a rare occurrence that should not by itself impede radiation treatment. Additional investigation is needed on the risk of radiation-induced tumors in adults and the long-term outcomes of these tumors. PMID:27209188

  3. Cell encapsulation technology as a therapeutic strategy for CNS malignancies.

    PubMed Central

    Visted, T.; Bjerkvig, R.; Enger, P. O.

    2001-01-01

    Gene therapy using viral vectors has to date failed to reveal its definitive clinical usefulness. Cell encapsulation technology represents an alternative, nonviral approach for the delivery of biologically active compounds to tumors. This strategy involves the use of genetically engineered producer cells that secrete a protein with therapeutic potential. The cells are encapsulated in an immunoisolating material that makes them suitable for transplantation. The capsules, or bioreactors, permit the release of recombinant proteins that may assert their effects in the tumor microenvironment. During the last decades, there has been significant progress in the development of encapsulation technologies that comprise devices for both macro- and microencapsulation. The polysaccharide alginate is the most commonly used material for cell encapsulation and is well tolerated by various tissues. A wide spectrum of cells and tissues has been encapsulated and implanted, both in animals and humans, indicating the general applicability of this approach for both research and medical purposes, including CNS malignancies. Gliomas most frequently recur at the resection site. To provide local and sustained drug delivery, the bioreactors can be implanted in the brain parenchyma or in the ventricular system. The development of comprehensive analyses of geno- and phenotypic profiles of a tumor (genomics and proteomics) may provide new and important guidelines for choosing the optimal combination of bioreactors and recombinant proteins for therapeutic use. PMID:11465401

  4. Axons modulate the expression of proteolipid protein in the CNS.

    PubMed

    Scherer, S S; Vogelbacker, H H; Kamholz, J

    1992-06-01

    We examined the expression of mRNA encoding proteolipid protein (PLP), the major myelin protein in the CNS, in developing rat cerebrum, and in normal and degenerating optic nerves. PLP transcripts were initiated at two clusters of start sites that were separated by about 30 base pairs. During the peak of PLP mRNA expression in developing cerebrum, a higher proportion of PLP transcripts were initiated from the distal start site, furthest from the open reading frame, than in mature cerebrum. We enucleated one eye of immature rats to cause Wallerian degeneration in the optic nerve. In these degenerating optic nerves, the steady state levels of PLP mRNA fell markedly, and the proportion of distally initiated PLP transcripts declined to the same proportion found in normal adult nerves. Changes in myelin gene expression were not limited to PLP mRNA, as the steady-state levels of myelin basic protein (MBP) mRNA paralleled those of PLP mRNA in the developing cerebrum and in degenerating optic nerves. Thus, oligodendrocytes require axons to maintain their normal levels of PLP and MBP transcripts and the high proportion of distally initiated PLP transcripts that characterize early myelination.

  5. NFIA Haploinsufficiency Is Associated with a CNS Malformation Syndrome and Urinary Tract Defects

    PubMed Central

    Alkuraya, Fowzan S; Donovan, Diana J; Xi, Qiongchao; Turbe-Doan, Annick; Li, Qing-Gang; Campbell, Craig G; Shanske, Alan L; Sherr, Elliott H; Ahmad, Ayesha; Peters, Roxana; Rilliet, Benedict; Parvex, Paloma; Bassuk, Alexander G; Harris, David J; Ferguson, Heather; Kelly, Chantal; Walsh, Christopher A; Gronostajski, Richard M; Devriendt, Koenraad; Higgins, Anne; Ligon, Azra H; Quade, Bradley J; Morton, Cynthia C; Gusella, James F; Maas, Richard L

    2007-01-01

    Complex central nervous system (CNS) malformations frequently coexist with other developmental abnormalities, but whether the associated defects share a common genetic basis is often unclear. We describe five individuals who share phenotypically related CNS malformations and in some cases urinary tract defects, and also haploinsufficiency for the NFIA transcription factor gene due to chromosomal translocation or deletion. Two individuals have balanced translocations that disrupt NFIA. A third individual and two half-siblings in an unrelated family have interstitial microdeletions that include NFIA. All five individuals exhibit similar CNS malformations consisting of a thin, hypoplastic, or absent corpus callosum, and hydrocephalus or ventriculomegaly. The majority of these individuals also exhibit Chiari type I malformation, tethered spinal cord, and urinary tract defects that include vesicoureteral reflux. Other genes are also broken or deleted in all five individuals, and may contribute to the phenotype. However, the only common genetic defect is NFIA haploinsufficiency. In addition, previous analyses of Nfia−/− knockout mice indicate that Nfia deficiency also results in hydrocephalus and agenesis of the corpus callosum. Further investigation of the mouse Nfia+/− and Nfia−/− phenotypes now reveals that, at reduced penetrance, Nfia is also required in a dosage-sensitive manner for ureteral and renal development. Nfia is expressed in the developing ureter and metanephric mesenchyme, and Nfia+/− and Nfia−/− mice exhibit abnormalities of the ureteropelvic and ureterovesical junctions, as well as bifid and megaureter. Collectively, the mouse Nfia mutant phenotype and the common features among these five human cases indicate that NFIA haploinsufficiency contributes to a novel human CNS malformation syndrome that can also include ureteral and renal defects. PMID:17530927

  6. Acquired Brain Injury Program.

    ERIC Educational Resources Information Center

    Schwartz, Stacey Hunter

    This paper reviews the Acquired Brain Injury (ABI) Program at Coastline Community College (California). The ABI Program is a two-year, for-credit educational curriculum designed to provide structured cognitive retraining for adults who have sustained an ABI due to traumatic (such as motor vehicle accident or fall) or non-traumatic(such as…

  7. CNS Vasculitis Associated with Waldenström Macroglobulinemia

    PubMed Central

    Riangwiwat, Tanawan; Wu, Chris Y.; Santos-Ocampo, Alberto S.; Liu, Randal J.

    2016-01-01

    Waldenström macroglobulinemia (WM) is an indolent B cell lymphoproliferative disorder with monoclonal IgM secretion. We present a patient with WM who presented with multifocal acute cortical ischemic strokes and was found to have central nervous system (CNS) vasculitis. Workup was negative for cryoglobulins and hyperviscosity syndrome. Immunosuppression with intravenous steroids and cyclophosphamide stabilized the patient's mental status and neurologic deficits. On followup over 7 years, patient gained independence from walking aids and experienced no recurrences of CNS vasculitis. To our knowledge, CNS vasculitis in a WM patient, in the absence of cryoglobulins, has not been reported. Immunosuppression is the preferred treatment.

  8. How Do Meningeal Lymphatic Vessels Drain the CNS?

    PubMed

    Raper, Daniel; Louveau, Antoine; Kipnis, Jonathan

    2016-09-01

    The many interactions between the nervous and the immune systems, which are active in both physiological and pathological states, have recently become more clearly delineated with the discovery of a meningeal lymphatic system capable of carrying fluid, immune cells, and macromolecules from the central nervous system (CNS) to the draining deep cervical lymph nodes. However, the exact localization of the meningeal lymphatic vasculature and the path of drainage from the cerebrospinal fluid (CSF) to the lymphatics remain poorly understood. Here, we discuss the potential differences between peripheral and CNS lymphatic vessels and examine the purported mechanisms of CNS lymphatic drainage, along with how these may fit into established patterns of CSF flow.

  9. Regional astrocyte allocation regulates CNS synaptogenesis and repair.

    PubMed

    Tsai, Hui-Hsin; Li, Huiliang; Fuentealba, Luis C; Molofsky, Anna V; Taveira-Marques, Raquel; Zhuang, Helin; Tenney, April; Murnen, Alice T; Fancy, Stephen P J; Merkle, Florian; Kessaris, Nicoletta; Alvarez-Buylla, Arturo; Richardson, William D; Rowitch, David H

    2012-07-20

    Astrocytes, the most abundant cell population in the central nervous system (CNS), are essential for normal neurological function. We show that astrocytes are allocated to spatial domains in mouse spinal cord and brain in accordance with their embryonic sites of origin in the ventricular zone. These domains remain stable throughout life without evidence of secondary tangential migration, even after acute CNS injury. Domain-specific depletion of astrocytes in ventral spinal cord resulted in abnormal motor neuron synaptogenesis, which was not rescued by immigration of astrocytes from adjoining regions. Our findings demonstrate that region-restricted astrocyte allocation is a general CNS phenomenon and reveal intrinsic limitations of the astroglial response to injury.

  10. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair

    PubMed Central

    London, Anat; Cohen, Merav; Schwartz, Michal

    2013-01-01

    Functional macrophage heterogeneity is recognized outside the central nervous system (CNS), where alternatively activated macrophages can perform immune-resolving functions. Such functional heterogeneity was largely ignored in the CNS, with respect to the resident microglia and the myeloid-derived cells recruited from the blood following injury or disease, previously defined as blood-derived microglia; both were indistinguishably perceived detrimental. Our studies have led us to view the myeloid-derived infiltrating cells as functionally distinct from the resident microglia, and accordingly, to name them monocyte-derived macrophages (mo-MΦ). Although microglia perform various maintenance and protective roles, under certain conditions when they can no longer provide protection, mo-MΦ are recruited to the damaged CNS; there, they act not as microglial replacements but rather assistant cells, providing activities that cannot be timely performed by the resident cells. Here, we focus on the functional heterogeneity of microglia/mo-MΦ, emphasizing that, as opposed to the mo-MΦ, microglia often fail to timely acquire the phenotype essential for CNS repair. PMID:23596391

  11. CNS Dopamine Transmission Mediated by Noradrenergic Innervation

    PubMed Central

    Smith, Caroline C.; Greene, Robert W.

    2012-01-01

    The pre-synaptic source of dopamine in the CA1 field of dorsal hippocampus is uncertain due to an anatomical mismatch between dopaminergic terminals and receptors. We show, in an in vitro slice preparation from C57BL6 male mice, that a dopamine (DA) D1 receptor (D1R) mediated enhancement in glutamate synaptic transmission occurs following release of endogenous DA with amphetamine exposure. It is assumed DA is released from terminals innervating from the ventral tegmental area (VTA) even though DA transporter (DAT) positive fibers are absent in hippocampus, a region with abundant D1Rs. It has been suggested this results from a lack of DAT expression on VTA terminals rather than a lack of these terminals per se. Neither a knockdown of tyrosine hydroxylase (TH) expression in the VTA by THsiRNA, delivered locally, by adeno-associated viral vector, nor localized pharmacological blockade of DAT to prevent amphetamine uptake into DA terminals, has any effect on the D1R synaptic, enhancement response to amphetamine. However, either a decrease in TH expression in the locus coeruleus (LC) or a blockade of the norepinephrine (NE) transporter prevents the DA mediated response, indicating LC terminals can release both NE and DA. These findings suggest noradrenergic fibers may be the primary source of DA release in hippocampus and corresponding DA mediated increase in synaptic transmission. Accordingly, these data imply the LC may have a role in DA transmission in the CNS in response to drugs of abuse, and potentially, under physiological conditions. PMID:22553014

  12. Generation of spike trains in CNS neurons.

    PubMed

    Calvin, W H

    1975-01-24

    The membrane potential waveforms to be expected from many asynchronous inputs to CNS neurons are described, along with modes for repetitive firing through which the input waveforms are converted into spike trains. Area beneath a postsynaptic potential (PSP), rather than PSP peak height, is shown to be an important parameter susceptible to modification. Occasional crossings of threshold produce occasional spikes, but a sustained depolarizing waveform which attempts to hold the membrane potential above threshold elicits rhythmic firing. Firing rate is graded with the amount by which the synaptic depolarizing currents exceed the minimum current for rhythmic firing (approximately rheobase). A systematic sequence of alterations in the membrane potential trajectory between spikes, quite different from those of receptors and invertebrate neurons, may control the firing rate and give rise to sudden changes in the "gain" of this conversion of depolarizing current into firing rate. The different implications of synaptic location during the occasional spike mode and the rhythmic firing mode are discussed, as is the role of the antidromic invasion of the soma-dendritic region during rhythmic firing. Less frequently an"extra spike mode" is seen where depolarizing afterpotentials following a spike themselves cross threshold to elicit an extra spike, which may similarly elicit another extra spike, etc., in a regenerative cycle. The character of the underlying depolarizing afterpotentials (or "delayed depolarizations") is reviewed, along with theories for their origin from the antidromic invasion of the dendritic tree. The stereotyped burst firing patterns characteristic of the extra spike mode can also be seen in deafferented neurons and neurons studied in chronic syndromes such as epilepsy and central pain. This raises the question as to whether some disease states may augment extra spike firing, thus multiplying many-fold the response to a normal input. PMID:163121

  13. The Processing of Airspace Concept Evaluations Using FASTE-CNS as a Pre- or Post-Simulation CNS Analysis Tool

    NASA Technical Reports Server (NTRS)

    Mainger, Steve

    2004-01-01

    As NASA speculates on and explores the future of aviation, the technological and physical aspects of our environment increasing become hurdles that must be overcome for success. Research into methods for overcoming some of these selected hurdles have been purposed by several NASA research partners as concepts. The task of establishing a common evaluation environment was placed on NASA's Virtual Airspace Simulation Technologies (VAST) project (sub-project of VAMS), and they responded with the development of the Airspace Concept Evaluation System (ACES). As one examines the ACES environment from a communication, navigation or surveillance (CNS) perspective, the simulation parameters are built with assumed perfection in the transactions associated with CNS. To truly evaluate these concepts in a realistic sense, the contributions/effects of CNS must be part of the ACES. NASA Glenn Research Center (GRC) has supported the Virtual Airspace Modeling and Simulation (VAMS) project through the continued development of CNS models and analysis capabilities which supports the ACES environment. NASA GRC initiated the development a communications traffic loading analysis tool, called the Future Aeronautical Sub-network Traffic Emulator for Communications, Navigation and Surveillance (FASTE-CNS), as part of this support. This tool allows for forecasting of communications load with the understanding that, there is no single, common source for loading models used to evaluate the existing and planned communications channels; and that, consensus and accuracy in the traffic load models is a very important input to the decisions being made on the acceptability of communication techniques used to fulfill the aeronautical requirements. Leveraging off the existing capabilities of the FASTE-CNS tool, GRC has called for FASTE-CNS to have the functionality to pre- and post-process the simulation runs of ACES to report on instances when traffic density, frequency congestion or aircraft spacing

  14. CNS drug design: balancing physicochemical properties for optimal brain exposure.

    PubMed

    Rankovic, Zoran

    2015-03-26

    The human brain is a uniquely complex organ, which has evolved a sophisticated protection system to prevent injury from external insults and toxins. Designing molecules that can overcome this protection system and achieve optimal concentration at the desired therapeutic target in the brain is a specific and major challenge for medicinal chemists working in CNS drug discovery. Analogous to the now widely accepted rule of 5 in the design of oral drugs, the physicochemical properties required for optimal brain exposure have been extensively studied in an attempt to similarly define the attributes of successful CNS drugs and drug candidates. This body of work is systematically reviewed here, with a particular emphasis on the interplay between the most critical physicochemical and pharmacokinetic parameters of CNS drugs as well as their impact on medicinal chemistry strategies toward molecules with optimal brain exposure. A summary of modern CNS pharmacokinetic concepts and methods is also provided.

  15. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    PubMed Central

    Babalola, Chinedum Peace; Morse, Gene D.; Taiwo, Babafemi

    2016-01-01

    Neurological complications associated with the human immunodeficiency virus (HIV) are a matter of great concern. While antiretroviral (ARV) drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity. PMID:27777797

  16. Viral antibodies in the CSF after acute CNS infections.

    PubMed

    Cappel, R; Thiry, L; Clinet, G

    1975-09-01

    Viral antibodies were measured in the cerebrospinal fluid (CSF) and serum from 25 patients having acute viral central nervous system (CNS) infections, and from 39 control patients. The results, collected two weeks after the clinical onset, revealed the presence of antibodies in nine of 13 (69%) CSF specimens from patients suffering from encephalitis of myelitis, and in only one of nine (11%) of the CSF samples of those presenting a viral meningitis infection. This difference was statistically significant and suggests that the titration of viral antibodies in the CSF can be helpful in establishing the diagnosis of viral CNS infection. Our data also suggest that localized production of antibodies occurs during the course of acute CNS infections, and that the respiratory syncytial virus can be associated with CNS infections in man.

  17. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    PubMed Central

    Vigneswara, Vasanthy; Kundi, Sarina; Ahmed, Zubair

    2012-01-01

    The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration. PMID:22848811

  18. Community-acquired pneumonia.

    PubMed

    Prina, Elena; Ranzani, Otavio T; Torres, Antoni

    2015-09-12

    Community-acquired pneumonia causes great mortality and morbidity and high costs worldwide. Empirical selection of antibiotic treatment is the cornerstone of management of patients with pneumonia. To reduce the misuse of antibiotics, antibiotic resistance, and side-effects, an empirical, effective, and individualised antibiotic treatment is needed. Follow-up after the start of antibiotic treatment is also important, and management should include early shifts to oral antibiotics, stewardship according to the microbiological results, and short-duration antibiotic treatment that accounts for the clinical stability criteria. New approaches for fast clinical (lung ultrasound) and microbiological (molecular biology) diagnoses are promising. Community-acquired pneumonia is associated with early and late mortality and increased rates of cardiovascular events. Studies are needed that focus on the long-term management of pneumonia.

  19. Systemic Acquired Resistance

    PubMed Central

    2006-01-01

    Upon infection with necrotizing pathogens many plants develop an enhanced resistance to further pathogen attack also in the uninoculated organs. This type of enhanced resistance is referred to as systemic acquired resistance (SAR). In the SAR state, plants are primed (sensitized) to more quickly and more effectively activate defense responses the second time they encounter pathogen attack. Since SAR depends on the ability to access past experience, acquired disease resistance is a paradigm for the existence of a form of “plant memory”. Although the phenomenon has been known since the beginning of the 20th century, major progress in the understanding of SAR was made over the past sixteen years. This review covers the current knowledge of molecular, biochemical and physiological mechanisms that are associated with SAR. PMID:19521483

  20. Human African trypanosomiasis of the CNS: current issues and challenges

    PubMed Central

    Kennedy, Peter G.E.

    2004-01-01

    Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. Current therapy with melarsoprol for CNS HAT has unacceptable side-effects with an overall mortality of 5%. This review discusses the issues of diagnosis and staging of CNS disease, its neuropathogenesis, and the possibility of new therapies for treating late-stage disease. PMID:14966556

  1. Prominent Vascular and Perivascular Eosinophilic Infiltrates Heralding CNS Mycosis Fungoides.

    PubMed

    Schowinsky, Jeffrey; Leppert, Michelle; Ney, Douglas; Kleinschmidt-DeMasters, B K

    2015-10-01

    Brain parenchymal involvement of mycosis fungoides (MF) is very rare. This study reports a patient with known cutaneous MF (under treatment) who presented with a CNS syndrome and multiple brain lesions. Brain biopsy demonstrated massive eosinophilic infiltrates but no MF cells. Despite treatment, new lesions developed and the patient died. At autopsy, there was massive involvement MF cells, suggesting that the eosinophilic infiltrates presaged the severe involvement of the CNS by MF. PMID:26352990

  2. Insights into the physiological role of CNS regeneration inhibitors

    PubMed Central

    Baldwin, Katherine T.; Giger, Roman J.

    2015-01-01

    The growth inhibitory nature of injured adult mammalian central nervous system (CNS) tissue constitutes a major barrier to robust axonal outgrowth and functional recovery following trauma or disease. Prototypic CNS regeneration inhibitors are broadly expressed in the healthy and injured brain and spinal cord and include myelin-associated glycoprotein (MAG), the reticulon family member NogoA, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs). These structurally diverse molecules strongly inhibit neurite outgrowth in vitro, and have been most extensively studied in the context of nervous system injury in vivo. The physiological role of CNS regeneration inhibitors in the naïve, or uninjured, CNS remains less well understood, but has received growing attention in recent years and is the focus of this review. CNS regeneration inhibitors regulate myelin development and axon stability, consolidate neuronal structure shaped by experience, and limit activity-dependent modification of synaptic strength. Altered function of CNS regeneration inhibitors is associated with neuropsychiatric disorders, suggesting crucial roles in brain development and health. PMID:26113809

  3. Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

    PubMed Central

    Dionne, Kalen R.; Tyler, Kenneth L.

    2016-01-01

    The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease. Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize “CNS-specific” cytokine production, and (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology. PMID:23975824

  4. Community-Acquired urinary tract infection by pseudomonas oryzihabitans

    PubMed Central

    Bhatawadekar, Sunita M

    2013-01-01

    Pseudomonas oryzihabitans and Chrysomonas luteola has been placed in CDC group Ve2 and Ve1 respectively. These bacteria appear to be emerging pathogens. P. oryzihabitans was isolated from cases of bacteremia, CNS infections, wound infections, peritonitis, sinusitis, catheter associated infections in AIDS patient, and pneumonia. Most of the reports of P. oryzihabitans infection were of nosocomial origin in individuals with some predisposing factors. We report here a case of community acquired UTI by P. oryzihabitans in an immune-competent patient with stricture of urethra. PMID:23853437

  5. Community-Acquired urinary tract infection by pseudomonas oryzihabitans.

    PubMed

    Bhatawadekar, Sunita M

    2013-04-01

    Pseudomonas oryzihabitans and Chrysomonas luteola has been placed in CDC group Ve2 and Ve1 respectively. These bacteria appear to be emerging pathogens. P. oryzihabitans was isolated from cases of bacteremia, CNS infections, wound infections, peritonitis, sinusitis, catheter associated infections in AIDS patient, and pneumonia. Most of the reports of P. oryzihabitans infection were of nosocomial origin in individuals with some predisposing factors. We report here a case of community acquired UTI by P. oryzihabitans in an immune-competent patient with stricture of urethra.

  6. Community-Acquired urinary tract infection by pseudomonas oryzihabitans.

    PubMed

    Bhatawadekar, Sunita M

    2013-04-01

    Pseudomonas oryzihabitans and Chrysomonas luteola has been placed in CDC group Ve2 and Ve1 respectively. These bacteria appear to be emerging pathogens. P. oryzihabitans was isolated from cases of bacteremia, CNS infections, wound infections, peritonitis, sinusitis, catheter associated infections in AIDS patient, and pneumonia. Most of the reports of P. oryzihabitans infection were of nosocomial origin in individuals with some predisposing factors. We report here a case of community acquired UTI by P. oryzihabitans in an immune-competent patient with stricture of urethra. PMID:23853437

  7. The challenges of long-distance axon regeneration in the injured CNS.

    PubMed

    Chew, Daniel J; Fawcett, James W; Andrews, Melissa R

    2012-01-01

    Injury to the central nervous system (CNS) that results in long-tract axonal damage typically leads to permanent functional deficits in areas innervated at, and below, the level of the lesion. The initial ischemia, inflammation, and neurodegeneration are followed by a progressive generation of scar tissue, dieback of transected axons, and demyelination, creating an area inhibitory to regrowth and recovery. Two ways to combat this inhibition is to therapeutically target the extrinsic and intrinsic properties of the axon-scar environment. Scar tissue within and surrounding the lesion site can be broken down using an enzyme known as chondroitinase. Negative regulators of adult neuronal growth, such as Nogo, can be neutralized with antibodies. Both therapies greatly improve functional recovery in animal models. Alternatively, modifying the intrinsic growth properties of CNS neurons through gene therapy or pharmacotherapy has also shown promising axonal regeneration after injury. Despite these promising therapies, the main challenge of long-distance axon regeneration still remains; achieving a level of functional and organized connectivity below the level of the lesion that mimics the intact CNS.

  8. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective

    PubMed Central

    Soni, Shringika; Ruhela, Rakesh Kumar; Medhi, Bikash

    2016-01-01

    Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go. PMID:27766216

  9. The inhibition of acquired fear.

    PubMed

    Izquierdo, Iván; Cammarota, Martín; Vianna, Mónica M R; Bevilaqua, Lía R M

    2004-01-01

    A conditioned stimulus (CS) associated with a fearsome unconditioned stimulus (US) generates learned fear. Acquired fear is at the root of a variety of mental disorders, among which phobias, generalized anxiety, the posttraumatic stress disorder (PTSD) and some forms of depression. The simplest way to inhibit learned fear is to extinguish it, which is usually done by repeatedly presenting the CS alone, so that a new association, CS-"no US", will eventually overcome the previously acquired CS-US association. Extinction was first described by Pavlov as a form of "internal inhibition" and was recommended by Freud and Ferenczi in the 1920s (who called it "habituation") as the treatment of choice for phobic disorders. It is used with success till this day, often in association with anxiolytic drugs. Extinction has since then been applied, also successfully and also often in association with anxiolytics, to the treatment of panic, generalized anxiety disorders and, more recently, PTSD. Extinction of learned fear involves gene expression, protein synthesis, N-methyl-D-aspartate (NMDA) receptors and signaling pathways in the hippocampus and the amygdala at the time of the first CS-no US association. It can be enhanced by increasing the exposure to the "no US" component at the time of behavioral testing, to the point of causing the complete uninstallment of the original fear response. Some theorists have recently proposed that reiteration of the CS alone may induce a reconsolidation of the learned behavior instead of its extinction. Reconsolidation would preserve the original memory from the labilization induced by its retrieval. If true, this would of course be disastrous for the psychotherapy of fear-motivated disorders. Here we show that neither the CS nor retrieval cause anything remotely like reconsolidation, but just extinction. In fact, our findings indicate that the reconsolidation hypothesis is essentially incorrect, at least for the form of contextual fear most

  10. Airspace Concept Evaluation System (ACES), Concept Simulations using Communication, Navigation and Surveillance (CNS) System Models

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don

    2006-01-01

    Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.

  11. Acquired methemoglobinemia revisited.

    PubMed

    Trapp, Larry; Will, John

    2010-10-01

    Dentistry has two medications in its pain management armamentarium that may cause the potentially life-threatening disorder methemoglobinemia. The first medications are the topical local anesthetics benzocaine and prilocaine. The second medication is the injectable local anesthetic prilocaine. Acquired methemoglobinemia remains a source of morbidity and mortality in dental and medical patients despite the fact that it is better understood now than it was even a decade ago. It is in the interest of all dental patients that their treating dentists review this disorder. The safety of dental patients mandates professional awareness.

  12. Towards resolving the transcription factor network controlling myelin gene expression

    PubMed Central

    Fulton, Debra L.; Denarier, Eric; Friedman, Hana C.; Wasserman, Wyeth W.; Peterson, Alan C.

    2011-01-01

    In the central nervous system (CNS), myelin is produced from spirally-wrapped oligodendrocyte plasma membrane and, as exemplified by the debilitating effects of inherited or acquired myelin abnormalities in diseases such as multiple sclerosis, it plays a critical role in nervous system function. Myelin sheath production coincides with rapid up-regulation of numerous genes. The complexity of their subsequent expression patterns, along with recently recognized heterogeneity within the oligodendrocyte lineage, suggest that the regulatory networks controlling such genes drive multiple context-specific transcriptional programs. Conferring this nuanced level of control likely involves a large repertoire of interacting transcription factors (TFs). Here, we combined novel strategies of computational sequence analyses with in vivo functional analysis to establish a TF network model of coordinate myelin-associated gene transcription. Notably, the network model captures regulatory DNA elements and TFs known to regulate oligodendrocyte myelin gene transcription and/or oligodendrocyte development, thereby validating our approach. Further, it links to numerous TFs with previously unsuspected roles in CNS myelination and suggests collaborative relationships amongst both known and novel TFs, thus providing deeper insight into the myelin gene transcriptional network. PMID:21729871

  13. CNS accumulation of regulatory B cells is VLA-4-dependent

    PubMed Central

    Lehmann-Horn, Klaus; Sagan, Sharon A.; Winger, Ryan C.; Spencer, Collin M.; Bernard, Claude C.A.; Sobel, Raymond A.

    2016-01-01

    Objective: To investigate the role of very late antigen-4 (VLA-4) on regulatory B cells (Breg) in CNS autoimmune disease. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in mice selectively deficient for VLA-4 on B cells (CD19cre/α4f/f) by immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p)35–55 or recombinant human (rh) MOG protein. B-cell and T-cell populations were examined by flow cytometry and immunohistochemistry. Breg were evaluated by intracellular IL-10 staining of B cells and, secondly, by coexpression of CD1d and CD5. Results: As previously reported, EAE was less severe in B-cell VLA-4-deficient vs control CD19cre mice when induced by rhMOG, a model that is B-cell-dependent and leads to efficient B-cell activation and antibody production. Paradoxically, B-cell VLA-4-deficient mice developed more severe clinical disease than control mice when EAE was induced with MOG p35-55, a B-cell-independent encephalitogen that does not efficiently activate B cells. Peripheral T-cell and humoral immune responses were not altered in B-cell VLA-4-deficient mice. In MOG p35-55-induced EAE, B-cell VLA-4 deficiency reduced CNS accumulation of B but not T cells. Breg were detected in the CNS of control mice with MOG p35-55-induced EAE. However, more severe EAE in B-cell VLA-4-deficient mice was associated with virtual absence of CNS Breg. Conclusions: Our results demonstrate that CNS accumulation of Breg is VLA-4-dependent and suggest that Breg may contribute to regulation of CNS autoimmunity in situ. These observations underscore the need to choose the appropriate encephalitogen when studying how B cells contribute to pathogenesis or regulation of CNS autoimmunity. PMID:27027096

  14. Triptans and CNS side-effects: pharmacokinetic and metabolic mechanisms.

    PubMed

    Dodick, D W; Martin, V

    2004-06-01

    Triptans are the treatment of choice for acute migraine. While seemingly a homogenous group of drugs, results from a meta-analysis reveal significant differences in efficacy and tolerability among oral triptans. The incidence of drug-related central nervous system (CNS) side-effects with some triptans is as high as 15% and may be associated with functional impairment and reduced productivity. The occurrence of adverse events associated with triptans in general, and CNS side-effects in particular, may lead to a delay in initiating or even avoidance of an otherwise effective treatment. Potential explanations for differences among triptans in the incidence of CNS side-effects may relate to pharmacological and pharmacokinetic differences, including receptor binding, lipophilicity, and the presence of active metabolites. Of the triptans reviewed, at clinically relevant doses, almotriptan 12.5 mg, naratriptan 2.5 mg and sumatriptan 50 mg had the lowest incidence of CNS side-effects, while eletriptan 40 and 80 mg, rizatriptan 10 mg and zolmitriptan 2.5 and 5 mg had the highest incidence. The most likely explanations for the differences in CNS side-effects among triptans are the presence of active metabolites and high lipophilicity of the parent compound and active metabolites. Eletriptan, rizatriptan and zolmitriptan have active metabolites, while lipophilicity is lowest for almotriptan and sumatriptan. If CNS side-effects are a clinically relevant concern in the individual patient, use of a triptan with a low incidence of CNS side-effects may offer the potential for earlier initiation of treatment and more effective outcomes. PMID:15154851

  15. The blood-brain barrier in primary CNS lymphomas: ultrastructural evidence of endothelial cell death.

    PubMed Central

    Molnár, P. P.; O'Neill, B. P.; Scheithauer, B. W.; Groothuis, D. R.

    1999-01-01

    The vasculature of 24 primary CNS B-cell lymphomas that were not related to acquired immunodeficiency syndrome was systematically studied by electron microscopy. Seven low-grade astrocytic tumors were included for comparison. Classical electron microscopy features of apoptosis were found in lymphoma cells of 21 of 22 subjects. Capillaries of gliomas and lymphomas showed changes reported previously: variability of endothelial cell (EC)-thickness and number, basal lamina thickness and duplication, and fenestrations. Primary CNS B-cell lymphoma ECs showed two distinctive populations of electron-dense and electron-lucent cells. The electron-dense ECs occurred in 38% of all capillaries, with changes consisting of chromatin condensation in bizarre and contracted nuclei, cytoplasmic shrinkage with markedly increased electron density, and dilatation of the endoplasmic reticulum. We interpreted these changes as indicative of apoptosis. Cell death eventually resulted in complete disintegration of the endothelium with frank discontinuities of the EC component of the blood-tumor barrier in capillaries and postcapillary venules. Another population of ECs had increased cell volume, conspicuous cytoplasmic electron lucency, dispersed organelles, scattered vesicles, and apical stress fibers. We interpreted these changes as indicative of cellular regeneration. Individual apoptotic ECs often lay next to normal or regenerating ECs. Neither type of EC change was observed in gliomas, which also lacked perivascular neoplastic lymphocytic cuffing. We believe that these populations of ECs, which have not been described in other disorders affecting the blood-brain barrier, may be induced by cytokines released from necrotic and/or apoptotic tumor lymphocytes and may explain the unusual imaging characteristics of primary CNS B-cell lymphomas treated with corticosteroids. PMID:11550310

  16. Presence of the Panton-Valentine Leukocidin Genes in Methicillin-Resistant Staphylococcus aureus Is Associated with Severity and Clinical Outcome of Hospital-Acquired Pneumonia in a Single Center Study in China.

    PubMed

    Zhang, Chuanling; Guo, Liang; Chu, Xu; Shen, Limeng; Guo, Yuanyu; Dong, Huali; Mao, Jianfeng; van der Veen, Stijn

    2016-01-01

    The Panton-Valentine leukocidin (PVL) genes of methicillin-resistant Staphylococcus aureus (MRSA) have previously been associated with severe infections. Here, the impact of the PVL genes on severity of disease and clinical outcome of patients with hospital-acquired pneumonia (HAP) or ventilator-associated pneumonia (VAP) due to MRSA was investigated in a single center observational study in a hospital in China. HAP due to MRSA was diagnosed in 100 patients and 13 of the patients were PVL positive, while VAP was diagnosed in 5 patients and 2 were PVL positive. The PVL positive patient group showed a significantly higher Acute Physiology and Chronic Health Evaluation (APACHE) II score (14.3 ±7.8 vs. 10.1 ±4.7, P = 0.005) and significantly more patients with CRP levels >80 mg/L (8/15 vs. 12/90, P = 0.006) or WBC counts >15x109/L (7/15 vs. 12/90, P = 0.006), indicating that the severity of disease is affected by the presence of the PVL genes. The outcome of the study was defined by 30-day mortality. Four (27%) of the PVL positive patients and four (4%) of the PVL negative patients died within 30 days (P = 0.01, Fisher exact test). Kaplan-Meier survival curves were generated for the PVL positive and PVL negative patient groups, which differed significantly (P = 0.003). Among the patients that died, the mean interval between diagnosis and death was shorter for the PVL positive patients (9.3 ±5.6 vs. 40.8 ±6.6 days, P = 0.013). Further analysis within the HAP and VAP patient groups showed that the presence of PVL in MRSA impacted the severity of disease and clinical outcome of HAP, but for VAP the number of patients included in the study was too low. In conclusion, in this single center study in a Chinese hospital the presence of the PVL genes in MRSA impacted the severity of disease and clinical outcome in patients with HAP due to MRSA. PMID:27249225

  17. More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration

    PubMed Central

    Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim

    2014-01-01

    Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875

  18. Acquired Alterations of Hypothalamic Gene Expression of Insulin and Leptin Receptors and Glucose Transporters in Prenatally High-Glucose Exposed Three-Week Old Chickens Do Not Coincide with Aberrant Promoter DNA Methylation

    PubMed Central

    Ott, Raffael; Bogatyrev, Semen; Tzschentke, Barbara; Plagemann, Andreas

    2015-01-01

    Background Prenatal exposures may have a distinct impact for long-term health, one example being exposure to maternal ‘diabesity’ during pregnancy increasing offspring ‘diabesity’ risk. Malprogramming of the central nervous regulation of body weight, food intake and metabolism has been identified as a critical mechanism. While concrete disrupting factors still remain unclear, growing focus on acquired epigenomic alterations have been proposed. Due to the independent development from the mother, the chicken embryo provides a valuable model to distinctively establish causal factors and mechanisms. Aim The aim of this study was to determine the effects of prenatal hyperglycemia on postnatal hypothalamic gene expression and promoter DNA methylation in the chicken. Methods and Findings To temporarily induce high-glucose exposure in chicken embryos, 0.5 ml glucose solution (30 mmol/l) were administered daily via catheter into a vessel of the chorioallantoic egg membrane from days 14 to 17 of incubation. At three weeks of postnatal age, body weight, total body fat, blood glucose, mRNA expression (INSR, LEPR, GLUT1, GLUT3) as well as corresponding promoter DNA methylation were determined in mediobasal hypothalamic brain slices (Nucleus infundibuli hypothalami). Although no significant changes in morphometric and metabolic parameters were detected, strongly decreased mRNA expression occurred in all candidate genes. Surprisingly, however, no relevant alterations were observed in respective promoter methylation. Conclusion Prenatal hyperglycemia induces strong changes in later hypothalamic expression of INSR, LEPR, GLUT1, and GLUT3 mRNA. While the chicken provides an interesting approach for developmental malprogramming, the classical expression regulation via promoter methylation was not observed here. This may be due to alternative/interacting brain mechanisms or the thus far under-explored bird epigenome. PMID:25811618

  19. CNS Anticancer Drug Discovery and Development Conference White Paper.

    PubMed

    Levin, Victor A; Tonge, Peter J; Gallo, James M; Birtwistle, Marc R; Dar, Arvin C; Iavarone, Antonio; Paddison, Patrick J; Heffron, Timothy P; Elmquist, William F; Lachowicz, Jean E; Johnson, Ted W; White, Forest M; Sul, Joohee; Smith, Quentin R; Shen, Wang; Sarkaria, Jann N; Samala, Ramakrishna; Wen, Patrick Y; Berry, Donald A; Petter, Russell C

    2015-11-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.

  20. Nanotechnological advances for the delivery of CNS therapeutics.

    PubMed

    Wong, Ho Lun; Wu, Xiao Yu; Bendayan, Reina

    2012-05-15

    Effective non-invasive treatment of neurological diseases is often limited by the poor access of therapeutic agents into the central nervous system (CNS). The majority of drugs and biotechnological agents do not readily permeate into brain parenchyma due to the presence of two anatomical and biochemical dynamic barriers: the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Therefore, one of the most significant challenges facing CNS drug development is the availability of effective brain targeting technology. Recent advances in nanotechnology have provided promising solutions to this challenge. Several nanocarriers ranging from the more established systems, e.g. polymeric nanoparticles, solid lipid nanoparticles, liposomes, micelles to the newer systems, e.g. dendrimers, nanogels, nanoemulsions and nanosuspensions have been studied for the delivery of CNS therapeutics. Many of these nanomedicines can be effectively transported across various in vitro and in vivo BBB models by endocytosis and/or transcytosis, and demonstrated early preclinical success for the management of CNS conditions such as brain tumors, HIV encephalopathy, Alzheimer's disease and acute ischemic stroke. Future development of CNS nanomedicines need to focus on increasing their drug-trafficking performance and specificity for brain tissue using novel targeting moieties, improving their BBB permeability and reducing their neurotoxicity. PMID:22100125

  1. Bovine-associated CNS species resist phagocytosis differently

    PubMed Central

    2013-01-01

    Background Coagulase-negative staphylococci (CNS) cause usually subclinical or mild clinical bovine mastitis, which often remains persistent. Symptoms are usually mild, mostly only comprising slight changes in the appearance of milk and possibly slight swelling. However, clinical mastitis with severe signs has also been reported. The reasons for the differences in clinical expression are largely unknown. Macrophages play an important role in the innate immunity of the udder. This study examined phagocytosis and killing by mouse macrophage cells of three CNS species: Staphylococcus chromogenes (15 isolates), Staphylococcus agnetis (6 isolates) and Staphylococcus simulans (15 isolates). Staphylococcus aureus (7 isolates) was also included as a control. Results All the studied CNS species were phagocytosed by macrophages, but S. simulans resisted phagocytosis more effectively than the other CNS species. Only S. chromogenes was substantially killed by macrophages. Significant variations between isolates were seen in both phagocytosis and killing by macrophages and were more common in the killing assays. Significant differences between single CNS species and S. aureus were observed in both assays. Conclusion This study demonstrated that differences in the phagocytosis and killing of mastitis-causing staphylococci by macrophages exist at both the species and isolate level. PMID:24207012

  2. Synaptogenesis in the CNS: an odyssey from wiring together to firing together.

    PubMed

    Munno, David W; Syed, Naweed I

    2003-10-01

    To acquire a better comprehension of nervous system function, it is imperative to understand how synapses are assembled during development and subsequently altered throughout life. Despite recent advances in the fields of neurodevelopment and synaptic plasticity, relatively little is known about the mechanisms that guide synapse formation in the central nervous system (CNS). Although many structural components of the synaptic machinery are pre-assembled prior to the arrival of growth cones at the site of their potential targets, innumerable changes, central to the proper wiring of the brain, must subsequently take place through contact-mediated cell-cell communications. Identification of such signalling molecules and a characterization of various events underlying synaptogenesis are pivotal to our understanding of how a brain cell completes its odyssey from "wiring together to firing together". Here we attempt to provide a comprehensive overview that pertains directly to the cellular and molecular mechanisms of selection, formation and refinement of synapses during the development of the CNS in both vertebrates and invertebrates.

  3. Synaptogenesis in the CNS: An Odyssey from Wiring Together to Firing Together

    PubMed Central

    Munno, David W; Syed, Naweed I

    2003-01-01

    To acquire a better comprehension of nervous system function, it is imperative to understand how synapses are assembled during development and subsequently altered throughout life. Despite recent advances in the fields of neurodevelopment and synaptic plasticity, relatively little is known about the mechanisms that guide synapse formation in the central nervous system (CNS). Although many structural components of the synaptic machinery are pre-assembled prior to the arrival of growth cones at the site of their potential targets, innumerable changes, central to the proper wiring of the brain, must subsequently take place through contact-mediated cell-cell communications. Identification of such signalling molecules and a characterization of various events underlying synaptogenesis are pivotal to our understanding of how a brain cell completes its odyssey from ‘wiring together to firing together’. Here we attempt to provide a comprehensive overview that pertains directly to the cellular and molecular mechanisms of selection, formation and refinement of synapses during the development of the CNS in both vertebrates and invertebrates. PMID:12897180

  4. Community-acquired pneumonia.

    PubMed

    Polverino, E; Torres Marti, A

    2011-02-01

    Despite the remarkable advances in antibiotic therapies, diagnostic tools, prevention campaigns and intensive care, community-acquired pneumonia (CAP) is still among the primary causes of death worldwide, and there have been no significant changes in mortality in the last decades. The clinical and economic burden of CAP makes it a major public health problem, particularly for children and the elderly. This issue provides a clinical overview of CAP, focusing on epidemiology, economic burden, diagnosis, risk stratification, treatment, clinical management, and prevention. Particular attention is given to some aspects related to the clinical management of CAP, such as the microbial etiology and the available tools to achieve it, the usefulness of new and old biomarkers, and antimicrobial and other non-antibiotic adjunctive therapies. Possible scenarios in which pneumonia does not respond to treatment are also analyzed to improve clinical outcomes of CAP. PMID:21242952

  5. Disruption of microtubule integrity initiates mitosis during CNS repair.

    PubMed

    Bossing, Torsten; Barros, Claudia S; Fischer, Bettina; Russell, Steven; Shepherd, David

    2012-08-14

    Mechanisms of CNS repair have vital medical implications. We show that traumatic injury to the ventral midline of the embryonic Drosophila CNS activates cell divisions to replace lost cells. A pilot screen analyzing transcriptomes of single cells during repair pointed to downregulation of the microtubule-stabilizing GTPase mitochondrial Rho (Miro) and upregulation of the Jun transcription factor Jun-related antigen (Jra). Ectopic Miro expression can prevent midline divisions after damage, whereas Miro depletion destabilizes cortical β-tubulin and increases divisions. Disruption of cortical microtubules, either by chemical depolymerization or by overexpression of monomeric tubulin, triggers ectopic mitosis in the midline and induces Jra expression. Conversely, loss of Jra renders midline cells unable to replace damaged siblings. Our data indicate that upon injury, the integrity of the microtubule cytoskeleton controls cell division in the CNS midline, triggering extra mitosis to replace lost cells. The conservation of the identified molecules suggests that similar mechanisms may operate in vertebrates.

  6. NanoART, neuroAIDS and CNS drug delivery

    PubMed Central

    Nowacek, Ari; Gendelman, Howard E

    2009-01-01

    A broad range of nanomedicines is being developed to improve drug delivery for CNS disorders. The structure of the blood–brain barrier (BBB), the presence of efflux pumps and the expression of metabolic enzymes pose hurdles for drug-brain entry. Nanoformulations can circumvent the BBB to improve CNS-directed drug delivery by affecting such pumps and enzymes. Alternatively, they can be optimized to affect their size, shape, and protein and lipid coatings to facilitate drug uptake, release and ingress across the barrier. This is important as the brain is a sanctuary for a broad range of pathogens including HIV-1. Improved drug delivery to the CNS would affect pharmacokinetic and drug biodistribution properties. This article focuses on how nanotechnology can serve to improve the delivery of antiretroviral medicines, termed nanoART, across the BBB and affect the biodistribution and clinical benefit for HIV-1 disease. PMID:19572821

  7. How Do Meningeal Lymphatic Vessels Drain the CNS?

    PubMed

    Raper, Daniel; Louveau, Antoine; Kipnis, Jonathan

    2016-09-01

    The many interactions between the nervous and the immune systems, which are active in both physiological and pathological states, have recently become more clearly delineated with the discovery of a meningeal lymphatic system capable of carrying fluid, immune cells, and macromolecules from the central nervous system (CNS) to the draining deep cervical lymph nodes. However, the exact localization of the meningeal lymphatic vasculature and the path of drainage from the cerebrospinal fluid (CSF) to the lymphatics remain poorly understood. Here, we discuss the potential differences between peripheral and CNS lymphatic vessels and examine the purported mechanisms of CNS lymphatic drainage, along with how these may fit into established patterns of CSF flow. PMID:27460561

  8. Disruption of Microtubule Integrity Initiates Mitosis during CNS Repair

    PubMed Central

    Bossing, Torsten; Barros, Claudia S.; Fischer, Bettina; Russell, Steven; Shepherd, David

    2012-01-01

    Summary Mechanisms of CNS repair have vital medical implications. We show that traumatic injury to the ventral midline of the embryonic Drosophila CNS activates cell divisions to replace lost cells. A pilot screen analyzing transcriptomes of single cells during repair pointed to downregulation of the microtubule-stabilizing GTPase mitochondrial Rho (Miro) and upregulation of the Jun transcription factor Jun-related antigen (Jra). Ectopic Miro expression can prevent midline divisions after damage, whereas Miro depletion destabilizes cortical β-tubulin and increases divisions. Disruption of cortical microtubules, either by chemical depolymerization or by overexpression of monomeric tubulin, triggers ectopic mitosis in the midline and induces Jra expression. Conversely, loss of Jra renders midline cells unable to replace damaged siblings. Our data indicate that upon injury, the integrity of the microtubule cytoskeleton controls cell division in the CNS midline, triggering extra mitosis to replace lost cells. The conservation of the identified molecules suggests that similar mechanisms may operate in vertebrates. PMID:22841498

  9. Primary CNS T-cell Lymphomas: A Clinical, Morphologic, Immunophenotypic, and Molecular Analysis.

    PubMed

    Menon, Madhu P; Nicolae, Alina; Meeker, Hillary; Raffeld, Mark; Xi, Liqiang; Jegalian, Armin G; Miller, Douglas C; Pittaluga, Stefania; Jaffe, Elaine S

    2015-12-01

    Primary central nervous system (CNS) lymphomas are relatively rare with the most common subtype being diffuse large B-cell lymphoma. Primary CNS T-cell lymphomas (PCNSTL) account for <5% of CNS lymphomas. We report the clinical, morphologic, immunophenotypic, and molecular characteristics of 18 PCNSTLs. Fifteen cases were classified as peripheral T-cell lymphoma, not otherwise specified, 2 of which were of γδ T-cell derivation and 1 was TCR silent; there was 1 anaplastic large cell lymphoma, ALK-positive and 2 anaplastic large cell lymphoma, ALK-negative. Median age was 58.5 years (range, 21 to 81 y), with an M:F ratio of 11:7. Imaging results showed that 15 patients had supratentorial lesions. Regardless of subtype, necrosis and perivascular cuffing of tumor cells were frequently observed (11/18 cases). CD3 was positive in all cases but 1; 10/17 were CD8-positive, and 5/17 were CD4-positive. Most cases studied had a cytotoxic phenotype with expression of TIA1 (13/15) and granzyme-B (9/13). Polymerase chain reaction analysis of T-cell receptor γ rearrangement confirmed a T-cell clone in 14 cases with adequate DNA quality. Next-generation sequencing showed somatic mutations in 36% of cases studied; 2 had >1 mutation, and none showed overlapping mutations. These included mutations in DNMT3A, KRAS, JAK3, STAT3, STAT5B, GNB1, and TET2 genes, genes implicated previously in other T-cell neoplasms. The outcome was heterogenous; 2 patients are alive without disease, 4 are alive with disease, and 6 died of disease. In conclusion, PCNSTLs are histologically and genomically heterogenous with frequent phenotypic aberrancy and a cytotoxic phenotype in most cases. PMID:26379152

  10. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS.

    PubMed

    Fancy, Stephen P J; Baranzini, Sergio E; Zhao, Chao; Yuk, Dong-In; Irvine, Karen-Amanda; Kaing, Sovann; Sanai, Nader; Franklin, Robin J M; Rowitch, David H

    2009-07-01

    The progressive loss of CNS myelin in patients with multiple sclerosis (MS) has been proposed to result from the combined effects of damage to oligodendrocytes and failure of remyelination. A common feature of demyelinated lesions is the presence of oligodendrocyte precursors (OLPs) blocked at a premyelinating stage. However, the mechanistic basis for inhibition of myelin repair is incompletely understood. To identify novel regulators of OLP differentiation, potentially dysregulated during repair, we performed a genome-wide screen of 1040 transcription factor-encoding genes expressed in remyelinating rodent lesions. We report that approximately 50 transcription factor-encoding genes show dynamic expression during repair and that expression of the Wnt pathway mediator Tcf4 (aka Tcf7l2) within OLPs is specific to lesioned-but not normal-adult white matter. We report that beta-catenin signaling is active during oligodendrocyte development and remyelination in vivo. Moreover, we observed similar regulation of Tcf4 in the developing human CNS and lesions of MS. Data mining revealed elevated levels of Wnt pathway mRNA transcripts and proteins within MS lesions, indicating activation of the pathway in this pathological context. We show that dysregulation of Wnt-beta-catenin signaling in OLPs results in profound delay of both developmental myelination and remyelination, based on (1) conditional activation of beta-catenin in the oligodendrocyte lineage in vivo and (2) findings from APC(Min) mice, which lack one functional copy of the endogenous Wnt pathway inhibitor APC. Together, our findings indicate that dysregulated Wnt-beta-catenin signaling inhibits myelination/remyelination in the mammalian CNS. Evidence of Wnt pathway activity in human MS lesions suggests that its dysregulation might contribute to inefficient myelin repair in human neurological disorders.

  11. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma.

    PubMed

    Kramer, Kim; Kushner, Brian H; Modak, Shakeel; Pandit-Taskar, Neeta; Smith-Jones, Peter; Zanzonico, Pat; Humm, John L; Xu, Hong; Wolden, Suzanne L; Souweidane, Mark M; Larson, Steven M; Cheung, Nai-Kong V

    2010-05-01

    Innovation in the management of brain metastases is needed. We evaluated the addition of compartmental intrathecal antibody-based radioimmunotherapy (cRIT) in patients with recurrent metastatic central nervous system (CNS) neuroblastoma following surgery, craniospinal irradiation, and chemotherapy. Twenty one patients treated for recurrent neuroblastoma metastatic to the CNS, received a cRIT-containing salvage regimen incorporating intrathecal (131)I-monoclonal antibodies (MoAbs) targeting GD2 or B7H3 following surgery and radiation. Most patients also received outpatient craniospinal irradiation, 3F8/GMCSF immunotherapy, 13-cis-retinoic acid and oral temozolomide for systemic control. Seventeen of 21 cRIT-salvage patients are alive 7-74 months (median 33 months) since CNS relapse, with all 17 remaining free of CNS neuroblastoma. One patient died of infection at 22 months with no evidence of disease at autopsy, and one of lung and bone marrow metastases at 15 months, and one of progressive bone marrow disease at 30 months. The cRIT-salvage regimen was well tolerated, notable for myelosuppression minimized by stem cell support (n = 5), and biochemical hypothyroidism (n = 5). One patient with a 7-year history of metastatic neuroblastoma is in remission from MLL-associated secondary leukemia. This is significantly improved to published results with non-cRIT based where relapsed CNS NB has a median time to death of approximately 6 months. The cRIT-salvage regimen for CNS metastases was well tolerated by young patients, despite their prior history of intensive cytotoxic therapies. It has the potential to increase survival with better than expected quality of life.

  12. Oligodendrocyte Regeneration and CNS Remyelination Require TACE/ADAM17

    PubMed Central

    Klingener, Michael; Raines, Elaine W.; Crawford, Howard C.

    2015-01-01

    The identification of the molecular network that supports oligodendrocyte (OL) regeneration under demyelinating conditions has been a primary goal for regenerative medicine in demyelinating disorders. We recently described an essential function for TACE/ADAM17 in regulating oligodendrogenesis during postnatal myelination, but it is unknown whether this protein also plays a role in OL regeneration and remyelination under demyelinating conditions. By using genetic mouse models to achieve selective gain- or loss-of-function of TACE or EGFR in OL lineage cells in vivo, we found that TACE is critical for EGFR activation in OLs following demyelination, and therefore, for sustaining OL regeneration and CNS remyelination. TACE deficiency in oligodendrocyte progenitor cells following demyelination disturbs OL lineage cell expansion and survival, leading to a delay in the remyelination process. EGFR overexpression in TACE deficient OLs in vivo restores OL development and postnatal CNS myelination, but also OL regeneration and CNS remyelination following demyelination. Our study reveals an essential function of TACE in supporting OL regeneration and CNS remyelination that may contribute to the design of new strategies for therapeutic intervention in demyelinating disorders by promoting oligodendrocyte regeneration and myelin repair. SIGNIFICANCE STATEMENT Oligodendrocyte (OL) regeneration has emerged as a promising new approach for the treatment of demyelinating disorders. By using genetic mouse models to selectively delete TACE expression in oligodendrocyte progenitors cells (OPs), we found that TACE/ADAM17 is required for supporting OL regeneration following demyelination. TACE genetic depletion in OPs abrogates EGFR activation in OL lineage cells, and perturbs cell expansion and survival, blunting the process of CNS remyelination. Moreover, EGFR overexpression in TACE-deficient OPs in vivo overcomes the defects in OL development during postnatal development but also OL

  13. The Role of Maternal Care in Shaping CNS Function

    PubMed Central

    Nephew, Benjamin; Murgatroyd, Chris

    2013-01-01

    Maternal care involves the consistent and coordinated expression of a variety of behaviours over an extended period of time, and adverse changes in maternal care can have profound impacts on the CNS and behaviour of offspring. This complex behavioural pattern depends on a number of integrated neuroendocrine mechanisms. This review will discuss the use of animal models in the study of the role of maternal care in shaping CNS function, the contributions of corticosteroid releasing hormone, vasopressin, oxytocin, and prolactin in this process, the molecular mechanisms involved, and the translational relevance of this research. PMID:24210943

  14. Toll-like Receptor 4 in CNS Pathologies

    PubMed Central

    Buchanan, Madison M.; Hutchinson, Mark; Watkins, Linda R.; Yin, Hang

    2010-01-01

    The responses of the brain to infection, ischemia and trauma share remarkable similarities. These and other conditions of the CNS coordinate an innate immune response marked by activation of microglia, the macrophage-like cells of the nervous system. An important contributor to microglial activation is toll-like receptor 4 (TLR4), a pathogen-associated molecular pattern receptor known to initiate an inflammatory cascade in response to various CNS stimuli. The present review traces new efforts to characterize and control the contribution of TLR4 to inflammatory etiologies of the nervous system. PMID:20402965

  15. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. PMID:26919435

  16. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.

  17. Acquired aplastic anemia.

    PubMed

    Keohane, Elaine M

    2004-01-01

    Acquired aplastic anemia (AA) is a disorder characterized by a profound deficit of hematopoietic stem and progenitor cells, bone marrow hypocellularity, and peripheral blood pancytopenia. It primarily affects children, young adults, and those over 60 years of age. The majority of cases are idiopathic; however, idiosyncratic reactions to some drugs, chemicals, and viruses have been implicated in its etiology. An autoimmune T-cell reaction likely causes the stem cell depletion, but the precise mechanism, as well as the eliciting and target antigens, is unknown. Symptoms vary from severe life-threatening cytopenias to moderate or non-severe disease that does not require transfusion support. The peripheral blood typically exhibits pancytopenia, reticulocytopenia, and normocytic or macrocytic erythrocytes. The bone marrow is hypocellular and may exhibit dysplasia of the erythrocyte precursors. First line treatment for severe AA consists of hematopoietic stem cell transplantation in young patients with HLA identical siblings, while immunosuppression therapy is used for older patients and for those of any age who lack a HLA matched donor. Patients with AA have an increased risk of developing paroxysmal nocturnal hemoglobinuria (PNH), myelodysplastic syndrome (MDS), or acute leukemia. Further elucidation of the pathophysiology of this disease will result in a better understanding of the interrelationship among AA, PNH, and MDS, and may lead to novel targeted therapies.

  18. CNS Multiparameter Optimization Approach: Is it in Accordance with Occam's Razor Principle?

    PubMed

    Raevsky, Oleg A

    2016-04-01

    A detailed analysis of the possibility of using the Multiparameter Optimization approach (MPO) for CNS/non-CNS classification of drugs was carried out. This work has shown that MPO descriptors are able to describe only part of chemical transport in the CNS connected with transmembrane diffusion. Hence the "intuitive" CNS MPO approach with arbitrary selection of descriptors and calculations of score functions, search of thresholds of classification, and absence of any chemometric procedures, leads to rather modest accuracy of CNS/non-CNS classification models. PMID:27491918

  19. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  20. On the resemblance of synapse formation and CNS myelination.

    PubMed

    Almeida, R G; Lyons, D A

    2014-09-12

    The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination.

  1. The spectrum of post-vaccination inflammatory CNS demyelinating syndromes.

    PubMed

    Karussis, Dimitrios; Petrou, Panayiota

    2014-03-01

    A wide variety of inflammatory diseases temporally associated with the administration of various vaccines, has been reported in the literature. A PubMed search from 1979 to 2013 revealed seventy one (71) documented cases. The most commonly reported vaccinations that were associated with CNS demyelinating diseases included influenza (21 cases), human papilloma virus (HPV) (9 cases), hepatitis A or B (8 cases), rabies (5 cases), measles (5 cases), rubella (5 cases), yellow fever (3 cases), anthrax (2 cases),meningococcus (2 cases) and tetanus (2 cases). The vast majority of post-vaccination CNS demyelinating syndromes, are related to influenza vaccination and this could be attributed to the high percentage of the population that received the vaccine during the HI1N1 epidemia from 2009 to 2012. Usually the symptoms of the CNS demyelinating syndrome appear few days following the immunization (mean: 14.2 days) but there are cases where the clinical presentation was delayed (more than 3 weeks or even up to 5 months post-vaccination) (approximately a third of all the reported cases). In terms of the clinical presentation and the affected CNS areas, there is a great diversity among the reported cases of post-vaccination acute demyelinating syndromes. Optic neuritis was the prominent clinical presentation in 38 cases, multifocal disseminated demyelination in 30, myelitis in 24 and encephalitis in 17. Interestingly in a rather high proportion of the patients (and especially following influenza and human papiloma virus vaccination-HPV) the dominant localizations of demyelination were the optic nerves and the myelon, presenting as optic neuritis and myelitis (with or without additional manifestations of ADEM), reminiscent to neuromyelitic optica (or, more generally, the NMO-spectrum of diseases). Seven patients suffered an NMO-like disease following HPV and we had two similar cases in our Center. One patient with post-vaccination ADEM, subsequently developed NMO. Overall, the

  2. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    PubMed

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  3. Regeneration of Zebrafish CNS: Adult Neurogenesis

    PubMed Central

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  4. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  5. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming.

  6. Myelin damage and repair in pathologic CNS: challenges and prospects

    PubMed Central

    Alizadeh, Arsalan; Dyck, Scott M.; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  7. Myelin damage and repair in pathologic CNS: challenges and prospects.

    PubMed

    Alizadeh, Arsalan; Dyck, Scott M; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  8. Myelin damage and repair in pathologic CNS: challenges and prospects.

    PubMed

    Alizadeh, Arsalan; Dyck, Scott M; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  9. Astrocytic TIMP-1 Promotes Oligodendrocyte Differentiation and Enhances CNS Myelination

    PubMed Central

    Moore, Craig S.; Milner, Richard; Nishiyama, Akiko; Frausto, Ricardo F.; Serwanski, David R.; Pagarigan, Roberto R.; Whitton, J. Lindsay; Miller, Robert H.; Crocker, Stephen J.

    2011-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an extracellular protein and endogenous regulator of matrix metalloproteinases (MMPs) secreted by astrocytes in response to CNS myelin injury. We have previously reported that adult TIMP-1KO mice exhibit poor myelin repair following demyelinating injury. This observation led us to hypothesize a role for TIMP-1 in oligodendrogenesis and CNS myelination. Herein, we demonstrate that compact myelin formation is significantly delayed in TIMP-1KO mice which coincided with dramatically reduced numbers of white matter astrocytes in the developing CNS. Analysis of differentiation in CNS progenitor cells (neurosphere) cultures from TIMP-1KO mice revealed a specific deficit of NG2+ oligodendrocyte progenitor cells. Application of rmTIMP-1 to TIMP-1KO neurosphere cultures evoked a dose-dependent increase in NG2+ cell numbers, while treatment with GM6001, a potent broad spectrum MMP inhibitor did not. Similarly, administration of recombinant murine TIMP-1 (rmTIMP-1) to A2B5+ immunopanned oligodendrocyte progenitors significantly increased the number of differentiated O1+ oligodendrocytes, while antisera to TIMP-1 reduced oligodendrocyte numbers. We also determined that A2B5+ oligodendrocyte progenitors grown in conditioned media derived from TIMP-1KO primary glial cultures resulted in reduced differentiation of mature O1+ oligodendrocytes. Finally, we report that addition of rmTIMP-1 to primary glial cultures resulted in a dose-dependent proliferative response of astrocytes. Together, these findings describe a previously uncharacterized role for TIMP-1 in the regulation of oligodendrocytes and astrocytes during development and provide a novel function for TIMP-1 on myelination in the developing CNS. PMID:21508247

  10. Mechanisms underlying sexual and affiliative behaviors of mice: relation to generalized CNS arousal

    PubMed Central

    Shelley, Deborah N.; Choleris, Elena; Kavaliers, Martin

    2006-01-01

    The field of social neuroscience has grown dramatically in recent years and certain social responses have become amenable to mechanistic investigations. Toward that end, there has been remarkable progress in determining mechanisms for a simple sexual behavior, lordosis behavior. This work has proven that specific hormone-dependent biochemical reactions in specific parts of the mammalian brain regulate a biologically important behavior. On one hand, this sex behavior depends on underlying mechanisms of CNS arousal. On the other hand, it serves as a prototypical social behavior. The same sex hormones and the genes that encode their receptors as are involved in lordosis, also affect social recognition. Here we review evidence for a micronet of genes promoting social recognition in mice and discuss their biological roles. PMID:18985112

  11. 16 CFR 801.2 - Acquiring and acquired persons.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.2 Acquiring... each holds half of V's shares. Therefore, A and B each control V (see § 801.1(b)), and V is included...” are acquiring persons. (b) Except as provided in paragraphs (a) and (b) of § 801.12, the...

  12. 16 CFR 801.2 - Acquiring and acquired persons.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.2 Acquiring... each holds half of V's shares. Therefore, A and B each control V (see § 801.1(b)), and V is included...” are acquiring persons. (b) Except as provided in paragraphs (a) and (b) of § 801.12, the...

  13. 16 CFR 801.2 - Acquiring and acquired persons.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...” are acquiring persons. (b) Except as provided in paragraphs (a) and (b) of § 801.12, the person(s.... Examples: 1. Corporation A (the ultimate parent entity included within person “A”) proposes to acquire Y, a... to be carried out by merging Y into X, a wholly-owned subsidiary of A, with X surviving, and...

  14. 16 CFR 801.2 - Acquiring and acquired persons.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...” are acquiring persons. (b) Except as provided in paragraphs (a) and (b) of § 801.12, the person(s.... Examples: 1. Corporation A (the ultimate parent entity included within person “A”) proposes to acquire Y, a... to be carried out by merging Y into X, a wholly-owned subsidiary of A, with X surviving, and...

  15. [Acquired aplastic anemia].

    PubMed

    Yamazaki, Hirohito

    2016-02-01

    Idiopathic aplastic anemia (AA) is an autoimmune disease caused by T cells. An increase in the percentage of glycosylphosphatidylinositol-anchored protein-deficient cells and the presence of HLA allele-lacking leukocytes due to 6pUPD provide indirect evidence that T cells contribute to the pathophysiology of AA. Recent studies have revealed the presence of somatic mutations in MDS and/or AML candidate genes in one third of AA patients. Current treatment topics include the efficacy of eltrombopag for AA found to be refractory to immunosuppressive therapy as well as for newly diagnosed AA when administered in combination with ATG and cyclosporine. Furthermore, improved outcomes of allogeneic bone marrow transplantation from unrelated donors using reduced-intensity conditioning regimens have been obtained with eltrombopag. Fludarabine-based regimens are now the mainstream approach for preconditioning and have lowered the transplant-related mortality rate. However, new problems such as mixed chimerism and secondary graft failure have arisen. Attempts to prevent GVHD more efficiently by including ATG and alemtuzumab in the preconditioning regimen are being investigated. PMID:26935624

  16. H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications?

    PubMed

    Gessi, Marco; Gielen, Gerrit H; Hammes, Jennifer; Dörner, Evelyn; Mühlen, Anja Zur; Waha, Andreas; Pietsch, Torsten

    2013-03-01

    Pediatric glioblastomas recently have been exon sequenced with evidence that approximately 30 % of cases harbour mutations of the histone H3.3 gene. Although studies to determinate their role in risk stratification are on-going, it remains to be determined whether H3.3 mutations could be found in other tumors such as pediatric primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) and whether the presence of H3.3 mutations in glioblastomas could be used as diagnostic tool in their differential diagnosis with CNS-PNETs. We performed a large mutational pyrosequencing-based screening on 123 pediatric glioblastomas and 33 CNS-PNET. The analysis revealed that 39/123 (31.7 %) glioblastomas carry H3.3 mutations. The K27M (AAG → ATG, lysine → methionine) mutation was found in 33 glioblastomas (26 %); the G34R (GGG → AGG, glycine → arginine) was observed in 6 glioblastomas (5.5 %). However, we also identified 4 of 33 cases (11 %) of CNS-PNETs harbouring a H3.3 G34R mutation. Multiplex ligation-dependent probe amplification analysis revealed PDGFR-alpha amplification and EGFR gain in two cases and N-Myc amplification in one case of H3.3 G34R mutated CNS-PNET. None of H3.3 mutated tumors presented a CDKN2A loss. In conclusion, because pediatric patients with glioblastoma and CNS-PNET are treated according to different therapeutic protocols, these findings may raise further concerns about the reliability of the histological diagnosis in the case of an undifferentiated brain tumor harbouring G34R H3.3 mutation. In this view, additional studies are needed to determine whether H3.3 G34 mutated CNS-PNET/glioblastomas may represent a defined tumor subtype. PMID:23354654

  17. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    The NSCOR program project is transitioning from establishing the existence of CNS responses to low doses of charged particles, to an investigation of mechanisms underlying these changes and extending the irradiation paradigm to more space-like exposures. In earlier experiments we examined radiation responses of the mouse brain (hippocampus) following exposure to 250 MeV protons and 600 MeV/n iron ions. Our key findings on structural changes were: 1) Significant dose and time dependent loss of en-dothelial cells and microvessel network remodeling occurs suggesting that vascular insufficiency is produced. 2) Significant dose dependent losses of neural precursor cells were observed in a lineage specific pattern which may be associated with cognitive impairment. 3) Evaluation of DNA damage showed dose and time dependent accumulation of mutations with region-specific mutation structures and gene expression profiling demonstrated activation of neurotrophic and adhesion factors as well as chemokine receptors associated with inflammation. Our key find-ings on functional changes were: 1) Time and dose dependent modifications to neural output expressed as enhanced excitability but reduced synaptic efficacy and plasticity (including long term potentiation). 2) Intrinsic membrane properties of neurons were not significantly modi-fied by radiation exposure but pharmacological treatments demonstrated changes in inhibitory synapses. 3) MRI imaging visualized brain structural changes based on altered water diffu-sion properties and patterns were consistent with demyelination or gliosis. Our key findings on neurodegeneration and fidelity of homeostasis were: 1) APP23 transgenic mice exhibited accelerated APP-type electrophysiological pathology over several months. 2) Microvessel net-work changes following irradiation were suggestive of poor tissue oxygenation. 3) The ability of the brain to respond a controlled septic shock was altered by irradiation; the septic shock reactions

  18. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    The NSCOR program project is transitioning from establishing the existence of CNS responses to low doses of charged particles, to an investigation of mechanisms underlying these changes and extending the irradiation paradigm to more space-like exposures. In earlier experiments we examined radiation responses of the mouse brain (hippocampus) following exposure to 250 MeV protons and 600 MeV/n iron ions. Our key findings on structural changes were: 1) Significant dose and time dependent loss of en-dothelial cells and microvessel network remodeling occurs suggesting that vascular insufficiency is produced. 2) Significant dose dependent losses of neural precursor cells were observed in a lineage specific pattern which may be associated with cognitive impairment. 3) Evaluation of DNA damage showed dose and time dependent accumulation of mutations with region-specific mutation structures and gene expression profiling demonstrated activation of neurotrophic and adhesion factors as well as chemokine receptors associated with inflammation. Our key find-ings on functional changes were: 1) Time and dose dependent modifications to neural output expressed as enhanced excitability but reduced synaptic efficacy and plasticity (including long term potentiation). 2) Intrinsic membrane properties of neurons were not significantly modi-fied by radiation exposure but pharmacological treatments demonstrated changes in inhibitory synapses. 3) MRI imaging visualized brain structural changes based on altered water diffu-sion properties and patterns were consistent with demyelination or gliosis. Our key findings on neurodegeneration and fidelity of homeostasis were: 1) APP23 transgenic mice exhibited accelerated APP-type electrophysiological pathology over several months. 2) Microvessel net-work changes following irradiation were suggestive of poor tissue oxygenation. 3) The ability of the brain to respond a controlled septic shock was altered by irradiation; the septic shock reactions

  19. Acquiring and Organizing Curriculum Materials.

    ERIC Educational Resources Information Center

    Lare, Gary A.

    This book addresses two areas of need in a curriculum materials center--where to find curriculum materials for acquisition and how to organize these materials for efficient and effective access once they are acquired. The book is arranged in two parts: "Acquiring and Organizing the Collection" and "Resources." The book brings together many…

  20. Diffusion and action of intracerebroventricularly injected interleukin-1 in the CNS.

    PubMed

    Konsman, J P; Tridon, V; Dantzer, R

    2000-01-01

    Interleukin-1beta acts on the CNS to induce fever, neuroendocrine activation and behavioural depression. We have previously demonstrated that interleukin-1beta is synthesized in glial cells and macrophages of circumventricular organs and choroid plexus after intraperitoneal administration of bacterial lipopolysaccharide. Whether, and how, interleukin-1beta produced in glial cells affects neuronal functioning is unknown. Diffusion throughout the extracellular space is an important pathway by which factors produced by glial cells act on distant cells, a phenomenon coined "volume transmission". The present study assessed diffusion of recombinant rat interleukin-1beta, recombinant human interleukin-1 receptor antagonist and 10mol. wt dexran in the rat CNS after intracerebroventricular administration to model interleukin-1beta release from choroid plexus. Immunocytochemistry with specific antibodies directed against interleukin-1beta and interleukin-1 receptor antagonist revealed that these molecules rapidly penetrated into periventricular tissue and spread along white matter fibre bundles and blood vessels in the caudoputamen, hypothalamus and amygdala. The transcription factor nuclear factor kappa B and the immediate-early gene product Fos were detected immunocytochemically to reveal interleukin-1beta action. Intracerebroventricular infusion of interleukin-1beta induced nuclear factor kappa B translocation in choroid plexus, ependymal cells, basolateral amygdala, cerebral vasculature and meninges. Fos immunoreactivity was found in the supraoptic and paraventricular hypothalamus and central amygdala. We propose that intracerebroventricular injected interleukin-1beta can enter the brain parenchyma and act as a "volume transmission" signal in, for example, the basolateral amygdala where it might activate a neuronal projection to the central amygdala.

  1. Chd7 Cooperates with Sox10 and Regulates the Onset of CNS Myelination and Remyelination

    PubMed Central

    He, Danyang; Marie, Corentine; Zhao, Chuntao; Kim, Bongwoo; Wang, Jincheng; Deng, Yaqi; Clavairoly, Adrien; Frah, Magali; Wang, Haibo; He, Xuelian; Hmidan, Hatem; Jones, Blaise V.; Witte, David; Zalc, Bernard; Zhou, Xin; Choo, Daniel I.; Martin, Donna M.; Parras, Carlos; Lu, Q. Richard

    2016-01-01

    Mutations in CHD7, encoding ATP-dependent chromodomain-helicase-DNA-binding protein 7, in CHARGE syndrome leads to multiple congenital anomalies including craniofacial malformations, neurological dysfunction and growth delay. Currently, mechanisms underlying the CNS phenotypes remain poorly understood. Here, we show that Chd7 is a direct transcriptional target of oligodendrogenesis-promoting factors Olig2 and Smarca4/Brg1, and is required for proper onset of CNS myelination and remyelination. Genome-occupancy analyses, coupled with transcriptome profiling, reveal that Chd7 interacts with Sox10 and targets the enhancers of key myelinogenic genes, and identify novel Chd7 targets including bone formation regulators Osterix/Sp7 and Creb3l2, which are also critical for oligodendrocyte maturation. Thus, Chd7 coordinates with Sox10 to regulate the initiation of myelinogenesis and acts as a molecular nexus of regulatory networks that account for the development of a seemingly diverse array of lineages including oligodendrocytes and osteoblasts, pointing to the hitherto previously uncharacterized Chd7 functions in white matter pathogenesis in CHARGE syndrome. PMID:26928066

  2. Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide

    SciTech Connect

    Shaffer, M.M.; Moody, T.W.

    1986-03-01

    Receptors for VIP were characterized in the rat CNS. /sup 125/I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific /sup 125/I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.

  3. Reactive gliosis in the pathogenesis of CNS diseases.

    PubMed

    Pekny, Milos; Pekna, Marcela

    2016-03-01

    Astrocytes maintain the homeostasis of the central nervous system (CNS) by e.g. recycling of neurotransmitters and providing nutrients to neurons. Astrocytes function also as key regulators of synaptic plasticity and adult neurogenesis. Any insult to the CNS tissue triggers a range of molecular, morphological and functional changes of astrocytes jointly called reactive (astro)gliosis. Reactive (astro)gliosis is highly heterogeneous and also context-dependent process that aims at the restoration of homeostasis and limits tissue damage. However, under some circumstances, dysfunctional (astro)gliosis can become detrimental and inhibit adaptive neural plasticity mechanisms needed for functional recovery. Understanding the multifaceted and context-specific functions of astrocytes will contribute to the development of novel therapeutic strategies that, when applied at the right time-point, will improve the outcome of diverse neurological disorders. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.

  4. Histone Regulation in the CNS: Basic Principles of Epigenetic Plasticity

    PubMed Central

    Maze, Ian; Noh, Kyung-Min; Allis, C David

    2013-01-01

    Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders. PMID:22828751

  5. Single Cell Electroporation Method for Mammalian CNS Neurons in Organotypic Slice Cultures

    NASA Astrophysics Data System (ADS)

    Uesaka, Naofumi; Hayano, Yasufumi; Yamada, Akito; Yamamoto, Nobuhiko

    Axon tracing is an essential technique to study the projection pattern of neurons in the CNS. Horse radish peroxidase and lectins have contributed to revealing many neural connection patterns in the CNS (Itaya and van Hoesen, 1982; Fabian and Coulter, 1985; Yoshihara, 2002). Moreover, a tracing method with fluorescent dye has enabled the observation of growing axons in living conditions, and demon strated a lot of developmental aspects in axon growth and guidance (Harris et al., 1987; O'Rourke and Fraser, 1990; Kaethner and Stuermer, 1992; Halloran and Kalil, 1994; Yamamoto et al., 1997). More recently, genetically encoded fluores cent proteins can be used as a powerful tool to observe various biological events. Several gene transfer techniques such as microinjection, biolistic gene gun, viral infection, lipofection and transgenic technology have been developed (Feng et al., 2000; Ehrengruber et al., 2001; O'Brien et al., 2001; Ma et al., 2002; Sahly et al., 2003). In particular, the electroporation technique was proved as a valuable tool, since it can be applied to a wide range of tissues and cell types with little toxicity and can be performed with relative technical easiness. Most methods, including a stand ard electroporation technique, are suitable for gene transfer to a large number of cells. However, this is not ideal for axonal tracing, because observation of individ ual axons is occasionally required. To overcome this problem, we have developed an electroporation method using glass micropipettes containing plasmid solutions and small current injection. Here we introduce the method in detail and exemplified results with some example applications and discuss its usefulness.

  6. Cranial radiation necessary for CNS prophylaxis in pediatric NHL

    SciTech Connect

    Mandell, L.R.; Wollner, N.; Fuks, Z.

    1987-03-01

    The records of 95 consecutive children less than or equal to 21 years of age with previously untreated diffuse histology NHL registered in our protocols from 1978 to 1983 were reviewed. Seventy-nine patients were considered eligible for analysis. The histologic subtypes represented included lymphoblastic (LB) 37%; histiocytic (DHL) 29%; undifferentiated (DU) 19%; poorly differentiated (DPDL) 9%; and unclassified (UNHL) 6%. Distribution of the patients according to stage showed Stage I, 0%; Stage II, 11%; Stage III, 53%; Stage IV, 36%. Four different Memorial Hospital protocols for systemic chemotherapy were used (LSA2L2 73%; L10 9%; L17 10%; L17M 8%); however, the IT (intrathecal) chemotherapy was uniform (Methotrexate: 6.0-6.25 mg/M2 per treatment course) and was included in the induction, consolidation, and maintenance phases of all treatment protocols. Cranial radiation was included in the induction, consolidation, and maintenance phases of all treatment protocols. Cranial radiation was not included in the CNS prophylaxis program. The overall median time of follow-up was 43 months. The overall CNS relapse rate was 6.3%; however, the incidence of CNS lymphoma presenting as the first isolated site of relapse in patients in otherwise complete remission (minimum follow-up of 19 months with 97% of patients off treatment) was only 1/58 (1.7%). Our data suggest that IT chemotherapy when given in combination with modern aggressive systemic combination chemotherapy, and without cranial radiation appears to be a highly effective modality for CNS prophylaxis regardless of stage, histology, or bone marrow or mediastinal involvement. (Abstract Truncated)

  7. Hyperbaric oxygen preconditioning protects rats against CNS oxygen toxicity.

    PubMed

    Arieli, Yehuda; Kotler, Doron; Eynan, Mirit; Hochman, Ayala

    2014-06-15

    We examined the hypothesis that repeated exposure to non-convulsive hyperbaric oxygen (HBO) as preconditioning provides protection against central nervous system oxygen toxicity (CNS-OT). Four groups of rats were used in the study. Rats in the control and the negative control (Ctl-) groups were kept in normobaric air. Two groups of rats were preconditioned to non-convulsive HBO at 202 kPa for 1h once every other day for a total of three sessions. Twenty-four hours after preconditioning, one of the preconditioned groups and the control rats were exposed to convulsive HBO at 608 kPa, and latency to CNS-OT was measured. Ctl- rats and the second preconditioned group (PrC-) were not subjected to convulsive HBO exposure. Tissues harvested from the hippocampus and frontal cortex were evaluated for enzymatic activity and nitrotyrosine levels. In the group exposed to convulsive oxygen at 608 kPa, latency to CNS-OT increased from 12.8 to 22.4 min following preconditioning. A significant decrease in the activity of glutathione reductase and glucose-6-phosphate dehydrogenase, and a significant increase in glutathione peroxidase activity, was observed in the hippocampus of preconditioned rats. Nitrotyrosine levels were significantly lower in the preconditioned animals, the highest level being observed in the control rats. In the cortex of the preconditioned rats, a significant increase was observed in glutathione S-transferase and glutathione peroxidase activity. Repeated exposure to non-convulsive HBO provides protection against CNS-OT. The protective mechanism involves alterations in the enzymatic activity of the antioxidant system and lower levels of peroxynitrite, mainly in the hippocampus.

  8. Primary CNS lymphoproliferative disease, mycophenolate and calcineurin inhibitor usage

    PubMed Central

    Crane, Genevieve M.; Powell, Helen; Kostadinov, Rumen; Rocafort, Patrick Tim; Rifkin, Dena E.; Burger, Peter C.; Ambinder, Richard F.; Swinnen, Lode J.; Borowitz, Michael J.; Duffield, Amy S.

    2015-01-01

    Immunosuppression for solid organ transplantation increases lymphoproliferative disease risk. While central nervous system (CNS) involvement is more rare, we noticed an increase in primary CNS (PCNS) disease. To investigate a potential association with the immunosuppressive regimen we identified all post-transplant lymphoproliferative disease (PTLD) cases diagnosed over a 28-year period at our institution (174 total, 29 PCNS) and all similar cases recorded in a United Network for Organ Sharing-Organ Procurement and Transplant Network (UNOS-OPTN) data file. While no PCNS cases were diagnosed at our institution between 1986 and 1997, they comprised 37% of PTLD cases diagnosed from 2011–2014. PCNS disease was more often associated with renal vs. other organ transplant, Epstein-Barr virus, large B-cell morphology and mycophenolate mofetil (MMF) as compared to PTLD that did not involve the CNS. Calcineurin inhibitors were protective against PCNS disease when given alone or in combination with MMF. A multivariate analysis of a larger UNOS-OPTN dataset confirmed these findings, where both MMF and lack of calcineurin inhibitor usage were independently associated with risk for development of PCNS PTLD. These findings have significant implications for the transplant community, particularly given the introduction of new regimens lacking calcineurin inhibitors. Further investigation into these associations is warranted. PMID:26460822

  9. MAG, myelin and overcoming growth inhibition in the CNS

    PubMed Central

    McKerracher, Lisa; Rosen, Kenneth M.

    2015-01-01

    While neurons in the central nervous system (CNS) have the capacity to regenerate their axons after injury, they fail to do so, in part because regeneration is limited by growth inhibitory proteins present in CNS myelin. Myelin-associated glycoprotein (MAG) was the first myelin-derived growth inhibitory protein identified, and its inhibitory activity was initially elucidated in 1994 independently by the Filbin lab and the McKerracher lab using cell-based and biochemical techniques, respectively. Since that time we have gained a wealth of knowledge concerning the numerous growth inhibitory proteins that are present in myelin, and we also have dissected many of the neuronal signaling pathways that act as stop signs for axon regeneration. Here we give an overview of the early research efforts that led to the identification of myelin-derived growth inhibitory proteins, and the importance of this family of proteins for understanding neurotrauma and CNS diseases. We further provide an update on how this knowledge has been translated towards current clinical studies in regenerative medicine. PMID:26441514

  10. Treatment Options for Medulloblastoma and CNS Primitive Neuroectodermal Tumor (PNET)

    PubMed Central

    Packer, Roger J.

    2016-01-01

    The amount of residual disease after surgery better correlates with survival for medulloblastomas than for CNS PNETs. Maximal surgical resection of tumor should be done, only if additional permanent, neurologic deficits can be spared. Patients should have a staging work-up to assess the extent of disease. This includes postoperative magnetic resonance imaging (MRI) of the brain, MRI of the entire spine and lumbar cerebrospinal fluid (CSF) sampling for cytological examination, if deemed safe. Radiation therapy to the entire CNS axis is required, with a greater dose (boost) given to the region of the primary site or any bulky residual disease for older children. Adjuvant chemotherapy must be given even if no evidence of disease after radiation therapy exists, as the risk of relapse is substantial after radiation alone. Subsets of younger children with medulloblastoma, arbitrarily defined as those younger than 3 years of age in some studies and 4 or even 5 years in other studies, can be effectively treated with chemotherapy alone. Recent genomic studies have revealed further subtypes of disease than previously recognized. Clinical trials to exploit these biologic differences are required to assess potential efficacy of targeted agents. The treatment of medulloblastoma and CNS PNET can cause significant impairment in neurologic function. Evaluations by physical therapy, occupational therapy, speech therapy and neurocognitive assessments should be obtained, as needed. After therapy is completed, survivors need follow-up of endocrine function, surveillance scans and psychosocial support. PMID:23979905

  11. PPAR agonists as therapeutics for CNS trauma and neurological diseases

    PubMed Central

    Mandrekar-Colucci, Shweta; Sauerbeck, Andrew; Popovich, Phillip G.; McTigue, Dana M.

    2013-01-01

    Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS. PMID:24215544

  12. Origin, fate and dynamics of macrophages at CNS interfaces

    PubMed Central

    Goldmann, Tobias; Jordão, Marta Joana Costa; Wieghofer, Peter; Prutek, Fabiola; Hagemeyer, Nora; Frenzel, Kathrin; Staszewski, Ori; Kierdorf, Katrin; Amann, Lukas; Krueger, Martin; Locatelli, Giuseppe; Hochgarner, Hannah; Zeiser, Robert; Epelman, Slava; Geissmann, Frederic; Priller, Josef; Rossi, Fabio; Bechmann, Ingo; Kerschensteiner, Martin; Linnarsson, Sten; Jung, Steffen; Prinz, Marco

    2016-01-01

    Perivascular, meningeal and choroid plexus macrophages are non-parenchymal macrophages that mediate immune responses at brain boundaries. Although the origin of parenchymal microglia has recently been elucidated, much less is known about the precursors, the underlying transcriptional program and the dynamics of the other macrophages in the central nervous system (CNS). It has been assumed that they have a high turnover with blood-borne monocytes. However, large scale single-cell RNA-sequencing reveals a striking molecular overlap between perivascular macrophages and microglia but not monocytes. Using several fate mapping approaches and parabiosis we demonstrate that CNS macrophages arise from yolk sac precursors during embryonic development and remain a stable population. Notably, the generation of CNS macrophages relies on the transcription factor Pu.1 whereas myb, Batf3 and Nr4a1 are not required. Upon autoimmune inflammation, macrophages undergo extensive self-renewal by local proliferation. Our data provide challenging new insights into brains innate immune system. PMID:27135602

  13. Nanotechnology for CNS Delivery of Bio-Therapeutic Agents

    PubMed Central

    Shah, Lipa; Yadav, Sunita; Amiji, Mansoor

    2013-01-01

    The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to, disease modifying effects. With change in population demographics, the incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve elderly population. In this review, we highlight the challenges and opportunities in delivering newer and more effective bio-therapeutic agents for the treatment of CNS disorders. Bio-therapeutics like proteins, peptides, monoclonal antibodies, growth factors, and nucleic acids are thought to have a profound effect on halting the progression of neurodegenerative disorders and also provide a unique function of restoring damaged cells. We provide a review of the nano-sized formulation-based drug delivery systems and alternate modes of delivery, like the intranasal route, to carry bio-therapeutics effectively to the brain. PMID:23894728

  14. Pharmacological approaches to CNS vasculitis: where are we at now?

    PubMed

    Pagnoux, Christian; Hajj-Ali, Rula A

    2016-01-01

    The diagnosis and treatment of central nervous system (CNS) vasculitis is extremely challenging. Several conditions can mimic CNS vasculitis and require totally different treatment. CNS vasculitis, once confirmed, may result from infections or systemic diseases that will warrant specific treatments, or, more rarely, be primary and isolated (PCNSV). Prospective trials to help determine the optimal treatment for PCNSV are lacking, but data from several cohorts have provided seminal data on its management. The consensus is to use glucocorticoids as first-line agents, combined with additional immunosuppressants for the most severe cases, mainly cyclophosphamide for induction, followed by less-toxic maintenance therapy with azathioprine, methotrexate, or mycophenolate mofetil. The recent identification of PCNSV subgroups and predictors of outcomes might help in deciding the adequate treatment for each patient, keeping in mind that these data are based on a small number of patients. Other agents and biologics can be considered for patients with relapsing and/or refractory disease, but evidence is limited. In practice, the diagnosis must be re-questioned in patients with PCNSV refractory to standard treatment, especially with diagnoses not based on pathology. PMID:26559201

  15. Strain-dependent CNS dissemination in guinea pigs after Mycobacterium tuberculosis aerosol challenge.

    PubMed

    Be, Nicholas A; Klinkenberg, Lee G; Bishai, William R; Karakousis, Petros C; Jain, Sanjay K

    2011-09-01

    Clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with CNS disease. We therefore examined CNS dissemination by different laboratory strains (two M. tuberculosis H37Rv, one CDC1551) in a guinea pig aerosol infection model. Although all strains grew exponentially in lungs, with similar bacterial burdens at the time of extrapulmonary dissemination, M. tuberculosis CDC1551 disseminated to the CNS significantly more than the H37Rv strains. No CNS lesions were observed throughout the study, with only a modest cytokine response. These data suggest that M. tuberculosis may have virulence factors that promote CNS dissemination, distinct from those required for pulmonary TB.

  16. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease

    PubMed Central

    2014-01-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases. PMID:25558415

  17. Stereotactic biopsy of cerebral lesions in acquired immunodeficiency syndrome.

    PubMed

    Davies, M A; Pell, M F; Brew, B J

    1995-01-01

    The efficacy, mortality and morbidity of CT directed stereotactic biopsy of a cerebral lesion in 32 Human Immunodeficiency Virus (HIV) infected patients between July 1991 and June 1994 who had an atypical presentation for toxoplasmosis or who were failing or intolerant of empirical antitoxoplasmosis treatment was evaluated. An histological diagnosis was able to be made in 85%: progressive multifocal leucoencephalopathy (PML) in 13, primary cerebral lymphoma in 10, toxoplasmosis in 3 and HIV encephalitis in one. Non-specific reactive changes or gliosis were seen in 5 patients. There was no mortality, and morbidity occurred in 2 patients: one intraventricular haemorrhage and one transient third nerve palsy. Correct diagnosis made by image-directed stereotactic biopsy of central nervous system (CNS) disease in acquired immunodeficiency syndrome (AIDS) patients may improve outcome, particularly in those diseases where effective treatment strategies already exist and become increasingly available in the future.

  18. Neurophysiological endophenotypes, CNS disinhibition, and risk for alcohol dependence and related disorders.

    PubMed

    Porjesz, Bernice; Rangaswamy, Madhavi

    2007-01-01

    Biological endophenotypes are more proximal to gene function than psychiatric diagnosis, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. The Collaborative Study on the Genetics of Alcoholism (COGA) has employed heritable neurophysiological features (i.e., brain oscillations) as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We found significant linkage and association between brain oscillations and genes involved with inhibitory neural networks (e.g., GABRA2, CHRM2), including frontal networks that are deficient in individuals with alcohol dependence, impulsivity, and related disinhibitory disorders. We reported significant linkage and linkage disequilibrium for the beta frequency of the EEG and GABRA2, a GABAA receptor gene on chromosome 4, which we found is also associated with diagnosis of alcohol dependence and related disorders. More recently, we found significant linkage and association with GABRA2 and interhemispheric theta coherence. We also reported significant linkage and linkage disequilibrium between the theta and delta event-related oscillations underlying P3 to target stimuli and CHRM2, a cholinergic muscarinic receptor gene on chromosome 7, which we found is also associated with diagnosis of alcohol dependence and related disorders. Thus, the identification of genes important for the expression of the endophenotypes (brain oscillations) helps when identifying genes that increase the susceptibility for risk of alcohol dependence and related disorders. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of complex disorders. We will present our recent genetic findings related to

  19. Immunological assays for chemokine detection in in-vitro culture of CNS cells

    PubMed Central

    Mahajan, Supriya D.; Schwartz, Stanley A.

    2003-01-01

    Herein we review the various methods currently in use for determining the expression of chemokines by CNS cells in vitro. Chemokine detection assays are used in conjuction with one another to provide a comprehensive, biologically relevant assessment of the chemokines which is necessary for correct data interpretation of a specific observed biological effect. The methods described include bioassays for soluble chemokine receptors, RNA extraction, RT-PCR, Real - time quantitative PCR, gene array analysis, northern blot analysis, Ribonuclease Protection assay, Flow cytometry, ELISPOT, western blot analysis, and ELISA. No single method of analysis meets the criteria for a comprehensive, biologically relevant assessment of the chemokines, therefore more than one assay might be necessary for correct data interpretation, a choice that is based on development of a scientific rationale for the method with emphasis on the reliability and relevance of the method. PMID:12734551

  20. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS

    PubMed Central

    Yamanaka, Tomoyuki; Tosaki, Asako; Miyazaki, Haruko; Kurosawa, Masaru; Koike, Masato; Uchiyama, Yasuo; Maity, Sankar N.; Misawa, Hidemi; Takahashi, Ryosuke; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2016-01-01

    The mammalian central nervous system (CNS) contains various types of neurons with different neuronal functions. In contrast to established roles of cell type-specific transcription factors on neuronal specification and maintenance, whether ubiquitous transcription factors have conserved or differential neuronal function remains uncertain. Here, we revealed that inactivation of a ubiquitous factor NF-Y in different sets of neurons resulted in cell type-specific neuropathologies and gene downregulation in mouse CNS. In striatal and cerebellar neurons, NF-Y inactivation led to ubiquitin/p62 pathologies with downregulation of an endoplasmic reticulum (ER) chaperone Grp94, as we previously observed by NF-Y deletion in cortical neurons. In contrast, NF-Y inactivation in motor neurons induced neuronal loss without obvious protein deposition. Detailed analysis clarified downregulation of another ER chaperone Grp78 in addition to Grp94 in motor neurons, and knockdown of both ER chaperones in motor neurons recapitulated the pathology observed after NF-Y inactivation. Finally, additional downregulation of Grp78 in striatal neurons suppressed ubiquitin accumulation induced by NF-Y inactivation, implying that selective ER chaperone downregulation mediates different neuropathologies. Our data suggest distinct roles of NF-Y in protein homeostasis and neuronal maintenance in the CNS by differential regulation of ER chaperone expression. PMID:27687130

  1. Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNS.

    PubMed

    Mellerick, Dervla M; Liu, Heather

    2004-09-01

    Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity.

  2. Acquired plate-like osteoma cutis.

    PubMed

    Vashi, Neelam; Chu, Julie; Patel, Rishi

    2011-10-15

    Plate-like osteoma cutis is a rare disorder that has been historically classified as a congenital syndrome. It has a possible relationship to a mutation in the gene (GNAS1) that encodes the α-subunit of the stimulatory G protein, which regulates adenyl cyclase activity. We report a case of extensive plaque-like masses on the scalp and face with no abnormalities in calcium or phosphate metabolism and no preceding inflammatory cutaneous conditions. With less than ten reported cases, to our knowledge, this is one the few cases of acquired plate-like osteoma cutis described in the literature.

  3. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    PubMed Central

    de Leeuw, Charles N; Dyka, Frank M; Boye, Sanford L; Laprise, Stéphanie; Zhou, Michelle; Chou, Alice Y; Borretta, Lisa; McInerny, Simone C; Banks, Kathleen G; Portales-Casamar, Elodie; Swanson, Magdalena I; D’Souza, Cletus A; Boye, Shannon E; Jones, Steven JM; Holt, Robert A; Goldowitz, Daniel; Hauswirth, William W; Wasserman, Wyeth W; Simpson, Elizabeth M

    2014-01-01

    Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs) using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS) and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy. PMID:24761428

  4. New perspectives on using brain imaging to study CNS stimulants.

    PubMed

    Lukas, Scott E

    2014-12-01

    While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.

  5. Intranasal Administration of CNS Therapeutics to Awake Mice

    PubMed Central

    Hanson, Leah R.; Fine, Jared M.; Svitak, Aleta L.; Faltesek, Katherine A.

    2013-01-01

    Intranasal administration is a method of delivering therapeutic agents to the central nervous system (CNS). It is non-invasive and allows large molecules that do not cross the blood-brain barrier access to the CNS. Drugs are directly targeted to the CNS with intranasal delivery, reducing systemic exposure and thus unwanted systemic side effects1. Delivery from the nose to the CNS occurs within minutes along both the olfactory and trigeminal neural pathways via an extracellular route and does not require drug to bind to any receptor or axonal transport2. Intranasal delivery is a widely publicized method and is currently being used in human clinical trials3. Intranasal delivery of drugs in animal models allows for initial evaluation of pharmacokinetic distribution and efficacy. With mice, it is possible to administer drugs to awake (non-anesthetized) animals on a regular basis using a specialized intranasal grip. Awake delivery is beneficial because it allows for long-term chronic dosing without anesthesia, it takes less time than with anesthesia, and can be learned and done by many people so that teams of technicians can dose large numbers of mice in short periods. Efficacy of therapeutics administered intranasally in this way to mice has been demonstrated in a number of studies including insulin in diabetic mouse models 4-6 and deferoxamine in Alzheimer's mouse models. 7,8 The intranasal grip for mice can be learned, but is not easy and requires practice, skill, and a precise grip to effectively deliver drug to the brain and avoid drainage to the lung and stomach. Mice are restrained by hand using a modified scruff in the non-dominant hand with the neck held parallel to the floor, while drug is delivered with a pipettor using the dominant hand. It usually takes 3-4 weeks of acclimating to handling before mice can be held with this grip without a stress response. We have prepared this JoVE video to make this intranasal delivery technique more accessible. PMID

  6. Curcumin aggravates CNS pathology in experimental systemic lupus erythematosus.

    PubMed

    Foxley, Sean; Zamora, Marta; Hack, Bradley; Alexander, Rebecca Rashmi; Roman, Brian; Quigg, Richard John; Alexander, Jessy John

    2013-04-01

    Complement activation and inflammation are key disease features of systemic lupus erythematosus. Curcumin is an anti-inflammatory agent that inhibits the complement cascade. Therefore, we hypothesized that curcumin will be protective in CNS lupus. To assess the effect of curcumin on CNS-lupus, MRL/lpr mice were used. Brain MRI showed that curcumin (30mg/kg body wt. i.p. from 12-20 weeks) worsened regional brain atrophy. The volumes of the lateral and third ventricles are significantly increased (150%-213% and 107%-140%, without and with treatment respectively compared to MRL+/+ controls). The hippocampus was reduced further (83%-81%) by curcumin treatment. In line with increased brain atrophy, there were edematous cells (41% increase in cell size in MRL/lpr compared to MRL+/+ mice. The cell size was further increased by 28% when treated with curcumin; p<0.02) in the cortex. In line with increased atrophy and edema, there was a significant increase (p<0.02) in the mRNA and protein expression of the water channel protein, aquaporin 4 in these mice. The increase in the matrix proteins, glial fibrillary acidic protein and vimentin in lupus mice in the hippocampus was prevented by curcumin. Curcumin increased IgG deposits and decreased C3 deposits in brain with a corresponding increase in immune complexes and decrease in C3 concentration (by 60% in MRL/lpr mice Vs. MRL+/+ mice and a further 26% decrease when treated with curcumin) in circulation. Decrease in C3 could alter the transport of immune complexes leading to an increase in IgG deposits which could induce inflammatory pathways thereby leading to worsening of the disease. The neurological outcome as measured by maze performance indicates that the curcumin treated mice performed poorly compared to the untreated counterparts. Our results for the first time provide evidence that at the dose used in this study, curcumin aggravates some CNS disease manifestations in experimental lupus brain. Therefore, until a safe

  7. Kynurenines in CNS disease: regulation by inflammatory cytokines

    PubMed Central

    Campbell, Brian M.; Charych, Erik; Lee, Anna W.; Möller, Thomas

    2014-01-01

    The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders. PMID:24567701

  8. Methods for Gene Transfer to the Central Nervous System

    PubMed Central

    Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.

    2015-01-01

    Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922

  9. Aluminum, the genetic apparatus of the human CNS and Alzheimer's disease (AD).

    PubMed

    Pogue, A I; Lukiw, W J

    2016-06-01

    The genomes of eukaryotes orchestrate their expression to ensure an effective, homeostatic and functional gene signaling program, and this includes fundamentally altered patterns of transcription during aging, development, differentiation and disease. These actions constitute an extremely complex and intricate process as genetic operations such as transcription involve the very rapid translocation and polymerization of ribonucleotides using RNA polymerases, accessory transcription protein complexes and other interrelated chromatin proteins and genetic factors. As both free ribonucleotides and polymerized single-stranded RNA chains, ribonucleotides are highly charged with phosphate, and this genetic system is extremely vulnerable to disruption by a large number of electrostatic forces, and primarily by cationic metals such as aluminum. Aluminum has been shown by independent researchers to be particularly genotoxic to the genetic apparatus, and it has become reasonably clear that aluminum disturbs genetic signaling programs in the CNS that bear a surprising resemblance to those observed in Alzheimer's disease (AD) brain. This paper will focus on a discussion of two molecular-genetic aspects of aluminum genotoxicity: (1) the observation that micro-RNA (miRNA)-mediated global gene expression patterns in aluminum-treated transgenic animal models of AD (Tg-AD) strongly resemble those found in AD; and (2) the concept of "human biochemical individuality" and the hypothesis that individuals with certain gene expression patterns may be especially sensitive and perhaps predisposed to aluminum genotoxicity.

  10. Oligodendrocyte death results in immune-mediated CNS demyelination

    PubMed Central

    Traka, Maria; Podojil, Joseph R; McCarthy, Derrick P; Miller, Stephen D; Popko, Brian

    2016-01-01

    Although multiple sclerosis is a common neurological disorder, the origin of the autoimmune response against myelin, which is the characteristic feature of the disease, remains unclear. To investigate whether oligodendrocyte death could cause this autoimmune response, we examined the oligodendrocyte ablation Plp1-CreERT;ROSA26-eGFP-DTA (DTA) mouse model. Approximately 30 weeks after recovering from oligodendrocyte loss and demyelination, DTA mice develop a fatal secondary disease characterized by extensive myelin and axonal loss. Strikingly, late-onset disease was associated with increased numbers of T lymphocytes in the CNS and myelin oligodendrocyte glycoprotein (MOG)-specific T cells in lymphoid organs. Transfer of T cells derived from DTA mice to naive recipients resulted in neurological defects that correlated with CNS white matter inflammation. Furthermore, immune tolerization against MOG ameliorated symptoms. Overall, these data indicate that oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin, suggesting that a similar process can occur in the pathogenesis of multiple sclerosis. PMID:26656646

  11. A Model of Tight Junction Function In CNS Myelinated Axons

    PubMed Central

    Gow, Alexander; Devaux, Jerome

    2010-01-01

    The insulative properties of myelin sheaths in the central and peripheral nervous systems (CNS and PNS) are widely thought to derive from the high resistance and low capacitance of the constituent membranes. Although this view adequately accounts for myelin function in large diameter PNS fibers, it poorly reflects the behavior of small fibers that are prominent in many regions of the CNS. Herein, we develop a computational model to more accurately represent conduction in small fibers. By incorporating structural features that, hitherto, have not been simulated, we demonstrate that myelin tight junctions improve saltatory conduction by reducing current flow through the myelin, limiting axonal membrane depolarization and restraining the activation of ion channels beneath the myelin sheath. Accordingly, our simulations provide a novel view of myelin by which tight junctions minimize charging of the membrane capacitance and lower the membrane time constant to improve the speed and accuracy of transmission in small diameter fibers. This study establishes possible mechanisms whereby TJs affect conduction in the absence of overt perturbations to myelin architecture and may in part explain the tremor and gait abnormalities observed in Claudin 11-null mice. PMID:20102674

  12. Gold Nanoparticles for Imaging and Drug Transport to the CNS.

    PubMed

    Male, D; Gromnicova, R; McQuaid, C

    2016-01-01

    Gold nanoparticles with a core size of 2nm covalently coated with glycans to maintain solubility, targeting molecules for brain endothelium, and cargo molecules hold great potential for delivery of therapies into the CNS. They have low toxicity, pass through brain endothelium in vitro and in vivo, and move rapidly through the brain parenchyma. Within minutes of infusion the nanoparticles can be detected in neurons and glia. These nanoparticles are relatively easy to synthesize in association with their surface ligands. They can be detected by electron microscopy, ICP-mass spectrometry, and spectroscopy. However, modification of the basic gold nanoparticle is required for in vivo imaging by MR or radioactive methods. Depending on their surface coat, the nanoparticles cross the brain endothelium by the plasma membrane/cytosolic route (passive transport) or by vesicular transcytosis (active transport). A primary aim of current research is to improve the biodistribution of the nanoparticles for CNS drug delivery. Smaller gold nanoparticles are removed rapidly via the kidney, while larger nanoparticles are taken up by mononuclear phagocytes in various tissues. Receptors selectively located on brain endothelium can act as targets for the nanoparticles, to increase their delivery to the brain. PMID:27678177

  13. Phytocannabinoids as novel therapeutic agents in CNS disorders.

    PubMed

    Hill, Andrew J; Williams, Claire M; Whalley, Benjamin J; Stephens, Gary J

    2012-01-01

    The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body's endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB(1) receptors by the major pCB, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ(9)-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ(9)tetrahydrocannabivarin (Δ(9)-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ(9)-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ(9)-THC pCB-based medicines. PMID:21924288

  14. Oligodendrocyte death results in immune-mediated CNS demyelination.

    PubMed

    Traka, Maria; Podojil, Joseph R; McCarthy, Derrick P; Miller, Stephen D; Popko, Brian

    2016-01-01

    Although multiple sclerosis is a common neurological disorder, the origin of the autoimmune response against myelin, which is the characteristic feature of the disease, remains unclear. To investigate whether oligodendrocyte death could cause this autoimmune response, we examined the oligodendrocyte ablation Plp1-CreER(T);ROSA26-eGFP-DTA (DTA) mouse model. Approximately 30 weeks after recovering from oligodendrocyte loss and demyelination, DTA mice develop a fatal secondary disease characterized by extensive myelin and axonal loss. Strikingly, late-onset disease was associated with increased numbers of T lymphocytes in the CNS and myelin oligodendrocyte glycoprotein (MOG)-specific T cells in lymphoid organs. Transfer of T cells derived from DTA mice to naive recipients resulted in neurological defects that correlated with CNS white matter inflammation. Furthermore, immune tolerization against MOG ameliorated symptoms. Overall, these data indicate that oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin, suggesting that a similar process can occur in the pathogenesis of multiple sclerosis.

  15. Glibenclamide for the Treatment of Acute CNS Injury

    PubMed Central

    Kurland, David B.; Tosun, Cigdem; Pampori, Adam; Karimy, Jason K.; Caffes, Nicholas M.; Gerzanich, Volodymyr; Simard, J. Marc

    2013-01-01

    First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide) is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1)-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective effects in acute CNS injury. Acting via inhibition of the recently characterized Sur1-Trpm4 channel (formerly, the Sur1-regulated NCCa-ATP channel) and, in some cases, via brain KATP channels, glibenclamide has been shown to be beneficial in several clinically relevant rodent models of ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, neonatal encephalopathy of prematurity, and metastatic brain tumor. Glibenclamide acts on microvessels to reduce edema formation and secondary hemorrhage, it inhibits necrotic cell death, it exerts potent anti-inflammatory effects and it promotes neurogenesis—all via inhibition of Sur1. Two clinical trials, one in TBI and one in stroke, currently are underway. These recent findings, which implicate Sur1 in a number of acute pathological conditions involving the CNS, present new opportunities to use glibenclamide, a well-known, safe pharmaceutical agent, for medical conditions that heretofore had few or no treatment options. PMID:24275850

  16. Neuroimaging of scuba diving injuries to the CNS.

    PubMed

    Warren, L P; Djang, W T; Moon, R E; Camporesi, E M; Sallee, D S; Anthony, D C; Massey, E W; Burger, P C; Heinz, E R

    1988-11-01

    Diving accidents related to barotrauma constitute a unique subset of ischemic insults to the CNS. Victims may demonstrate components of arterial gas embolism, which has a propensity for cerebral involvement, and/or decompression sickness, with primarily spinal cord involvement. Fourteen patients with diving-related barotrauma were studied with MR imaging of the brain and spinal cord and with CT of the brain. In four patients with presumed cerebral gas embolism, cranial MR was abnormal in three patients while CT was abnormal in only one. Twelve patients had decompression sickness and spinal cord symptoms. MR documented spinal cord abnormalities in three patients. However, scans obtained early in our study were frequently limited by technical constraints. MR of the brain is more sensitive than conventional CT scanning techniques in detecting and characterizing foci of cerebral ischemia caused by embolic barotrauma to the CNS. Although spinal MR may be less successful in the localization of spinal cord lesions related to decompression sickness, these lesions were previously undetectable by other neuroimaging methods.

  17. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods. PMID:25136634

  18. Drug delivery systems, CNS protection, and the blood brain barrier.

    PubMed

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

  19. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain.

  20. CNS effects of sumatriptan and rizatriptan in healthy female volunteers.

    PubMed

    van der Post, J; Schram, M T; Schoemaker, R C; Pieters, M S M; Fuseau, E; Pereira, A; Baggen, S; Cohen, A F; van Gerven, J M A

    2002-05-01

    This study investigates the CNS effects of sumatriptan and rizatriptan, with temazepam as an active comparator, in healthy female volunteers. Sixteen volunteers completed a randomized, double-blind, crossover study and on four separate occasions received either 100 mg sumatriptan, 20 mg rizatriptan or 20 mg temazepam. The main parameters were eye movements, EEG, body sway, visual analogue scales and a cognitive test battery. Rizatriptan and sumatriptan decreased saccadic peak velocity by 18.3 (95% CI: 5.7, 30.8) and 15.0 (2.2, 27.9) degrees/sec, respectively, about half the decrease induced by temazepam (35.0 (22.1, 47.8) degrees/sec). Body sway increased (30% for rizatriptan (16%, 45%) and 14% for sumatriptan (1%, 27%), respectively). Temazepam caused larger, similar effects. In contrast to temazepam, sumatriptan and rizatriptan decreased reaction times of recognition tasks and increased EEG alpha power (significant for sumatriptan, 0.477 (0.02, 0.935). Therapeutic doses of sumatriptan and rizatriptan caused CNS effects indicative of mild sedation. For EEG and recognition reaction times the effects were opposite to temazepam, indicating central stimulation. PMID:12100089

  1. Emerging tumor entities and variants of CNS neoplasms.

    PubMed

    Cenacchi, Giovanna; Giangaspero, Felice

    2004-03-01

    Since the appearance in 2000 of the World Health Organization (WHO) classification for central nervous system (CNS) neoplasms, numerous descriptions of new entities or variants have appeared in the literature. In the group of neuronal and mixed glioneuronal neoplasms are lesions with distinctive morphological features that are still not included in a precise classification, including extraventricular neurocytoma, papillary glioneuronal tumor, rosette-forming glioneuronal of the fourth ventricle, glioneuronal with neuropil-like rosette, and DNT-like tumor of the septum pellucidum. The glioneuronal tumor with neuropil-like rosette and oligodendroglioma with neurocytic differentiation represent morphological variants of genetically proven diffuse gliomas. The lipoastrocytoma and the pilomixoid astrocytoma enlarge the group of astrocytic lesions. Rare, low-grade gliomas of the spinal cord with extensive leptomeningeal dissemination associated with unusual neuroimaging are described. The chordoid glioma of the third ventricle and the papillary tumor of the pineal region seem to be correlated by a common histogenesis from the specialized ependyma of the subcommissural organ. An embryonal tumor with neuropil and true rosettes combining features of neuroblastoma and ependymoblastoma is discussed. These new, recently described lesions indicate that the complex morphologic spectrum of CNS tumors is far from being completely delineated.

  2. Rapid Assessment of Internodal Myelin Integrity in CNS Tissue

    PubMed Central

    Kirschner, Daniel A.; Avila, Robin L.; Gamez Sazo, Rodolfo E.; Luoma, Adrienne; Enzmann, Gaby U.; Agrawal, Deepika; Inouye, Hideyo; Bunge, Mary Bartlett; Kocsis, Jeffery; Peters, Alan; Whittemore, Scott R.

    2009-01-01

    Monitoring pathology/regeneration in experimental models of de-/remyelination requires an accurate measure not only of functional changes but also of the amount of myelin. We tested whether x-ray diffraction (XRD), which measures periodicity in unfixed myelin, can assess the structural integrity of myelin in fixed tissue. From laboratories involved in spinal cord injury research and in studying the aging primate brain, we solicited “blind” samples and used an electronic detector to rapidly record diffraction patterns (30 minutes each pattern) from them. We assessed myelin integrity by measuring its periodicity and relative amount. Fixation of tissue itself introduced ±10% variation in periodicity and ±40% variation in relative amount of myelin. For samples having the most native-like periods the relative amounts of myelin detected allowed distinctions to be made between normal vs. demyelinating segments and motor vs. sensory tracts within the spinal cord, and aged vs. young primate CNS. Different periodicities also allowed distinctions to be made between samples from spinal cord and nerve roots, and between well-fixed vs. poorly-fixed samples. Our findings suggest that in addition to evaluating the effectiveness of different fixatives, XRD could also be used as a robust and rapid technique for quantitating the relative amount of myelin among spinal cords and other CNS tissue samples from experimental models of de- and remyelination. PMID:19795370

  3. Evolving toward a human-cell based and multiscale approach to drug discovery for CNS disorders

    PubMed Central

    Schadt, Eric E.; Buchanan, Sean; Brennand, Kristen J.; Merchant, Kalpana M.

    2014-01-01

    A disruptive approach to therapeutic discovery and development is required in order to significantly improve the success rate of drug discovery for central nervous system (CNS) disorders. In this review, we first assess the key factors contributing to the frequent clinical failures for novel drugs. Second, we discuss cancer translational research paradigms that addressed key issues in drug discovery and development and have resulted in delivering drugs with significantly improved outcomes for patients. Finally, we discuss two emerging technologies that could improve the success rate of CNS therapies: human induced pluripotent stem cell (hiPSC)-based studies and multiscale biology models. Coincident with advances in cellular technologies that enable the generation of hiPSCs directly from patient blood or skin cells, together with methods to differentiate these hiPSC lines into specific neural cell types relevant to neurological disease, it is also now possible to combine data from large-scale forward genetics and post-mortem global epigenetic and expression studies in order to generate novel predictive models. The application of systems biology approaches to account for the multiscale nature of different data types, from genetic to molecular and cellular to clinical, can lead to new insights into human diseases that are emergent properties of biological networks, not the result of changes to single genes. Such studies have demonstrated the heterogeneity in etiological pathways and the need for studies on model systems that are patient-derived and thereby recapitulate neurological disease pathways with higher fidelity. In the context of two common and presumably representative neurological diseases, the neurodegenerative disease Alzheimer’s Disease, and the psychiatric disorder schizophrenia, we propose the need for, and exemplify the impact of, a multiscale biology approach that can integrate panomic, clinical, imaging, and literature data in order to construct

  4. Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper.

    PubMed

    Stork, Tobias; Thomas, Silke; Rodrigues, Floriano; Silies, Marion; Naffin, Elke; Wenderdel, Stephanie; Klämbt, Christian

    2009-04-01

    Ensheathment of axons by glial membranes is a key feature of complex nervous systems ensuring the separation of single axons or axonal fascicles. Nevertheless, the molecules that mediate the recognition and specific adhesion of glial and axonal membranes are largely unknown. We use the Drosophila midline of the embryonic central nervous system as a model to investigate these neuron glia interactions. During development, the midline glial cells acquire close contact to commissural axons and eventually extend processes into the commissures to wrap individual axon fascicles. Here, we show that this wrapping of axons depends on the interaction of the neuronal transmembrane protein Neurexin IV with the glial Ig-domain protein Wrapper. Although Neurexin IV has been previously described to be an essential component of epithelial septate junctions (SJ), we show that its function in mediating glial wrapping at the CNS midline is independent of SJ formation. Moreover, differential splicing generates two different Neurexin IV isoforms. One mRNA is enriched in septate junction-forming tissues, whereas the other mRNA is expressed by neurons and recruited to the midline by Wrapper. Although both Neurexin IV isoforms are able to bind Wrapper, the neuronal isoform has a higher affinity for Wrapper. We conclude that Neurexin IV can mediate different adhesive cell-cell contacts depending on the isoforms expressed and the context of its interaction partners.

  5. Acquired Equivalence Changes Stimulus Representations

    ERIC Educational Resources Information Center

    Meeter, M.; Shohamy, D.; Myers, C. E.

    2009-01-01

    Acquired equivalence is a paradigm in which generalization is increased between two superficially dissimilar stimuli (or antecedents) that have previously been associated with similar outcomes (or consequents). Several possible mechanisms have been proposed, including changes in stimulus representations, either in the form of added associations or…

  6. Clinical features, outcomes, and cerebrospinal fluid findings in adult patients with central nervous system (CNS) infections caused by varicella-zoster virus: comparison with enterovirus CNS infections.

    PubMed

    Hong, Hyo-Lim; Lee, Eun Mi; Sung, Heungsup; Kang, Joong Koo; Lee, Sang-Ahm; Choi, Sang-Ho

    2014-12-01

    Varicella-zoster virus (VZV) is known to be associated with central nervous system (CNS) infections in adults. However, the clinical characteristics of VZV CNS infections are not well characterized. The aim of this study was to compare the clinical manifestations, outcomes, and cerebrospinal fluid (CSF) findings in patients with VZV CNS infections with those in patients with enterovirus (EV) CNS infections. This retrospective cohort study was performed at a 2,700-bed tertiary care hospital. Using a clinical microbiology computerized database, all adults with CSF PCR results positive for VZV or EV that were treated between January 1999 and February 2013 were identified. Thirty-eight patients with VZV CNS infection and 68 patients with EV CNS infection were included in the study. Compared with the EV group, the median age in the VZV group was higher (VZV, 35 years vs. EV, 31 years; P = 0.02), and showed a bimodal age distribution with peaks in the third and seventh decade. Encephalitis was more commonly encountered in the VZV group (VZV, 23.7% vs. EV, 4.4%; P = 0.01). The median lymphocyte percentage in the CSF (VZV, 81% vs. EV, 36%; P < 0.001) and the CSF protein level (VZV, 100 mg/dl vs. EV, 46 mg/dl; P < 0.001) were higher in the VZV group. Compared with patients with EV CNS infection, patients with VZV CNS infection developed encephalitis more often and exhibited more intense inflammatory reaction. Nevertheless, both VZV and EV CNS infections were associated with excellent long-term prognosis.

  7. 12 CFR 583.1 - Acquire.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND LOAN HOLDING COMPANIES § 583.1 Acquire. The term acquire means to acquire, directly or indirectly, ownership or control through an acquisition of shares, an acquisition of assets or assumption of...

  8. 12 CFR 583.1 - Acquire.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND LOAN HOLDING COMPANIES § 583.1 Acquire. The term acquire means to acquire, directly or indirectly, ownership or control through an acquisition of shares, an acquisition of assets or assumption of...

  9. 12 CFR 583.1 - Acquire.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND LOAN HOLDING COMPANIES § 583.1 Acquire. The term acquire means to acquire, directly or indirectly, ownership or control through an acquisition of shares, an acquisition of assets or assumption of...

  10. 12 CFR 583.1 - Acquire.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND LOAN HOLDING COMPANIES § 583.1 Acquire. The term acquire means to acquire, directly or indirectly, ownership or control through an acquisition of shares, an acquisition of assets or assumption of...

  11. Determining Immune System Suppression versus CNS Protection for Pharmacological Interventions in Autoimmune Demyelination.

    PubMed

    Evonuk, Kirsten S; Moseley, Carson E; Doyle, Ryan E; Weaver, Casey T; DeSilva, Tara M

    2016-01-01

    A major hallmark of the autoimmune demyelinating disease multiple sclerosis (MS) is immune cell infiltration into the brain and spinal cord resulting in myelin destruction, which not only slows conduction of nerve impulses, but causes axonal injury resulting in motor and cognitive decline. Current treatments for MS focus on attenuating immune cell infiltration into the central nervous system (CNS). These treatments decrease the number of relapses, improving quality of life, but do not completely eliminate relapses so long-term disability is not improved. Therefore, therapeutic agents that protect the CNS are warranted. In both animal models as well as human patients with MS, T cell entry into the CNS is generally considered the initiating inflammatory event. In order to assess if a drug protects the CNS, any potential effects on immune cell infiltration or proliferation in the periphery must be ruled out. This protocol describes how to determine whether CNS protection observed after drug intervention is a consequence of attenuating CNS-infiltrating immune cells or blocking death of CNS cells during inflammatory insults. The ability to examine MS treatments that are protective to the CNS during inflammatory insults is highly critical for the advancement of therapeutic strategies since current treatments reduce, but do not completely eliminate, relapses (i.e., immune cell infiltration), leaving the CNS vulnerable to degeneration. PMID:27685467

  12. Characterization of four nuclear-encoded plastid RNA polymerase sigma factor genes in the liverwort Marchantia polymorpha: blue-light- and multiple stress-responsive SIG5 was acquired early in the emergence of terrestrial plants.

    PubMed

    Kanazawa, Takehiko; Ishizaki, Kimitsune; Kohchi, Takayuki; Hanaoka, Mitsumasa; Tanaka, Kan

    2013-10-01

    The plastids of plant cells each contain their own genome, and a bacterial-type RNA polymerase called plastid-encoded plastid RNA polymerase (PEP) is involved in transcription of this genome. While the catalytic core subunits are encoded by the plastid genome, the specificity subunit of PEP, sigma, is generally encoded by the nuclear genome and imported into plastids from the cytoplasm after translation. In this study, we identified and analyzed four sigma factor genes from the nuclear genome of a liverwort, Marchantia polymorpha. Phylogenetic analysis suggested that three of the four genes were orthologous to vascular plant genes and thus they were named MpSIG1, MpSIG2 and MpSIG5. The remaining gene was named MpSIGX. The gene products were predicted to localize to the plastid, and this prediction was experimentally demonstrated by expressing yellow fluorescent protein fusion genes in vivo. As with SIG5 genes of other plant species, expression of MpSIG5 was induced by blue-light irradiation and also under various stress conditions, indicating that the regulatory mechanism responsible is conserved among divergent plant species. However, while the major role of SIG5 in vascular plants is to repair the damaged PSII reaction center through psbD gene transcription, the relevant blue-light-responsive promoter (psbD-BLRP) was not found in M. polymorpha and psbD transcript accumulation did not occur in conjunction with MpSIG5 induction. Thus, the physiological role of SIG5 is probably divergent among plant phyla.

  13. Acquired pericentric inversion of chromosome 9 in acute myeloid leukemia.

    PubMed

    Udayakumar, A M; Pathare, A V; Dennison, D; Raeburn, J A

    2009-01-01

    Pericentric inversion of chromosome 9 involving the qh region is relatively common as a constitutional genetic aberration without any apparent phenotypic consequences. However, it has not been established as an acquired abnormality in cancer. Among the three patients reported so far in the literature with acquired inv(9), only one had acute myeloid leukemia (AML). Here we describe an unique case where both chromosomes 9 presented with an acquired pericentric inversion with breakpoints at 9p13 and 9q12 respectively, in a AML patient with aberrant CD7 and CD9 positivity. Additionally, one der(9) also showed short arm deletion at 9p21 to the centromeric region and including the p16 gene. The constitutional karyotype was normal. This is probably the first report describing an acquired inv(9) involving both chromosomes 9 in AML. The possible significance of this inversion is discussed.

  14. Inhibition of C5a receptor alleviates experimental CNS lupus.

    PubMed

    Jacob, Alexander; Hack, Bradley; Bai, Tao; Brorson, James R; Quigg, Richard J; Alexander, Jessy J

    2010-04-15

    To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-alpha and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus.

  15. Inhibition of C5a receptor alleviates experimental CNS lupus

    PubMed Central

    Jacob, Alexander; Hack, Bradley; Bai, Tao; Brorson, James R.; Quigg, Richard J.; Alexander, Jessy J.

    2010-01-01

    To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-α and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus. PMID:20207017

  16. Preparation of embryonic retinal explants to study CNS neurite growth.

    PubMed

    Hanea, Sonia T; Shanmugalingam, Ushananthini; Fournier, Alyson E; Smith, Patrice D

    2016-05-01

    This protocol outlines the preparation of embryonic mouse retinal explants, which provides an effective technique to analyze neurite outgrowth in central nervous system (CNS) neurons. This validated ex vivo system, which displays limited neuronal death, is highly reproducible and particularly amenable to manipulation. Our previously published studies involving embryonic chick or adult mouse retinal explants were instrumental in the preparation of this protocol; aspects of these previous techniques were combined, adopted and optimized. This protocol thus permits more efficient analysis of neurite growth. Briefly, the retina is dissected from the embryonic mouse eye using precise techniques that take into account the small size of the embryonic eye. The approach applied ensures that the retinal ganglion cell (RGC) layer faces the adhesion substrate on coated cover slips. Neurite growth is clear, well-delineated and readily quantifiable. These retinal explants can therefore be used to examine the neurite growth effects elicited by potential therapeutic agents. PMID:27072342

  17. Autoimmune control of lesion growth in CNS with minimal damage

    NASA Astrophysics Data System (ADS)

    Mathankumar, R.; Mohan, T. R. Krishna

    2013-07-01

    Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier [1, 2] which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. We compared some of the dynamical patterns in the model with different facets of MS. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist in the model which minimizes system damage while, at once, achieving control of lesion growth.

  18. The potential utility of some legal highs in CNS disorders.

    PubMed

    Davidson, Colin; Schifano, Fabrizio

    2016-01-01

    Over the last decade there has been an explosion of new drugs of abuse, so called legal highs or novel psychoactive substances (NPS). Many of these abused drugs have unknown pharmacology, but their biological effects can be anticipated from their molecular structure and possibly also from online user reports. When considered with the findings that some prescription medications are increasingly abused and that some abused drugs have been tested clinically one could argue that there has been a blurring of the line between drugs of abuse and clinically used drugs. In this review we examine these legal highs/NPS and consider whether, based on their known or predicted pharmacology, some might have the potential to be clinically useful in CNS disorders.

  19. The potential utility of some legal highs in CNS disorders.

    PubMed

    Davidson, Colin; Schifano, Fabrizio

    2016-01-01

    Over the last decade there has been an explosion of new drugs of abuse, so called legal highs or novel psychoactive substances (NPS). Many of these abused drugs have unknown pharmacology, but their biological effects can be anticipated from their molecular structure and possibly also from online user reports. When considered with the findings that some prescription medications are increasingly abused and that some abused drugs have been tested clinically one could argue that there has been a blurring of the line between drugs of abuse and clinically used drugs. In this review we examine these legal highs/NPS and consider whether, based on their known or predicted pharmacology, some might have the potential to be clinically useful in CNS disorders. PMID:26232510

  20. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    PubMed Central

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  1. CNS myelin wrapping is driven by actin disassembly.

    PubMed

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  2. Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence

    PubMed Central

    Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo

    2016-01-01

    ABSTRACT Background: Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. Case presentation: A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. Discussion: CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. Conclusion: In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration. PMID:27105248

  3. Subsequent neoplasms of the CNS among survivors of childhood cancer: a systematic review.

    PubMed

    Bowers, Daniel C; Nathan, Paul C; Constine, Louis; Woodman, Catherine; Bhatia, Smita; Keller, Karen; Bashore, Lisa

    2013-07-01

    Childhood cancer survivors are at risk for development of subsequent neoplasms of the CNS. Better understanding of the rates, risk factors, and outcomes of subsequent neoplasms of the CNS among survivors of childhood cancer could lead to more informed screening guidelines. Two investigators independently did a systematic search of Medline and Embase (from January, 1966, through March, 2012) for studies examining subsequent neoplasms of the CNS among survivors of childhood cancer. Articles were selected to answer three questions: what is the risk of CNS tumours after radiation to the cranium for a paediatric cancer, compared with the risk in the general population; what are the outcomes in children with subsequent neoplasms of the CNS who received CNS-directed radiation for a paediatric cancer; and, are outcomes of subsequent neoplasms different from primary neoplasms of the same histology? Our search identified 72 reports, of which 18 were included in this Review. These studies reported that childhood cancer survivors have an 8·1-52·3-times higher incidence of subsequent CNS neoplasms compared with the general population. Nearly all cancer survivors who developed a CNS neoplasm had been exposed to cranial radiation, and some studies showed a correlation between radiation dose and risk of subsequent CNS tumours. 5-year survival ranged from 0-19·5% for subsequent high-grade gliomas and 57·3-100% for meningiomas, which are similar rates to those observed in patients with primary gliomas or meningiomas. The quality of evidence was limited by variation in study design, heterogeneity of details regarding treatment and outcomes, limited follow-up, and small sample sizes. We conclude that survivors of childhood cancer who received cranial radiation therapy have an increased risk for subsequent CNS neoplasms. The current literature is insufficient to comment about the potential harms and benefits of routine screening for subsequent CNS neoplasms.

  4. Acquired Aplastic Anemia in Children

    PubMed Central

    Hartung, Helge D.; Olson, Timothy S.; Bessler, Monica

    2013-01-01

    SYNOPSIS This article provides a practice-based and concise review of the etiology, diagnosis, and management of acquired aplastic anemia in children. Bone marrow transplantation, immunosuppressive therapy, and supportive care are discussed in detail. The aim is to provide the clinician with a better understanding of the disease and to offer guidelines for the management of children with this uncommon yet serious disorder. PMID:24237973

  5. Novel approaches and challenges to treatment of CNS viral infections

    PubMed Central

    Nath, Avindra; Tyler, Kenneth L.

    2014-01-01

    Existing and emerging viral CNS infections are major sources of human morbidity and mortality. Treatments of proven efficacy are currently limited predominantly to herpesviruses and human immunodeficiency virus. Development of new therapies has been hampered by the lack of appropriate animal model systems for some important viruses and by the difficulty in conducting human clinical trials for diseases that may be rare, or in the case of arboviral infections, often have variable seasonal and geographic incidence. Nonetheless, many novel approaches to antiviral therapy are available including candidate thiazolide and purazinecarboxamide derivatives with potential broad-spectrum antiviral efficacy. New herpesvirus drugs include viral helicase-primase and terminase inhibitors. The use of antisense oligonucleotides and other strategies to interfere with viral RNA translation has shown efficacy in experimental models of CNS viral disease. Identifying specific molecular targets within viral replication cycles has led to many existing antivirals and will undoubtedly continue to be the basis of future drug design. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses. Toll-like receptor agonists, and drugs that inhibit specific cytokines as well as interferon preparations have all shown potential therapeutic efficacy. Passive transfer of virus-specific cytotoxic T-lymphocytes have been used in humans and may provide an effective therapies for some herpesvirus infections and potentially for progressive multifocal leukoencephalopathy. Humanized monoclonal antibodies directed against specific viral proteins have been developed and in several cases evaluated in humans in settings including West Nile virus and HIV infection and in pre-exposure prophylaxis for rabies. PMID:23913580

  6. CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes.

    PubMed

    Bechler, Marie E; Byrne, Lauren; Ffrench-Constant, Charles

    2015-09-21

    Since Río-Hortega's description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length, as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths. We test this alternative signal-independent hypothesis--that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo.

  7. Emotional attention in acquired prosopagnosia.

    PubMed

    Peelen, Marius V; Lucas, Nadia; Mayer, Eugene; Vuilleumier, Patrik

    2009-09-01

    The present study investigated whether emotionally expressive faces guide attention and modulate fMRI activity in fusiform gyrus in acquired prosopagnosia. Patient PS, a pure case of acquired prosopagnosia with intact right middle fusiform gyrus, performed two behavioral experiments and a functional imaging experiment to address these questions. In a visual search task involving face stimuli, PS was faster to select the target face when it was expressing fear or happiness as compared to when it was emotionally neutral. In a change detection task, PS detected significantly more changes when the changed face was fearful as compared to when it was neutral. Finally, an fMRI experiment showed enhanced activation to emotionally expressive faces and bodies in right fusiform gyrus. In addition, PS showed normal body-selective activation in right fusiform gyrus, partially overlapping the fusiform face area. Together these behavioral and neuroimaging results show that attention was preferentially allocated to emotional faces in patient PS, as observed in healthy subjects. We conclude that systems involved in the emotional guidance of attention by facial expression can function normally in acquired prosopagnosia, and can thus be dissociated from systems involved in face identification.

  8. Acquired causes of intestinal malabsorption.

    PubMed

    van der Heide, F

    2016-04-01

    This review focuses on the acquired causes, diagnosis, and treatment of intestinal malabsorption. Intestinal absorption is a complex process that depends on many variables, including the digestion of nutrients within the intestinal lumen, the absorptive surface of the small intestine, the membrane transport systems, and the epithelial absorptive enzymes. Acquired causes of malabsorption are classified by focussing on the three phases of digestion and absorption: 1) luminal/digestive phase, 2) mucosal/absorptive phase, and 3) transport phase. Most acquired diseases affect the luminal/digestive phase. These include short bowel syndrome, extensive small bowel inflammation, motility disorders, and deficiencies of digestive enzymes or bile salts. Diagnosis depends on symptoms, physical examination, and blood and stool tests. There is no gold standard for the diagnosis of malabsorption. Further testing should be based on the specific clinical context and the suspected underlying disease. Therapy is directed at nutritional support by enteral or parenteral feeding and screening for and supplementation of deficiencies in vitamins and minerals. Early enteral feeding is important for intestinal adaptation in short bowel syndrome. Medicinal treatment options for diarrhoea in malabsorption include loperamide, codeine, cholestyramine, or antibiotics. PMID:27086886

  9. Impact of lactobacilli on orally acquired listeriosis

    PubMed Central

    Archambaud, Cristel; Nahori, Marie-Anne; Soubigou, Guillaume; Bécavin, Christophe; Laval, Laure; Lechat, Pierre; Smokvina, Tamara; Langella, Philippe; Lecuit, Marc; Cossart, Pascale

    2012-01-01

    Listeria monocytogenes is a foodborne pathogen that crosses the intestinal barrier and disseminates within the host. Here, we report a unique comprehensive analysis of the impact of two Lactobacillus species, Lactobacillus paracasei CNCM I-3689 and Lactobacillus casei BL23, on L. monocytogenes and orally acquired listeriosis in a gnotobiotic humanized mouse model. We first assessed the effect of treatment with each Lactobacillus on L. monocytogenes counts in host tissues and showed that each decreases L. monocytogenes systemic dissemination in orally inoculated mice. A whole genome intestinal transcriptomic analysis revealed that each Lactobacillus changes expression of a specific subset of genes during infection, with IFN-stimulated genes (ISGs) being the most affected by both lactobacilli. We also examined microRNA (miR) expression and showed that three miRs (miR-192, miR-200b, and miR-215) are repressed during L. monocytogenes infection. Treatment with each Lactobacillus increased miR-192 expression, whereas only L. casei association increased miR-200b and miR-215 expression. Finally, we showed that treatment with each Lactobacillus significantly reshaped the L. monocytogenes transcriptome and up-regulated transcription of L. monocytogenes genes encoding enzymes allowing utilization of intestinal carbon and nitrogen sources in particular genes involved in propanediol and ethanolamine catabolism and cobalamin biosynthesis. Altogether, these data reveal that the modulation of L. monocytogenes infection by treatment with lactobacilli correlates with a decrease in host gene expression, in particular ISGs, miR regulation, and a dramatic reshaping of L. monocytogenes transcriptome. PMID:23012479

  10. Impact of lactobacilli on orally acquired listeriosis.

    PubMed

    Archambaud, Cristel; Nahori, Marie-Anne; Soubigou, Guillaume; Bécavin, Christophe; Laval, Laure; Lechat, Pierre; Smokvina, Tamara; Langella, Philippe; Lecuit, Marc; Cossart, Pascale

    2012-10-01

    Listeria monocytogenes is a foodborne pathogen that crosses the intestinal barrier and disseminates within the host. Here, we report a unique comprehensive analysis of the impact of two Lactobacillus species, Lactobacillus paracasei CNCM I-3689 and Lactobacillus casei BL23, on L. monocytogenes and orally acquired listeriosis in a gnotobiotic humanized mouse model. We first assessed the effect of treatment with each Lactobacillus on L. monocytogenes counts in host tissues and showed that each decreases L. monocytogenes systemic dissemination in orally inoculated mice. A whole genome intestinal transcriptomic analysis revealed that each Lactobacillus changes expression of a specific subset of genes during infection, with IFN-stimulated genes (ISGs) being the most affected by both lactobacilli. We also examined microRNA (miR) expression and showed that three miRs (miR-192, miR-200b, and miR-215) are repressed during L. monocytogenes infection. Treatment with each Lactobacillus increased miR-192 expression, whereas only L. casei association increased miR-200b and miR-215 expression. Finally, we showed that treatment with each Lactobacillus significantly reshaped the L. monocytogenes transcriptome and up-regulated transcription of L. monocytogenes genes encoding enzymes allowing utilization of intestinal carbon and nitrogen sources in particular genes involved in propanediol and ethanolamine catabolism and cobalamin biosynthesis. Altogether, these data reveal that the modulation of L. monocytogenes infection by treatment with lactobacilli correlates with a decrease in host gene expression, in particular ISGs, miR regulation, and a dramatic reshaping of L. monocytogenes transcriptome. PMID:23012479

  11. Novel evidence of microglial immune response in impairment of Dengue infection of CNS.

    PubMed

    Bhatt, Rushil S; Kothari, Sweta T; Gohil, Devanshi J; D'Souza, Marsha; Chowdhary, Abhay S

    2015-10-01

    Dengue, the most rampant zoonotic viral disease in tropics, contributes to 14% of acute febrile illness cases globally. Encephalitis in primary Dengue fever, with/without haemorrhage has been reported occasionally. Our study presents novel evidence for this rarity at the molecular level. Murine microglia (BV2) were infected in-vitro with Dengue virus (DENV) serotypes (1-4) and their immune response was evaluated. Gene expressions of TNF-α, IL-10, IFN-γ, and IL1-β constituted the pro-inflammatory response, levels of MCP-1 and IL-6 represented the regulatory mechanism and changes in the levels of Occludin, MMP-2, MMP-9 and TIMP-1 encompassed the break-down of the blood-brain barrier (BBB). Cytokine response was studied using RT-PCR, with relative fold change assessed using ΔΔCt method. We observed that DENV1 increased vascular permeability and trans-membrane transport, while DENV2 resulted in oxidative stress. DENV3 infection presented with impaired immune response and DENV4 manifested a chaotropic response of the BBB protein genes. However, no serotype was able to breakdown the BBB, thus validating the low prevalence of encephalitis in dengue. Our study is the first reported evidence of the microglial immune response resisting the entry of DENV into the CNS. It also supports the theory that primary Dengue infection results in the acute inflammation of the microglia, and the host immune response plays a critical role in development of encephalitis.

  12. Definitive Identification of Laribacter hongkongensis Acquired in the United States

    PubMed Central

    Quig, David; Block, Mary Ann; Schreckenberger, Paul C.

    2015-01-01

    Laribacter hongkongensis is a potential emerging pathogen associated with community-acquired gastroenteritis and traveler's diarrhea. We report the isolation of L. hongkongensis from the stool of a patient who had no history of travel outside the United States. The organism was identified by phenotypic tests, mass spectrometry, and gene sequencing. PMID:25948608

  13. Identification of Genetic Determinants of the Sexual Dimorphism in CNS Autoimmunity

    PubMed Central

    Bearoff, Frank; Case, Laure K.; Krementsov, Dimitry N.; Wall, Emma H.; Saligrama, Naresha; Blankenhorn, Elizabeth P.; Teuscher, Cory

    2015-01-01

    Multiple sclerosis (MS) is a debilitating chronic inflammatory disease of the nervous system that affects approximately 2.3 million individuals worldwide, with higher prevalence in females, and a strong genetic component. While over 200 MS susceptibility loci have been identified in GWAS, the underlying mechanisms whereby they contribute to disease susceptibility remains ill-defined. Forward genetics approaches using conventional laboratory mouse strains are useful in identifying and functionally dissecting genes controlling disease-relevant phenotypes, but are hindered by the limited genetic diversity represented in such strains. To address this, we have combined the powerful chromosome substitution (consomic) strain approach with the genetic diversity of a wild-derived inbred mouse strain. Using experimental allergic encephalomyelitis (EAE), a mouse model of MS, we evaluated genetic control of disease course among a panel of 26 consomic strains of mice inheriting chromosomes from the wild-derived PWD strain on the C57BL/6J background, which models the genetic diversity seen in human populations. Nineteen linkages on 18 chromosomes were found to harbor loci controlling EAE. Of these 19 linkages, six were male-specific, four were female-specific, and nine were non-sex-specific, consistent with a differential genetic control of disease course between males and females. An MS-GWAS candidate-driven bioinformatic analysis using orthologous genes linked to EAE course identified sex-specific and non-sex-specific gene networks underlying disease pathogenesis. An analysis of sex hormone regulation of genes within these networks identified several key molecules, prominently including the MAP kinase family, known hormone-dependent regulators of sex differences in EAE course. Importantly, our results provide the framework by which consomic mouse strains with overall genome-wide genetic diversity, approximating that seen in humans, can be used as a rapid and powerful tool for

  14. Expression of α5 integrin rescues fibronectin responsiveness in NT2N CNS neuronal cells

    PubMed Central

    Meland, Marit N.; Herndon, Mary E.; Stipp, Christopher S.

    2010-01-01

    The extracellular matrix protein fibronectin is implicated in neuronal regeneration in the peripheral nervous system. In the central nervous system (CNS), fibronectin is upregulated at sites of penetrating injuries and stroke; however, CNS neurons downregulate the fibronectin receptor, α5β1 integrin, during differentiation and generally respond poorly to fibronectin. NT2N CNS neuron-like cells (derived from NT2 precursor cells) have been used in pre-clinical and clinical studies for treatment of stroke and a variety of CNS injury and disease models. Here we show that, like primary CNS neurons, NT2N cells downregulate α5β1 integrin during differentiation and respond poorly to fibronectin. The poor neurite outgrowth by NT2N cells on fibronectin can be rescued by transducing NT2 precursors with a retroviral vector expressing α5 integrin under the control of the Murine Stem Cell Virus 5′ long terminal repeat. Sustained α5 integrin expression is compatible with the CNS-like neuronal differentiation of NT2N cells and does not prevent robust neurite outgrowth on other integrin ligands. Thus, α5 integrin expression in CNS neuronal precursor cells may provide a strategy for enhancing the outgrowth and survival of implanted cells in cell replacement therapies for CNS injury and disease. PMID:19598247

  15. Safety Evaluation of CNS Administered Biologics-Study Design, Data Interpretation, and Translation to the Clinic.

    PubMed

    Vuillemenot, Brian R; Korte, Sven; Wright, Teresa L; Adams, Eric L; Boyd, Robert B; Butt, Mark T

    2016-07-01

    Many central nervous system (CNS) diseases are inadequately treated by systemically administered therapies due to the blood brain barrier (BBB), which prevents achieving adequate drug concentrations at sites of action. Due to the increasing prevalence of neurodegenerative diseases and the inability of most systemically administered therapies to cross the BBB, direct CNS delivery will likely play an increasing role in treatment. Administration of large molecules, cells, viral vectors, oligonucleotides, and other novel therapies directly to the CNS via the subarachnoid space, ventricular system, or parenchyma overcomes this obstacle. Clinical experience with direct CNS administration of small molecule therapies suggests that this approach may be efficacious for the treatment of neurodegenerative disorders using biological therapies. Risks of administration into the brain tissue or cerebrospinal fluid include local damage from implantation of the delivery system and/or administration of the therapeutic and reactions affecting the CNS. Preclinical safety studies on CNS administered compounds must differentiate between the effects of the test article, the delivery device, and/or the vehicle, and assess exacerbations of reactions due to combinations of effects. Animal models characterized for safety assessment of CNS administered therapeutics have enabled human trials, but interpretation can be challenging. This manuscript outlines the challenges of preclinical intrathecal/intracerebroventricular/intraparenchymal studies, evaluation of results, considerations for special endpoints, and translation of preclinical findings to enable first-in-human trials. Recommendations will be made based on the authors' collective experience with conducting these studies to enable clinical development of CNS-administered biologics. PMID:27354708

  16. CNS species and antimicrobial resistance in clinical and subclinical bovine mastitis.

    PubMed

    Waller, K Persson; Aspán, A; Nyman, A; Persson, Y; Andersson, U Grönlund

    2011-08-26

    Coagulase-negative staphylococci (CNS) are often associated with bovine mastitis. Knowledge about the relative importance of specific CNS species in different types of mastitis, and differences in antimicrobial resistance among CNS species is, however, scarce. Therefore, the aims of this study were to compare prevalence and antimicrobial susceptibility of CNS species in clinical and subclinical mastitis using material from two national surveys. Overall, Staphylococcus chromogenes and Staphylococcus epidermidis were the most common CNS species found followed by Staphylococcus simulans and Staphylococcus haemolyticus. S. epidermidis was significantly more prevalent in subclinical than in clinical mastitis, and a similar trend was observed for Staphylococcus saprophyticus, while Staphylococcus hyicus was significantly more common in clinical mastitis. The prevalence of β-lactamase producing isolates varied markedly between CNS species, and was significantly higher in S. epidermidis and S. haemolyticus (∼ 40%), than in S. simulans and S. chromogenes where none or a few of the isolates produced β-lactamase. Resistance to more than one antimicrobial substance occurred in 9% and 7% of the clinical and subclinical isolates, respectively. In conclusion, the distribution of CNS species differed between clinical and subclinical mastitis indicating inter-species variation of pathogenicity and epidemiology. Overall, the prevalence of antimicrobial resistance was low, but some variation between CNS species was observed. PMID:21561725

  17. Cranial CT in acquired immunodeficiency syndrome: spectrum of diseases and optimal contrast enhancement technique.

    PubMed

    Post, M J; Kursunoglu, S J; Hensley, G T; Chan, J C; Moskowitz, L B; Hoffman, T A

    1985-11-01

    A retrospective review of cranial CT scans obtained over a 4 year period in patients with acquired immunodeficiency syndrome (AIDS) and documented central nervous system (CNS) pathology is presented. The spectrum of diseases and the value of CT in detecting new, recurrent, and superimposed disease processes were determined. Fifty-one AIDS patients with confirmed CNS pathology were identified. Six of them had two coexistent diseases. Opportunistic infections predominated, especially Toxoplasma encephalitis and cryptococcal meningitis, while tumor was seen infrequently. Initial CT was positive in 76% of cases. In contrast to meningeal processes, where it was not very effective, CT was very sensitive in detecting most parenchymal disease processes. Characteristic although not pathognomonic CT patterns were found for certain diseases. Improvement or resolution of CT abnormalities in patients on medical therapy for Toxoplasma encephalitis correlated well with clinical improvement. Recurrence of CT abnormalities correlated well with medical noncompliance. The optimal contrast enhancement technique for detecting CNS pathology and for monitoring the effectiveness of medical therapy was also evaluated by a prospective study in which both immediate (IDD) and 1 hr delayed (DDD) double-dose contrast CT scans were compared. The examination found to be diagnostically superior in 30 of the 41 IDD/DDD studies was the delayed scan. It is recommended that CT be used routinely and with the 1 hr DDD scan to evaluate and follow AIDS patients with neurologic symptoms and/or signs.

  18. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix

    PubMed Central

    Paveliev, Mikhail; Fenrich, Keith K.; Kislin, Mikhail; Kuja-Panula, Juha; Kulesskiy, Evgeny; Varjosalo, Markku; Kajander, Tommi; Mugantseva, Ekaterina; Ahonen-Bishopp, Anni; Khiroug, Leonard; Kulesskaya, Natalia; Rougon, Geneviève; Rauvala, Heikki

    2016-01-01

    Chondroitin sulfate (CS) glycosaminoglycans inhibit regeneration in the adult central nervous system (CNS). We report here that HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin), a CS-binding protein expressed at high levels in the developing CNS, reverses the role of the CS chains in neurite growth of CNS neurons in vitro from inhibition to activation. The CS-bound HB-GAM promotes neurite growth through binding to the cell surface proteoglycan glypican-2; furthermore, HB-GAM abrogates the CS ligand binding to the inhibitory receptor PTPσ (protein tyrosine phosphatase sigma). Our in vivo studies using two-photon imaging of CNS injuries support the in vitro studies and show that HB-GAM increases dendrite regeneration in the adult cerebral cortex and axonal regeneration in the adult spinal cord. Our findings may enable the development of novel therapies for CNS injuries. PMID:27671118

  19. [MicroRNAs in microglia polarization and CNS diseases: mechanism and functions].

    PubMed

    Fang, Xue; Tan, Wei-Xing; He, Cheng; Cao, Li

    2015-02-25

    Microglia are resident macrophages of central nervous system (CNS), and thus act as the crucial stuff of immune response and play very important roles in the progress of various CNS diseases. There are two different polarization statuses of activated microglia, M1 and M2 phenotypes. M1 polarized microglia are important for eradicating bacterial and promoting inflammation, whereas M2 cells are characterized by anti-inflammation and tissue remodeling. Recently, more and more evidence indicated that different polarized microglia showed diverse microRNA (miRNA) expression profiles. MiRNAs regulate microglia polarization, and thus affect the progress of CNS diseases. Fully exploring the polarization status of microglia during CNS diseases and the role of miRNAs in microglia polarization will be very helpful for a deep understanding of the roles of microglia in immunopathologic mechanism of different CNS diseases and offer the theoretical foundation of searching more effective therapies for these disorders. PMID:25672624

  20. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM

    PubMed Central

    Zhu, Yuwen; Yao, Sheng; Augustine, Mathew M.; Xu, Haiying; Wang, Jun; Sun, Jingwei; Broadwater, Megan; Ruff, William; Luo, Liqun; Zhu, Gefeng; Tamada, Koji; Chen, Lieping

    2016-01-01

    The central nervous system (CNS) is an immune-privileged organ with the capacity to prevent excessive inflammation. Aside from the blood-brain barrier, active immunosuppressive mechanisms remain largely unknown. We report that a neuron-specific molecule, synaptic adhesion-like molecule 5 (SALM5), is a crucial contributor to CNS immune privilege. We found that SALM5 suppressed lipopolysaccharide-induced inflammatory responses in the CNS and that a SALM-specific monoclonal antibody promoted inflammation in the CNS, and thereby aggravated clinical symptoms of mouse experimental autoimmune encephalomyelitis. In addition, we identified herpes virus entry mediator as a functional receptor that mediates SALM5’s suppressive function. Our findings reveal a molecular link between the neuronal system and the immune system, and provide potential therapeutic targets for the control of CNS diseases. PMID:27152329

  1. Current approaches to enhance CNS delivery of drugs across the brain barriers

    PubMed Central

    Lu, Cui-Tao; Zhao, Ying-Zheng; Wong, Ho Lun; Cai, Jun; Peng, Lei; Tian, Xin-Qiao

    2014-01-01

    Although many agents have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. PMID:24872687

  2. Acquired Hearing Loss in Children.

    PubMed

    Kenna, Margaret A

    2015-12-01

    Hearing loss is the most common congenital sensory impairment. According to National Health and Nutrition Examination Survey data from 2001 to 2008, 20.3% of subjects aged greater than or equal to 12 had unilateral or bilateral hearing loss. The World Health Organization notes that, worldwide, there are 360 million people with disabling hearing loss, with 50% preventable. Although many hearing losses are acquired, many others are manifestations of preexisting conditions. The purpose of a pediatric hearing evaluation is to identify the degree and type of hearing loss and etiology and to outline a comprehensive strategy that supports language and social development and communication.

  3. 5D CNS+ Software for Automatically Imaging Axial, Sagittal, and Coronal Planes of Normal and Abnormal Second-Trimester Fetal Brains.

    PubMed

    Rizzo, Giuseppe; Capponi, Alessandra; Persico, Nicola; Ghi, Tullio; Nazzaro, Giovanni; Boito, Simona; Pietrolucci, Maria Elena; Arduini, Domenico

    2016-10-01

    The purpose of this study was to test new 5D CNS+ software (Samsung Medison Co, Ltd, Seoul, Korea), which is designed to image axial, sagittal, and coronal planes of the fetal brain from volumes obtained by 3-dimensional sonography. The study consisted of 2 different steps. First in a prospective study, 3-dimensional fetal brain volumes were acquired in 183 normal consecutive singleton pregnancies undergoing routine sonographic examinations at 18 to 24 weeks' gestation. The 5D CNS+ software was applied, and the percentage of adequate visualization of brain diagnostic planes was evaluated by 2 independent observers. In the second step, the software was also tested in 22 fetuses with cerebral anomalies. In 180 of 183 fetuses (98.4%), 5D CNS+ successfully reconstructed all of the diagnostic planes. Using the software on healthy fetuses, the observers acknowledged the presence of diagnostic images with visualization rates ranging from 97.7% to 99.4% for axial planes, 94.4% to 97.7% for sagittal planes, and 92.2% to 97.2% for coronal planes. The Cohen κ coefficient was analyzed to evaluate the agreement rates between the observers and resulted in values of 0.96 or greater for axial planes, 0.90 or greater for sagittal planes, and 0.89 or greater for coronal planes. All 22 fetuses with brain anomalies were identified among a series that also included healthy fetuses, and in 21 of the 22 cases, a correct diagnosis was made. 5D CNS+ was efficient in successfully imaging standard axial, sagittal, and coronal planes of the fetal brain. This approach may simplify the examination of the fetal central nervous system and reduce operator dependency.

  4. Transcriptome analysis of CNS immediately before and after the detection of PrP(Sc) in SSBP/1 sheep scrapie.

    PubMed

    Gossner, Anton G; Hopkins, John

    2014-10-10

    Sheep scrapie is a transmissible spongiform encephalopathy (TSE), progressive and fatal neurodegenerative diseases of the central nervous system (CNS) linked to the accumulation of misfolded prion protein, PrP(Sc). New Zealand Cheviot sheep, homozygous for the VRQ genotype of the PRNP gene are most susceptible with an incubation period of 193 days with SSBP/1 scrapie. However, the earliest time point that PrP(Sc) can be detected in the CNS is 125 days (D125). The aim of this study was to quantify changes to the transcriptome of the thalamus and obex (medulla) at times immediately before (D75) and after (D125) PrP(Sc) was detected. Affymetrix gene arrays were used to quantify gene expression in the thalamus and Illumina DGE-tag profiling for obex. Ingenuity Pathway Analysis was used to help describe the biological processes of scrapie pathology. Neurological disease and Cancer were common Bio Functions in each tissue at D75; inflammation and cell death were major processes at D125. Several neurological receptors were significantly increased at D75 (e.g. CHRNA6, GRM1, HCN2), which might be clues to the molecular basis of psychiatric changes associated with TSEs. No genes were significantly differentially expressed at both D75 and D125 and there was no progression of events from earlier to later time points. This implies that there is no simple linear progression of pathological or molecular events. There seems to be a step-change between D75 and D125, correlating with the detection of PrP(Sc), resulting in the involvement of different pathological processes in later TSE disease.

  5. Malaria acquired in Haiti - 2010.

    PubMed

    2010-03-01

    On January 12, 2010, a 7.0 magnitude earthquake struck Haiti, which borders the Dominican Republic on the island of Hispaniola. The earthquake's epicenter was 10 miles west of the Haiti capital city of Port-au-Prince (estimated population: 2 million). According to the Haitian government, approximately 200,000 persons were killed, and 500,000 were left homeless. Malaria caused by Plasmodium falciparum infection is endemic in Haiti, and the principal mosquito vector is Anopheles albimanus, which frequently bites outdoors. Thus, displaced persons living outdoors or in temporary shelters and thousands of emergency responders in Haiti are at substantial risk for malaria. During January 12-February 25, CDC received reports of 11 laboratory-confirmed cases of P. falciparum malaria acquired in Haiti. Patients included seven U.S. residents who were emergency responders, three Haitian residents, and one U.S. traveler. This report summarizes the 11 cases and provides chemoprophylactic and additional preventive recommendations to minimize the risk for acquiring malaria for persons traveling to Haiti.

  6. Time course of IL-6 expression in experimental CNS ischemia.

    PubMed

    Clark, W M; Rinker, L G; Lessov, N S; Hazel, K; Eckenstein, F

    1999-04-01

    Interleukin-6 (IL-6) appears to be an important modulator of the inflammatory response associated with CNS ischemia. Clinically, IL-6 values obtained in the first week post-stroke have been shown to correlate with infarct size and outcome. In this study we used a focal reversible stroke model to investigate the time course and relationship to outcome of IL-6 production in plasma, brain and CSF. Reversible middle cerebral artery occlusion or sham surgery was produced in 50 adult Swiss Webster mice by advancing an 8-0 filament into the internal carotid artery for 2 h (sham 1 min). At 3, 6, 12, 24, and 72 h (8 each ischemia; 2 each sham) groups of animals were evaluated on a 28 point clinical scale, blood and CSF obtained, and the brains were evaluated for infarct volume and IL-6 mRNA levels. Serum levels of IL-6 (ELISA mean +/- SD; undetectable in controls) overall sham group, 102 +/- 87; 3 h, 908 +/- 494* pg ml-1; 6 h, 1079 +/- 468* pg ml-1; 12 h, 980 +/- 221* pg ml-1; pg ml-1; 24 h, 320 +/- 314* pg ml-1; 72 h, 20 +/- 30* pg ml-1 (*p < or = 0.05 to sham). CSF levels (ELISA) overall sham group, 10 +/- 18; 3 h, 379 +/- 210* pg ml-1; 6 h, 157 +/- 61* pg ml-1; 12 h, 136 +/- 88* pg ml-1; 24 h, 127 +/- 99 pg ml-1; 72 h, 72 +/- 9* pg ml-1 (*p < or = 0.05 to sham). Brain IL-6 mRNA levels overall sham group, 20; 3 h, 480; 6 h, 599; 12 h, 7960; 24 h, 20267; 72 h, 0. There was an overall R2 of 0.20 between plasma and CSF IL-6. There was an overall R2 of 0.13 and 0.20 between infarct size and serum and CSF IL-6 level respectively, and an overall R2 of 0.10 and 0.17 between neurologic function and serum and CSF IL-6 level respectively. These findings confirm that IL-6 values increase following CNS ischemia with peak serum and CSF levels occurring before brain values. CSF IL-6 levels had a stronger correlation with neurologic function and infarct size than serum.

  7. Association between total immunoglobulin E and antibody responses to naturally acquired Ascaris lumbricoides infection and polymorphisms of immune system-related LIG4, TNFSF13B and IRS2 genes.

    PubMed

    Acevedo, N; Mercado, D; Vergara, C; Sánchez, J; Kennedy, M W; Jiménez, S; Fernández, A M; Gutiérrez, M; Puerta, L; Caraballo, L

    2009-08-01

    The 13q33-34 region harbours a susceptibility locus to Ascaris lumbricoides, although the underlying genes are unknown. Immunoglobulin (Ig)E and IgG confer protective immunity and here we sought to investigate in an endemic population whether LIG4, TNFSF13B and IRS2 genes influence IgE and IgG levels against Ascaris and the ABA-1 allergen as a putative resistance marker. Mite-allergic asthmatic patients were analysed for potential relationships between Ascaris predisposition and allergy. One thousand and sixty-four subjects from Cartagena, Colombia, were included. Single nucleotide polymorphisms (SNPs) were genotyped using TaqMan assays. Antibody levels were measured by enzyme-linked immunosorbent assay. Linear and logistic regressions were used to model effects of genotypes on antibody levels. The GG genotype of LIG4 (rs1805388) was associated with higher IgE levels to Ascaris compared with other genotypes. TNFSF13B (rs10508198) was associated positively with IgG levels against Ascaris extract and IgE levels against ABA-1. In asthmatics, IRS2 (rs2289046) was associated with high total IgE levels. Associations held up after correction by population stratification using a set of 52 ancestry markers, age, sex and disease status. There was no association with asthma or mite sensitization. In a tropical population, LIG4 and TNFSF13B polymorphisms are associated with specific IgE and IgG to Ascaris, supporting previous linkage studies implicating the 13q33 region. Our results suggest that genes protecting against parasite infections can be different to those predisposing to asthma and atopy.

  8. Association between total immunoglobulin E and antibody responses to naturally acquired Ascaris lumbricoides infection and polymorphisms of immune system-related LIG4, TNFSF13B and IRS2 genes

    PubMed Central

    Acevedo, N; Mercado, D; Vergara, C; Sánchez, J; Kennedy, M W; Jiménez, S; Fernández, A M; Gutiérrez, M; Puerta, L; Caraballo, L

    2009-01-01

    The 13q33–34 region harbours a susceptibility locus to Ascaris lumbricoides, although the underlying genes are unknown. Immunoglobulin (Ig)E and IgG confer protective immunity and here we sought to investigate in an endemic population whether LIG4, TNFSF13B and IRS2 genes influence IgE and IgG levels against Ascaris and the ABA-1 allergen as a putative resistance marker. Mite-allergic asthmatic patients were analysed for potential relationships between Ascaris predisposition and allergy. One thousand and sixty-four subjects from Cartagena, Colombia, were included. Single nucleotide polymorphisms (SNPs) were genotyped using TaqMan assays. Antibody levels were measured by enzyme-linked immunosorbent assay. Linear and logistic regressions were used to model effects of genotypes on antibody levels. The GG genotype of LIG4 (rs1805388) was associated with higher IgE levels to Ascaris compared with other genotypes. TNFSF13B (rs10508198) was associated positively with IgG levels against Ascaris extract and IgE levels against ABA-1. In asthmatics, IRS2 (rs2289046) was associated with high total IgE levels. Associations held up after correction by population stratification using a set of 52 ancestry markers, age, sex and disease status. There was no association with asthma or mite sensitization. In a tropical population, LIG4 and TNFSF13B polymorphisms are associated with specific IgE and IgG to Ascaris, supporting previous linkage studies implicating the 13q33 region. Our results suggest that genes protecting against parasite infections can be different to those predisposing to asthma and atopy. PMID:19604268

  9. 17 CFR 210.8-06 - Real estate operations acquired or to be acquired.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Statements of Smaller Reporting Companies § 210.8-06 Real estate operations acquired or to be acquired. If, during the period for which income statements are required, the smaller reporting company has acquired... acquired or to be acquired. 210.8-06 Section 210.8-06 Commodity and Securities Exchanges SECURITIES...

  10. Contrast-agent-enhanced magnetic resonance imaging: early detection of neoplastic lesions of the CNS

    NASA Astrophysics Data System (ADS)

    Carvlin, Mark J.; Rosa, Louis; Rajan, Sunder S.; Francisco, John

    1991-06-01

    Even though the intrinsic soft tissue contrast sensitivity of magnetic resonance imaging (MRI) affords excellent visualization of anatomic detail, certain pathologic processes may be diagnosed earlier with the administration of a contrast-enhancing agent. At present there is one agent, gadopentetate dimeglumine, GdDTPA, that has received FDA approval for use in the MR scanning of the brain and spine in human patients. This paramagnetic chelate distributes throughout the extracellular fluid space as dictated by capillary permeability so that abnormal vascularity and sites of blood-CNS barrier breakdown are highlighted. Primary neoplastic disease, metastases, meningeal extension, residual and recurrent tumor have been found to be better distinguished in MR images acquired after administration of GdDTPA. Routine administration of GdDTPA for cranial imaging has resulted in the discovery of otherwise occult lesions in approximately 3 of patients. Although the clinical utility and high therapeutic safety index of the first approved magnetic resonance contrast agent, GdDTPA, have been well established, other contrast agents, having different physical, chemical and biological properties, may offer improved sensitivity and bio-specificity. Agents currently being evaluated in vivo include: low osmolal paramagnetic chelates, superparamagnetic particles, metalloporphyrins, liposome encapsulated agents, perfluorocarbons, intravascular macromolecular chelate complexes and labeled monoclonal antibodies. Concurrent with advances in the development of new compounds, innovations in scanning hardware, pulse sequence design and image post-processing are helping to extend the efficacy of contrast media. Additional clinical experience will indicate which contrast agents and which MR techniques can best facilitate the early detection of specific neoplastic lesions.

  11. Carbon monoxide and the CNS: challenges and achievements

    PubMed Central

    Queiroga, Cláudia S F; Vercelli, Alessandro; Vieira, Helena L A

    2015-01-01

    Haem oxygenase (HO) and its product carbon monoxide (CO) are associated with cytoprotection and maintenance of homeostasis in several different organs and tissues. This review focuses upon the role of exogenous and endogenous CO (via HO activity and expression) in various CNS pathologies, based upon data from experimental models, as well as from some clinical data on human patients. The pathophysiological conditions reviewed are cerebral ischaemia, chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases), multiple sclerosis and pain. Among these pathophysiological conditions, a variety of cellular mechanisms and processes are considered, namely cytoprotection, cell death, inflammation, cell metabolism, cellular redox responses and vasomodulation, as well as the different targeted neural cells. Finally, novel potential methods and strategies for delivering exogenous CO as a drug are discussed, particularly approaches based upon CO-releasing molecules, their limitations and challenges. The diagnostic and prognostic value of HO expression in clinical use for brain pathologies is also addressed. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:24758548

  12. Human abuse liability evaluation of CNS stimulant drugs.

    PubMed

    Romach, Myroslava K; Schoedel, Kerri A; Sellers, Edward M

    2014-12-01

    Psychoactive drugs that increase alertness, attention and concentration and energy, while also elevating mood, heart rate and blood pressure are referred to as stimulants. Despite some overlapping similarities, stimulants cannot be easily categorized by their chemical structure, mechanism of action, receptor binding profile, effects on monoamine uptake, behavioral pharmacology (e.g., effects on locomotion, temperature, and blood pressure), therapeutic indication or efficacy. Because of their abuse liability, a pre-market assessment of abuse potential is required for drugs that show stimulant properties; this review article focuses on the clinical aspects of this evaluation. This includes clinical trial adverse events, evidence of diversion or tampering, overdoses and the results of a human abuse potential study. While there are different types of human experimental studies that can be employed to evaluate stimulant abuse potential (e.g., drug discrimination, self-administration), only the human abuse potential study and clinical trial adverse event data are required for drug approval. The principal advances that have improved human abuse potential studies include using study enrichment strategies (pharmacologic qualification), larger sample sizes, better selection of endpoints and measurement strategies and more carefully considered interpretation of data. Because of the methodological advances, comparisons of newer studies with historical data is problematic and may contribute to a biased regulatory framework for the evaluation of newer stimulant-like drugs, such as A2 antagonists. This article is part of the Special Issue entitled 'CNS Stimulants'.

  13. Luteinizing hormone: Evidence for direct action in the CNS.

    PubMed

    Blair, Jeffrey A; Bhatta, Sabina; McGee, Henry; Casadesus, Gemma

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Hormonal dysfunction due to aging, especially during menopause, plays a substantial role in cognitive decline as well as the progression and development of neurodegenerative diseases. The hypothalamic-pituitary-gonadal (HPG) axis has long been implicated in changes in behavior and neuronal morphology. Most notably, estrogens have proven beneficial in the healthy brain through a host of different mechanisms. Recently, luteinizing hormone (LH) has emerged as a candidate for further investigation for its role in the CNS. The basis of this is that both LH and the LH receptor are expressed in the brain, and serum levels of LH correlate with cognitive deficits and Alzheimer's disease (AD) incidence. The study of LH in cognition and AD primarily focuses on evaluating the effects of downregulation of this peptide. This literature has shown that decreasing peripheral LH, through a variety of pharmacological interventions, reduces cognitive deficits in ovariectomy and AD models. However, few studies have researched the direct actions of LH on neurons and glial cells. Here we summarize the role of luteinizing hormone in modulating cognition, and we propose a mechanism that underlies a role for brain LH in this process.

  14. Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway.

    PubMed

    Kim, Yuri; Davidson, Joanne O; Gunn, Katherine C; Phillips, Anthony R; Green, Colin R; Gunn, Alistair J

    2016-01-01

    Neurodegenerative, cardiovascular, and metabolic disorders, once triggered, share a number of common features, including sustained inflammatory cell activation and vascular disruption. These shared pathways are induced independently of any genetic predisposition to the disease or the precise external stimulus. Glial cells respond to injury with an innate immune response that includes release of proinflammatory cytokines and chemokines. Vascular endothelial cells may also be affected, leading to opening of the blood-brain barrier that facilitates invasion by circulating inflammatory cells. Inflammation can trigger acute neural injury followed by chronic inflammation that plays a key role in neurodegenerative conditions. Gap junction channels normally allow direct cell-to-cell communication. They are formed by the docking of two hemichannels, one contributed by each of the neighboring cells. While the opening probability of these channels is tightly controlled under resting conditions, hemichannels can open in response to injury or inflammatory factors, forming a large, relatively nonselective membrane pore. In this review, we consider the CNS immune system from the perspective that modulating connexin hemichannel opening can prevent tissue damage arising from excessive and uncontrolled inflammation. We discuss connexin channel roles in microglia, astrocytes, and endothelial cells in both acute and chronic inflammatory conditions, and in particular describe the role of connexin hemichannels in the inflammasome pathway where they contribute to both its activation and its spread to neighboring cells. Finally, we describe the benefits of hemichannel block in animal models of brain injury. PMID:27038371

  15. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses.

    PubMed

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the "endocytic capacity") was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559

  16. Attention deficit hyperactivity disorder, CNS stimulants and sport.

    PubMed

    Hickey, G; Fricker, P

    1999-01-01

    Attention deficit hyperactivity disorder (ADHD) affects 1 to 10% of children and is characterised by a persistent pattern of inattention and/or hyperactivity/impulsivity. Over one-half of children with ADHD have associated conditions, including learning disabilities, conduct disorders, poor coordination, depression, anxiety, obsessive-compulsive disorders and bipolar disorders. CNS stimulant medication used in the management of ADHD is not permitted for use in competition by the International Olympic Committee (IOC) and this poses a problem for the physicians of patients with ADHD. On the one hand, attention and concentration are improved by stimulant medication and fine motor coordination and balance are improved after methylphenidate administration, but these therapeutic and sport-related benefits are not available to the athlete with ADHD who wishes to compete under IOC rules. It has been suggested that treatment with methylphenidate may be suitable for athletes with ADHD, as cessation of therapy 24 hours before competition is usually adequate to allow drug clearance which should avoid a positive result being returned on drug testing. More research is needed to establish whether stimulant medication for athletes with ADHD provides an unfair advantage in competition.

  17. Maternal immune activation and abnormal brain development across CNS disorders.

    PubMed

    Knuesel, Irene; Chicha, Laurie; Britschgi, Markus; Schobel, Scott A; Bodmer, Michael; Hellings, Jessica A; Toovey, Stephen; Prinssen, Eric P

    2014-11-01

    Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.

  18. Attention deficit hyperactivity disorder, CNS stimulants and sport.

    PubMed

    Hickey, G; Fricker, P

    1999-01-01

    Attention deficit hyperactivity disorder (ADHD) affects 1 to 10% of children and is characterised by a persistent pattern of inattention and/or hyperactivity/impulsivity. Over one-half of children with ADHD have associated conditions, including learning disabilities, conduct disorders, poor coordination, depression, anxiety, obsessive-compulsive disorders and bipolar disorders. CNS stimulant medication used in the management of ADHD is not permitted for use in competition by the International Olympic Committee (IOC) and this poses a problem for the physicians of patients with ADHD. On the one hand, attention and concentration are improved by stimulant medication and fine motor coordination and balance are improved after methylphenidate administration, but these therapeutic and sport-related benefits are not available to the athlete with ADHD who wishes to compete under IOC rules. It has been suggested that treatment with methylphenidate may be suitable for athletes with ADHD, as cessation of therapy 24 hours before competition is usually adequate to allow drug clearance which should avoid a positive result being returned on drug testing. More research is needed to establish whether stimulant medication for athletes with ADHD provides an unfair advantage in competition. PMID:10028130

  19. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses

    PubMed Central

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the “endocytic capacity”) was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559

  20. Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations.

    PubMed

    Hallene, K L; Oby, E; Lee, B J; Santaguida, S; Bassanini, S; Cipolla, M; Marchi, N; Hossain, M; Battaglia, G; Janigro, D

    2006-09-29

    Malformations of cortical development (MCD) result from abnormal neuronal positioning during corticogenesis. MCD are believed to be the morphological and perhaps physiological bases of several neurological diseases, spanning from mental retardation to autism and epilepsy. In view of the fact that during development, an appropriate blood supply is necessary to drive organogenesis in other organs, we hypothesized that vasculogenesis plays an important role in brain development and that E15 exposure in rats to the angiogenesis inhibitor thalidomide would cause postnatal MCD. Our results demonstrate that thalidomide inhibits angiogenesis in vitro at concentrations that result in significant morphological alterations in cortical and hippocampal regions of rats prenatally exposed to this vasculotoxin. Abnormal neuronal development was associated with vascular malformations and a leaky blood-brain barrier. Protein extravasation and uptake of fluorescent albumin by neurons, but not glia, was commonly associated with abnormal cortical development. Neuronal hyperexcitability was also a hallmark of these abnormal cortical regions. Our results suggest that prenatal vasculogenesis is required to support normal neuronal migration and maturation. Altering this process leads to failure of normal cerebrovascular development and may have a profound implication for CNS maturation.

  1. Role of galectin-3 in prion infections of the CNS

    SciTech Connect

    Mok, Simon W.F.; Riemer, Constanze; Madela, Kazimierz; Hsu, Daniel K.; Liu, Fu-Tong; Gueltner, Sandra; Heise, Ines; Baier, Michael . E-mail: baierm@rki.de

    2007-08-03

    Galectin-3 is a multi-functional protein and participates in mediating inflammatory reactions. The pronounced overexpression of galectin-3 in prion-infected brain tissue prompted us to study the role of this protein in a murine prion model. Immunofluorescence double-labelling identified microglia as the major cell type expressing galectin-3. Ablation of galectin-3 did not affect PrP{sup Sc}-deposition and development of gliosis. However, galectin-3{sup -/-}-mice showed prolonged survival times upon intracerebral and peripheral scrapie infections. Moreover, protein levels of the lysosomal activation marker LAMP-2 were markedly reduced in prion-infected galectin-3{sup -/-}-mice suggesting a role of galectin-3 in regulation of lysosomal functions. Lower mRNA levels of Beclin-1 and Atg5 in prion-infected wild-type and galectin-3{sup -/-}-mice indicated an impairment of autophagy although autophagosome formation was unchanged. The results point towards a detrimental role of galectin-3 in prion infections of the CNS and suggest that endo-/lysosomal dysfunction in combination with reduced autophagy may contribute to disease development.

  2. Human abuse liability evaluation of CNS stimulant drugs.

    PubMed

    Romach, Myroslava K; Schoedel, Kerri A; Sellers, Edward M

    2014-12-01

    Psychoactive drugs that increase alertness, attention and concentration and energy, while also elevating mood, heart rate and blood pressure are referred to as stimulants. Despite some overlapping similarities, stimulants cannot be easily categorized by their chemical structure, mechanism of action, receptor binding profile, effects on monoamine uptake, behavioral pharmacology (e.g., effects on locomotion, temperature, and blood pressure), therapeutic indication or efficacy. Because of their abuse liability, a pre-market assessment of abuse potential is required for drugs that show stimulant properties; this review article focuses on the clinical aspects of this evaluation. This includes clinical trial adverse events, evidence of diversion or tampering, overdoses and the results of a human abuse potential study. While there are different types of human experimental studies that can be employed to evaluate stimulant abuse potential (e.g., drug discrimination, self-administration), only the human abuse potential study and clinical trial adverse event data are required for drug approval. The principal advances that have improved human abuse potential studies include using study enrichment strategies (pharmacologic qualification), larger sample sizes, better selection of endpoints and measurement strategies and more carefully considered interpretation of data. Because of the methodological advances, comparisons of newer studies with historical data is problematic and may contribute to a biased regulatory framework for the evaluation of newer stimulant-like drugs, such as A2 antagonists. This article is part of the Special Issue entitled 'CNS Stimulants'. PMID:24793872

  3. Diagnostic and therapeutic potentials of exosomes in CNS diseases.

    PubMed

    Kawikova, Ivana; Askenase, Philip W

    2015-08-18

    A newly discovered cell-to-cell communication system involves small, membrane-enveloped nanovesicles, called exosomes. We describe here how these extracellular nanoparticles were discovered and how it became gradually apparent that they play fundamental roles in regulation of physiological functions and pathological processes. Exosomes enable intercellular communication by transporting genetic material, proteins and lipids to cells in their vicinity or at distant sites, and subsequently regulating functions of targeted cells. Relatively recent experiments indicate that exosomes are released also by CNS cells, including cortical and hippocampal neurons, glial cells, astrocytes and oligodendrocytes, and that exosomes have significant impact on pathophysiology of the brain. How it is decided what individual exosomes will carry to their targets is not understood, but it appears that the contents may represent "signature cargos" that are characteristic for various conditions. Exploration of such characteristics could result in discovery of novel diagnostic biomarkers. Exosomes are also promising as a vehicle for therapeutic delivery of micro RNA or other compounds. How to deliver exosomes to selected sites has been a tantalizing question. Recent experiments revealed that at least some exosomes carry antibodies on their surface, suggesting that it may be feasible to deliver exosomes to unique sites based on the recognition of antigens by those antibodies. This discovery implies that rather precise targeting of both natural and engineered exosomes may be feasible. This would reduce distribution volume of therapeutics, and consequently minimize their side effects. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease.

  4. Stress Preconditioning of Spreading Depression in the Locust CNS

    PubMed Central

    Rodgers, Corinne I.; Armstrong, Gary A. B.; Shoemaker, Kelly L.; LaBrie, John D.; Moyes, Christopher D.; Robertson, R. Meldrum

    2007-01-01

    Cortical spreading depression (CSD) is closely associated with important pathologies including stroke, seizures and migraine. The mechanisms underlying SD in its various forms are still incompletely understood. Here we describe SD-like events in an invertebrate model, the ventilatory central pattern generator (CPG) of locusts. Using K+ -sensitive microelectrodes, we measured extracellular K+ concentration ([K+]o) in the metathoracic neuropile of the CPG while monitoring CPG output electromyographically from muscle 161 in the second abdominal segment to investigate the role K+ in failure of neural circuit operation induced by various stressors. Failure of ventilation in response to different stressors (hyperthermia, anoxia, ATP depletion, Na+/K+ ATPase impairment, K+ injection) was associated with a disturbance of CNS ion homeostasis that shares the characteristics of CSD and SD-like events in vertebrates. Hyperthermic failure was preconditioned by prior heat shock (3 h, 45°C) and induced-thermotolerance was associated with an increase in the rate of clearance of extracellular K+ that was not linked to changes in ATP levels or total Na+/K+ ATPase activity. Our findings suggest that SD-like events in locusts are adaptive to terminate neural network operation and conserve energy during stress and that they can be preconditioned by experience. We propose that they share mechanisms with CSD in mammals suggesting a common evolutionary origin. PMID:18159249

  5. Bioavailability of dietary polyphenols: Factors contributing to their clinical application in CNS diseases.

    PubMed

    Pandareesh, M D; Mythri, R B; Srinivas Bharath, M M

    2015-10-01

    The anatomical location of the central nervous system (CNS) renders it immunologically and pharmacologically privileged due to the blood brain barrier (BBB). Although this limits the transport of unfavorable molecules to the CNS, the ensuing privilege could be disadvantageous for therapeutic compounds. Hence, the greatest challenge in the pharmacotherapy of CNS diseases is to ensure efficient brain targeting and drug delivery. Research evidences indicate that dietary polyphenols have neuroprotective potential against CNS diseases. However, their selective permeability across BBB, poor absorption, rapid metabolism and systemic elimination limit their bioavailability and therapeutic efficacy. Consequently, the beneficial effects of these orally administered agents in the CNS still remain a subject of debate. This has also limited its clinical application either as independent or adjunctive therapy. Improving the in vivo bioavailability by novel methods could improve the therapeutic feasibility of polyphenols and assist in evolving novel drugs and their derivatives with improved efficacy in vivo. Here we review the mechanistic and pharmacological issues related to the bioavailability of polyphenols with therapeutic implications for CNS diseases. We surmise that improving the bioavailability of polyphenols entails efficient in vivo transport across BBB, biochemical stability, improved half-life and persistent neuroprotection in the CNS.

  6. CNS tumors and exposure to acrylonitrile: inconsistency between experimental and epidemiology studies.

    PubMed Central

    Collins, J. J.; Strother, D. E.

    1999-01-01

    Acrylonitrile is a potent CNS tumorigen in rats leading to concern that it may be a tumorigen in humans. There have been 12 epidemiology studies of 37,352 workers exposed to acrylonitrile which evaluate CNS cancers. We summarize and evaluate these epidemiology studies for CNS cancers using the methods of meta-analysis. Our analyses indicate that workers with acrylonitrile exposure have null findings for CNS cancer (relative risk = 1.1, 95% confidence interval 0.8-1.5), which are in stark contrast to the projected risk to humans using the rat findings (relative risk = 3.5, 95% confidence interval 3.0-4.0). We discuss several explanations for the inconsistency between animal and human findings, including the possibility that the acrylonitrile-induced rat CNS tumors may not be relevant to humans. Given the rarity of CNS tumors in humans and a lack of understanding of the causal mechanisms of these tumors in rats, however, a more definitive conclusion will have to await additional experimental and observational data. Nevertheless, the epidemiology evidence indicates that acrylonitrile is not a potent CNS tumorigen. PMID:11550315

  7. Use of a relational database program for quantification of the CNS role.

    PubMed

    Picella, D V

    1996-11-01

    In the current state of flux and economic retrenchment in the healthcare system, clinical nurse specialists (CNSs) are challenged to clearly define their contribution to high quality patient care services. Systems for documenting and reporting on CNS activities that are flexible, easy to use, and do not require extensive time commitments to use are needed. A systematic approach for developing a tool to collect data about the CNS role is presented. This tool can be used with an adaptation of computerized relational database technology that can handle the inputting, managing, and reporting of data collected about the CNS roles and associated activities. A relational database computer software application can run on a personal computer or laptop. When applied to structural evaluation of the CNS role, this system has potential for quickly and effectively performing periodic evaluations that clearly document how CNS time is spent. An accurate and usable database of CNS activities is a critical step toward demonstrating whether or not the CNS is performing appropriate functions and establishes a foundation of critical information for further evaluation of process and outcome data. Further exploration of this technology through experience in its applied use is needed.

  8. Compartmentalized intrathecal immunoglobulin synthesis during HIV infection - a model of chronic CNS inflammation?

    PubMed

    Bonnan, Mickael; Barroso, Bruno; Demasles, Stéphanie; Krim, Elsa; Marasescu, Raluca; Miquel, Marie

    2015-08-15

    HIV infects the central nervous system (CNS) during primary infection and persists in resident macrophages. CNS infection initiates a strong local immune response that fails to control the virus but is responsible for by-stander lesions involved in neurocognitive disorders. Although highly active anti-retroviral therapy now offers an almost complete control of CNS viral proliferation, low-grade CNS inflammation persists. This review focuses on HIV-induced intrathecal immunoglobulin (Ig) synthesis. Intrathecal Ig synthesis early occurs in more than three-quarters of patients in response to viral infection of the CNS and persists throughout the course of the disease. Viral antigens are targeted but this specific response accounts for <5% of the whole intrathecal synthesis. Although the nature and mechanisms leading to non-specific synthesis are unknown, this prominent proportion is comparable to that observed in various CNS viral infections. Cerebrospinal fluid-floating antibody-secreting cells account for a minority of the whole synthesis, which mainly takes place in perivascular inflammatory infiltrates of the CNS parenchyma. B-cell traffic and lineage across the blood-brain-barrier have not yet been described. We review common technical pitfalls and update the pending questions in the field. Moreover, since HIV infection is associated with an intrathecal chronic oligoclonal (and mostly non-specific) Ig synthesis and associates with low-grade axonal lesions, this could be an interesting model of the chronic intrathecal synthesis occurring during multiple sclerosis. PMID:26198917

  9. Lymphoma in acquired generalized lipodystrophy.

    PubMed

    Brown, Rebecca J; Chan, Jean L; Jaffe, Elaine S; Cochran, Elaine; DePaoli, Alex M; Gautier, Jean-Francois; Goujard, Cecile; Vigouroux, Corinne; Gorden, Phillip

    2016-01-01

    Acquired generalized lipodystrophy (AGL) is a rare disease thought to result from autoimmune destruction of adipose tissue. Peripheral T-cell lymphoma (PTCL) has been reported in two AGL patients. We report five additional cases of lymphoma in AGL, and analyze the role of underlying autoimmunity and recombinant human leptin (metreleptin) replacement in lymphoma development. Three patients developed lymphoma during metreleptin treatment (two PTCL and one ALK-positive anaplastic large cell lymphoma), and two developed lymphomas (mycosis fungoides and Burkitt lymphoma) without metreleptin. AGL is associated with high risk for lymphoma, especially PTCL. Autoimmunity likely contributes to this risk. Lymphoma developed with or without metreleptin, suggesting metreleptin does not directly cause lymphoma development; a theoretical role of metreleptin in lymphoma progression remains possible. For most patients with AGL and severe metabolic complications, the proven benefits of metreleptin on metabolic disease will likely outweigh theoretical risks of metreleptin in lymphoma development or progression.

  10. Observations at the CNS-PNS Border of Ventral Roots Connected to a Neuroma.

    PubMed

    Remahl, Sten; Angeria, Maria; Remahl, Ingela Nilsson; Carlstedt, Thomas; Risling, Mårten

    2010-01-01

    Previous studies have shown that numerous sprouts originating from a neuroma, after nerve injury in neonatal animals, can invade spinal nerve roots. However, no study with a focus on how such sprouts behave when they reach the border between the central and peripheral nervous system (CNS-PNS border) has been published. In this study we have in detail examined the CNS-PNS border of ventral roots in kittens with light and electron microscopy after early postnatal sciatic nerve resection. A transient ingrowth of substance P positive axons was observed into the CNS, but no spouts remained 6 weeks after the injury. Using serial sections and electron microscopy it was possible to identify small bundles of unmyelinated axons that penetrated from the root fascicles for a short distance into the CNS. These axons ended blindly, sometimes with a growth cone-like terminal swelling filled with vesicles. The axon bundles were accompanied by p75 positive cells in both the root fascicles and the pia mater, but not in the CNS. It may thus be suggested that neurotrophin presenting p75 positive cells could facilitate axonal growth into the pia mater and that the lack of such cells in the CNS compartment might contribute to the failure of growth into the CNS. A maldevelopment of myelin sheaths at the CNS-PNS border of motor axons was observed and it seems possible that this could have consequences for the propagation of action potential across this region after neonatal nerve injury. Thus, in this first detailed study on the behavior of recurrent sprouts at the CNS-PNS border.

  11. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS.

    PubMed

    Pulido-Salgado, Marta; Vidal-Taboada, Jose M; Saura, Josep

    2015-09-01

    CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.

  12. The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination

    PubMed Central

    Slowik, A; Schmidt, T; Beyer, C; Amor, S; Clarner, T; Kipp, M

    2015-01-01

    BACKGROUND AND PURPOSE Modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes within the lymph nodes. Here, we evaluated the potential of an agonist at this receptor, FTY720 (fingolimod), to activate the promyelinating pathways within the brain to encourage remyelination and neuroprotection. EXPERIMENTAL APPROACH In this study, we used the cuprizone model in male C57BL/6 mice and tested the promyelinating and neuroprotective effects of FTY720 after acute and chronic toxin-induced experimental demyelination. We used histological, immunohistochemical and gene expression methods. KEY RESULTS The midline of the corpus callosum was severely demyelinated after acute and chronic cuprizone-induced demyelination. Robust endogenous remyelination was evident after acute, but impaired after chronic, demyelination. FTY720 treatment modestly accelerated myelin recovery after acute but not chronic cuprizone exposure. Markers of gliosis (astrocyte and microglia activation) were not affected by FTY720 treatment. Remarkably, the accumulation of amyloid precursor protein-positive spheroids in axons was less distinct in FTY720-treated animals, indicating that this compound alleviated ongoing axonal damage. CONCLUSIONS AND IMPLICATIONS We show that even during endogenous remyelination, axonal degeneration continued at a low level, accumulating over time. This continuous neurodegenerative process was ameliorated by FTY720 treatment. FTY720 preserved CNS integrity by direct interaction with brain resident cells, the actions of which are still to be defined. PMID:25220526

  13. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS.

    PubMed

    Pulido-Salgado, Marta; Vidal-Taboada, Jose M; Saura, Josep

    2015-09-01

    CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy. PMID:26143335

  14. Electroacupuncture Reduces Weight Gain Induced by Rosiglitazone through PPARγ and Leptin Receptor in CNS

    PubMed Central

    Jing, Xinyue; Ou, Chen; Chen, Hui; Wang, Tianlin; Xu, Bin; Lu, Shengfeng; Zhu, Bing-Mei

    2016-01-01

    We investigate the effect of electroacupuncture (EA) on protecting the weight gain side effect of rosiglitazone (RSG) in type 2 diabetes mellitus (T2DM) rats and its possible mechanism in central nervous system (CNS). Our study showed that RSG (5 mg/kg) significantly increased the body weight and food intake of the T2DM rats. After six-week treatment with RSG combined with EA, body weight, food intake, and the ratio of IWAT to body weight decreased significantly, whereas the ratio of BAT to body weight increased markedly. HE staining indicated that the T2DM-RSG rats had increased size of adipocytes in their IWAT, but EA treatment reduced the size of adipocytes. EA effectively reduced the lipid contents without affecting the antidiabetic effect of RSG. Furthermore, we noticed that the expression of PPARγ gene in hypothalamus was reduced by EA, while the expressions of leptin receptor and signal transducer and activator of transcription 3 (STAT3) were increased. Our results suggest that EA is an effective approach for inhibiting weight gain in T2DM rats treated by RSG. The possible mechanism might be through increased levels of leptin receptor and STAT3 and decreased PPARγ expression, by which food intake of the rats was reduced and RSG-induced weight gain was inhibited. PMID:26904147

  15. Detection of classical and newly described staphylococcal superantigen genes in coagulase-negative staphylococci isolated from bovine intramammary infections

    PubMed Central

    Park, Joo Youn; Fox, Lawrence K.; Seo, Keun Seok; McGuire, Mark A.; Park, Yong Ho; Rurangirwa, Fred R.; Sischo, William M.; Bohach, Gregory A.

    2013-01-01

    The coagulase negative staphylococci (CNS) are the most prevalent mastitis pathogen group yet their virulence characteristics have not been well described. We investigated the presence of 19 classical and newly described staphylococcal superantigen (SAg) genes in CNS isolates from bovine intramammary infections (IMI). A total of 263 CNS representing 11 different Staphylococcus spp. were examined, and 31.2% (n = 82) of CNS isolates had one or more SAg genes; there were 21 different SAg gene combinations. The most prevalent combination of SAg genes (seb, seln, and selq; n = 45) was found in S. chromogenes, S. xylosus, S. haemolyticus, S. sciuri subsp. carnaticus, S. simulans and S. succinus. The genes for SAgs appear to be widely distributed amongst CNS isolated from bovine IMI. PMID:20667668

  16. Detection of classical and newly described staphylococcal superantigen genes in coagulase-negative staphylococci isolated from bovine intramammary infections.

    PubMed

    Park, Joo Youn; Fox, Lawrence K; Seo, Keun Seok; McGuire, Mark A; Park, Yong Ho; Rurangirwa, Fred R; Sischo, William M; Bohach, Gregory A

    2011-01-10

    The coagulase-negative staphylococci (CNS) are the most prevalent mastitis pathogen group yet their virulence characteristics have not been well described. We investigated the presence of 19 classical and newly described staphylococcal superantigen (SAg) genes in CNS isolates from bovine intramammary infections (IMI). A total of 263 CNS representing 11 different Staphylococcus spp. were examined, and 31.2% (n=82) of CNS isolates had one or more SAg genes; there were 21 different SAg gene combinations. The most prevalent combination of SAg genes (seb, seln and selq; n=45) was found in S. chromogenes, S. xylosus, S. haemolyticus, S. sciuri subsp. carnaticus, S. simulans and S. succinus. The genes for SAgs appear to be widely distributed amongst CNS isolated from bovine IMI. PMID:20667668

  17. 7 CFR 926.10 - Acquire.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.10 Acquire. Acquire means to obtain cranberries by any means whatsoever for the purpose of handling cranberries....

  18. 7 CFR 926.10 - Acquire.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.10 Acquire. Acquire means to obtain cranberries by any means whatsoever for the purpose of handling cranberries....

  19. 7 CFR 926.10 - Acquire.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.10 Acquire. Acquire means to obtain cranberries by any means whatsoever for the purpose of handling cranberries....

  20. 7 CFR 926.10 - Acquire.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.10 Acquire. Acquire means to obtain cranberries by any means whatsoever for the purpose of handling cranberries....

  1. 7 CFR 926.10 - Acquire.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.10 Acquire. Acquire means to obtain cranberries by any means whatsoever for the purpose of handling cranberries....

  2. Armies of pestilence: CNS infections as potential weapons of mass destruction.

    PubMed

    Hart, B L; Ketai, L

    2015-06-01

    Infectious agents have been investigated, developed, and used by both governments and terrorist groups as weapons of mass destruction. CNS infections, though traditionally considered less often than respiratory diseases in this scenario, may be very important. Viruses responsible for encephalitides can be highly infectious in aerosol form. CNS involvement in anthrax is ominous but should change treatment. Brucellosis, plague, Q fever, and other bacteria can uncommonly manifest with meningoencephalitis and other findings. Emerging diseases may also pose threats. We review infectious agents of particular concern for purposes of biowarfare with respect to CNS manifestations and imaging features.

  3. The impact of neural stem cell biology on CNS carcinogenesis and tumor types.

    PubMed

    Kurian, K M

    2011-01-01

    The incidence of gliomas is on the increase, according to epidemiological data. This increase is a conundrum because the brain is in a privileged protected site behind the blood-brain barrier, and therefore partially buffered from environmental factors. In addition the brain also has a very low proliferative potential compared with other parts of the body. Recent advances in neural stem cell biology have impacted on our understanding of CNS carcinogenesis and tumor types. This article considers the cancer stem cell theory with regard to CNS cancers, whether CNS tumors arise from human neural stem cells and whether glioma stem cells can be reprogrammed.

  4. Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration.

    PubMed

    Dirks, P B

    2001-06-01

    Neural stem cells have recently come to the forefront in neurobiology because of the possibilities for CNS repair by transplantation. Further understanding of the biology of these cells is critical for making their use in CNS repair possible. It is likely that these discoveries will also have spin-offs for neuro-oncology as primary brain tumors may arise from a CNS progenitor cell. An understanding of the normal migratory ability of these cells is also likely to have a very important impact on the knowledge of brain tumor invasion.

  5. Non-human primate models of SIV infection and CNS neuropathology.

    PubMed

    Williams, Kenneth; Lackner, Andrew; Mallard, Jaclyn

    2016-08-01

    Non-human primate models of AIDS and neuroAIDS are the premiere model of HIV infection of the CNS and neuropathogenesis. This review discusses current SIV infection models of neuroAIDS emphasizing findings in the last two years. Consistent in these findings is the interplay between host factors that regulate immune responses to virus and viral replication. Several rapid models of AIDS with consistent CNS pathogenesis exist, each of which modulates by antibody treatment or viruses that cause rapid immune suppression and replicate well in macrophages. Consistent in all of these models are data underscoring the importance of monocyte and macrophage activation, infection and accumulation in the CNS. PMID:27544476

  6. A Practical Guide for Exploring Opportunities of Repurposing Drugs for CNS Diseases in Systems Biology.

    PubMed

    Mei, Hongkang; Feng, Gang; Zhu, Jason; Lin, Simon; Qiu, Yang; Wang, Yue; Xia, Tian

    2016-01-01

    Systems biology has shown its potential in facilitating pathway-focused therapy development for central nervous system (CNS) diseases. An integrated network can be utilized to explore the multiple disease mechanisms and to discover repositioning opportunities. This review covers current therapeutic gaps for CNS diseases and the role of systems biology in pharmaceutical industry. We conclude with a Multiple Level Network Modeling (MLNM) example to illustrate the great potential of systems biology for CNS diseases. The system focuses on the benefit and practical applications in pathway centric therapy and drug repositioning.

  7. Infantile and acquired nystagmus in childhood.

    PubMed

    Ehrt, Oliver

    2012-11-01

    Nystagmus is an involuntary, periodic eye movement caused by a slow drift of fixation which is followed by a fast refixation saccade (jerk nystagmus) or a slow movement back to fixation (pendular nystagmus). In childhood most cases are benign forms of nystagmus: idiopathic infantile, ocular or latent nystagmus. They arise at the age of 3 months, without oscillopsia and show the absence of the physiologic opto-kinetic nystagmus. A full ophthalmologic evaluation is all that is needed in most cases: albinism, macular or optic nerve hypoplasia and congenital retinal dystrophies are the most common forms of ocular nystagmus. Idiopathic infantile nystagmus can be hereditary, the most common and best analyzed form being a mutation of the FRMD7 gene on chromosome Xq26.2. The mutation shows a mild genotype-phenotype correlation. In all female carriers the opto-kinetic nystagmus is absent and half had mild nystagmus. Latent nystagmus is part of the infantile esotropia syndrome and shows the unique feature of change of direction when the fixing eye changes: it is always beating to the side of the fixing eye. There is no cure for infantile nystagmus but therapeutic options include magnifying visual aids or eye muscle surgery at the age of 6-8 y in patients with head turn. Less than 20% of childhood nystagmus are acquired and need further neurological and imaging work-up. Alarming signs and symptoms are: onset after the age of 4 months, oscillopsia, dissociated (asymmetric) nystagmus, preserved opto-kinetic nystagmus, afferent pupillary defect, papilloedema and neurological symptoms like vertigo and nausea. The most common cause is due to pathology of the anterior optic pathway (e.g. optic nerve gliomas). It shows the same clinical feature of dissociated nystagmus as spasmus nutans but has a higher frequency as in INO. Other forms of acquired nystagmus are due to brainstem, cerebellar or metabolic diseases. PMID:22459007

  8. Tcf7l2/Tcf4 Transcriptional Repressor Function Requires HDAC Activity in the Developing Vertebrate CNS

    PubMed Central

    Wang, Hui; Matise, Michael P.

    2016-01-01

    The generation of functionally distinct neuronal subtypes within the vertebrate central nervous system (CNS) requires the precise regulation of progenitor gene expression in specific neuronal territories during early embryogenesis. Accumulating evidence has implicated histone deacetylase (HDAC) proteins in cell specification, proliferation, and differentiation in diverse embryonic and adult tissues. However, although HDAC proteins have shown to be expressed in the developing vertebrate neural tube, their specific role in CNS neural progenitor fate specification remains unclear. Prior work from our lab showed that the Tcf7l2/Tcf4 transcription factor plays a key role in ventral progenitor lineage segregation by differential repression of two key specification factors, Nkx2.2 and Olig2. In this study, we found that administration of HDAC inhibitors (Valproic Acid (VPA), Trichostatin-A (TSA), or sodium butyrate) in chick embryos in ovo disrupted normal progenitor gene segregation in the developing neural tube, indicating that HDAC activity is required for this process. Further, using functional and pharmacological approaches in vivo, we found that HDAC activity is required for the differential repression of Nkx2.2 and Olig2 by Tcf7l2/Tcf4. Finally, using dominant-negative functional assays, we provide evidence that Tcf7l2/Tcf4 repression also requires Gro/TLE/Grg co-repressor factors. Together, our data support a model where the transcriptional repressor activity of Tcf7l2/Tcf4 involves functional interactions with both HDAC and Gro/TLE/Grg co-factors at specific target gene regulatory elements in the developing neural tube, and that this activity is required for the proper segregation of the Nkx2.2 (p3) and Olig2 (pMN) expressing cells from a common progenitor pool. PMID:27668865

  9. 12 CFR 583.1 - Acquire.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND LOAN HOLDING COMPANIES § 583.1 Acquire. The term acquire means to acquire, directly or indirectly, ownership or control through an acquisition of shares, an acquisition of assets or assumption of liabilities, a merger or consolidation, or any similar transaction....

  10. Safety Design and Mock-Up Tests on the Combustion of Hydrogen-Air Mixture in the Vertical CNS Channel of the CARR-CNS

    SciTech Connect

    Qingfeng Yu; Quanke Feng

    2006-07-01

    A two-phase thermo-siphon loop is applied to the Cold Neutron Source (CNS) of China Advanced Research Reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The most characteristic point is that the cold helium gas is introduced into the helium sub-cooling system covering the moderator cell and then flows up through the tube covering the moderator transfer tube into the condenser. The helium sub-cooling system also reduces the void fraction of the liquid hydrogen and takes a role of the helium barrier for preventing air from intruding into the hydrogen system. We call the two-phase thermo-siphon the hydrogen cold system. The main part of this system is installed in the CNS channel made of 6061 aluminum alloy (6061A) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS, the combustion tests were carried out using the hydrogen-air mixture under the conditions in which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.140 MPa Gauge (G). This condition includes the design accident of the CNS. The peak pressure due to combustion is 1.09 MPa, and the design strength of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the design basis accident occurs. The pressure distribution, the stress, and the displacement of the tube were also measured. (authors)

  11. Acute disseminated encephalomyelitis: Updates on an inflammatory CNS syndrome.

    PubMed

    Pohl, Daniela; Alper, Gulay; Van Haren, Keith; Kornberg, Andrew J; Lucchinetti, Claudia F; Tenembaum, Silvia; Belman, Anita L

    2016-08-30

    Acute disseminated encephalomyelitis (ADEM) is an immune-mediated demyelinating CNS disorder with predilection to early childhood. ADEM is generally considered a monophasic disease. However, recurrent ADEM has been described and defined as multiphasic disseminated encephalomyelitis. ADEM often occurs postinfectiously, although a causal relationship has never been established. ADEM and multiple sclerosis are currently viewed as distinct entities, generally distinguishable even at disease onset. However, pathologic studies have demonstrated transitional cases of yet unclear significance. ADEM is clinically defined by acute polyfocal neurologic deficits including encephalopathy. MRI typically demonstrates reversible, ill-defined white matter lesions of the brain and often also the spinal cord, along with frequent involvement of thalami and basal ganglia. CSF analysis may reveal a mild pleocytosis and elevated protein, but is generally negative for intrathecal oligoclonal immunoglobulin G synthesis. In the absence of a specific diagnostic test, ADEM is considered a diagnosis of exclusion, and ADEM mimics, especially those requiring a different treatment approach, have to be carefully ruled out. The role of biomarkers, including autoantibodies like anti-myelin oligodendrocyte glycoprotein, in the pathogenesis and diagnosis of ADEM is currently under debate. Based on the presumed autoimmune etiology of ADEM, the current treatment approach consists of early immunotherapy. Outcome of ADEM in pediatric patients is generally favorable, but cognitive deficits have been reported even in the absence of other neurologic sequelae. This review summarizes the current knowledge on epidemiology, pathology, clinical presentation, neuroimaging features, CSF findings, differential diagnosis, therapy, and outcome, with a focus on recent advances and controversies. PMID:27572859

  12. Bupropion and bupropion analogs as treatments for CNS disorders.

    PubMed

    Carroll, F Ivy; Blough, Bruce E; Mascarella, S Wayne; Navarro, Hernán A; Lukas, Ronald J; Damaj, M Imad

    2014-01-01

    Bupropion, introduced as an antidepressant in the 1980s, is also effective as a smoking cessation aid and is beneficial in the treatment of methamphetamine addiction, cocaine dependence, addictive behaviors such as pathological gambling, and attention deficit hyperactivity disorder. (2S,3S)-hydroxybupropion is an active metabolite of bupropion produced in humans that contributes to antidepressant and smoking cessation efficacy and perhaps benefits in other CNS disorders. Mechanisms underlying its antidepressant and smoking abstinence remain elusive. However, it seems likely that efficacy is due to a combination of the effects of bupropion and/or its active metabolite (2S,3S)-hydroxybupropion involving the inhibition of reuptake of dopamine (DA) and NE in reward centers of the brain and the noncompetitive antagonism of α4β2- and α3β4*-nAChRs. These combined effects of bupropion and its active metabolite may be responsible for its ability to decrease nicotine reward and withdrawal. Studies directed toward development of a bupropion analog for treatment of cocaine addiction led to compounds, typified by 2-(N-cyclopropylamino)-3'-chloropropiophenone (RTI-6037-39), thought to act as indirect DA agonists. In addition, (2S,3S)-hydroxybupropion analogs were developed, which had varying degrees of DA and NE uptake inhibition and antagonism of nAChRs. These compounds will be valuable tools for animal behavioral studies and as clinical candidates. Here, we review the (1) early studies leading to the development of bupropion, (2) bupropion metabolism and the identification of (2S,3R)-hydroxybupropion as an active metabolite, (3) mechanisms of bupropion and metabolite action, (4) effects in animal behavioral studies, (5) results of clinical studies, and (6) development of bupropion analogs as potential pharmacotherapies for treating nicotine and cocaine addiction.

  13. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    SciTech Connect

    Xu, Jiajun; Yang, Ming; Kosterin, Paul; Salzberg, Brian M.; Milovanova, Tatyana N.; Bhopale, Veena M.; Thom, Stephen R.

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  14. Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila.

    PubMed

    Hirth, F; Loop, T; Egger, B; Miller, D F; Kaufman, T C; Reichert, H

    2001-12-01

    Hox genes encode evolutionarily conserved transcription factors involved in the specification of segmental identity during embryonic development. This specification of identity is thought to be directed by differential Hox gene action, based on differential spatiotemporal expression patterns, protein sequence differences, interactions with co-factors and regulation of specific downstream genes. During embryonic development of the Drosophila brain, the Hox gene labial is required for the regionalized specification of the tritocerebral neuromere; in the absence of labial, the cells in this brain region do not acquire a neuronal identity and major axonal pathfinding deficits result. We have used genetic rescue experiments to investigate the functional equivalence of the Drosophila Hox gene products in the specification of the tritocerebral neuromere. Using the Gal4-UAS system, we first demonstrate that the labial mutant brain phenotype can be rescued by targeted expression of the Labial protein under the control of CNS-specific labial regulatory elements. We then show that under the control of these CNS-specific regulatory elements, all other Drosophila Hox gene products, except Abdominal-B, are able to efficiently replace Labial in the specification of the tritocerebral neuromere. We also observe a correlation between the rescue efficiency of the Hox proteins and the chromosomal arrangement of their encoding loci. Our results indicate that, despite considerably diverged sequences, most Hox proteins are functionally equivalent in their ability to replace Labial in the specification of neuronal identity. This suggests that in embryonic brain development, differences in Hox gene action rely mainly on cis-acting regulatory elements and not on Hox protein specificity. PMID:11731458

  15. Associative Learning Through Acquired Salience.

    PubMed

    Treviño, Mario

    2015-01-01

    Most associative learning studies describe the salience of stimuli as a fixed learning-rate parameter. Presumptive saliency signals, however, have also been linked to motivational and attentional processes. An interesting possibility, therefore, is that discriminative stimuli could also acquire salience as they become powerful predictors of outcomes. To explore this idea, we first characterized and extracted the learning curves from mice trained with discriminative images offering varying degrees of structural similarity. Next, we fitted a linear model of associative learning coupled to a series of mathematical representations for stimulus salience. We found that the best prediction, from the set of tested models, was one in which the visual salience depended on stimulus similarity and a non-linear function of the associative strength. Therefore, these analytic results support the idea that the net salience of a stimulus depends both on the items' effective salience and the motivational state of the subject that learns about it. Moreover, this dual salience model can explain why learning about a stimulus not only depends on the effective salience during acquisition but also on the specific learning trajectory that was used to reach this state. Our mathematical description could be instrumental for understanding aberrant salience acquisition under stressful situations and in neuropsychiatric disorders like schizophrenia, obsessive-compulsive disorder, and addiction.

  16. Infections Acquired in the Garden.

    PubMed

    Cunha, Cheston B; Cunha, Burke A

    2015-10-01

    Gardening is a wonderful pastime, and the garden is a very peaceful place to enjoy one's vacation. However, the garden may be a treacherous place for very young or compromised hosts when one takes into account the infectious potential residing in the soil, as well as the insect vectors on plants and animals. Even normal hosts may acquire a variety of infections from the soil, animals, or animal-related insect bites. The location of the garden, its natural animal and insect inhabitants, and the characteristics of the soil play a part in determining its infectious potential. The most important factor making the garden an infectious and dangerous place is the number and interaction of animals, whether they are pets or wild, that temporarily use the garden for part of their daily activities. The clinician should always ask about garden exposure, which will help in eliminating the diagnostic possibilities for the patient. The diagnostic approach is to use epidemiological principles in concert with clinical clues, which together should suggest a reasonable list of diagnostic possibilities. Organ involvement and specific laboratory tests help further narrow the differential diagnosis and determine the specific tests necessary to make a definitive diagnosis. PMID:26542044

  17. Inherited or acquired metabolic disorders.

    PubMed

    Eichler, Florian; Ratai, Eva; Carroll, Jason J; Masdeu, Joseph C

    2016-01-01

    This chapter starts with a description of imaging of inherited metabolic disorders, followed by a discussion on imaging of acquired toxic-metabolic disorders of the adult brain. Neuroimaging is crucial for the diagnosis and management of a number of inherited metabolic disorders. Among these, inherited white-matter disorders commonly affect both the nervous system and endocrine organs. Magnetic resonance imaging (MRI) has enabled new classifications of these disorders that have greatly enhanced both our diagnostic ability and our understanding of these complex disorders. Beyond the classic leukodystrophies, we are increasingly recognizing new hereditary leukoencephalopathies such as the hypomyelinating disorders. Conventional imaging can be unrevealing in some metabolic disorders, but proton magnetic resonance spectroscopy (MRS) may be able to directly visualize the metabolic abnormality in certain disorders. Hence, neuroimaging can enhance our understanding of pathogenesis, even in the absence of a pathologic specimen. This review aims to present pathognomonic brain MRI lesion patterns, the diagnostic capacity of proton MRS, and information from clinical and laboratory testing that can aid diagnosis. We demonstrate that applying an advanced neuroimaging approach enhances current diagnostics and management. Additional information on inherited and metabolic disorders of the brain can be found in Chapter 63 in the second volume of this series. PMID:27432685

  18. Infections Acquired in the Garden.

    PubMed

    Cunha, Cheston B; Cunha, Burke A

    2015-10-01

    Gardening is a wonderful pastime, and the garden is a very peaceful place to enjoy one's vacation. However, the garden may be a treacherous place for very young or compromised hosts when one takes into account the infectious potential residing in the soil, as well as the insect vectors on plants and animals. Even normal hosts may acquire a variety of infections from the soil, animals, or animal-related insect bites. The location of the garden, its natural animal and insect inhabitants, and the characteristics of the soil play a part in determining its infectious potential. The most important factor making the garden an infectious and dangerous place is the number and interaction of animals, whether they are pets or wild, that temporarily use the garden for part of their daily activities. The clinician should always ask about garden exposure, which will help in eliminating the diagnostic possibilities for the patient. The diagnostic approach is to use epidemiological principles in concert with clinical clues, which together should suggest a reasonable list of diagnostic possibilities. Organ involvement and specific laboratory tests help further narrow the differential diagnosis and determine the specific tests necessary to make a definitive diagnosis.

  19. Associative Learning Through Acquired Salience

    PubMed Central

    Treviño, Mario

    2016-01-01

    Most associative learning studies describe the salience of stimuli as a fixed learning-rate parameter. Presumptive saliency signals, however, have also been linked to motivational and attentional processes. An interesting possibility, therefore, is that discriminative stimuli could also acquire salience as they become powerful predictors of outcomes. To explore this idea, we first characterized and extracted the learning curves from mice trained with discriminative images offering varying degrees of structural similarity. Next, we fitted a linear model of associative learning coupled to a series of mathematical representations for stimulus salience. We found that the best prediction, from the set of tested models, was one in which the visual salience depended on stimulus similarity and a non-linear function of the associative strength. Therefore, these analytic results support the idea that the net salience of a stimulus depends both on the items' effective salience and the motivational state of the subject that learns about it. Moreover, this dual salience model can explain why learning about a stimulus not only depends on the effective salience during acquisition but also on the specific learning trajectory that was used to reach this state. Our mathematical description could be instrumental for understanding aberrant salience acquisition under stressful situations and in neuropsychiatric disorders like schizophrenia, obsessive-compulsive disorder, and addiction. PMID:26793078

  20. Associative Learning Through Acquired Salience.

    PubMed

    Treviño, Mario

    2015-01-01

    Most associative learning studies describe the salience of stimuli as a fixed learning-rate parameter. Presumptive saliency signals, however, have also been linked to motivational and attentional processes. An interesting possibility, therefore, is that discriminative stimuli could also acquire salience as they become powerful predictors of outcomes. To explore this idea, we first characterized and extracted the learning curves from mice trained with discriminative images offering varying degrees of structural similarity. Next, we fitted a linear model of associative learning coupled to a series of mathematical representations for stimulus salience. We found that the best prediction, from the set of tested models, was one in which the visual salience depended on stimulus similarity and a non-linear function of the associative strength. Therefore, these analytic results support the idea that the net salience of a stimulus depends both on the items' effective salience and the motivational state of the subject that learns about it. Moreover, this dual salience model can explain why learning about a stimulus not only depends on the effective salience during acquisition but also on the specific learning trajectory that was used to reach this state. Our mathematical description could be instrumental for understanding aberrant salience acquisition under stressful situations and in neuropsychiatric disorders like schizophrenia, obsessive-compulsive disorder, and addiction. PMID:26793078

  1. Intracerebral Mycobacterium bovis bacilli Calmette-Guerin infection-induced immune responses in the CNS 1

    PubMed Central

    Lee, JangEun; Ling, Changying; Kosmalski, Michelle M.; Hulseberg, Paul; Schreiber, Heidi A.; Sandor, Matyas; Fabry, Zsuzsanna

    2010-01-01

    To study whether cerebral mycobacterial infection induces granuloma and protective immunity similar to systemic infection, we intracerebrally infected mice with Mycobacterium bovis bacilli Calmette-Guerin. Granuloma and IFN-γ+CD4+ T cell responses are induced in the central nervous system (CNS) similar to periphery, but the presence of IFN-γIL-17 double-positive CD4+ T cells is unique to the CNS. The major CNS source of TNF-α is microglia, with modest production by CD4+ T cells and macrophage. Protective immunity is accompanied by accumulation of Foxp3+CD4+ T cells and PD-L2+ dendritic cells, suggesting that both inflammatory and anti-inflammatory responses develop in the CNS following mycobacterial infection. PMID:19535154

  2. From fish to man: understanding endogenous remyelination in CNS demyelinating diseases

    PubMed Central

    Dubois-Dalcq, Monique; Williams, Anna; Stadelmann, Christine; Stankoff, Bruno; Zalc, Bernard; Lubetzki, Catherine

    2008-01-01

    In the central nervous system (CNS) of man, evolutionary pressure has preserved some capability for remyelination while axonal regeneration is very limited. In contrast, two efficient programmes of regeneration exist in the adult fish CNS, neurite regrowth and remyelination. The rapidity of CNS remyelination is critical since it not only restores fast conduction of nerve impulses but also maintains axon integrity. If myelin repair fails, axons degenerate, leading to increased disability. In the human CNS demyelinating disease Multiple Sclerosis (MS), remyelination often takes place in the midst of inflammation. Here, we discuss recent studies that address the innate repair capabilities of the axon-glia unit from fish to man. We propose that expansion of this research field will help find ways to maintain or enhance spontaneous remyelination in man. PMID:18474520

  3. Compartmentalization, Viral Evolution, and Viral Latency of HIV in the CNS.

    PubMed

    Bednar, Maria M; Sturdevant, Christa Buckheit; Tompkins, Lauren A; Arrildt, Kathryn Twigg; Dukhovlinova, Elena; Kincer, Laura P; Swanstrom, Ronald

    2015-06-01

    Human immunodeficiency virus type 1 (HIV-1) infection occurs throughout the body and can have dramatic physical effects, such as neurocognitive impairment in the central nervous system (CNS). Furthermore, examining the virus that resides in the CNS is challenging due to its location and can only be done using samples collected either at autopsy, indirectly form the cerebral spinal fluid (CSF), or through the use of animal models. The unique milieu of the CNS fosters viral compartmentalization as well as evolution of viral sequences, allowing for new cell types, such as macrophages and microglia, to be infected. Treatment must also cross the blood-brain barrier adding additional obstacles in eliminating viral populations in the CNS. These long-lived infected cell types and treatment barriers may affect functional cure strategies in people on highly active antiretroviral therapy (HAART). PMID:25914150

  4. Auto Transplant for High Risk or Relapsed Solid or CNS Tumors

    ClinicalTrials.gov

    2016-08-15

    Ewing's Family Tumors; Renal Tumors; Hepatoblastoma; Rhabdomyosarcoma; Soft Tissue Sarcoma; Primary Malignant Brain Neoplasms; Retinoblastoma; Medulloblastoma; Supra-tentorial Primative Neuro-Ectodermal Tumor (PNET); Atypical Teratoid/Rhabdoid Tumor (AT/RT); CNS Tumors; Germ Cell Tumors

  5. Dealing with Danger in the CNS: The Response of the Immune System to Injury

    PubMed Central

    Gadani, Sachin P.; Walsh, James T.; Lukens, John R.; Kipnis, Jonathan

    2015-01-01

    Fighting pathogens and maintaining tissue homeostasis are prerequisites for survival. Both of these functions are upheld by the immune system, though the latter is often overlooked in the context of the CNS. The mere presence of immune cells in the CNS was long considered a hallmark of pathology, but this view has been recently challenged by studies demonstrating that immunological signaling can confer pivotal neuroprotective effects on the injured CNS. In this review we describe the temporal sequence of immunological events that follow CNS injury. Beginning with immediate changes at the injury site including death of neural cells and release of damage-associated molecular patterns (DAMPs), and progressing through innate and adaptive immune responses, we describe the cascade of inflammatory mediators and the implications of their post-injury effects. We conclude by proposing a revised interpretation of immune privilege in the brain, which takes beneficial neuro-immune communications into account. PMID:26139369

  6. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells.

    PubMed

    Li, Hedong; Chen, Gong

    2016-08-17

    Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair. PMID:27537482

  7. The gateway theory: bridging neural and immune interactions in the CNS

    PubMed Central

    Kamimura, Daisuke; Yamada, Moe; Harada, Masaya; Sabharwal, Lavannya; Meng, Jie; Bando, Hidenori; Ogura, Hideki; Atsumi, Toru; Arima, Yasunobu; Murakami, Masaaki

    2013-01-01

    The central nervous system (CNS) is considered an immune-privileged tissue protected by a specific vessel structure, the blood-brain barrier (BBB). Upon infection or traumatic injury in the CNS, the BBB is breached, and various immune cells are recruited to the affected area. In the case of autoimmune diseases in the CNS like multiple sclerosis (MS), autoreactive T cells against some CNS-specific antigens can theoretically attack neurons throughout the CNS. The affected CNS regions in MS patients can be detected as multiple focal plaques in the cerebrum, thoracic cord, and other regions. Vision problems are often associated with the initial phase of MS, suggesting a disturbance in the optic nerves. These observations raise the possibility that there exist specific signals that direct autoreactive T cells past the BBB and into particular sites of the CNS. Using a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), we recently defined the mechanism of the pathogenesis in which regional neural stimulations modulate the status of the blood vessel endothelium to allow the invasion of autoreactive T cells into specific sites of the CNS via the fifth lumbar cord. This gate for autoreactive T cells can be artificially manipulated by removing gravity forces on the hind legs or by electric pulses to the soleus muscles, quadriceps, and triceps of mice, resulting in an accumulation of autoreactive T cells in the intended regions via the activation of regional neurons. Gating blood vessels by regional neural stimulations, a phenomenon we call the gateway theory, has potential therapeutic value not only in preventing autoimmunity, but also in augmenting the effects of cancer immunotherapies. PMID:24194696

  8. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4

    PubMed Central

    Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-01-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  9. brother of cdo (umleitung) is cell-autonomously required for Hedgehog-mediated ventral CNS patterning in the zebrafish

    PubMed Central

    Bergeron, Sadie A.; Tyurina, Oksana V.; Miller, Emily; Bagas, Andrea; Karlstrom, Rolf O.

    2011-01-01

    The transmembrane protein Brother of Cdo (Boc) has been implicated in Shh-mediated commissural axon guidance, and can both positively and negatively regulate Hedgehog (Hh) target gene transcription, however, little is known about in vivo requirements for Boc during vertebrate embryogenesis. The zebrafish umleitung (umlty54) mutant was identified by defects in retinotectal axon projections. Here, we show that the uml locus encodes Boc and that Boc function is cell-autonomously required for Hh-mediated neural patterning. Our phenotypic analysis suggests that Boc is required as a positive regulator of Hh signaling in the spinal cord, hypothalamus, pituitary, somites and upper jaw, but that Boc might negatively regulate Hh signals in the lower jaw. This study reveals a role for Boc in ventral CNS cells that receive high levels of Hh and uncovers previously unknown roles for Boc in vertebrate embryogenesis. PMID:21115611

  10. CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis.

    PubMed

    Shevtsova, Zinayida; Garrido, Manuel; Weishaupt, Jochen; Saftig, Paul; Bähr, Mathias; Lühder, Fred; Kügler, Sebastian

    2010-07-01

    Deficiency in Cathepsin D (CtsD), the major cellular lysosomal aspartic proteinase, causes the congenital form of neuronal ceroid lipofuscinoses (NCLs). CtsD-deficient mice show severe visceral lesions like lymphopenia in addition to their central nervous system (CNS) phenotype of ceroid accumulation, microglia activation, and seizures. Here we demonstrate that re-expression of CtsD within the CNS but not re-expression of CtsD in visceral organs prevented both central and visceral pathologies of CtsD(-/-) mice. Our results suggest that CtsD was substantially secreted from CNS neurons and drained from CNS to periphery via lymphatic routes. Through this drainage, CNS-expressed CtsD acts as an important modulator of immune system maintenance and peripheral tissue homeostasis. These effects depended on enzymatic activity and not on proposed functions of CtsD as an extracellular ligand. Our results furthermore demonstrate that the prominent accumulation of ceroid/lipofuscin and activation of microglia in brains of CtsD(-/-) are not lethal factors but can be tolerated by the rodent CNS. PMID:20489146

  11. Chondroitin sulfate glycosaminoglycans for CNS homeostasis-implications for material design.

    PubMed

    Karumbaiah, Lohitash; Saxena, Tarun; Betancur, Martha; Bellamkonda, Ravi V

    2014-01-01

    Chondroitin sulfate proteoglycans (CSPGs) are complex biomolecules that are known to facilitate patterning of axonal direction and cell migration during the early growth and development phase of the mammalian central nervous system (CNS). In adults, they continue to control neuronal plasticity as major constituents of the "peri-neuronal nets" (PNNs) that surround adult CNS neurons. CSPGs are also barrier-forming molecules that are selectively upregulated by invading reactive astroglia after injury to the CNS, and are responsible for the active repulsion of regenerating neurons post-injury. Recent evidence however suggests that the diverse sulfated glycosaminoglycan (GAG) side chains attached to CSPGs are key components that play paradoxical roles in influencing nerve regeneration post-injury to the CNS. Sulfated GAG repeats attached to the CSPG core protein help mediate cell migration, neuritogenesis, axonal pathfinding, and axonal repulsion by directly trapping and presenting a whole host of growth factors to cells locally, or by binding to specific membrane bound proteins on the cell surface to influence cellular function. In this review, we will present the current gamut of interventional strategies used to bridge CNS deficits, and discuss the potential advantages of using sulfated GAG based biomaterials to facilitate the repair and regeneration of the injured CNS. PMID:25139544

  12. Detection of enterotoxin genes of Staphylococcus SP isolated from nasal cavities and hands of food handlers

    PubMed Central

    Rall, V.L.M; Sforcin, J.M.; Augustini, V.C.M.; Watanabe, M.T.; Fernandes Jr., A.; Rall, R.; Silva, M.G.; Araújo Jr., J.P.

    2010-01-01

    Food handlers, an important factor in food quality, may contain bacteria that are able to cause foodborne disease. The present study aimed to research coagulase-negative (CNS) and -positive staphylococci (CPS) in 82 food handlers, analyzing nasal and hand swabs, with identification of 62 CNS (75.6%) and 20 CPS strains (24.4%). Staphylococcal enterotoxins genes were investigated by PCR. In 20 CPS strains, 19 were positive for one or more genes. The percentage of CNS presenting genes for enterotoxins was high (46.8%). Despite of the staphylococcal species, the most common gene was sea (35.4%), followed by seh and sej (29.2%). The detection of new staphylococcal enterotoxins (SEs) genes showed a higher pathogenic potential in this genus. The presence of these gene points out the importance of CNS not only as contaminant bacteria but also as a pathogen. PMID:24031464

  13. Clinicopathological associations of acquired erythroblastopenia

    PubMed Central

    Gunes, Gursel; Malkan, Umit Yavuz; Yasar, Hatime Arzu; Eliacik, Eylem; Haznedaroglu, Ibrahim Celalettin; Demiroglu, Haluk; Sayinalp, Nilgun; Aksu, Salih; Etgul, Sezgin; Aslan, Tuncay; Goker, Hakan; Ozcebe, Osman Ilhami; Buyukasik, Yahya

    2015-01-01

    Introduction: Acquired erythroblastopenia (AE) is a rare clinical situation. It is characterized by the reduction of erythroid precursors in the bone marrow together with the low reticulocyte counts in the peripheral blood. Background: Main secondary causes of AE are drugs, Parvovirus B19 and other infectious reasons, lymphoid and myeloid neoplasia, autoimmune diseases, thymoma and pregnancy. The aim of this study is to assess the frequencies and clinical associations of AE via analyzing 12340 bone marrow samples in a retrospective manner. Material and method: Bone marrow aspirations which were obtained from patients who applied to Hacettepe University Hematology Clinic between 2002 and 2013, were analyzed retrospectively. Results: Thirty four erythroblastopenia cases were found. Patients ranged in age from 16 to 80 years with a median of 38 years. Fifteen patients were men (44%) and nineteen were women (56%). In these patients, detected causes of erythroblastopenia were MDS, idiopathic pure red cell aplasia (PRCA), parvovirus infection, post chemotherapy aplasia, plasma proliferative diseases, copper deficiency due to secondary amyloidosis, fever of unknown origin, hemophagocytic syndrome, enteric fever and legionella pneumonia. We found that between those reasons the most common causes of erythroblastopenia are MDS (17.7%) and idiopathic PRCA (17.7%). Discussion: As a result, erythroblastopenia in the bone marrow may be an early sign of MDS. In those AE cases possibility of being MDS must be kept in mind as it can be mistaken for PRCA. Conclusion: To conclude, in adults MDS without excess blast is one of the most common causes of erythroblastopenia in clinical practice and in case of erythroblastopenia the presence of MDS should be investigated. PMID:26885236

  14. CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia.

    PubMed

    Zimmermann, Julian; Krauthausen, Marius; Hofer, Markus J; Heneka, Michael T; Campbell, Iain L; Müller, Marcus

    2013-01-01

    Interleukin-17A (IL-17A) is a key cytokine modulating the course of inflammatory diseases. Whereas effector functions of IL-17A like induction of antimicrobial peptides and leukocyte infiltration could clearly be demonstrated for peripheral organs, CNS specific effects are not well defined and appear controversial. To further clarify the functional significance of IL-17A in the CNS, we generated a transgenic mouse line with astrocyte-restricted expression of the IL-17A gene. GFAP/IL-17A transgenic mice develop normally and do not show any signs of neurological dysfunction. However, histological characterization revealed astrocytosis and activation of microglia. Demyelination, neurodegeneration or prominent tissue damage was not observed but a vascular pathology mimicking microangiopathic features was evident. Histological and flow cytometric analysis demonstrated the absence of parenchymal infiltration of immune cells into the CNS of GFAP/IL-17A transgenic mice. In GFAP/IL-17A mice, LPS-induced endotoxemia led to a more pronounced microglial activation with expansion of a distinct CD45(high)/CD11b(+) population and increased induction of proinflammatory cytokines compared with controls. Our data argues against a direct role of IL-17A in mediating tissue damage during neuroinflammation. More likely IL-17A acts as a modulating factor in the network of induced cytokines. This novel mouse model will be a very useful tool to further characterize the role of IL-17A in neuroinflammatory disease models.

  15. Doxycycline as an inhibitor of p-glycoprotein in the alpaca for the purpose of maintaining avermectins in the CNS during treatment for parelaphostrongylosis.

    PubMed

    Agbedanu, Prince N; Anderson, Kristi L; Brewer, Matthew T; Carlson, Steve A

    2015-09-15

    Meningeal worms (Parelaphostrongylus tenuis) are a common malady of alpacas, often refractory to conventional treatments. Ivermectin is a very effective anthelmintic used against a variety of parasites but this drug is not consistently effective against alpaca meningeal worms once the parasite has gained access to the CNS, even if used in a protracted treatment protocol. Ivermectin is not effective against clinical cases of P. tenuis, raising the possibility that the drug is not sustained at therapeutic concentrations in the central nervous system (CNS). A specific protein (designated as p-glycoprotein (PGP)) effluxes ivermectin from the brain at the blood-brain barrier, thus hampering the maintenance of therapeutic concentrations of the drug in the CNS. Minocycline is a synthetic tetracycline antibiotic with an excellent safety profile in all animals tested to date. Minocycline has three unique characteristics that could be useful for treating meningeal worms in conjunction with ivermectin. First, minocycline is an inhibitor of PGP at the blood-brain barrier and this inhibition could maintain effective concentrations of ivermectin in the brain and meninges. Second, minocycline protects neurons in vivo through a number of different mechanisms and this neuroprotection could alleviate the potential untoward neurologic effects of meningeal worms. Third, minocycline is a highly lipid-soluble drug, thus facilitating efficient brain penetration. We thus hypothesized that minocycline will maintain ivermectin, or a related avermectin approved in ruminants (abamectin, doramectin, or eprinomectin), in the alpaca CNS. To test this hypothesis, we cloned the gene encoding the alpaca PGP, expressed the alpaca PGP in a heterologous expression system involving MDCK cells, and measured the ability of minocycline to inhibit the efflux of avermectins from the MDCK cells; doxycycline was used as a putative negative control (based on studies in other species). Our in vitro studies

  16. Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Complex

    PubMed Central

    Rubio, Marc; March, Francesca; Garrigó, Montserrat; Moreno, Carmen; Español, Montserrat; Coll, Pere

    2015-01-01

    Purpose Clarithromycin was considered the cornerstone for the treatment of Mycobacterium abscessus complex infections. Genetic resistance mechanisms have been described and many experts propose amikacin as an alternative. Nevertheless, clarithromycin has several advantages; therefore, it is necessary to identify the non-functional erm(41) allele to determine the most suitable treatment. The aims of this study were to characterize the molecular mechanisms of clarithromycin resistance in a collection of Mycobacterium abscessus complex isolates and to verify the relationship between these mechanisms and the antibiogram. Materials and Methods Clinical isolates of M. abscessus complex (n = 22) from 16 patients were identified using four housekeeping genes (rpoB, secA1, sodA and hsp65), and their genetic resistance was characterized by studying erm(41) and rrl genes. Nine strains were recovered from the clinical isolates and subjected to E-test and microdilution clarithromycin susceptibility tests, with readings at 3, 7 and 14 days. Results We classified 11/16 (68.8%) M. abscessus subsp. abscessus, 4/16 (25.0%) M. abscessus subsp. bolletii, and 1/16 (6.3%) M. abscessus subsp. massiliense. T28 erm(41) allele was observed in 8 Mycobacterium abscessus subps. abscessus and 3 Mycobacterium abscessus subsp. bolletii. One strain of M. abscessus subsp. bolletii had an erm(41) gene truncated and was susceptible to clarithromycin. No mutations were observed in rrl gene first isolates. In three patients, follow-up of initial rrl wild-type strains showed acquired resistance. Conclusions Most clinical isolates of M. abscessus complex had inducible resistance to clarithromycin and total absence of constitutive resistance. Our findings showed that the acquisition of resistance mutations in rrl gene was associated with functional and non-functional erm(41) gene. Caution is needed when using erm(41) sequencing alone to identify M. abscessus subspecies. This study reports an acquired

  17. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family.

  18. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family. PMID:24259184

  19. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    PubMed

    Kegler, Kristel; Spitzbarth, Ingo; Imbschweiler, Ilka; Wewetzer, Konstantin; Baumgärtner, Wolfgang; Seehusen, Frauke

    2015-01-01

    Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR)-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas with p75NTR/Sox2

  20. Functional development of the CNS in pupils aged 7 to 19 years.

    PubMed

    Schalow, G

    2006-01-01

    In pupils aged 7 to 19 years, the functioning of the central nervous system (CNS) improved by a factor of 3 during their development. The CNS functioning was quantified in the framework of the dynamical system theory of pattern formation by the value of coordination dynamics. A transient increase in the optimal rate of arm and leg movements was observed in the pupils within 8 and 14 years of age. This high-speed moving is interpreted as a mean how the immature CNS tries to improve its functioning with respect to coordination and symmetry. Moreover, in very young pupils a lack of continuous drive of the CNS was observed; in other words, the concentration upon a certain task was not continuous. Some pupils were able to concentrate for only approximately 10 s. It was difficult for young pupils to simultaneously concentrate on two different tasks like moving and speaking or moving and thinking. It is concluded that concentration problems observed in young pupils are due to their immature CNS. PMID:16918200

  1. Multifocal CNS demyelination following peripheral inoculation with herpes simplex virus type 1.

    PubMed

    Kastrukoff, L F; Lau, A S; Kim, S U

    1987-07-01

    The peripheral inoculation of herpes simplex virus type 1 (HSV 1) in experimental animals induces central nervous system (CNS) demyelinating lesions, but the potential relevance of this model to multiple sclerosis is lessened by the unifocal nature of the lesion. In this study, inbred strains of mice were selected on the basis of varying resistance to mortality following lip inoculation with virus. A spectrum of CNS pathology was observed, ranging from focal collections of inflammatory cells at the trigeminal root entry zone in resistant strains (C57BL/6J), to unifocal demyelinating lesions in moderately resistant strains (BALB/cByJ), to multifocal demyelinating lesions throughout the brain in susceptible strains (A/J). Findings from viral titration studies of the CNS support a direct cytolytic effect of virus in the development of demyelinating lesions at the trigeminal root entry zone but cannot exclude an immune-mediated component. Furthermore, 50% tissue-culture-infective doses, immunofluorescence, and electron microscopic studies of primary cultures of oligodendrocytes, derived from the three strains of adult mice, identify differences in resistance to HSV 1 infection in vitro, suggesting that differences at this level may also contribute to the pathological appearance. Multifocal lesions in A/J mice were first observed when the infectious virus could no longer be isolated from the CNS and may be the result of an immune-mediated process "triggered" by the acute CNS infection in susceptible strains of mice.

  2. Immune privilege of the CNS is not the consequence of limited antigen sampling

    NASA Astrophysics Data System (ADS)

    Harris, Melissa G.; Hulseberg, Paul; Ling, Changying; Karman, Jozsef; Clarkson, Benjamin D.; Harding, Jeffrey S.; Zhang, Mengxue; Sandor, Adam; Christensen, Kelsey; Nagy, Andras; Sandor, Matyas; Fabry, Zsuzsanna

    2014-03-01

    Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.

  3. Matrine protects neuro-axon from CNS inflammation-induced injury.

    PubMed

    Kan, Quan-Cheng; Lv, Peng; Zhang, Xiao-Jian; Xu, Yu-Ming; Zhang, Guang-Xian; Zhu, Lin

    2015-02-01

    Neuro-axonal injury in the central nervous system (CNS) is one of the major pathological hallmarks of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has recently been shown to effectively suppress EAE through an anti-inflammatory mechanism. However, whether MAT can also protect myelin/axons from damage is not known. In the present study we show that, while untreated rats developed severe clinical disease, CNS inflammatory demyelination, and axonal damage, these clinical and pathological signs were significantly reduced by MAT treatment. Consistently, MAT treatment reduced the concentration of myelin basic protein in serum and downregulated expression of β-amyloid (Aβ) and B-site APP cleaving enzyme 1 (BACE-1) in the CNS. Further, the CNS of MAT-treated rats exhibited increased expression of brain-derived neurotrophic factor (BDNF), an important factor for neuronal survival and axonal growth. Together, these results demonstrate that MAT effectively prevented neuro-axonal injury, which can likely be attributed to inhibiting risk factors such as BACE-1 and upregulating neuroprotective factors such as BDNF. We conclude that this novel natural reagent, MAT, which effectively protects neuro-axons from CNS inflammation-induced damage, could be a potential candidate for the treatment of neurodegenerative diseases such as MS.

  4. The microglial ATP-gated ion channel P2X7 as a CNS drug target.

    PubMed

    Bhattacharya, Anindya; Biber, Knut

    2016-10-01

    Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787.

  5. The emerging role of in vitro electrophysiological methods in CNS safety pharmacology.

    PubMed

    Accardi, Michael V; Pugsley, Michael K; Forster, Roy; Troncy, Eric; Huang, Hai; Authier, Simon

    2016-01-01

    Adverse CNS effects account for a sizeable proportion of all drug attrition cases. These adverse CNS effects are mediated predominately by off-target drug activity on neuronal ion-channels, receptors, transporters and enzymes - altering neuronal function and network communication. In response to these concerns, there is growing support within the pharmaceutical industry for the requirement to perform more comprehensive CNS safety testing prior to first-in-human trials. Accordingly, CNS safety pharmacology commonly integrates several in vitro assay methods for screening neuronal targets in order to properly assess therapeutic safety. One essential assay method is the in vitro electrophysiological technique - the 'gold standard' ion channel assay. The in vitro electrophysiological method is a useful technique, amenable to a variety of different tissues and cell configurations, capable of assessing minute changes in ion channel activity from the level of a single receptor to a complex neuronal network. Recent advances in automated technology have further expanded the usefulness of in vitro electrophysiological methods into the realm of high-throughput, addressing the bottleneck imposed by the manual conduct of the technique. However, despite a large range of applications, manual and automated in vitro electrophysiological techniques have had a slow penetrance into the field of safety pharmacology. Nevertheless, developments in throughput capabilities and in vivo applicability have led to a renewed interest in in vitro electrophysiological techniques that, when complimented by more traditional safety pharmacology methods, often increase the preclinical predictability of potential CNS liabilities.

  6. Aberrant dendritic excitability: a common pathophysiology in CNS disorders affecting memory?

    PubMed Central

    Nestor, Michael W.; Hoffman, Dax A.

    2012-01-01

    Discovering the etiology of pathophysiologies and aberrant behavior in many central nervous system (CNS) disorders has proven elusive because susceptibility to these diseases can be a product of multiple factors such as genetics, epigenetics, and environment. Advances in molecular biology and wide-scale genomics have shown that a large heterogeneity of genetic mutations are potentially responsible for the neuronal pathologies and dysfunctional behaviors seen in CNS disorders. (Need to distinguish between pure genetic forms which are rare, and what most people get which is probable combination of genetic susceptibility and environmental insults). Despite this seemingly complex array of genetic and physiological factors, many disorders of the CNS converge on common dysfunctions in memory. In this review, we propose that mechanisms underlying the development of many CNS diseases may share an underlying cause involving abnormal dendritic integration of synaptic signals. Through understanding the relationship between molecular genetics and dendritic computation, future research may uncover important links between neuronal physiology at the cellular level and higher-order circuit and network abnormalities observed in CNS diseases, and their subsequent affect on memory. PMID:22528602

  7. Influenza Vaccine-Induced CNS Demyelination in a 50-Year-Old Male

    PubMed Central

    Sacheli, Aaron; Bauer, Raymond

    2014-01-01

    Patient: Male, 50 Final Diagnosis: Acute post-vaccination CNS demyelinating disorder Symptoms: Blurred vision • hemiparesis • hemiplegia • hypertonia • itching • paresthesia Medication: — Clinical Procedure: MRI Specialty: Neurology Objective: Rare disease Background: There are several categories of primary inflammatory demyelinating disorders, which comprise clinically similar neurologic sequelae. Of interest, clinically isolated syndrome (CIS) and acute disseminated encephalomyelitis (ADEM) are 2 demyelinating conditions of the central nervous system (CNS), whose clinical similarity pose a significant challenge to definitive diagnosis. Yet, both remain important clinical considerations in patients with neurologic signs and symptoms in the context of recent vaccination. Case Report: We report a case of a 50-year-old Caucasian male with a course of progressive, focal, neurologic deficits within 24 h after receiving the influenza vaccine. Subsequent work-up revealed the possibility of an acute central nervous system (CNS) demyelinating episode secondary to the influenza vaccine, best described as either CIS or ADEM. Conclusions: Case reports of CNS demyelination following vaccinations have been previously noted, most often occurring in the context of recent influenza vaccination. This report serves to document a case of CNS demyelination occurring 24 h after influenza vaccination in a middle-aged patient, and will describe some salient features regarding the differential diagnosis of CIS and ADEM, as well as their potential management. PMID:25175754

  8. The microglial ATP-gated ion channel P2X7 as a CNS drug target.

    PubMed

    Bhattacharya, Anindya; Biber, Knut

    2016-10-01

    Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787. PMID:27219534

  9. Coagulase-negative staphylococci (CNS) as an aetiological factor of mastitis in cows.

    PubMed

    Bochniarz, M; Wawron, W; Szczubiał, M

    2013-01-01

    The aim of the present study was to determine the proportions of individual coagulase-negative Staphylococcus species in clinical and subclinical mastitis. The material consisted of 100 CNS isolates obtained from 223 milk samples collected from cows with clinical and subclinical mastitis. Coagulase-negative staphylococci constituted 44.8% of all isolated microorganisms. CNS were isolated from the mammary gland secretions of 86 cows from farms in the Lublin region (Poland). Clinical mastitis was found in 20 whereas subclinical mastitis in 66 study cows (23.3% and 76.7%, respectively). The symptoms of clinical mastitis were mild. The clinical forms of mastitis concerned mainly the first or second lactation. Subclinical mastitis was most commonly observed during the second lactation. Four CNS species (S. xylosus, S. chromogenes, S. haemolyticus and S. sciuri) were isolated from clinical and subclinical mastitis. S. xylosus was the commonest CNS species isolated from cows with clinical mastitis whereas S. chromogenes was the most prevalent one in subclinical mastitis cases. The three CNS species (S. warneri, S. hominis and S. saprophyticus) caused only subclinical mastitis. PMID:24195283

  10. Acquired Surface Dyslexia: The Evidence from Hebrew.

    ERIC Educational Resources Information Center

    Birnboim, Smadar

    1995-01-01

    Investigates the symptoms of acquired surface dyslexia in Hebrew. Four acquired surface dyslexic adults were compared with eight normal second graders in terms of reading strategy. Homophones and homographs were a major source of difficulty for native Hebrew surface dyslexic readers; the normal second graders used a non-lexical strategy. (45…

  11. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. PMID:27133743

  12. Preclinical assessment of CNS drug action using eye movements in mice

    PubMed Central

    Cahill, Hugh; Rattner, Amir; Nathans, Jeremy

    2011-01-01

    The drug development process for CNS indications is hampered by a paucity of preclinical tests that accurately predict drug efficacy in humans. Here, we show that a wide variety of CNS-active drugs induce characteristic alterations in visual stimulus–induced and/or spontaneous eye movements in mice. Active compounds included sedatives and antipsychotic, antidepressant, and antiseizure drugs as well as drugs of abuse, such as cocaine, morphine, and phencyclidine. The use of quantitative eye-movement analysis was demonstrated by comparing it with the commonly used rotarod test of motor coordination and by using eye movements to monitor pharmacokinetics, blood-brain barrier penetration, drug-receptor interactions, heavy metal toxicity, pharmacologic treatment in a model of schizophrenia, and degenerative CNS disease. We conclude that eye-movement analysis could complement existing animal tests to improve preclinical drug development. PMID:21821912

  13. IDS crossing of the blood-brain barrier corrects CNS defects in MPSII mice.

    PubMed

    Polito, Vinicia Assunta; Cosma, Maria Pia

    2009-08-01

    Mucopolysaccharidosis type II (MPSII), or Hunter syndrome, arises from a deficiency in iduronate 2-sulfatase (IDS), and it is characterized by progressive somatic and neurological involvement. The MPSII mouse model reproduces the features of MPSII patients. Systemic administration of the AAV2/5CMV-hIDS vector in MPSII mouse pups results in the full correction of glycosaminoglycan (GAG) accumulation in visceral organs and in the rescue of the defects and GAG accumulation in the central nervous system (CNS). Remarkably, in treated MPSII animals, this CNS correction arises from the crossing of the blood-brain barrier by the IDS enzyme itself, not from the brain transduction. Thus, we show here that early treatment of MPSII mice with one systemic injection of AAV2/5CMV-hIDS results in prolonged and high levels of circulating IDS that can efficiently and simultaneously rescue both visceral and CNS defects for up to 18 months after therapy.

  14. Optimizing early Go/No Go decisions in CNS drug development.

    PubMed

    Potter, William Z

    2015-03-01

    Go/No Go decisions concerning development of any single compound determine investment in increasingly costly studies from Phases I-III. Such decisions are problematic for CNS drug development where the variety of molecular targets in the brain have stimulated decades of studies without major therapeutic advances. Many costly studies do not even yield interpretable results as to whether the mechanism being pursued has therapeutic potential. Therefore, both industry and the public sector have implemented a decision making strategy based on whether a compound can test a molecular hypothesis of drug action. One requires, at a minimum, compelling evidence in humans that a compound both interacts with its presumed molecular targets in brain and ideally documents a CNS functional consequence of the interaction prior to efficacy studies. This strategy will much more quickly rule out ineffective mechanisms although it does not address the problem of poorly predictive models of novel CNS drug efficacy.

  15. Awards, lectures, and fellowships sponsored by the AANS/CNS Section on Tumors.

    PubMed

    Lau, Darryl; Barker, Fred G; Aghi, Manish K

    2014-09-01

    A major goal of the Section on Tumors of the American Association of Neurological Surgery (AANS) and Congress of Neurological Surgeons (CNS) since it was founded in 1984 has been to foster both education and research in the field of brain tumor treatment and development. In support of this goal, the Section sponsors a number of awards, named lectures, and fellowships at the annual meetings of the AANS and CNS. In this article, we describe the awards given by the AANS/CNS Section on Tumors since its foundation, the recipients of the awards, and their philanthropic donors. The subsequent history of awardees and their work is briefly examined. Specifically for the Preuss and Mahaley Awards, this article also examines the rates of publication among the award-winning abstracts and achievement of grant funding by awardees.

  16. Neonatal CNS infection and inflammation caused by Ureaplasma species: rare or relevant?

    PubMed

    Glaser, Kirsten; Speer, Christian P

    2015-02-01

    Colonization with Ureaplasma species has been associated with adverse pregnancy outcome, and perinatal transmission has been implicated in the development of bronchopulmonary dysplasia in preterm neonates. Little is known about Ureaplasma-mediated infection and inflammation of the CNS in neonates. Controversy remains concerning its incidence and implication in the pathogenesis of neonatal brain injury. In vivo and in vitro data are limited. Despite improving care options for extremely immature preterm infants, relevant complications remain. Systematic knowledge of ureaplasmal infection may be of great benefit. This review aims to summarize pathogenic mechanisms, clinical data and diagnostic pitfalls. Studies in preterm and term neonates are critically discussed with regard to their limitations. Clinical questions concerning therapy or prophylaxis are posed. We conclude that ureaplasmas may be true pathogens, especially in preterm neonates, and may cause CNS inflammation in a complex interplay of host susceptibility, serovar pathogenicity and gestational age-dependent CNS vulnerability. PMID:25578885

  17. CNS Voltage-gated Calcium Channel Gene Variation And Prolonged Recovery Following Sport-related Concussion

    PubMed Central

    McDevitt, Jane

    2016-01-01

    Objectives: To examine the association between concussion duration and two calcium channel, voltage-dependent, R type, alpha 1E subunit (CACNA1E) single nucleotide polymorphisms (i.e., rs35737760 and rs704326). A secondary purpose was to examine the association between CACNA1E single nucleotide polymorphisms (SNPs) and three acute concussion severity scores (i.e., vestibule-ocular reflex test, balance error scoring scale, and Immediate Post-Concussion Assessment and Cognitive Testing). Methods: Forty athletes with a diagnosed concussion from a hospital concussion program completed a standardized initial evaluation. Concussion injury characteristics, acute signs and symptoms followed by an objective screening (i.e., vestibular ocular assessments, balance error scoring system test, and Immediate Post-Concussion Assessment and Cognitive Testing exam) were assessed. Enrolled participants provided salivary samples for isolation of DNA. Two exon SNPs rs35737760 and rs704326 within CACNA1E were genotyped. Results: There was a significant difference found between acute balance deficits and prolonged recovery group (X2 = 5.66, p = 0.017). There was an association found between the dominant model GG genotype (X2 = 5.41, p = 0.027) within the rs704326 SNP and prolonged recovery group. Significant differences were identified for the rs704326 SNP within the dominant model GG genotype (p = 0.030) for VOR scores by recovery. A significant difference was found between the rs704326 SNP codominant model AA (p = 0.042) and visual memory. There was an association between acute balance deficits and prolonged recovery (X2 = 5.66, p = 0.017) for the rs35737760 SNP. No significant associations between concussion severity and genotype for rs35737760 SNP. Conclusion: Athletes carrying the CACNA1E rs704326 homozygous genotype GG are at a greater risk of a prolonged recovery. Athletes that reported balance deficits at the time of injury were more likely to have prolonged recovery. These polymorphisms within CACNA1E could alter the CACNA1E protein and allow for an increase of calcium leading to deficits to the granule cells within the brain.

  18. Aromatherapy and the central nerve system (CNS): therapeutic mechanism and its associated genes.

    PubMed

    Lv, Xiao Nan; Liu, Zhu Jun; Zhang, Huan Jing; Tzeng, Chi Meng

    2013-07-01

    Molecular medical research on aromatherapy has been steadily increasing for use as an adjuvant therapy in managing psychiatric disorders and to examine its therapeutic mechanisms. Most studies, as well as clinically applied experience, have indicated that various essential oils, such as lavender, lemon and bergamot can help to relieve stress, anxiety, depression and other mood disorders. Most notably, inhalation of essential oils can communicate signals to the olfactory system and stimulate the brain to exert neurotransmitters (e.g. serotonin and dopamine) thereby further regulating mood. However, little research has been done on the molecular mechanisms underlying these effects, thus their mechanism of action remains ambiguous. Several hypotheses have been proposed regarding the therapeutic mechanism of depression. These have mainly centered on possible deficiencies in monoamines, neurotrophins, the neuroendocrine system, c-AMP, cation channels as well as neuroimmune interactions and epigenetics, however the precise mechanism or mechanisms related to depression have yet to be elucidated. In the current study, the effectiveness of aromatherapy for alleviating psychiatric disorders was examined using data collected from previously published studies and our unpublished data. A possible signaling pathway from olfactory system to the central nerve system and the associated key molecular elements of aromatherapy are also proposed.

  19. Targets for Combating the Evolution of Acquired Antibiotic Resistance.

    PubMed

    Culyba, Matthew J; Mo, Charlie Y; Kohli, Rahul M

    2015-06-16

    Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. Here, we review recent advances in our understanding of the processes that contribute to the evolution of antibiotic resistance, with a particular focus on hypermutation mediated by the SOS pathway and horizontal gene transfer. We explore the molecular mechanisms involved in acquired resistance and discuss their viability as potential targets. We propose that additional studies into these adaptive mechanisms not only can provide insights into evolution but also can offer a strategy for potentiating our current antibiotic arsenal.

  20. Targets for Combating the Evolution of Acquired Antibiotic Resistance

    PubMed Central

    2015-01-01

    Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. Here, we review recent advances in our understanding of the processes that contribute to the evolution of antibiotic resistance, with a particular focus on hypermutation mediated by the SOS pathway and horizontal gene transfer. We explore the molecular mechanisms involved in acquired resistance and discuss their viability as potential targets. We propose that additional studies into these adaptive mechanisms not only can provide insights into evolution but also can offer a strategy for potentiating our current antibiotic arsenal. PMID:26016604

  1. Adeno-associated virus vectors and neurological gene therapy.

    PubMed

    Ojala, David S; Amara, Dominic P; Schaffer, David V

    2015-02-01

    Gene therapy has strong potential for treating a variety of genetic disorders, as demonstrated in recent clinical trials. There is unfortunately no scarcity of disease targets, and the grand challenge in this field has instead been the development of safe and efficient gene delivery platforms. To date, approximately two thirds of the 1800 gene therapy clinical trials completed worldwide have used viral vectors. Among these, adeno-associated virus (AAV) has emerged as particularly promising because of its impressive safety profile and efficiency in transducing a wide range of cell types. Gene delivery to the CNS involves both considerable promise and unique challenges, and better AAV vectors are thus needed to translate CNS gene therapy approaches to the clinic. This review discusses strategies for vector design, potential routes of administration, immune responses, and clinical applications of AAV in the CNS.

  2. Can Functional Magnetic Resonance Imaging Improve Success Rates in CNS Drug Discovery?

    PubMed Central

    Borsook, David; Hargreaves, Richard; Becerra, Lino

    2011-01-01

    Introduction The bar for developing new treatments for CNS disease is getting progressively higher and fewer novel mechanisms are being discovered, validated and developed. The high costs of drug discovery necessitate early decisions to ensure the best molecules and hypotheses are tested in expensive late stage clinical trials. The discovery of brain imaging biomarkers that can bridge preclinical to clinical CNS drug discovery and provide a ‘language of translation’ affords the opportunity to improve the objectivity of decision-making. Areas Covered This review discusses the benefits, challenges and potential issues of using a science based biomarker strategy to change the paradigm of CNS drug development and increase success rates in the discovery of new medicines. The authors have summarized PubMed and Google Scholar based publication searches to identify recent advances in functional, structural and chemical brain imaging and have discussed how these techniques may be useful in defining CNS disease state and drug effects during drug development. Expert opinion The use of novel brain imaging biomarkers holds the bold promise of making neuroscience drug discovery smarter by increasing the objectivity of decision making thereby improving the probability of success of identifying useful drugs to treat CNS diseases. Functional imaging holds the promise to: (1) define pharmacodynamic markers as an index of target engagement (2) improve translational medicine paradigms to predict efficacy; (3) evaluate CNS efficacy and safety based on brain activation; (4) determine brain activity drug dose-response relationships and (5) provide an objective evaluation of symptom response and disease modification. PMID:21765857

  3. Development of Novel In Vivo Chemical Probes to Address CNS Protein Kinase Involvement in Synaptic Dysfunction

    PubMed Central

    Watterson, D. Martin; Grum-Tokars, Valerie L.; Roy, Saktimayee M.; Schavocky, James P.; Bradaric, Brinda Desai; Bachstetter, Adam D.; Xing, Bin; Dimayuga, Edgardo; Saeed, Faisal; Zhang, Hong; Staniszewski, Agnieszka; Pelletier, Jeffrey C.; Minasov, George; Anderson, Wayne F.; Arancio, Ottavio; Van Eldik, Linda J.

    2013-01-01

    Serine-threonine protein kinases are critical to CNS function, yet there is a dearth of highly selective, CNS-active kinase inhibitors for in vivo investigations. Further, prevailing assumptions raise concerns about whether single kinase inhibitors can show in vivo efficacy for CNS pathologies, and debates over viable approaches to the development of safe and efficacious kinase inhibitors are unsettled. It is critical, therefore, that these scientific challenges be addressed in order to test hypotheses about protein kinases in neuropathology progression and the potential for in vivo modulation of their catalytic activity. Identification of molecular targets whose in vivo modulation can attenuate synaptic dysfunction would provide a foundation for future disease-modifying therapeutic development as well as insight into cellular mechanisms. Clinical and preclinical studies suggest a critical link between synaptic dysfunction in neurodegenerative disorders and the activation of p38αMAPK mediated signaling cascades. Activation in both neurons and glia also offers the unusual potential to generate enhanced responses through targeting a single kinase in two distinct cell types involved in pathology progression. However, target validation has been limited by lack of highly selective inhibitors amenable to in vivo use in the CNS. Therefore, we employed high-resolution co-crystallography and pharmacoinformatics to design and develop a novel synthetic, active site targeted, CNS-active, p38αMAPK inhibitor (MW108). Selectivity was demonstrated by large-scale kinome screens, functional GPCR agonist and antagonist analyses of off-target potential, and evaluation of cellular target engagement. In vitro and in vivo assays demonstrated that MW108 ameliorates beta-amyloid induced synaptic and cognitive dysfunction. A serendipitous discovery during co-crystallographic analyses revised prevailing models about active site targeting of inhibitors, providing insights that will

  4. Biocompatability of carbon nanotubes with stem cells to treat CNS injuries

    PubMed Central

    Bokara, Kiran Kumar; Kim, Jong Youl; Lee, Young Il; Yun, Kyungeun; Webster, Tom J

    2013-01-01

    Cases reporting traumatic injuries to the brain and spinal cord are extended range of disorders that affect a large percentage of the world's population. But, there are only few effective treatments available for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. The use of stem cell therapy in regenerative medicine has been extensively examined to replace lost cells during CNS injuries. But, given the complexity of CNS injuries oxidative stress, toxic byproducts, which prevails in the microenvironment during the diseased condition, may limit the survival of the transplanted stem cells affecting tissue regeneration and even longevity. Carbon nanotubes (CNT) are a new class of nanomaterials, which have been shown to be promising in different areas of nanomedicine for the prevention, diagnosis and therapy of certain diseases, including CNS diseases. In particular, the use of CNTs as substrates/scaffolds for supporting the stem cell differentiation has been an area of active research. Single-walled and multi-walled CNT's have been increasingly used as scaffolds for neuronal growth and more recently for neural stem cell growth and differentiation. This review summarizes recent research on the application of CNT-based materials to direct the differentiation of progenitor and stem cells toward specific neurons and to enhance axon regeneration and synaptogenesis for the effective treatment of CNS injuries. Nonetheless, accumulating data support the use of CNTs as a biocompatible and permissive substrate/scaffold for neural cells and such application holds great potential in neurological research. PMID:23869255

  5. Age–incidence patterns of primary CNS tumors in children, adolescents, and adults in England

    PubMed Central

    Arora, Ramandeep S.; Alston, Robert D.; Eden, Tim O.B.; Estlin, Edward J.; Moran, Anthony; Birch, Jillian M.

    2009-01-01

    Around 25% of all tumors in those 0–14 years of age and 9% in those 15–24 years of age involve the CNS. They are the most common cause of cancer-related deaths in both age groups. In adults 25–84 years of age, the proportion of CNS tumors is 2%; 5-year overall survival is 10%–15%; and survivors have considerable morbidity. Comprehensive up-to-date population-based incidence data on these tumors are lacking. We present incidence rates for primary CNS tumors based on data derived from the high-quality national cancer registration system in England. A total of 54,336 CNS tumors of malignant, benign, and uncertain behavior were registered across the whole of England from 1995 through 2003. The age-standardized rates for all ages (0–84 years) was 9.21 per 100,000 person-years. This is higher than previously reported for England because it includes nonmalignant CNS tumors and hence gives a more accurate picture of burden of disease. The age-standardized rates for those 0–14 years of age, 15–24 years of age, and 25–84 years of age were 3.56, 3.26, and 14.57 per 100,000 person-years, respectively. In this article, we describe the changing patterns in the epidemiology of primary CNS tumors in these three age groups with respect to sex, tumor behavior, and histology using the current WHO classification. This information will provide a reference for future studies nationally and internationally and make comparisons relevant and meaningful. PMID:19033157

  6. Expression and function of organic cation and anion transporters (SLC22 family) in the CNS.

    PubMed

    Farthing, Christine A; Sweet, Douglas H

    2014-01-01

    A major function of the blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCSFB) is to exert selective control over the flux of organic cations and anions into and out of the CNS compartment. These barriers are dynamic tissues that accomplish this task by expressing dozens of transporter proteins representing numerous transporter families. One such family, belonging to the Solute Carrier (SLC) superfamily, is the organic cation/anion/zwitterion (SLC22) family of transporters, which includes the organic cation transporters (OCTs/OCTNs) and organic anion transporters (OATs). SLC22 transporters interact with a broad range of compounds that include drugs of abuse, environmental toxins/toxicants, opioid analgesics, antidepressant and anxiolytic agents and neurotransmitters and their metabolites. Defining the transport mechanisms controlling the CNS penetration, disposition and clearance of such compounds is fundamental to advancing our understanding of the underlying mechanisms that regulate CNS homeostasis and impact neuronal health. Such information might help direct efforts to improve the efficacy and clinical outcomes of current and future therapeutic agents used in the treatment of CNS disorders. This review focuses on highlighting the identification of the SLC22 transporter family, current knowledge of OCT and OAT expression within the CNS (including brain capillaries, choroid plexus and brain regions relevant to monoaminergic neuronal signaling), and recent data regarding behavioral changes related to mood and anxiety disorders and altered responses to stimulants and antidepressants in SLC22 loss of functions models (knockout/knockdown). In vitro and in vivo evidence of SLC22 localization and transport characteristics within the CNS compartment are summarized.

  7. Potential disadvantages of using socially acquired information.

    PubMed Central

    Giraldeau, Luc-Alain; Valone, Thomas J; Templeton, Jennifer J

    2002-01-01

    The acquisition and use of socially acquired information is commonly assumed to be profitable. We challenge this assumption by exploring hypothetical scenarios where the use of such information either provides no benefit or can actually be costly. First, we show that the level of incompatibility between the acquisition of personal and socially acquired information will directly affect the extent to which the use of socially acquired information can be profitable. When these two sources of information cannot be acquired simultaneously, there may be no benefit to socially acquired information. Second, we assume that a solitary individual's behavioural decisions will be based on cues revealed by its own interactions with the environment. However, in many cases, for social animals the only socially acquired information available to individuals is the behavioural actions of others that expose their decisions, rather than the cues on which these decisions were based. We argue that in such a situation the use of socially acquired information can lead to informational cascades that sometimes result in sub-optimal behaviour. From this theory of informational cascades, we predict that when erroneous cascades are costly, individuals should pay attention only to socially generated cues and not behavioural decisions. We suggest three scenarios that might be examples of informational cascades in nature. PMID:12495513

  8. Orientia, rickettsia, and leptospira pathogens as causes of CNS infections in Laos: a prospective study

    PubMed Central

    Dittrich, Sabine; Rattanavong, Sayaphet; Lee, Sue J; Panyanivong, Phonepasith; Craig, Scott B; Tulsiani, Suhella M; Blacksell, Stuart D; Dance, David A B; Dubot-Pérès, Audrey; Sengduangphachanh, Amphone; Phoumin, Phonelavanh; Paris, Daniel H; Newton, Paul N

    2015-01-01

    Summary Background Scrub typhus (caused by Orientia tsutsugamushi), murine typhus (caused by Rickettsia typhi), and leptospirosis are common causes of febrile illness in Asia; meningitis and meningoencephalitis are severe complications. However, scarce data exist for the burden of these pathogens in patients with CNS disease in endemic countries. Laos is representative of vast economically poor rural areas in Asia with little medical information to guide public health policy. We assessed whether these pathogens are important causes of CNS infections in Laos. Methods Between Jan 10, 2003, and Nov 25, 2011, we enrolled 1112 consecutive patients of all ages admitted with CNS symptoms or signs requiring a lumbar puncture at Mahosot Hospital, Vientiane, Laos. Microbiological examinations (culture, PCR, and serology) targeted so-called conventional bacterial infections (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, S suis) and O tsutsugamushi, Rickettsia typhi/Rickettsia spp, and Leptospira spp infections in blood or cerebrospinal fluid (CSF). We analysed and compared causes and clinical and CSF characteristics between patient groups. Findings 1051 (95%) of 1112 patients who presented had CSF available for analysis, of whom 254 (24%) had a CNS infection attributable to a bacterial or fungal pathogen. 90 (35%) of these 254 infections were caused by O tsutsugamushi, R typhi/Rickettsia spp, or Leptospira spp. These pathogens were significantly more frequent than conventional bacterial infections (90/1051 [9%] vs 42/1051 [4%]; p<0·0001) by use of conservative diagnostic definitions. CNS infections had a high mortality (236/876 [27%]), with 18% (13/71) for R typhi/Rickettsia spp, O tsutsugamushi, and Leptospira spp combined, and 33% (13/39) for conventional bacterial infections (p=0·076). Interpretation Our data suggest that R typhi/Rickettsia spp, O tsutsugamushi, and Leptospira spp infections are important causes of CNS infections in Laos

  9. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery

    PubMed Central

    Stewart, Adam Michael; Gerlai, Robert; Kalueff, Allan V.

    2015-01-01

    The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery. PMID:25729356

  10. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery.

    PubMed

    Stewart, Adam Michael; Gerlai, Robert; Kalueff, Allan V

    2015-01-01

    The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery. PMID:25729356

  11. A coupled cluster study of the structures, spectroscopic properties, and isomerization path of NCS - and CNS -

    NASA Astrophysics Data System (ADS)

    Pak, Youngshang; Woods, R. Claude; Peterson, Kirk A.

    1995-12-01

    Three-dimensional near-equilibrium potential energy surfaces and dipole moment functions have been calculated for the X 1Σ+ ground states of NCS- and CNS-, using the coupled cluster method with single and double substitutions augmented by a perturbative estimate of triple excitations [CCSD(T)] with a set of 154 contracted Gaussian-type orbitals. The corresponding equilibrium bond lengths at their linear geometries are re(NC)=1.1788 Å and re(CS)=1.6737 Å for NCS-, and re(CN)=1.1805 Å and re(NS)=1.6874 Å for CNS-. The predicted equilibrium rotational constants Be of NCS- and CNS- are 5918.2 and 6282.7 MHz, respectively. The former agrees very well with the known experimental value (5919.0 MHz). Full three-dimensional variational calculations have also been carried out using the CCSD(T) potential energy and dipole moment functions to determine the rovibrational energy levels and dipole moment matrix elements for both NCS- and CNS-. The corresponding fundamental band origins (cm-1) ν1, ν2, and ν3 and their absolute intensities (km/mol) at the CCSD(T) level are 2060.9/306.1, 451.5/2.2, and 707.5/12.8, respectively, for NCS- and 2011.4/6.6, 343.7/2.3, and 624.9/0.2 for CNS-. The calculated ν1 (CN stretching) value for NCS- is in very good agreement with the experimental result, 2065.9 cm-1. The calculated dipole moments of NCS- and CNS- in their ground vibrational states are 1.427 and 1.347 D, respectively. The transition state geometry (saddle point) for the isomerization of NCS-→CNS- is predicted at the CCSD(T) level to be r(NC)=1.2044 Å, R(CS)=1.9411 Å and θ(∠NCS)=86.8°. Its calculated energy is 62.6 and 26.5 kcal/mol above the minima of NCS- and CNS-, respectively, including zero-point energy corrections. The structure of the NCS radical was also optimized at the same level of theory, yielding ion to neutral bond length shifts in excellent agreement with those derived from recent photoelectron spectroscopy experiments.

  12. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery.

    PubMed

    Stewart, Adam Michael; Gerlai, Robert; Kalueff, Allan V

    2015-01-01

    The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery.

  13. A history of the AANS/CNS Section on Tumors Biennial Satellite Symposium.

    PubMed

    Lang, Frederick F; Barker, Fred G

    2014-09-01

    The Biennial Satellite Tumor Symposium is the flagship meeting of the AANS/CNS Section on Tumors. The year 2013 marked the 10th Tumor Section Biennial Satellite Tumor Symposium, a significant milestone warranting retrospection on the origin and development of the Satellite Tumor Symposium. This article provides a brief history of the Section on Tumors Biennial Satellite Tumor Symposium, including insights into the structure and evolution of the meeting, and recognizes some of the members of the AANS/CNS Section on Tumors who have contributed to Satellite meetings over the years.

  14. Verruculogen: a new substance for decreasing of GABA levels in CNS.

    PubMed

    Hotujac, L; Muftić, R H; Filipović, N

    1976-01-01

    In our previous work we examined the mechanism of action of the new tremorogenic substance verruculogen isolated by Cole and coworkers. Examining the effect of various substances with known mechanisms of action on verruculogen-induced tremor, we concluded that this tremor was probably related to decrease of GABA levels in CNS. In order to further define the mechanisms of action of verruculogen, we determined brain GABA levels in animals in which tremor was produced by verruculogen administration. Verruculogen administration produced a decrease in GABA levels in mouse CNS. This finding substantiates our earlier suggestion that verruculogen-induced tremor is mediated by a loss of inhibitory GABA function. PMID:935244

  15. Assessment of cognitive performance using CNS vital signs after electroconvulsive treatment of schizophrenia.

    PubMed

    Wysokiński, Adam; Dzienniak, Małgorzata; Kłoszewska, Iwona

    2014-03-01

    Little is known how electroconvulsive therapy (ECT) affects cognitive functions in subjects with schizophrenia. Assessment of cognitive functions in subjects with schizophrenia treated with ECT was performed using CNS Vital Signs computerized battery of tests. Thirteen patients treated with ECT plus antipsychotics were assessed before and after 12 to 15 bilateral ECT sessions. We did not find any important changes between pre-ECT and post-ECT cognitive performance. We also found that CNS Vital Signs is a useful computerized battery test for assessing cognitive functions of subjects treated with ECT.

  16. Acquired Brown's syndrome: an unusual cause.

    PubMed

    Booth-Mason, S; Kyle, G M; Rossor, M; Bradbury, P

    1985-10-01

    A 62-year-old man with acquired Brown's syndrome is presented. This was due to an orbital metastatic deposit, a cause not previously reported. Other causes of this disorder and its treatment are discussed.

  17. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS.

    PubMed

    Fancy, Stephen P J; Zhao, Chao; Franklin, Robin J M

    2004-11-01

    Within the adult CNS, a quiescent population of oligodendrocyte progenitor cells (OPCs) become activated in response to demyelination and give rise to remyelinating oligodendrocytes. During development, OPC differentiation is controlled by several transcription factors including Olig1 and Olig2, and Nkx2.2. We hypothesized that these genes may serve similar functions in activated adult OPCs allowing them to become remyelinating oligodendrocytes and tested this hypothesis by examining their expression during the remyelination of a toxin-induced rodent model of demyelination. During the acute phase of demyelination, OPCs within the lesion increased their expression of Nkx2.2 and Olig2, two transcription factors that in combination are critical for oligodendrocyte differentiation during developmental myelination. This activation was not associated with increases in Sonic hedgehog (Shh) expression, which does not appear essential for CNS remyelination. Consistent with a role in the activation and differentiation of OPCs, these increases were delayed in old adult animals where the rate of remyelination is slowed. Our data suggest the hypothesis that increased expression of Nkx2.2 and Olig2 plays a critically important role in the differentiation of adult OPCs into remyelinating oligodendrocytes and that these genes may present novel targets for therapeutic manipulation in cases where remyelination is impaired.

  18. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    SciTech Connect

    Colleoni, Silvia; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  19. Cav1.3 (CACNA1D) L‐type Ca2+ channel dysfunction in CNS disorders

    PubMed Central

    Striessnig, Jörg

    2016-01-01

    Abstract Cav1.3 belongs to the family of voltage‐gated L‐type Ca2+ channels and is encoded by the CACNA1D gene. Cav1.3 channels are not only essential for cardiac pacemaking, hearing and hormone secretion but are also expressed postsynaptically in neurons, where they shape neuronal firing and plasticity. Recent findings provide evidence that human mutations in the CACNA1D gene can confer risk for the development of neuropsychiatric disease and perhaps also epilepsy. Loss of Cav1.3 function, as shown in knock‐out mouse models and by human mutations, does not result in neuropsychiatric or neurological disease symptoms, whereas their acute selective pharmacological activation results in a depressive‐like behaviour in mice. Therefore it is likely that CACNA1D mutations enhancing activity may be disease relevant also in humans. Indeed, whole exome sequencing studies, originally prompted to identify mutations in primary aldosteronism, revealed de novo CACNA1D missense mutations permitting enhanced Ca2+ signalling through Cav1.3. Remarkably, apart from primary aldosteronism, heterozygous carriers of these mutations also showed seizures and neurological abnormalities. Different missense mutations with very similar gain‐of‐function properties were recently reported in patients with autism spectrum disorders (ASD). These data strongly suggest that CACNA1D mutations enhancing Cav1.3 activity confer a strong risk for – or even cause – CNS disorders, such as ASD. PMID:26842699

  20. Enhancing Psychosocial Outcomes for Young Adult Childhood CNS Cancer Survivors: Importance of Addressing Vocational Identity and Community Integration

    ERIC Educational Resources Information Center

    Strauser, David R.; Wagner, Stacia; Wong, Alex W. K.

    2012-01-01

    The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years…

  1. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work aims to extract and characterize fibrous, rod-like and spherical cellulose nanoparticles (CNs) from cottonseed hull and to investigate the structure-morphology-rheology relationships. The rheological behavior of poly(vinyl alcohol) (PVA)/CNs suspensions was also examined to guide the solve...

  2. Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS.

    PubMed

    Coleman, Elaine; Judd, Robert; Hoe, Lori; Dennis, John; Posner, Philip

    2004-11-01

    Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. The cellular mechanisms responsible for the increased risk of these disorders are incompletely understood. Astrocytes are proving critical for normal CNS function, and alterations in their activity could contribute to diabetes-related disturbances in the brain. We examined the effects of streptozotocin (STZ)-induced diabetes in rats on the level of the astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP), number of astrocytes, and levels of the astrocyte glutamate transporters, glutamate transporter-1 (GLT-1) and glutamate/aspartate transporter (GLAST), in the cerebral cortex, hippocampus, and cerebellum by Western blotting (WB) and immunohistochemistry (IH). Studies were carried out at 4 and 8 weeks of diabetes duration. Diabetes resulted in a significant decrease in GFAP protein levels (WB) in the hippocampus and cerebellum at 4 weeks and in the cerebral cortex, hippocampus and cerebellum by 8 weeks. Attenuated GFAP immunoreactivity (IH) was evident in the hippocampus, cerebellum and white matter regions such as the corpus callosum and external capsule at both 4 and 8 weeks of diabetes. Astrocyte cell counts of adjacent sections immunoreactive for S-100B were not different between control and diabetic animals. No significant differences were noted in astrocyte glutamate transporter levels in the cerebral cortex, hippocampus, or cerebellum at either time period (WB, IH). With the expanding list of astrocyte functions in the CNS, the role of astrocytes in diabetes-induced CNS disorders clearly warrants further investigation.

  3. Solitary Fibrous Tumor/Hemangiopericytoma Dichotomy Revisited: A Restless Family of Neoplasms in the CNS.

    PubMed

    Yalcin, Can Ege; Tihan, Tarik

    2016-03-01

    Solitary fibrous tumor (SFT) and hemangiopericytoma (HPC) both entered the literature as separate entities in the early to mid 1900s. In contrast to their central nervous system (CNS) counterparts, there has been a tendency to consider these 2 entities as 1 since the early 1990s, as soft tissue SFT gradually included the tumors previously diagnosed as HPC. The most recent World Health Organization (WHO) classification of the tumors of soft tissue considered the term HPC obsolete, and places all such tumors within the extrapleural SFT category. In contrast, CNS SFT and HPC continue to be regarded as different entities in the latest version of the WHO CNS tumor classification. A change in this approach is currently being considered for the upcoming revision of the WHO scheme, but it is not quite clear whether such a change will be as drastic as the one adopted by the soft tissue and bone tumor working group. This article focuses on the historical evolution of these 2 labels as primary CNS neoplasms, and reviews their differences and similarities in terms of clinical, pathologic, and molecular features. PMID:26849816

  4. Solitary Fibrous Tumor/Hemangiopericytoma Dichotomy Revisited: A Restless Family of Neoplasms in the CNS.

    PubMed

    Yalcin, Can Ege; Tihan, Tarik

    2016-03-01

    Solitary fibrous tumor (SFT) and hemangiopericytoma (HPC) both entered the literature as separate entities in the early to mid 1900s. In contrast to their central nervous system (CNS) counterparts, there has been a tendency to consider these 2 entities as 1 since the early 1990s, as soft tissue SFT gradually included the tumors previously diagnosed as HPC. The most recent World Health Organization (WHO) classification of the tumors of soft tissue considered the term HPC obsolete, and places all such tumors within the extrapleural SFT category. In contrast, CNS SFT and HPC continue to be regarded as different entities in the latest version of the WHO CNS tumor classification. A change in this approach is currently being considered for the upcoming revision of the WHO scheme, but it is not quite clear whether such a change will be as drastic as the one adopted by the soft tissue and bone tumor working group. This article focuses on the historical evolution of these 2 labels as primary CNS neoplasms, and reviews their differences and similarities in terms of clinical, pathologic, and molecular features.

  5. Mapping the prion protein distribution in marsupials: insights from comparing opossum with mouse CNS.

    PubMed

    Poggiolini, Ilaria; Legname, Giuseppe

    2012-01-01

    The cellular form of the prion protein (PrP(C)) is a sialoglycoprotein widely expressed in the central nervous system (CNS) of mammalian species during neurodevelopment and in adulthood. The location of the protein in the CNS may play a role in the susceptibility of a species to fatal prion diseases, which are also known as the transmissible spongiform encephalopathies (TSEs). To date, little is known about PrP(C) distribution in marsupial mammals, for which no naturally occurring prion diseases have been reported. To extend our understanding of varying PrP(C) expression profiles in different mammals we carried out a detailed expression analysis of PrP(C) distribution along the neurodevelopment of the metatherian South American short-tailed opossum (Monodelphis domestica). We detected lower levels of PrP(C) in white matter fiber bundles of opossum CNS compared to mouse CNS. This result is consistent with a possible role for PrP(C) in the distinct neurodevelopment and neurocircuitry found in marsupials compared to other mammalian species.

  6. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy.

    PubMed

    Tanga, Flobert Y; Nutile-McMenemy, Nancy; DeLeo, Joyce A

    2005-04-19

    Neuropathic pain remains a prevalent and persistent clinical problem because of our incomplete understanding of its pathogenesis. This study demonstrates for the first time, to our knowledge, a critical role for CNS innate immunity by means of microglial Toll-like receptor 4 (TLR4) in the induction phase of behavioral hypersensitivity in a mouse and rat model of neuropathy. We hypothesized that after L5 nerve transection, CNS neuroimmune activation and subsequent cytokine expression are triggered by the stimulation of microglial membrane-bound TLR4. To test this hypothesis, experiments were undertaken to assess tactile and thermal hypersensitivity in genetically altered (i.e., TLR4 knockout and point-mutant) mice after L5 nerve transection. In a complementary study, TLR4 antisense oligodeoxynucleotide (ODN) was administered intrathecally to L5 spinal nerve injured rats to reduce the expression of spinal TLR4. Both the genetically altered mice and the rats treated with TLR4 antisense ODN displayed significantly attenuated behavioral hypersensitivity and decreased expression of spinal microglial markers and proinflammatory cytokines as compared with their respective control groups. This finding shows that TLR4 contributes to the initiation of CNS neuroimmune activation after L5 nerve transection. Further understanding of this early, specific, innate CNS/microglial response and how it leads to sustained glial/neuronal hypersensitivity may point to new therapies for the prevention and treatment of neuropathic pain syndromes. PMID:15809417

  7. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy

    PubMed Central

    Tanga, Flobert Y.; Nutile-McMenemy, Nancy; DeLeo, Joyce A.

    2005-01-01

    Neuropathic pain remains a prevalent and persistent clinical problem because of our incomplete understanding of its pathogenesis. This study demonstrates for the first time, to our knowledge, a critical role for CNS innate immunity by means of microglial Toll-like receptor 4 (TLR4) in the induction phase of behavioral hypersensitivity in a mouse and rat model of neuropathy. We hypothesized that after L5 nerve transection, CNS neuroimmune activation and subsequent cytokine expression are triggered by the stimulation of microglial membrane-bound TLR4. To test this hypothesis, experiments were undertaken to assess tactile and thermal hypersensitivity in genetically altered (i.e., TLR4 knockout and point-mutant) mice after L5 nerve transection. In a complementary study, TLR4 antisense oligodeoxynucleotide (ODN) was administered intrathecally to L5 spinal nerve injured rats to reduce the expression of spinal TLR4. Both the genetically altered mice and the rats treated with TLR4 antisense ODN displayed significantly attenuated behavioral hypersensitivity and decreased expression of spinal microglial markers and proinflammatory cytokines as compared with their respective control groups. This finding shows that TLR4 contributes to the initiation of CNS neuroimmune activation after L5 nerve transection. Further understanding of this early, specific, innate CNS/microglial response and how it leads to sustained glial/neuronal hypersensitivity may point to new therapies for the prevention and treatment of neuropathic pain syndromes. PMID:15809417

  8. H+ transport from CNS in hypercapnia and regulation of CSF [HCO3-].

    PubMed

    Kazemi, H; Choma, L

    1977-05-01

    CSF HCO3- increases more than plasma HCO3- in hypercapnia, and there are at least two sources for the CSF HCO3- increase--one derived from the simultaneous increase in plasma HCO3-, and the other, HCO3-formed from hydration of CO2 in the choroid plexus and glia and susceptible to inhibition by acetazolamide (J. Appl. Physiol. 38: 504-512, 1975). It was proposed that the H+ formed in the CNS in CO2 hydration is actively exchanged for plasma Na+ utilizing the Na-K ATPase pump. H+ transport from the CNS was therefore studied in four groups of dogs breathing 5% CO2 at constant VA for 4 h with repeated injections of saline, acetazolamide 5 mg/ml, ouabain 0.1 mg/ml, and acetazolamide and ouabain together into lateral cerebral ventricles. Arterial HCO3-increased 2.5 meq/l at 4 h of hypercapnia in all groups. CSF HCO3-increased 5.8 meq/l in the saline-injected animals, but it increased only about 2 meq/l and equaled plasma HCO3- rise in the other three groups. Therefore CNS HCO3- formation in hypercapnia can be blocked by inhibiting the CO2 hydration reaction with acetazolamide or by blocking H+ removal by inhibiting Na-K ATPase with ouabain. The data support the thesis of active H+ removal from the CNS in exchange for plasma Na+ in hypercapnia.

  9. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers

    PubMed Central

    Williams, Jessica L.; Holman, David W.; Klein, Robyn S.

    2014-01-01

    In the adult central nervous system (CNS), chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier (BBB) including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease. PMID:24920943

  10. Immunohistological localization of 5-HT in the CNS and feeding system of the Stable Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    5-HT immunoreactive neurons were detected in the CNS of the stable fly. The finding of strong innervations of the cibarial pump muscles and the foregut by 5-HT IR neurons in the feeding-related systems suggests that 5-HT may play a crucial role in the control of the feeding behavior in both the larv...

  11. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS.

    PubMed

    Peluffo, Hugo; Unzueta, Ugutz; Negro-Demontel, María Luciana; Xu, Zhikun; Váquez, Esther; Ferrer-Miralles, Neus; Villaverde, Antonio

    2015-01-01

    The increasing incidence of diseases affecting the central nervous system (CNS) demands the urgent development of efficient drugs. While many of these medicines are already available, the Blood Brain Barrier and to a lesser extent, the Blood Spinal Cord Barrier pose physical and biological limitations to their diffusion to reach target tissues. Therefore, efforts are needed not only to address drug development but specially to design suitable vehicles for delivery into the CNS through systemic administration. In the context of the functional and structural versatility of proteins, recent advances in their biological fabrication and a better comprehension of the physiology of the CNS offer a plethora of opportunities for the construction and tailoring of plain nanoconjugates and of more complex nanosized vehicles able to cross these barriers. We revise here how the engineering of functional proteins offers drug delivery tools for specific CNS diseases and more transversally, how proteins can be engineered into smart nanoparticles or 'artificial viruses' to afford therapeutic requirements through alternative administration routes.

  12. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery?

    PubMed

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M; Thompson, Brandon J; Davis, Thomas P; Ronaldson, Patrick T

    2014-01-01

    The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters. PMID:23789948

  13. The choroid plexus—a multi-role player during infectious diseases of the CNS

    PubMed Central

    Schwerk, Christian; Tenenbaum, Tobias; Kim, Kwang Sik; Schroten, Horst

    2015-01-01

    The choroid plexus (CP) is the source of cerebrospinal fluid (CSF) production and location of the blood-CSF barrier (BCSFB), which is constituted by the epithelial cells of the CP. Several infectious pathogens including viruses, bacteria, fungi and parasites cross the BCSFB to enter the central nervous system (CNS), ultimately leading to inflammatory infectious diseases like meningitis and meningoencephalitis. The CP responds to this challenge by the production of chemokines and cytokines as well as alterations of the barrier function of the BCSFB. During the course of CNS infectious disease host immune cells enter the CNS, eventually contributing to the cellular damage caused by the disease. Additional complications, which are in certain cases caused by choroid plexitis, can arise due to the response of the CP to the pathogens. In this review we will give an overview on the multiple functions of the CP during brain infections highlighting the CP as a multi-role player during infectious diseases of the CNS. In this context the importance of tools for investigation of these CP functions and a possible suitability of the CP as therapeutic target will be discussed. PMID:25814932

  14. Brief Report: Autistic Symptoms, Developmental Regression, Mental Retardation, Epilepsy, and Dyskinesias in CNS Folate Deficiency

    ERIC Educational Resources Information Center

    Moretti, Paolo; Peters, Sarika U.; del Gaudio, Daniela; Sahoo, Trilochan; Hyland, Keith; Bottiglieri, Teodoro; Hopkin, Robert J.; Peach, Elizabeth; Min, Sang Hee; Goldman, David; Roa, Benjamin; Bacino, Carlos A.; Scaglia, Fernando

    2008-01-01

    We studied seven children with CNS folate deficiency (CFD). All cases exhibited psychomotor retardation, regression, cognitive delay, and dyskinesia; six had seizures; four demonstrated neurological abnormalities in the neonatal period. Two subjects had profound neurological abnormalities that precluded formal behavioral testing. Five subjects…

  15. The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders.

    PubMed

    Quesada, Rosannette; Triana, Emilia; Vargas, Gloria; Douglass, John K; Seid, Marc A; Niven, Jeremy E; Eberhard, William G; Wcislo, William T

    2011-11-01

    Allometric studies of the gross neuroanatomy of adults from nine species of spiders from six web-weaving families (Orbicularia), and nymphs from six of these species, show that very small spiders resemble other small animals in having disproportionately larger central nervous systems (CNSs) relative to body mass when compared with large-bodied forms. Small spiderlings and minute adult spiders have similar relative CNS volumes. The relatively large CNS of a very small spider occupies up to 78% of the cephalothorax volume. The CNSs of very small spiders extend into their coxae, occupying as much as 26% of the profile area of the coxae of an Anapisona simoni spiderling (body mass < 0.005 mg). Such modifications occur both in species with minute adults, and in tiny spiderlings of species with large-bodied adults. In at least one such species, Leucauge mariana, the CNS of the spiderling extends into a prominent ventral bulge of the sternum. Tiny spiders also have reduced neuronal cell body diameters. The adults of nearly all orbicularian spiders weave prey capture webs, as do the spiderlings, beginning with second instar nymphs. Comparable allometric relations occur in adults of both orb-weaving and cleptoparasitic species, indicating that this behavioral difference is not reflected in differences in gross CNS allometry. PMID:22036838

  16. Pharmacological Evaluation of Naproxen Metal Complexes on Antinociceptive, Anxiolytic, CNS Depressant, and Hypoglycemic Properties.

    PubMed

    Hasan, Md Sharif; Das, Narhari; Al Mahmud, Zobaer; Abdur Rahman, S M

    2016-01-01

    Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435

  17. The choroid plexus-a multi-role player during infectious diseases of the CNS.

    PubMed

    Schwerk, Christian; Tenenbaum, Tobias; Kim, Kwang Sik; Schroten, Horst

    2015-01-01

    The choroid plexus (CP) is the source of cerebrospinal fluid (CSF) production and location of the blood-CSF barrier (BCSFB), which is constituted by the epithelial cells of the CP. Several infectious pathogens including viruses, bacteria, fungi and parasites cross the BCSFB to enter the central nervous system (CNS), ultimately leading to inflammatory infectious diseases like meningitis and meningoencephalitis. The CP responds to this challenge by the production of chemokines and cytokines as well as alterations of the barrier function of the BCSFB. During the course of CNS infectious disease host immune cells enter the CNS, eventually contributing to the cellular damage caused by the disease. Additional complications, which are in certain cases caused by choroid plexitis, can arise due to the response of the CP to the pathogens. In this review we will give an overview on the multiple functions of the CP during brain infections highlighting the CP as a multi-role player during infectious diseases of the CNS. In this context the importance of tools for investigation of these CP functions and a possible suitability of the CP as therapeutic target will be discussed. PMID:25814932

  18. Pharmacological Evaluation of Naproxen Metal Complexes on Antinociceptive, Anxiolytic, CNS Depressant, and Hypoglycemic Properties

    PubMed Central

    Das, Narhari; Abdur Rahman, S. M.

    2016-01-01

    Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435

  19. CSF as a surrogate for assessing CNS exposure: an industrial perspective.

    PubMed

    Lin, Jiunn H

    2008-01-01

    For drugs that directly act on targets in the central nervous system (CNS), sufficient drug delivery into the brain is a prerequisite for drug action. Systemically administered drugs can reach CNS by passage across the endothelium of capillary vasculatures, the so-called blood-brain barrier (BBB). Literature data suggest that most marketed CNS drugs have good membrane permeability and relatively high plasma unbound fraction, but are not good P-glycoprotein (P-gp) substrates. Therefore, it is important to use the in vitro parameters of P-gp function activity, membrane permeability and plasma unbound fraction as key criteria for lead optimization during the early stage of drug discovery. Evidence from preclinical and clinical studies suggests that drug concentration in cerebrospinal fluid (CSF) appears to be reasonably accurate in predicting unbound drug concentration in the brain. Therefore, CSF can be used as a useful surrogate for in vivo assessment of CNS exposure and provides an important basis for the selection of drug candidates for entry into development. However, it is important to point out that CSF drug concentration is not always an accurate surrogate for predicting unbound drug concentration in the brain. Depending on the physicochemical properties of drugs and the site/timing of CSF sampling, the unbound drug concentration at the biophase within the brain could differ significantly from the corresponding CSF drug concentration.

  20. TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination.

    PubMed

    Palazuelos, Javier; Crawford, Howard C; Klingener, Michael; Sun, Bingru; Karelis, Jason; Raines, Elaine W; Aguirre, Adan

    2014-09-01

    Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination.

  1. TACE/ADAM17 Is Essential for Oligodendrocyte Development and CNS Myelination

    PubMed Central

    Palazuelos, Javier; Crawford, Howard C.; Klingener, Michael; Sun, Bingru; Karelis, Jason; Raines, Elaine W.

    2014-01-01

    Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination. PMID:25186737

  2. Group A Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells

    PubMed Central

    Dileepan, Thamotharampillai; Smith, Erica D.; Knowland, Daniel; Hsu, Martin; Platt, Maryann; Bittner-Eddy, Peter; Cohen, Brenda; Southern, Peter; Latimer, Elizabeth; Harley, Earl; Agalliu, Dritan; Cleary, P. Patrick

    2015-01-01

    Group A streptococcal (GAS) infection induces the production of Abs that cross-react with host neuronal proteins, and these anti-GAS mimetic Abs are associated with autoimmune diseases of the CNS. However, the mechanisms that allow these Abs to cross the blood-brain barrier (BBB) and induce neuropathology remain unresolved. We have previously shown that GAS infection in mouse models induces a robust Th17 response in nasal-associated lymphoid tissue (NALT). Here, we identified GAS-specific Th17 cells in tonsils of humans naturally exposed to GAS, prompting us to explore whether GAS-specific CD4+ T cells home to mouse brains following i.n. infection. Intranasal challenge of repeatedly GAS-inoculated mice promoted migration of GAS-specific Th17 cells from NALT into the brain, BBB breakdown, serum IgG deposition, microglial activation, and loss of excitatory synaptic proteins under conditions in which no viable bacteria were detected in CNS tissue. CD4+ T cells were predominantly located in the olfactory bulb (OB) and in other brain regions that receive direct input from the OB. Together, these findings provide insight into the immunopathology of neuropsychiatric complications that are associated with GAS infections and suggest that crosstalk between the CNS and cellular immunity may be a general mechanism by which infectious agents exacerbate symptoms associated with other CNS autoimmune disorders. PMID:26657857

  3. Genome Sequence Analysis of Staphylococcus equorum Bovine Mastitis Isolate UMC-CNS-924

    PubMed Central

    Calcutt, Michael J.; Foecking, Mark F.; Hsieh, Hsin-Yeh; Perry, Jeanette; Stewart, George C.

    2013-01-01

    Intramammary infections in dairy cattle are frequently caused by staphylococci, resulting in mastitis and associated economic losses. A draft genome sequence was determined for Staphylococcus equorum UMC-CNS-924, isolated from the milk of a Holstein cow, to better understand the genetic basis of its pathogenesis and adaptation to the bovine mammary gland. PMID:24136848

  4. Obesity and Risk for Brain/CNS Tumors, Gliomas and Meningiomas: A Meta-Analysis

    PubMed Central

    Sergentanis, Theodoros N.; Tsivgoulis, Georgios; Perlepe, Christina; Ntanasis-Stathopoulos, Ioannis; Tzanninis, Ioannis-Georgios; Sergentanis, Ioannis N.; Psaltopoulou, Theodora

    2015-01-01

    Objective This meta-analysis aims to examine the association between being overweight/obese and risk of meningiomas and gliomas as well as overall brain/central nervous system (CNS) tumors. Study Design Potentially eligible publications were sought in PubMed up to June 30, 2014. Random-effects meta-analysis and dose-response meta-regression analysis was conducted. Cochran Q statistic, I-squared and tau-squared were used for the assessment of between-study heterogeneity. The analysis was performed using Stata/SE version 13 statistical software. Results A total of 22 studies were eligible, namely 14 cohort studies (10,219 incident brain/CNS tumor cases, 1,319 meningioma and 2,418 glioma cases in a total cohort size of 10,143,803 subjects) and eight case-control studies (1,009 brain/CNS cases, 1,977 meningioma cases, 1,265 glioma cases and 8,316 controls). In females, overweight status/obesity was associated with increased risk for overall brain/CNS tumors (pooled RR = 1.12, 95%CI: 1.03–1.21, 10 study arms), meningiomas (pooled RR = 1.27, 95%CI: 1.13–1.43, 16 study arms) and gliomas (pooled RR = 1.17, 95%CI: 1.03–1.32, six arms). Obese (BMI>30 kg/m2) females seemed particularly aggravated in terms of brain/CNS tumor (pooled RR = 1.19, 95%CI: 1.05–1.36, six study arms) and meningioma risk (pooled RR = 1.48, 95%CI: 1.28–1.71, seven arms). In males, overweight/obesity status correlated with increased meningioma risk (pooled RR = 1.58, 95%CI: 1.22–2.04, nine study arms), whereas the respective association with overall brain/CNS tumor or glioma risk was not statistically significant. Dose-response meta-regression analysis further validated the findings. Conclusion Our findings highlight obesity as a risk factor for overall brain/CNS tumors, meningiomas and gliomas among females, as well as for meningiomas among males. PMID:26332834

  5. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    SciTech Connect

    Vuillemenot, Brian R.; Kennedy, Derek; Reed, Randall P.; Boyd, Robert B.; Butt, Mark T.; Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O'Neill, Charles A.

    2014-05-15

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  6. Assessment of the classification abilities of the CNS multi-parametric optimization approach by the method of logistic regression.

    PubMed

    Raevsky, O A; Polianczyk, D E; Mukhametov, A; Grigorev, V Y

    2016-08-01

    Assessment of "CNS drugs/CNS candidates" classification abilities of the multi-parametric optimization (CNS MPO) approach was performed by logistic regression. It was found that the five out of the six separately used physical-chemical properties (topological polar surface area, number of hydrogen-bonded donor atoms, basicity, lipophilicity of compound in neutral form and at pH = 7.4) provided accuracy of recognition below 60%. Only the descriptor of molecular weight (MW) could correctly classify two-thirds of the studied compounds. Aggregation of all six properties in the MPOscore did not improve the classification, which was worse than the classification using only MW. The results of our study demonstrate the imperfection of the CNS MPO approach; in its current form it is not very useful for computer design of new, effective CNS drugs. PMID:27477321

  7. Alcohol intake alters immune responses and promotes CNS viral persistence in mice.

    PubMed

    Loftis, Jennifer M; Taylor, Jonathan; Raué, Hans-Peter; Slifka, Mark K; Huang, Elaine

    2016-10-01

    Chronic hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic effects, including central nervous system (CNS) damage and neuropsychiatric impairments. Alcohol abuse can exacerbate these adverse effects on brain and behavior, but the molecular mechanisms are not well understood. This study investigated the role of alcohol in regulating viral persistence and CNS immunopathology in mice infected with lymphocytic choriomeningitis virus (LCMV), a model for HCV infections in humans. Female and male BALB/c mice (n=94) were exposed to alcohol (ethanol; EtOH) and water (or water only) using a two-bottle choice paradigm, followed one week later by infection with either LCMV clone 13 (causes chronic infection similar to chronic HCV), LCMV Armstrong (causes acute infection), or vehicle. Mice were monitored for 60days post-infection and continued to receive 24-h access to EtOH and water. Animals infected with LCMV clone 13 drank more EtOH, as compared to those with an acute or no viral infection. Six weeks after infection with LCMV clone 13, mice with EtOH exposure evidenced higher serum viral titers, as compared to mice without EtOH exposure. EtOH intake was also associated with reductions in virus-specific CD8(+) T cell frequencies (particularly CD11a(hi) subsets) and evidence of persistent CNS viremia in chronically infected mice. These findings support the hypothesis that EtOH use and chronic viral infection can result in combined toxic effects accelerating CNS damage and neuropsychiatric dysfunction and suggest that examining the role of EtOH in regulating viral persistence and CNS immunopathology in mice infected with LCMV can lead to a more comprehensive understanding of comorbid alcohol use disorder and chronic viral infection. PMID:27269869

  8. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity.

    PubMed

    Hucke, Stephanie; Eschborn, Melanie; Liebmann, Marie; Herold, Martin; Freise, Nicole; Engbers, Annika; Ehling, Petra; Meuth, Sven G; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-02-01

    The increasing incidence in Multiple Sclerosis (MS) during the last decades in industrialized countries might be linked to a change in dietary habits. Nowadays, enhanced salt content is an important characteristic of Western diet and increased dietary salt (NaCl) intake promotes pathogenic T cell responses contributing to central nervous system (CNS) autoimmunity. Given the importance of macrophage responses for CNS disease propagation, we addressed the influence of salt consumption on macrophage responses in CNS autoimmunity. We observed that EAE-diseased mice receiving a NaCl-high diet showed strongly enhanced macrophage infiltration and activation within the CNS accompanied by disease aggravation during the effector phase of EAE. NaCl treatment of macrophages elicited a strong pro-inflammatory phenotype characterized by enhanced pro-inflammatory cytokine production, increased expression of immune-stimulatory molecules, and an antigen-independent boost of T cell proliferation. This NaCl-induced pro-inflammatory macrophage phenotype was accompanied by increased activation of NF-kB and MAPK signaling pathways. The pathogenic relevance of NaCl-conditioned macrophages is illustrated by the finding that transfer into EAE-diseased animals resulted in significant disease aggravation compared to untreated macrophages. Importantly, also in human monocytes, NaCl promoted a pro-inflammatory phenotype that enhanced human T cell proliferation. Taken together, high dietary salt intake promotes pro-inflammatory macrophages that aggravate CNS autoimmunity. Together with other studies, these results underline the need to further determine the relevance of increased dietary salt intake for MS disease severity.

  9. CSWS Versus SIADH as the Probable Causes of Hyponatremia in Children With Acute CNS Disorders

    PubMed Central

    SORKHI, Hadi; SALEHI OMRAN, Mohammad Reza; BARARI SAVADKOOHI, Rahim; BAGHDADI, Farkhondeh; NAKHJAVANI, Naeemeh; BIJANI, Ali

    2013-01-01

    Objective There is a major problem about the incidence, diagnosis, and differentiation of cerebral salt wasting syndrome (CSWS) and syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in patients with acute central nervous system (CNS) disorders. According to rare reports of these cases, this study was performed in children with acute CNS disorders for diagnosis of CSWS versus SIADH. Materials & Methods This prospective study was done on children with acute CNS disorders. The definition of CSWS was hyponatremia (serum sodium ≤130 mEq/L), urine volume output ≥3 ml/kg/hr, urine specific gravity ≥1020 and urinary sodium concentration ≥100 mEq/L. Also, patients with hyponatremia (serum sodium ≤130 mEq/L), urine output < 3 ml/kg/hr, urine specific gravity ≥1020, and urinary sodium concentration >20 mEq/L were considered to have SIADH. Results Out of 102 patients with acute CNS disorders, 62 (60.8%) children were male with mean age of 60.47±42.39 months. Among nine children with hyponatremia (serum sodium ≥130 mEq/L), 4 children had CSWS and 3 patients had SIADH. In 2 cases, the cause of hyponatremia was not determined. The mean day of hyponatremia after admission was 5.11±3.31 days. It was 5.25±2.75 and 5.66±7.23 days in children with CSWS and SIADH, respectively. Also, the urine sodium (mEq/L) was 190.5±73.3 and 58.7±43.8 in patients with CSWS and SIADH, respectively. Conclusion According to the results of this study, the incidence of CSWS was more than SIADH in children with acute CNS disorders. So, more attention is needed to differentiate CSWS versus SIADH in order to their different management. PMID:24665304

  10. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS

    PubMed Central

    Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.

    2015-01-01

    Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348

  11. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    PubMed

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  12. Differentiation between meningiomas and other CNS tumors by simultaneous somatostatin receptor and brain scintigraphy

    SciTech Connect

    Haldemann, A.R.; Luescher, D.; Sulzer, M.

    1994-05-01

    Since the differentiation between meningiomas and some other CNS tumors may be difficult in certain localizations, biopsy is mandatory, even in patients with meningiomas who are to be treated with percutaneous radiotherapy alone. The high density of somatostatin receptors (SSR) in meningiomas has led us to compare patients with meningiomas and other CNS tumors by simultaneous SSR and brain scintigraphy (BS) using 74 MBq 111In octreotide and 740 MBq 99mTc DTPA injected two hours later. SPECT was performed on a 3-head gamma camera 4 hours after 111In octreotide injection in multiple peak acquisition mode in 35 patients with radiologically documented CNS tumors. In positive scans, a tumor ROI was defined manually in the transverse 111In slice with highest tumor contrast and the identical tumor ROI was transferred to the corresponding 99mTc slice. A SSR to BS index was then calculated from the ratio of 111In to 99mTc counts after normalizing for identical total counts in the slices. in negative scans, the SSR to BS index was set to be 1.0. In 7 meningiomas, the SSR to BS index was 2.64{plus_minus}0.76. In 28 other CNS tumors (7 gliomas I-111, 4 neurinomas, 3 glial reactions, 3 metastases, 3 gliomas IV, 2 ependymomas, 1 chordoma, 1 NHL; plus 4 inoperable, radiologically diagnosed glioblastomas) 1.06{plus_minus}0.13. Thus, a highly significant difference was found between these two groups (p<0.0001). It is concluded that combined SSR and BS allows excellent discrimination between meningiomas and other CNS tumors and may become a non-invasive alternative to biopsy in selected clinical situations.

  13. CNS amyloid-β, soluble APP-α and -β kinetics during BACE inhibition.

    PubMed

    Dobrowolska, Justyna A; Michener, Maria S; Wu, Guoxin; Patterson, Bruce W; Chott, Robert; Ovod, Vitaliy; Pyatkivskyy, Yuriy; Wildsmith, Kristin R; Kasten, Tom; Mathers, Parker; Dancho, Mandy; Lennox, Christina; Smith, Brad E; Gilberto, David; McLoughlin, Debra; Holder, Daniel J; Stamford, Andrew W; Yarasheski, Kevin E; Kennedy, Matthew E; Savage, Mary J; Bateman, Randall J

    2014-06-11

    BACE, a β-secretase, is an attractive potential disease-modifying therapeutic strategy for Alzheimer's disease (AD) as it results directly in the decrease of amyloid precursor protein (APP) processing through the β-secretase pathway and a lowering of CNS amyloid-β (Aβ) levels. The interaction of the β-secretase and α-secretase pathway-mediated processing of APP in the rhesus monkey (nonhuman primate; NHP) CNS is not understood. We hypothesized that CNS inhibition of BACE would result in decreased newly generated Aβ and soluble APPβ (sAPPβ), with increased newly generated sAPPα. A stable isotope labeling kinetics experiment in NHPs was performed with a (13)C6-leucine infusion protocol to evaluate effects of BACE inhibition on CNS APP processing by measuring the kinetics of sAPPα, sAPPβ, and Aβ in CSF. Each NHP received a low, medium, or high dose of MBI-5 (BACE inhibitor) or vehicle in a four-way crossover design. CSF sAPPα, sAPPβ, and Aβ were measured by ELISA and newly incorporated label following immunoprecipitation and liquid chromatography-mass spectrometry. Concentrations, kinetics, and amount of newly generated APP fragments were calculated. sAPPβ and sAPPα kinetics were similar, but both significantly slower than Aβ. BACE inhibition resulted in decreased labeled sAPPβ and Aβ in CSF, without observable changes in labeled CSF sAPPα. ELISA concentrations of sAPPβ and Aβ both decreased and sAPPα increased. sAPPα increased by ELISA, with no difference by labeled sAPPα kinetics indicating increases in product may be due to APP shunting from the β-secretase to the α-secretase pathway. These results provide a quantitative understanding of pharmacodynamic effects of BACE inhibition on NHP CNS, which can inform about target development. PMID:24920637

  14. Polymerase chain reaction detection of enterotoxins genes in coagulase-negative staphylococci isolated from Brazilian Minas cheese.

    PubMed

    Rall, Vera Lúcia Mores; Sforcin, José Maurício; de Deus, Maria Fernanda Ramos; de Sousa, Daniel Casaes; Camargo, Carlos Henrique; Godinho, Natália Cristina; Galindo, Luciane Almeida; Soares, Taíssa Cook Siqueira; Araújo, João Pessoa

    2010-09-01

    For a long time, Staphylococcus aureus has been always thought to be the only pathogenic species among Staphylococcus, while coagulase-negative staphylococci (CNS) were classified as contaminant agents. However, molecular techniques have shown that these microorganisms also possess enterotoxin-encoding genes. The aim of this study was to analyze the frequency of genes for staphylococcal enterotoxins SEA, SEB, SEC, and SED in CNS strains isolated from Minas soft cheese and to assess the in vitro production of toxins. CNS were found in 65 (72.2%) samples of cheese: 23 were Staphylococcus saprophyticus, 16 Staphylococcus warneri, 10 Staphylococcus epidermidis, 9 Staphylococcus xylosus, 3 Staphylococcus haemolyticus, 2 Staphylococcus schleiferi subsp. schleiferi, and 1 each Staphylococcus capitis subsp. urealyticus and Staphylococcus caprae. Seventeen (26.2%) CNS strains had genes for enterotoxins, and sea was more frequently found (18.5%), followed by sec in three and seb in two strains, whereas the sed gene was not found. S. saprophyticus showed enterotoxin genes in 6 of 23 isolates, but only sea was observed. On the other hand, five strains of S. warneri showed the sea, seb, or sec gene. In spite of the presence of these enterotoxin genes, these strains did not produce enterotoxins in vitro. It is essential to understand the real role of CNS in food, and based on the presence of enterotoxin genes, CNS should not be ignored in epidemiological investigations of foodborne outbreaks.

  15. Acquired bleeding disorders in the elderly.

    PubMed

    Kruse-Jarres, Rebecca

    2015-01-01

    The hemostatic balance changes with advancing age which may be due to factors such as platelet activation, increase of certain clotting factor proteins, slowing of the fibrinolytic system, and modification of the endothelium and blood flow. Generally, this predisposes the elderly to thrombosis rather than bleeding. It often necessitates antiplatelet or anticoagulation therapy, which can cause significant bleeding problems in an aging population. Additionally, changing renal function, modification in immune regulation, and a multitude of other disease processes, can give rise to acquired bleeding disorders. Bleeding can prove difficult to treat in a dynamic environment and in a population that may have underlying thrombotic risk factors.This article discusses some specific challenges of acquired bleeding arising in the elderly. The use of anticoagulation and nonsteroidal anti-inflammatory medications is prevalent in the treatment of the elderly and predisposes them to increased bleeding risk as their physiology changes. When prescribing and monitoring these therapies, it is exceedingly important to weigh thrombotic versus bleeding risks. There are additional rare acquired bleeding disorders that predominantly affect the elderly. One of them is acquired hemophilia, which is an autoimmune disorder arising from antibodies against factor VIII. The treatment challenge rests in the use of hemostatic agents in a population that is already at increased risk for thrombotic complications. Another rare disorder of intensifying interest, acquired von Willebrand syndrome, has a multitude of etiologic mechanisms. Understanding the underlying pathophysiology is essential in making a treatment decision for this disorder.

  16. The Central Nervous System (CNS)-independent Anti-bone-resorptive Activity of Muscle Contraction and the Underlying Molecular and Cellular Signatures*

    PubMed Central

    Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A.; Zaidi, Mone; Cardozo, Christopher

    2013-01-01

    Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on b