Sample records for acquired developmental brain

  1. Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury

    PubMed Central

    Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.

    2009-01-01

    Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795

  2. Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia.

    PubMed

    Brogaard, Berit

    2013-01-01

    Though synesthesia research has seen a huge growth in recent decades, and tremendous progress has been made in terms of understanding the mechanism and cause of synesthesia, we are still left mostly in the dark when it comes to the mechanistic commonalities (if any) among developmental, acquired and drug-induced synesthesia. We know that many forms of synesthesia involve aberrant structural or functional brain connectivity. Proposed mechanisms include direct projection and disinhibited feedback mechanisms, in which information from two otherwise structurally or functionally separate brain regions mix. We also know that synesthesia sometimes runs in families. However, it is unclear what causes its onset. Studies of psychedelic drugs, such as psilocybin, LSD and mescaline, reveal that exposure to these drugs can induce synesthesia. One neurotransmitter suspected to be central to the perceptual changes is serotonin. Excessive serotonin in the brain may cause many of the characteristics of psychedelic intoxication. Excessive serotonin levels may also play a role in synesthesia acquired after brain injury. In brain injury sudden cell death floods local brain regions with serotonin and glutamate. This neurotransmitter flooding could perhaps result in unusual feature binding. Finally, developmental synesthesia that occurs in individuals with autism may be a result of alterations in the serotonergic system, leading to a blockage of regular gating mechanisms. I conclude on these grounds that one commonality among at least some cases of acquired, developmental and drug-induced synesthesia may be the presence of excessive levels of serotonin, which increases the excitability and connectedness of sensory brain regions.

  3. Detailed Magnetic Resonance Imaging (MRI) Analysis in Infantile Spasms.

    PubMed

    Harini, Chellamani; Sharda, Sonal; Bergin, Ann Marie; Poduri, Annapurna; Yuskaitis, Christopher J; Peters, Jurriaan M; Rakesh, Kshitiz; Kapur, Kush; Pearl, Phillip L; Prabhu, Sanjay P

    2018-05-01

    To evaluate initial magnetic resonance imaging (MRI) abnormalities in infantile spasms, correlate them to clinical characteristics, and describe repeat imaging findings. A retrospective review of infantile spasm patients was conducted, classifying abnormal MRI into developmental, acquired, and nonspecific subgroups. MRIs were abnormal in 52 of 71 infantile spasm patients (23 developmental, 23 acquired, and 6 nonspecific) with no correlation to the clinical infantile spasm characteristics. Both developmental and acquired subgroups exhibited cortical gray and/or white matter abnormalities. Additional abnormalities of deep gray structures, brain stem, callosum, and volume loss occurred in the structural acquired subgroup. Repeat MRI showed better definition of the extent of existing malformations. In structural infantile spasms, developmental/acquired subgroups showed differences in pattern of MRI abnormalities but did not correlate with clinical characteristics.

  4. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  5. Development of brain-wide connectivity architecture in awake rats.

    PubMed

    Ma, Zilu; Ma, Yuncong; Zhang, Nanyin

    2018-08-01

    Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Mapping Subcortical Brain Maturation during Adolescence: Evidence of Hemisphere-and Sex-Specific Longitudinal Changes

    ERIC Educational Resources Information Center

    Dennison, Meg; Whittle, Sarah; Yücel, Murat; Vijayakumar, Nandita; Kline, Alexandria; Simmons, Julian; Allen, Nicholas B.

    2013-01-01

    Early to mid-adolescence is an important developmental period for subcortical brain maturation, but longitudinal studies of these neurodevelopmental changes are lacking. The present study acquired repeated magnetic resonance images from 60 adolescent subjects (28 female) at ages 12.5 and 16.5 years to map changes in subcortical structure volumes.…

  7. Fluorine magnetic resonance spectroscopy measurement of brain fluvoxamine and fluoxetine in pediatric patients treated for pervasive developmental disorders.

    PubMed

    Strauss, Wayne L; Unis, Alan S; Cowan, Charles; Dawson, Geraldine; Dager, Stephen R

    2002-05-01

    Pediatric populations, including those with autistic disorder or other pervasive developmental disorders, increasingly are being prescribed selective serotonin reuptake inhibitors (SSRIs). Little is known about the age-related brain pharmacokinetics of SSRIs; there is a lack of data regarding optimal dosing of medications for children. The authors used fluorine magnetic resonance spectroscopy ((19)F MRS) to evaluate age effects on whole-brain concentrations of fluvoxamine and fluoxetine in children taking SSRIs. Twenty-one pediatric subjects with diagnoses of autistic disorder or other pervasive developmental disorders, 6-15 years old and stabilized with a consistent dose of fluvoxamine or fluoxetine, were recruited for the study; 16 successfully completed the imaging protocol. Whole-brain drug levels in this group were compared to similarly acquired data from 28 adults. A significant relationship between dose and brain drug concentration was observed for both drugs across the age range studied. Brain fluvoxamine concentration in the children was lower, consistent with a lower dose/body mass drug prescription; when brain concentration was adjusted for dose/mass, age effects were no longer significant. Brain fluoxetine concentration was similar between age groups; no significant age effects on brain fluoxetine drug levels remained after adjustment for dose/mass. Observations of brain fluoxetine bioavailability and elimination half-life also were similar between age groups. These findings suggest that fluvoxamine or fluoxetine prescriptions adjusted for dose/mass are an acceptable treatment approach for medicating children with autistic disorder or other pervasive developmental disorders. It must be determined whether these findings can be generalized to other pediatric populations.

  8. Fluoxetine for persistent developmental stuttering.

    PubMed

    Kumar, Amardeep; Balan, Sabish

    2007-01-01

    Stuttering is a disturbance in the normal fluency and time patterning of speech. Developmental stuttering (DS), with or without associated psychiatric illness, is the most common form and includes all cases with gradual onset in childhood that are not the result of acquired brain damage. Persistent developmental stuttering (PDS) is DS that has not undergone spontaneous or speech therapy-induced remission. Adults in speech therapy behavioral programs will often show regression and even total relapse if they stop practicing. This case report deals with a patient of PDS who responded significantly to treatment with fluoxetine.

  9. Face and Word Recognition Can Be Selectively Affected by Brain Injury or Developmental Disorders.

    PubMed

    Robotham, Ro J; Starrfelt, Randi

    2017-01-01

    Face and word recognition have traditionally been thought to rely on highly specialised and relatively independent cognitive processes. Some of the strongest evidence for this has come from patients with seemingly category-specific visual perceptual deficits such as pure prosopagnosia, a selective face recognition deficit, and pure alexia, a selective word recognition deficit. Together, the patterns of impaired reading with preserved face recognition and impaired face recognition with preserved reading constitute a double dissociation. The existence of these selective deficits has been questioned over the past decade. It has been suggested that studies describing patients with these pure deficits have failed to measure the supposedly preserved functions using sensitive enough measures, and that if tested using sensitive measurements, all patients with deficits in one visual category would also have deficits in the other. The implications of this would be immense, with most textbooks in cognitive neuropsychology requiring drastic revisions. In order to evaluate the evidence for dissociations, we review studies that specifically investigate whether face or word recognition can be selectively affected by acquired brain injury or developmental disorders. We only include studies published since 2004, as comprehensive reviews of earlier studies are available. Most of the studies assess the supposedly preserved functions using sensitive measurements. We found convincing evidence that reading can be preserved in acquired and developmental prosopagnosia and also evidence (though weaker) that face recognition can be preserved in acquired or developmental dyslexia, suggesting that face and word recognition are at least in part supported by independent processes.

  10. Binge consumption of ethanol during pregnancy leads to significant developmental delay of mouse embryonic brain

    NASA Astrophysics Data System (ADS)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2014-03-01

    Consumption of alcohol during pregnancy can be severely detrimental to the development of the brain in fetuses. This study explores the usage of optical coherence tomography (OCT) to the study the effects of maternal consumption of ethanol on brain development in mouse fetuses. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde. A swept-source OCT (SSOCT) system was used to acquire 3D images of the brain of ethanol-exposed and control fetuses. The volume of right and left brain ventricles were measured and used to compare between ethanol-exposed and control fetuses. A total of 5 fetuses were used for each of the two groups. The average volumes of the right and left ventricles were measured to be 0.35 and 0.15 mm3 for ethanol-exposed and control fetuses, respectively. The results demonstrated that there is an alcohol-induced developmental delay in mouse fetal brains.

  11. The Neonatal Connectome During Preterm Brain Development

    PubMed Central

    van den Heuvel, Martijn P.; Kersbergen, Karina J.; de Reus, Marcel A.; Keunen, Kristin; Kahn, René S.; Groenendaal, Floris; de Vries, Linda S.; Benders, Manon J.N.L.

    2015-01-01

    The human connectome is the result of an elaborate developmental trajectory. Acquiring diffusion-weighted imaging and resting-state fMRI, we studied connectome formation during the preterm phase of macroscopic connectome genesis. In total, 27 neonates were scanned at week 30 and/or week 40 gestational age (GA). Examining the architecture of the neonatal anatomical brain network revealed a clear presence of a small-world modular organization before term birth. Analysis of neonatal functional connectivity (FC) showed the early formation of resting-state networks, suggesting that functional networks are present in the preterm brain, albeit being in an immature state. Moreover, structural and FC patterns of the neonatal brain network showed strong overlap with connectome architecture of the adult brain (85 and 81%, respectively). Analysis of brain development between week 30 and week 40 GA revealed clear developmental effects in neonatal connectome architecture, including a significant increase in white matter microstructure (P < 0.01), small-world topology (P < 0.01) and interhemispheric FC (P < 0.01). Computational analysis further showed that developmental changes involved an increase in integration capacity of the connectivity network as a whole. Taken together, we conclude that hallmark organizational structures of the human connectome are present before term birth and subject to early development. PMID:24833018

  12. Infant Hand Preference and the Development of Cognitive Abilities

    PubMed Central

    Michel, George F.; Campbell, Julie M.; Marcinowski, Emily C.; Nelson, Eliza L.; Babik, Iryna

    2016-01-01

    Hand preference develops in the first two postnatal years with nearly half of infants exhibiting a consistent early preference for acquiring objects. Others exhibit a more variable developmental trajectory but by the end of their second postnatal year, most exhibit a consistent hand preference for role-differentiated bimanual manipulation. According to some forms of embodiment theory, these differences in hand use patterns should influence the way children interact with their environments, which, in turn, should affect the structure and function of brain development. Such early differences in brain development should result in different trajectories of psychological development. We present evidence that children with consistent early hand preferences exhibit advanced patterns of cognitive development as compared to children who develop a hand preference later. Differences in the developmental trajectory of hand preference are predictive of developmental differences in language, object management skills, and tool-use skills. As predicted by Casasanto’s body-specificity hypothesis, infants with different hand preferences proceed along different developmental pathways of cognitive functioning. PMID:27047431

  13. Repeat neurobehavioral study of borderline personality disorder.

    PubMed Central

    van Reekum, R; Links, P S; Finlayson, M A; Boyle, M; Boiago, I; Ostrander, L A; Moustacalis, E

    1996-01-01

    Previous research has tentatively identified a large subgroup of patients with borderline personality disorder (BPD) with histories of developmental or acquired brain insults. Similarly, these studies have demonstrated a possible biological correlation between the severity of BPD and the number of previous brain insults. The possibility of frontal system cognitive dysfunction in BPD has been raised. This single-blind, case-control study of BPD showed that 13 of 24 subjects with BPD had suffered a brain insult. Correlations between neurodevelopmental/acquired brain injury score and the diagnostic interview for borderline (DIB) score (r = 0.47), and between frontal system cognitive functioning and DIB score (r = -0.37) were seen. Neurocognitive testing and comparison with a cohort of subjects with traumatic brain injury (TBI) showed a pattern of similar cognitive functioning between the 2 groups, with the only differences on individual tests being in the direction of worse functioning in the group with BPD on 2 tasks. These results support the hypotheses described above. The main limitation reflects the low numbers of subjects. PMID:8580113

  14. Genetic and early environmental influences on the serotonin system: consequences for brain development and risk for psychopathology

    PubMed Central

    Booij, Linda; Tremblay, Richard E.; Szyf, Moshe; Benkelfat, Chawki

    2015-01-01

    Background Despite more than 60 years of research in the role of serotonin (5-HT) in psychopathology, many questions still remain. From a developmental perspective, studies have provided more insight into how 5-HT dysfunctions acquired in utero or early in life may modulate brain development. This paper discusses the relevance of the developmental role of 5-HT for the understanding of psychopathology. We review developmental milestones of the 5-HT system, how genetic and environmental 5-HT disturbances could affect brain development and the potential role of DNA methylation in 5-HT genes for brain development. Methods Studies were identified using common databases (e.g., PubMed, Google Scholar) and reference lists. Results Despite the widely supported view that the 5-HT system matures in early life, different 5-HT receptors, proteins and enzymes have different developmental patterns, and development is brain region–specific. A disruption in 5-HT homeostasis during development may lead to structural and functional changes in brain circuits that modulate emotional stress responses, including subcortical limbic and (pre)frontal areas. This may result in a predisposition to psychopathology. DNA methylation might be one of the underlying physiologic mechanisms. Limitations There is a need for prospective studies. The impact of stressors during adolescence on the 5-HT system is understudied. Questions regarding efficacy of drugs acting on 5-HT still remain. Conclusion A multidisciplinary and longitudinal approach in designing studies on the role of 5-HT in psychopathology might help to bring us closer to the understanding of the role of 5-HT in psychopathology. PMID:25285876

  15. Comprehensive transcriptional map of primate brain development

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.

    2017-01-01

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810

  16. Developmental and perinatal brain diseases.

    PubMed

    Adle-Biassette, Homa; Golden, Jeffery A; Harding, Brian

    2017-01-01

    This chapter briefly describes the normal development of the nervous system, the neuropathology and pathophysiology of acquired and secondary disorders affecting the embryo, fetus, and child. They include CNS manifestations of chromosomal change; forebrain patterning defects; disorders of the brain size; cell migration and specification disorders; cerebellum, hindbrain and spinal patterning defects; hydrocephalus; secondary malformations and destructive pathologies; vascular malformations; arachnoid cysts and infectious diseases. The distinction between malformations and disruptions is important for pathogenesis and genetic counseling. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Epigenetic Influences on Brain Development and Plasticity

    PubMed Central

    Fagiolini, Michela; Jensen, Catherine L.; Champagne, Frances A.

    2009-01-01

    A fine interplay exists between sensory experience and innate genetic programs leading to the sculpting of neuronal circuits during early brain development. Recent evidence suggests that the dynamic regulation of gene expression through epigenetic mechanisms is at the interface between environmental stimuli and long-lasting molecular, cellular and complex behavioral phenotypes acquired during periods of developmental plasticity. Understanding these mechanisms may give insight into the formation of critical periods and provide new strategies for increasing plasticity and adaptive change in adulthood. PMID:19545993

  18. Right Fronto-Parietal Dysfunction in Children with ADHD and Developmental Dyslexia as Determined by Line Bisection Judgements

    ERIC Educational Resources Information Center

    Waldie, Karen E.; Hausmann, Markus

    2010-01-01

    Visual line bisection is a reliable and valid laterality task that is typically used with patients with acquired brain damage to assess right hemisphere functioning. Neurologically normal individuals tend to bisect lines to the left of the objective midline whereas those with right parietal damage bisect lines to the right. In this study children…

  19. Tackling the ‘dyslexia paradox’: reading brain and behavior for early markers of developmental dyslexia

    PubMed Central

    Ozernov-Palchik, Ola; Gaab, Nadine

    2016-01-01

    Developmental dyslexia is an unexplained inability to acquire accurate or fluent reading that affects approximately 5–17% of children. Dyslexia is associated with structural and functional alterations in various brain regions that support reading. Neuroimaging studies in infants and pre-reading children suggest that these alterations predate reading instruction and reading failure, supporting the hypothesis that variant function in dyslexia susceptibility genes lead to atypical neural migration and/or axonal growth during early, most likely in utero, brain development. Yet, dyslexia is typically not diagnosed until a child has failed to learn to read as expected (usually in second grade or later). There is emerging evidence that neuroimaging measures, when combined with key behavioral measures, can enhance the accuracy of identification of dyslexia risk in prereading children but its sensitivity, specificity, and cost-efficiency is still unclear. Early identification of dyslexia risk carries important implications for dyslexia remediation and the amelioration of the psychosocial consequences commonly associated with reading failure. PMID:26836227

  20. The neonatal brain in critical congenital heart disease: Insights and future directions.

    PubMed

    Peyvandi, Shabnam; Latal, Beatrice; Miller, Steven P; McQuillen, Patrick S

    2018-05-19

    Neurodevelopmental outcomes are impaired in survivors of critical congenital heart disease (CHD) in several developmental domains including motor, cognitive and sensory outcomes. These deficits can extend into the adolescent and early adulthood years. The cause of these neurodevelopmental impairments is multi-factorial and includes patient specific risk factors, cardiac anatomy and physiology as well as brain changes seen on MRI. Advances in imaging techniques have identified delayed brain development in the neonate with critical CHD as well as acquired brain injury. These abnormalities are seen even before corrective neonatal cardiac surgery. This review focuses on describing brain changes seen on MRI in neonates with CHD, risk factors for these changes and the association with neurodevelopmental outcome. There is an emerging focus on the impact of cardiovascular physiology on brain health and the complex heart-brain interplay that influences ultimate neurodevelopmental outcome in these patients. Copyright © 2018. Published by Elsevier Inc.

  1. Developmental song learning as a model to understand neural mechanisms that limit and promote the ability to learn.

    PubMed

    London, Sarah E

    2017-11-20

    Songbirds famously learn their vocalizations. Some species can learn continuously, others seasonally, and still others just once. The zebra finch (Taeniopygia guttata) learns to sing during a single developmental "Critical Period," a restricted phase during which a specific experience has profound and permanent effects on brain function and behavioral patterns. The zebra finch can therefore provide fundamental insight into features that promote and limit the ability to acquire complex learned behaviors. For example, what properties permit the brain to come "on-line" for learning? How does experience become encoded to prevent future learning? What features define the brain in receptive compared to closed learning states? This piece will focus on epigenomic, genomic, and molecular levels of analysis that operate on the timescales of development and complex behavioral learning. Existing data will be discussed as they relate to Critical Period learning, and strategies for future studies to more directly address these questions will be considered. Birdsong learning is a powerful model for advancing knowledge of the biological intersections of maturation and experience. Lessons from its study not only have implications for understanding developmental song learning, but also broader questions of learning potential and the enduring effects of early life experience on neural systems and behavior. Copyright © 2017. Published by Elsevier B.V.

  2. The Neurobiology of Moral Behavior: Review and Neuropsychiatric Implications

    PubMed Central

    Mendez, Mario F.

    2011-01-01

    Morality may be innate to the human brain. This review examines the neurobiological evidence from research involving functional magnetic resonance imaging of normal subjects, developmental sociopathy, acquired sociopathy from brain lesions, and frontotemporal dementia. These studies indicate a “neuromoral” network for responding to moral dilemmas centered in the ventromedial prefrontal cortex and its connections, particularly on the right. The neurobiological evidence indicates the existence of automatic “prosocial” mechanisms for identification with others that are part of the moral brain. Patients with disorders involving this moral network have attenuated emotional reactions to the possibility of harming others and may perform sociopathic acts. The existence of this neuromoral system has major clinical implications for the management of patients with dysmoral behavior from brain disorders and for forensic neuropsychiatry. PMID:20173686

  3. The Encephalopathy of Prematurity: One Pediatric Neuropathologist’s Perspective

    PubMed Central

    Kinney, Hannah C.

    2010-01-01

    A major challenge in understanding brain injury in the premature brain is the establishment of the precise human neuropathology at the cellular and molecular levels, as such knowledge is the foundation upon which the elucidation of the cause(s), scientific experimentation, and therapies in the field is by necessity based. In this essay, I provide my perspective as a pediatric neuropathologist upon pathologic studies in the developing human brain itself, including a review of past, present, and future aspects. My focus is upon the path that has brought us to the current recognition that preterm brain injury is a complex of white and gray matter damage that results in the modification of key developmental pathways during a critical period, which in turn defines the adverse clinical outcomes as important as the primary insult itself. The evolution of this recognition, as well as the introduction of the term “encephalopathy of prematurity” for the complex of gray and white matter damage because of acquired and developmental mechanisms, is discussed. Our enhanced understanding of the fundamental neuropathology of the human preterm brain should bring us closer to more effective therapy as the need to prevent and treat injury to developing oligodendrocytes and neurons in combination is appreciated. PMID:19945652

  4. The "Globularization Hypothesis" of the Language-ready Brain as a Developmental Frame for Prosodic Bootstrapping Theories of Language Acquisition.

    PubMed

    Irurtzun, Aritz

    2015-01-01

    In recent research (Boeckx and Benítez-Burraco, 2014a,b) have advanced the hypothesis that our species-specific language-ready brain should be understood as the outcome of developmental changes that occurred in our species after the split from Neanderthals-Denisovans, which resulted in a more globular braincase configuration in comparison to our closest relatives, who had elongated endocasts. According to these authors, the development of a globular brain is an essential ingredient for the language faculty and in particular, it is the centrality occupied by the thalamus in a globular brain that allows its modulatory or regulatory role, essential for syntactico-semantic computations. Their hypothesis is that the syntactico-semantic capacities arise in humans as a consequence of a process of globularization, which significantly takes place postnatally (cf. Neubauer et al., 2010). In this paper, I show that Boeckx and Benítez-Burraco's hypothesis makes an interesting developmental prediction regarding the path of language acquisition: it teases apart the onset of phonological acquisition and the onset of syntactic acquisition (the latter starting significantly later, after globularization). I argue that this hypothesis provides a developmental rationale for the prosodic bootstrapping hypothesis of language acquisition (cf. i.a. Gleitman and Wanner, 1982; Mehler et al., 1988, et seq.; Gervain and Werker, 2013), which claim that prosodic cues are employed for syntactic parsing. The literature converges in the observation that a large amount of such prosodic cues (in particular, rhythmic cues) are already acquired before the completion of the globularization phase, which paves the way for the premises of the prosodic bootstrapping hypothesis, allowing babies to have a rich knowledge of the prosody of their target language before they can start parsing the primary linguistic data syntactically.

  5. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples.

    PubMed

    Mills, Kathryn L; Goddings, Anne-Lise; Herting, Megan M; Meuwese, Rosa; Blakemore, Sarah-Jayne; Crone, Eveline A; Dahl, Ronald E; Güroğlu, Berna; Raznahan, Armin; Sowell, Elizabeth R; Tamnes, Christian K

    2016-11-01

    Longitudinal studies including brain measures acquired through magnetic resonance imaging (MRI) have enabled population models of human brain development, crucial for our understanding of typical development as well as neurodevelopmental disorders. Brain development in the first two decades generally involves early cortical grey matter volume (CGMV) increases followed by decreases, and monotonic increases in cerebral white matter volume (CWMV). However, inconsistencies regarding the precise developmental trajectories call into question the comparability of samples. This issue can be addressed by conducting a comprehensive study across multiple datasets from diverse populations. Here, we present replicable models for gross structural brain development between childhood and adulthood (ages 8-30years) by repeating analyses in four separate longitudinal samples (391 participants; 852 scans). In addition, we address how accounting for global measures of cranial/brain size affect these developmental trajectories. First, we found evidence for continued development of both intracranial volume (ICV) and whole brain volume (WBV) through adolescence, albeit following distinct trajectories. Second, our results indicate that CGMV is at its highest in childhood, decreasing steadily through the second decade with deceleration in the third decade, while CWMV increases until mid-to-late adolescence before decelerating. Importantly, we show that accounting for cranial/brain size affects models of regional brain development, particularly with respect to sex differences. Our results increase confidence in our knowledge of the pattern of brain changes during adolescence, reduce concerns about discrepancies across samples, and suggest some best practices for statistical control of cranial volume and brain size in future studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Developmental Changes in Topological Asymmetry Between Hemispheric Brain White Matter Networks from Adolescence to Young Adulthood.

    PubMed

    Zhong, Suyu; He, Yong; Shu, Hua; Gong, Gaolang

    2017-04-01

    Human brain asymmetries have been well described. Intriguingly, a number of asymmetries in brain phenotypes have been shown to change throughout the lifespan. Recent studies have revealed topological asymmetries between hemispheric white matter networks in the human brain. However, it remains unknown whether and how these topological asymmetries evolve from adolescence to young adulthood, a critical period that constitutes the second peak of human brain and cognitive development. To address this question, the present study included a large cohort of healthy adolescents and young adults. Diffusion and structural magnetic resonance imaging were acquired to construct hemispheric white matter networks, and graph-theory was applied to quantify topological parameters of the hemispheric networks. In both adolescents and young adults, rightward asymmetry in both global and local network efficiencies was consistently observed between the 2 hemispheres, but the degree of the asymmetry was significantly decreased in young adults. At the nodal level, the young adults exhibited less rightward asymmetry of nodal efficiency mainly around the parasylvian area, posterior tempo-parietal cortex, and fusiform gyrus. These developmental patterns of network asymmetry provide novel insight into the human brain structural development from adolescence to young adulthood and also likely relate to the maturation of language and social cognition that takes place during this period. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. The effect of adult-acquired hippocampal damage on memory retrieval: an fMRI study.

    PubMed

    Maguire, Eleanor A; Frith, Christopher D; Rudge, Peter; Cipolotti, Lisa

    2005-08-01

    Bilateral hippocampal pathology typically results in significant memory problems. Despite apparently similar structural damage, patients with such lesions can differ in the pattern of impairment and preservation of memory functions. Previously, an fMRI study of a developmental amnesic patient whose anoxic hippocampal damage was incurred perinatally revealed his residual hippocampal tissue to be active during memory retrieval. This hippocampal activity was apparent during the retrieval of personal and general facts relative to a control task. In this study, we used a similar fMRI paradigm to investigate whether residual hippocampal activation was present also in patient VC with adult-acquired anoxic hippocampal pathology. VC's performance and reaction times on the experimental personal and general fact tasks were comparable to age-matched control subjects. However, in contrast to the elderly control sample and the previous developmental amnesic patient, his residual hippocampal tissue did not show activation changes during the experimental tasks. This finding indicates that patient VC's successful retrieval of personal and general facts was achieved without a significant hippocampal contribution. It further suggests that the hippocampal activation observed in the elderly controls and previous developmental amnesic patient was not necessary for successful task performance. The reason for this difference in hippocampal responsivity between VC and the developmental amnesic patient remains to be determined. We speculate that it may relate to the age at which hippocampal damage occurred reflecting plasticity within the developing brain, or to cognitive differences between VC, the developmental amnesic patient, and the control subjects.

  8. The "where" and "what" in developmental dyscalculia.

    PubMed

    Henik, Avishai; Rubinsten, Orly; Ashkenazi, Sarit

    2011-08-01

    Developmental dyscalculia (DD) is a congenital deficit that affects the ability to acquire arithmetical skills. Individuals with DD have problems learning standard number facts and procedures. Estimates of the prevalence rate of DD are similar to those of developmental dyslexia. Recent reports and discussions suggest that those with DD suffer from specific deficits (e.g., subitizing, comparative judgment). Accordingly, DD has been described as a domain-specific disorder that involves particular brain areas (e.g., intra-parietal sulcus). However, we and others have found that DD is characterized by additional deficiencies and may be affected by domain-general (e.g., attention) factors. Hence "pure DD" might be rather rare and not as pure as one would think. We suggest that the heterogeneity of symptoms that commonly characterize learning disabilities needs to be taken into account in future research and treatment.

  9. Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach.

    PubMed

    Cui, Zaixu; Xia, Zhichao; Su, Mengmeng; Shu, Hua; Gong, Gaolang

    2016-04-01

    Developmental dyslexia has been hypothesized to result from multiple causes and exhibit multiple manifestations, implying a distributed multidimensional effect on human brain. The disruption of specific white-matter (WM) tracts/regions has been observed in dyslexic children. However, it remains unknown if developmental dyslexia affects the human brain WM in a multidimensional manner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach was applied in this study to compare 28 school-aged dyslexic children with 33 age-matched controls. Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from controls. Notably, the most discriminative features that contributed to the classification were primarily associated with WM regions within the putative reading network/system (e.g., the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, thalamocortical projections, and corpus callosum), the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle, corona radiata, and corticospinal tract). These results were well replicated using a logistic regression classifier. These findings provided direct evidence supporting a multidimensional effect of developmental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/regions beyond the well-recognized reading system in dyslexia. Finally, the discriminating results demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic individuals. © 2016 Wiley Periodicals, Inc.

  10. Global and regional cortical connectivity maturation index (CCMI) of developmental human brain with quantification of short-range association tracts

    NASA Astrophysics Data System (ADS)

    Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao

    2016-03-01

    From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.

  11. Grapheme-color synesthetes show peculiarities in their emotional brain: cortical and subcortical evidence from VBM analysis of 3D-T1 and DTI data.

    PubMed

    Melero, Helena; Peña-Melián, Ángel; Ríos-Lago, Marcos; Pajares, Gonzalo; Hernández-Tamames, Juan Antonio; Álvarez-Linera, Juan

    2013-06-01

    Grapheme-color synesthesia is a neurological phenomenon in which viewing achromatic letters/numbers leads to automatic and involuntary color experiences. In this study, voxel-based morphometry analyses were performed on T1 images and fractional anisotropy measures to examine the whole brain in associator grapheme-color synesthetes. These analyses provide new evidence of variations in emotional areas (both at the cortical and subcortical levels), findings that help understand the emotional component as a relevant aspect of the synesthetic experience. Additionally, this study replicates previous findings in the left intraparietal sulcus and, for the first time, reports the existence of anatomical differences in subcortical gray nuclei of developmental grapheme-color synesthetes, providing a link between acquired and developmental synesthesia. This empirical evidence, which goes beyond modality-specific areas, could lead to a better understanding of grapheme-color synesthesia as well as of other modalities of the phenomenon.

  12. Violence. The neurologic contribution: an overview.

    PubMed

    Elliott, F A

    1992-06-01

    The role of cultural forces in either promoting or discouraging interpersonal violence is so obvious that it has been allowed to obscure the part played by biologic disorders in determining responses to endogenous and environmental challenges. Neuroscientists and clinicians have demonstrated, however, that aggression has a neuroanatomic and chemical basis, that developmental and acquired brain disorders contribute to recurrent interpersonal violence, that both biologic and sociologic factors are involved, and that to ignore either is to invite error.

  13. Progranulin regulates neurogenesis in the developing vertebrate retina.

    PubMed

    Walsh, Caroline E; Hitchcock, Peter F

    2017-09-01

    We evaluated the expression and function of the microglia-specific growth factor, Progranulin-a (Pgrn-a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn-a is expressed throughout the forebrain, but by 48 hpf pgrn-a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn-a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed-retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn-a knockdown. Depleting Pgrn-a results in a significant lengthening of the cell cycle. These data suggest that Pgrn-a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn-a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114-1129, 2017. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.

  14. 4D MEMRI atlas of neonatal FVB/N mouse brain development.

    PubMed

    Szulc, Kamila U; Lerch, Jason P; Nieman, Brian J; Bartelle, Benjamin B; Friedel, Miriam; Suero-Abreu, Giselle A; Watson, Charles; Joyner, Alexandra L; Turnbull, Daniel H

    2015-09-01

    The widespread use of the mouse as a model system to study brain development has created the need for noninvasive neuroimaging methods that can be applied to early postnatal mice. The goal of this study was to optimize in vivo three- (3D) and four-dimensional (4D) manganese (Mn)-enhanced MRI (MEMRI) approaches for acquiring and analyzing data from the developing mouse brain. The combination of custom, stage-dependent holders and self-gated (motion-correcting) 3D MRI sequences enabled the acquisition of high-resolution (100-μm isotropic), motion artifact-free brain images with a high level of contrast due to Mn-enhancement of numerous brain regions and nuclei. We acquired high-quality longitudinal brain images from two groups of FVB/N strain mice, six mice per group, each mouse imaged on alternate odd or even days (6 3D MEMRI images at each day) covering the developmental stages between postnatal days 1 to 11. The effects of Mn-exposure, anesthesia and MRI were assessed, showing small but significant transient effects on body weight and brain volume, which recovered with time and did not result in significant morphological differences when compared to controls. Metrics derived from deformation-based morphometry (DBM) were used for quantitative analysis of changes in volume and position of a number of brain regions. The cerebellum, a brain region undergoing significant changes in size and patterning at early postnatal stages, was analyzed in detail to demonstrate the spatiotemporal characterization made possible by this new atlas of mouse brain development. These results show that MEMRI is a powerful tool for quantitative analysis of mouse brain development, with great potential for in vivo phenotype analysis in mouse models of neurodevelopmental diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas.

    PubMed

    Kaiser, Anelis; Eppenberger, Leila S; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin

    2015-01-01

    Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood.

  16. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Structural and functional connectivity underlying grey matter covariance: impact of developmental insult.

    PubMed

    Paquola, Casey; Bennett, Maxwell; Lagopoulos, Jim

    2018-05-15

    Structural covariance networks (SCNs) may offer unique insights into the developmental impact of childhood maltreatment because they are thought to reflect coordinated maturation of distinct grey matter regions. T1-weighted magnetic resonance images were acquired from 121 young people with emerging mental illness. Diffusion weighted and resting state functional imaging was also acquired from a random subset of the participants (n=62). Ten study-specific SCNs were identified using a whole brain grey matter independent component analysis. The effects of childhood maltreatment and age on average grey matter density and the expression of each SCN were calculated. Childhood maltreatment was linked to age-related decreases in grey matter density across a SCN that overlapped with the default mode and fronto-parietal networks. Resting state functional connectivity and structural connectivity were calculated in the study-specific SCN and across the whole brain. Grey matter covariance was significantly correlated with rsFC across the SCN, and rsFC fully mediated the relationship between grey matter covariance and structural connectivity in the non-maltreated group. A unique association of grey matter covariance with structural connectivity was detected amongst individuals with a history of childhood maltreatment. Perturbation of grey matter development across the default mode and fronto-parietal networks following childhood maltreatment may have significant implications for mental well-being, given the networks' roles in self-referential activity. Cross-modal comparisons suggest reduced grey matter following childhood maltreatment could arise from deficient functional activity earlier in life.

  18. Rapid Postnatal Expansion of Neural Networks Occurs in an Environment of Altered Neurovascular and Neurometabolic Coupling.

    PubMed

    Kozberg, Mariel G; Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Hillman, Elizabeth M C

    2016-06-22

    In the adult brain, increases in neural activity lead to increases in local blood flow. However, many prior measurements of functional hemodynamics in the neonatal brain, including functional magnetic resonance imaging (fMRI) in human infants, have noted altered and even inverted hemodynamic responses to stimuli. Here, we demonstrate that localized neural activity in early postnatal mice does not evoke blood flow increases as in the adult brain, and elucidate the neural and metabolic correlates of these altered functional hemodynamics as a function of developmental age. Using wide-field GCaMP imaging, the development of neural responses to somatosensory stimulus is visualized over the entire bilaterally exposed cortex. Neural responses are observed to progress from tightly localized, unilateral maps to bilateral responses as interhemispheric connectivity becomes established. Simultaneous hemodynamic imaging confirms that spatiotemporally coupled functional hyperemia is not present during these early stages of postnatal brain development, and develops gradually as cortical connectivity is established. Exploring the consequences of this lack of functional hyperemia, measurements of oxidative metabolism via flavoprotein fluorescence suggest that neural activity depletes local oxygen to below baseline levels at early developmental stages. Analysis of hemoglobin oxygenation dynamics at the same age confirms oxygen depletion for both stimulus-evoked and resting-state neural activity. This state of unmet metabolic demand during neural network development poses new questions about the mechanisms of neurovascular development and its role in both normal and abnormal brain development. These results also provide important insights for the interpretation of fMRI studies of the developing brain. This work demonstrates that the postnatal development of neuronal connectivity is accompanied by development of the mechanisms that regulate local blood flow in response to neural activity. Novel in vivo imaging reveals that, in the developing mouse brain, strong and localized GCaMP neural responses to stimulus fail to evoke local blood flow increases, leading to a state in which oxygen levels become locally depleted. These results demonstrate that the development of cortical connectivity occurs in an environment of altered energy availability that itself may play a role in shaping normal brain development. These findings have important implications for understanding the pathophysiology of abnormal developmental trajectories, and for the interpretation of functional magnetic resonance imaging data acquired in the developing brain. Copyright © 2016 the authors 0270-6474/16/366704-14$15.00/0.

  19. Systems biology of human epilepsy applied to patients with brain tumors.

    PubMed

    Mittal, Sandeep; Shah, Aashit K; Barkmeier, Daniel T; Loeb, Jeffrey A

    2013-12-01

    Epilepsy is a disease of recurrent seizures that can be associated with a wide variety of acquired and developmental brain lesions. Current medications for patients with epilepsy can suppress seizures; they do not cure or modify the underlying disease process. On the other hand, surgical removal of focal brain regions that produce seizures can be curative. This surgical procedure can be more precise with the placement of intracranial recording electrodes to identify brain regions that generate seizure activity as well as those that are critical for normal brain function. The detail that goes into these surgeries includes extensive neuroimaging, electrophysiology, and clinical data. Combined with precisely localized tissues removed, these data provide an unparalleled opportunity to learn about the interrelationships of many "systems" in the human brain not possible in just about any other human brain disorder. Herein, we describe a systems biology approach developed to study patients who undergo brain surgery for epilepsy and how we have begun to apply these methods to patients whose seizures are associated with brain tumors. A central goal of this clinical and translational research program is to improve our understanding of epilepsy and brain tumors and to improve diagnosis and treatment outcomes of both. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  20. Color synesthesia. Insight into perception, emotion, and consciousness

    PubMed Central

    Safran, Avinoam B.; Sanda, Nicolae

    2015-01-01

    Purpose of review Synesthesia is an extraordinary perceptual phenomenon, in which individuals experience unusual percepts elicited by the activation of an unrelated sensory modality or by a cognitive process. Emotional reactions are commonly associated. The condition prompted philosophical debates on the nature of perception and impacted the course of art history. It recently generated a considerable interest among neuroscientists, but its clinical significance apparently remains underevaluated. This review focuses on the recent studies regarding variants of color synesthesia, the commonest form of the condition. Recent findings Synesthesia is commonly classified as developmental and acquired. Developmental forms predispose to changes in primary sensory processing and cognitive functions, usually with better performances in certain aspects and worse in others, and to heightened creativity. Acquired forms of synesthesia commonly arise from drug ingestion or neurological disorders, including thalamic lesions and sensory deprivation (e.g., blindness). Cerebral exploration using structural and functional imaging has demonstrated distinct patterns in cortical activation and brain connectivity for controls and synesthetes. Artworks of affected painters are most illustrative of the nature of synesthetic experiences. Summary Results of the recent investigations on synesthesia offered a remarkable insight into the mechanisms of perception, emotion and consciousness, and deserve attention both from neuroscientists and from clinicians. PMID:25545055

  1. Color synesthesia. Insight into perception, emotion, and consciousness.

    PubMed

    Safran, Avinoam B; Sanda, Nicolae

    2015-02-01

    Synesthesia is an extraordinary perceptual phenomenon, in which individuals experience unusual percepts elicited by the activation of an unrelated sensory modality or by a cognitive process. Emotional reactions are commonly associated. The condition prompted philosophical debates on the nature of perception and impacted the course of art history. It recently generated a considerable interest among neuroscientists, but its clinical significance apparently remains underevaluated. This review focuses on the recent studies regarding variants of color synesthesia, the commonest form of the condition. Synesthesia is commonly classified as developmental and acquired. Developmental forms predispose to changes in primary sensory processing and cognitive functions, usually with better performances in certain aspects and worse in others, and to heightened creativity. Acquired forms of synesthesia commonly arise from drug ingestion or neurological disorders, including thalamic lesions and sensory deprivation (e.g., blindness). Cerebral exploration using structural and functional imaging has demonstrated distinct patterns in cortical activation and brain connectivity for controls and synesthetes. Artworks of affected painters are most illustrative of the nature of synesthetic experiences. Results of the recent investigations on synesthesia offered a remarkable insight into the mechanisms of perception, emotion and consciousness, and deserve attention both from neuroscientists and from clinicians.

  2. Brain structure in sagittal craniosynostosis

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Kim, Sunghyung; Moustapha, Mahmoud; Styner, Martin; Cody-Hazlett, Heather; Gimple-Smith, Rachel; Rumple, Ashley; Piven, Joseph; Gilmore, John; Skolnick, Gary; Patel, Kamlesh

    2017-03-01

    Craniosynostosis, the premature fusion of one or more cranial sutures, leads to grossly abnormal head shapes and pressure elevations within the brain caused by these deformities. To date, accepted treatments for craniosynostosis involve improving surgical skull shape aesthetics. However, the relationship between improved head shape and brain structure after surgery has not been yet established. Typically, clinical standard care involves the collection of diagnostic medical computed tomography (CT) imaging to evaluate the fused sutures and plan the surgical treatment. CT is known to provide very good reconstructions of the hard tissues in the skull but it fails to acquire good soft brain tissue contrast. This study intends to use magnetic resonance imaging to evaluate brain structure in a small dataset of sagittal craniosynostosis patients and thus quantify the effects of surgical intervention in overall brain structure. Very importantly, these effects are to be contrasted with normative shape, volume and brain structure databases. The work presented here wants to address gaps in clinical knowledge in craniosynostosis focusing on understanding the changes in brain volume and shape secondary to surgery, and compare those with normally developing children. This initial pilot study has the potential to add significant quality to the surgical care of a vulnerable patient population in whom we currently have limited understanding of brain developmental outcomes.

  3. Brain disorders and the biological role of music.

    PubMed

    Clark, Camilla N; Downey, Laura E; Warren, Jason D

    2015-03-01

    Despite its evident universality and high social value, the ultimate biological role of music and its connection to brain disorders remain poorly understood. Recent findings from basic neuroscience have shed fresh light on these old problems. New insights provided by clinical neuroscience concerning the effects of brain disorders promise to be particularly valuable in uncovering the underlying cognitive and neural architecture of music and for assessing candidate accounts of the biological role of music. Here we advance a new model of the biological role of music in human evolution and the link to brain disorders, drawing on diverse lines of evidence derived from comparative ethology, cognitive neuropsychology and neuroimaging studies in the normal and the disordered brain. We propose that music evolved from the call signals of our hominid ancestors as a means mentally to rehearse and predict potentially costly, affectively laden social routines in surrogate, coded, low-cost form: essentially, a mechanism for transforming emotional mental states efficiently and adaptively into social signals. This biological role of music has its legacy today in the disordered processing of music and mental states that characterizes certain developmental and acquired clinical syndromes of brain network disintegration. © The Author (2014). Published by Oxford University Press.

  4. Brain disorders and the biological role of music

    PubMed Central

    Clark, Camilla N.; Downey, Laura E.

    2015-01-01

    Despite its evident universality and high social value, the ultimate biological role of music and its connection to brain disorders remain poorly understood. Recent findings from basic neuroscience have shed fresh light on these old problems. New insights provided by clinical neuroscience concerning the effects of brain disorders promise to be particularly valuable in uncovering the underlying cognitive and neural architecture of music and for assessing candidate accounts of the biological role of music. Here we advance a new model of the biological role of music in human evolution and the link to brain disorders, drawing on diverse lines of evidence derived from comparative ethology, cognitive neuropsychology and neuroimaging studies in the normal and the disordered brain. We propose that music evolved from the call signals of our hominid ancestors as a means mentally to rehearse and predict potentially costly, affectively laden social routines in surrogate, coded, low-cost form: essentially, a mechanism for transforming emotional mental states efficiently and adaptively into social signals. This biological role of music has its legacy today in the disordered processing of music and mental states that characterizes certain developmental and acquired clinical syndromes of brain network disintegration. PMID:24847111

  5. How does mindfulness modulate self-regulation in pre-adolescent children? An integrative neurocognitive review.

    PubMed

    Kaunhoven, Rebekah Jane; Dorjee, Dusana

    2017-03-01

    Pre-adolescence is a key developmental period in which complex intrinsic volitional methods of self-regulation are acquired as a result of rapid maturation within the brain networks underlying the self-regulatory processes of attention control and emotion regulation. Fostering adaptive self-regulation skills during this stage of development has strong implications for physical health, emotional and socio-economic outcomes during adulthood. There is a growing interest in mindfulness-based programmes for pre-adolescents with initial findings suggesting self-regulation improvements, however, neurodevelopmental studies on mindfulness with pre-adolescents are scarce. This analytical review outlines an integrative neuro-developmental approach, which combines self-report and behavioural assessments with event related brain potentials (ERPs) to provide a systemic multilevel understanding of the neurocognitive mechanisms of mindfulness in pre-adolescence. We specifically focus on the N2, error related negativity (ERN), error positivity (Pe), P3a, P3b and late positive potential (LPP) ERP components as indexes of mindfulness related modulations in non-volitional bottom-up self-regulatory processes (salience detection, stimulus driven orienting and mind wandering) and volitional top-down self-regulatory processes (endogenous orienting and executive attention). Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. On the Influence of Confounding Factors in Multisite Brain Morphometry Studies of Developmental Pathologies: Application to Autism Spectrum Disorder.

    PubMed

    Auzias, G; Takerkart, S; Deruelle, C

    2016-05-01

    Pooling data acquired on different MR scanners is a commonly used practice to increase the statistical power of studies based on MRI-derived measurements. Such studies are very appealing since they should make it possible to detect more subtle effects related to pathologies. However, the influence of confounds introduced by scanner-related variations remains unclear. When studying brain morphometry descriptors, it is crucial to investigate whether scanner-induced errors can exceed the effect of the disease itself. More specifically, in the context of developmental pathologies such as autism spectrum disorders (ASD), it is essential to evaluate the influence of the scanner on age-related effects. In this paper, we studied a dataset composed of 159 anatomical MR images pooled from three different scanners, including 75 ASD patients and 84 healthy controls. We quantitatively assessed the effects of the age, pathology, and scanner factors on cortical thickness measurements. Our results indicate that scan pooling from different sites would be less fruitful in some cortical regions than in others. Although the effect of age is consistent across scanners, the interaction between the age and scanner factors is important and significant in some specific cortical areas.

  7. Structural connectivity of right frontal hyperactive areas scales with stuttering severity.

    PubMed

    Neef, Nicole E; Anwander, Alfred; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain-behaviour and structure-function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI-diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  8. GETTING LOST: TOPOGRAPHIC SKILLS IN ACQUIRED AND DEVELOPMENTAL PROSOPAGNOSIA

    PubMed Central

    Lee, Edison; Pancaroglu, Raika; Burles, Ford; Duchaine, Brad; Iaria, Giuseppe; Barton, Jason J S

    2016-01-01

    Previous studies report that acquired prosopagnosia is frequently associated with topographic disorientation. Whether this is associated with a specific anatomic subtype of prosopagnosia, how frequently it is seen with the developmental variant, and what specific topographic function is impaired to account for this problem are not known. We studied ten subjects with acquired prosopagnosia from either occipitotemporal or anterior temporal lesions and seven with developmental prosopagnosia. Subjects were given a battery of topographic tests, including house and scene recognition, the road map test, a test of cognitive map formation, and a standardized self-report questionnaire. House and/or scene recognition were frequently impaired after either occipitotemporal or anterior temporal lesions in acquired prosopagnosia. Subjects with occipitotemporal lesions were also impaired in cognitive map formation: an overlap analysis identified right fusiform and parahippocampal gyri as a likely correlate. Only one subject with acquired prosopagnosia had mild difficulty with directional orientation on the road map test. Only one subject with developmental prosopagnosia had difficulty with cognitive map formation, and none were impaired on the other tests. Scores for house and scene recognition correlated most strongly with the results of the questionnaire. We conclude that topographic disorientation in acquired prosopagnosia reflects impaired place recognition, with a contribution from poor cognitive map formation when there is occipitotemporal damage. Topographic impairments are less frequent in developmental prosopagnosia. PMID:26874939

  9. Gastrostomy Tube Feeding in Children With Developmental or Acquired Disorders: A Longitudinal Comparison on Healthcare Provision and Eating Outcomes 4 Years After Gastrostomy.

    PubMed

    Backman, Ellen; Karlsson, Ann-Kristin; Sjögreen, Lotta

    2018-03-30

    Studies on long-term feeding and eating outcomes in children requiring gastrostomy tube feeding (GT) are scarce. The aim of this study was to describe children with developmental or acquired disorders receiving GT and to compare longitudinal eating and feeding outcomes. A secondary aim was to explore healthcare provision related to eating and feeding. This retrospective cohort study reviewed medical records of children in 1 administrative region of Sweden with GT placement between 2005 and 2012. Patient demographics, primary diagnoses, age at GT placement, and professional healthcare contacts prior to and after GT placement were recorded and compared. Feeding and eating outcomes were assessed 4 years after GT placement. The medical records of 51 children, 28 boys and 23 girls, were analyzed and grouped according to "acquired" (n = 13) or "developmental" (n = 38) primary diagnoses. At 4 years after GT placement, 67% were still using GT. Only 6 of 37 (16%) children with developmental disorders transferred to eating all orally, as opposed to 10 of 11 (91%) children with acquired disorders. Children with developmental disorders were younger at the time of GT placement and displayed a longer duration of GT activity when compared with children with acquired disorders. This study demonstrates a clear difference between children with developmental or acquired disorders in duration of GT activity and age at GT placement. The study further shows that healthcare provided to children with GT is in some cases multidisciplinary, but primarily focuses on feeding rather than eating. © 2018 American Society for Parenteral and Enteral Nutrition.

  10. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 2

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand its basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain processes…

  11. Capitalizing on Basic Brain Processes in Developmental Algebra--Part One

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand the brain's basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain…

  12. Development and maintenance of the brain's immune toolkit: Microglia and non-parenchymal brain macrophages.

    PubMed

    Lopez-Atalaya, Jose P; Askew, Katharine E; Sierra, Amanda; Gomez-Nicola, Diego

    2018-06-01

    Microglia and non-parenchymal macrophages located in the perivascular space, the meninges and the choroid plexus are independent immune populations that play vital roles in brain development, homeostasis, and tissue healing. Resident macrophages account for a significant proportion of cells in the brain and their density remains stable throughout the lifespan thanks to constant turnover. Microglia develop from yolk sac progenitors, later evolving through intermediate progenitors in a fine-tuned process in which intrinsic factors and external stimuli combine to progressively sculpt their cell type-specific transcriptional profiles. Recent evidence demonstrates that non-parenchymal macrophages are also generated during early embryonic development. In recent years, the development of powerful fate mapping approaches combined with novel genomic and transcriptomic methodologies have greatly expanded our understanding of how brain macrophages develop and acquire specialized functions, and how cell population dynamics are regulated. Here, we review the transcription factors, epigenetic remodeling, and signaling pathways orchestrating the embryonic development of microglia and non-parenchymal macrophages. Next, we describe the dynamics of the macrophage populations of the brain and discuss the role of progenitor cells, to gain a better understanding of their functions in the healthy and diseased brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 561-579, 2018. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc.

  13. Human Fetal Brain Connectome: Structural Network Development from Middle Fetal Stage to Birth

    PubMed Central

    Song, Limei; Mishra, Virendra; Ouyang, Minhui; Peng, Qinmu; Slinger, Michelle; Liu, Shuwei; Huang, Hao

    2017-01-01

    Complicated molecular and cellular processes take place in a spatiotemporally heterogeneous and precisely regulated pattern in the human fetal brain, yielding not only dramatic morphological and microstructural changes, but also macroscale connectomic transitions. As the underlying substrate of the fetal brain structural network, both dynamic neuronal migration pathways and rapid developing fetal white matter (WM) fibers could fundamentally reshape early fetal brain connectome. Quantifying structural connectome development can not only shed light on the brain reconfiguration in this critical yet rarely studied developmental period, but also reveal alterations of the connectome under neuropathological conditions. However, transition of the structural connectome from the mid-fetal stage to birth is not yet known. The contribution of different types of neural fibers to the structural network in the mid-fetal brain is not known, either. In this study, diffusion tensor magnetic resonance imaging (DT-MRI or DTI) of 10 fetal brain specimens at the age of 20 postmenstrual weeks (PMW), 12 in vivo brains at 35 PMW, and 12 in vivo brains at term (40 PMW) were acquired. The structural connectome of each brain was established with evenly parcellated cortical regions as network nodes and traced fiber pathways based on DTI tractography as network edges. Two groups of fibers were categorized based on the fiber terminal locations in the cerebral wall in the 20 PMW fetal brains. We found that fetal brain networks become stronger and more efficient during 20–40 PMW. Furthermore, network strength and global efficiency increase more rapidly during 20–35 PMW than during 35–40 PMW. Visualization of the whole brain fiber distribution by the lengths suggested that the network reconfiguration in this developmental period could be associated with a significant increase of major long association WM fibers. In addition, non-WM neural fibers could be a major contributor to the structural network configuration at 20 PMW and small-world network organization could exist as early as 20 PMW. These findings offer a preliminary record of the fetal brain structural connectome maturation from the middle fetal stage to birth and reveal the critical role of non-WM neural fibers in structural network configuration in the middle fetal stage. PMID:29081731

  14. Trade-offs between acquired and innate immune defenses in humans

    PubMed Central

    McDade, Thomas W.; Georgiev, Alexander V.; Kuzawa, Christopher W.

    2016-01-01

    Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology. PMID:26739325

  15. Quantitative and Qualitative Analysis of Transient Fetal Compartments during Prenatal Human Brain Development

    PubMed Central

    Vasung, Lana; Lepage, Claude; Radoš, Milan; Pletikos, Mihovil; Goldman, Jennifer S.; Richiardi, Jonas; Raguž, Marina; Fischi-Gómez, Elda; Karama, Sherif; Huppi, Petra S.; Evans, Alan C.; Kostovic, Ivica

    2016-01-01

    The cerebral wall of the human fetal brain is composed of transient cellular compartments, which show characteristic spatiotemporal relationships with intensity of major neurogenic events (cell proliferation, migration, axonal growth, dendritic differentiation, synaptogenesis, cell death, and myelination). The aim of the present study was to obtain new quantitative data describing volume, surface area, and thickness of transient compartments in the human fetal cerebrum. Forty-four postmortem fetal brains aged 13–40 postconceptional weeks (PCW) were included in this study. High-resolution T1 weighted MR images were acquired on 19 fetal brain hemispheres. MR images were processed using in-house software (MNI-ACE toolbox). Delineation of fetal compartments was performed semi-automatically by co-registration of MRI with histological sections of the same brains, or with the age-matched brains from Zagreb Neuroembryological Collection. Growth trajectories of transient fetal compartments were reconstructed. The composition of telencephalic wall was quantitatively assessed. Between 13 and 25 PCW, when the intensity of neuronal proliferation decreases drastically, the relative volume of proliferative (ventricular and subventricular) compartments showed pronounced decline. In contrast, synapse- and extracellular matrix-rich subplate compartment continued to grow during the first two trimesters, occupying up to 45% of telencephalon and reaching its maximum volume and thickness around 30 PCW. This developmental maximum coincides with a period of intensive growth of long cortico-cortical fibers, which enter and wait in subplate before approaching the cortical plate. Although we did not find significant age related changes in mean thickness of the cortical plate, the volume, gyrification index, and surface area of the cortical plate continued to exponentially grow during the last phases of prenatal development. This cortical expansion coincides developmentally with the transformation of embryonic cortical columns, dendritic differentiation, and ingrowth of axons. These results provide a quantitative description of transient human fetal brain compartments observable with MRI. Moreover, they will improve understanding of structural-functional relationships during brain development, will enable correlation between in vitro/in vivo imaging and fine structural histological studies, and will serve as a reference for study of perinatal brain injuries. PMID:26941612

  16. Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes

    PubMed Central

    Motch Perrine, Susan M.; Stecko, Tim; Neuberger, Thomas; Jabs, Ethylin W.; Ryan, Timothy M.; Richtsmeier, Joan T.

    2017-01-01

    The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy) of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative to the effects of disease-associated mutations, our results reveal a stronger influence of the background genome on patterns of brain-skull integration and suggest robust genetic, developmental, and evolutionary relationships between neural and skeletal tissues of the head. PMID:28790902

  17. Microglia and Inflammation: Impact on Developmental Brain Injuries

    ERIC Educational Resources Information Center

    Chew, Li-Jin; Takanohashi, Asako; Bell, Michael

    2006-01-01

    Inflammation during the perinatal period has become a recognized risk factor for developmental brain injuries over the past decade or more. To fully understand the relationship between inflammation and brain development, a comprehensive knowledge about the immune system within the brain is essential. Microglia are resident immune cells within the…

  18. A review of brain circuitries involved in stuttering

    PubMed Central

    Craig-McQuaide, Anna; Akram, Harith; Zrinzo, Ludvic; Tripoliti, Elina

    2014-01-01

    Stuttering has been the subject of much research, nevertheless its etiology remains incompletely understood. This article presents a critical review of the literature on stuttering, with particular reference to the role of the basal ganglia (BG). Neuroimaging and lesion studies of developmental and acquired stuttering, as well as pharmacological and genetic studies are discussed. Evidence of structural and functional changes in the BG in those who stutter indicates that this motor speech disorder is due, at least in part, to abnormal BG cues for the initiation and termination of articulatory movements. Studies discussed provide evidence of a dysfunctional hyperdopaminergic state of the thalamocortical pathways underlying speech motor control in stuttering. Evidence that stuttering can improve, worsen or recur following deep brain stimulation for other indications is presented in order to emphasize the role of BG in stuttering. Further research is needed to fully elucidate the pathophysiology of this speech disorder, which is associated with significant social isolation. PMID:25452719

  19. Corpus callosum demyelination associated with acquired stuttering.

    PubMed

    Decker, Barbara McElwee; Guitar, Barry; Solomon, Andrew

    2018-04-21

    Compared with developmental stuttering, adult onset acquired stuttering is rare. However, several case reports describe acquired stuttering and an association with callosal pathology. Interestingly, these cases share a neuroanatomical localisation also demonstrated in developmental stuttering. We present a case of adult onset acquired stuttering associated with inflammatory demyelination within the corpus callosum. This patient's disfluency improved after the initiation of immunomodulatory therapy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. A Primer on Brain Imaging in Developmental Psychopathology: What Is It Good For?

    ERIC Educational Resources Information Center

    Pine, Daniel S.

    2006-01-01

    This primer introduces a Special Section on brain imaging, which includes a commentary and 10 data papers presenting applications of brain imaging to questions on developmental psychopathology. This primer serves two purposes. First, the article summarizes the strength and weaknesses of various brain-imaging techniques typically employed in…

  1. Phonological Treatment Efficacy and Developmental Norms.

    ERIC Educational Resources Information Center

    Gierut, Judith A.; And Others

    1996-01-01

    Two studies, one within subjects and the other across subjects, evaluated the efficacy of teaching sounds in developmental sequence to nine young children (ages three to five). Treatment of later-acquired phonemes led to systemwide changes in untreated sound classes, whereas treatment of early-acquired phonemes did not. Findings suggest…

  2. Unraveling the Miswired Connectome: A Developmental Perspective

    PubMed Central

    Di Martino, Adriana; Fair, Damien A.; Kelly, Clare; Satterthwaite, Theodore D.; Castellanos, F. Xavier; Thomason, Moriah E.; Craddock, R. Cameron; Luna, Beatriz; Leventhal, Bennett L.; Zuo, Xi-Nian; Milham, Michael P.

    2014-01-01

    Summary The vast majority of mental illnesses can be conceptualized as developmental disorders of neural interactions within the connectome, or developmental miswiring. The recent maturation of pediatric in vivo brain imaging is bringing within reach the identification of clinically meaningful brain-based biomarkers of developmental disorders. Even more auspicious, is the ability to study the evolving connectome throughout life, beginning in utero, which promises to move the field from topological phenomenology to etiological nosology. Here, we scope advances in pediatric imaging of the brain connectome as the field faces the challenge of unraveling developmental miswiring. We highlight promises while also providing a pragmatic review of the many obstacles ahead that must be overcome to significantly impact public health. PMID:25233316

  3. Converging early responses to brain injury pave the road to epileptogenesis.

    PubMed

    Neuberger, Eric J; Gupta, Akshay; Subramanian, Deepak; Korgaonkar, Akshata A; Santhakumar, Vijayalakshmi

    2017-11-29

    Epilepsy, characterized by recurrent seizures and abnormal electrical activity in the brain, is one of the most prevalent brain disorders. Over two million people in the United States have been diagnosed with epilepsy and 3% of the general population will be diagnosed with it at some point in their lives. While most developmental epilepsies occur due to genetic predisposition, a class of "acquired" epilepsies results from a variety of brain insults. A leading etiological factor for epilepsy that is currently on the rise is traumatic brain injury (TBI), which accounts for up to 20% of all symptomatic epilepsies. Remarkably, the presence of an identified early insult that constitutes a risk for development of epilepsy provides a therapeutic window in which the pathological processes associated with brain injury can be manipulated to limit the subsequent development of recurrent seizure activity and epilepsy. Recent studies have revealed diverse pathologies, including enhanced excitability, activated immune signaling, cell death, and enhanced neurogenesis within a week after injury, suggesting a period of heightened adaptive and maladaptive plasticity. An integrated understanding of these processes and their cellular and molecular underpinnings could lead to novel targets to arrest epileptogenesis after trauma. This review attempts to highlight and relate the diverse early changes after trauma and their role in development of epilepsy and suggests potential strategies to limit neurological complications in the injured brain. © 2017 Wiley Periodicals, Inc.

  4. Developmental Thyroid Hormone Insufficiency Reduces Expression of Brain-Derived Neurotrophic Factor (BDNF) in Adults But Not in Neonates

    EPA Science Inventory

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expressio...

  5. Teaching Play Activities to Preschool Children with Disabilities: The Importance of Developmental Considerations.

    ERIC Educational Resources Information Center

    Lifter, Karin; And Others

    1993-01-01

    Three preschool children exhibiting autistic behaviors were taught developmentally appropriate (DA) and age appropriate (AA) pretend play activities. Although DA activities were consistently acquired, activities in the AA category were, in most cases, not acquired and were less likely to be generalized to other activities or toys. (Author/JDD)

  6. Brain evolution and development: adaptation, allometry and constraint

    PubMed Central

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  7. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    PubMed

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Developing clinically suitable measures of social cognition for children: initial findings from a normative sample.

    PubMed

    Saltzman-Benaiah, Jennifer; Lalonde, Christopher E

    2007-03-01

    Our understanding of children's social competence has increased tremendously over the past two decades. There is increasing evidence to suggest that social-cognitive impairments are not restricted to children on the autistic spectrum, but rather may be associated with a host of developmental and acquired neurological conditions including learning disabilities, attention deficit disorder, traumatic brain injury, and stroke. Although many investigators have begun to bridge the gap between clinical practice and research by applying experimental tasks to clinical populations, few tools are available for the clinical evaluation of social competence, particularly in children. This study marks a series of first steps in the development of measures suitable for the assessment of children between 6 and 12 years of age. The results of the study provide data for a number of experimental tasks that have been adapted with clinical practice in mind. A discussion of the developmental progressions and the relationships among the measures is also included.

  9. Developmental Thyroid Hormone Insufficiency Induces Cortical Brain Malformation and Learning Impairments: A Cross-Fostering Study

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development, but animal models of well-defined and sensitive downstream apical neurotoxic outcomes associated with developmental TH disruption are lacking. A structural anomaly, a cortical heterotopia, in the brains of hypothyroid rat...

  10. What underlies the diversity of brain tumors?

    PubMed Central

    Swartling, Fredrik J.; Hede, Sanna-Maria; Weiss, William A.

    2012-01-01

    Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children respectively. Recent genomic and transcriptional approaches present a complex group of diseases, and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an increasing array of genetically engineered mouse models (GEMMs) has been developed. These models often utilize promoters and genetic drivers from normal brain development, and can provide insight into specific cells from which these tumors originate. GEMMs show promise in both developmental biology and developmental therapeutics. This review describes numerous murine brain tumor models in the context of normal brain development, and the potential for these animals to impact brain tumor research. PMID:23085857

  11. Larger Brains in Medication Naive High-Functioning Subjects with Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Palmen, Saskia J. M. C.; Pol, Hilleke E. Hulshoff; Kemner, Chantal; Schnack, Hugo G.; Janssen, Joost; Kahn, Rene S.; van Engeland, Herman

    2004-01-01

    Background: Are brain volumes of individuals with Pervasive Developmental Disorder (PDD) still enlarged in adolescence and adulthood, and if so, is this enlargement confined to the gray and/or the white matter and is it global or more prominent in specific brain regions. Methods: Brain MRI scans were made of 21 adolescents with PDD and 21 closely…

  12. Growth and development of the brain and impact on cognitive outcomes.

    PubMed

    Hüppi, Petra S

    2010-01-01

    Understanding human brain development from the fetal life to adulthood is of great clinical importance as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral maturation. The developing brain is particularly prone to being affected by endogenous and exogenous events through the fetal and early postnatal life. The concept of 'developmental plasticity or disruption of the developmental program' summarizes these events. Increases in white matter, which speed up communication between brain cells, growing complexity of neuronal networks suggested by gray and white matter changes, and environmentally sensitive plasticity are all essential aspects in a child's ability to mentalize and maintain the adaptive flexibility necessary for achieving high sociocognitive functioning. Advancement in neuroimaging has opened up new ways for examining the developing human brain in vivo, the study of the effects of early antenatal, perinatal and neonatal events on later structural and functional brain development resulting in developmental disabilities or developmental resilience. In this review, methods of quantitative assessment of human brain development, such as 3D-MRI with image segmentation, diffusion tensor imaging to assess connectivity and functional MRI to visualize brain function will be presented. Copyright (c) 2010 S. Karger AG, Basel.

  13. Sex Differences in Intelligence and Brain Size: A Developmental Theory.

    ERIC Educational Resources Information Center

    Lynn, Richard

    1999-01-01

    Proposes a developmental theory of sex differences in intelligence that states that the faster maturation and brain size growth in girls up to age 15 compensates for their smaller brain size so that sex differences in intelligence are very small. Discusses evidence that supports this theory. (SLD)

  14. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species

    PubMed Central

    Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.

    2013-01-01

    Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307

  15. Significance of the Feuerstein approach in neurocognitive rehabilitation.

    PubMed

    Lebeer, Jo

    2016-06-18

    The theory of Structural Cognitive Modifiability and Mediated Learning Experience of Reuven Feuerstein states that individuals with brain impairment, because of congenital or acquired origin, may substantially and structurally improve their cognitive functioning, by a systematic intervention based on a specific, criteria-based type of interaction ("mediated learning"). Three application systems are based on it: a dynamic-interactive assessment of learning capacity and processes of learning, the LPAD (Learning Propensity Assessment Device); a cognitive intervention program called "Instrumental Enrichment Program", which trains cognitive, metacognitive and executive functions; and a program, which is oriented at working in context, Shaping Modifying Environments. These programs have been applied in widely different target groups: from children and young adults with learning and developmental disabilities, at risk of school failure, or having failed at school, because of socio-economic disadvantage or congenital neurological impairment; disadvantaged youngsters and adults in vocational training, to elderly people at the beginning of a dementia process. Experience with cognitive rehabilitation of children and adults with acquired brain damage, has been relatively recent, first in the Feuerstein Institute's Brain Injury Unit in Jerusalem, later in other centers in different parts of the world; therefore scientific data are scarce. The purpose of this paper is to examine how the Feuerstein-approach fits into the goals and proposed approaches of cognitive rehabilitation, and to explore its relevance for assessment and intervention in individuals with congenital or acquired brain damage. The methodology of the Feuerstein approach consists of four pillars: dynamic assessment, cognitive activation, mediated learning and shaping a modifying environment. The criteria of mediated learning experience are explained with specific reference to people with acquired brain injury. The procedure of learning propensity assessment device uses visuo-spatial and verbal tasks known from neuropsychological assessment (such as Rey's complex figure drawing), as well as a in a pre-test - brief intervention - post-test format. Cognitive activation is done in various ways: a paper-and-pencil relatively content-free program called "instrumental enrichment", with transfer of learned principles into daily life situations, followed by metacognitive feedback. Four case histories of acquired brain damage are analyzed: a 19 year old man with extensive post-astrocytoma frontotemporal brain lesions; a 19 year old man with bilateral frontal and right temporal and parieto-occipital parenchymatous destruction after a traumatic brain injury; a 24 year old man with hemispherectomy for intractable epilepsy because of Sturge-Weber syndrome; and a 30-year old man with left porencephalic cyst after cerebral hemorrhage. Structural cognitive improvement could be demonstrated in positive change scores in visuo-spatial memory, associative and verbal memory, abstract thinking, and organizing tasks, even more than 10 years post-TBI. In some cases a rise in IQ has been documented. Improvement in daily life functioning and academic skills (re)learning has also been seen. Though impossible to claim scientific evidence, the case histories nevertheless suggest the importance of interactive assessment in designing intervention programs which have sufficient intensity, frequency, duration and consistency of mediation; furthermore, an essential ingredient is the ecological approach which requires working with the patient and the whole network around; a firm "belief system" or that modifiability is possible even with severe brain damage and many years after the injury; a cognitive, metacognitive and executive approach, and a quality of interaction according to criteria of mediated learning. They suggest that Feuerstein approach may offer interesting perspectives to cognitive rehabilitation. More extensive research is needed to provide a broader scientific evidence base.

  16. Phenotypic Integration of Neurocranium and Brain

    PubMed Central

    RICHTSMEIER, JOAN T.; ALDRIDGE, KRISTINA; DeLEON, VALERIE B.; PANCHAL, JAYESH; KANE, ALEX A.; MARSH, JEFFREY L.; YAN, PENG; COLE, THEODORE M.

    2009-01-01

    Evolutionary history of Mammalia provides strong evidence that the morphology of skull and brain change jointly in evolution. Formation and development of brain and skull co-occur and are dependent upon a series of morphogenetic and patterning processes driven by genes and their regulatory programs. Our current concept of skull and brain as separate tissues results in distinct analyses of these tissues by most researchers. In this study, we use 3D computed tomography and magnetic resonance images of pediatric individuals diagnosed with premature closure of cranial sutures (craniosynostosis) to investigate phenotypic relationships between the brain and skull. It has been demonstrated previously that the skull and brain acquire characteristic dysmorphologies in isolated craniosynostosis, but relatively little is known of the developmental interactions that produce these anomalies. Our comparative analysis of phenotypic integration of brain and skull in premature closure of the sagittal and the right coronal sutures demonstrates that brain and skull are strongly integrated and that the significant differences in patterns of association do not occur local to the prematurely closed suture. We posit that the current focus on the suture as the basis for this condition may identify a proximate, but not the ultimate cause for these conditions. Given that premature suture closure reduces the number of cranial bones, and that a persistent loss of skull bones is demonstrated over the approximately 150 million years of synapsid evolution, craniosynostosis may serve as an informative model for evolution of the mammalian skull. PMID:16526048

  17. Phenotypic integration of neurocranium and brain.

    PubMed

    Richtsmeier, Joan T; Aldridge, Kristina; DeLeon, Valerie B; Panchal, Jayesh; Kane, Alex A; Marsh, Jeffrey L; Yan, Peng; Cole, Theodore M

    2006-07-15

    Evolutionary history of Mammalia provides strong evidence that the morphology of skull and brain change jointly in evolution. Formation and development of brain and skull co-occur and are dependent upon a series of morphogenetic and patterning processes driven by genes and their regulatory programs. Our current concept of skull and brain as separate tissues results in distinct analyses of these tissues by most researchers. In this study, we use 3D computed tomography and magnetic resonance images of pediatric individuals diagnosed with premature closure of cranial sutures (craniosynostosis) to investigate phenotypic relationships between the brain and skull. It has been demonstrated previously that the skull and brain acquire characteristic dysmorphologies in isolated craniosynostosis, but relatively little is known of the developmental interactions that produce these anomalies. Our comparative analysis of phenotypic integration of brain and skull in premature closure of the sagittal and the right coronal sutures demonstrates that brain and skull are strongly integrated and that the significant differences in patterns of association do not occur local to the prematurely closed suture. We posit that the current focus on the suture as the basis for this condition may identify a proximate, but not the ultimate cause for these conditions. Given that premature suture closure reduces the number of cranial bones, and that a persistent loss of skull bones is demonstrated over the approximately 150 million years of synapsid evolution, craniosynostosis may serve as an informative model for evolution of the mammalian skull. Copyright 2006 Wiley-Liss, Inc.

  18. The rehabilitation of face recognition impairments: a critical review and future directions

    PubMed Central

    Bate, Sarah; Bennetts, Rachel J.

    2014-01-01

    While much research has investigated the neural and cognitive characteristics of face recognition impairments (prosopagnosia), much less work has examined their rehabilitation. In this paper, we present a critical analysis of the studies that have attempted to improve face-processing skills in acquired and developmental prosopagnosia, and place them in the context of the wider neurorehabilitation literature. First, we examine whether neuroplasticity within the typical face-processing system varies across the lifespan, in order to examine whether timing of intervention may be crucial. Second, we examine reports of interventions in acquired prosopagnosia, where training in compensatory strategies has had some success. Third, we examine reports of interventions in developmental prosopagnosia, where compensatory training in children and remedial training in adults have both been successful. However, the gains are somewhat limited—compensatory strategies have resulted in labored recognition techniques and limited generalization to untrained faces, and remedial techniques require longer periods of training and result in limited maintenance of gains. Critically, intervention suitability and outcome in both forms of the condition likely depends on a complex interaction of factors, including prosopagnosia severity, the precise functional locus of the impairment, and individual differences such as age. Finally, we discuss future directions in the rehabilitation of prosopagnosia, and the possibility of boosting the effects of cognitive training programmes by simultaneous administration of oxytocin or non-invasive brain stimulation. We conclude that future work using more systematic methods and larger participant groups is clearly required, and in the case of developmental prosopagnosia, there is an urgent need to develop early detection and remediation tools for children, in order to optimize intervention outcome. PMID:25100965

  19. Cerebral cortex three-dimensional profiling in human fetuses by magnetic resonance imaging

    PubMed Central

    Sbarbati, Andrea; Pizzini, Francesca; Fabene, Paolo F; Nicolato, Elena; Marzola, Pasquina; Calderan, Laura; Simonati, Alessandro; Longo, Laura; Osculati, Antonio; Beltramello, Alberto

    2004-01-01

    Seven human fetuses of crown/rump length corresponding to gestational ages ranging from the 12th to the 16th week were studied using a paradigm based on three-dimensional reconstruction of the brain obtained by magnetic resonance imaging (MRI). The aim of the study was to evaluate brain morphology in situ and to describe developmental dynamics during an important period of fetal morphogenesis. Three-dimensional MRI showed the increasing degree of maturation of the brains; fronto-occipital distance, bitemporal distance and occipital angle were examined in all the fetuses. The data were interpreted by correlation with the internal structure as visualized using high-spatial-resolution MRI, acquired using a 4.7-T field intensity magnet with a gradient power of 20 G cm−1. The spatial resolution was sufficient for a detailed detection of five layers, and the contrast was optimized using sequences with different degrees of T1 and T2 weighting. Using the latter, it was possible to visualize the subplate and marginal zones. The cortical thickness was mapped on to the hemispheric surface, describing the thickness gradient from the insular cortex to the periphery of the hemispheres. The study demonstrates the utility of MRI for studying brain development. The method provides a quantitative profiling of the brain, which allows the calculation of important morphological parameters, and it provides informative regarding transient features of the developing brain. PMID:15198688

  20. A high resolution spatiotemporal atlas of gene expression of the developing mouse brain

    PubMed Central

    Thompson, Carol L.; Ng, Lydia; Menon, Vilas; Martinez, Salvador; Lee, Chang-Kyu; Glattfelder, Katie; Sunkin, Susan M.; Henry, Alex; Lau, Christopher; Dang, Chinh; Garcia-Lopez, Raquel; Martinez-Ferre, Almudena; Pombero, Ana; Rubenstein, John L.R.; Wakeman, Wayne B.; Hohmann, John; Dee, Nick; Sodt, Andrew J.; Young, Rob; Smith, Kimberly; Nguyen, Thuc-Nghi; Kidney, Jolene; Kuan, Leonard; Jeromin, Andreas; Kaykas, Ajamete; Miller, Jeremy; Page, Damon; Orta, Geri; Bernard, Amy; Riley, Zackery; Smith, Simon; Wohnoutka, Paul; Hawrylycz, Mike; Puelles, Luis; Jones, Allan R.

    2015-01-01

    SUMMARY To provide a temporal framework for the genoarchitecture of brain development, in situ hybridization data were generated for embryonic and postnatal mouse brain at 7 developmental stages for ~2100 genes, processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, 7 reference atlases, an ontogenetic ontology, and tools to explore co-expression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (developingmouse.brain-map.org). PMID:24952961

  1. Developmental disorders: what can be learned from cognitive neuropsychology?

    PubMed

    Castles, Anne; Kohnen, Saskia; Nickels, Lyndsey; Brock, Jon

    2014-01-01

    The discipline of cognitive neuropsychology has been important for informing theories of cognition and describing the nature of acquired cognitive disorders, but its applicability in a developmental context has been questioned. Here, we revisit this issue, asking whether the cognitive neuropsychological approach can be helpful for exploring the nature and causes of developmental disorders and, if so, how. We outline the key features of the cognitive neuropsychological approach, and then consider how some of the major challenges to this approach from a developmental perspective might be met. In doing so, we distinguish between challenges to the methods of cognitive neuropsychology and those facing its deeper conceptual underpinnings. We conclude that the detailed investigation of patterns of both associations and dissociations, and across both developmental and acquired cases, can assist in describing the cognitive deficits within developmental disorders and in delineating possible causal pathways to their acquisition.

  2. Developmental disorders: what can be learned from cognitive neuropsychology?

    PubMed Central

    Castles, Anne; Kohnen, Saskia; Nickels, Lyndsey; Brock, Jon

    2014-01-01

    The discipline of cognitive neuropsychology has been important for informing theories of cognition and describing the nature of acquired cognitive disorders, but its applicability in a developmental context has been questioned. Here, we revisit this issue, asking whether the cognitive neuropsychological approach can be helpful for exploring the nature and causes of developmental disorders and, if so, how. We outline the key features of the cognitive neuropsychological approach, and then consider how some of the major challenges to this approach from a developmental perspective might be met. In doing so, we distinguish between challenges to the methods of cognitive neuropsychology and those facing its deeper conceptual underpinnings. We conclude that the detailed investigation of patterns of both associations and dissociations, and across both developmental and acquired cases, can assist in describing the cognitive deficits within developmental disorders and in delineating possible causal pathways to their acquisition. PMID:24324246

  3. Epstein-Barr virus-associated primary central nervous system lymphoma in a child with the acquired immunodeficiency syndrome. A case report and review of the literature.

    PubMed

    Rodriguez, M M; Delgado, P I; Petito, C K

    1997-12-01

    A 34-month-old black boy who had contracted acquired immunodeficiency syndrome from his mother presented with fever, vomiting, and cough. He was cachectic, hypertonic, and developmentally delayed. A brain computed tomography scan revealed masses in the left frontal horn, subependymal, and periventricular regions; secondary edema; and hydrocephalus. The differential diagnosis was cerebral lymphoma versus toxoplasmosis. The patient had disseminated Mycobacterium avium-intracellulare infection, lymphoid interstitial pneumonitis, as well as Pseudomonas and Klebsiella pneumonia. He died of respiratory insufficiency 53 days after admission. The autopsy confirmed a primary cerebral B-cell lymphoma, large cell type, which was positive for Epstein-Barr virus, latent phase, by in situ hybridization. Primary central nervous system lymphomas are rare in children, in contrast to adults. To our knowledge, only five well-documented cases of primary cerebral lymphomas in infants and children with acquired immunodeficiency syndrome have been reported previously. The current study shows that these childhood lymphomas are associated with and presumably caused by Epstein-Barr virus and thus have a pathogenesis similar to that of primary central nervous system lymphomas in adults.

  4. Early Brain Damage and the Development of Motor Behavior in Children: Clues for Therapeutic Intervention?

    PubMed Central

    Hadders-Algra, Mijna

    2001-01-01

    The Neuronal Group Selection Theory (NGST) could offer new insights into the mechanisms directing motor disorders, such as cerebral palsy and developmental coordination disorder. According to NGST, normal motor development is characterized by two phases of variability. Variation is not at random but determined by criteria set by genetic information. Development starts with the phase of primary variability,during which variation in motor behavior is not geared to external conditions. At function-specific ages secondary variability starts, during which motor performance can be adapted to specific situations. In both forms, of variability, selection on the basis of afferent information plays a significant role. From the NGST point of view, children with pre- or perinatally acquired brain damage, such as children with cerebral palsy and part of the children with developmental coordination disorder, suffer from stereotyped motor behavior, produced by a limited repertoire or primary (sub)cortical neuronal networks. These children also have roblems in selecting the most efficient neuronal activity, due to deficits in the processing of sensory information. Therefore, NGST suggests that intervention in these children at early age should aim at an enlargement of the primary neuronal networks. With increasing age, the emphasis of intervention could shift to the provision of ample opportunities for active practice, which might form a compensation for the impaired selection. PMID:11530887

  5. Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study

    PubMed Central

    Sun, D; Stuart, GW; Jenkinson, M; Wood, SJ; McGorry, PD; Velakoulis, D; van Erp, TGM; Thompson, PM; Toga, AW; Smith, DJ; Cannon, TD; Pantelis, C

    2009-01-01

    Schizophrenia is associated with structural brain abnormalities, but the timing of onset and course of these changes remains unclear. Longitudinal magnetic resonance imaging (MRI) studies have demonstrated progressive brain volume decreases in patients around and after the onset of illness, although considerable discrepancies exist regarding which brain regions are affected. The anatomical pattern of these progressive changes in schizophrenia is largely unknown. In this study, MRI scans were acquired repeatedly from 16 schizophrenia patients approximately 2 years apart following their first episode of illness, and also from 14 age-matched healthy subjects. Cortical Pattern Matching, in combination with Structural Image Evaluation, using Normalisation, of Atrophy, was applied to compare the rates of cortical surface contraction between patients and controls. Surface contraction in the dorsal surfaces of the frontal lobe was significantly greater in patients with first-episode schizophrenia (FESZ) compared with healthy controls. Overall, brain surface contraction in patients and healthy controls showed similar anatomical patterns, with that of the former group exaggerated in magnitude across the entire brain surface. That the pattern of structural change in the early course of schizophrenia corresponds so closely to that associated with normal development is consistent with the hypothesis that a schizophrenia-related factor interacts with normal adolescent brain developmental processes in the pathophysiology of schizophrenia. The exaggerated progressive changes seen in patients with schizophrenia may reflect an increased rate of synaptic pruning, resulting in excessive loss of neuronal connectivity, as predicted by the late neurodevelopmental hypothesis of the illness. PMID:18607377

  6. Prediction complements explanation in understanding the developing brain.

    PubMed

    Rosenberg, Monica D; Casey, B J; Holmes, Avram J

    2018-02-21

    A central aim of human neuroscience is understanding the neurobiology of cognition and behavior. Although we have made significant progress towards this goal, reliance on group-level studies of the developed adult brain has limited our ability to explain population variability and developmental changes in neural circuitry and behavior. In this review, we suggest that predictive modeling, a method for predicting individual differences in behavior from brain features, can complement descriptive approaches and provide new ways to account for this variability. Highlighting the outsized scientific and clinical benefits of prediction in developmental populations including adolescence, we show that predictive brain-based models are already providing new insights on adolescent-specific risk-related behaviors. Together with large-scale developmental neuroimaging datasets and complementary analytic approaches, predictive modeling affords us the opportunity and obligation to identify novel treatment targets and individually tailor the course of interventions for developmental psychopathologies that impact so many young people today.

  7. Development of the brain's functional network architecture.

    PubMed

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  8. Development of the Brain's Functional Network Architecture

    PubMed Central

    Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.

    2013-01-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563

  9. Flexible, rapid and automatic neocortical word form acquisition mechanism in children as revealed by neuromagnetic brain response dynamics.

    PubMed

    Partanen, Eino; Leminen, Alina; de Paoli, Stine; Bundgaard, Anette; Kingo, Osman Skjold; Krøjgaard, Peter; Shtyrov, Yury

    2017-07-15

    Children learn new words and word forms with ease, often acquiring a new word after very few repetitions. Recent neurophysiological research on word form acquisition in adults indicates that novel words can be acquired within minutes of repetitive exposure to them, regardless of the individual's focused attention on the speech input. Although it is well-known that children surpass adults in language acquisition, the developmental aspects of such rapid and automatic neural acquisition mechanisms remain unexplored. To address this open question, we used magnetoencephalography (MEG) to scrutinise brain dynamics elicited by spoken words and word-like sounds in healthy monolingual (Danish) children throughout a 20-min repetitive passive exposure session. We found rapid neural dynamics manifested as an enhancement of early (~100ms) brain activity over the short exposure session, with distinct spatiotemporal patterns for different novel sounds. For novel Danish word forms, signs of such enhancement were seen in the left temporal regions only, suggesting reliance on pre-existing language circuits for acquisition of novel word forms with native phonology. In contrast, exposure both to novel word forms with non-native phonology and to novel non-speech sounds led to activity enhancement in both left and right hemispheres, suggesting that more wide-spread cortical networks contribute to the build-up of memory traces for non-native and non-speech sounds. Similar studies in adults have previously reported more sluggish (~15-25min, as opposed to 4min in the present study) or non-existent neural dynamics for non-native sound acquisition, which might be indicative of a higher degree of plasticity in the children's brain. Overall, the results indicate a rapid and highly plastic mechanism for a dynamic build-up of memory traces for novel acoustic information in the children's brain that operates automatically and recruits bilateral temporal cortical circuits. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Acquired Brain Injury Club at a Community College: Opportunities for Support, Involvement, and Leadership

    ERIC Educational Resources Information Center

    Chinn, Nancy Resendes

    2009-01-01

    College students with acquired brain injuries face unique challenges. The likelihood of individuals with acquired brain injury experiencing isolation, lack of social support, and diminished self-esteem, along with cognitive impairments, is well documented in the literature. This article presents an overview of a community college's club for…

  11. Investigating the Acquisition, Generalization, and Emergence of Untrained Verbal Operants for Mands Acquired Using the Picture Exchange Communication System in Adults with Severe Developmental Disabilities

    ERIC Educational Resources Information Center

    Ziomek, M. M.; Rehfeldt, R. A.

    2008-01-01

    This study compared the total amount of training time and total number of trial blocks for individuals with severe developmental disabilities to acquire mands under control of unconditioned establishing operations and mands under control of transitive conditioned establishing operations for manual sign and for the Picture Exchange Communication…

  12. Mutational Analysis of Cell Types in TSC

    DTIC Science & Technology

    2008-01-01

    disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure known as tubers in over 80% of TSC patients. Loss of...that is associated with epilepsy, cognitive disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure...2000). Comorbid neuropsychological disorders such as autism , mental retardation (MR), pervasive developmental disorder, attention deficit disorder (ADD

  13. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster.

    PubMed

    Morris, Melanie; Shaw, Ariel; Lambert, Madison; Perry, Haley Halperin; Lowenstein, Eve; Valenzuela, David; Velazquez-Ulloa, Norma Andrea

    2018-06-14

    Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.

  14. The Savant Syndrome Registry: A Preliminary Report.

    PubMed

    Treffert, Darold A; Rebedew, David L

    2015-08-01

    A registry has been established to document certain characteristics on a sizeable worldwide sample of individuals with savant syndrome, a rare but remarkable condition in which persons with developmental disabilities, brain injury, or brain disease have some spectacular "islands" of skill or ability that stand in jarring, marked contrast to overall handicap. Of the 319 savants included in the registry, 90% are congenital savants, while 10% are acquired savants. The registry includes individuals from 33 countries, with 70% from the United States or Canada. Sex distribution was 79% male vs. 21% female (4:1). This report summarizes the findings in the congenital savant syndrome category of the registry. Among the individuals with congenital savant syndrome, the most common underlying disability was Autistic Spectrum Disorder (75%); various other central nervous system (CNS) disorders were present in the other 25%. Fifty-five percent possessed a single special skill, while 45% had multiple skills. Music was the most frequent principal skill followed by art, memory, mathematics, calendar calculating, language, visual-spatial/mechanical, athletic, computer, extrasensory perception, and other skills.

  15. A tentative framework for the acquisition of language and modern human cognition.

    PubMed

    Tattersall, Ian

    2016-06-20

    Modern human beings process information symbolically, rearranging mental symbols to envision multiple potential realities. They also express the ideas they form using structured articulate language. No other living creature does either of these things. Yet it is evident that we are descended from a non-symbolic and non-linguistic ancestor. How did this astonishing transformation occur? Scrutiny of the fossil and archaeological records reveals that the transition to symbolic reasoning happened very late in hominid history - indeed, within the tenure of anatomically recognizable Homo sapiens. It was evidently not simply a passive result of the increase in brain size that typified multiple lineages of the genus Homo over the Pleistocene. Instead, a brain exaptively capable of complex symbolic manipulation and language acquisition was acquired in the major developmental reorganization that gave rise to the anatomically distinctive species Homo sapiens. The new capacity it conferred was later recruited through the action of a cultural stimulus, most plausibly the spontaneous invention of language.

  16. Concerted and mosaic evolution of functional modules in songbird brains

    PubMed Central

    DeVoogd, Timothy J.

    2017-01-01

    Vertebrate brains differ in overall size, composition and functional capacities, but the evolutionary processes linking these traits are unclear. Two leading models offer opposing views: the concerted model ascribes major dimensions of covariation in brain structures to developmental events, whereas the mosaic model relates divergent structures to functional capabilities. The models are often cast as incompatible, but they must be unified to explain how adaptive changes in brain structure arise from pre-existing architectures and developmental mechanisms. Here we show that variation in the sizes of discrete neural systems in songbirds, a species-rich group exhibiting diverse behavioural and ecological specializations, supports major elements of both models. In accordance with the concerted model, most variation in nucleus volumes is shared across functional domains and allometry is related to developmental sequence. Per the mosaic model, residual variation in nucleus volumes is correlated within functional systems and predicts specific behavioural capabilities. These comparisons indicate that oscine brains evolved primarily as a coordinated whole but also experienced significant, independent modifications to dedicated systems from specific selection pressures. Finally, patterns of covariation between species and brain areas hint at underlying developmental mechanisms. PMID:28490627

  17. Simulating reading acquisition: The link between reading outcome and multimodal brain signatures of letter-speech sound learning in prereaders.

    PubMed

    Karipidis, Iliana I; Pleisch, Georgette; Brandeis, Daniel; Roth, Alexander; Röthlisberger, Martina; Schneebeli, Maya; Walitza, Susanne; Brem, Silvia

    2018-05-08

    During reading acquisition, neural reorganization of the human brain facilitates the integration of letters and speech sounds, which enables successful reading. Neuroimaging and behavioural studies have established that impaired audiovisual integration of letters and speech sounds is a core deficit in individuals with developmental dyslexia. This longitudinal study aimed to identify neural and behavioural markers of audiovisual integration that are related to future reading fluency. We simulated the first step of reading acquisition by performing artificial-letter training with prereading children at risk for dyslexia. Multiple logistic regressions revealed that our training provides new precursors of reading fluency at the beginning of reading acquisition. In addition, an event-related potential around 400 ms and functional magnetic resonance imaging activation patterns in the left planum temporale to audiovisual correspondences improved cross-validated prediction of future poor readers. Finally, an exploratory analysis combining simultaneously acquired electroencephalography and hemodynamic data suggested that modulation of temporoparietal brain regions depended on future reading skills. The multimodal approach demonstrates neural adaptations to audiovisual integration in the developing brain that are related to reading outcome. Despite potential limitations arising from the restricted sample size, our results may have promising implications both for identifying poor-reading children and for monitoring early interventions.

  18. Evaluating predisposition and training in shaping the musician's brain: the need for a developmental perspective.

    PubMed

    Zuk, Jennifer; Gaab, Nadine

    2018-05-24

    The study of music training as a model for structural plasticity has evolved significantly over the past 15 years. Neuroimaging studies have identified characteristic structural brain alterations in musicians compared to nonmusicians in school-age children and adults, using primarily cross-sectional designs. Despite this emerging evidence and advances in pediatric neuroimaging techniques, hardly any studies have examined brain development in early childhood (before age 8) in association with musical training, and longitudinal studies starting in infancy or preschool are particularly scarce. Consequently, it remains unclear whether the characteristic "musician brain" is solely the result of musical training, or whether certain predispositions may have an impact on its development. Moving toward a developmental perspective, the present review considers various factors that may contribute to early brain structure prior to the onset of formal musical training. This review introduces a model for potential neurobiological pathways leading to the characteristic "musician brain," which involves a developmental interaction between predisposition and its temporal dynamics, environmental experience, and training-induced plasticity. This perspective illuminates the importance of studying the brain structure associated with musical training through a developmental lens, and the need for longitudinal studies in early childhood to advance our understanding of music training-induced structural plasticity. © 2018 New York Academy of Sciences.

  19. The ketogenic diet is effective for refractory epilepsy associated with acquired structural epileptic encephalopathy.

    PubMed

    Villaluz, Mel Michel; Lomax, Lysa Boissé; Jadhav, Trupti; Cross, J Helen; Scheffer, Ingrid E

    2018-07-01

    Ketogenic diet therapies have proven efficacy for refractory epilepsy. There are many reports of their use in the genetic developmental and epileptic encephalopathies; however, little attention has been paid as to whether the diet is also effective in individuals with an acquired structural aetiology. We observed remarkable efficacy of the diet in two patients with hypoxic-ischaemic encephalopathy. We then analysed our cases with refractory structural epilepsies of acquired origin to characterize their response to the ketogenic diet. The classical ketogenic diet was implemented with dietary ratios of 3:1 to 4.4:1. Seizure frequency at 1 month, 3 months, 6 months, 1 year, and 2 years was ascertained. A responder was defined as greater than 50% seizure reduction compared to baseline. Seven of the nine patients were responders at 3 months. Somewhat surprisingly we found that the ketogenic diet was effective in patients with a developmental and epileptic encephalopathy due to an acquired structural aetiology. This cohort may not be routinely considered for the ketogenic diet because of their structural and acquired, rather than genetic, basis. The ketogenic diet should be considered early in the management of patients with acquired structural encephalopathies as it can improve seizure control with the potential to improve developmental outcome. The ketogenic diet was effective in children with epilepsy associated with an acquired structural aetiology. © 2018 Mac Keith Press.

  20. Transient dysautonomia in an acute phase of encephalopathy with biphasic seizures and late reduced diffusion.

    PubMed

    Ichimiya, Yuko; Kaku, Noriyuki; Sakai, Yasunari; Yamashita, Fumiya; Matsuoka, Wakato; Muraoka, Mamoru; Akamine, Satoshi; Mizuguchi, Soichi; Torio, Michiko; Motomura, Yoshitomo; Hirata, Yuichiro; Ishizaki, Yoshito; Sanefuji, Masafumi; Torisu, Hiroyuki; Takada, Hidetoshi; Maehara, Yoshihiko; Ohga, Shouichi

    2017-08-01

    Paroxysmal sympathetic hyperactivity (PSH) is a dysautonomic condition that is associated with various types of acquired brain injuries. Traumatic brain lesions have been documented as the leading cause of PSH. However, detailed clinical features of pediatric PSH caused by intrinsic brain lesions remain to be elusive. We present a 3-year-old boy, who had been diagnosed as having cerebral palsy, developmental delay and epilepsy after perinatal hypoxia-induced brain injury. He developed status epilepticus with fever on the third day of respiratory infection. Whereas the seizure was terminated by systemic infusion of midazolam, consciousness remained disturbed for the next 48h. Serial magnetic resonance imaging studies revealed that acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) evolved on 3days after the seizure. Therapeutic hypothermia was immediately introduced, however, the brain lesion extended to the whole subcortical white matters on day 8. The intermittent bilateral dilation of pupils with increased blood pressure and tachycardia were observed until day 12. Real-time monitoring of electroencephalograms ruled out the recurrent attacks of seizures. The abnormal signs of autonomic nervous system gradually ceased and never relapsed after recovery from the hypothermia. PSH or a transient condition of dysautonomia may emerge and persist during the acute phase of AESD. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Developmental Hypothyroidism Alters Brain-Derived Neurotrophic Factor (BDNF) Expression in Adulthood.

    EPA Science Inventory

    Severe developmental thyroid hormone (TH) insufficiency results in alterations in brain structure/function and lasting behavioral impairments. Environmental toxicants reduce circulating levels of TH, but the disruption is modest and the doseresponse relationships of TH and neuro...

  2. Developmental changes in organization of structural brain networks.

    PubMed

    Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C

    2013-09-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.

  3. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    ERIC Educational Resources Information Center

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  4. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  5. Inhibition of misleading heuristics as a core mechanism for typical cognitive development: evidence from behavioural and brain-imaging studies.

    PubMed

    Borst, Grégoire; Aïte, Ania; Houdé, Olivier

    2015-04-01

    Cognitive development is generally conceived as incremental with knowledge of increasing complexity acquired throughout childhood and adolescence. However, several studies have now demonstrated not only that infants possess complex cognitive abilities but also that older children, adolescents, and adults tend to make systematic errors even in simple logical reasoning tasks. Therefore, one of the main issues for any theory of typical cognitive development is to provide an explanation of why at some age and in some contexts children, adolescents, and adults do not express a knowledge or cognitive principle that they already acquired when they were younger. In this review, we present convergent behavioural and neurocognitive evidence that cognitive development is more similar to a non-linear dynamic system than to a linear, stage-like system. In this theoretical framework, errors can emerge in problems similar to the ones infants or young children were succeeding when older children, adolescents, and adults rely on a misleading heuristic rather than on the correct logical algorithm to solve such problems. And the core mechanism for overcoming these errors is inhibitory control (i.e. the ability to inhibit the misleading heuristics). Therefore, typical cognitive development relies not only on the ability to acquire knowledge of incremental complexity but also to inhibit previously acquired knowledge. © 2015 The Authors. Developmental Medicine & Child Neurology © 2015 Mac Keith Press.

  6. A hierarchical model of the evolution of human brain specializations

    PubMed Central

    Barrett, H. Clark

    2012-01-01

    The study of information-processing adaptations in the brain is controversial, in part because of disputes about the form such adaptations might take. Many psychologists assume that adaptations come in two kinds, specialized and general-purpose. Specialized mechanisms are typically thought of as innate, domain-specific, and isolated from other brain systems, whereas generalized mechanisms are developmentally plastic, domain-general, and interactive. However, if brain mechanisms evolve through processes of descent with modification, they are likely to be heterogeneous, rather than coming in just two kinds. They are likely to be hierarchically organized, with some design features widely shared across brain systems and others specific to particular processes. Also, they are likely to be largely developmentally plastic and interactive with other brain systems, rather than canalized and isolated. This article presents a hierarchical model of brain specialization, reviewing evidence for the model from evolutionary developmental biology, genetics, brain mapping, and comparative studies. Implications for the search for uniquely human traits are discussed, along with ways in which conventional views of modularity in psychology may need to be revised. PMID:22723350

  7. Structural connectivity of right frontal hyperactive areas scales with stuttering severity

    PubMed Central

    Neef, Nicole E; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    Abstract A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain–behaviour and structure–function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI–diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering. PMID:29228195

  8. Metabolic alterations in developing brain after injury – knowns and unknowns

    PubMed Central

    McKenna, Mary C.; Scafidi, Susanna; Robertson, Courtney L.

    2016-01-01

    Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed. PMID:26148530

  9. On Expression Patterns and Developmental Origin of Human Brain Regions.

    PubMed

    Kirsch, Lior; Chechik, Gal

    2016-08-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions.

  10. On Expression Patterns and Developmental Origin of Human Brain Regions

    PubMed Central

    Kirsch, Lior; Chechik, Gal

    2016-01-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions. PMID:27564987

  11. The development of functional network organization in early childhood and early adolescence: A resting-state fNIRS study.

    PubMed

    Cai, Lin; Dong, Qi; Niu, Haijing

    2018-04-01

    Early childhood (7-8 years old) and early adolescence (11-12 years old) constitute two landmark developmental stages that comprise considerable changes in neural cognition. However, very limited information from functional neuroimaging studies exists on the functional topological configuration of the human brain during specific developmental periods. In the present study, we utilized continuous resting-state functional near-infrared spectroscopy (rs-fNIRS) imaging data to examine topological changes in network organization during development from early childhood and early adolescence to adulthood. Our results showed that the properties of small-worldness and modularity were not significantly different across development, demonstrating the developmental maturity of important functional brain organization in early childhood. Intriguingly, young children had a significantly lower global efficiency than early adolescents and adults, which revealed that the integration of the distributed networks strengthens across the developmental stages underlying cognitive development. Moreover, local efficiency of young children and adolescents was significantly lower than that of adults, while there was no difference between these two younger groups. This finding demonstrated that functional segregation remained relatively steady from early childhood to early adolescence, and the brain in these developmental periods possesses no optimal network configuration. Furthermore, we found heterogeneous developmental patterns in the regional nodal properties in various brain regions, such as linear increased nodal properties in the frontal cortex, indicating increasing cognitive capacity over development. Collectively, our results demonstrated that significant topological changes in functional network organization occurred during these two critical developmental stages, and provided a novel insight into elucidating subtle changes in brain functional networks across development. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Word Finding in Children and Adolescents with a History of Brain Injury.

    ERIC Educational Resources Information Center

    Dennis, Maureen

    1992-01-01

    Word finding in relation to brain injury is discussed for children and adolescents with unilateral congenital malformations of the brain, early hydrocephalus, childhood-acquired left hemisphere stroke, and acquired traumatic head injury. Studies examining the recovery of word-finding deficits after brain injury are discussed, along with…

  13. Self-awareness assessment during cognitive rehabilitation in children with acquired brain injury: a feasibility study and proposed model of child anosognosia.

    PubMed

    Krasny-Pacini, Agata; Limond, Jennifer; Evans, Jonathan; Hiebel, Jean; Bendjelida, Karim; Chevignard, Mathilde

    2015-01-01

    To compare three ways of assessing self-awareness in children with traumatic brain injury (TBI) and to propose a model of child anosognosia. Five single cases of children with severe TBI, aged 8-14, undergoing metacognitive training. Awareness was assessed using three different measures: two measures of metacognitive knowledge/intellectual awareness (a questionnaire and illustrated stories where child characters have everyday problems related to their executive dysfunction) and one measure of on-line/emergent awareness (post-task appraisal of task difficulty). All three measures showed good feasibility. Analysis of awareness deficit scores indicated large variability (1-100%). Three children showed dissociated scores. Based on these results, we propose a model of child self-awareness and anosognosia and a framework for awareness assessment for rehabilitation purposes. The model emphasizes (1) the role of on-line error detection in the construction of autobiographical memories that allow a child to build a self-knowledge of his/her strengths and difficulties; (2) the multiple components of awareness that need to be assessed separately; (3) the implications for rehabilitation: errorless versus error-based learning, rehabilitation approaches based on metacognition, rationale for rehabilitation intervention based on child's age and impaired awareness component, ethical and developmental consideration of confrontational methods. Self-awareness has multiple components that need to be assessed separately, to better adapt cognitive rehabilitation. Using questionnaires and discrepancy scores are not sufficient to assess awareness, because it does not include on-line error detection, which can be massively impaired in children, especially those with impaired executive functions. On-line error detection is important to promote and error-based learning is useful to allow a child to build a self-knowledge of his/her strengths and difficulties, in the absence of severe episodic memory problems. Metacognitive trainings may not be appropriate for younger children who have age appropriate developmentally immature self-awareness, nor for patients with brain injury if they suffer anosognosia because of their brain injury.

  14. Modeling Developmental Transitions in Adaptive Resonance Theory

    ERIC Educational Resources Information Center

    Raijmakers, Maartje E. J.; Molenaar, Peter C. M.

    2004-01-01

    Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the appearance of a bifurcation, a neural network can show discontinuities and may acquire…

  15. HUPO BPP pilot study: a proteomics analysis of the mouse brain of different developmental stages.

    PubMed

    Wang, Jing; Gu, Yong; Wang, Lihong; Hang, Xingyi; Gao, Yan; Wang, Hangyan; Zhang, Chenggang

    2007-11-01

    This study is a part of the HUPO Brain Proteome Project (BPP) pilot study, which aims at obtaining a reliable database of mouse brain proteome, at the comparison of techniques, laboratories, and approaches as well as at preparing subsequent proteome studies of neurologic diseases. The C57/Bl6 mouse brains of three developmental stages at embryonic day 16 (E16), postnatal day 7 (P7), and 8 wk (P56) (n = 5 in each group) were provided by the HUPO BPP executive committee. The whole brain proteins of each animal were individually prepared using 2-DE coupled with PDQuest software analysis. The protein spots representing developmentally related or stably expressed proteins were then prepared with in-gel digestion followed with MALDI-TOF/TOF MS/MS and analyzed using the MASCOT search engines to search the Swiss-Prot or NCBInr database. The 2-DE gel maps of the mouse brains of all of the developmental stages were obtained and submitted to the Data Collection Centre (DCC). The proteins alpha-enolase, stathmin, actin, C14orf166 homolog, 28,000 kDa heat- and acid-stable phosphoprotein, 3-mercaptopyruvate sulfurtransferase and 40 S ribosomal protein S3a were successfully identified. A further Western blotting analysis demonstrated that enolase is a protein up-regulated in the mouse brain from embryonic stage to adult stage. These data are helpful for understanding the proteome changes in the development of the mouse brain.

  16. Spoken language outcomes after hemispherectomy: factoring in etiology.

    PubMed

    Curtiss, S; de Bode, S; Mathern, G W

    2001-12-01

    We analyzed postsurgery linguistic outcomes of 43 hemispherectomy patients operated on at UCLA. We rated spoken language (Spoken Language Rank, SLR) on a scale from 0 (no language) to 6 (mature grammar) and examined the effects of side of resection/damage, age at surgery/seizure onset, seizure control postsurgery, and etiology on language development. Etiology was defined as developmental (cortical dysplasia and prenatal stroke) and acquired pathology (Rasmussen's encephalitis and postnatal stroke). We found that clinical variables were predictive of language outcomes only when they were considered within distinct etiology groups. Specifically, children with developmental etiologies had lower SLRs than those with acquired pathologies (p =.0006); age factors correlated positively with higher SLRs only for children with acquired etiologies (p =.0006); right-sided resections led to higher SLRs only for the acquired group (p =.0008); and postsurgery seizure control correlated positively with SLR only for those with developmental etiologies (p =.0047). We argue that the variables considered are not independent predictors of spoken language outcome posthemispherectomy but should be viewed instead as characteristics of etiology. Copyright 2001 Elsevier Science.

  17. Investigating the Acquisition, Generalization, and Emergence of Untrained Verbal Operants for Mands Acquired Using the Picture Exchange Communication System in Adults With Severe Developmental Disabilities

    PubMed Central

    Ziomek, Megan M; Rehfeldt, Ruth Anne

    2008-01-01

    This study compared the total amount of training time and total number of trial blocks for individuals with severe developmental disabilities to acquire mands under control of unconditioned establishing operations and mands under control of transitive conditioned establishing operations for manual sign and for the Picture Exchange Communication System (PECS). Also examined was the generalization of mands across settings and communicative partners, as well as the emergence of untrained tacts and intraverbals for mands acquired using PECS. Mands for preferred items and for items needed to complete a chained task were acquired more rapidly and in fewer training blocks for PECS than for manual sign. Moreover, mands established using PECS generalized across settings and communicative partners. Finally, untrained tacts and intraverbals using PECS were shown to emerge for some of the participants following PECS training. These results suggest that PECS may be a viable alternative communication system for adults with severe developmental disabilities who have little or no history of systematic instruction and limited imitative repertoires. PMID:22477401

  18. Investigating the acquisition, generalization, and emergence of untrained verbal operants for mands acquired using the picture exchange communication system in adults with severe developmental disabilities.

    PubMed

    Ziomek, Megan M; Rehfeldt, Ruth Anne

    2008-01-01

    This study compared the total amount of training time and total number of trial blocks for individuals with severe developmental disabilities to acquire mands under control of unconditioned establishing operations and mands under control of transitive conditioned establishing operations for manual sign and for the Picture Exchange Communication System (PECS). Also examined was the generalization of mands across settings and communicative partners, as well as the emergence of untrained tacts and intraverbals for mands acquired using PECS. Mands for preferred items and for items needed to complete a chained task were acquired more rapidly and in fewer training blocks for PECS than for manual sign. Moreover, mands established using PECS generalized across settings and communicative partners. Finally, untrained tacts and intraverbals using PECS were shown to emerge for some of the participants following PECS training. These results suggest that PECS may be a viable alternative communication system for adults with severe developmental disabilities who have little or no history of systematic instruction and limited imitative repertoires.

  19. Structural brain imaging correlates of ASD and ADHD across the lifespan: a hypothesis-generating review on developmental ASD-ADHD subtypes.

    PubMed

    Rommelse, Nanda; Buitelaar, Jan K; Hartman, Catharina A

    2017-02-01

    We hypothesize that it is plausible that biologically distinct developmental ASD-ADHD subtypes are present, each characterized by a distinct time of onset of symptoms, progression and combination of symptoms. The aim of the present narrative review was to explore if structural brain imaging studies may shed light on key brain areas that are linked to both ASD and ADHD symptoms and undergo significant changes during development. These findings may possibly pinpoint to brain mechanisms underlying differential developmental ASD-ADHD subtypes. To this end we brought together the literature on ASD and ADHD structural brain imaging symptoms and particularly highlight the adolescent years and beyond. Findings indicate that the vast majority of existing MRI studies has been cross-sectional and conducted in children, and sometimes did include adolescents as well, but without explicitly documenting on this age group. MRI studies documenting on age effects in adults with ASD and/or ADHD are rare, and if age is taken into account, only linear effects are examined. Data from various studies suggest that a crucial distinctive feature underlying different developmental ASD-ADHD subtypes may be the differential developmental thinning patterns of the anterior cingulate cortex and related connections towards other prefrontal regions. These regions are crucial for the development of cognitive/effortful control and socio-emotional functioning, with impairments in these features as key to both ASD and ADHD.

  20. Developmental Changes in Organization of Structural Brain Networks

    PubMed Central

    Khundrakpam, Budhachandra S.; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C.; Ball, William S.; Byars, Anna Weber; Schapiro, Mark; Bommer, Wendy; Carr, April; German, April; Dunn, Scott; Rivkin, Michael J.; Waber, Deborah; Mulkern, Robert; Vajapeyam, Sridhar; Chiverton, Abigail; Davis, Peter; Koo, Julie; Marmor, Jacki; Mrakotsky, Christine; Robertson, Richard; McAnulty, Gloria; Brandt, Michael E.; Fletcher, Jack M.; Kramer, Larry A.; Yang, Grace; McCormack, Cara; Hebert, Kathleen M.; Volero, Hilda; Botteron, Kelly; McKinstry, Robert C.; Warren, William; Nishino, Tomoyuki; Robert Almli, C.; Todd, Richard; Constantino, John; McCracken, James T.; Levitt, Jennifer; Alger, Jeffrey; O'Neil, Joseph; Toga, Arthur; Asarnow, Robert; Fadale, David; Heinichen, Laura; Ireland, Cedric; Wang, Dah-Jyuu; Moss, Edward; Zimmerman, Robert A.; Bintliff, Brooke; Bradford, Ruth; Newman, Janice; Evans, Alan C.; Arnaoutelis, Rozalia; Bruce Pike, G.; Louis Collins, D.; Leonard, Gabriel; Paus, Tomas; Zijdenbos, Alex; Das, Samir; Fonov, Vladimir; Fu, Luke; Harlap, Jonathan; Leppert, Ilana; Milovan, Denise; Vins, Dario; Zeffiro, Thomas; Van Meter, John; Lange, Nicholas; Froimowitz, Michael P.; Botteron, Kelly; Robert Almli, C.; Rainey, Cheryl; Henderson, Stan; Nishino, Tomoyuki; Warren, William; Edwards, Jennifer L.; Dubois, Diane; Smith, Karla; Singer, Tish; Wilber, Aaron A.; Pierpaoli, Carlo; Basser, Peter J.; Chang, Lin-Ching; Koay, Chen Guan; Walker, Lindsay; Freund, Lisa; Rumsey, Judith; Baskir, Lauren; Stanford, Laurence; Sirocco, Karen; Gwinn-Hardy, Katrina; Spinella, Giovanna; McCracken, James T.; Alger, Jeffry R.; Levitt, Jennifer; O'Neill, Joseph

    2013-01-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8–8.4 year; late childhood: 8.5–11.3 year; early adolescence: 11.4–14.7 year; late adolescence: 14.8–18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces. PMID:22784607

  1. Developmental implications of children's brain networks and learning.

    PubMed

    Chan, John S Y; Wang, Yifeng; Yan, Jin H; Chen, Huafu

    2016-10-01

    The human brain works as a synergistic system where information exchanges between functional neuronal networks. Rudimentary networks are observed in the brain during infancy. In recent years, the question of how functional networks develop and mature in children has been a hotly discussed topic. In this review, we examined the developmental characteristics of functional networks and the impacts of skill training on children's brains. We first focused on the general rules of brain network development and on the typical and atypical development of children's brain networks. After that, we highlighted the essentials of neural plasticity and the effects of learning on brain network development. We also discussed two important theoretical and practical concerns in brain network training. Finally, we concluded by presenting the significance of network training in typically and atypically developed brains.

  2. Childcare Workers' Knowledge about the Brain and Developmentally Appropriate Practice

    ERIC Educational Resources Information Center

    Zambo, Debby

    2008-01-01

    Advances in neuroscience are providing information about the brain and its development. Some researchers propose that childcare workers need to understand this information because it confirms their importance and their use of developmentally appropriate practice (DAP). Given the fact that childcare workers could benefit from this insight, it seems…

  3. Developmental Hypothyroidism Reduces the Expression of Activity-Dependent Plasticity Genes in Denate Gyrus of the Adult Following Long Term Potentiation

    EPA Science Inventory

    Disruption of thyroid hormone (TH) is a known effect of environmental contaminants. Neurotrophins including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been implicated in brain dysfunction resulting from severe developmental TH insufficiency. Neuro...

  4. Developmental amnesia: effect of age at injury.

    PubMed

    Vargha-Khadem, F; Salmond, C H; Watkins, K E; Friston, K J; Gadian, D G; Mishkin, M

    2003-08-19

    Hypoxic-ischemic events sustained within the first year of life can result in developmental amnesia, a disorder characterized by markedly impaired episodic memory and relatively preserved semantic memory, in association with medial temporal pathology that appears to be restricted to the hippocampus. Here we compared children who had hypoxic-ischemic events before 1 year of age (early group, n = 6) with others who showed memory problems after suffering hypoxic-ischemic events between the ages of 6 and 14 years (late group, n = 5). Morphometric analyses of the whole brain revealed that, compared with age-matched controls, both groups had bilateral abnormalities in the hippocampus, putamen, and posterior thalamus, as well as in the right retrosplenial cortex. The two groups also showed similar reductions (approximately 40%) in hippocampal volumes. Neuropsychologically, the only significant differences between the two were on a few tests of immediate memory, where the early group surpassed the late group. The latter measures provided the only clear indication that very early injury can lead to greater functional sparing than injury acquired later in childhood, due perhaps to the greater plasticity of the infant brain. On measures of long-term memory, by contrast, the two groups had highly similar profiles, both showing roughly equivalent preservation of semantic memory combined with marked impairment in episodic memory. It thus appears that, if this selective memory disorder is a special syndrome related to the early occurrence of hypoxia-induced damage, then the effective age at injury for this syndrome extends from birth to puberty.

  5. Divergent structural brain abnormalities between different genetic subtypes of children with Prader-Willi syndrome.

    PubMed

    Lukoshe, Akvile; White, Tonya; Schmidt, Marcus N; van der Lugt, Aad; Hokken-Koelega, Anita C

    2013-10-22

    Prader-Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical focal analyses. High resolution structural magnetic resonance images were acquired in 20 children with genetically confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures were obtained using the FreeSurfer software suite. Both children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD. Children with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain development and presented few signs of cortical atrophy. Our results of global brain measurements suggest divergent neurodevelopmental patterns in children with DEL and mUPD.

  6. Divergent structural brain abnormalities between different genetic subtypes of children with Prader–Willi syndrome

    PubMed Central

    2013-01-01

    Background Prader–Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical focal analyses. Methods High resolution structural magnetic resonance images were acquired in 20 children with genetically confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures were obtained using the FreeSurfer software suite. Results Both children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD. Conclusions Children with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain development and presented few signs of cortical atrophy. Our results of global brain measurements suggest divergent neurodevelopmental patterns in children with DEL and mUPD. PMID:24144356

  7. Atypical Brain Torque in Boys With Developmental Stuttering

    PubMed Central

    Mock, Jeffrey Ryan; Zadina, Janet N.; Corey, David M.; Cohen, Jeremy D.; Lemen, Lisa C.; Foundas, Anne L.

    2017-01-01

    The counterclockwise brain torque, defined as a larger right prefrontal and left parietal-occipital lobe, is a consistent brain asymmetry. Reduced or reversed lobar asymmetries are markers of atypical cerebral laterality and have been found in adults who stutter. It was hypothesized that atypical brain torque would be more common in children who stutter. MRI-based morphology measures were completed in boys who stutter (n=14) and controls (n=14), ages 8–13. The controls had the expected brain torque configurations whereas the boys who stutter were atypical. These results support the hypothesis that developmental stuttering is associated with atypical prefrontal and parietal-occipital lobe asymmetries. PMID:22799762

  8. Abnormal electroretinogram associated with developmental brain anomalies.

    PubMed Central

    Cibis, G W; Fitzgerald, K M

    1995-01-01

    PURPOSE: We have encountered abnormal ERGs associated with optic nerve hypoplasia, macular, optic nerve and chorioretinal colobomata and developmental brain anomalies. Brain anomalies include cortical dysgenesis, lissencephaly, porencephaly, cerebellar and corpus callosum hypoplasia. We describe six exemplar cases. METHODS: Scotopic and photopic ERGs adherent to international standards were performed as well as photopic ERGs to long-duration stimuli. CT or MRI studies were also done. The ERGs were compared to age-matched normal control subjects. RESULTS: ERG changes include reduced amplitude b-waves to blue and red stimuli under scotopic testing conditions. Implicit times were often delayed. The photopic responses also showed reduced amplitude a- and b-waves with implicit time delays. The long-duration photopic ERG done in one case shows attenuation of both ON- and OFF-responses. CONCLUSIONS: Common underlying developmental genetic or environmental unifying casualties are speculated to be at fault in causing these cases of associated retinal and brain abnormalities. No single etiology is expected. Multiple potential causes acting early in embryogenesis effecting neuronal induction, migration and differentiation are theorized. These occur at a time when brain and retinal cells are sufficiently undifferentiated to be similarly effected. We call these cases examples of Brain Retina Neuroembryodysgenesis (BRNED). Homeobox and PAX genes with global neuronal developmental influences are gene candidates to unify the observed disruption of brain and retinal cell development. The ERG can provide a valuable clinical addition in understanding and ultimately classifying these disorders. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8719676

  9. How Does Neuroscience Inform the Study of Cognitive Development?

    ERIC Educational Resources Information Center

    Nelson, Charles A.; Moulson, Margaret C.; Richmond, Jenny

    2006-01-01

    The fields of developmental psychology and developmental neuroscience have existed independently of one another for many years. This is unfortunate, as knowledge of how the brain develops can inform the study of behavioral development. In this paper, we provide two examples of how knowledge about brain development has improved our understanding of…

  10. Differentiating the Neural Response to Intervention in Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Odegard, Timothy N.; Ring, Jeremiah; Smith, Stephanie; Biggan, John; Black, Jeff

    2008-01-01

    Developmental dyslexia is associated with functional abnormalities within reading areas of the brain. For some children diagnosed with dyslexia, phonologically based remediation programs appear to rehabilitate brain function in key reading areas (Shaywitz et al., Biological Psychiatry 55: 101-110, 2004; Simos et al., Neuroscience 58: 1203-1213,…

  11. The brain adapts to orthography with experience: Evidence from English and Chinese

    PubMed Central

    Cao, Fan; Brennan, Christine; Booth, James R.

    2016-01-01

    Using functional magnetic resonance imaging (fMRI), we examined the process of language specialization in the brain by comparing developmental changes in two contrastive orthographies: Chinese and English. In a visual word rhyming judgment task, we found a significant interaction between age and language in left inferior parietal lobule and left superior temporal gyrus, which was due to greater developmental increases in English than in Chinese. Moreover, we found that higher skill only in English children was correlated with greater activation in left inferior parietal lobule. These findings suggest that the regions associated with phonological processing are essential in English reading development. We also found greater developmental increases in English than in Chinese in left inferior temporal gyrus, suggesting refinement of this region for fine-grained word form recognition. In contrast, greater developmental increases in Chinese than in English were found in right middle occipital gyrus, suggesting the importance of holistic visual-orthographic analysis in Chinese reading acquisition. Our results suggest that the brain adapts to the special features of the orthography by engaging relevant brain regions to a greater degree over development. PMID:25444089

  12. Multiscale Entropy of Electroencephalogram as a Potential Predictor for the Prognosis of Neonatal Seizures.

    PubMed

    Lu, Wen-Yu; Chen, Jyun-Yu; Chang, Chi-Feng; Weng, Wen-Chin; Lee, Wang-Tso; Shieh, Jiann-Shing

    2015-01-01

    Increasing animal studies supported the harmful effects of prolonged or frequent neonatal seizures in developing brain, including increased risk of later epilepsy. Various nonlinear analytic measures had been applied to investigate the change of brain complexity with age. This study focuses on clarifying the relationship between later epilepsy and the changes of electroencephalogram (EEG) complexity in neonatal seizures. EEG signals from 19 channels of the whole brain from 32 neonates below 2 months old were acquired. The neonates were classified into 3 groups: 9 were normal controls, 9 were neonatal seizures without later epilepsy, and 14 were neonatal seizures with later epilepsy. Sample entropy (SamEn), multiscale entropy (MSE) and complexity index (CI) were analyzed. Although there was no significant change in SamEn, the CI values showed significantly decreased over Channels C3, C4, and Cz in patients with neonatal seizures and later epilepsy compared with control group. More multifocal epileptiform discharges in EEG, more abnormal neuroimaging findings, and higher incidence of future developmental delay were noted in the group with later epilepsy. Decreased MSE and CI values in patients with neonatal seizures and later epilepsy may reflect the mixed effects of acute insults, underlying brain immaturity, and prolonged seizures-related injuries. The analysis of MSE and CI can therefore provide a quantifiable and accurate way to decrypt the mystery of neonatal seizures, and could be a promising predictor.

  13. A feature-based developmental model of the infant brain in structural MRI.

    PubMed

    Toews, Matthew; Wells, William M; Zöllei, Lilla

    2012-01-01

    In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days.

  14. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function.

    PubMed

    Lenz, Kathryn M; Nelson, Lars H

    2018-01-01

    Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  15. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain.

    PubMed

    Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2014-03-01

    Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

  16. An oscillopathic approach to developmental dyslexia: From genes to speech processing.

    PubMed

    Jiménez-Bravo, Miguel; Marrero, Victoria; Benítez-Burraco, Antonio

    2017-06-30

    Developmental dyslexia is a heterogeneous condition entailing problems with reading and spelling. Several genes have been linked or associated to the disease, many of which contribute to the development and function of brain areas important for auditory and phonological processing. Nonetheless, a clear link between genes, the brain, and the symptoms of dyslexia is still pending. The goal of this paper is contributing to bridge this gap. With this aim, we have focused on how the dyslexic brain fails to process speech sounds and reading cues. We have adopted an oscillatory perspective, according to which dyslexia may result from a deficient integration of different brain rhythms during reading/spellings tasks. Moreover, we show that some candidate genes for this condition are related to brain rhythms. This fresh approach is expected to provide a better understanding of the aetiology and the clinical presentation of developmental dyslexia, but also to achieve an earlier and more accurate diagnosis of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Optical Coherence Tomography for Brain Imaging and Developmental Biology

    PubMed Central

    Men, Jing; Huang, Yongyang; Solanki, Jitendra; Zeng, Xianxu; Alex, Aneesh; Jerwick, Jason; Zhang, Zhan; Tanzi, Rudolph E.; Li, Airong; Zhou, Chao

    2016-01-01

    Optical coherence tomography (OCT) is a promising research tool for brain imaging and developmental biology. Serving as a three-dimensional optical biopsy technique, OCT provides volumetric reconstruction of brain tissues and embryonic structures with micrometer resolution and video rate imaging speed. Functional OCT enables label-free monitoring of hemodynamic and metabolic changes in the brain in vitro and in vivo in animal models. Due to its non-invasiveness nature, OCT enables longitudinal imaging of developing specimens in vivo without potential damage from surgical operation, tissue fixation and processing, and staining with exogenous contrast agents. In this paper, various OCT applications in brain imaging and developmental biology are reviewed, with a particular focus on imaging heart development. In addition, we report findings on the effects of a circadian gene (Clock) and high-fat-diet on heart development in Drosophila melanogaster. These findings contribute to our understanding of the fundamental mechanisms connecting circadian genes and obesity to heart development and cardiac diseases. PMID:27721647

  18. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain.

    PubMed

    Solek, Cynthia M; Feng, Shengrui; Perin, Sofia; Weinschutz Mendes, Hellen; Ekker, Marc

    2017-07-01

    Lineage tracing of specific populations of progenitor cells provides crucial information about developmental programs. Four members of the Dlx homeobox gene family, Dlx1,2, 5 and 6, are involved in the specification of γ-aminobutyric acid (GABA)ergic neurons in the vertebrate forebrain. Orthologous genes in mammals and teleost show similarities in expression patterns and transcriptional regulation mechanisms. We have used lineage tracing to permanently label dlx-expressing cells in the zebrafish and have characterized the progeny of these cells in the larva and in the juvenile and adult brain. We have found that dlx1a/2a and dlx5a/6a expressing progenitors give rise, for the most part, to small populations of cells which constitute only a small proportion of GABAergic cells in the adult brain tissue. Moreover, some of the cells do not acquire a neuronal phenotype suggesting that, regardless of the time a cell expresses dlx genes in the brain, it can potentially give rise to cells other than neurons. In some instances, labeling larval dlx5a/6a-expressing cells, but not dlx1a/2a-expressing cells, results in massively expanding, widespread clonal expansion throughout the adult brain. Our data provide a detailed lineage analysis of the dlx1a/2a and dlx5a/6a expressing progenitors in the zebrafish brain and lays the foundation for further characterization of the role of these transcription factors beyond the specification of GABAergic neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Corticobulbar tract changes as predictors of dysarthria in childhood brain injury.

    PubMed

    Liégeois, Frédérique; Tournier, Jacques-Donald; Pigdon, Lauren; Connelly, Alan; Morgan, Angela T

    2013-03-05

    To identify corticobulbar tract changes that may predict chronic dysarthria in young people who have sustained a traumatic brain injury (TBI) in childhood using diffusion MRI tractography. We collected diffusion-weighted MRI data from 49 participants. We compared 17 young people (mean age 17 years, 10 months; on average 8 years postinjury) with chronic dysarthria who sustained a TBI in childhood (range 3-16 years) with 2 control groups matched for age and sex: 1 group of young people who sustained a traumatic injury but had no subsequent dysarthria (n = 15), and 1 group of typically developing individuals (n = 17). We performed tractography from spherical seed regions within the precentral gyrus white matter to track: 1) the hand-related corticospinal tract; 2) the dorsal corticobulbar tract, thought to correspond to the lips/larynx motor representation; and 3) the ventral corticobulbar tract, corresponding to the tongue representation. Despite widespread white matter damage, radial (perpendicular) diffusivity within the left dorsal corticobulbar tract was the best predictor of the presence of dysarthria after TBI. Diffusion metrics in this tract also predicted speech and oromotor performance across the whole group of TBI participants, with additional significant contributions from ventral speech tract volume in the right hemisphere. An intact left dorsal corticobulbar tract seems crucial to the normal execution of speech long term after acquired injury. Examining the speech-related motor pathways using diffusion-weighted MRI tractography offers a promising prognostic tool for people with acquired, developmental, or degenerative neurologic conditions likely to affect speech.

  20. The Indispensable Roles of Microglia and Astrocytes during Brain Development

    PubMed Central

    Reemst, Kitty; Noctor, Stephen C.; Lucassen, Paul J.; Hol, Elly M.

    2016-01-01

    Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis and synaptic pruning. Due to their important instructive roles in these processes, dysfunction of microglia or astrocytes during brain development could contribute to neurodevelopmental disorders and potentially even late-onset neuropathology. A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease. PMID:27877121

  1. Behavior Management for Children and Adolescents with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Slifer, Keith J.; Amari, Adrianna

    2009-01-01

    Behavioral problems such as disinhibition, irritability, restlessness, distractibility, and aggression are common after acquired brain injury (ABI). The persistence and severity of these problems impair the brain-injured individual's reintegration into family, school, and community life. Since the early 1980s, behavior analysis and therapy have…

  2. Detection of atypical network development patterns in children with autism spectrum disorder using magnetoencephalography

    PubMed Central

    Watanabe, Katsumi; Yoshimura, Yuko; Kikuchi, Mitsuru; Minabe, Yoshio; Aihara, Kazuyuki

    2017-01-01

    Autism spectrum disorder (ASD) is a developmental disorder that involves developmental delays. It has been hypothesized that aberrant neural connectivity in ASD may cause atypical brain network development. Brain graphs not only describe the differences in brain networks between clinical and control groups, but also provide information about network development within each group. In the present study, graph indices of brain networks were estimated in children with ASD and in typically developing (TD) children using magnetoencephalography performed while the children viewed a cartoon video. We examined brain graphs from a developmental point of view, and compared the networks between children with ASD and TD children. Network development patterns (NDPs) were assessed by examining the association between the graph indices and the raw scores on the achievement scale or the age of the children. The ASD and TD groups exhibited different NDPs at both network and nodal levels. In the left frontal areas, the nodal degree and efficiency of the ASD group were negatively correlated with the achievement scores. Reduced network connections were observed in the temporal and posterior areas of TD children. These results suggested that the atypical network developmental trajectory in children with ASD is associated with the development score rather than age. PMID:28886147

  3. Kv10.1 potassium channel: from the brain to the tumors.

    PubMed

    Cázares-Ordoñez, V; Pardo, L A

    2017-10-01

    The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple-Baraitser and Zimmermann-Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein-protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.

  4. Music Making as a Tool for Promoting Brain Plasticity across the Life Span

    PubMed Central

    Wan, Catherine Y.; Schlaug, Gottfried

    2010-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying the brain effects of acquiring specialized sensorimotor skills. For example, musicians learn and repeatedly practice the association of motor actions with specific sound and visual patterns (musical notation) while receiving continuous multisensory feedback. This association learning can strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) while activating multimodal integration regions (e.g., around the intraparietal sulcus). We argue that training of this neural network may produce cross-modal effects on other behavioral or cognitive operations that draw on this network. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. These enhancements suggest the potential for music making as an interactive treatment or intervention for neurological and developmental disorders, as well as those associated with normal aging. PMID:20889966

  5. Musicians and music making as a model for the study of brain plasticity

    PubMed Central

    Schlaug, Gottfried

    2015-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of sensory and motor skills over the course of a musician’s lifetime. Thus, musicians offer an excellent human model for studying behavioral-cognitive as well as brain effects of acquiring, practicing, and maintaining these specialized skills. Research has shown that repeatedly practicing the association of motor actions with specific sound and visual patterns (musical notation), while receiving continuous multisensory feedback will strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) as well as multimodal integration regions. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. Furthermore, the plasticity of this system as a result of long term and intense interventions suggest the potential for music making activities (e.g., forms of singing) as an intervention for neurological and developmental disorders to learn and relearn associations between auditory and motor functions such as vocal motor functions. PMID:25725909

  6. Music making as a tool for promoting brain plasticity across the life span.

    PubMed

    Wan, Catherine Y; Schlaug, Gottfried

    2010-10-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying the brain effects of acquiring specialized sensorimotor skills. For example, musicians learn and repeatedly practice the association of motor actions with specific sound and visual patterns (musical notation) while receiving continuous multisensory feedback. This association learning can strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) while activating multimodal integration regions (e.g., around the intraparietal sulcus). We argue that training of this neural network may produce cross-modal effects on other behavioral or cognitive operations that draw on this network. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. These enhancements suggest the potential for music making as an interactive treatment or intervention for neurological and developmental disorders, as well as those associated with normal aging.

  7. Musicians and music making as a model for the study of brain plasticity.

    PubMed

    Schlaug, Gottfried

    2015-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of sensory and motor skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying behavioral-cognitive as well as brain effects of acquiring, practicing, and maintaining these specialized skills. Research has shown that repeatedly practicing the association of motor actions with specific sound and visual patterns (musical notation), while receiving continuous multisensory feedback will strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) as well as multimodal integration regions. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. Furthermore, the plasticity of this system as a result of long term and intense interventions suggest the potential for music making activities (e.g., forms of singing) as an intervention for neurological and developmental disorders to learn and relearn associations between auditory and motor functions such as vocal motor functions. © 2015 Elsevier B.V. All rights reserved.

  8. Cortical Volume and Developmental Instability Are Independent Predictors of General Intellectual Ability

    ERIC Educational Resources Information Center

    Thoma, Robert J.; Yeo, Ronald A.; Gangestad, Steven W.; Halgren, Eric; Sanchez, Natalie M.; Lewine, Jeffrey D.

    2005-01-01

    Measures of developmental instability (DI) reflect developmental disruptions due to genetic and environmental perturbations during normal development. DI might be expected to influence the developmental course of brain development and hence intelligence, and several studies indicate this to be the case. The factors that mediate this relationship…

  9. Social Outcomes in Childhood Brain Disorder: A Heuristic Integration of Social Neuroscience and Developmental Psychology

    ERIC Educational Resources Information Center

    Yeates, Keith Owen; Bigler, Erin D.; Dennis, Maureen; Gerhardt, Cynthia A.; Rubin, Kenneth H.; Stancin, Terry; Taylor, H. Gerry; Vannatta, Kathryn

    2007-01-01

    The authors propose a heuristic model of the social outcomes of childhood brain disorder that draws on models and methods from both the emerging field of social cognitive neuroscience and the study of social competence in developmental psychology/psychopathology. The heuristic model characterizes the relationships between social adjustment, peer…

  10. Brain Hyper-Connectivity and Operation-Specific Deficits during Arithmetic Problem Solving in Children with Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2015-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who…

  11. Ecological Human Brain and Young Children's "Naturalist Intelligence" from the Perspective of Developmentally and Culturally Appropriate Practice (DCAP).

    ERIC Educational Resources Information Center

    Hyun, Eunsook

    Based on the view that young children have a different intellectual culture from adults' in the way they know and understand nature, this paper explores ecological human brain development, children's intellectual culture of naturalist intelligence, and developmentally and culturally congruent curricula for young children. The paper discusses the…

  12. Electrocortical Reflections of Face and Gaze Processing in Children with Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Kemner, C.; Schuller, A-M.; Van Engeland, H.

    2006-01-01

    Background: Children with pervasive developmental disorder (PDD) show behavioral abnormalities in gaze and face processing, but recent studies have indicated that normal activation of face-specific brain areas in response to faces is possible in this group. It is not clear whether the brain activity related to gaze processing is also normal in…

  13. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder.

    PubMed

    Dawson, Geraldine

    2008-01-01

    Advances in the fields of cognitive and affective developmental neuroscience, developmental psychopathology, neurobiology, genetics, and applied behavior analysis have contributed to a more optimistic outcome for individuals with autism spectrum disorder (ASD). These advances have led to new methods for early detection and more effective treatments. For the first time, prevention of ASD is plausible. Prevention will entail detecting infants at risk before the full syndrome is present and implementing treatments designed to alter the course of early behavioral and brain development. This article describes a developmental model of risk, risk processes, symptom emergence, and adaptation in ASD that offers a framework for understanding early brain plasticity in ASD and its role in prevention of the disorder.

  14. A Principled Relation between Reading and Naming in Acquired and Developmental Anomia: Surface Dyslexia Following Impairment in the Phonological Output Lexicon

    PubMed Central

    Gvion, Aviah; Friedmann, Naama

    2016-01-01

    Lexical retrieval and reading aloud are often viewed as two separate processes. However, they are not completely separate—they share components. This study assessed the effect of an impairment in a shared component, the phonological output lexicon, on lexical retrieval and on reading aloud. Because the phonological output lexicon is part of the lexical route for reading, individuals with an impairment in this lexicon may be forced to read aloud via the sublexical route and therefore show a reading pattern that is typical of surface dyslexia. To examine the effect of phonological output lexicon deficit on reading, we tested the reading of 16 Hebrew-speaking individuals with phonological output lexicon anomia, eight with acquired anomia following brain damage and eight with developmental anomia. We established that they had a phonological output lexicon deficit according to the types of errors and the effects on their naming in a picture naming task, and excluded other deficit loci in the lexical retrieval process according to a line of tests assessing their picture and word comprehension, word and non-word repetition, and phonological working memory. After we have established that the participants have a phonological output lexicon deficit, we tested their reading. To assess their reading and type of reading impairment, we tested their reading aloud, lexical decision, and written word comprehension. We found that all of the participants with phonological output lexicon impairment showed, in addition to anomia, also the typical surface dyslexia errors in reading aloud of irregular words, words with ambiguous conversion to phonemes, and potentiophones (words like “now” that, when read via the sublexical route, can be sounded out as another word, “know”). Importantly, the participants performed normally on pseudohomophone lexical decision and on homophone/potentiophone reading comprehension, indicating spared orthographic input lexicon and spared access to it and from it to lexical semantics. This pattern was shown both by the adults with acquired anomia and by the participants with developmental anomia. These results thus suggest a principled relation between anomia and dyslexia, and point to a distinct type of surface dyslexia. They further show the possibility of good comprehension of written words when the phonological output stages are impaired. PMID:27065897

  15. Aggressive behaviour of inpatients with acquired brain injury.

    PubMed

    Visscher, Ada J M; van Meijel, Berno; Stolker, Joost J; Wiersma, Jan; Nijman, Henk

    2011-12-01

    To study the prevalence, nature and determinants of aggression among inpatients with acquired brain injury. Patients with acquired brain injury often have difficulty in controlling their aggressive impulses. A prospective observational study design. By means of the Staff Observation Aggression Scale-Revised, the prevalence, nature and severity of aggressive behaviour of inpatients with acquired brain injury was assessed on a neuropsychiatric treatment ward with 45 beds. Additional data on patient-related variables were gathered from the patients' files. In total, 388 aggressive incidents were recorded over 17 weeks. Of a total of 57 patients included, 24 (42%) patients had engaged in aggressive behaviour on one or more occasions. A relatively small proportion of patients (n=8; 14%) was found to be responsible for the majority of incidents (n=332; 86%). The vast majority of aggression incidents (n=270; 70%) were directly preceded by interactions between patients and nursing staff. In line with this, most incidents occurred at times of high contact intensity. Aggressive behaviour was associated with male gender, length of stay at the ward, legal status and hypoxia as the cause of brain injury. Aggression was found to be highly prevalent among inpatients with acquired brain injury. The results suggest that for the prevention of aggression on the ward, it may be highly effective to develop individually tailored interventions for the subgroup with serious aggression problems. Insight into the frequency, nature and determinants of aggressive behaviour in inpatients with acquired brain injury provides nurses with tools for the prevention and treatment of aggressive behaviour. © 2011 Blackwell Publishing Ltd.

  16. Sex differences in thickness, and folding developments throughout the cortex.

    PubMed

    Mutlu, A Kadir; Schneider, Maude; Debbané, Martin; Badoud, Deborah; Eliez, Stephan; Schaer, Marie

    2013-11-15

    While significant differences in male and female brain structures have commonly been reported, only a few studies have focused on the sex differences in the way the cortex matures over time. Here, we investigated cortical thickness maturation between the age of 6 to 30 years, using 209 longitudinally-acquired brain MRI scans. Significant sex differences in the trajectories of cortical thickness change with age were evidenced using non-linear mixed effects models. Similar statistical analyses were computed to quantify the differences between cortical gyrification changes with age in males and females. During adolescence, we observed a statistically significant higher rate of cortical thinning in females compared to males in the right temporal regions, the left temporoparietal junction and the left orbitofrontal cortex. This finding is interpreted as a faster maturation of the social brain areas in females. Concomitantly, statistically significant sex differences in cortical folding changes with age were observed only in one cluster of the right prefrontal regions, suggesting that the mechanisms underlying cortical thickness and gyrification changes with age are quite distinct. Sexual dimorphism in the developmental course of the cortical maturation may be associated with the different age of onset and clinical presentation of many psychiatric disorders between males and females. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Speech and oromotor outcome in adolescents born preterm: relationship to motor tract integrity.

    PubMed

    Northam, Gemma B; Liégeois, Frédérique; Chong, Wui K; Baker, Kate; Tournier, Jacques-Donald; Wyatt, John S; Baldeweg, Torsten; Morgan, Angela

    2012-03-01

    To assess speech abilities in adolescents born preterm and investigate whether there is an association between specific speech deficits and brain abnormalities. Fifty adolescents born prematurely (<33 weeks' gestation) with a spectrum of brain injuries were recruited (mean age, 16 years). Speech examination included tests of speech-sound processing and production and speech and oromotor control. Conventional magnetic resonance imaging and diffusion-weighted imaging was acquired in all adolescents born preterm and 30 term-born control subjects. Radiological ratings of brain injury were recorded and the integrity of the primary motor projections was measured (corticospinal tract and speech-motor corticobulbar tract [CST/CBT]). There were no clinical diagnoses of developmental dysarthria, dyspraxia, or a speech-sound disorder, but difficulties in speech and oromotor control were common. A regression analysis revealed that presence of a neurologic impairment, and diffusion-weighted imaging abnormalities in the left CST/CBT were significant independent predictors of poor speech and oromotor outcome. These left-lateralized abnormalities were most evident at the level of the posterior limb of the internal capsule. Difficulties in speech and oromotor control are common in adolescents born preterm, and adolescents with injury to the CST/CBT pathways in the left-hemisphere may be most at risk. Copyright © 2012 Mosby, Inc. All rights reserved.

  18. Support Network Responses to Acquired Brain Injury

    ERIC Educational Resources Information Center

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  19. Computer-Aided Relearning Activity Patterns for People with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Montero, Francisco; Lopez-Jaquero, Victor; Navarro, Elena; Sanchez, Enriqueta

    2011-01-01

    People with disabilities constitute a collective that requires continuous and customized attention, since their conditions or abilities are affected with respect to specific standards. People with "Acquired Brain Injury" (ABI), or those who have suffered brain injury at some stage after birth, belong to this collective. The treatment these people…

  20. Students with Acquired Brain Injury. The School's Response.

    ERIC Educational Resources Information Center

    Glang, Ann, Ed.; Singer, George H. S., Ed.; Todis, Bonnie, Ed.

    Designed for educators, this book focuses on educational issues relating to students with acquired brain injury (ABI), and describes approaches that have been effective in improving the school experiences of students with brain injury. Section 1 provides an introduction to issues related to ABI in children and youth and includes: "An Overview of…

  1. Outcomes of intrathecal baclofen therapy in patients with cerebral palsy and acquired brain injury

    PubMed Central

    Yoon, Young Kwon; Lee, Kil Chan; Cho, Han Eol; Chae, Minji; Chang, Jin Woo; Chang, Won Seok; Cho, Sung-Rae

    2017-01-01

    Abstract Intrathecal baclofen (ITB) has been known to reduce spasticity which did not respond to oral medications and botulinum toxin treatment. However, few results have been reported comparing the effects of ITB therapy in patients with cerebral palsy (CP) and acquired brain injury. This study aimed to investigate beneficial and adverse effects of ITB bolus injection and pump therapy in patients with CP and to compare outcomes to patients with acquired brain injury such as traumatic brain injury and hypoxic brain injury. ITB test trials were performed in 37 patients (19 CP and 18 acquired brain injury). Based on ambulatory function, CP patients were divided into 2 groups: 11 patients with nonambulatory CP and 8 patients with ambulatory CP. Change of spasticity was evaluated using the Modified Ashworth Scale. Additional positive or negative effects were also evaluated after ITB bolus injection. In patients who received ITB pump implantation, outcomes of spasticity, subjective satisfaction and adverse events were evaluated until 12 months post-treatment. After ITB bolus injection, 32 patients (86.5%) (CP 84.2% versus acquired brain injury 88.9%) showed a positive response of reducing spasticity. However, 8 patients with CP had negative adverse effects. Particularly, 3 ambulatory CP patients showed standing impairment and 1 ambulatory CP patient showed impaired gait pattern such as foot drop because of excessive reduction of lower extremity muscle tone. Ambulatory CP patients received ITB pump implantation less than patients with acquired brain injury after ITB test trials (P = .003 by a chi-squared test). After the pump implantation, spasticity was significantly reduced within 1 month and the effect maintained for 12 months. Seventeen patients or their caregivers (73.9%) were very satisfied, whereas 5 patients (21.7%) suffered from adverse events showed no subjective satisfaction. In conclusion, ITB therapy was effective in reducing spasticity in patients with CP and acquired brain injury. Before ITB pump implantation, it seems necessary to perform the ITB bolus injection to verify beneficial effects and adverse effects especially in ambulatory CP. PMID:28834868

  2. Developmental neurotoxic effects of Malathion on 3D neurosphere system

    PubMed Central

    Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed

    2015-01-01

    Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080

  3. Testing the Language of German Cerebral Palsy Patients with Right Hemispheric Language Organization after Early Left Hemispheric Damage

    ERIC Educational Resources Information Center

    Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-01-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…

  4. A Drosophila model for fetal alcohol syndrome disorders: role for the insulin pathway

    PubMed Central

    McClure, Kimberly D.; French, Rachael L.; Heberlein, Ulrike

    2011-01-01

    SUMMARY Prenatal exposure to ethanol in humans results in a wide range of developmental abnormalities, including growth deficiency, developmental delay, reduced brain size, permanent neurobehavioral abnormalities and fetal death. Here we describe the use of Drosophila melanogaster as a model for exploring the effects of ethanol exposure on development and behavior. We show that developmental ethanol exposure causes reduced viability, developmental delay and reduced adult body size. We find that flies reared on ethanol-containing food have smaller brains and imaginal discs, which is due to reduced cell division rather than increased apoptosis. Additionally, we show that, as in mammals, flies reared on ethanol have altered responses to ethanol vapor exposure as adults, including increased locomotor activation, resistance to the sedating effects of the drug and reduced tolerance development upon repeated ethanol exposure. We have found that the developmental and behavioral defects are largely due to the effects of ethanol on insulin signaling; specifically, a reduction in Drosophila insulin-like peptide (Dilp) and insulin receptor expression. Transgenic expression of Dilp proteins in the larval brain suppressed both the developmental and behavioral abnormalities displayed by ethanol-reared adult flies. Our results thus establish Drosophila as a useful model system to uncover the complex etiology of fetal alcohol syndrome. PMID:21303840

  5. Rehabilitation of discourse impairments after acquired brain injury

    PubMed Central

    Gindri, Gigiane; Pagliarin, Karina Carlesso; Casarin, Fabíola Schwengber; Branco, Laura Damiani; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz

    2014-01-01

    Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion All but one article found that patient performance improved following participation in a discourse rehabilitation program. PMID:29213880

  6. In Search of the Neural Circuits of Intrinsic Motivation

    PubMed Central

    Kaplan, Frederic; Oudeyer, Pierre-Yves

    2007-01-01

    Children seem to acquire new know-how in a continuous and open-ended manner. In this paper, we hypothesize that an intrinsic motivation to progress in learning is at the origins of the remarkable structure of children's developmental trajectories. In this view, children engage in exploratory and playful activities for their own sake, not as steps toward other extrinsic goals. The central hypothesis of this paper is that intrinsically motivating activities correspond to expected decrease in prediction error. This motivation system pushes the infant to avoid both predictable and unpredictable situations in order to focus on the ones that are expected to maximize progress in learning. Based on a computational model and a series of robotic experiments, we show how this principle can lead to organized sequences of behavior of increasing complexity characteristic of several behavioral and developmental patterns observed in humans. We then discuss the putative circuitry underlying such an intrinsic motivation system in the brain and formulate two novel hypotheses. The first one is that tonic dopamine acts as a learning progress signal. The second is that this progress signal is directly computed through a hierarchy of microcortical circuits that act both as prediction and metaprediction systems. PMID:18982131

  7. 77 FR 297 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... of Committee: Brain Disorders and Clinical Neuroscience Integrated Review Group, Developmental Brain...- 9866, [email protected] . Name of Committee: Brain Disorders and Clinical Neuroscience Integrated...

  8. The Contribution of Novel Brain Imaging Techniques to Understanding the Neurobiology of Mental Retardation and Developmental Disabilities

    ERIC Educational Resources Information Center

    Gothelf, Doron; Furfaro, Joyce A.; Penniman, Lauren C.; Glover, Gary H.; Reiss, Allan L.

    2005-01-01

    Studying the biological mechanisms underlying mental retardation and developmental disabilities (MR/DD) is a very complex task. This is due to the wide heterogeneity of etiologies and pathways that lead to MR/DD. Breakthroughs in genetics and molecular biology and the development of sophisticated brain imaging techniques during the last decades…

  9. Advances in functional brain imaging technology and developmental neuro-psychology: their applications in the Jungian analytic domain.

    PubMed

    Petchkovsky, Leon

    2017-06-01

    Analytical psychology shares with many other psychotherapies the important task of repairing the consequences of developmental trauma. The majority of analytic patients come from compromised early developmental backgrounds: they may have experienced neglect, abuse, or failures of empathic resonance from their carers. Functional brain imagery techniques including Quantitative Electroencephalogram (QEEG), and functional Magnetic Resonance Imagery (fMRI), allow us to track mental processes in ways beyond verbal reportage and introspection. This independent perspective is useful for developing new psychodynamic hypotheses, testing current ones, providing diagnostic markers, and monitoring treatment progress. Jung, with the Word Association Test, grasped these principles 100 years ago. Brain imaging techniques have contributed to powerful recent advances in our understanding of neurodevelopmental processes in the first three years of life. If adequate nurturance is compromised, a range of difficulties may emerge. This has important implications for how we understand and treat our psychotherapy clients. The paper provides an overview of functional brain imaging and advances in developmental neuropsychology, and looks at applications of some of these findings (including neurofeedback) in the Jungian psychotherapy domain. © 2017, The Society of Analytical Psychology.

  10. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  11. Profound microcephaly, primordial dwarfism with developmental brain malformations: a new syndrome.

    PubMed

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; Saleem, Sahar N; Ahmed, Mahmoud K H; Issa, Mahmoud; Effat, Laila K; Kayed, Hisham F; Zaki, Maha S; Gaber, Khaled R

    2012-08-01

    We describe two sibs with a lethal form of profound congenital microcephaly, intrauterine and postnatal growth retardation, subtle skeletal changes, and poorly developed brain. The sibs had striking absent cranial vault with sloping of the forehead, large beaked nose, relatively large ears, and mandibular micro-retrognathia. Brain magnetic resonance imaging (MRI) revealed extremely simplified gyral pattern, large interhemispheric cyst and agenesis of corpus callosum, abnormally shaped hippocampus, and proportionately affected cerebellum and brainstem. In addition, fundus examination showed foveal hypoplasia with optic nerve atrophy. No abnormalities of the internal organs were found. This profound form of microcephaly was identified at 17 weeks gestation by ultrasound and fetal brain MRI helped in characterizing the developmental brain malformations in the second sib. Molecular analysis excluded mutations in potentially related genes such as RNU4ATAC, SLC25A19, and ASPM. These clinical and imaging findings are unlike that of any recognized severe forms of microcephaly which is believed to be a new microcephalic primordial dwarfism (MPD) with developmental brain malformations with most probably autosomal recessive inheritance based on consanguinity and similarly affected male and female sibs. Copyright © 2012 Wiley Periodicals, Inc.

  12. Post-traumatic stress symptoms and psychological functioning in children of parents with acquired brain injury.

    PubMed

    Kieffer-Kristensen, Rikke; Teasdale, Thomas W; Bilenberg, Niels

    2011-01-01

    The effect of parental brain injury on children has been relatively little investigated. This study examines post-traumatic stress symptoms (PSS) and psychological functioning in children with a parent with an acquired brain injury. The participants were 35 patients with acquired brain injury, their spouses and children aged 7-14 years recruited from out-patient brain injury rehabilitation units across Denmark. Children self-reported psychological functioning using the Becks Youth Inventory (BYI) and Child Impact of Events revised (CRIES) measuring PSS symptoms. Emotional and behavioural problems among the children were also identified by the parents using the Achenbach's Child Behaviour Checklist (CBCL). A matched control group, consisting of 20 children of parents suffering from diabetes, was recruited from the National Danish Diabetes Register. Post-traumatic stress symptoms above cut-off score (<30) were found (CRIES) in 46% of the children in the brain injury group compared to 10% in the diabetes group. The parents in the brain injury group reported more emotional and behavioural problems in their children when compared to published norms (CBCL). When parents have acquired brain injury, their children appear to be at a substantial risk for developing post-traumatic stress symptoms. These results indicate the need for a child-centred family support service to reduce the risk of children being traumatized by parental brain injury, with a special focus on the relational changes within the family.

  13. Neural Decoding Reveals Impaired Face Configural Processing in the Right Fusiform Face Area of Individuals with Developmental Prosopagnosia

    PubMed Central

    Zhang, Jiedong; Liu, Jia

    2015-01-01

    Most of human daily social interactions rely on the ability to successfully recognize faces. Yet ∼2% of the human population suffers from face blindness without any acquired brain damage [this is also known as developmental prosopagnosia (DP) or congenital prosopagnosia]). Despite the presence of severe behavioral face recognition deficits, surprisingly, a majority of DP individuals exhibit normal face selectivity in the right fusiform face area (FFA), a key brain region involved in face configural processing. This finding, together with evidence showing impairments downstream from the right FFA in DP individuals, has led some to argue that perhaps the right FFA is largely intact in DP individuals. Using fMRI multivoxel pattern analysis, here we report the discovery of a neural impairment in the right FFA of DP individuals that may play a critical role in mediating their face-processing deficits. In seven individuals with DP, we discovered that, despite the right FFA's preference for faces and it showing decoding for the different face parts, it exhibited impaired face configural decoding and did not contain distinct neural response patterns for the intact and the scrambled face configurations. This abnormality was not present throughout the ventral visual cortex, as normal neural decoding was found in an adjacent object-processing region. To our knowledge, this is the first direct neural evidence showing impaired face configural processing in the right FFA in individuals with DP. The discovery of this neural impairment provides a new clue to our understanding of the neural basis of DP. PMID:25632131

  14. Developmental analysis of the dopamine-containing neurons of the Drosophila brain

    PubMed Central

    Hartenstein, Volker; Cruz, Louie; Lovick, Jennifer K.; Guo, Ming

    2016-01-01

    The Drosophila dopaminergic (DA) system consists of a relatively small number of neurons clustered throughout the brain and ventral nerve cord. Previous work shows that clusters of DA neurons innervate different brain compartments, which in part accounts for functional diversity of the DA system. In this paper, we analyzed the association between DA neuron clusters and specific brain lineages, developmental and structural units of the Drosophila brain which provide a framework of connections that can be followed throughout development. The hatching larval brain contains six groups of primary DA neurons (born in the embryo), which we assign to six distinct lineages. We can show that all larval DA clusters persist into the adult brain. Some clusters increase in cell number during late larval stages while others do not become DA-positive until early pupa. Ablating neuroblasts with hydroxyurea (HU) prior to onset of larval proliferation (generates secondary neurons) confirms these added DA clusters are primary neurons born in the embryo, rather than secondary neurons. A single cluster that becomes DA-positive in the late pupa, PAM1/lineage DALcm1/2, forms part of a secondary lineage which can be ablated by larval HU application. By supplying lineage information for each DA cluster, our analysis promotes further developmental and functional analyses of this important system of neurons. PMID:27350102

  15. Genetic Causes of Microcephaly and Lessons for Neuronal Development

    PubMed Central

    Gilmore, Edward C.; Walsh, Christopher A.

    2012-01-01

    The study of human developmental microcephaly is providing important insights into brain development. It has become clear that developmental microcephalies are associated with abnormalities in cellular production, and that the pathophysiology of microcephaly provides remarkable insights into how the brain generates the proper number of neurons that determine brain size. Most of the genetic causes of ‘primary’ developmental microcephaly (i.e., not associated with other syndromic features) are associated with centrosomal abnormalities. In addition to other functions, centrosomal proteins control the mitotic spindle, which is essential for normal cell proliferation during mitosis. However, the brain is often uniquely affected when microcephaly genes are mutated implying special centrosomal related functions in neuronal production. Although models explaining how this could occur have some compelling data, they are not without controversy. Interestingly, some of the microcephaly genes show evidence that they were targets of evolutionary selection in primates and human ancestors, suggesting potential evolutionary roles in controlling neuronal number and brain volume across species. Mutations in DNA repair pathway genes also lead to microcephaly. Double stranded DNA breaks appear to be a prominent type of damage that needs to be repaired during brain development, yet why defects in DNA repair affect the brain preferentially and if DNA repair relates to centrosome function, are not clearly understood. PMID:24014418

  16. Treatment of developmental stress disorder: mind, body and brain - analysis and pharmacology coupled.

    PubMed

    McFadden, Joseph

    2017-11-01

    The schism between psychiatry, psychology and analysis, while long present, has widened even more in the past half-century with the advances in psychopharmacology. With the advances in electronic brain imaging, particularly in developmental and post-traumatic stress disorders, there has emerged both an understanding of brain changes resulting from severe, chronic stress and an ability to target brain chemistry in ways that can relieve clinical symptomatology. The use of alpha-1 adrenergic brain receptor antagonists decreases many of the manifestations of PTSD. Additionally, this paper discusses the ways in which dreaming, thinking and the analytic process are facilitated with this concomitant treatment and hypervigilence and hyper-arousal states are signficiantly decreased. © 2017, The Society of Analytical Psychology.

  17. A Feature-based Developmental Model of the Infant Brain in Structural MRI

    PubMed Central

    Toews, Matthew; Wells, William M.; Zöllei, Lilla

    2014-01-01

    In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days. PMID:23286050

  18. Structural development of human brain white matter from mid-fetal to perinatal stage

    NASA Astrophysics Data System (ADS)

    Ouyang, Austin; Yu, Qiaowen; Mishra, Virendra; Chalak, Lina; Jeon, Tina; Sivarajan, Muraleedharan; Jackson, Greg; Rollins, Nancy; Liu, Shuwei; Huang, Hao

    2015-03-01

    The structures of developing human brain white matter (WM) tracts can be effectively quantified by DTI-derived metrics, including fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AD and RD). However, dynamics of WM microstructure during very early developmental period from mid-fetal to perinatal stage is unknown. It is difficult to accurately measure microstructural properties of these WM tracts due to severe contamination from cerebrospinal fluid (CSF). In this study, high resolution DTI of fetal brains at mid-fetal stage (20 weeks of gestation or 20wg), 19 brains in the middle of 3rd trimester (35wg) and 17 brains around term (40wg) were acquired. We established first population-averaged DTI templates at these three time points and extracted WM skeleton. 16 major WM tracts in limbic, projection, commissural and association tract groups were traced with DTI tractography in native space. The WM skeleton in the template space was inversely transformed back to the native space for measuring core WM microstructures of each individual tract. Continuous microstructural enhancement and volumetric increase of WM tracts were found from 20wg to 40wg. The microstructural enhancement from FA measurement is decelerated in late 3rd trimester compared to mid-fetal to middle 3rd trimester, while volumetric increase of prefrontal WM tracts is accelerated. The microstructural enhancement from 35wg to 40wg is heterogeneous among different tract groups with microstructures of association tracts undergoing most dramatic change. Besides decreases of RD indicating active myelination, the decrease of AD for most WM tracts during late 3rd trimester suggests axonal packing process.

  19. Mapping subcortical brain maturation during adolescence: evidence of hemisphere- and sex-specific longitudinal changes.

    PubMed

    Dennison, Meg; Whittle, Sarah; Yücel, Murat; Vijayakumar, Nandita; Kline, Alexandria; Simmons, Julian; Allen, Nicholas B

    2013-09-01

    Early to mid-adolescence is an important developmental period for subcortical brain maturation, but longitudinal studies of these neurodevelopmental changes are lacking. The present study acquired repeated magnetic resonance images from 60 adolescent subjects (28 female) at ages 12.5 and 16.5 years to map changes in subcortical structure volumes. Automated segmentation techniques optimized for longitudinal measurement were used to delineate volumes of the caudate, putamen, nucleus accumbens, pallidum, hippocampus, thalamus and the whole brain. Amygdala volumes were described using manual tracing methods. The results revealed heterogeneous maturation across the regions of interest (ROIs), and change was differentially moderated by sex and hemisphere. The caudate, thalamus and putamen declined in volume, more for females relative to males, and decreases in the putamen and thalamus were greater in the left hemisphere. The pallidum increased in size, but more so in the left hemisphere. While the left nucleus accumbens increased in size, the right accumbens decreased in size over the follow-up period. Increases in hippocampal volume were greater in the right hemisphere. While amygdala volume did not change over time, the left hemisphere was consistently larger than the right. These results suggest that subcortical brain development from early to middle adolescence is characterized by striking hemispheric specialization and sexual dimorphisms, and provide a framework for interpreting normal and abnormal changes in cognition, affect and behavior. Moreover, the differences in findings compared to previous cross-sectional research emphasize the importance of within-subject assessment of brain development during adolescence. © 2013 John Wiley & Sons Ltd.

  20. Embracing covariation in brain evolution: Large brains, extended development, and flexible primate social systems

    PubMed Central

    Charvet, Christine J.; Finlay, Barbara L.

    2012-01-01

    Brain size, body size, developmental length, life span, costs of raising offspring, behavioral complexity, and social structures are correlated in mammals due to intrinsic life-history requirements. Dissecting variation and direction of causation in this web of relationships often draw attention away from the factors that correlate with basic life parameters. We consider the “social brain hypothesis,” which postulates that overall brain and the isocortex are selectively enlarged to confer social abilities in primates, as an example of this enterprise and pitfalls. We consider patterns of brain scaling, modularity, flexibility of brain organization, the “leverage,” and direction of selection on proposed dimensions. We conclude that the evidence supporting selective changes in isocortex or brain size for the isolated ability to manage social relationships is poor. Strong covariation in size and developmental duration coupled with flexible brains allow organisms to adapt in variable social and ecological environments across the life span and in evolution. PMID:22230623

  1. Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain.

    PubMed

    Krishna, Gokul; Muralidhara

    2018-05-25

    Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Toward Developmental Connectomics of the Human Brain

    PubMed Central

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental dyslexia). Collectively, we showed that delineation of the brain network from a connectomics perspective offers a unique and refreshing view of both normal development and neuropsychiatric disorders. PMID:27064378

  3. Developmental lead exposure induces opposite effects on ethanol intake and locomotion in response to central vs. systemic cyanamide administration.

    PubMed

    Mattalloni, Mara Soledad; Deza-Ponzio, Romina; Albrecht, Paula Alejandra; Cancela, Liliana Marina; Virgolini, Miriam Beatriz

    2017-02-01

    Lead (Pb) is a developmental neurotoxicant that elicits differential responses to drugs of abuse. Particularly, ethanol consumption has been demonstrated to be increased as a consequence of environmental Pb exposure, with catalase (CAT) and brain acetaldehyde (ACD, the first metabolite of ethanol) playing a role. The present study sought to interfere with ethanol metabolism by inhibiting ALDH2 (mitochondrial aldehyde dehydrogenase) activity in both liver and brain from control and Pb-exposed rats as a strategy to accumulate ACD, a substance that plays a major role in the drug's reinforcing and/or aversive effects. To evaluate the impact on a 2-h chronic voluntary ethanol intake test, developmentally Pb-exposed and control rats were administered with cyanamide (CY, an ALDH inhibitor) either systemically or intracerebroventricularly (i.c.v.) on the last 4 sessions of the experiment. Furthermore, on the last session and after locomotor activity was assessed, all animals were sacrificed to obtain brain and liver samples for ALDH2 and CAT activity determination. Systemic CY administration reduced the elevated ethanol intake already reported in the Pb-exposed animals (but not in the controls) accompanied by liver (but not brain) ALDH2 inactivation. On the other hand, a 0.3 mg i.c.v. CY administration enhanced both ethanol intake and locomotor activity accompanied by brain ALDH2 inactivation in control animals, while an increase in ethanol consumption was also observed in the Pb-exposed group, although in the absence of brain ALDH2 blockade. No changes were observed in CAT activity as a consequence of CY administration. These results support the participation of liver and brain ACD in ethanol intake and locomotor activity, responses that are modulated by developmental Pb exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Roles of mTOR Signaling in Brain Development.

    PubMed

    Lee, Da Yong

    2015-09-01

    mTOR is a serine/threonine kinase composed of multiple protein components. Intracellular signaling of mTOR complexes is involved in many of physiological functions including cell survival, proliferation and differentiation through the regulation of protein synthesis in multiple cell types. During brain development, mTOR-mediated signaling pathway plays a crucial role in the process of neuronal and glial differentiation and the maintenance of the stemness of neural stem cells. The abnormalities in the activity of mTOR and its downstream signaling molecules in neural stem cells result in severe defects of brain developmental processes causing a significant number of brain disorders, such as pediatric brain tumors, autism, seizure, learning disability and mental retardation. Understanding the implication of mTOR activity in neural stem cells would be able to provide an important clue in the development of future brain developmental disorder therapies.

  5. ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain.

    PubMed

    Grote, Steffi; Prüfer, Kay; Kelso, Janet; Dannemann, Michael

    2016-10-15

    We present ABAEnrichment, an R package that tests for expression enrichment in specific brain regions at different developmental stages using expression information gathered from multiple regions of the adult and developing human brain, together with ontologically organized structural information about the brain, both provided by the Allen Brain Atlas. We validate ABAEnrichment by successfully recovering the origin of gene sets identified in specific brain cell-types and developmental stages. ABAEnrichment was implemented as an R package and is available under GPL (≥ 2) from the Bioconductor website (http://bioconductor.org/packages/3.3/bioc/html/ABAEnrichment.html). steffi_grote@eva.mpg.de, kelso@eva.mpg.de or michael_dannemann@eva.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  6. Genetics of human hydrocephalus

    PubMed Central

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions. PMID:16773266

  7. White matter microstructural changes in adolescent anorexia nervosa including an exploratory longitudinal study.

    PubMed

    Vogel, Katja; Timmers, Inge; Kumar, Vinod; Nickl-Jockschat, Thomas; Bastiani, Matteo; Roebroek, Alard; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Goebel, Rainer; Seitz, Jochen

    2016-01-01

    Anorexia nervosa (AN) often begins in adolescence, however, the understanding of the underlying pathophysiology at this developmentally important age is scarce, impeding early interventions. We used diffusion tensor imaging (DTI) to investigate microstructural white matter (WM) brain changes including an experimental longitudinal follow-up. We acquired whole brain diffusion-weighted brain scans of 22 adolescent female hospitalized patients with AN at admission and nine patients longitudinally at discharge after weight rehabilitation. Patients (10-18 years) were compared to 21 typically developing controls (TD). Tract-based spatial statistics (TBSS) were applied to compare fractional anisotropy (FA) across groups and time points. Associations between average FA values of the global WM skeleton and weight as well as illness duration parameters were analyzed by multiple linear regression. We observed increased FA in bilateral frontal, parietal and temporal areas in AN patients at admission compared to TD. Higher FA of the global WM skeleton at admission was associated with faster weight loss prior to admission. Exploratory longitudinal analysis showed this FA increase to be partially normalized after weight rehabilitation. Our findings reveal a markedly different pattern of WM microstructural changes in adolescent AN compared to most previous results in adult AN. This could signify a different susceptibility and reaction to semi-starvation in the still developing brain of adolescents or a time-dependent pathomechanism differing with extend of chronicity. Higher FA at admission in adolescents with AN could point to WM fibers being packed together more closely.

  8. 75 FR 76994 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... Committee: Brain Disorders and Clinical Neuroscience Integrated Review Group Developmental Brain Disorders....gov . Name of Committee: Brain Disorders and Clinical Neuroscience Integrated Review Group, Cell [email protected] . Name of Committee: Brain Disorders and Clinical Neuroscience Integrated Review Group...

  9. Dyke-Davidoff-Masson syndrome: case report of fetal unilateral ventriculomegaly and hypoplastic left middle cerebral artery.

    PubMed

    Piro, Ettore; Piccione, Maria; Marrone, Gianluca; Giuffrè, Mario; Corsello, Giovanni

    2013-05-14

    Prenatal ultrasonographic detection of unilateral cerebral ventriculomegaly arises suspicion of pathological condition related to cerebrospinal fluid flow obstruction or cerebral parenchimal pathology. Dyke-Davidoff-Masson syndrome is a rare condition characterized by cerebral hemiatrophy, calvarial thickening, skull and facial asymmetry, contralateral hemiparesis, cognitive impairment and seizures. Congenital and acquired types are recognized and have been described, mainly in late childhood, adolescence and adult ages. We describe a female infant with prenatal diagnosis of unilateral left ventriculomegaly in which early brain MRI and contrast enhanced-MRI angiography, showed cerebral left hemiatrophy associated with reduced caliber of the left middle cerebral artery revealing the characteristic findings of the Dyke-Davidoff-Masson syndrome. Prenatal imaging, cerebral vascular anomaly responsible for the cerebral hemiatrophy and the early clinical evolution have never been described before in such a young child and complete the acquired clinical descriptions in older children. Differential diagnosis, genetic investigations, neurophysiologic assessments, short term clinical and developmental follow up are described. Dyke-Davidoff-Masson syndrome must be ruled out in differential diagnosis of fetal unilateral ventriculomegaly. Early clinical assessment, differential diagnosis and cerebral imaging including cerebral MRI angiography allow the clinicians to diagnose also in early infancy this rare condition.

  10. OBSERVATIONS ABOUT HOW WE LEARN ABOUT METHODOLOGY AND STATISTICS.

    PubMed

    Jose, Paul E

    2017-06-01

    The overarching theme of this monograph is to encourage developmental researchers to acquire cutting-edge and innovative design and statistical methods so that we can improve the studies that we execute on the topic of change. Card, the editor of the monograph, challenges the reader to think about works such as the present one as contributing to the new subdiscipline of developmental methodology within the broader field of developmental science. This thought-provoking stance served as the stimulus for the present commentary, which is a collection of observations on "how we learn about methodology and statistics." The point is made that we often learn critical new information from our colleagues, from seminal writings in the literature, and from conferences and workshop participation. It is encouraged that researchers pursue all three of these pathways as ways to acquire innovative knowledge and techniques. Finally, the role of developmental science societies in supporting the dissemination and uptake of this type of knowledge is discussed. © 2017 The Society for Research in Child Development, Inc.

  11. Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation.

    PubMed

    Boersma, Maria; Smit, Dirk J A; Boomsma, Dorret I; De Geus, Eco J C; Delemarre-van de Waal, Henriette A; Stam, Cornelis J

    2013-01-01

    The child brain is a small-world network, which is hypothesized to change toward more ordered configurations with development. In graph theoretical studies, comparing network topologies under different conditions remains a critical point. Constructing a minimum spanning tree (MST) might present a solution, since it does not require setting a threshold and uses a fixed number of nodes and edges. In this study, the MST method is introduced to examine developmental changes in functional brain network topology in young children. Resting-state electroencephalography was recorded from 227 children twice at 5 and 7 years of age. Synchronization likelihood (SL) weighted matrices were calculated in three different frequency bands from which MSTs were constructed, which represent constructs of the most important routes for information flow in a network. From these trees, several parameters were calculated to characterize developmental change in network organization. The MST diameter and eccentricity significantly increased, while the leaf number and hierarchy significantly decreased in the alpha band with development. Boys showed significant higher leaf number, betweenness, degree and hierarchy and significant lower SL, diameter, and eccentricity than girls in the theta band. The developmental changes indicate a shift toward more decentralized line-like trees, which supports the previously hypothesized increase toward regularity of brain networks with development. Additionally, girls showed more line-like decentralized configurations, which is consistent with the view that girls are ahead of boys in brain development. MST provides an elegant method sensitive to capture subtle developmental changes in network organization without the bias of network comparison.

  12. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.

    PubMed

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian

    2013-04-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.

  13. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  14. The Functional Architecture for Face-processing Expertise: FMRI Evidence of the Developmental Trajectory of the Core and the Extended Face Systems

    PubMed Central

    Haist, Frank; Adamo, Maha; Han, Jarnet; Lee, Kang; Stiles, Joan

    2013-01-01

    Expertise in processing faces is a cornerstone of human social interaction. However, the developmental course of many key brain regions supporting face preferential processing in the human brain remains undefined. Here, we present findings from an FMRI study using a simple viewing paradigm of faces and objects in a continuous age sample covering the age range from 6 years through adulthood. These findings are the first to use such a sample paired with whole-brain FMRI analyses to investigate development within the core and extended face networks across the developmental spectrum from middle childhood to adulthood. We found evidence, albeit modest, for a developmental trend in the volume of the right fusiform face area (rFFA) but no developmental change in the intensity of activation. From a spatial perspective, the middle portion of the right fusiform gyrus most commonly found in adult studies of face processing was increasingly likely to be included in the FFA as age increased to adulthood. Outside of the FFA, the most striking finding was that children hyperactivated nearly every aspect of the extended face system relative to adults, including the amygdala, anterior temporal pole, insula, inferior frontal gyrus, anterior cingulate gyrus, and parietal cortex. Overall, the findings suggest that development is best characterized by increasing modulation of face-sensitive regions throughout the brain to engage only those systems necessary for task requirements. PMID:23948645

  15. Developmental Toxicity of Nanoparticles on the Brain.

    PubMed

    Umezawa, Masakazu; Onoda, Atsuto; Takeda, Ken

    2017-01-01

    The toxicity of nanoparticles (nanotoxicology) is being investigated to understand both the health impacts of atmospheric ultrafine particles-the size of which is a fraction (<0.1 μm aerodynamic diameter) of that of PM 2.5 (<2.5 μm diameter)-and the safer use of engineered nanomaterials. Developmental toxicity of nanoparticles has been studied since their transfer from pregnant body to fetal circulation and offspring body was first reported. Here we reviewed the developmental toxicity of nanoparticles on the brain, one of the most important organs in maintenance of mental health and high quality of life. Recently the dose- and size-dependency of transplacental nanoparticle transfer to the fetus was reported. It is important to understand both the mechanism of direct effect of nanoparticles transferred to the fetus and offspring and the indirect effect mediated by induction of oxidative stress and inflammation in the pregnant body. Locomotor activity, learning and memory, motor coordination, and social behavior were reported as potential neurobehavioral targets of maternal nanoparticle exposure. Histopathologically, brain perivascular cells, including perivascular macrophages and surrounding astrocytes, have an important role in waste clearance from the brain parenchyma. They are potentially the most sensitive target of maternal exposure to low-dose nanoparticles. Further investigations will show the detailed mechanism of developmental toxicity of nanoparticles and preventive strategies against intended and unintended nanoparticle exposure. This knowledge will contribute to the safer design of nanoparticles through the development of sensitive and quantitative endpoints for prediction of their developmental toxicity.

  16. BRAIN AND BLOOD TIN LEVELS IN A DEVELOPMENTAL NEUROTOXICITY STUDY OF DIBUTYLTIN.

    EPA Science Inventory

    Dibutyltin (DBT), a widely used plastic stabilizer, is detected in the environment and human tissues. While teratological and developmental effects are known, we could find no published report of DBT effects on the developing nervous system. As part of a developmental neurotoxi...

  17. A Report on the Development of Negation in English by a Second Language Learner--Some Implications.

    ERIC Educational Resources Information Center

    Milon, Jack

    The question asked in this paper is whether children below the age of puberty who acquire a second language within the cultural context of that language acquire it in anything resembling the same developmental order that native speakers of the language acquire it. A seven-year-old Japanese boy's development in English negation structure provides…

  18. Fetal brain disruption sequence versus fetal brain arrest: A distinct autosomal recessive developmental brain malformation phenotype.

    PubMed

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; El-Khayat, Hamed A; Eid, Ola M; Saba, Soliman; Farag, Mona K; Saleem, Sahar N; Gaber, Khaled R

    2015-05-01

    The term fetal brain disruption sequence (FBDS) was coined to describe a number of sporadic conditions caused by numerous external disruptive events presenting with variable imaging findings. However, rare familial occurrences have been reported. We describe five patients (two sib pairs and one sporadic) with congenital severe microcephaly, seizures, and profound intellectual disability. Brain magnetic resonance imaging (MRI) revealed unique and uniform picture of underdeveloped cerebral hemispheres with increased extraxial CSF, abnormal gyral pattern (polymicrogyria-like lesions in two sibs and lissencephaly in the others), loss of white matter, dysplastic ventricles, hypogenesis of corpus callosum, and hypoplasia of the brainstem, but hypoplastic cerebellum in one. Fetal magnetic resonance imaging (FMRI) of two patients showed the same developmental brain malformations in utero. These imaging findings are in accordance with arrested brain development rather than disruption. Molecular analysis excluded mutations in potentially related genes such as NDE1, MKL2, OCLN, and JAM3. These unique clinical and imaging findings were described before among familial reports with FBDS. However, our patients represent a recognizable phenotype of developmental brain malformations, that is, apparently distinguishable from either familial microhydranencephaly or microlissencephaly that were collectively termed FBDS. Thus, the use of the umbrella term FBDS is no longer helpful. Accordingly, we propose the term fetal brain arrest to distinguish them from other familial patients diagnosed as FBDS. The presence of five affected patients from three unrelated consanguineous families suggests an autosomal-recessive mode of inheritance. The spectrum of fetal brain disruption sequence is reviewed. © 2015 Wiley Periodicals, Inc.

  19. Cognitive Impairment in Acquired Brain Injury: A Predictor of Rehabilitation Outcomes and an Opportunity for Novel Interventions

    PubMed Central

    Whyte, Ellen; Skidmore, Elizabeth; Aizenstein, Howard; Ricker, Joseph; Butters, Meryl

    2015-01-01

    Cognitive impairment is a common sequela in acquired brain injury and one that predicts rehabilitation outcomes. There is emerging evidence that impairments in cognitive functions can be manipulated by both pharmacologic and nonpharmacologic interventions to improve rehabilitation outcomes. By using stroke as a model for acquired brain injury, we review the evidence that links cognitive impairment to poor rehabilitation outcomes and discuss possible mechanisms to explain this association. Furthermore, we examine nascent promising research that suggests that interventions that target cognitive impairments can lead to better rehabilitation outcomes. PMID:21703580

  20. Developmental emergence of fear/threat learning: neurobiology, associations and timing

    PubMed Central

    Tallot, L.; Doyère, V.; Sullivan, R. M.

    2016-01-01

    Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups’ transition to independence through weaning. Overall, the data suggests that adult-like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult-like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes. PMID:26534899

  1. Developmental effects of 3,4-methylenedioxymethamphetamine: a review.

    PubMed

    Skelton, Matthew R; Williams, Michael T; Vorhees, Charles V

    2008-03-01

    +/-3,4-Methylenedioxymethamphetamine (MDMA) is a chemical derivative of amphetamine that has become a popular drug of abuse and has been shown to deplete serotonin in the brains of users and animals exposed to it. To date, most studies have investigated the effects of MDMA on adult animals. With a majority of users of MDMA being young adults, the chances of the users becoming pregnant and exposing the fetuses to MDMA are also a concern. Evidence to date has shown that developmental exposure to MDMA results in learning and memory impairments in the Morris water maze, a task known to be sensitive to hippocampal disruption, when the animals are tested as adults. Developmental MDMA exposure leads to hypoactivity in the offspring as adults but does not affect outcome on tests of anxiety. MDMA administration decreases pup weight, increases corticosterone and brain-derived neurotrophic factor levels during treatment while decreasing brain levels of serotonin; a decrease that initially dissipates and then reappears in adulthood. Neonatal MDMA exposure increases the sensitivity of the serotonin 1A receptor, a possible mechanism underlying the learning and memory deficits seen. Taken together, the evidence shows that MDMA exposure has adverse effects on the developing brain and behavior. The animal and human data on developmental MDMA exposure are reviewed and their public health implications discussed.

  2. Child Development

    MedlinePlus

    ... ARTICLES Scientific articles. RESEARCH Legacy for Children™ study. Child Development: What's New Article: Differences in health care, family, ... Disorders, Learning Disorders, and other developmental conditions. ... Development Basics Early Brain Development Developmental Screening Screening for ...

  3. "You Can't Imagine Unless You've Been There Yourself": A Report on the Concerns of Parents of Children with Acquired Brain Injury.

    ERIC Educational Resources Information Center

    Singer, George H. S.; Nixon, Charles

    This report describes a qualitative study of the experiences and perceptions of parents of children with severe acquired brain injury (ABI) and summarizes the experiences of several parents during the first year following their child's traumatic brain injury. Twenty-five parents participated in a day-long focus group, in lengthy structured…

  4. Predictors of Outcome following Acquired Brain Injury in Children

    ERIC Educational Resources Information Center

    Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.

    2009-01-01

    Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…

  5. Co-Occurrence of Developmental Disorders: The Case of Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Rubinsten, Orly

    2009-01-01

    Five to seven percent of children experience severe difficulties in learning mathematics and/or reading. Current trials that are focused on identifying biological markers suggest that these learning disabilities, known as Developmental Dyscalculia (DD) and Dyslexia (for reading), are due to underlying brain dysfunctions. One ongoing controversy…

  6. Developmental estrogen exposures and disruptions to maternal behavior and brain: Effects of ethinyl estradiol, a common positive control.

    PubMed

    Catanese, Mary C; Vandenberg, Laura N

    2017-11-07

    Due of its structural similarity to the endogenous estrogen 17β-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Rethinking responsibility in offenders with acquired paedophilia: punishment or treatment?

    PubMed

    Gilbert, Frédéric; Focquaert, Farah

    2015-01-01

    This article reviews the current neurobiological literature on the aetiology of developmental and acquired paedophilia and examines what the consequences could be in terms of responsibility and treatment for the latter. Addressing the question of responsibility and punishment of offenders with acquired paedophilia from a neurobiological perspective is controversial. Consequently it is essential to avoid hasty conclusions based strictly on neurobiological abnormality justifications. This study establishes a distinction between developmental and acquired paedophilia. The article investigates whether offenders who fulfil the diagnosis of acquired paedophilia should be held fully responsible, particularly in cases where the offender's conduct appears to result from volitionally controlled behaviour that is seemingly incompatible with a neurological cause. Moreover, the article explores how responsibility can be compromised when offenders with acquired paedophilia have (partially) preserved moral knowledge despite their sexual disorder. The article then examines the option of offering mandatory treatment as an alternative to imprisonment for offenders with acquired paedophilia. Furthermore, the article addresses the ethical issues related to offering any form of quasi-coercive treatment as a condition of release. This study concludes that decisions to fully or partially excuse an individual who fulfil the diagnosis of acquired paedophilia should take all relevant information into account, both neurobiological and other environmental evidence, and should proceed on a careful case by case analysis before sentencing or offering treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Brain-oriented care in the NICU: a case study.

    PubMed

    Bader, Lisa

    2014-01-01

    With the advances of technology and treatment in the field of neonatal care, researchers can now study how the brains of preterm infants are different from full-term infants. The differences are significant, and the outcomes are poor overall for premature infants as a whole. Caregivers at the bedside must know that every interaction with the preterm infant affects brain development-it is critical to the developmental outcome of the infant. The idea of neuroprotection is not new to the medical field but is a fairly new idea to the NICU. Neuroprotection encompasses all interventions that promote normal development of the brain. The concept of brain-oriented care is a necessary extension of developmental care in the NICU. By following the journey of 26-week preterm twin infants through a case study, one can better understand the necessity of brain-oriented care at the bedside.

  9. A developmental social neuroscience model for understanding loneliness in adolescence.

    PubMed

    Wong, Nichol M L; Yeung, Patcy P S; Lee, Tatia M C

    2018-02-01

    Loneliness is prevalent in adolescents. Although it can be a normative experience, children and adolescents who experience loneliness are often at risk for anxiety, depression, and suicide. Research efforts have been made to identify the neurobiological basis of such distressful feelings in our social brain. In adolescents, the social brain is still undergoing significant development, which may contribute to their increased and differential sensitivity to the social environment. Many behavioral studies have shown the significance of attachment security and social skills in adolescents' interactions with the social world. In this review, we propose a developmental social neuroscience model that extends from the social neuroscience model of loneliness. In particular, we argue that the social brain and social skills are both important for the development of adolescents' perceived loneliness and that adolescents' familial attachment sets the baseline for neurobiological development. By reviewing the related behavioral and neuroimaging literature, we propose a developmental social neuroscience model to explain the heightened perception of loneliness in adolescents using social skills and attachment style as neurobiological moderators. We encourage future researchers to investigate adolescents' perceived social connectedness from the developmental neuroscience perspective.

  10. Developmental differences in the neural mechanisms of facial emotion labeling

    PubMed Central

    Adleman, Nancy E.; Kim, Pilyoung; Oakes, Allison H.; Hsu, Derek; Reynolds, Richard C.; Chen, Gang; Pine, Daniel S.; Brotman, Melissa A.; Leibenluft, Ellen

    2016-01-01

    Adolescence is a time of increased risk for the onset of psychological disorders associated with deficits in face emotion labeling. We used functional magnetic resonance imaging (fMRI) to examine age-related differences in brain activation while adolescents and adults labeled the emotion on fearful, happy and angry faces of varying intensities [0% (i.e. neutral), 50%, 75%, 100%]. Adolescents and adults did not differ on accuracy to label emotions. In the superior temporal sulcus, ventrolateral prefrontal cortex and middle temporal gyrus, adults show an inverted-U-shaped response to increasing intensities of fearful faces and a U-shaped response to increasing intensities of happy faces, whereas adolescents show the opposite patterns. In addition, adults, but not adolescents, show greater inferior occipital gyrus activation to negative (angry, fearful) vs positive (happy) emotions. In sum, when subjects classify subtly varying facial emotions, developmental differences manifest in several ‘ventral stream’ brain regions. Charting the typical developmental course of the brain mechanisms of socioemotional processes, such as facial emotion labeling, is an important focus for developmental psychopathology research. PMID:26245836

  11. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain.

    PubMed

    Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2013-02-22

    Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement.

  12. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain

    PubMed Central

    Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2013-01-01

    Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement. PMID:23256194

  13. Increased Small-World Network Topology Following Deployment-Acquired Traumatic Brain Injury Associated with the Development of Post-Traumatic Stress Disorder.

    PubMed

    Rowland, Jared A; Stapleton-Kotloski, Jennifer R; Dobbins, Dorothy L; Rogers, Emily; Godwin, Dwayne W; Taber, Katherine H

    2018-05-01

    Cross-sectional and longitudinal studies in active duty and veteran cohorts have both demonstrated that deployment-acquired traumatic brain injury (TBI) is an independent risk factor for developing post-traumatic stress disorder (PTSD), beyond confounds such as combat exposure, physical injury, predeployment TBI, and pre-deployment psychiatric symptoms. This study investigated how resting-state brain networks differ between individuals who developed PTSD and those who did not following deployment-acquired TBI. Participants included postdeployment veterans with deployment-acquired TBI history both with and without current PTSD diagnosis. Graph metrics, including small-worldness, clustering coefficient, and modularity, were calculated from individually constructed whole-brain networks based on 5-min eyes-open resting-state magnetoencephalography (MEG) recordings. Analyses were adjusted for age and premorbid IQ. Results demonstrated that participants with current PTSD displayed higher levels of small-worldness, F(1,12) = 5.364, p < 0.039, partial eta squared = 0.309, and Cohen's d = 0.972, and clustering coefficient, F(1, 12) = 12.204, p < 0.004, partial eta squared = 0.504, and Cohen's d = 0.905, than participants without current PTSD. There were no between-group differences in modularity or the number of modules present. These findings are consistent with a hyperconnectivity hypothesis of the effect of TBI history on functional networks rather than a disconnection hypothesis, demonstrating increased levels of clustering coefficient rather than a decrease as might be expected; however, these results do not account for potential changes in brain structure. These results demonstrate the potential pathological sequelae of changes in functional brain networks following deployment-acquired TBI and represent potential neurobiological changes associated with deployment-acquired TBI that may increase the risk of subsequently developing PTSD.

  14. Developmental thyroid hormone insufficiency and brain development: A role for brain-derived neurotrophic factor (BDNF)?*

    EPA Science Inventory

    Thyroid hormones (TH) are essential for normal brain development. Even subclinical hypothyroidism experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular func...

  15. Post-adolescent developmental changes in cortical complexity.

    PubMed

    Sandu, Anca-Larisa; Izard, Edouard; Specht, Karsten; Beneventi, Harald; Lundervold, Arvid; Ystad, Martin

    2014-11-27

    Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.

  16. SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests

    PubMed Central

    Serag, Ahmed; Wilkinson, Alastair G.; Telford, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Anblagan, Devasuda; Macnaught, Gillian; Semple, Scott I.; Boardman, James P.

    2017-01-01

    Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation. The method performed well on brain MRI data acquired from 179 individuals, analyzed in three age groups: newborns (38–42 weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years). As the method can learn from partially labeled datasets, it can be used to segment large-scale datasets efficiently. It could also be applied to different populations and imaging modalities across the life course. PMID:28163680

  17. Proportional Reasoning and the Visually Impaired

    ERIC Educational Resources Information Center

    Hilton, Geoff; Hilton, Annette; Dole, Shelley L.; Goos, Merrilyn; O'Brien, Mia

    2012-01-01

    Proportional reasoning is an important aspect of formal thinking that is acquired during the developmental years that approximate the middle years of schooling. Students who fail to acquire sound proportional reasoning often experience difficulties in subjects that require quantitative thinking, such as science, technology, engineering, and…

  18. Social Routines and Language Play: Developing Communication Responses in Developmentally Delayed Blind Children.

    ERIC Educational Resources Information Center

    Rogow, Sally M.

    1983-01-01

    Social routines, which combined nursery rhymes with carefully planned action sequences, were used to help two young developmentally delayed, visually handicapped children acquire communicative responses. Midway through the 3-year project, one child responded to words for objects, people, and actions. (Author/SEW)

  19. Structural brain differences in school-age children with and without single-suture craniosynostosis.

    PubMed

    Aldridge, Kristina; Collett, Brent R; Wallace, Erin R; Birgfeld, Craig; Austin, Jordan R; Yeh, Regina; Feil, Madison; Kapp-Simon, Kathleen A; Aylward, Elizabeth H; Cunningham, Michael L; Speltz, Matthew L

    2017-04-01

    OBJECTIVE Single-suture craniosynostosis (SSC), the premature fusion of a cranial suture, is characterized by dysmorphology of the craniofacial skeleton. Evidence to suggest that children with SSC are at an elevated risk of mild to moderate developmental delays and neurocognitive deficits is mounting, but the associations among premature suture fusion, neuroanatomy, and neurocognition are unexplained. The goals of this study were to determine 1) whether differences in the brain are present in young children with the 2 most common forms of SSC (sagittal and metopic) several years following surgical correction, and 2) whether the pattern of differences varies by affected suture (sagittal or metopic). Examination of differences in the brains of children with SSC several years after surgery may illuminate the growth trajectory of the brain after the potential constraint of the dysmorphic cranium has been relieved. METHODS The authors compared quantitative measures of the brain acquired from MR images obtained from children with sagittal or metopic craniosynostosis (n = 36) at 7 years of age to those obtained from a group of unaffected controls (n = 27) at the same age. The authors measured the volumes of the whole brain, cerebral cortex, cerebral white matter, cerebral cortex by lobe, and ventricles. Additionally, they measured the midsagittal area of the corpus callosum and its segments and of the cerebellar vermis and its component lobules. Measurements obtained from children with SSC and controls were compared using linear regression models. RESULTS No volume measures of the cerebrum or of the whole brain differed significantly between patients with SSC and controls (p > 0.05). However, ventricle volume was significantly increased in patients with SSC (p = 0.001), particularly in those with sagittal craniosynostosis (p < 0.001). In contrast, the area of the corpus callosum was significantly reduced in patients with metopic synostosis (p = 0.04), particularly in the posterior segments (p = 0.004). Similarly, the area of lobules VI-VII of the cerebellar vermis was reduced in patients with SSC (p = 0.03), with those with metopic craniosynostosis showing the greatest reduction (p = 0.01). CONCLUSIONS The lack of differences in overall brain size or regional differences in the size of the lobes of the cerebrum in children with metopic and sagittal synostosis suggests that the elevated risk of neurodevelopmental deficits is not likely to be associated with differences in the cerebral cortex. Instead, this study showed localized differences between sagittal and metopic craniosynostosis cases as compared with controls in the ventricles and in the midsagittal structures of the corpus callosum and the cerebellum. It remains to be tested whether these structural differences are associated with the increased risk for developmental delay and neurocognitive deficits in children with SSC.

  20. Cognitive Rehabilitation for Children with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Slomine, Beth; Locascio, Gianna

    2009-01-01

    Cognitive deficits are frequent consequences of acquired brain injury (ABI) and often require intervention. We review the theoretical and empirical literature on cognitive rehabilitation in a variety of treatment domains including attention, memory, unilateral neglect, speech and language, executive functioning, and family involvement/education.…

  1. Graph theoretical modeling of baby brain networks.

    PubMed

    Zhao, Tengda; Xu, Yuehua; He, Yong

    2018-06-12

    The human brain undergoes explosive growth during the prenatal period and the first few postnatal years, establishing an early infrastructure for the later development of behaviors and cognitions. Revealing the developmental rules during the early phrase is essential in understanding the emergence of brain function and the origin of developmental disorders. The graph-theoretical network modeling in combination with multiple neuroimaging probes provides an important research framework to explore early development of the topological wiring and organizational paradigms of the brain. Here, we reviewed studies which employed neuroimaging and graph-theoretical modeling to investigate brain network development from approximately 20 gestational weeks to 2 years of age. Specifically, the structural and functional brain networks have evolved to highly efficient topological architectures in the early stage; where the structural network remains ahead and paves the way for the development of functional network. The brain network develops in a heterogeneous order, from primary to higher-order systems and from a tendency of network segregation to network integration in the prenatal and postnatal periods. The early brain network topologies show abilities in predicting certain cognitive and behavior performance in later life, and their impairments are likely to continue into childhood and even adulthood. These macroscopic topological changes are found to be associated with possible microstructural maturations, such as axonal growth and myelinations. Collectively, this review provides a detailed delineation of the early changes of the baby brains in the graph-theoretical modeling framework, which opens up a new avenue to understand the developmental principles of the connectome. Copyright © 2018. Published by Elsevier Inc.

  2. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities.

    PubMed

    Santarnecchi, E; Muller, T; Rossi, S; Sarkar, A; Polizzotto, N R; Rossi, A; Cohen Kadosh, R

    2016-02-01

    Emerging evidence suggests that transcranial alternating current stimulation (tACS) is an effective, frequency-specific modulator of endogenous brain oscillations, with the potential to alter cognitive performance. Here, we show that reduction in response latencies to solve complex logic problem indexing fluid intelligence is obtained through 40 Hz-tACS (gamma band) applied to the prefrontal cortex. This improvement in human performance depends on individual ability, with slower performers at baseline receiving greater benefits. The effect could have not being explained by regression to the mean, and showed task and frequency specificity: it was not observed for trials not involving logical reasoning, as well as with the application of low frequency 5 Hz-tACS (theta band) or non-periodic high frequency random noise stimulation (101-640 Hz). Moreover, performance in a spatial working memory task was not affected by brain stimulation, excluding possible effects on fluid intelligence enhancement through an increase in memory performance. We suggest that such high-level cognitive functions are dissociable by frequency-specific neuromodulatory effects, possibly related to entrainment of specific brain rhythms. We conclude that individual differences in cognitive abilities, due to acquired or developmental origins, could be reduced during frequency-specific tACS, a finding that should be taken into account for future individual cognitive rehabilitation studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.

    PubMed

    Bastiani, Matteo; Andersson, Jesper L R; Cordero-Grande, Lucilio; Murgasova, Maria; Hutter, Jana; Price, Anthony N; Makropoulos, Antonios; Fitzgibbon, Sean P; Hughes, Emer; Rueckert, Daniel; Victor, Suresh; Rutherford, Mary; Edwards, A David; Smith, Stephen M; Tournier, Jacques-Donald; Hajnal, Joseph V; Jbabdi, Saad; Sotiropoulos, Stamatios N

    2018-05-28

    The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Reduced brain resting-state network specificity in infants compared with adults.

    PubMed

    Wylie, Korey P; Rojas, Donald C; Ross, Randal G; Hunter, Sharon K; Maharajh, Keeran; Cornier, Marc-Andre; Tregellas, Jason R

    2014-01-01

    Infant resting-state networks do not exhibit the same connectivity patterns as those of young children and adults. Current theories of brain development emphasize developmental progression in regional and network specialization. We compared infant and adult functional connectivity, predicting that infants would exhibit less regional specificity and greater internetwork communication compared with adults. Functional magnetic resonance imaging at rest was acquired in 12 healthy, term infants and 17 adults. Resting-state networks were extracted, using independent components analysis, and the resulting components were then compared between the adult and infant groups. Adults exhibited stronger connectivity in the posterior cingulate cortex node of the default mode network, but infants had higher connectivity in medial prefrontal cortex/anterior cingulate cortex than adults. Adult connectivity was typically higher than infant connectivity within structures previously associated with the various networks, whereas infant connectivity was frequently higher outside of these structures. Internetwork communication was significantly higher in infants than in adults. We interpret these findings as consistent with evidence suggesting that resting-state network development is associated with increasing spatial specificity, possibly reflecting the corresponding functional specialization of regions and their interconnections through experience.

  5. A role for the serotonin reuptake transporter in the brain and intestinal features of autism spectrum disorders and developmental antidepressant exposure.

    PubMed

    Margolis, Kara Gross

    2017-10-01

    Many disease conditions considered CNS-predominant harbor significant intestinal comorbidities. Serotonin (5-HT) and the serotonin reuptake transporter (SERT) have increasingly been shown to play important roles in both brain and intestinal development and long-term function. 5-HT and SERT may thus modulate critical functions in the development and perpetuation of brain-gut axis disease. We discuss the potential roles of 5-HT and SERT in the brain and intestinal manifestations of autism spectrum disorders and developmental antidepressant exposure. The potential therapeutic value of 5-HT 4 modulation in the subsequent treatment of these conditions is also addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Molecular networks and the evolution of human cognitive specializations.

    PubMed

    Fontenot, Miles; Konopka, Genevieve

    2014-12-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Social Outcomes in Childhood Brain Disorder: A Heuristic Integration of Social Neuroscience and Developmental Psychology

    PubMed Central

    Yeates, Keith Owen; Bigler, Erin D.; Dennis, Maureen; Gerhardt, Cynthia A.; Rubin, Kenneth H.; Stancin, Terry; Taylor, H. Gerry; Vannatta, Kathryn

    2010-01-01

    The authors propose a heuristic model of the social outcomes of childhood brain disorder that draws on models and methods from both the emerging field of social cognitive neuroscience and the study of social competence in developmental psychology/psychopathology. The heuristic model characterizes the relationships between social adjustment, peer interactions and relationships, social problem solving and communication, social-affective and cognitive-executive processes, and their neural substrates. The model is illustrated by research on a specific form of childhood brain disorder, traumatic brain injury. The heuristic model may promote research regarding the neural and cognitive-affective substrates of children’s social development. It also may engender more precise methods of measuring impairments and disabilities in children with brain disorder and suggest ways to promote their social adaptation. PMID:17469991

  8. Group Treatment in Acquired Brain Injury Rehabilitation

    ERIC Educational Resources Information Center

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  9. Exploring the Use of Cognitive Intervention for Children with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Missiuna, Cheryl; DeMatteo, Carol; Hanna, Steven; Mandich, Angela; Law, Mary; Mahoney, William; Scott, Louise

    2010-01-01

    Introduction: Children with acquired brain injury (ABI) often experience cognitive, motor, and psychosocial deficits that affect participation in everyday activities. Cognitive Orientation to Daily Occupational Performance (CO-OP) is an individualized treatment that teaches cognitive strategies necessary to support successful performance.…

  10. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  11. Genetic Modulation of Training and Transfer in Older Adults: BDNF Val66Met Polymorphism is Associated with Wider Useful Field of View

    PubMed Central

    Colzato, Lorenza S.; van Muijden, Jesse; Band, Guido P. H.; Hommel, Bernhard

    2011-01-01

    Western society has an increasing proportion of older adults. Increasing age is associated with a general decrease in the control over task-relevant mental processes. In the present study we investigated the possibility that successful transfer of game-based cognitive improvements to untrained tasks in elderly people is modulated by preexisting neuro-developmental factors as genetic variability related to levels of the brain-derived neurotrophic factor (BDNF), an important neuromodulator underlying cognitive processes. We trained participants, genotyped for the BDNF Val66Met polymorphism, on cognitive tasks developed to improve dynamic attention. Pre-training (baseline) and post-training measures of attentional processes (divided and selective attention) were acquired by means of the useful field of view task. As expected, Val/Val homozygous individuals showed larger beneficial transfer effects than Met/-carriers. Our findings support the idea that genetic predisposition modulates transfer effects. PMID:21909331

  12. What Aspects of Face Processing Are Impaired in Developmental Prosopagnosia?

    ERIC Educational Resources Information Center

    Le Grand, Richard; Cooper, Philip A.; Mondloch, Catherine J.; Lewis, Terri L.; Sagiv, Noam; de Gelder, Beatrice; Maurer, Daphne

    2006-01-01

    Developmental prosopagnosia (DP) is a severe impairment in identifying faces that is present from early in life and that occurs despite no apparent brain damage and intact visual and intellectual function. Here, we investigated what aspects of face processing are impaired/spared in developmental prosopagnosia by examining a relatively large group…

  13. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 3

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    In Part Three, the author reviews the basic ideas presented in Parts One and Two while arguing why the traditional equation-solving developmental algebra curricula is not a good choice for implementing neural response strategies presented in the first two parts. He continues by showing that the developmental algebra student audience is simply…

  14. [Impact of acquired brain injury towards the community integration: employment outcome, disability and dependence two years after injury].

    PubMed

    Luna-Lario, P; Ojeda, N; Tirapu-Ustarroz, J; Pena, J

    2016-06-16

    To analyze the impact of acquired brain injury towards the community integration (professional career, disability, and dependence) in a sample of people affected by vascular, traumatic and tumor etiology acquired brain damage, over a two year time period after the original injury, and also to examine what sociodemographic variables, premorbid and injury related clinical data can predict the level of the person's integration into the community. 106 adults sample suffering from acquired brain injury who were attended by the Neuropsychology and Neuropsychiatry Department at Hospital of Navarra (Spain) affected by memory deficit as their main sequel. Differences among groups have been analyzed by using t by Student, chi squared and U by Mann-Whitney tests. 19% and 29% of the participants who were actively working before the injury got back their previous status within one and two years time respectively. 45% of the total sample were recognized disabled and 17% dependant. No relationship between sociodemographic and clinical variables and functional parameters observed were found. Acquired brain damage presents a high intensity impact on affected person's life trajectory. Nevertheless, in Spain, its consequences at sociolaboral adjustment over the the two years following the damage through functional parameters analyzed with official governmental means over a vascular, traumatic and tumor etiology sample had never been studied before.

  15. [Autism: toward a necessary cultural revolution].

    PubMed

    Chamak, Brigitte; Cohen, David

    2003-11-01

    Autism is a pervasive developmental disorder of childhood characterised by disturbances in both social interactions and communication as well as stereotyped patterns of activities and behaviour. The increase in estimates of the prevalence of autism has raised the question of an "epidemic" of autism. More active case assessment and changes in diagnostic criteria probably account in large part for such increase. Investigators have attempted to define the neural pathophysiology of autism ever since the hypothesis of "refrigerator mother" as its cause was replaced by the view that it is a developmental disorder of the immature brain. However consensus is yet to be reached concerning the brain regions implicated. Psychoanalysis, cognitive psychology, neurophysiology, neuropharmacology, and genetics propose restricted view of the major issues leaving extensive areas unexplored. Therapeutic approaches induce only partial and uncertain results. There is no cure for autism but substantial evidence indicates that early, intensive, individualised education is beneficial for children. All modern intervention programs for autism affected children share a high degree of environmental structuring and predictability and an extensive individual approach. Autism being a behaviourally defined syndrome, it gave rise to a number of controversies concerning definition, classification, etiopathogenesis and therapeutics. In the 1990s a crisis has occurred in France with a loss of confidence between parents and psychiatrists with a problem concerning the means and ways of care of the autistic individual. The aim of this paper is to point out the different questions raised by autism in order to better understand this syndrome which touches upon essential behaviour-related aspects such as self consciousness, reality perception, the functioning of the thought and communication, as well as the role of hereditary and acquired influences in normal and pathological development.

  16. Atypical brain activation patterns during a face-to-face joint attention game in adults with autism spectrum disorder.

    PubMed

    Redcay, Elizabeth; Dodell-Feder, David; Mavros, Penelope L; Kleiner, Mario; Pearrow, Mark J; Triantafyllou, Christina; Gabrieli, John D; Saxe, Rebecca

    2013-10-01

    Joint attention behaviors include initiating one's own and responding to another's bid for joint attention to an object, person, or topic. Joint attention abilities in autism are pervasively atypical, correlate with development of language and social abilities, and discriminate children with autism from other developmental disorders. Despite the importance of these behaviors, the neural correlates of joint attention in individuals with autism remain unclear. This paucity of data is likely due to the inherent challenge of acquiring data during a real-time social interaction. We used a novel experimental set-up in which participants engaged with an experimenter in an interactive face-to-face joint attention game during fMRI data acquisition. Both initiating and responding to joint attention behaviors were examined as well as a solo attention (SA) control condition. Participants included adults with autism spectrum disorder (ASD) (n = 13), a mean age- and sex-matched neurotypical group (n = 14), and a separate group of neurotypical adults (n = 22). Significant differences were found between groups within social-cognitive brain regions, including dorsal medial prefrontal cortex (dMPFC) and right posterior superior temporal sulcus (pSTS), during the RJA as compared to SA conditions. Region-of-interest analyses revealed a lack of signal differentiation between joint attention and control conditions within left pSTS and dMPFC in individuals with ASD. Within the pSTS, this lack of differentiation was characterized by reduced activation during joint attention and relative hyper-activation during SA. These findings suggest a possible failure of developmental neural specialization within the STS and dMPFC to joint attention in ASD. Copyright © 2012 Wiley Periodicals, Inc.

  17. Complex Environments: Effects on Brain Development

    ERIC Educational Resources Information Center

    Wallace, Patricia

    1974-01-01

    Progress is now being made toward ascertaining the specific effects of rearing conditions on brain and behavior, the properties of the environment that contribute to these effects, and the developmental periods in which brain tissue is most sensitive to environmental modification. (Author/RH)

  18. What cues do nurses use to predict aggression in people with acquired brain injury?

    PubMed

    Pryor, Julie

    2005-04-01

    There is a paucity of research on the frequent and repeated episodes of aggression and violence experienced by nurses when working with people who have an acquired brain injury. The purpose of this study was to bring this issue into focus by identifying the cues nurses use to predict aggression in people with acquired brain injury. Twenty-eight nurses from 10 different inpatient brain injury rehabilitation units in Australia participated in the study. Participants were interviewed using the Critical Decision Method on a one to one basis for up to one and one half hours on two consecutive days. Transcripts of the interviews were analysed using thematic analysis. Results revealed that nurses identified five groups of cues that predict aggression in a patient: (1) what a patient is saying; (2) changes in a patient's voice; (3) changes in a patient's face; (4) changes in a patient's behavior; and (5) a patient's emotions. Nurses reported using multiple cues to predict aggression and highlighted the importance of personal knowledge of the patient in conjunction with identified cues when predicting aggression. Nurses caring for patients with acquired brain injury can predict many episodes of aggression, though not all, by identifying cues from the patient.

  19. Developmental Approach for Behavior Learning Using Primitive Motion Skills.

    PubMed

    Dawood, Farhan; Loo, Chu Kiong

    2018-05-01

    Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.

  20. Age Related Changes in Topological Properties of Brain Functional Network and Structural Connectivity.

    PubMed

    Shah, Chandan; Liu, Jia; Lv, Peilin; Sun, Huaiqiang; Xiao, Yuan; Liu, Jieke; Zhao, Youjin; Zhang, Wenjing; Yao, Li; Gong, Qiyong; Lui, Su

    2018-01-01

    Introduction: There are still uncertainties about the true nature of age related changes in topological properties of the brain functional network and its structural connectivity during various developmental stages. In this cross- sectional study, we investigated the effects of age and its relationship with regional nodal properties of the functional brain network and white matter integrity. Method: DTI and fMRI data were acquired from 458 healthy Chinese participants ranging from age 8 to 81 years. Tractography was conducted on the DTI data using FSL. Graph Theory analyses were conducted on the functional data yielding topological properties of the functional network using SPM and GRETNA toolbox. Two multiple regressions were performed to investigate the effects of age on nodal topological properties of the functional brain network and white matter integrity. Result: For the functional studies, we observed that regional nodal characteristics such as node betweenness were decreased while node degree and node efficiency was increased in relation to increasing age. Perversely, we observed that the relationship between nodal topological properties and fasciculus structures were primarily positive for nodal betweenness but negative for nodal degree and nodal efficiency. Decrease in functional nodal betweenness was primarily located in superior frontal lobe, right occipital lobe and the global hubs. These brain regions also had both direct and indirect anatomical relationships with the 14 fiber bundles. A linear age related decreases in the Fractional anisotropy (FA) value was found in the callosum forceps minor. Conclusion: These results suggests that age related differences were more pronounced in the functional than in structural measure indicating these measures do not have direct one-to-one mapping. Our study also indicates that the fiber bundles with longer fibers exhibited a more pronounced effect on the properties of functional network.

  1. The Root Cause of Post-traumatic and Developmental Stress Disorder

    DTIC Science & Technology

    2011-03-01

    traumatic and Developmental Stress Disorder Keith A. Young, PhD 1 MAR 2010 - 28 FEB 2011Annual01-03-2011 Our overarching scientific hypothesis holds that...highly susceptible to the effects of severe stress . We are studying this question using both clinical and basic approaches. New findings from our...experience induce a variation of normal brain anatomy that makes the brain highly susceptible to the effects of severe stress . The new goal of Project 1 is

  2. Social Competence in Pediatric Brain Tumor Survivors: Application of a Model from Social Neuroscience and Developmental Psychology

    PubMed Central

    Hocking, Matthew C.; McCurdy, Mark; Turner, Elise; Kazak, Anne E.; Noll, Robert B.; Phillips, Peter; Barakat, Lamia P.

    2014-01-01

    Pediatric brain tumor (BT) survivors are at risk for psychosocial late effects across many domains of functioning, including neurocognitive and social. The literature on the social competence of pediatric BT survivors is still developing and future research is needed that integrates developmental and cognitive neuroscience research methodologies to identify predictors of survivor social adjustment and interventions to ameliorate problems. This review discusses the current literature on survivor social functioning through a model of social competence in childhood brain disorder and suggests future directions based on this model. Interventions pursuing change in survivor social adjustment should consider targeting social ecological factors. PMID:25382825

  3. Developmental emergence of fear/threat learning: neurobiology, associations and timing.

    PubMed

    Tallot, L; Doyère, V; Sullivan, R M

    2016-01-01

    Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups' transition to independence through weaning. Overall, the data suggests that adult-like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult-like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Hemoglobin phase of oxygenation and deoxygenation in early brain development measured using fNIRS

    PubMed Central

    Watanabe, Hama; Shitara, Yoshihiko; Aoki, Yoshinori; Inoue, Takanobu; Tsuchida, Shinya; Takahashi, Naoto; Taga, Gentaro

    2017-01-01

    A crucial issue in neonatal medicine is the impact of preterm birth on the developmental trajectory of the brain. Although a growing number of studies have shown alterations in the structure and function of the brain in preterm-born infants, we propose a method to detect subtle differences in neurovascular and metabolic functions in neonates and infants. Functional near-infrared spectroscopy (fNIRS) was used to obtain time-averaged phase differences between spontaneous low-frequency (less than 0.1 Hz) oscillatory changes in oxygenated hemoglobin (oxy-Hb) and those in deoxygenated hemoglobin (deoxy-Hb). This phase difference was referred to as hemoglobin phase of oxygenation and deoxygenation (hPod) in the cerebral tissue of sleeping neonates and infants. We examined hPod in term, late preterm, and early preterm infants with no evidence of clinical issues and found that all groups of infants showed developmental changes in the values of hPod from an in-phase to an antiphase pattern. Comparison of hPod among the groups revealed that developmental changes in hPod in early preterm infants precede those in late preterm and term infants at term equivalent age but then, progress at a slower pace. This study suggests that hPod measured using fNIRS is sensitive to the developmental stage of the integration of circular, neurovascular, and metabolic functions in the brains of neonates and infants. PMID:28196885

  5. Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer’s-like memory deficits in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Kazim, Syed Faraz; Blanchard, Julie; Bianchi, Riccardo; Iqbal, Khalid

    2017-01-01

    Down syndrome (DS), caused by trisomy 21, is the most common genetic cause of intellectual disability and is associated with a greatly increased risk of early-onset Alzheimer’s disease (AD). The Ts65Dn mouse model of DS exhibits several key features of the disease including developmental delay and AD-like cognitive impairment. Accumulating evidence suggests that impairments in early brain development caused by trisomy 21 contribute significantly to memory deficits in adult life in DS. Prenatal genetic testing to diagnose DS in utero, provides the novel opportunity to initiate early pharmacological treatment to target this critical period of brain development. Here, we report that prenatal to early postnatal treatment with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021), rescued developmental delay in pups and AD-like hippocampus-dependent memory impairments in adult life in Ts65Dn mice. Furthermore, this treatment prevented pre-synaptic protein deficit, decreased glycogen synthase kinase-3beta (GSK3β) activity, and increased levels of synaptic plasticity markers including brain derived neurotrophic factor (BNDF) and phosphorylated CREB, both in young (3-week-old) and adult (~ 7-month-old) Ts65Dn mice. These findings provide novel evidence that providing neurotrophic support during early brain development can prevent developmental delay and AD-like memory impairments in a DS mouse model. PMID:28368015

  6. Single or Dual Representations for Reading and Spelling?

    ERIC Educational Resources Information Center

    Holmes, Virginia M.; Babauta, Mariko L.

    2005-01-01

    Neuropsychological models postulate that the memory representation acquired for use in reading words is separate from the one acquired for use in spelling, while developmental models assume that the same representation is developed for access in both reading and spelling. The dual-representation model contends that there is often more precise…

  7. Effectiveness of a Modified Rapid Toilet Training Workshop for Parents of Children with Developmental Disabilities

    ERIC Educational Resources Information Center

    Rinald, Katherine; Mirenda, Pat

    2012-01-01

    Individuals with developmental disabilities often experience challenges in acquiring toileting skills, which highlights a need for effective toilet training strategies that can be readily disseminated to caregivers. The purpose of this multiple baseline study was to evaluate the effectiveness of a modified rapid toilet training workshop provided…

  8. Case Marking Uniformity in Developmental Pronoun Errors

    ERIC Educational Resources Information Center

    Fitzgerald, Colleen E.; Rispoli, Matthew; Hadley, Pamela A.

    2017-01-01

    The purpose of this study was to determine if children acquire grammatical case as a unified system or in a piecemeal fashion. In English language acquisition, many children make developmental errors in marking case on subject position pronouns (e.g., "Me" do it, "Him" like it). It is unknown whether children who produce…

  9. Positive Approaches: A Sexuality Guide for Teaching Developmentally Disabled Persons.

    ERIC Educational Resources Information Center

    Maurer, Lisa

    This guide is intended to assist caregivers of people with development disabilities in acquiring knowledge about sexuality and skill in expressing sexuality in a safe and appropriate manner. Section 1 provides an overview of the history of sexuality and developmentally disabled individuals. The second section provides exercises for the caregiver…

  10. Brain heparan sulphate proteoglycans are altered in developing foetus when exposed to in-utero hyperglycaemia.

    PubMed

    Sandeep, M S; Nandini, C D

    2017-08-01

    In-utero exposure of foetus to hyperglycaemic condition affects the growth and development of the organism. The brain is one of the first organs that start to develop during embryonic period and glycosaminoglycans (GAGs) and proteoglycans (PGs) are one of the key molecules involved in its development. But studies on the effect of hyperglycaemic conditions on brain GAGs/PGs are few and far between. We, therefore, looked into the changes in brain GAGs and PGs at various developmental stages of pre- and post-natal rats from non-diabetic and diabetic mothers as well as in adult rats induced with diabetes using a diabetogenic agent, Streptozotocin. Increased expression of GAGs especially that of heparan sulphate class in various developmental stages were observed in the brain as a result of in-utero hyperglycaemic condition but not in that of adult rats. Changes in disaccharides of heparan sulphate (HS) were observed in various developmental stages. Furthermore, various HSPGs namely, syndecans-1 and -3 and glypican-1 were overexpressed in offspring from diabetic mother. However, in adult diabetic rats, only glypican-1 was overexpressed. The offsprings from diabetic mothers became hyperphagic at the end of 8 weeks after birth which can have implications in the long run. Our results highlight the likely impact of the in-utero exposure of foetus to hyperglycaemic condition on brain GAGs/PGs compared to diabetic adult rats.

  11. Effects of postnatal ethanol exposure at different developmental phases on neurotrophic factors and phosphorylated proteins on signal transductions in rat brain.

    PubMed

    Tsuji, Ryozo; Fattori, Vittorio; Abe, Shin-ichi; Costa, Lucio G; Kobayashi, Kumiko

    2008-01-01

    Exposure to ethanol during development induces severe brain damage resulting in a number of CNS dysfunctions including microencephaly and mental retardation in humans and in laboratory animals. The most vulnerable period to ethanol neurotoxicity coincides with the peak of brain growth spurt. Recently, neurotrophic factors and/or their signal transduction pathways have been reported as a potential relevant target for the developmental neurotoxicity of ethanol. The present studies were designed to investigate the effects of ethanol given in various developmental phases during the brain growth spurt in rats. Rat pups were assigned to the three treatment groups and treated with 5 g/kg of ethanol for three days, on postnatal days (PND) 2-4, 6-8 or 13-15. Whole brain weights were reduced only in the PND 6-8 group concurrently with the reduction of GDNF mRNA in cortex in this group. BDNF mRNA expression was reduced in both the PND 6-8 and 13-15 groups, while mRNA expressions of NT-3 and NGF were unchanged in all three groups. Phospho-Akt level was mostly reduced in the PND 6-8 group. Both phospho-MAPK and p-70S6 kinase levels were decreased in all groups whereas no changes were observed in either phospho-PKCzeta or CREB level. The phosphorylation of Akt was immediately inhibited after single administration of ethanol, and its inhibition was correlated with variations in blood ethanol concentration. These findings suggest that GDNF and the phosphorylation of Akt play a possible key role in the ethanol-induced developmental neurotoxicity.

  12. Beyond restoration to transformation: positive outcomes in the rehabilitation of acquired brain injury.

    PubMed

    McGrath, Joanna

    2004-11-01

    This paper compares the situation of the person with acquired brain injury to that of the people of Israel in the sixth century BCE (before the current era) during the period of exile in Babylon. Both situations are characterized by traumatic multiple losses, and a struggle to regain a sense of identity: personal, national or spiritual. Evidence from the literature on both brain injury rehabilitation and from the Hebrew Scriptures indicates that models of restoration of function and transformation of suffering have been applied to both situations. The relative strengths and weaknesses of these models are considered, and it is argued that models of transformation of suffering have much to offer, especially in the longer term psychotherapeutic rehabilitation of people with acquired brain injury, when restoration of function has reached its limits.

  13. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  14. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models.

    PubMed Central

    Rice, D; Barone, S

    2000-01-01

    Vulnerable periods during the development of the nervous system are sensitive to environmental insults because they are dependent on the temporal and regional emergence of critical developmental processes (i.e., proliferation, migration, differentiation, synaptogenesis, myelination, and apoptosis). Evidence from numerous sources demonstrates that neural development extends from the embryonic period through adolescence. In general, the sequence of events is comparable among species, although the time scales are considerably different. Developmental exposure of animals or humans to numerous agents (e.g., X-ray irradiation, methylazoxymethanol, ethanol, lead, methyl mercury, or chlorpyrifos) demonstrates that interference with one or more of these developmental processes can lead to developmental neurotoxicity. Different behavioral domains (e.g., sensory, motor, and various cognitive functions) are subserved by different brain areas. Although there are important differences between the rodent and human brain, analogous structures can be identified. Moreover, the ontogeny of specific behaviors can be used to draw inferences regarding the maturation of specific brain structures or neural circuits in rodents and primates, including humans. Furthermore, various clinical disorders in humans (e.g., schizophrenia, dyslexia, epilepsy, and autism) may also be the result of interference with normal ontogeny of developmental processes in the nervous system. Of critical concern is the possibility that developmental exposure to neurotoxicants may result in an acceleration of age-related decline in function. This concern is compounded by the fact that developmental neurotoxicity that results in small effects can have a profound societal impact when amortized across the entire population and across the life span of humans. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 9 Figure 12 Figure 14 Figure 16 Figure 17 PMID:10852851

  15. Developmental changes in the structure of the social brain in late childhood and adolescence.

    PubMed

    Mills, Kathryn L; Lalonde, François; Clasen, Liv S; Giedd, Jay N; Blakemore, Sarah-Jayne

    2014-01-01

    Social cognition provides humans with the necessary skills to understand and interact with one another. One aspect of social cognition, mentalizing, is associated with a network of brain regions often referred to as the 'social brain.' These consist of medial prefrontal cortex [medial Brodmann Area 10 (mBA10)], temporoparietal junction (TPJ), posterior superior temporal sulcus (pSTS) and anterior temporal cortex (ATC). How these specific regions develop structurally across late childhood and adolescence is not well established. This study examined the structural developmental trajectories of social brain regions in the longest ongoing longitudinal neuroimaging study of human brain maturation. Structural trajectories of grey matter volume, cortical thickness and surface area were analyzed using surface-based cortical reconstruction software and mixed modeling in a longitudinal sample of 288 participants (ages 7-30 years, 857 total scans). Grey matter volume and cortical thickness in mBA10, TPJ and pSTS decreased from childhood into the early twenties. The ATC increased in grey matter volume until adolescence and in cortical thickness until early adulthood. Surface area for each region followed a cubic trajectory, peaking in early or pre-adolescence before decreasing into the early twenties. These results are discussed in the context of developmental changes in social cognition across adolescence.

  16. Mindfulness training for adolescents: A neurodevelopmental perspective on investigating modifications in attention and emotion regulation using event-related brain potentials.

    PubMed

    Sanger, Kevanne Louise; Dorjee, Dusana

    2015-09-01

    Mindfulness training is increasingly being introduced in schools, yet studies examining its impact on the developing brain have been scarce. A neurodevelopmental perspective on mindfulness has been advocated as a powerful tool to enhance our understanding of underlying neurocognitive changes that have implications for developmental well-being research and the implementation of mindfulness in education. To stimulate more research in the developmental cognitive neuroscience of mindfulness, this article outlines possible indexes of mindfulness-based change in adolescence, with a focus on event-related brain potential (ERP) markers. We provide methodological recommendations for future studies and offer examples of research paradigms. We also discuss how mindfulness practice could impact on the development of prefrontal brain structures and enhance attention control and emotion regulation skills in adolescents, impacting in turn on their self-regulation and coping skills. We highlight advantages of the ERP methodology in neurodevelopmental research of mindfulness. It is proposed that research using established experimental tasks targeting ERP components such as the contingent negative variability, N200, error-related negativity and error positivity, P300, and late positive potential could elucidate developmentally salient shifts in the neural plasticity of the adolescent brain induced by mindfulness practice.

  17. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree

    PubMed Central

    Atkinson, Elizabeth G.; Rogers, Jeffrey; Cheverud, James M.

    2016-01-01

    Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function. PMID:26813679

  18. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae

    PubMed Central

    Pelkowski, Sean D.; Kapoor, Mrinal; Richendrfer, Holly A.; Wang, Xingyue; Colwill, Ruth M.; Creton, Robbert

    2011-01-01

    Early brain development can be influenced by numerous genetic and environmental factors, with long-lasting effects on brain function and behavior. The identification of these factors is facilitated by recent innovations in high-throughput screening. However, large-scale screening in whole organisms remains challenging, in particular when studying changes in brain function or behavior in vertebrate model systems. In this study, we present a novel imaging system for high-throughput analyses of behavior in zebrafish larvae. The three-camera system can image twelve multiwell plates simultaneously and is unique in its ability to provide local visual stimuli in the wells of a multiwell plate. The acquired images are converted into a series of coordinates, which characterize the location and orientation of the larvae. The developed imaging techniques were tested by measuring avoidance behaviors in seven-day-old zebrafish larvae. The system effectively quantified larval avoidance and revealed an increased edge preference in response to a blue or red ‘bouncing ball’ stimulus. Larvae also avoid a bouncing ball stimulus when it is counter-balanced with a stationary ball, but do not avoid blinking balls counter-balanced with a stationary ball. These results indicate that the seven-day-old larvae respond specifically to movement, rather than color, size, or local changes in light intensity. The imaging system and assays for measuring avoidance behavior may be used to screen for genetic and environmental factors that cause developmental brain disorders and for novel drugs that could prevent or treat these disorders. PMID:21549762

  19. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae.

    PubMed

    Pelkowski, Sean D; Kapoor, Mrinal; Richendrfer, Holly A; Wang, Xingyue; Colwill, Ruth M; Creton, Robbert

    2011-09-30

    Early brain development can be influenced by numerous genetic and environmental factors, with long-lasting effects on brain function and behavior. The identification of these factors is facilitated by recent innovations in high-throughput screening. However, large-scale screening in whole organisms remains challenging, in particular when studying changes in brain function or behavior in vertebrate model systems. In this study, we present a novel imaging system for high-throughput analyses of behavior in zebrafish larvae. The three-camera system can image 12 multiwell plates simultaneously and is unique in its ability to provide local visual stimuli in the wells of a multiwell plate. The acquired images are converted into a series of coordinates, which characterize the location and orientation of the larvae. The developed imaging techniques were tested by measuring avoidance behaviors in seven-day-old zebrafish larvae. The system effectively quantified larval avoidance and revealed an increased edge preference in response to a blue or red 'bouncing ball' stimulus. Larvae also avoid a bouncing ball stimulus when it is counter-balanced with a stationary ball, but do not avoid blinking balls counter-balanced with a stationary ball. These results indicate that the seven-day-old larvae respond specifically to movement, rather than color, size, or local changes in light intensity. The imaging system and assays for measuring avoidance behavior may be used to screen for genetic and environmental factors that cause developmental brain disorders and for novel drugs that could prevent or treat these disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. V. Multi-level analysis of cortical neuroanatomy in Williams syndrome.

    PubMed

    Galaburda, A M; Bellugi, U

    2000-01-01

    The purpose of a neuroanatomical analysis of Williams Syndrome (WMS) brains is to help bridge the knowledge of the genetics of this disorder with the knowledge on behavior. Here, we outline findings of cortical neuroanatomy at multiple levels. We describe the gross anatomy with respect to brain shape, cortical folding, and asymmetry. This, as with most neuroanatomical information available in the literature on anatomical-functional correlations, links up best to the behavioral profile. Then, we describe the cytoarchitectonic appearance of the cortex. Further, we report on some histometric results. Finally, we present findings of immunocytochemistry that attempt to link up to the genomic deletion. The gross anatomical findings consist mainly of a small brain that shows curtailment in the posterior-parietal and occipital regions. There is also subtle dysmorphism of cortical folding. A consistent finding is a short central sulcus that does not become opercularized in the interhemispheric fissure, bringing attention to a possible developmental anomaly affecting the dorsal half of the hemispheres. There is also lack of asymmetry in the planum temporale. The cortical cytoarchitecture is relatively normal, with all sampled areas showing features typical of the region from which they are taken. Measurements in area 17 show increased cell size and decreased cell-packing density, which address the issue of possible abnormal connectivity. Immunostaining shows absence of elastin but normal staining for Lim-1 kinase, both of which are products of genes that are part of the deletion. Finally, one serially sectioned brain shows a fair amount of acquired pathology of microvascular origin related most likely to underlying hypertension and heart disease.

  1. White matter microstructural changes in adolescent anorexia nervosa including an exploratory longitudinal study

    PubMed Central

    Vogel, Katja; Timmers, Inge; Kumar, Vinod; Nickl-Jockschat, Thomas; Bastiani, Matteo; Roebroek, Alard; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Goebel, Rainer; Seitz, Jochen

    2016-01-01

    Background Anorexia nervosa (AN) often begins in adolescence, however, the understanding of the underlying pathophysiology at this developmentally important age is scarce, impeding early interventions. We used diffusion tensor imaging (DTI) to investigate microstructural white matter (WM) brain changes including an experimental longitudinal follow-up. Methods We acquired whole brain diffusion-weighted brain scans of 22 adolescent female hospitalized patients with AN at admission and nine patients longitudinally at discharge after weight rehabilitation. Patients (10–18 years) were compared to 21 typically developing controls (TD). Tract-based spatial statistics (TBSS) were applied to compare fractional anisotropy (FA) across groups and time points. Associations between average FA values of the global WM skeleton and weight as well as illness duration parameters were analyzed by multiple linear regression. Results We observed increased FA in bilateral frontal, parietal and temporal areas in AN patients at admission compared to TD. Higher FA of the global WM skeleton at admission was associated with faster weight loss prior to admission. Exploratory longitudinal analysis showed this FA increase to be partially normalized after weight rehabilitation. Conclusions Our findings reveal a markedly different pattern of WM microstructural changes in adolescent AN compared to most previous results in adult AN. This could signify a different susceptibility and reaction to semi-starvation in the still developing brain of adolescents or a time-dependent pathomechanism differing with extend of chronicity. Higher FA at admission in adolescents with AN could point to WM fibers being packed together more closely. PMID:27182488

  2. Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder

    PubMed Central

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshimura, Sayaka; Kubota, Yasutaka; Sawada, Reiko; Sakihama, Morimitsu; Toichi, Motomi

    2017-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral impairment in social interactions. Although theoretical and empirical evidence suggests that impairment in the social brain network could be the neural underpinnings of ASD, previous structural magnetic resonance imaging (MRI) studies in adults with ASD have not provided clear support for this, possibly due to confounding factors, such as language impairments. To further explore this issue, we acquired structural MRI data and analyzed gray matter volume in adults with ASD (n = 36) who had no language impairments (diagnosed with Asperger’s disorder or pervasive developmental disorder not otherwise specified, with symptoms milder than those of Asperger’s disorder), had no comorbidity, and were not taking medications, and in age- and sex-matched typically developing (TD) controls (n = 36). Univariate voxel-based morphometry analyses revealed that regional gray matter volume was lower in the ASD than in the control group in several brain regions, including the right inferior occipital gyrus, left fusiform gyrus, right middle temporal gyrus, bilateral amygdala, right inferior frontal gyrus, right orbitofrontal cortex, and left dorsomedial prefrontal cortex. A multivariate approach using a partial least squares (PLS) method showed that these regions constituted a network that could be used to discriminate between the ASD and TD groups. A PLS discriminant analysis using information from these regions showed high accuracy, sensitivity, specificity, and precision (>80%) in discriminating between the groups. These results suggest that reduced gray matter volume in the social brain network represents the neural underpinnings of behavioral social malfunctioning in adults with ASD. PMID:28824399

  3. The developmental disruptions of serotonin signaling may involved in autism during early brain development.

    PubMed

    Yang, C-J; Tan, H-P; Du, Y-J

    2014-05-16

    Autism is a developmental disorder defined by the presence of a triad of communication, social and stereo typical behavioral characteristics with onset before 3years of age. In spite of the fact that there are potential environmental factors for autistic behavior, the dysfunction of serotonin during early development of the brain could be playing a role in this prevalence rise. Serotonin can modulate a number of developmental events, including cell division, neuronal migration, cell differentiation and synaptogenesis. Hyperserotonemia during fetal development results in the loss of serotonin terminals through negative feedback. The increased serotonin causes a decrease of oxytocin in the paraventricular nucleus of the hypothalamus and an increase in calcitonin gene-related peptide (CGRP) in the central nucleus of the amygdale, which are associated with social interactions and vital in autism. However, hyposerotonemia may be also relevant to the development of sensory as well as motor and cognitive faculties. And the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. This review briefly summarized the developmental disruptions of serotonin signaling involved in the pathogenesis of autism during early development of the brain. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Developmental differences in the neural mechanisms of facial emotion labeling.

    PubMed

    Wiggins, Jillian Lee; Adleman, Nancy E; Kim, Pilyoung; Oakes, Allison H; Hsu, Derek; Reynolds, Richard C; Chen, Gang; Pine, Daniel S; Brotman, Melissa A; Leibenluft, Ellen

    2016-01-01

    Adolescence is a time of increased risk for the onset of psychological disorders associated with deficits in face emotion labeling. We used functional magnetic resonance imaging (fMRI) to examine age-related differences in brain activation while adolescents and adults labeled the emotion on fearful, happy and angry faces of varying intensities [0% (i.e. neutral), 50%, 75%, 100%]. Adolescents and adults did not differ on accuracy to label emotions. In the superior temporal sulcus, ventrolateral prefrontal cortex and middle temporal gyrus, adults show an inverted-U-shaped response to increasing intensities of fearful faces and a U-shaped response to increasing intensities of happy faces, whereas adolescents show the opposite patterns. In addition, adults, but not adolescents, show greater inferior occipital gyrus activation to negative (angry, fearful) vs positive (happy) emotions. In sum, when subjects classify subtly varying facial emotions, developmental differences manifest in several 'ventral stream' brain regions. Charting the typical developmental course of the brain mechanisms of socioemotional processes, such as facial emotion labeling, is an important focus for developmental psychopathology research. Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.

  5. Systematic review of clinical practice guidelines to identify recommendations for rehabilitation after stroke and other acquired brain injuries

    PubMed Central

    Lannin, Natasha A; Hoffmann, Tammy

    2018-01-01

    Objectives Rehabilitation clinical practice guidelines (CPGs) contain recommendation statements aimed at optimising care for adults with stroke and other brain injury. The aim of this study was to determine the quality, scope and consistency of CPG recommendations for rehabilitation covering the acquired brain injury populations. Design Systematic review. Interventions Included CPGs contained recommendations for inpatient rehabilitation or community rehabilitation for adults with an acquired brain injury diagnosis (stroke, traumatic or other non-progressive acquired brain impairments). Electronic databases (n=2), guideline organisations (n=4) and websites of professional societies (n=17) were searched up to November 2017. Two independent reviewers used the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument, and textual syntheses were used to appraise and compare recommendations. Results From 427 papers screened, 20 guidelines met the inclusion criteria. Only three guidelines were rated high (>75%) across all domains of AGREE-II; highest rated domains were ‘scope and purpose’ (85.1, SD 18.3) and ‘clarity’ (76.2%, SD 20.5). Recommendations for assessment and for motor therapies were most commonly reported, however, varied in the level of detail across guidelines. Conclusion Rehabilitation CPGs were consistent in scope, suggesting little difference in rehabilitation approaches between vascular and traumatic brain injury. There was, however, variability in included studies and methodological quality. PROSPERO registration number CRD42016026936. PMID:29490958

  6. Development of functional ectopic compound eyes in scarabaeid beetles by knockdown of orthodenticle.

    PubMed

    Zattara, Eduardo E; Macagno, Anna L M; Busey, Hannah A; Moczek, Armin P

    2017-11-07

    Complex traits like limbs, brains, or eyes form through coordinated integration of diverse cell fates across developmental space and time, yet understanding how complexity and integration emerge from uniform, undifferentiated precursor tissues remains limited. Here, we use ectopic eye formation as a paradigm to investigate the emergence and integration of novel complex structures following massive ontogenetic perturbation. We show that down-regulation via RNAi of a single head patterning gene- orthodenticle -induces ectopic structures externally resembling compound eyes at the middorsal adult head of both basal and derived scarabaeid beetle species (Onthophagini and Oniticellini). Scanning electron microscopy documents ommatidial organization of these induced structures, while immunohistochemistry reveals the presence of rudimentary ommatidial lenses, crystalline cones, and associated neural-like tissue within them. Further, RNA-sequencing experiments show that after orthodenticle down-regulation, the transcriptional signature of the middorsal head-the location of ectopic eye induction-converges onto that of regular compound eyes, including up-regulation of several retina-specific genes. Finally, a light-aversion behavioral assay to assess functionality reveals that ectopic compound eyes can rescue the ability to respond to visual stimuli when wild-type eyes are surgically removed. Combined, our results show that knockdown of a single gene is sufficient for the middorsal head to acquire the competence to ectopically generate a functional compound eye-like structure. These findings highlight the buffering capacity of developmental systems, allowing massive genetic perturbations to be channeled toward orderly and functional developmental outcomes, and render ectopic eye formation a widely accessible paradigm to study the evolution of complex systems. Published under the PNAS license.

  7. Reading, Complexity and the Brain

    ERIC Educational Resources Information Center

    Goswami, Usha

    2008-01-01

    Brain imaging offers a new technology for understanding the acquisition of reading by children. It can contribute novel evidence concerning the key mechanisms supporting reading, and the brain systems that are involved. The extensive neural architecture that develops to support efficient reading testifies to the complex developmental processes…

  8. Developmental Dyslexia, Neurolinguistic Theory and Deviations in Brain Morphology.

    ERIC Educational Resources Information Center

    Hynd, George W.; And Others

    1991-01-01

    Reviews computer tomography and magnetic resonance imaging studies examining deviations in brain morphology. Discusses methodological and technical issues. Concludes that dyslexics show variations in specific brain regions. Suggests that neuroimaging procedures appear to provide direct evidence supporting the importance of deviations in normal…

  9. The development of neural correlates for memory formation

    PubMed Central

    Ofen, Noa

    2012-01-01

    A growing body of literature considers the development of episodic memory systems in the brain; the majority are neuroimaging studies conducted during memory encoding in order to explore developmental trajectories in memory formation. This review considers evidence from behavioral studies of memory development, neural correlates of memory formation in adults, and structural brain development, all of which form the foundation of a developmental cognitive neuroscience approach to memory development. I then aim to integrate the current evidence from developmental functional neuroimaging studies of memory formation with respect to three hypotheses. First, memory development reflects the development in the use of memory strategies, linked to prefrontal cortex. Second, developmental effects within the medial temporal lobes are more complex, and correspond to current notions about the nature in which the MTL support the formation of memory. Third, neurocognitive changes in content representation influence memory. Open issues and current directions are discussed. PMID:22414608

  10. Is Dyslexia a Brain Disorder?

    PubMed Central

    Parrila, Rauno

    2018-01-01

    Specific word reading difficulty, commonly termed ‘developmental dyslexia’, refers to the low end of the word reading skill distribution but is frequently considered to be a neurodevelopmental disorder. This term implies that brain development is thought to be disrupted, resulting in an abnormal and dysfunctional brain. We take issue with this view, pointing out that there is no evidence of any obvious neurological abnormality in the vast majority of cases of word reading difficulty cases. The available relevant evidence from neuroimaging studies consists almost entirely of correlational and group-differences studies. However, differences in brains are certain to exist whenever differences in behavior exist, including differences in ability and performance. Therefore, findings of brain differences do not constitute evidence for abnormality; rather, they simply document the neural substrate of the behavioral differences. We suggest that dyslexia is best viewed as one of many expressions of ordinary ubiquitous individual differences in normal developmental outcomes. Thus, terms such as “dysfunctional” or “abnormal” are not justified when referring to the brains of persons with dyslexia. PMID:29621138

  11. Astrocytes.

    ERIC Educational Resources Information Center

    Kimelberg, Harold K.; Norenberg, Michael D.

    1989-01-01

    Describes the astrocytes' function as equal partners with neurons in both the normal and the abnormal brain. Discusses the developmental scaffolds, inert scar tissue, Huntington's disease, psychiatric disorders, and the identification of these brain cells. (RT)

  12. Usual and Virtual Reality Video Game-Based Physiotherapy for Children and Youth with Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Levac, Danielle; Miller, Patricia; Missiuna, Cheryl

    2012-01-01

    Little is known about how therapists promote learning of functional motor skills for children with acquired brain injuries. This study explores physiotherapists' description of these interventions in comparison to virtual reality (VR) video game-based therapy. Six physiotherapists employed at a children's rehabilitation center participated in…

  13. Behavioral Treatment for Pathological Gambling in Persons with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Guercio, John M.; Johnson, Taylor; Dixon, Mark R.

    2012-01-01

    The present investigation examined a behavior-analytic clinical treatment package designed to reduce the pathological gambling of 3 individuals with acquired brain injury. A prior history of pathological gambling of each patient was assessed via caregiver report, psychological testing, and direct observation of gambling behavior. Using an 8-week…

  14. Expressive Electronic Journal Writing: Freedom of Communication for Survivors of Acquired Brain Injury

    ERIC Educational Resources Information Center

    Fraas, Michael; Balz, Magdalen A.

    2008-01-01

    In addition to the impaired ability to effectively communicate, adults with acquired brain injury (ABI) also experience high incidences of depression, social isolation, and decreased quality of life. Expressive writing programs have been shown to be effective in alleviating these concomitant impairments in other populations including incarcerated…

  15. Interviewing Children with Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  16. Evaluation of a Computer-Based Revision Prompting Intervention for Undergraduate Writers with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Ledbetter, Alexander K.

    2017-01-01

    People with acquired brain injury (ABI) present with impairments in working memory and executive functions, and these cognitive deficits contribute to difficulty self-regulating the production of expository writing. Cognitive processes involved in carrying out complex writing tasks include planning, generating text, and reviewing or revising text…

  17. Toward a Narrower, More Pragmatic View of Developmental Dyspraxia

    PubMed Central

    Steinman, Kyle J.; Mostofsky, Stewart H.; Denckla, Martha B.

    2010-01-01

    Apraxia traditionally refers to impaired ability to carry out skilled movements in the absence of fundamental sensorimotor, language, or general cognitive impairment sufficient to preclude them. The child neurology literature includes a much broader and varied usage of the term developmental dyspraxia. It has been used to describe a wide range of motor symptoms, including clumsiness and general coordination difficulties, in various developmental disorders (including autistic spectrum disorders, developmental language disorders, and perinatal stroke). We argue for the need to restrict use of the term developmental dyspraxia to describe impaired performance of skilled gestures, recognizing that, unlike acquired adult-onset apraxia, coexisting sensory and motor problems may also be present. PMID:20032517

  18. Acquired alterations of hypothalamic gene expression of insulin and leptin receptors and glucose transporters in prenatally high-glucose exposed three-week old chickens do not coincide with aberrant promoter DNA methylation.

    PubMed

    Rancourt, Rebecca C; Schellong, Karen; Ott, Raffael; Bogatyrev, Semen; Tzschentke, Barbara; Plagemann, Andreas

    2015-01-01

    Prenatal exposures may have a distinct impact for long-term health, one example being exposure to maternal 'diabesity' during pregnancy increasing offspring 'diabesity' risk. Malprogramming of the central nervous regulation of body weight, food intake and metabolism has been identified as a critical mechanism. While concrete disrupting factors still remain unclear, growing focus on acquired epigenomic alterations have been proposed. Due to the independent development from the mother, the chicken embryo provides a valuable model to distinctively establish causal factors and mechanisms. The aim of this study was to determine the effects of prenatal hyperglycemia on postnatal hypothalamic gene expression and promoter DNA methylation in the chicken. To temporarily induce high-glucose exposure in chicken embryos, 0.5 ml glucose solution (30 mmol/l) were administered daily via catheter into a vessel of the chorioallantoic egg membrane from days 14 to 17 of incubation. At three weeks of postnatal age, body weight, total body fat, blood glucose, mRNA expression (INSR, LEPR, GLUT1, GLUT3) as well as corresponding promoter DNA methylation were determined in mediobasal hypothalamic brain slices (Nucleus infundibuli hypothalami). Although no significant changes in morphometric and metabolic parameters were detected, strongly decreased mRNA expression occurred in all candidate genes. Surprisingly, however, no relevant alterations were observed in respective promoter methylation. Prenatal hyperglycemia induces strong changes in later hypothalamic expression of INSR, LEPR, GLUT1, and GLUT3 mRNA. While the chicken provides an interesting approach for developmental malprogramming, the classical expression regulation via promoter methylation was not observed here. This may be due to alternative/interacting brain mechanisms or the thus far under-explored bird epigenome.

  19. What Could You Really Learn on Your Own?: Understanding the Epistemic Limitations of Knowledge Acquisition

    PubMed Central

    Lockhart, Kristi L.; Goddu, Mariel K.; Smith, Eric D.; Keil, Frank C.

    2015-01-01

    Three studies explored the abilities of 205 children (5–11 years) and 74 adults (18–72 years) to distinguish directly vs. indirectly acquired information in a scenario where an individual grew up in isolation from human culture. Directly acquired information is knowledge acquired through first-hand experience. Indirectly acquired information is knowledge that requires input from others. All children distinguished directly from indirectly acquired knowledge (Studies 1–3), even when the indirectly acquired knowledge was highly familiar (Study 2). All children also distinguished difficult-to-acquire direct knowledge from simple-to-acquire direct knowledge (Study 3). The major developmental change was the increasing ability to completely rule out indirect knowledge as possible for an isolated individual to acquire. PMID:26660001

  20. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions

    PubMed Central

    Morita, Tomoyo; Asada, Minoru; Naito, Eiichi

    2016-01-01

    Humans experience significant physical and mental changes from birth to adulthood, and a variety of perceptual, cognitive and motor functions mature over the course of approximately 20 years following birth. To deeply understand such developmental processes, merely studying behavioral changes is not sufficient; simultaneous investigation of the development of the brain may lead us to a more comprehensive understanding. Recent advances in noninvasive neuroimaging technologies largely contribute to this understanding. Here, it is very important to consider the development of the brain from the perspectives of “structure” and “function” because both structure and function of the human brain mature slowly. In this review, we first discuss the process of structural brain development, i.e., how the structure of the brain, which is crucial when discussing functional brain development, changes with age. Second, we introduce some representative studies and the latest studies related to the functional development of the brain, particularly for visual, facial recognition, and social cognition functions, all of which are important for humans. Finally, we summarize how brain science can contribute to developmental study and discuss the challenges that neuroimaging should address in the future. PMID:27695409

  1. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  2. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain###

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  3. A Developmental Model of Financial Capability: A Framework for Promoting a Successful Transition to Adulthood

    ERIC Educational Resources Information Center

    Serido, Joyce; Shim, Soyeon; Tang, Chuanyi

    2013-01-01

    This study proposes a developmental model of financial capability to understand the process by which young adults acquire the financial knowledge and behaviors needed to manage full-time adult social roles and responsibilities. The model integrates financial knowledge, financial self-beliefs, financial behavior, and well-being into a single…

  4. Evidence to Practice Commentary: New Evidence in Developmental Coordination Disorder (DCD)

    ERIC Educational Resources Information Center

    Novak, Iona

    2013-01-01

    Developmental coordination disorder (DCD) is frequently under-recognized, but in fact, it occurs in as many as 5-6% of children. DCD is a disorder of motor coordination that is not explained by intellectual disability or any congenital or acquired neurological disorder. Families seek physical and occupational therapy (OT) to ameliorate a child…

  5. Divergent Development of Gross Motor Skills in Children Who Are Blind or Sighted

    ERIC Educational Resources Information Center

    Brambring, Michael

    2006-01-01

    This empirical study compared the average ages at which four congenitally blind children acquired 29 gross motor skills with age norms for sighted children. The results indicated distinct developmental delays in the acquisition of motor skills and a high degree of variability in developmental delays within and across the six subdomains that were…

  6. Effective Learning and Retention of Braille Letter Tactile Discrimination Skills in Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Hayek, Maisam; Dorfberger, Shoshi; Karni, Avi

    2016-01-01

    Children with developmental dyslexia (DD) may differ from typical readers in aspects other than reading. The notion of a general deficit in the ability to acquire and retain procedural ("how to") knowledge as long-term procedural memory has been proposed. Here, we compared the ability of elementary school children, with and without…

  7. Divergent Development of Verbal Skills in Children Who Are Blind or Sighted

    ERIC Educational Resources Information Center

    Journal of Visual Impairment & Blindness, 2007

    2007-01-01

    This empirical study compared the average ages at which four children with congenital blindness acquired 29 verbal skills with given age norms for sighted children. The results indicated only small developmental delays in the acquisition of verbal skills in the four children, but a high degree of variability in developmental delays within and…

  8. Using 21st Century Video Prompting Technology to Facilitate the Independence of Individuals with Intellectual and Developmental Disabilities

    ERIC Educational Resources Information Center

    Cullen, Jennifer M.; Simmons-Reed, Evette A.; Weaver, Lindy

    2017-01-01

    Barriers in acquiring, maintaining, and generalizing daily living skills are factors that contribute to discrepancies in independent living outcomes among transition age youth and young adults with intellectual and developmental disabilities (IDD). Acquisition and generalization of daily living skills empowers transition age youth and young adults…

  9. Divergent Development of Manual Skills in Children Who Are Blind or Sighted

    ERIC Educational Resources Information Center

    Brambring, Michael

    2007-01-01

    This empirical study compared the average ages at which four children with congenital blindness acquired 32 fine motor skills with age norms for sighted children. The results indicated that the children experienced extreme developmental delays in the acquisition of manual skills and a high degree of variability in developmental delays within and…

  10. Collaborative Online Learning in Non-Formal Education Settings in the Developing World: A Best Practice Framework

    ERIC Educational Resources Information Center

    Asunka, Stephen

    2011-01-01

    In the present knowledge economy, individuals, particularly working adults, need to continuously acquire purposeful knowledge and skills so they can better contribute towards addressing society's ever-changing developmental challenges. In the developing world however, few opportunities exist for working adults to acquire such new learning…

  11. Words and Maps: Developmental Changes in Mental Models of Spatial Information Acquired from Descriptions and Depictions

    ERIC Educational Resources Information Center

    Uttal, David H.; Fisher, Joan A.; Taylor, Holly A.

    2006-01-01

    People acquire spatial information from many sources, including maps, verbal descriptions, and navigating in the environment. The different sources present spatial information in different ways. For example, maps can show many spatial relations simultaneously, but in a description, each spatial relation must be presented sequentially. The present…

  12. Progressive Modularization: Reframing Our Understanding of Typical and Atypical Language Development

    ERIC Educational Resources Information Center

    D'Souza, Dean; Filippi, Roberto

    2017-01-01

    The ability to acquire language is a critical part of human development. Yet there is no consensus on how the skill emerges in early development. Does it constitute an innately-specified, language-processing module or is it acquired progressively? One of Annette Karmiloff-Smith's (1938-2016) key contributions to developmental science addresses…

  13. Plasticity of Nonneuronal Brain Tissue: Roles in Developmental Disorders

    ERIC Educational Resources Information Center

    Dong, Willie K.; Greenough, William T.

    2004-01-01

    Neuronal and nonneuronal plasticity are both affected by environmental and experiential factors. Remodeling of existing neurons induced by such factors has been observed throughout the brain, and includes alterations in dendritic field dimensions, synaptogenesis, and synaptic morphology. The brain loci affected by these plastic neuronal changes…

  14. Tetrahydrobiopterin in antenatal brain hypoxia-ischemia-induced motor impairments and cerebral palsy.

    PubMed

    Vasquez-Vivar, Jeannette; Shi, Zhongjie; Luo, Kehuan; Thirugnanam, Karthikeyan; Tan, Sidhartha

    2017-10-01

    Antenatal brain hypoxia-ischemia, which occurs in cerebral palsy, is considered a significant cause of motor impairments in children. The mechanisms by which antenatal hypoxia-ischemia causes brain injury and motor deficits still need to be elucidated. Tetrahydrobiopterin is an important enzyme cofactor that is necessary to produce neurotransmitters and to maintain the redox status of the brain. A genetic deficiency of this cofactor from mutations of biosynthetic or recycling enzymes is a well-recognized factor in the development of childhood neurological disorders characterized by motor impairments, developmental delay, and encephalopathy. Experimental hypoxia-ischemia causes a decline in the availability of tetrahydrobiopterin in the immature brain. This decline coincides with the loss of brain function, suggesting this occurrence contributes to neuronal dysfunction and motor impairments. One possible mechanism linking tetrahydrobiopterin deficiency, hypoxia-ischemia, and neuronal injury is oxidative injury. Evidence of the central role of the developmental biology of tetrahydrobiopterin in response to hypoxic ischemic brain injury, especially the development of motor deficits, is discussed. Copyright © 2017. Published by Elsevier B.V.

  15. Aging with a traumatic brain injury: Could behavioral morbidities and endocrine symptoms be influenced by microglial priming?

    PubMed

    Ziebell, Jenna M; Rowe, Rachel K; Muccigrosso, Megan M; Reddaway, Jack T; Adelson, P David; Godbout, Jonathan P; Lifshitz, Jonathan

    2017-01-01

    A myriad of factors influence the developmental and aging process and impact health and life span. Mounting evidence indicates that brain injury, even moderate injury, can lead to lifetime of physical and mental health symptoms. Therefore, the purpose of this mini-review is to discuss how recovery from traumatic brain injury (TBI) depends on age-at-injury and how aging with a TBI affects long-term recovery. TBI initiates pathophysiological processes that dismantle circuits in the brain. In response, reparative and restorative processes reorganize circuits to overcome the injury-induced damage. The extent of circuit dismantling and subsequent reorganization depends as much on the initial injury parameters as other contributing factors, such as genetics and age. Age-at-injury influences the way the brain is able to repair itself, as a result of developmental status, extent of cellular senescence, and injury-induced inflammation. Moreover, endocrine dysfunction can occur with TBI. Depending on the age of the individual at the time of injury, endocrine dysfunction may disrupt growth, puberty, influence social behaviors, and possibly alter the inflammatory response. In turn, activation of microglia, the brain's immune cells, after injury may continue to fuel endocrine dysfunction. With age, the immune system develops and microglia become primed to subsequent challenges. Sustained inflammation and microglial activation can continue for weeks to months post-injury. This prolonged inflammation can influence developmental processes, behavioral performance and age-related decline. Overall, brain injury may influence the aging process and expedite glial and neuronal alterations that impact mental health. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Serotonin Receptor 6 Mediates Defective Brain Development in Monoamine Oxidase A-deficient Mouse Embryos

    PubMed Central

    Wang, Chi Chiu; Man, Gene Chi Wai; Chu, Ching Yan; Borchert, Astrid; Ugun-Klusek, Aslihan; Billett, E. Ellen; Kühn, Hartmut; Ufer, Christoph

    2014-01-01

    Monoamine oxidases A and B (MAO-A and MAO-B) are enzymes of the outer mitochondrial membrane that metabolize biogenic amines. In the adult central nervous system, MAOs have important functions for neurotransmitter homeostasis. Expression of MAO isoforms has been detected in the developing embryo. However, suppression of MAO-B does not induce developmental alterations. In contrast, targeted inhibition and knockdown of MAO-A expression (E7.5–E10.5) caused structural abnormalities in the brain. Here we explored the molecular mechanisms underlying defective brain development induced by MAO-A knockdown during in vitro embryogenesis. The developmental alterations were paralleled by diminished apoptotic activity in the affected neuronal structures. Moreover, dysfunctional MAO-A expression led to elevated levels of embryonic serotonin (5-hydroxytryptamine (5-HT)), and we found that knockdown of serotonin receptor-6 (5-Htr6) expression or pharmacologic inhibition of 5-Htr6 activity rescued the MAO-A knockdown phenotype and restored apoptotic activity in the developing brain. Our data suggest that excessive 5-Htr6 activation reduces activation of caspase-3 and -9 of the intrinsic apoptotic pathway and enhances expression of antiapoptotic proteins Bcl-2 and Bcl-XL. Moreover, we found that elevated 5-HT levels in MAO-A knockdown embryos coincided with an enhanced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and a reduction of proliferating cell numbers. In summary, our findings suggest that excessive 5-HT in MAO-A-deficient mouse embryos triggers cellular signaling cascades via 5-Htr6, which suppresses developmental apoptosis in the brain and thus induces developmental retardations. PMID:24497636

  17. The sea urchin embryo as a model for mammalian developmental neurotoxicity: ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity.

    PubMed Central

    Qiao, Dan; Nikitina, Lyudmila A; Buznikov, Gennady A; Lauder, Jean M; Seidler, Frederic J; Slotkin, Theodore A

    2003-01-01

    Embryonic development in the sea urchin requires trophic actions of the same neurotransmitters that participate in mammalian brain assembly. We evaluated the development of the high-affinity choline transporter, which controls acetylcholine synthesis. A variety of developmental neurotoxicants affect this transporter in mammalian brain. [3H]Hemicholinium-3 binding to the transporter was found in the cell membrane fraction at stages from the unfertilized egg to pluteus, with a binding affinity comparable with that seen in mammalian brain. Over the course of development, the concentration of transporter sites rose more than 3-fold, achieving concentrations comparable with those of cholinergically enriched mammalian brain regions. Dimethylaminoethanol (DMAE), a competitive inhibitor of choline transport, elicited dysmorphology beginning at the mid-blastula stage, with anomalies beginning progressively later as the concentration of DMAE was lowered. Pretreatment, cotreatment, or delayed treatment with acetylcholine or choline prevented the adverse effects of DMAE. Because acetylcholine was protective at a lower threshold, the DMAE-induced defects were most likely mediated by its effects on acetylcholine synthesis. Transient removal of the hyaline layer enabled a charged transport inhibitor, hemicholinium-3, to penetrate sufficiently to elicit similar anomalies, which were again prevented by acetylcholine or choline. These results indicate that the developing sea urchin possesses a high-affinity choline transporter analogous to that found in the mammalian brain, and, as in mammals, the functioning of this transporter plays a key role in the developmental, trophic activity of acetylcholine. The sea urchin model may thus be useful in high-throughput screening of suspected developmental neurotoxicants. PMID:14594623

  18. The sea urchin embryo as a model for mammalian developmental neurotoxicity: ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity.

    PubMed

    Qiao, Dan; Nikitina, Lyudmila A; Buznikov, Gennady A; Lauder, Jean M; Seidler, Frederic J; Slotkin, Theodore A

    2003-11-01

    Embryonic development in the sea urchin requires trophic actions of the same neurotransmitters that participate in mammalian brain assembly. We evaluated the development of the high-affinity choline transporter, which controls acetylcholine synthesis. A variety of developmental neurotoxicants affect this transporter in mammalian brain. [3H]Hemicholinium-3 binding to the transporter was found in the cell membrane fraction at stages from the unfertilized egg to pluteus, with a binding affinity comparable with that seen in mammalian brain. Over the course of development, the concentration of transporter sites rose more than 3-fold, achieving concentrations comparable with those of cholinergically enriched mammalian brain regions. Dimethylaminoethanol (DMAE), a competitive inhibitor of choline transport, elicited dysmorphology beginning at the mid-blastula stage, with anomalies beginning progressively later as the concentration of DMAE was lowered. Pretreatment, cotreatment, or delayed treatment with acetylcholine or choline prevented the adverse effects of DMAE. Because acetylcholine was protective at a lower threshold, the DMAE-induced defects were most likely mediated by its effects on acetylcholine synthesis. Transient removal of the hyaline layer enabled a charged transport inhibitor, hemicholinium-3, to penetrate sufficiently to elicit similar anomalies, which were again prevented by acetylcholine or choline. These results indicate that the developing sea urchin possesses a high-affinity choline transporter analogous to that found in the mammalian brain, and, as in mammals, the functioning of this transporter plays a key role in the developmental, trophic activity of acetylcholine. The sea urchin model may thus be useful in high-throughput screening of suspected developmental neurotoxicants.

  19. Reliability of the Motor Learning Strategy Rating Instrument for Children and Youth with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Kamath, Trishna; Pfeifer, Megan; Banerjee-Guenette, Priyanka; Hunter, Theresa; Ito, Julia; Salbach, Nancy M.; Wright, Virginia; Levac, Danielle

    2012-01-01

    Purpose: To evaluate reliability and feasibility of the Motor Learning Strategy Rating Instrument (MLSRI) in children with acquired brain injury (ABI). The MLSRI quantifies the extent to which motor learning strategies (MLS) are used within physiotherapy (PT) interventions. Methods: PT sessions conducted by ABI team physiotherapists with a…

  20. Service Use and Satisfaction Following Acquired Brain Injury: A Preliminary Analysis of Family Caregiver Outcomes

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Green, Richard; Jones, Clair

    2016-01-01

    Purpose: The study aimed to understand how use and satisfaction with services following discharge from an acquired brain injury (ABI) acute-care facility related to family caregiver outcomes. Methods: A correlational and descriptive study design was used. Nineteen primary family caregivers of persons recently discharged from an ABI acute-care…

  1. Supporting Students with Invisible Disabilities: A Scoping Review of Postsecondary Education for Students with Mental Illness or an Acquired Brain Injury

    ERIC Educational Resources Information Center

    Venville, Annie; Mealings, Margaret; Ennals, Priscilla; Oates, Jennifer; Fossey, Ellie; Douglas, Jacinta; Bigby, Christine

    2016-01-01

    Students with invisible disabilities such as mental illness or acquired brain injury (ABI) experience multiple barriers that reduce their likelihood of postsecondary course completion. The present study conducted a systematic search of research reporting interventions for students experiencing mental illness or ABI to participate in postsecondary…

  2. A Review of Family Intervention Guidelines for Pediatric Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Cole, Wesley R.; Paulos, Stephanie K.; Cole, Carolyn A. S.; Tankard, Carol

    2009-01-01

    Pediatric acquired brain injury (BI) not only affects the child with the injury, but also greatly impacts their family. Studies suggest there are higher rates of caregiver and sibling psychological distress after a child in the family has sustained a BI. Also, family functioning after BI impacts the child's recovery. In reviewing the literature,…

  3. Where Have They All Gone?: Classroom Attention Patterns after Acquired Brain Injury

    ERIC Educational Resources Information Center

    Rees, Siân A.

    2016-01-01

    Certain groups of pupils who have sustained an Acquired Brain Injury (ABI) have a different pattern of attention within the classroom which interferes with learning and social interactions. The delineation of these groups is suggested. By looking in detail at the classroom behaviour of eight pupils, a common account for classroom behaviour…

  4. Spoken Persuasive Discourse Abilities of Adolescents with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Moran, Catherine; Kirk, Cecilia; Powell, Emma

    2012-01-01

    Purpose: The aim of this study was to examine the performance of adolescents with acquired brain injury (ABI) during a spoken persuasive discourse task. Persuasive discourse is frequently used in social and academic settings and is of importance in the study of adolescent language. Method: Participants included 8 adolescents with ABI and 8 peers…

  5. Expressive Art for the Social and Community Integration of Adolescents with Acquired Brain Injuries: A Systematic Review

    ERIC Educational Resources Information Center

    Goyal, Anita; Keightley, Michelle L.

    2008-01-01

    Adolescents with acquired brain injuries suffer from social and community withdrawal that result in isolation from their peer groups. The review highlights the evidence of effectiveness of expressive art interventions in the form of theatre for populations with difficulties in physical, emotional, cognitive, or social functioning. A systematic…

  6. Linking Brain Principles to High-Quality Early Childhood Education

    ERIC Educational Resources Information Center

    Rushton, Stephen; Juola-Rushton, Anne

    2011-01-01

    Many educators are already knowledgeable about and skilled in best practices. And much of what is happening in developmentally appropriate programs exemplifies "brain compatible" practices. Being educated in the connections between best practices and brain compatibility is an important part of the knowledge base of early childhood educators. Just…

  7. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    ERIC Educational Resources Information Center

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  8. Interaction and the Architecture of the Brain. Perspectives

    ERIC Educational Resources Information Center

    Friedman, Dorian

    2006-01-01

    Recent advances in developmental science can teach us a great deal about the value of specific kinds of human interactions in the earliest years of life for the developing brain architecture. Animal experiments indicate that enriched environments with opportunity for frequent interaction and new experiences can help the animals' brains develop…

  9. Gyri of the human parietal lobe: Volumes, spatial extents, automatic labelling, and probabilistic atlases

    PubMed Central

    Wild, Heather M.; Heckemann, Rolf A.; Studholme, Colin

    2017-01-01

    Accurately describing the anatomy of individual brains enables interlaboratory communication of functional and developmental studies and is crucial for possible surgical interventions. The human parietal lobe participates in multimodal sensory integration including language processing and also contains the primary somatosensory area. We describe detailed protocols to subdivide the parietal lobe, analyze morphological and volumetric characteristics, and create probabilistic atlases in MNI152 stereotaxic space. The parietal lobe was manually delineated on 3D T1 MR images of 30 healthy subjects and divided into four regions: supramarginal gyrus (SMG), angular gyrus (AG), superior parietal lobe (supPL) and postcentral gyrus (postCG). There was the expected correlation of male gender with larger brain and intracranial volume. We examined a wide range of anatomical features of the gyri and the sulci separating them. At least a rudimentary primary intermediate sulcus of Jensen (PISJ) separating SMG and AG was identified in nearly all (59/60) hemispheres. Presence of additional gyri in SMG and AG was related to sulcal features and volumetric characteristics. The parietal lobe was slightly (2%) larger on the left, driven by leftward asymmetries of the postCG and SMG. Intersubject variability was highest for SMG and AG, and lowest for postCG. Overall the morphological characteristics tended to be symmetrical, and volumes also tended to covary between hemispheres. This may reflect developmental as well as maturation factors. To assess the accuracy with which the labels can be used to segment newly acquired (unlabelled) T1-weighted brain images, we applied multi-atlas label propagation software (MAPER) in a leave-one-out experiment and compared the resulting automatic labels with the manually prepared ones. The results showed strong agreement (mean Jaccard index 0.69, corresponding to a mean Dice index of 0.82, average mean volume error of 0.6%). Stereotaxic probabilistic atlases of each subregion were obtained. They illustrate the physiological brain torque, with structures in the right hemisphere positioned more anteriorly than in the left, and right/left positional differences of up to 10 mm. They also allow an assessment of sulcal variability, e.g. low variability for parietooccipital fissure and cingulate sulcus. Illustrated protocols, individual label sets, probabilistic atlases, and a maximum-probability atlas which takes into account surrounding structures are available for free download under academic licences. PMID:28846692

  10. Neural signatures of phonological deficits in Chinese developmental dyslexia.

    PubMed

    Cao, Fan; Yan, Xin; Wang, Zhao; Liu, Yanni; Wang, Jin; Spray, Gregory J; Deng, Yuan

    2017-02-01

    There has been debate on whether phonological deficits explain reading difficulty in Chinese, since Chinese is a logographic language which does not employ grapheme-phoneme-correspondence rules and remote memorization seems to be the main method to acquire reading. In the current study, we present neuroimaging evidence that the phonological deficit is also a signature of Chinese dyslexia. Specifically, we found that Chinese children with dyslexia (DD) showed reduced brain activation in the left dorsal inferior frontal gyrus (dIFG) when compared to both age-matched controls (AC) and reading-matched controls (RC) during an auditory rhyming judgment task. This suggests that the phonological processing deficit in this region may be a signature of dyslexia in Chinese, rather than a difference due to task performance or reading ability, which was matched on DD and RC. At exactly the same region of the left dIFG, we found a positive correlation between brain activation and reading skill in DD, suggesting that the phonological deficit is associated with the severity of dyslexia. We also found increased brain activation in the right precentral gyrus in DD than both AC and RC, suggesting a compensation of reliance on articulation. Functional connectivity analyses revealed that DD had a weaker connection between the left superior temporal gyrus (STG) and fusiform gyrus (FG) than the two control groups, suggesting that the reduced connection between phonology and orthography is another neural signature of dyslexia. In contrast, DD showed greater connectivity between the left dIFG and the left inferior parietal lobule (IPL) than both control groups, suggesting a reduced segregation between the language network and default mode network in dyslexic children. We also found that connectivity between the left STG and the left dIFG was sensitive to task performance and/or reading skill rather than being dyslexic or not, because AC was greater than both RC and DD, while the connectivity between the left middle occipital gyrus (MOG) and left STG was sensitive to age, because both AC and DD were greater than RC. In summary, our study provides the very first neurological evidence of phonological deficits in Chinese developmental dyslexia and we successfully distinguished variations of brain activity/functional connectivity due to age, performance, and dyslexia by comparing AC, RC, and DD. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Constructivist developmental theory is needed in developmental neuroscience

    NASA Astrophysics Data System (ADS)

    Arsalidou, Marie; Pascual-Leone, Juan

    2016-12-01

    Neuroscience techniques provide an open window previously unavailable to the origin of thoughts and actions in children. Developmental cognitive neuroscience is booming, and knowledge from human brain mapping is finding its way into education and pediatric practice. Promises of application in developmental cognitive neuroscience rests however on better theory-guided data interpretation. Massive amounts of neuroimaging data from children are being processed, yet published studies often do not frame their work within developmental models—in detriment, we believe, to progress in this field. Here we describe some core challenges in interpreting the data from developmental cognitive neuroscience, and advocate the use of constructivist developmental theories of human cognition with a neuroscience interpretation.

  12. DEVELOPMENTAL HYPOTHYROIDISM ALTERS SYNAPTIC TRANSMISSION IN DENTATE GYRUS AND AREA CA1 OF HIPPOCAMPUS.

    EPA Science Inventory

    Hypothyroidism during critical periods of brain developmental leads to learning deficits and alterations in hippocampal structure. Neurophysiological properties of the hippocampus, however, have not been well characterized. The present study examined field potentials evoked in...

  13. Developmental Thyroid Hormone Disruption: Prevalence, Environmental Contaminants and Neurodevelopmental Consequences

    EPA Science Inventory

    Thyroid hormones (TH) are critical for growth and development and particularly brain development. There are numerous environmental agents that lead to marginal reductions of circulating TH. Although it is clear that severe developmental hypothyroidism is profoundly detrimental to...

  14. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver.

    PubMed

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-02-26

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A Factor Analysis of Functional Independence and Functional Assessment Measure Scores Among Focal and Diffuse Brain Injury Patients: The Importance of Bifactor Models.

    PubMed

    Gunn, Sarah; Burgess, Gerald H; Maltby, John

    2018-04-30

    To explore the factor structure of the UK Functional Independence Measure and Functional Assessment Measure (FIM+FAM) among focal and diffuse acquired brain injury patients. Criterion standard. A National Health Service acute acquired brain injury inpatient rehabilitation hospital. Referred sample of N=447 adults admitted for inpatient treatment following an acquired brain injury significant enough to justify intensive inpatient neurorehabilitation INTERVENTION: Not applicable. Functional Independence Measure and Functional Assessment Measure. Exploratory factor analysis suggested a 2-factor structure to FIM+FAM scores, among both focal-proximate and diffuse-proximate acquired brain injury aetiologies. Confirmatory factor analysis suggested a 3-factor bifactor structure presented the best fit of the FIM+FAM score data across both aetiologies. However, across both analyses, a convergence was found towards a general factor, demonstrated by high correlations between factors in the exploratory factor analysis, and by a general factor explaining the majority of the variance in scores on confirmatory factor analysis. Our findings suggested that although factors describing specific functional domains can be derived from FIM+FAM item scores, there is a convergence towards a single factor describing overall functioning. This single factor informs the specific group factors (eg, motor, psychosocial, and communication function) after brain injury. Further research into the comparative value of the general and group factors as evaluative/prognostic measures is indicated. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Evolution of the Genus Homo

    NASA Astrophysics Data System (ADS)

    Tattersall, Ian; Schwartz, Jeffrey H.

    2009-05-01

    Definition of the genus Homo is almost as fraught as the definition of Homo sapiens. We look at the evidence for “early Homo,” finding little morphological basis for extending our genus to any of the 2.5-1.6-myr-old fossil forms assigned to “early Homo” or Homo habilis/rudolfensis. We also point to heterogeneity among “early African Homo erectus,” and the lack of apomorphies linking these fossils to the Asian Homo erectus group, a cohesive regional clade that shows some internal variation, including brain size increase over time. The first truly cosmopolitan Homo species is Homo heidelbergensis, known from Africa, Europe, and China following 600 kyr ago. One species sympatric with it included the >500-kyr-old Sima de los Huesos fossils from Spain, clearly distinct from Homo heidelbergensis and the oldest hominids assignable to the clade additionally containing Homo neanderthalensis. This clade also shows evidence of brain size expansion with time; but although Homo neanderthalensis had a large brain, it left no unequivocal evidence of the symbolic consciousness that makes our species unique. Homo sapiens clearly originated in Africa, where it existed as a physical entity before it began (also in that continent) to show the first stirrings of symbolism. Most likely, the biological underpinnings of symbolic consciousness were exaptively acquired in the radical developmental reorganization that gave rise to the highly characteristic osteological structure of Homo sapiens, but lay fallow for tens of thousands of years before being “discovered” by a cultural stimulus, plausibly the invention of language.

  17. Imaging Characteristics of Children with Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Roche, Joseph P.; Huang, Benjamin Y.; Castillo, Mauricio; Bassim, Marc K.; Adunka, Oliver F.; Buchman, Craig A.

    2013-01-01

    Objective To identify and define the imaging characteristics of children with auditory neuropathy spectrum disorder (ANSD). Design Retrospective medical records review and analysis of both temporal bone computed tomography (CT) and magnetic resonance images (MRI) in from children with the diagnosis of ANSD. Setting Tertiary referral center. Patients 118 children with the electrophysiological characteristics of ANSD with available imaging studies for review. Interventions Two neuroradiologists and a neurotologist reviewed each study and consensus descriptions were established. Main outcome measures The type and number of imaging findings were tabulated. Results Sixty-eight (64%) MRIs revealed at least one imaging abnormality while selective use of CT identified 23 (55%) with anomalies. The most prevalent MRI findings included cochlear nerve deficiency (n=51; 28% of 183 nerves), brain abnormalities (n=42; 40% of 106 brains) and prominent temporal horns (n=33, 16% of 212 temporal lobes). The most prevalent CT finding from selective use of CT was cochlear dysplasia (n=13; 31%). Conclusions MRI will identify many abnormalities in children with ANSD that are not readily discernable on CT. Specifically, both developmental and acquired abnormalities of the brain, posterior cranial fossa, and cochlear nerves are not uncommonly seen in this patient population. Inner ear anomalies are well delineated using either imaging modality. Since many of the central nervous system findings identified in this study using MRI can alter the treatment and prognosis for these children, we believe that MRI should be the initial imaging study of choice for children with ANSD. PMID:20593543

  18. Developmental gender differences in children in a virtual spatial memory task.

    PubMed

    León, Irene; Cimadevilla, José Manuel; Tascón, Laura

    2014-07-01

    Behavioral achievements are the product of brain maturation. During postnatal development, the medial temporal lobe completes its maturation, and children acquire new memory abilities. In recent years, virtual reality-based tasks have been introduced in the neuropsychology field to assess different cognitive functions. In this work, desktop virtual reality tasks are combined with classic psychometric tests to assess spatial abilities in 4- to 10-year-old children. Fifty boys and 50 girls 4-10-years of age participated in this study. Spatial reference memory and spatial working memory were assessed using a desktop virtual reality-based task. Other classic psychometric tests were also included in this work (e.g., the Corsi Block Tapping Test, digit tests, 10/36 Spatial Recall Test). In general terms, 4- and 5-year-old groups showed poorer performance than the older groups. However, 5-year-old children showed basic spatial navigation abilities with little difficulty. In addition, boys outperformed girls from the 6-8-year-old groups. Gender differences only emerged in the reference-memory version of the spatial task, whereas both sexes displayed similar performances in the working-memory version. There was general improvement in the performance of different tasks in children older than 5 years. However, results also suggest that brain regions involved in allocentric memory are functional even at the age of 5. In addition, the brain structures underlying reference memory mature later in girls than those required for the working memory.

  19. The Evolution and Development of Neural Superposition

    PubMed Central

    Agi, Egemen; Langen, Marion; Altschuler, Steven J.; Wu, Lani F.; Zimmermann, Timo

    2014-01-01

    Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically “hard-wired” synaptic connectivity in the brain. PMID:24912630

  20. Potential developmental neurotoxicity of pesticides used in Europe

    PubMed Central

    Bjørling-Poulsen, Marina; Andersen, Helle Raun; Grandjean, Philippe

    2008-01-01

    Pesticides used in agriculture are designed to protect crops against unwanted species, such as weeds, insects, and fungus. Many compounds target the nervous system of insect pests. Because of the similarity in brain biochemistry, such pesticides may also be neurotoxic to humans. Concerns have been raised that the developing brain may be particularly vulnerable to adverse effects of neurotoxic pesticides. Current requirements for safety testing do not include developmental neurotoxicity. We therefore undertook a systematic evaluation of published evidence on neurotoxicity of pesticides in current use, with specific emphasis on risks during early development. Epidemiologic studies show associations with neurodevelopmental deficits, but mainly deal with mixed exposures to pesticides. Laboratory experimental studies using model compounds suggest that many pesticides currently used in Europe – including organophosphates, carbamates, pyrethroids, ethylenebisdithiocarbamates, and chlorophenoxy herbicides – can cause neurodevelopmental toxicity. Adverse effects on brain development can be severe and irreversible. Prevention should therefore be a public health priority. The occurrence of residues in food and other types of human exposures should be prevented with regard to the pesticide groups that are known to be neurotoxic. For other substances, given their widespread use and the unique vulnerability of the developing brain, the general lack of data on developmental neurotoxicity calls for investment in targeted research. While awaiting more definite evidence, existing uncertainties should be considered in light of the need for precautionary action to protect brain development. PMID:18945337

  1. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat.

    PubMed

    Bakos, Jan; Lestanova, Zuzana; Strbak, Vladimir; Havranek, Tomas; Bacova, Zuzana

    2014-10-01

    Oxytocin production and secretion is important for early development of the brain. Long-term consequences of manipulation of oxytocin system might include changes in markers of brain plasticity - cytoskeletal proteins and neurotrophins. The aim of the present study was (1) to determine whether neonatal oxytocin administration affects gene expression of nestin, microtubule-associated protein-2 (MAP-2), brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of two developmental stages of rat and (2) to evaluate whether neonatal oxytocin administration protects against lipopolysaccharide (LPS) induced inflammation. Neonatal oxytocin did not prevent a decrease of body weight in the LPS treated animals. Oxytocin significantly increased gene expression of BDNF in the right hippocampus in 21-day and 2-month old rats of both sexes. Gene expression of NGF and MAP-2 significantly increased in males treated with oxytocin. Both, growth factors and intermediate filament-nestin mRNA levels, were reduced in females exposed to LPS. Oxytocin treatment prevented a decrease in the gene expression of only growth factors. In conclusion, neonatal manipulation of oxytocin has developmental and sex-dependent effect on markers of brain plasticity. These results also indicate, that oxytocin may be protective against inflammation particularly in females. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The evolution and development of neural superposition.

    PubMed

    Agi, Egemen; Langen, Marion; Altschuler, Steven J; Wu, Lani F; Zimmermann, Timo; Hiesinger, Peter Robin

    2014-01-01

    Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically "hard-wired" synaptic connectivity in the brain.

  3. Understanding mental retardation in Down's syndrome using trisomy 16 mouse models.

    PubMed

    Galdzicki, Z; Siarey, R J

    2003-06-01

    Mental retardation in Down's syndrome, human trisomy 21, is characterized by developmental delays, language and memory deficits and other cognitive abnormalities. Neurophysiological and functional information is needed to understand the mechanisms of mental retardation in Down's syndrome. The trisomy mouse models provide windows into the molecular and developmental effects associated with abnormal chromosome numbers. The distal segment of mouse chromosome 16 is homologous to nearly the entire long arm of human chromosome 21. Therefore, mice with full or segmental trisomy 16 (Ts65Dn) are considered reliable animal models of Down's syndrome. Ts65Dn mice demonstrate impaired learning in spatial tests and abnormalities in hippocampal synaptic plasticity. We hypothesize that the physiological impairments in the Ts65Dn mouse hippocampus can model the suboptimal brain function occuring at various levels of Down's syndrome brain hierarchy, starting at a single neuron, and then affecting simple and complex neuronal networks. Once these elements create the gross brain structure, their dysfunctional activity cannot be overcome by extensive plasticity and redundancy, and therefore, at the end of the maturation period the mind inside this brain remains deficient and delayed in its capabilities. The complicated interactions that govern this aberrant developmental process cannot be rescued through existing compensatory mechanisms. In summary, overexpression of genes from chromosome 21 shifts biological homeostasis in the Down's syndrome brain to a new less functional state.

  4. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree.

    PubMed

    Atkinson, Elizabeth G; Rogers, Jeffrey; Cheverud, James M

    2016-03-01

    Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution, and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  5. Standing between Two Worlds in Harlem: A Developmental Psychopathology Perspective of Perinatally Acquired Human Immunodeficiency Virus and Adolescence

    ERIC Educational Resources Information Center

    Kang, Ezer; Mellins, Claude Ann; Ng, Warren Yiu Kee; Robinson, Lisa-Gaye; Abrams, Elaine J.

    2008-01-01

    Perinatal HIV infection in the US continues to evolve from a fatal pediatric illness to a chronic medical condition of childhood and adolescence. Although navigating this period is influenced by multi-leveled deprivations commonly experienced by low-income minority families, HIV alters the timing and experience of developmental milestones for many…

  6. Investigating the Potential of Community College Developmental Summer Bridge Programs in Facilitating Student Adjustment to Four-Year Institutions

    ERIC Educational Resources Information Center

    Mitchell, Claire E.; Alozie, Nonye M.; Wathington, Heather D.

    2015-01-01

    This study examines whether community college developmental summer bridge programs (DSBPs) can help students acquire the academic and college knowledge needed to attend and succeed at a four-year higher education institution. In-depth interviews with 14 participants at nine four-year institutions in Texas were conducted two years after their…

  7. A Method for Whole Brain Ex Vivo Magnetic Resonance Imaging with Minimal Susceptibility Artifacts

    PubMed Central

    Shatil, Anwar S.; Matsuda, Kant M.; Figley, Chase R.

    2016-01-01

    Magnetic resonance imaging (MRI) is a non-destructive technique that is capable of localizing pathologies and assessing other anatomical features (e.g., tissue volume, microstructure, and white matter connectivity) in postmortem, ex vivo human brains. However, when brains are removed from the skull and cerebrospinal fluid (i.e., their normal in vivo magnetic environment), air bubbles and air–tissue interfaces typically cause magnetic susceptibility artifacts that severely degrade the quality of ex vivo MRI data. In this report, we describe a relatively simple and cost-effective experimental setup for acquiring artifact-free ex vivo brain images using a clinical MRI system with standard hardware. In particular, we outline the necessary steps, from collecting an ex vivo human brain to the MRI scanner setup, and have also described changing the formalin (as might be necessary in longitudinal postmortem studies). Finally, we share some representative ex vivo MRI images that have been acquired using the proposed setup in order to demonstrate the efficacy of this approach. We hope that this protocol will provide both clinicians and researchers with a straight-forward and cost-effective solution for acquiring ex vivo MRI data from whole postmortem human brains. PMID:27965620

  8. Annual research review: Current limitations and future directions in MRI studies of child- and adult-onset developmental psychopathologies.

    PubMed

    Horga, Guillermo; Kaur, Tejal; Peterson, Bradley S

    2014-06-01

    The widespread use of Magnetic Resonance Imaging (MRI) in the study of child- and adult-onset developmental psychopathologies has generated many investigations that have measured brain structure and function in vivo throughout development, often generating great excitement over our ability to visualize the living, developing brain using the attractive, even seductive images that these studies produce. Often lost in this excitement is the recognition that brain imaging generally, and MRI in particular, is simply a technology, one that does not fundamentally differ from any other technology, be it a blood test, a genotyping assay, a biochemical assay, or behavioral test. No technology alone can generate valid scientific findings. Rather, it is only technology coupled with a strong experimental design that can generate valid and reproducible findings that lead to new insights into the mechanisms of disease and therapeutic response. In this review we discuss selected studies to illustrate the most common and important limitations of MRI study designs as most commonly implemented thus far, as well as the misunderstanding that the interpretations of findings from those studies can create for our theories of developmental psychopathologies. Common limitations of MRI study designs are in large part responsible thus far for the generally poor reproducibility of findings across studies, poor generalizability to the larger population, failure to identify developmental trajectories, inability to distinguish causes from effects of illness, and poor ability to infer causal mechanisms in most MRI studies of developmental psychopathologies. For each of these limitations in study design and the difficulties they entail for the interpretation of findings, we discuss various approaches that numerous laboratories are now taking to address those difficulties, which have in common the yoking of brain imaging technologies to studies with inherently stronger designs that permit more valid and more powerful causal inferences. Those study designs include epidemiological, longitudinal, high-risk, clinical trials, and multimodal imaging studies. We highlight several studies that have yoked brain imaging technologies to these stronger designs to illustrate how doing so can aid our understanding of disease mechanisms and in the foreseeable future can improve clinical diagnosis, prevention, and treatment planning for developmental psychopathologies. © 2014 The Authors. Journal of Child Psychology and Psychiatry © 2014 Association for Child and Adolescent Mental Health.

  9. Expressive electronic journal writing: freedom of communication for survivors of acquired brain injury.

    PubMed

    Fraas, Michael; Balz, Magdalen A

    2008-03-01

    In addition to the impaired ability to effectively communicate, adults with acquired brain injury (ABI) also experience high incidences of depression, social isolation, and decreased quality of life. Expressive writing programs have been shown to be effective in alleviating these concomitant impairments in other populations including incarcerated inmates (Lane, Writing as a road to self-discovery, F & W, Cincinnati 1993). In addition, computer applications such as email have been suggested as an effective means of improving communication and social isolation in adults with brain injury (Sohlberg et al. [2003]. Brain Injury, 17(7), 609-629). This investigation examines the effects of on-line expressive journal writing on the communication, emotional status, social integration and quality of life of individuals with brain injury.

  10. A Pediatric Twin Study of Brain Morphometry

    ERIC Educational Resources Information Center

    Wallace, Gregory L.; Schmitt, J. Eric; Lenroot, Rhoshel; Viding, Essi; Ordaz, Sarah; Rosenthal, Michael A.; Molloy, Elizabeth A.; Clasen, Liv S.; Kendler, Kenneth S.; Neale, Michael C.; Giedd, Jay N.

    2006-01-01

    Background: Longitudinal pediatric neuroimaging studies have demonstrated increasing volumes of white matter and regionally-specific inverted U shaped developmental trajectories of gray matter volumes during childhood and adolescence. Studies of monozygotic and dyzygotic twins during this developmental period allow exploration of genetic and…

  11. Screening for Developmental Neurotoxicants using In Vitro "Brain on a Chip" Cultures

    EPA Science Inventory

    Currently there are thousands of chemicals in the environment that have not been screened for their potential to cause developmental neurotoxicity (DNT). The use of microelectrode array (MEA) technology allows for simultaneous extracellular measurement of action potential (spike)...

  12. DEVELOPMENTAL CHANGES IN SEROTONIN SIGNALING: IMPLICATIONS FOR EARLY BRAIN FUNCTION, BEHAVIOR AND ADAPTATION

    PubMed Central

    BRUMMELTE, S.; GLANAGHY, E. MC; BONNIN, A.; OBERLANDER, T. F.

    2017-01-01

    The neurotransmitter serotonin (5-HT) plays a central role in brain development, regulation of mood, stress reactivity and risk of psychiatric disorders, and thus alterations in 5-HT signaling early in life have critical implications for behavior and mental health across the life span. Drawing on preclinical and emerging human evidence this narrative review paper will examine three key aspects when considering the consequences of early life changes in 5-HT: (1) developmental origins of variations of 5-HT signaling; (2) influence of genetic and epigenetic factors; and (3) preclinical and clinical consequences of 5-HT-related changes associated with antidepressant exposure (SSRIs). The developmental consequences of altered prenatal 5-HT signaling varies greatly and outcomes depend on an ongoing interplay between biological (genetic/epigenetic variations) and environmental factors, both pre and postnatally. Emerging evidence suggests that variations in 5-HT signaling may increase sensitivity to risky home environments, but may also amplify a positive response to a nurturing environment. In this sense, factors that change central 5-HT levels may act as ‘plasticity’ rather than ‘risk’ factors associated with developmental vulnerability. Understanding the impact of early changes in 5-HT levels offers critical insights that might explain the variations in early typical brain development that underlies behavioral risk. PMID:26905950

  13. A developmental roadmap for learning by imitation in robots.

    PubMed

    Lopes, Manuel; Santos-Victor, José

    2007-04-01

    In this paper, we present a strategy whereby a robot acquires the capability to learn by imitation following a developmental pathway consisting on three levels: 1) sensory-motor coordination; 2) world interaction; and 3) imitation. With these stages, the system is able to learn tasks by imitating human demonstrators. We describe results of the different developmental stages, involving perceptual and motor skills, implemented in our humanoid robot, Baltazar. At each stage, the system's attention is drawn toward different entities: its own body and, later on, objects and people. Our main contributions are the general architecture and the implementation of all the necessary modules until imitation capabilities are eventually acquired by the robot. Also, several other contributions are made at each level: learning of sensory-motor maps for redundant robots, a novel method for learning how to grasp objects, and a framework for learning task description from observation for program-level imitation. Finally, vision is used extensively as the sole sensing modality (sometimes in a simplified setting) avoiding the need for special data-acquisition hardware.

  14. How Can Educational Psychologists Support the Reintegration of Children with an Acquired Brain Injury upon Their Return to School?

    ERIC Educational Resources Information Center

    Ball, Heather; Howe, Julia

    2013-01-01

    This study explores the process of reintegration into school for children with an acquired brain injury (ABI) and considers the role of the educational psychologist (EP) in supporting these children. Interviews were conducted with a range of professionals in two specialist settings: a specialist rehabilitation centre and a children's hospital with…

  15. Promoting Adaptive Behavior in Persons with Acquired Brain Injury, Extensive Motor and Communication Disabilities, and Consciousness Disorders

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Belardinelli, Marta Olivetti; Buonocunto, Francesca; Sacco, Valentina; Navarro, Jorge; Lanzilotti, Crocifissa; De Tommaso, Marina; Megna, Marisa; Badagliacca, Francesco

    2012-01-01

    These two studies extended the evidence on the use of technology-based intervention packages to promote adaptive behavior in persons with acquired brain injury and multiple disabilities. Study I involved five participants in a minimally conscious state who were provided with intervention packages based on specific arrangements of optic, tilt, or…

  16. Life Satisfaction Questionnaire (Lisat-9): Reliability and Validity for Patients with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Boonstra, Anne M.; Reneman, Michiel F.; Stewart, Roy E.; Balk, Gerlof A.

    2012-01-01

    The aim of this study was to determine the reliability and discriminant validity of the Dutch version of the life satisfaction questionnaire (Lisat-9 DV) to assess patients with an acquired brain injury. The reliability study used a test-retest design, and the validity study used a cross-sectional design. The setting was the general rehabilitation…

  17. Thinking Allowed: Use of Egocentric Speech after Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Rees, Sian A.; Skidmore, David

    2011-01-01

    This paper explores the use of thinking aloud made by young people who have sustained a severe acquired brain injury (ABI). The phenomenon is compared with the concepts of egocentric speech and inner speech before the form of thinking aloud by pupils with ABI is examined. It is suggested that by using thinking aloud, this group of pupils is able…

  18. Meeting the Needs of Persons with Acquired Brain Injury in the Republic of Ireland: A Contextual Review

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Fullerton, Nicole

    2015-01-01

    Purpose: This article examines how the Republic of Ireland conceptualizes disability, specifically acquired brain injury (ABI); how it meets the needs of people with ABI; and its similarities and difference with the U.S. system of ABI professional care, policy, and services. The article provides ideas for improvements and innovations toward ABI…

  19. Preference for Progressive Delays and Concurrent Physical Therapy Exercise in an Adult with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Dixon, Mark R.; Falcomata, Terry S.

    2004-01-01

    The purpose of this study was to increase self-control and engagement in a physical therapy task (head holding) for a man with acquired traumatic brain injury. Once impulsivity was observed (i.e., repeated impulsive choices), an experimental condition was introduced that consisted of choices between a small immediate reinforcer, a large…

  20. A Systematic Review of Psychological Interventions to Alleviate Cognitive and Psychosocial Problems in Children with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Ross, Kimberley A.; Dorris, Liam; McMillan, Tom

    2011-01-01

    Aim: It is now generally accepted that paediatric acquired brain injury (ABI) can have an impact on a child's cognitive, social, and behavioural functioning. However, the lack of guidelines on effective interventions for the affected children and their families, particularly beyond the acute recovery phase, can limit access to effective support.…

  1. Developmental trajectories of the fronto-temporal lobes from infancy to early adulthood in healthy individuals.

    PubMed

    Tanaka, Chiaki; Matsui, Mie; Uematsu, Akiko; Noguchi, Kyo; Miyawaki, Toshio

    2012-01-01

    Brain development during early life in healthy individuals is rapid and dynamic, indicating that this period plays a very important role in neural and functional development. The frontal and temporal lobes are known to play a particularly important role in cognition. The study of healthy frontal and temporal lobe development in children is therefore of considerable importance. A better understanding of how these brain regions develop could also aid in the diagnosis and treatment of neurodevelopmental disorders. Some developmental studies have used magnetic resonance imaging (MRI) to examine infant brains, but it remains the case that relatively little is known about cortical brain development in the first few years of life. In the present study we examined whole brain, temporal lobe and frontal lobe developmental trajectories from infancy to early adulthood in healthy individuals, considering gender and brain hemisphere differences. We performed a cross-sectional, longitudinal morphometric MRI study of 114 healthy individuals (54 females and 60 males) aged 1 month to 25 years old (mean age ± SD 8.8 ± 6.9). We measured whole brain, temporal and frontal lobe gray matter (GM)/white matter (WM) volumes, following previously used protocols. There were significant non-linear age-related volume changes in all regions. Peak ages of whole brain, temporal lobe and frontal lobe development occurred around pre-adolescence (9-12 years old). GM volumes for all regions increased significantly as a function of age. Peak age was nevertheless lobe specific, with a pattern of earlier peak ages for females in both temporal and frontal lobes. Growth change in whole brain GM volume was larger in males than in females. However, GM volume growth changes for the temporal and frontal lobes showed a somewhat different pattern. GM volume for both temporal and frontal lobes showed a greater increase in females until around 5-6 years old, at which point this tendency reversed (GM volume changes in males became greater), with male GM volume increasing for a longer time than that of females. WM volume growth changes were similar across regions, all increasing rapidly until early childhood but slowing down thereafter. All regions displayed significant rightward volumetric asymmetry regardless of sex. Furthermore, the right temporal and frontal lobes showed a greater volumetric increase than the left for the first several years, with this tendency reversing at around 6 years of age. In addition, the left frontal and temporal lobes increased in volume for a longer period of time. Taken together, these findings indicated that brain developmental trajectories differ depending on brain region, sex and brain hemisphere. Gender-related factors such as sex hormones and functional laterality may affect brain development. Copyright © 2012 S. Karger AG, Basel.

  2. [Neural mechanism underlying autistic savant and acquired savant syndrome].

    PubMed

    Takahata, Keisuke; Kato, Motoichiro

    2008-07-01

    It is well known that the cases with savant syndrome, demonstrate outstanding mental capability despite coexisting severe mental disabilities. In many cases, savant skills are characterized by its domain-specificity, enhanced memory capability, and excessive focus on low-level perceptual processing. In addition, impaired integrative cognitive processing such as social cognition or executive function, restricted interest, and compulsive repetition of the same act are observed in savant individuals. All these are significantly relevant to the behavioral characteristics observed in individuals with autistic spectrum disorders (ASD). A neurocognitive model of savant syndrome should explain these cognitive features and the juxtaposition of outstanding talents with cognitive disabilities. In recent neuropsychological studies, Miller (1998) reported clinical cases of "acquired savant," i.e., patients who improved or newly acquired an artistic savant-like skill in the early stage of frontotemporal dementia (FTD). Although the relationship between an autistic savant and acquired savant remains to be elucidated, the advent of neuroimaging study of ASD and the clarification of FTD patients with savant-like skills may clarify the shared neural mechanisms of both types of talent. In this review, we classified current cognitive models of savant syndrome into the following 3 categories. (1) A hypermnesic model that suggests that savant skills develop from existing or dormant cognitive functions such as memory. However, recent findings obtained through neuropsychological examinations imply that savant individuals solve problems using a strategy that is fairly different from a non-autistic one. (2) A paradoxical functional facilitation model (Kapur, 1996) that offers possible explanations about how pathological states in the brain lead to development of prodigious skills. This model emphasizes the role of reciprocal inhibitory interaction among adjacent or distant cortical regions, especially that of the prefrontal cortex and the posterior regions of the brain. (3) Autistic models, including those based on weak central coherence theory (Frith, 1989), that focus on how savant skills emerge from an autistic brain. Based on recent neuroimaging studies of ASD, Just et al. (2004) suggested the underconnectivity theory, which emphasizes the disruption of long-range connectivity and the relative intact or even more enhanced local connectivity in the autistic brain. All the models listed above have certain advantages and shortcomings. At the end of this review, we propose another integrative model of savant syndrome. In this model, we predict an altered balance of local/global connectivity patterns that contribute to an altered functional segregation/integration ratio. In particular, we emphasize the crucial role played by the disruption of global connectivity in a parallel distributed cortical network, which might result in impairment in integrated cognitive processing, such as impairment in executive function and social cognition. On the other hand, the reduced inter-regional collaboration could lead to a disinhibitory enhancement of neural activity and connectivity in local cortical regions. In addition, enhanced connectivity in the local brain regions is partly due to the abnormal organization of the cortical network as a result of developmental and pathological states. This enhanced local connectivity results in the specialization and facilitation of low-level cognitive processing. The disruption of connectivity between the prefrontal cortex and other regions is considered to be a particularly important factor because the prefrontal region shows the most influential inhibitory control on other cortical areas. We propose that these neural mechanisms as the underlying causes for the emergence of savant ability in ASD and FTD patients.

  3. Number Conservation is Related to Children’s Prefrontal Inhibitory Control: An fMRI Study of a Piagetian Task

    PubMed Central

    Simon, Grégory; Rossi, Sandrine; Cassotti, Mathieu; Pineau, Arlette; Houdé, Olivier

    2012-01-01

    Although young children can accurately determine that two rows contain the same number of coins when they are placed in a one-to-one correspondence, children younger than 7 years of age erroneously think that the longer row contains more coins when the coins in one of the rows are spread apart. To demonstrate that prefrontal inhibitory control is necessary to succeed at this task (Piaget’s conservation-of-number task), we studied the relationship between the percentage of BOLD signal changes in the brain areas activated in this developmental task and behavioral performance on a Stroop task and a Backward Digit Span task. The level of activation in the right insula/inferior frontal gyrus was selectively related to inhibitory control efficiency (i.e., the Stroop task), whereas the activation in the left intraparietal sulcus (IPS) was selectively related to the ability to manipulate numerical information in working memory (i.e., the Backward Digit Span task). Taken together, the results indicate that to acquire number conservation, children’s brains must not only activate the reversibility of cognitive operations (supported by the IPS) but also inhibit a misleading length-equal-number strategy (supported by the right insula/inferior frontal gyrus). PMID:22815825

  4. A Preliminary Neuroimaging Study of Preschool Children with ADHD

    PubMed Central

    E.M., Mahone; D., Crocetti; M.E., Ranta; A., Gaddis; M., Cataldo; K.J., Slifer; M.B., Denckla; S.H., Mostofsky

    2012-01-01

    Attention-deficit/Hyperactivity Disorder (ADHD) is a developmental disorder which, by current definition, has onset prior to age 7 years. MRI studies have provided some insight into brain differences associated with ADHD, but thus far have almost exclusively focused on children ages 7 years and older. To better understand the neurobiological development of ADHD, cortical and subcortical brain development should be systematically examined in younger children presenting with symptoms of the disorder. High resolution anatomical (MPRAGE) images, acquired on a 3.0T scanner, were analyzed in a total of 26 preschoolers, ages 4–5 years (13 with ADHD, 13 controls, matched on age and sex). The ADHD sample was diagnosed using DSM-IV criteria, and screened for language disorders. Cortical regions were delineated and measured using automated methods in Freesurfer; basal ganglia structures were manually delineated. Children with ADHD showed significantly reduced caudate volumes bilaterally; in contrast, there were no significant group differences in cortical volume or thickness in this age range. After controlling for age and total cerebral volume, left caudate volume was a significant predictor of hyperactive/impulsive, but not inattentive symptom severity. Anomalous basal ganglia, particularly caudate, development appears to play an important role among children presenting with early onset symptoms of ADHD. PMID:21660881

  5. Multi-compartment microscopic diffusion imaging

    PubMed Central

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2017-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microscopic tissue structure. This technique can be immediately used in the clinic for the assessment of various neurological conditions, as it requires only a widely available off-the-shelf sequence with two b-shells and high-angular gradient resolution achievable within clinically feasible scan times. To demonstrate the developed method, we use high-quality diffusion data acquired with a bespoke scanner system from the Human Connectome Project. This study establishes the normative values of the new biomarkers for a large cohort of healthy young adults, which may then support clinical diagnostics in patients. Moreover, we show that the microscopic diffusion indices offer direct sensitivity to pathological tissue alterations, exemplified in a preclinical animal model of Tuberous Sclerosis Complex (TSC), a genetic multi-organ disorder which impacts brain microstructure and hence may lead to neurological manifestations such as autism, epilepsy and developmental delay. PMID:27282476

  6. Validation of the Child Premorbid Intelligence Estimate method to predict premorbid Wechsler Intelligence Scale for Children-Fourth Edition Full Scale IQ among children with brain injury.

    PubMed

    Schoenberg, Mike R; Lange, Rael T; Saklofske, Donald H; Suarez, Mariann; Brickell, Tracey A

    2008-12-01

    Determination of neuropsychological impairment involves contrasting obtained performances with a comparison standard, which is often an estimate of premorbid IQ. M. R. Schoenberg, R. T. Lange, T. A. Brickell, and D. H. Saklofske (2007) proposed the Child Premorbid Intelligence Estimate (CPIE) to predict premorbid Full Scale IQ (FSIQ) using the Wechsler Intelligence Scale for Children-4th Edition (WISC-IV; Wechsler, 2003). The CPIE includes 12 algorithms to predict FSIQ, 1 using demographic variables and 11 algorithms combining WISC-IV subtest raw scores with demographic variables. The CPIE was applied to a sample of children with acquired traumatic brain injury (TBI sample; n = 40) and a healthy demographically matched sample (n = 40). Paired-samples t tests found estimated premorbid FSIQ differed from obtained FSIQ when applied to the TBI sample (ps .02). The demographic only algorithm performed well at a group level, but estimates were restricted in range. Algorithms combining single subtest scores with demographics performed adequately. Results support the clinical application of the CPIE algorithms. However, limitations to estimating individual premorbid ability, including statistical and developmental factors, must be considered. (c) 2008 APA, all rights reserved.

  7. Introduction to 'Homology and convergence in nervous system evolution'.

    PubMed

    Strausfeld, Nicholas J; Hirth, Frank

    2016-01-05

    The origin of brains and central nervous systems (CNSs) is thought to have occurred before the Palaeozoic era 540 Ma. Yet in the absence of tangible evidence, there has been continued debate whether today's brains and nervous systems derive from one ancestral origin or whether similarities among them are due to convergent evolution. With the advent of molecular developmental genetics and genomics, it has become clear that homology is a concept that applies not only to morphologies, but also to genes, developmental processes, as well as to behaviours. Comparative studies in phyla ranging from annelids and arthropods to mammals are providing evidence that corresponding developmental genetic mechanisms act not only in dorso-ventral and anterior-posterior axis specification but also in segmentation, neurogenesis, axogenesis and eye/photoreceptor cell formation that appear to be conserved throughout the animal kingdom. These data are supported by recent studies which identified Mid-Cambrian fossils with preserved soft body parts that present segmental arrangements in brains typical of modern arthropods, and similarly organized brain centres and circuits across phyla that may reflect genealogical correspondence and control similar behavioural manifestations. Moreover, congruence between genetic and geological fossil records support the notion that by the 'Cambrian explosion' arthropods and chordates shared similarities in brain and nervous system organization. However, these similarities are strikingly absent in several sister- and outgroups of arthropods and chordates which raises several questions, foremost among them: what kind of natural laws and mechanisms underlie the convergent evolution of such similarities? And, vice versa: what are the selection pressures and genetic mechanisms underlying the possible loss or reduction of brains and CNSs in multiple lineages during the course of evolution? These questions were addressed at a Royal Society meeting to discuss homology and convergence in nervous system evolution. By integrating knowledge ranging from evolutionary theory and palaeontology to comparative developmental genetics and phylogenomics, the meeting covered disparities in nervous system origins as well as correspondences of neural circuit organization and behaviours, all of which allow evidence-based debates for and against the proposition that the nervous systems and brains of animals might derive from a common ancestor. © 2015 The Author(s).

  8. The Correlation between Brain Development, Language Acquisition, and Cognition

    ERIC Educational Resources Information Center

    Wasserman, Leslie Haley

    2007-01-01

    There continues to be a debate whether educators should use brain research to their advantage in the classroom. This debate should not prevent educators from using their new found knowledge toward enhancing their students' learning. By understanding how the brain learns, educators are able to determine what developmental level the child is…

  9. Gesturing with an Injured Brain: How Gesture Helps Children with Early Brain Injury Learn Linguistic Constructions

    ERIC Educational Resources Information Center

    Ozcaliskan, Seyda; Levine, Susan C.; Goldin-Meadow, Susan

    2013-01-01

    Children with pre/perinatal unilateral brain lesions (PL) show remarkable plasticity for language development. Is this plasticity characterized by the same developmental trajectory that characterizes typically developing (TD) children, with gesture leading the way into speech? We explored this question, comparing eleven children with PL -- matched…

  10. Connecting Brian Cambourne's Conditions of Learning Theory to Brain/Mind Principles: Implications for Early Childhood Educators.

    ERIC Educational Resources Information Center

    Rushton, Stephen P.; Eitelgeorge, Janice; Zickafoose, Ruby

    2003-01-01

    Relates each of the eight conditions of learning in Brian Cambourne's theory of literacy to findings in brain research within a constructivist approach to early childhood education. Cites sample classroom dialogues demonstrating classroom elements that foster a brain-based, developmentally appropriate learning environment supporting Cambourne's…

  11. Inside the Adolescent Brain

    ERIC Educational Resources Information Center

    Drury, Stacy S.

    2009-01-01

    Dr. Jay Giedd says that the main alterations in the adolescent brain are the inverted U-shaped developmental trajectories with late childhood/early teen peaks for gray matter volume among others. Giedd adds that the adolescent brain is vulnerable to substances that artificially modulate dopamine levels since its reward system is in a state of flux.

  12. Left Brain/Right Brain Theory: Implications for Developmental Math Instruction.

    ERIC Educational Resources Information Center

    Kitchens, Anita N.; And Others

    1991-01-01

    Perhaps the most dramatic failure in postsecondary education has been in the teaching of mathematical skills. The different functions of the right and left hemispheres of the brain require different approaches to education. Due to their emphasis on language and verbal processing, schools have failed to give adequate stimulation to the right side…

  13. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development.

    PubMed

    Schulz, Kalynn M; Sisk, Cheryl L

    2016-11-01

    Adolescence is a developmental period characterized by dramatic changes in cognition, risk-taking and social behavior. Although gonadal steroid hormones are well-known mediators of these behaviors in adulthood, the role gonadal steroid hormones play in shaping the adolescent brain and behavioral development has only come to light in recent years. Here we discuss the sex-specific impact of gonadal steroid hormones on the developing adolescent brain. Indeed, the effects of gonadal steroid hormones during adolescence on brain structure and behavioral outcomes differs markedly between the sexes. Research findings suggest that adolescence, like the perinatal period, is a sensitive period for the sex-specific effects of gonadal steroid hormones on brain and behavioral development. Furthermore, evidence from studies on male sexual behavior suggests that adolescence is part of a protracted postnatal sensitive period that begins perinatally and ends following adolescence. As such, the perinatal and peripubertal periods of brain and behavioral organization likely do not represent two discrete sensitive periods, but instead are the consequence of normative developmental timing of gonadal hormone secretions in males and females. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development

    PubMed Central

    Schulz, Kalynn M.; Sisk, Cheryl L.

    2016-01-01

    Adolescence is a developmental period characterized by dramatic changes in cognition, risk-taking and social behavior. Although gonadal steroid hormones are well-known mediators of these behaviors in adulthood, the role gonadal steroid hormones play in shaping the adolescent brain and behavioral development has only come to light in recent years. Here we discuss the sex-specific impact of gonadal steroid hormones on the developing adolescent brain. Indeed, the effects of gonadal steroid hormones during adolescence on brain structure and behavioral outcomes differs markedly between the sexes. Research findings suggest that adolescence, like the perinatal period, is a sensitive period for the sex-specific effects of gonadal steroid hormones on brain and behavioral development. Furthermore, evidence from studies on male sexual behavior suggests that adolescence is part of a protracted postnatal sensitive period that begins perinatally and ends following adolescence. As such, the perinatal and peripubertal periods of brain and behavioral organization likely do not represent two discrete sensitive periods, but instead are the consequence of normative developmental timing of gonadal hormone secretions in males and females. PMID:27497718

  15. 3D-Reconstructions and Virtual 4D-Visualization to Study Metamorphic Brain Development in the Sphinx Moth Manduca Sexta

    PubMed Central

    Huetteroth, Wolf; el Jundi, Basil; el Jundi, Sirri; Schachtner, Joachim

    2009-01-01

    During metamorphosis, the transition from the larva to the adult, the insect brain undergoes considerable remodeling: new neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D) to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1. PMID:20339481

  16. 3D-Reconstructions and Virtual 4D-Visualization to Study Metamorphic Brain Development in the Sphinx Moth Manduca Sexta.

    PubMed

    Huetteroth, Wolf; El Jundi, Basil; El Jundi, Sirri; Schachtner, Joachim

    2010-01-01

    DURING METAMORPHOSIS, THE TRANSITION FROM THE LARVA TO THE ADULT, THE INSECT BRAIN UNDERGOES CONSIDERABLE REMODELING: new neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D) to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1.

  17. Neonatal intensive care practices harmful to the developing brain.

    PubMed

    Chaudhari, Sudha

    2011-06-01

    There has been a marked increase in the survival of extremely low birth weight (ELBW) infants, but these babies have a long stay in the NICU. Strategies to decrease their neurodevelopmental impairment become very important. The maximum development of the brain occurs between 29-41 weeks. From the warm, dark, acquatic econiche, where the baby hears pleasant sounds like the mother's heart beat, the baby suddenly finds itself in the dry, cold, excessively bright, noisy, environment of the NICU. Noise, bright light, painful procedures, and ill-timed caregiving activities, adversely affect the infant's development. Excessive radiation from X-rays of babies on the ventilator and CT scans also affect the brain. Medications like steroids for chronic lung disease also cause damage to the brain. Aminoglycides and frusemide are known to cause hearing impairment. Hence a developmentally supportive, humanized care will go a long way in enhancing the developmental outcome of these babies.

  18. Effects of Sex Steroids in the Human Brain.

    PubMed

    Nguyen, Tuong-Vi; Ducharme, Simon; Karama, Sherif

    2017-11-01

    Sex steroids are thought to play a critical developmental role in shaping both cortical and subcortical structures in the human brain. Periods of profound changes in sex steroids invariably coincide with the onset of sex differences in mental health vulnerability, highlighting the importance of sex steroids in determining sexual differentiation of the brain. Yet, most of the evidence for the central effects of sex steroids relies on non-human studies, as several challenges have limited our understanding of these effects in humans: the lack of systematic assessment of the human sex steroid metabolome, the different developmental trajectories of specific sex steroids, the impact of genetic variation and epigenetic changes, and the plethora of interactions between sex steroids, sex chromosomes, neurotransmitters, and other hormonal systems. Here we review how multimodal strategies may be employed to bridge the gap between the basic and clinical understanding of sex steroid-related changes in the human brain.

  19. The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure.

    PubMed

    Tolins, Molly; Ruchirawat, Mathuros; Landrigan, Philip

    2014-01-01

    More than 200 million people worldwide are chronically exposed to arsenic. Arsenic is a known human carcinogen, and its carcinogenic and systemic toxicity have been extensively studied. By contrast, the developmental neurotoxicity of arsenic has been less well described. The aim of this review was to provide a comprehensive review of the developmental neurotoxicity of arsenic. We reviewed the published epidemiological and toxicological literature on the developmental neurotoxicity of arsenic. Arsenic is able to gain access to the developing brain and cause neurotoxic effects. Animal models link prenatal and early postnatal exposure to reduction in brain weight, reductions in numbers of glia and neurons, and alterations in neurotransmitter systems. Animal and in vitro studies both suggest that oxidative stress may be a mechanism of arsenic neurotoxicity. Fifteen epidemiological studies indicate that early life exposure is associated with deficits in intelligence and memory. These effects may occur at levels of exposure below current safety guidelines, and some neurocognitive consequences may become manifest only later in life. Sex, concomitant exposures, and timing of exposure appear to modify the developmental neurotoxicity of arsenic. Four epidemiological studies failed to show behavioral outcomes of arsenic exposure. The published literature indicates that arsenic is a human developmental neurotoxicant. Ongoing and future prospective birth cohort studies will allow more precise definition of the developmental consequences of arsenic exposure in early life. Copyright © 2014. Published by Elsevier Inc.

  20. Neurodevelopmental outcome of the late preterm infant.

    PubMed

    Adams-Chapman, Ira

    2006-12-01

    There is very limited information about the developmental outcome of the late preterm infant. The developing brain is vulnerable to injury during this very active and important stage of fetal brain development; therefore, it is important to carefully monitor the neurologic outcome of these infants. This article discusses gestational brain development and complications of late preterm birth that contribute to the overall risk of brain injury.

  1. Mild Developmental Hypothyroidism and Trace Fear Conditioning: Role of Gender and Shock Duration.

    EPA Science Inventory

    Rodent models of developmental thyroid hormone (TH) deficiency aptly reflect the deleterious effects of severe TH deficiencies on brain structure and function in humans. However, the impact of moderate TH insufficiencies on neurodevelopmental outcomes has proven more difficult to...

  2. Learning Disability: An Educational Adventure. The 1967 Kappa Delta Pi Lecture.

    ERIC Educational Resources Information Center

    Kephart, Newell C.

    Educational implications and symptoms are described for learning disorders, the disruption in the processing of information within the central nervous system caused by brain damage, emotional disturbance, or inadequate presentation of learning experiences. Developmental sequences, developmental progression, and restoration of development are…

  3. Education on the Brain: A Partnership Between a Pediatric Primary Care Center and Neurology Residency.

    PubMed

    Zwemer, Eric; Bernson-Leung, Miya; Rea, Corinna; Patel, Archana A; Guerriero, Rejean; Urion, David K; Toomey, Sara L

    2018-01-01

    The national shortage of pediatric neurologists is worsening, yet referral rates by pediatricians are high. Suboptimal training of pediatric residents in care of patients with neurologic disease may be a contributing factor. We formed a partnership between the Boston Children's Primary Care at Longwood clinic and Child Neurology Residency Training Program. The educational intervention included lectures, observed neurologic examinations, in-person and virtual triage, and an electronic medical record-based consult system. Residents in other primary care clinics served as the comparison group. Intervention-group residents reported significantly improved confidence in diagnosis of chronic/recurrent headache, attention deficit hyperactivity disorder (ADHD), and developmental delay; initial management of ADHD and developmental delay; and secondary management of ADHD, developmental delay, and concussion/traumatic brain injury. Comparison-group residents reported significantly improved confidence only in diagnosis of developmental delay. Our multipronged intervention is a promising approach to improving pediatric resident training in pediatric neurology and may be generalizable to subspecialty collaborations for other residency programs.

  4. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    PubMed

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat brain. Copyright © 2017 ISDN. All rights reserved.

  5. The development of motor behavior

    PubMed Central

    Adolph, Karen E.; Franchak, John M.

    2016-01-01

    This article reviews research on the development of motor behavior from a developmental systems perspective. We focus on infancy when basic action systems are acquired. Posture provides a stable base for locomotion, manual actions, and facial actions. Experience facilitates improvements in motor behavior and infants accumulate immense amounts of experience with all of their basic action systems. At every point in development, perception guides motor behavior by providing feedback about the results of just prior movements and information about what to do next. Reciprocally, the development of motor behavior provides fodder for perception. More generally, motor development brings about new opportunities for acquiring knowledge about the world, and burgeoning motor skills can instigate cascades of developmental changes in perceptual, cognitive, and social domains. PMID:27906517

  6. The development of writing skills in 4-year-old children with and without specific language impairment.

    PubMed

    Pavelko, Stacey L; Lieberman, R Jane; Schwartz, Jamie; Hahs-Vaughn, Debbie; Nye, Chad

    2017-01-01

    Research shows that many preschool children with specific language impairment (SLI) have difficulty acquiring literacy skills including phonological awareness, print concepts, and alphabet knowledge. Limited research suggests that preschool children with SLI also have difficulty with emergent writing tasks such as name writing and word writing. In typically developing children, research indicates that emergent writing skills are acquired in a developmental sequence: (1) linearity, (2) segmentation, (3) simple characters, (4) left-right orientation, (5) complex characters, (6) random letters, and (7) invented spelling. This study compared the emergent writing skills of 4-year-old children with SLI (n = 22) to their age- and gender-matched peers (n = 22). Results indicated that children with SLI demonstrate difficulty with a variety of writing tasks, including letter writing, name writing, word writing, and sentence writing when compared to their typically-developing peers. Children with SLI followed the same developmental sequence in acquiring writing skills as their typically-developing peers.

  7. The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation

    PubMed Central

    Shi, Song-Hai; Cheng, Tong; Jan, Lily Yeh; Jan, Yuh-Nung

    2004-01-01

    In the developing mammalian brain, a large fraction of excitatory synapses initially contain only N-methyl-d-aspartate receptor and thus are “silent” at the resting membrane potential. As development progresses, synapses acquire α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs). Although this maturation of excitatory synapses has been well characterized, the molecular basis for this developmental change is not known. Here, we report that dendrite arborization and synapse maturation 1 (Dasm1), an Ig superfamily member, controls excitatory synapse maturation. Dasm1 is localized at the excitatory synapses. Suppression of Dasm1 expression by using RNA interference or expression of dominant negative deletion mutants of Dasm1 in hippocampal neurons at late developmental stage specifically impairs AMPA-R-mediated, but not N-methyl-d-aspartate receptor-mediated, synaptic transmission. The ability of Dasm1 to regulate synaptic AMPA-Rs requires its intracellular C-terminal PDZ domain-binding motif, which interacts with two synaptic PDZ domain-containing proteins involved in spine/synapse maturation, Shank and S-SCAM. Moreover, expression of dominant negative deletion mutants of Dasm1 leads to more immature silent synapses. These results suggest that Dasm1, as a transmembrane molecule, likely provides a link to bridge extracellular signals and intracellular signaling complexes in controlling excitatory synapse maturation. PMID:15340156

  8. Pre- and Postnatal Exposure to Low Dose Glufosinate Ammonium Induces Autism-Like Phenotypes in Mice

    PubMed Central

    Laugeray, Anthony; Herzine, Ameziane; Perche, Olivier; Hébert, Betty; Aguillon-Naury, Marine; Richard, Olivier; Menuet, Arnaud; Mazaud-Guittot, Séverine; Lesné, Laurianne; Briault, Sylvain; Jegou, Bernard; Pichon, Jacques; Montécot-Dubourg, Céline; Mortaud, Stéphane

    2014-01-01

    Glufosinate ammonium (GLA) is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior. Here, we addressed the developmental impact of GLA by exposing female mice to low dose GLA during both pre- and postnatal periods and analyzed potential developmental and behavioral changes of the offspring during infancy and adulthood. A neurobehavioral test battery revealed significant effects of GLA maternal exposure on early reflex development, pup communication, affiliative behaviors, and preference for social olfactory cues, but emotional reactivity and emotional memory remained unaltered. These behavioral alterations showed a striking resemblance to changes seen in animal models of Autistic Spectrum Disorders. At the brain level, GLA maternal exposure caused some increase in relative brain weight of the offspring. In addition, reduced expression of Pten and Peg3 – two genes implicated in autism-like deficits – was observed in the brain of GLA-exposed pups at postnatal day 15. Our work thus provides new data on the link between pre- and postnatal exposure to the herbicide GLA and the onset of autism-like symptoms later in life. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during critical developmental periods. PMID:25477793

  9. Early life experience contributes to the developmental programming of depressive-like behaviour, neuroinflammation and oxidative stress.

    PubMed

    Réus, Gislaine Z; Fernandes, Gabrielly C; de Moura, Airam B; Silva, Ritele H; Darabas, Ana Caroline; de Souza, Thays G; Abelaira, Helena M; Carneiro, Celso; Wendhausen, Diogo; Michels, Monique; Pescador, Bruna; Dal-Pizzol, Felipe; Macêdo, Danielle S; Quevedo, João

    2017-12-01

    This study used an animal model of depression induced by maternal care deprivation (MCD) to investigate whether depressive behaviour, neuroinflammation and oxidative stress were underlying factors in developmental programming after early life stress. At postnatal days (PND) 20, 30, 40, and 60, individual subsets of animals were evaluated in behavioural tests and then euthanized to assess cytokine levels and oxidative stress parameters in the prefrontal cortex (PFC), hippocampus and serum. The results showed that MCD did not induce behavioural changes at PND 30 and 40. However, at PND 20 and 60, the rats displayed a depressive-like behaviour in the forced swimming test, without changes in locomotor spontaneous activity. In the brain and serum, the levels of pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α)) were increased, and the anti-inflammatory cytokine (interleukin-10) level was reduced throughout developmental programming (PND 20, 30, 40 and 60). Protein carbonyl levels increased in the brain at PND 30, 40 and 60. Superoxide dismutase (SOD) activity was decreased during all developmental programming phases evaluated in the brain. Catalase (CAT) activity was decreased at PND 20, 40 and 60 in the brain. Our results revealed that "critical episodes" in early life stressful events are able to induce behavioural alterations that persist into adulthood and can stimulate inflammation and oxidative damage in both central and peripheral systems, which are required for distinct patterns of resilience against psychiatric disorders later in life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Computerized Cognitive Rehabilitation of Attention and Executive Function in Acquired Brain Injury: A Systematic Review.

    PubMed

    Bogdanova, Yelena; Yee, Megan K; Ho, Vivian T; Cicerone, Keith D

    Comprehensive review of the use of computerized treatment as a rehabilitation tool for attention and executive function in adults (aged 18 years or older) who suffered an acquired brain injury. Systematic review of empirical research. Two reviewers independently assessed articles using the methodological quality criteria of Cicerone et al. Data extracted included sample size, diagnosis, intervention information, treatment schedule, assessment methods, and outcome measures. A literature review (PubMed, EMBASE, Ovid, Cochrane, PsychINFO, CINAHL) generated a total of 4931 publications. Twenty-eight studies using computerized cognitive interventions targeting attention and executive functions were included in this review. In 23 studies, significant improvements in attention and executive function subsequent to training were reported; in the remaining 5, promising trends were observed. Preliminary evidence suggests improvements in cognitive function following computerized rehabilitation for acquired brain injury populations including traumatic brain injury and stroke. Further studies are needed to address methodological issues (eg, small sample size, inadequate control groups) and to inform development of guidelines and standardized protocols.

  11. Clinician perspectives on decision-making capacity after acquired brain injury.

    PubMed

    Mukherjee, Debjani; McDonough, Carol

    2006-01-01

    Acquired brain injury frequently alters an individual's ability to make health care decisions based on a clear understanding of the situation and options. This exploratory study investigated the ways health care providers address issues of decisionmaking capacity (DMC) on a daily, functional basis. 33 clinicians providing rehabilitation services to persons with acquired brain injury participated in 1 of 5 semi-structured focus groups. All 33 participants, representing 8 different occupations, agreed that DMC determinations affected their practice every day. Participants underscored a multidimensional rather than a unitary definition of DMC, with an emphasis on fluctuating capacities due to the injury. Important concerns were for the safety of the person with brain injury, the health care provider, and community members. Other themes included rehabilitation team involvement, family context, and professional socialization. Clinical determinations of DMC are context dependent and are affected by the abilities of the individual and the substance and consequences of the decision being made and include the concepts of regaining trust and reclaiming capacity.

  12. A systematic literature review of sex differences in childhood language and brain development.

    PubMed

    Etchell, Andrew; Adhikari, Aditi; Weinberg, Lauren S; Choo, Ai Leen; Garnett, Emily O; Chow, Ho Ming; Chang, Soo-Eun

    2018-06-01

    The extent of sex differences in childhood language development is unclear. We conducted a systematic literature review synthesizing results from studies examining sex differences in brain structure and function relevant to language development during childhood. We searched PubMed and Scopus databases, and this returned a total of 46 published studies meeting criteria for inclusion that directly examined sex differences in brain development relevant to language function in children. The results indicate that: (a) sex differences in brain structure or function do not necessarily lead to differences in language task performance; (b) evidence for sex differences in brain and language development are limited; (c) when present, sex differences often interact with a variety of factors such as age and task. Overall, the magnitude of sexual dimorphism of brain developmental trajectories associated with language is not as significant as previously thought. Sex differences were found, however, in studies employing tighter age ranges. This suggests that sex differences may be more prominent during certain developmental stages but are negligible in other stages, likely due to different rates of maturation between the sexes. More research is needed to improve our understanding of how sex differences may arise due to the influence of sex hormones and developmental stages, and how these differences may lead to differences in various language task performance. These studies are expected to provide normative information that may be used in studies examining neurodevelopmental disorders that frequently affect more males than females, and also often affect language development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Chronic Stress Modulates Regional Cerebral Glucose Transporter Expression in an Age-Specific and Sexually-Dimorphic Manner

    PubMed Central

    Kelly, Sean D.; Harrell, Constance S.; Neigh, Gretchen N.

    2014-01-01

    Facilitative glucose transporters (GLUT) mediate glucose uptake across the blood-brain-barrier into neurons and glia. Deficits in specific cerebral GLUT isoforms are linked to developmental and neurological dysfunction, but less is known about the range of variation in cerebral GLUT expression in normal conditions and the effects of environmental influences on cerebral GLUT expression. Knowing that puberty is a time of increased cerebral plasticity, metabolic demand, and shifts in hormonal balance for males and females, we first assessed gene expression of five GLUT subtypes in four brain regions in male and female adolescent and adult Wistar rats. The data indicated that sex differences in GLUT expression were most profound in the hypothalamus, and the transition from adolescence to adulthood had the most profound effect on GLUT expression in the hippocampus. Next, given the substantial energetic demands during adolescence and prior demonstrations of the adverse effects of adolescent stress, we determined the extent to which chronic stress altered GLUT expression in males and females in both adolescence and adulthood. Chronic stress significantly altered cerebral GLUT expression in males and females throughout both developmental stages but in a sexually dimorphic and brain region-specific manner. Collectively, our data demonstrate that cerebral GLUTs are expressed differentially based on brain region, sex, age, and stress exposure. These results suggest that developmental and environmental factors influence GLUT expression in multiple brain regions. Given the importance of appropriate metabolic balance within the brain, further assessment of the functional implications of life stage and environmentally-induced changes in GLUTs are warranted. PMID:24382486

  14. Case against Diagnosing Developmental Language Disorder by Default: A Single Case Study of Acquired Aphasia Associated with Convulsive Disorder

    ERIC Educational Resources Information Center

    Marinac, Julie V.; Harper, Laura

    2009-01-01

    The aim of this article is to inform the diagnostic knowledge base for professionals working in the field of language disorders when classic symptoms, characteristics and sequences are not found. The information reveals the risk of diagnosis with a developmental language disorder (DLD) by default when no underlying cause can be readily identified.…

  15. Strategies for Implementing AIDS/HIV Policy Guidelines in Developmental and Mental Health Services: A Background and Checklist for Advocates. AIDS Technical Report, No. 3.

    ERIC Educational Resources Information Center

    Harvey, David C.

    This technical report is part of a series on AIDS/HIV (Acquired Immune Deficiency Syndrome/Human Immunodeficiency Virus) and is intended to help link various legal advocacy organizations providing services to persons with mental illness or developmental disabilities. Through a series of case examples, questions, background information, and…

  16. Evaluation of a Reading Comprehension Strategy Package to Improve Reading Comprehension of Adult College Students with Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Griffiths, Gina G.

    2013-01-01

    Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI.…

  17. Social Media as a Communication Support for Persons with Mild Acquired Cognitive Impairment: A Social Network Analysis Study.

    PubMed

    Eghdam, Aboozar; Hamidi, Ulrika; Bartfai, Aniko; Koch, Sabine

    2017-01-01

    This study was conducted as a social network analysis of a Facebook group for Swedish speaking persons (1310 members) with perceived brain fatigue after an illness or injury to the brain to address the lack of research examining social media and the potential value of on-line support for persons with mild acquired cognitive impairment.

  18. Are orchids left and dandelions right? Frontal brain activation asymmetry and its sensitivity to developmental context.

    PubMed

    Fortier, Paz; Van Lieshout, Ryan J; Waxman, Jordana A; Boyle, Michael H; Saigal, Saroj; Schmidt, Louis A

    2014-08-01

    To clarify long-standing conceptual and empirical inconsistencies in models describing the relation between frontal brain asymmetry and emotion, we tested a theory of biological sensitivity to context. We examined whether asymmetry of alpha activation in frontal brain regions, as measured by resting electroencephalography, is sensitive to early developmental contexts. Specifically, we investigated whether frontal asymmetry moderates the association between birth weight and adult outcomes. Adults with left frontal asymmetry (LFA) who were born at extremely low birth weight exhibited high levels of attention problems and withdrawn behaviors in their 30s, whereas normal-birth-weight adults with LFA had low levels of these problem behaviors. Adults with right frontal asymmetry (RFA) displayed a relatively moderate amount of problem behavior regardless of birth weight. Our findings suggest that LFA is associated with sensitivity to developmental context and may help explain why LFA is associated with both positive and negative outcomes, whereas RFA seems to be associated with a more canalized process in some contexts. © The Author(s) 2014.

  19. De novo mutations in regulatory elements in neurodevelopmental disorders

    PubMed Central

    Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.

    2018-01-01

    We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236

  20. Informant Report of Financial Capacity for Individuals With Chronic Acquired Brain Injury: An Assessment of Informant Accuracy.

    PubMed

    Sunderaraman, Preeti; Cosentino, Stephanie; Lindgren, Karen; James, Angela; Schultheis, Maria

    2018-03-29

    Primarily, to investigate the association between informant report and objective performance on specific financial capacity (FC) tasks by adults with chronic, moderate to severe acquired brain injury, and to examine the nature of misestimates by the informants. Cross-sectional design. A postacute, community-based rehabilitation center. Data were obtained from 22 chronic acquired brain injury (CABI) adults, mean age of 46.6 years (SD = 8.67), mean years of education of 13.45 years (SD = 2.15), with moderate to severe acquired brain injury (86% had traumatic brain injury), with a mean postinjury period of 17.14 years (SD = 9.5). Whereas the CABI adults completed the Financial Competence Assessment Inventory interview-a combination of self-report and performance-based assessment, 22 informants completed a specifically designed parallel version of the interview. Pearson correlations and 1-sample t tests based on the discrepancy scores between informant report and CABI group's performance were used. The CABI group's performance was not associated with its informant's perceptions. One-sample t tests revealed that informants both underestimated and overestimated CABI group's performance. Results indicate lack of correspondence between self- and informant ratings. Further investigation revealed that misestimations by informants occurred in contrary directions with CABI adults' performance being inaccurately rated. These findings raise critical issues related to assuming that the informant report can be used as a "gold standard" for collecting functional data related to financial management, and the idea that obtaining objective data on financial tasks may represent a more valid method of assessing financial competency in adults with brain injury.

  1. ONTOGENETIC ALTERATIONS IN MOLECULAR AND STRUCTURAL CORRELATES OF DENDRITIC GROWTH FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYLS.

    EPA Science Inventory

    This is the first report showing both molecular and structural changes in brain following developmental exposure to a neurotoxicant. It is known that perinatal exposure to a neurotoxicant, polychlorinated biphenyls (PCBs), is associated with decreased IQ scores, impaired learnin...

  2. Disabilities of Arithmetic and Mathematical Reasoning: Perspectives from Neurology and Neuropsychology.

    ERIC Educational Resources Information Center

    Rourke, Byron P.; Conway, James A.

    1997-01-01

    Reviews current research on brain-behavior relationships in disabilities of arithmetic and mathematical reasoning from both a neurological and a neuropsychological perspective. Defines developmental dyscalculia and the developmental importance of right versus left hemisphere integrity for the mediation of arithmetic learning and explores…

  3. The Developmental Cognitive Neuroscience of Functional Connectivity

    ERIC Educational Resources Information Center

    Stevens, Michael C.

    2009-01-01

    Developmental cognitive neuroscience is a rapidly growing field that examines the relationships between biological development and cognitive ability. In the past decade, there has been ongoing refinement of concepts and methodology related to the study of "functional connectivity" among distributed brain regions believed to underlie cognition and…

  4. Environmental Toxicants and Developmental Disabilities: A Challenge for Psychologists

    ERIC Educational Resources Information Center

    Koger, Susan M.; Schettler, Ted; Weiss, Bernard

    2005-01-01

    Developmental, learning, and behavioral disabilities are a significant public health problem. Environmental chemicals can interfere with brain development during critical periods, thereby impacting sensory, motor, and cognitive function. Because regulation in the United States is based on limited testing protocols and essentially requires proof of…

  5. Creativity Development in Adolescence: Insight from Behavior, Brain, and Training Studies

    ERIC Educational Resources Information Center

    Kleibeuker, Sietske W.; De Dreu, Carsten K. W.; Crone, Eveline A.

    2016-01-01

    Creativity is a multifaceted construct that recruits different cognitive processes. Here, we summarize studies that show that creativity develops considerably during adolescence with different developmental trajectories for insight, verbal divergent thinking, and visuospatial divergent thinking. Next, these developmental time courses are mapped to…

  6. Reprogramming: A Preventive Strategy in Hypertension Focusing on the Kidney

    PubMed Central

    Tain, You-Lin; Joles, Jaap A.

    2015-01-01

    Adulthood hypertension can be programmed in response to a suboptimal environment in early life. However, developmental plasticity also implies that one can prevent hypertension in adult life by administrating appropriate compounds during early development. We have termed this reprogramming. While the risk of hypertension has been assessed in many mother-child cohorts of human developmental programming, interventions necessary to prove causation and provide a reprogramming strategy are lacking. Since the developing kidney is particularly vulnerable to environmental insults and blood pressure is determined by kidney function, renal programming is considered key in developmental programming of hypertension. Common pathways, whereby both genetic and acquired developmental programming converge into the same phenotype, have been recognized. For instance, the same reprogramming interventions aimed at shifting nitric oxide (NO)-reactive oxygen species (ROS) balance, such as perinatal citrulline or melatonin supplements, can be protective in both genetic and developmentally programmed hypertension. Furthermore, a significantly increased expression of gene Ephx2 (soluble epoxide hydrolase) was noted in both genetic and acquired animal models of hypertension. Since a suboptimal environment is often multifactorial, such common reprogramming pathways are a practical finding for translation to the clinic. This review provides an overview of potential clinical applications of reprogramming strategies to prevent programmed hypertension. We emphasize the kidney in the following areas: mechanistic insights from human studies and animal models to interpret programmed hypertension; identified risk factors of human programmed hypertension from mother-child cohorts; and the impact of reprogramming strategies on programmed hypertension from animal models. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies. PMID:26712746

  7. Perceptions of physical activity and walking in an early stage after stroke or acquired brain injury.

    PubMed

    Törnbom, Karin; Sunnerhagen, Katharina S; Danielsson, Anna

    2017-01-01

    Physical activity has been established as being highly beneficial for health after stroke. There are considerable global efforts to find rehabilitation programs that encourage increased physical activity for persons with stroke. However, many persons with stroke or acquired brain injury do not reach recommended levels of physical activity and increased knowledge about why is needed. We aimed to explore views and experiences of physical activity and walking among persons with stroke or acquired brain injury. A qualitative study was conducted, among persons with stroke (n = 8) or acquired brain injury (n = 2) from a rehabilitation unit at Sahlgrenska University Hospital in Sweden. Semi-structured in-depth interviews were held about perceptions and experiences of walking and physical activity in general. Data were analyzed using qualitative content analysis, with categories that were determined inductively. Physical activity in general and walking ability more specifically were considered very important by the participants. However, physical activity was, regardless of exercising habits pre-injury, associated with different kinds of negative feelings and experiences. Commonly reported internal barriers in the current study were; fatigue, fear of falling or getting hurt in traffic, lack of motivation and depression. Reported external barriers were mostly related to walking, for example; bad weather, uneven ground, lack of company or noisy or too busy surroundings. Persons with stroke or acquired brain injury found it difficult to engage in and sustain an eligible level of physical activity. Understanding individual concerns about motivators and barriers surrounding physical activity may facilitate the work of forming tailor-made rehabilitation for these groups, so that the levels of physical activity and walking can increase.

  8. Growth-Related Neural Reorganization and the Autism Phenotype: A Test of the Hypothesis that Altered Brain Growth Leads to Altered Connectivity

    ERIC Educational Resources Information Center

    Lewis, John D.; Elman, Jeffrey L.

    2008-01-01

    Theoretical considerations, and findings from computational modeling, comparative neuroanatomy and developmental neuroscience, motivate the hypothesis that a deviant brain growth trajectory will lead to deviant patterns of change in cortico-cortical connectivity. Differences in brain size during development will alter the relative cost and…

  9. The Brain in the Jar: A Critique of Discourses of Adolescent Brain Development

    ERIC Educational Resources Information Center

    Kelly, Peter

    2012-01-01

    This article suggests that ideas about adolescent brains and their development increasingly function as powerful truths in making sense of young people. In this context, the knowledge practices of the neurosciences and evolutionary and developmental psychology are deemed capable of producing what we have come to understand as the evidence on which…

  10. Typical and atypical brain development: a review of neuroimaging studies

    PubMed Central

    Dennis, Emily L.; Thompson, Paul M.

    2013-01-01

    In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders. PMID:24174907

  11. Training the Brain: Practical Applications of Neural Plasticity From the Intersection of Cognitive Neuroscience, Developmental Psychology, and Prevention Science

    PubMed Central

    Bryck, Richard L.; Fisher, Philip A.

    2012-01-01

    Prior researchers have shown that the brain has a remarkable ability for adapting to environmental changes. The positive effects of such neural plasticity include enhanced functioning in specific cognitive domains and shifts in cortical representation following naturally occurring cases of sensory deprivation; however, maladaptive changes in brain function and development owing to early developmental adversity and stress have also been well documented. Researchers examining enriched rearing environments in animals have revealed the potential for inducing positive brain plasticity effects and have helped to popularize methods for training the brain to reverse early brain deficits or to boost normal cognitive functioning. In this paper, two classes of empirically based methods of brain training in children are reviewed and critiqued: laboratory-based, mental process training paradigms and ecological interventions based upon neurocognitive conceptual models. Given the susceptibility of executive function disruption, special attention is paid to training programs that emphasize executive function enhancement. In addition, a third approach to brain training, aimed at tapping into compensatory processes, is postulated. Study results showing the effectiveness of this strategy in the field of neurorehabilitation and in terms of naturally occurring compensatory processing in human aging lend credence to the potential of this approach. PMID:21787037

  12. Typical and atypical brain development: a review of neuroimaging studies.

    PubMed

    Dennis, Emily L; Thompson, Paul M

    2013-09-01

    In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders.

  13. Training the brain: practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science.

    PubMed

    Bryck, Richard L; Fisher, Philip A

    2012-01-01

    Prior researchers have shown that the brain has a remarkable ability for adapting to environmental changes. The positive effects of such neural plasticity include enhanced functioning in specific cognitive domains and shifts in cortical representation following naturally occurring cases of sensory deprivation; however, maladaptive changes in brain function and development owing to early developmental adversity and stress have also been well documented. Researchers examining enriched rearing environments in animals have revealed the potential for inducing positive brain plasticity effects and have helped to popularize methods for training the brain to reverse early brain deficits or to boost normal cognitive functioning. In this article, two classes of empirically based methods of brain training in children are reviewed and critiqued: laboratory-based, mental process training paradigms and ecological interventions based upon neurocognitive conceptual models. Given the susceptibility of executive function disruption, special attention is paid to training programs that emphasize executive function enhancement. In addition, a third approach to brain training, aimed at tapping into compensatory processes, is postulated. Study results showing the effectiveness of this strategy in the field of neurorehabilitation and in terms of naturally occurring compensatory processing in human aging lend credence to the potential of this approach. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  14. The insect central complex as model for heterochronic brain development-background, concepts, and tools.

    PubMed

    Koniszewski, Nikolaus Dieter Bernhard; Kollmann, Martin; Bigham, Mahdiyeh; Farnworth, Max; He, Bicheng; Büscher, Marita; Hütteroth, Wolf; Binzer, Marlene; Schachtner, Joachim; Bucher, Gregor

    2016-06-01

    The adult insect brain is composed of neuropils present in most taxa. However, the relative size, shape, and developmental timing differ between species. This diversity of adult insect brain morphology has been extensively described while the genetic mechanisms of brain development are studied predominantly in Drosophila melanogaster. However, it has remained enigmatic what cellular and genetic mechanisms underlie the evolution of neuropil diversity or heterochronic development. In this perspective paper, we propose a novel approach to study these questions. We suggest using genome editing to mark homologous neural cells in the fly D. melanogaster, the beetle Tribolium castaneum, and the Mediterranean field cricket Gryllus bimaculatus to investigate developmental differences leading to brain diversification. One interesting aspect is the heterochrony observed in central complex development. Ancestrally, the central complex is formed during embryogenesis (as in Gryllus) but in Drosophila, it arises during late larval and metamorphic stages. In Tribolium, it forms partially during embryogenesis. Finally, we present tools for brain research in Tribolium including 3D reconstruction and immunohistochemistry data of first instar brains and the generation of transgenic brain imaging lines. Further, we characterize reporter lines labeling the mushroom bodies and reflecting the expression of the neuroblast marker gene Tc-asense, respectively.

  15. Developmental dyscalculia: a dysconnection syndrome?

    PubMed

    Kucian, Karin; Ashkenazi, Simone Schwizer; Hänggi, Jürgen; Rotzer, Stephanie; Jäncke, Lutz; Martin, Ernst; von Aster, Michael

    2014-09-01

    Numerical understanding is important for everyday life. For children with developmental dyscalculia (DD), numbers and magnitudes present profound problems which are thought to be based upon neuronal impairments of key regions for numerical understanding. The aim of the present study was to investigate possible differences in white matter fibre integrity between children with DD and controls using diffusion tensor imaging. White matter integrity and behavioural measures were evaluated in 15 children with developmental dyscalculia aged around 10 years and 15 matched controls. The main finding, obtained by a whole brain group comparison, revealed reduced fractional anisotropy in the superior longitudinal fasciculus in children with developmental dyscalculia. In addition, a region of interest analysis exhibited prominent deficits in fibres of the superior longitudinal fasciculus adjacent to the intraparietal sulcus, which is thought to be the core region for number processing. To conclude, our results outline deficient fibre projection between parietal, temporal and frontal regions in children with developmental dyscalculia, and therefore raise the question of whether dyscalculia can be seen as a dysconnection syndrome. Since the superior longitudinal fasciculus is involved in the integration and control of distributed brain processes, the present results highlight the importance of considering broader domain-general mechanisms in the diagnosis and therapy of dyscalculia.

  16. Autism, oxytocin and interoception

    PubMed Central

    Quattrocki, E.; Friston, Karl

    2014-01-01

    Autism is a pervasive developmental disorder characterized by profound social and verbal communication deficits, stereotypical motor behaviors, restricted interests, and cognitive abnormalities. Autism affects approximately 1% of children in developing countries. Given this prevalence, identifying risk factors and therapeutic interventions are pressing objectives—objectives that rest on neurobiologically grounded and psychologically informed theories about the underlying pathophysiology. In this article, we review the evidence that autism could result from a dysfunctional oxytocin system early in life. As a mediator of successful procreation, not only in the reproductive system, but also in the brain, oxytocin plays a crucial role in sculpting socio-sexual behavior. Formulated within a (Bayesian) predictive coding framework, we propose that oxytocin encodes the saliency or precision of interoceptive signals and enables the neuronal plasticity necessary for acquiring a generative model of the emotional and social ‘self.’ An aberrant oxytocin system in infancy could therefore help explain the marked deficits in language and social communication – as well as the sensory, autonomic, motor, behavioral, and cognitive abnormalities – seen in autism. PMID:25277283

  17. Does long-term outcome after intensive inpatient rehabilitation of acquired brain injury depend on etiology?

    PubMed

    Blicher, Jakob Udby; Nielsen, Jørgen Feldbaek

    2008-01-01

    To identify predictors of outcome, epilepsy, spasticity and depression one year after severe acquired brain injury. Retrospective cohort study. A consecutive sample of 165 patients with severe acquired brain injury admitted for inpatient rehabilitation during a 18-month time period, was contacted and offered home visits one-year after brain injury. Of the 165 patients 12 did not participate. The cohort included patients with different etiologies primarily traumatic brain injury (65), stroke (25) and subarachnoid hemorrhage (34). Functional independent measure (FIM) was measured at admission at rehabilitation unit and at follow-up. At follow-up the presence of epilepsy, spasticity, and depression was evaluated. Using multiple logistic regression a short length of stay at acute hospital (LOS1) (P=0.004), a high FIM score at admission (P<0.001), and low age (P=0.003), were all predictors of good outcome. No difference was found between etiologies (P=0.077). The presence of spasticity was predicted by low FIM score (P< 0.001), longer LOS1 (P< 0.036), etiology (P< 0.001), and lower age (P=0.001). Depression was predicted by higher age (P=0.035). Age, functional status, and length of acute hospital stay are associated with outcome one year after brain injury. The functional outcome was not correlated to etiology.

  18. The Effects of Exercise on Cognitive Recovery after Acquired Brain Injury in Animal Models: A Systematic Review

    PubMed Central

    Wogensen, Elise; Malá, Hana

    2015-01-01

    The objective of the present paper is to review the current status of exercise as a tool to promote cognitive rehabilitation after acquired brain injury (ABI) in animal model-based research. Searches were conducted on the PubMed, Scopus, and psycINFO databases in February 2014. Search strings used were: exercise (and) animal model (or) rodent (or) rat (and) traumatic brain injury (or) cerebral ischemia (or) brain irradiation. Studies were selected if they were (1) in English, (2) used adult animals subjected to acquired brain injury, (3) used exercise as an intervention tool after inflicted injury, (4) used exercise paradigms demanding movement of all extremities, (5) had exercise intervention effects that could be distinguished from other potential intervention effects, and (6) contained at least one measure of cognitive and/or emotional function. Out of 2308 hits, 22 publications fulfilled the criteria. The studies were examined relative to cognitive effects associated with three themes: exercise type (forced or voluntary), timing of exercise (early or late), and dose-related factors (intensity, duration, etc.). The studies indicate that exercise in many cases can promote cognitive recovery after brain injury. However, the optimal parameters to ensure cognitive rehabilitation efficacy still elude us, due to considerable methodological variations between studies. PMID:26509085

  19. Persistent hyperphagia in acquired brain injury; an observational case study of patients receiving inpatient rehabilitation.

    PubMed

    Rowell, Arleen M; Faruqui, Rafey A

    2010-01-01

    Morbid hunger or persistent hyperphagia is a relatively rare but potentially life threatening complication of acquired brain injury (ABI). This paper presents findings from an observational case study of patients with hyperphagia receiving inpatient neurobehavioural rehabilitation following their acquired brain injury. The case study has utilized dietetic and medical records of identified patients to confirm the persistent and serious nature of this presentation in order to extract important management principles. The findings confirmed that hyperphagia or morbid hunger posed potentially life-threatening health risks to the patient, primarily around weight control and fluid balance, and risks of aggression towards professional and family carers. Pharmacological or behaviour modification interventions were only partially successful in management of this presentation. The study identified a high need for environmental and cue exposure control in management of this condition.

  20. Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain.

    PubMed

    Bogen, I L; Jensen, V; Hvalby, O; Walaas, S I

    2009-01-12

    Inactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30. The vesicular glutamate transporters (VGLUT) 1 and VGLUT2 showed synapsin-independent development during postnatal days 5-10, following which significant reductions were seen when synapsin-deficient brains were compared with wild-type brains following postnatal day 20. A similar, synapsin-dependent developmental profile of vesicular glutamate uptake occurred during the same age periods. Physiological analysis of the development of excitatory glutamatergic synapses, performed in the CA1 stratum radiatum of the hippocampus from the two genotypes, showed that both the synapsin-dependent part of the frequency facilitation and the synapsin-dependent delayed response enhancement were restricted to the period after postnatal day 10. Our data demonstrate that while both synaptic vesicle number and presynaptic short-term plasticity are essentially independent of synapsin I and II prior to postnatal day 10, maturation and function of excitatory synapses appear to be strongly dependent on synapsin I and II from postnatal day 20.

  1. Pancreas and gallbladder agenesis in a newborn with semilobar holoprosencephaly, a case report.

    PubMed

    Hilbrands, Robert; Keymolen, Kathelijn; Michotte, Alex; Marichal, Miriam; Cools, Filip; Goossens, Anieta; Veld, Peter In't; De Schepper, Jean; Hattersley, Andrew; Heimberg, Harry

    2017-05-19

    Pancreatic agenesis is an extremely rare cause of neonatal diabetes mellitus and has enabled the discovery of several key transcription factors essential for normal pancreas and beta cell development. We report a case of a Caucasian female with complete pancreatic agenesis occurring together with semilobar holoprosencephaly (HPE), a more common brain developmental disorder. Clinical findings were later confirmed by autopsy, which also identified agenesis of the gallbladder. Although the sequences of a selected set of genes related to pancreas agenesis or HPE were wild-type, the patient's phenotype suggests a genetic defect that emerges early in embryonic development of brain, gallbladder and pancreas. Developmental defects of the pancreas and brain can occur together. Identifying the genetic defect may identify a novel key regulator in beta cell development.

  2. Temporal and developmental requirements for the Prader–Willi imprinting center

    PubMed Central

    DuBose, Amanda J.; Smith, Emily Y.; Johnstone, Karen A.; Resnick, James L.

    2012-01-01

    Imprinted gene expression associated with Prader–Willi syndrome (PWS) and Angelman syndrome (AS) is controlled by two imprinting centers (ICs), the PWS-IC and the AS-IC. The PWS-IC operates in cis to activate transcription of genes that are expressed exclusively from the paternal allele. We have created a conditional allele of the PWS-IC to investigate its developmental activity. Deletion of the paternal PWS-IC in the embryo before implantation abolishes expression of the paternal-only genes in the neonatal brain. Surprisingly, deletion of the PWS-IC in early brain progenitors does not affect the subsequent imprinted status of PWS/AS genes in the newborn brain. These results indicate that the PWS-IC functions to protect the paternal epigenotype at the epiblast stage of development but is dispensable thereafter. PMID:22331910

  3. Developmental origins of brain disorders: roles for dopamine

    PubMed Central

    Money, Kelli M.; Stanwood, Gregg D.

    2013-01-01

    Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541

  4. ALTERATIONS IN BRAIN PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYL MIXTURE.

    EPA Science Inventory

    PCBs have been shown to alter several neurochemical end-points and are implicated in the etiology of some neurological diseases. Recent in vivo studies from our laboratory indicated that developmental exposure to a commercial PCB mixture, Aroclor 1254, caused perturbations in cal...

  5. Developmental Outcomes after Early Prefrontal Cortex Damage

    ERIC Educational Resources Information Center

    Eslinger, Paul J.; Flaherty-Craig, Claire V.; Benton, Arthur L.

    2004-01-01

    The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical…

  6. Neglected but Exciting Concepts in Developmental and Neurobiological Psychology

    ERIC Educational Resources Information Center

    Jordan, Evan M.; Thomas, David G.

    2017-01-01

    This review provides an evaluative overview of five concepts specific to developmental and neurobiological psychology that are found to be largely overlooked in current textbooks. A sample of 19 introductory psychology texts was surveyed to develop a list, including glial cell signaling, grandmother cells, memory reconsolidation, brain plasticity,…

  7. Stagewise Development, Behavior Genetics, Brain Imaging, and a "Aha Erlebnis"

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.

    2012-01-01

    In this short contribution I introduce myself to the readership of the "International Journal of Developmental Science" by describing some high points in my scientific career, leading up to a major change in my perspective on the proper way to conduct empirical research in developmental science.

  8. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  9. Astrocytes and Developmental White Matter Disorders

    ERIC Educational Resources Information Center

    Sen, Ellora; Levison, Steven W.

    2006-01-01

    There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

  10. Developmental Exposure to an Environmental PCB Mixture Delays the Propagation of Kindling in the Amygdala

    EPA Science Inventory

    Developmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to eva...

  11. A Developmental and Genetic Classification for Malformations of Cortical Development: Update 2012

    ERIC Educational Resources Information Center

    Barkovich, A. James; Guerrini, Renzo; Kuzniecky, Ruben I.; Jackson, Graeme D.; Dobyns, William B.

    2012-01-01

    Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics…

  12. Using EEG to Study Cognitive Development: Issues and Practices

    ERIC Educational Resources Information Center

    Bell, Martha Ann; Cuevas, Kimberly

    2012-01-01

    Developmental research is enhanced by use of multiple methodologies for examining psychological processes. The electroencephalogram (EEG) is an efficient and relatively inexpensive method for the study of developmental changes in brain-behavior relations. In this review, we highlight some of the challenges for using EEG in cognitive development…

  13. The Abusive Environment and the Child's Adaptation.

    ERIC Educational Resources Information Center

    Martin, Harold P.

    The biologic and developmental problems of abused children are usually thought of etiologically in relation to the physical trauma which has been suffered. Indeed, physical trauma can cause death, brain damage, developmental delays and deviations in personality development. The environment in which the abused child grows and develops is a most…

  14. ERPs and Eye Movements Reflect Atypical Visual Perception in Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Kemner, Chantal; van Engeland, Herman

    2006-01-01

    Many studies of eye tracking or event-related brain potentials (ERPs) in subjects with Pervasive Developmental Disorder (PDD) have yielded inconsistent results on attentional processing. However, recent studies have indicated that there are specific abnormalities in early processing that are probably related to perception. ERP amplitudes in…

  15. Functional neural changes associated with acquired amusia across different stages of recovery after stroke.

    PubMed

    Sihvonen, Aleksi J; Särkämö, Teppo; Ripollés, Pablo; Leo, Vera; Saunavaara, Jani; Parkkola, Riitta; Rodríguez-Fornells, Antoni; Soinila, Seppo

    2017-09-12

    Brain damage causing acquired amusia disrupts the functional music processing system, creating a unique opportunity to investigate the critical neural architectures of musical processing in the brain. In this longitudinal fMRI study of stroke patients (N = 41) with a 6-month follow-up, we used natural vocal music (sung with lyrics) and instrumental music stimuli to uncover brain activation and functional network connectivity changes associated with acquired amusia and its recovery. In the acute stage, amusic patients exhibited decreased activation in right superior temporal areas compared to non-amusic patients during instrumental music listening. During the follow-up, the activation deficits expanded to comprise a wide-spread bilateral frontal, temporal, and parietal network. The amusics showed less activation deficits to vocal music, suggesting preserved processing of singing in the amusic brain. Compared to non-recovered amusics, recovered amusics showed increased activation to instrumental music in bilateral frontoparietal areas at 3 months and in right middle and inferior frontal areas at 6 months. Amusia recovery was also associated with increased functional connectivity in right and left frontoparietal attention networks to instrumental music. Overall, our findings reveal the dynamic nature of deficient activation and connectivity patterns in acquired amusia and highlight the role of dorsal networks in amusia recovery.

  16. Extensive brain masses and cavitary lung lesions associated with toxoplasmosis and acquired immunodeficiency syndrome.

    PubMed

    Ayoade, Folusakin; Todd, John; Al-Delfi, Firas; King, John

    2017-10-01

    Toxoplasmosis is an important cause of enhancing brain lesions in patients with acquired immunodeficiency syndrome (AIDS), and it is typically associated with low CD4-lymphocyte counts. Extensive toxoplasma encephalitis when the CD4-lymphocyte count is above 100 cells/µl is unusual. Cavitary lung lesions are also not typically associated with toxoplasmosis. Here, we present a case of toxoplasmosis associated with extensive brain masses and cavitary lung lesions, both of which improved with directed toxoplasmosis therapy, in an AIDS patient with a CD4 cell count of 120 cells/µl.

  17. In vivo characterization of 3D skull and brain motion during dynamic head vibration using magnetic resonance elastography.

    PubMed

    Yin, Ziying; Sui, Yi; Trzasko, Joshua D; Rossman, Phillip J; Manduca, Armando; Ehman, Richard L; Huston, John

    2018-05-17

    To introduce newly developed MR elastography (MRE)-based dual-saturation imaging and dual-sensitivity motion encoding schemes to directly measure in vivo skull-brain motion, and to study the skull-brain coupling in volunteers with these approaches. Six volunteers were scanned with a high-performance compact 3T-MRI scanner. The skull-brain MRE images were obtained with a dual-saturation imaging where the skull and brain motion were acquired with fat- and water-suppression scans, respectively. A dual-sensitivity motion encoding scheme was applied to estimate the heavily wrapped phase in skull by the simultaneous acquisition of both low- and high-sensitivity phase during a single MRE exam. The low-sensitivity phase was used to guide unwrapping of the high-sensitivity phase. The amplitude and temporal phase delay of the rigid-body motion between the skull and brain was measured, and the skull-brain interface was visualized by slip interface imaging (SII). Both skull and brain motion can be successfully acquired and unwrapped. The skull-brain motion analysis demonstrated the motion transmission from the skull to the brain is attenuated in amplitude and delayed. However, this attenuation (%) and delay (rad) were considerably greater with rotation (59 ± 7%, 0.68 ± 0.14 rad) than with translation (92 ± 5%, 0.04 ± 0.02 rad). With SII the skull-brain slip interface was not completely evident, and the slip pattern was spatially heterogeneous. This study provides a framework for acquiring in vivo voxel-based skull and brain displacement using MRE that can be used to characterize the skull-brain coupling system for understanding of mechanical brain protection mechanisms, which has potential to facilitate risk management for future injury. © 2018 International Society for Magnetic Resonance in Medicine.

  18. There will be some changes made: A survivor perspective on post-acquired brain injury residential transition.

    PubMed

    O'Neil-Pirozzi, Therese M; Lorenz, Laura S; Demore-Taber, Michelle; Samayoa, Sindi

    2015-01-01

    Brain injury survivors experience many transitions post-injury and it is important that they experience these in the most supportive and integrative ways possible. This study provided a group of chronic brain injury survivors the opportunity to share their insights and experience of residential transition and to suggest strategies to help maximize the transition experience and outcomes. This study used a qualitative design that consisted of semi-structured interviews. Twenty-one adults with chronic acquired brain injury residing in community-based supported group houses answered a series of scripted questions. Interviews were recorded and participant statements were transcribed and coded according to prospectively developed transition themes. Participants discussed positive and negative insights and experiences regarding residential transitions. Themes of balance between support and independence, life purpose and transition to more or less structure were frequently addressed. Participants suggested caregiver-targeted strategies to facilitate successful transitions before, during and after a move. The insights and suggestions shared by this group of chronic acquired brain injury survivors add to already existing knowledge of post-injury residential transitions and strategies professional caregivers may use to maximize the ease and success of the survivor's transitional experience.

  19. Clinical correlates of verbal aggression, physical aggression and inappropriate sexual behaviour after brain injury.

    PubMed

    James, Andrew I W; Young, Andrew W

    2013-01-01

    To explore the relationships between verbal aggression, physical aggression and inappropriate sexual behaviour following acquired brain injury. Multivariate statistical modelling of observed verbal aggression, physical aggression and inappropriate sexual behaviour utilizing demographic, pre-morbid, injury-related and neurocognitive predictors. Clinical records of 152 participants with acquired brain injury were reviewed, providing an important data set as disordered behaviours had been recorded at the time of occurrence with the Brain Injury Rehabilitation Trust (BIRT) Aggression Rating Scale and complementary measures of inappropriate sexual behaviour. Three behavioural components (verbal aggression, physical aggression and inappropriate sexual behaviour) were identified and subjected to separate logistical regression modelling in a sub-set of 77 participants. Successful modelling was achieved for both verbal and physical aggression (correctly classifying 74% and 65% of participants, respectively), with use of psychotropic medication and poorer verbal function increasing the odds of aggression occurring. Pre-morbid history of aggression predicted verbal but not physical aggression. No variables predicted inappropriate sexual behaviour. Verbal aggression, physical aggression and inappropriate sexual behaviour following acquired brain injury appear to reflect separate clinical phenomena rather than general behavioural dysregulation. Clinical markers that indicate an increased risk of post-injury aggression were not related to inappropriate sexual behaviour.

  20. Families living with acquired brain injury: a multiple family group experience.

    PubMed

    Charles, Nella; Butera-Prinzi, Franca; Perlesz, Amaryll

    2007-01-01

    Although the use of multifamily group work is well established within the mental health field, it remains an underutilised method of treatment for families affected by brain injury. This paper reports on a pilot project exploring multifamily group work with families with a parent with an acquired brain injury. Six families met for a total of 12 sessions over a period of 6 months, with session themes informed by the Bouverie Family tasks model of adaptation post-ABI. The project was evaluated using qualitative and quantitative research methods, with pre, post group and 3 month follow up measures of individual, couple and family functioning. Parents reported generally reduced levels of personal distress at follow up but continuing high levels of marital and family dysfunction. Children were generally reported to be well functioning, although parents were particularly concerned about the impact of family disruption and violence on their children. Families were unequivocally positive about their participation in the group with benefits including reduced feelings of shame and isolation, provision of mutual support, increased understanding of brain injury, sharing of difficult experiences and movement from blame to compassion. Further research is warranted on the specific applications of multifamily group work with acquired brain injury.

  1. Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact.

    PubMed

    Pareja, Jennifer C Munoz; Keeley, Kristen; Duhaime, Ann-Christine; Dodge, Carter P

    2016-01-01

    The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma.

  2. Developmental vitamin D deficiency causes abnormal brain development.

    PubMed

    Eyles, D W; Feron, F; Cui, X; Kesby, J P; Harms, L H; Ko, P; McGrath, J J; Burne, T H J

    2009-12-01

    There is now clear evidence that vitamin D is involved in brain development. Our group is interested in environmental factors that shape brain development and how this may be relevant to neuropsychiatric diseases including schizophrenia. The origins of schizophrenia are considered developmental. We hypothesised that developmental vitamin D (DVD) deficiency may be the plausible neurobiological explanation for several important epidemiological correlates of schizophrenia namely: (1) the excess winter/spring birth rate, (2) increased incidence of the disease in 2nd generation Afro-Caribbean migrants and (3) increased urban birth rate. Moreover we have published two pieces of direct epidemiological support for this hypothesis in patients. In order to establish the "Biological Plausibility" of this hypothesis we have developed an animal model to study the effect of DVD deficiency on brain development. We do this by removing vitamin D from the diet of female rats prior to breeding. At birth we return all dams to a vitamin D containing diet. Using this procedure we impose a transient, gestational vitamin D deficiency, while maintaining normal calcium levels throughout. The brains of offspring from DVD-deficient dams are characterised by (1) a mild distortion in brain shape, (2) increased lateral ventricle volumes, (3) reduced differentiation and (4) diminished expression of neurotrophic factors. As adults, the alterations in ventricular volume persist and alterations in brain gene and protein expression emerge. Adult DVD-deficient rats also display behavioural sensitivity to agents that induce psychosis (the NMDA antagonist MK-801) and have impairments in attentional processing. In this review we summarise the literature addressing the function of vitamin D on neuronal and non-neuronal cells as well as in vivo results from DVD-deficient animals. Our conclusions from these data are that vitamin D is a plausible biological risk factor for neuropsychiatric disorders and that vitamin D acts as a neurosteroid with direct effects on brain development.

  3. Diagnosing Developmental Dyscalculia on the Basis of Reliable Single Case FMRI Methods: Promises and Limitations

    PubMed Central

    Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten Jr, Jan Willem

    2013-01-01

    FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used. PMID:24349547

  4. Diagnosing developmental dyscalculia on the basis of reliable single case FMRI methods: promises and limitations.

    PubMed

    Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten, Jan Willem

    2013-01-01

    FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used.

  5. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors.

    PubMed

    Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu

    2014-03-01

    Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.

  6. Methods for Acquiring Structural MRI Data in Very Young Children with Autism without the Use of Sedation

    ERIC Educational Resources Information Center

    Nordahl, Christine Wu; Simon, Tony J.; Zierhut, Cynthia; Solomon, Marjorie; Rogers, Sally J.; Amaral, David G.

    2008-01-01

    We describe a protocol with which we achieved a 93% success rate in acquiring high quality MRI scans without the use of sedation in 2.5-4.5 year old children with autism, developmental delays, and typical development. Our main strategy was to conduct MRIs during natural nocturnal sleep in the evenings after the child's normal bedtime.…

  7. Musicality: instinct or acquired skill?

    PubMed

    Marcus, Gary F

    2012-10-01

    Is the human tendency toward musicality better thought of as the product of a specific, evolved instinct or an acquired skill? Developmental and evolutionary arguments are considered, along with issues of domain-specificity. The article also considers the question of why humans might be consistently and intensely drawn to music if musicality is not in fact the product of a specifically evolved instinct. Copyright © 2012 Cognitive Science Society, Inc.

  8. Insights in spatio-temporal characterization of human fetal neural stem cells.

    PubMed

    Martín-Ibáñez, Raquel; Guardia, Inés; Pardo, Mónica; Herranz, Cristina; Zietlow, Rike; Vinh, Ngoc-Nga; Rosser, Anne; Canals, Josep M

    2017-05-01

    Primary human fetal cells have been used in clinical trials of cell replacement therapy for the treatment of neurodegenerative disorders such as Huntington's disease (HD). However, human fetal primary cells are scarce and difficult to work with and so a renewable source of cells is sought. Human fetal neural stem cells (hfNSCs) can be generated from human fetal tissue, but little is known about the differences between hfNSCs obtained from different developmental stages and brain areas. In the present work we characterized hfNSCs, grown as neurospheres, obtained from three developmental stages: 4-5, 6-7 and 8-9weeks post conception (wpc) and four brain areas: forebrain, cortex, whole ganglionic eminence (WGE) and cerebellum. We observed that, as fetal brain development proceeds, the number of neural precursors is diminished and post-mitotic cells are increased. In turn, primary cells obtained from older embryos are more sensitive to the dissociation process, their viability is diminished and they present lower proliferation ratios compared to younger embryos. However, independently of the developmental stage of derivation proliferation ratios were very low in all cases. Improvements in the expansion rates were achieved by mechanical, instead of enzymatic, dissociation of neurospheres but not by changes in the seeding densities. Regardless of the developmental stage, neurosphere cultures presented large variability in the viability and proliferation rates during the initial 3-4 passages, but stabilized achieving significant expansion rates at passage 5 to 6. This was true also for all brain regions except cerebellar derived cultures that did not expand. Interestingly, the brain region of hfNSC derivation influences the expansion potential, being forebrain, cortex and WGE derived cells the most expandable compared to cerebellar. Short term expansion partially compromised the regional identity of cortical but not WGE cultures. Nevertheless, both expanded cultures were multipotent and kept the ability to differentiate to region specific mature neuronal phenotypes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Expanding the test set: Chemicals with potential to disrupt mammalian brain development

    EPA Science Inventory

    High-throughput test methods including molecular, cellular, and alternative species-based assays that examine critical events of normal brain development are being developed for detection of developmental neurotoxcants. As new assays are developed, a "training set' of chemicals i...

  10. Brief Report: The Role of National Brain and Tissue Banks in Research on Autism and Developmental Disorders.

    ERIC Educational Resources Information Center

    Zielke, H. Ronald; And Others

    1996-01-01

    This paper describes the establishment and work of two brain and tissue banks, which collect brain and other tissues from newly deceased individuals with autism and make these tissues available to researchers. Issues in tissue collection are identified, including the importance of advance planning, religious concerns of families, and the need for…

  11. Annual Research Review: The Promise of Stem Cell Research for Neuropsychiatric Disorders

    ERIC Educational Resources Information Center

    Vaccarino, Flora M.; Urban, Alexander Eckehart; Stevens, Hanna E.; Szekely, Anna; Abyzov, Alexej; Grigorenko, Elena L.; Gerstein, Mark; Weissman, Sherman

    2011-01-01

    The study of the developing brain has begun to shed light on the underpinnings of both early and adult onset neuropsychiatric disorders. Neuroimaging of the human brain across developmental time points and the use of model animal systems have combined to reveal brain systems and gene products that may play a role in autism spectrum disorders,…

  12. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  13. Cross-hemispheric functional connectivity in the human fetal brain.

    PubMed

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  14. Margaret Kennard (1899–1975): Not a ‘Principle’ of Brain Plasticity But a Founding Mother of Developmental Neuropsychology

    PubMed Central

    Dennis, Maureen

    2009-01-01

    According to the ‘Kennard Principle’, there is a negative linear relation between age at brain injury and functional outcome. Other things being equal, the younger the lesioned organism, the better the outcome. But the ‘Kennard Principle’ is neither Kennard’s nor a principle. In her work, Kennard sought to explain the factors that predicted functional outcome (age, to be sure, but also staging, laterality, location, and number of brain lesions, and outcome domain) and the neural mechanisms that altered the lesioned brain’s functionality. This paper discusses Kennard’s life and years at Yale (1931–1943); considers the genesis and scope of her work on early-onset brain lesions, which represents an empirical and theoretical foundation for current developmental neuropsychology; offers an historical explanation of why the ‘Kennard Principle’ emerged in the context of early 1970s work on brain plasticity; shows why uncritical belief in the ‘Kennard Principle’ continues to shape current research and practice; and reviews the continuing importance of her work. PMID:20079891

  15. Rectal sac distention is induced by 20-hydroxyecdysone in the pupa of Bombyx mori.

    PubMed

    Suzuki, Takumi; Sakurai, Sho; Iwami, Masafumi

    2009-03-01

    Holometabolous insects do not excrete but store metabolic wastes during the pupal period. The waste is called meconium and is purged after adult emergence. Although the contents of meconium are well-studied, the developmental and physiological regulation of meconium accumulation is poorly understood. In Bombyx mori, meconium is accumulated in the rectal sac; thereby, the rectal sac distends at the late pupal stage. Here, we show that rectal sac distention occurs between 4 and 5 days after pupation. The distention is halted by brain-removal just after larval-pupal ecdysis but not by brain-removal 1 day after pupation. In the pupae, brain-removal just after ecdysis kept the hemolymph ecdysteroid titer low during early and mid-pupal stages. An injection of 20-hydroxyecdysone (20E) evoked the distention that was halted by brain-removal in a dose-dependent manner. Therefore, brain-removal caused the lack of ecdysteroid, and rectal sac distention did not appear in the brain-removed pupae because of the lack of ecdysteroid. We conclude that rectal sac distention is one of the developmental events regulated by 20E during the pupal period in B. mori.

  16. Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease.

    PubMed

    Brown, Juliana; Quadrato, Giorgia; Arlotta, Paola

    2018-01-01

    The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease. © 2018 Elsevier Inc. All rights reserved.

  17. Developmental differences in the brain response to unhealthy food cues: an fMRI study of children and adults.

    PubMed

    van Meer, Floor; van der Laan, Laura N; Charbonnier, Lisette; Viergever, Max A; Adan, Roger Ah; Smeets, Paul Am

    2016-12-01

    Food cues are omnipresent and may trigger overconsumption. In the past 2 decades, the prevalence of childhood obesity has increased dramatically. Because children's brains are still developing, especially in areas important for inhibition, children may be more susceptible than adults to tempting food cues. We examined potential developmental differences in children's and adults' responses to food cues to determine how these responses relate to weight status. We included 27 children aged 10-12 y and 32 adults aged 32-52 y. Functional magnetic resonance imaging data were acquired during a food-viewing task in which unhealthy and healthy food pictures were presented. Children had a stronger activation in the left precentral gyrus than did adults in response to unhealthy compared with healthy foods. In children, unhealthy foods elicited stronger activation in the right inferior temporal and middle occipital gyri, left precentral gyrus, bilateral opercular part of the inferior frontal gyrus, left hippocampus, and left middle frontal gyrus. Adults had stronger activation in the bilateral middle occipital gyrus and the right calcarine sulcus for unhealthy compared with healthy foods. Children with a higher body mass index (BMI) had lower activation in the bilateral dorsolateral prefrontal cortex while viewing unhealthy compared with healthy foods. In adults there was no correlation between BMI and neural response to unhealthy compared with healthy foods. Unhealthy foods might elicit more attention both in children and in adults. Children had stronger activation while viewing unhealthy compared with healthy foods in areas involved in reward, motivation, and memory. Furthermore, children activated a motivation and reward area located in the motor cortex more strongly than did adults in response to unhealthy foods. Finally, children with a higher BMI had less activation in inhibitory areas in response to unhealthy foods, which may mean they are more susceptible to tempting food cues. This trial was registered at www.trialregister.nl as NTR4255. © 2016 American Society for Nutrition.

  18. Voxel-based statistical analysis of cerebral glucose metabolism in patients with permanent vegetative state after acquired brain injury.

    PubMed

    Kim, Yong Wook; Kim, Hyoung Seop; An, Young-Sil; Im, Sang Hee

    2010-10-01

    Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury. We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scale. Statistical analysis was performed using statistical parametric mapping. Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (P(corrected) < 0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (P(corrected) < 0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (P(uncorrected) < 0.005). Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism in patients with permanent vegetative state after acquired brain injury.

  19. Predictors of Change in Participation Rates Following Acquired Brain Injury: Results of a Longitudinal Study

    ERIC Educational Resources Information Center

    Anaby, Dana; Law, Mary; Hanna, Steven; DeMatteo, Carol

    2012-01-01

    Aim: The purpose of this study was (1) to examine the changes in participation rates over 1 year among children and adolescents after acquired brain injury and (2) to explore the effect of child and family factors on these changes. Method: The participation levels of 136 children and young people (88 males; 48 females; age range 4y 11mo-17y 6mo;…

  20. Functional neural circuits that underlie developmental stuttering

    PubMed Central

    Zhao, Guihu; Huo, Yuankai; Herder, Carl L.; Sikora, Chamonix O.; Peterson, Bradley S.

    2017-01-01

    The aim of this study was to identify differences in functional and effective brain connectivity between persons who stutter (PWS) and typically developing (TD) fluent speakers, and to assess whether those differences can serve as biomarkers to distinguish PWS from TD controls. We acquired resting-state functional magnetic resonance imaging data in 44 PWS and 50 TD controls. We then used Independent Component Analysis (ICA) together with Hierarchical Partner Matching (HPM) to identify networks of robust, functionally connected brain regions that were highly reproducible across participants, and we assessed whether connectivity differed significantly across diagnostic groups. We then used Granger Causality (GC) to study the causal interactions (effective connectivity) between the regions that ICA and HPM identified. Finally, we used a kernel support vector machine to assess how well these measures of functional connectivity and granger causality discriminate PWS from TD controls. Functional connectivity was stronger in PWS compared with TD controls in the supplementary motor area (SMA) and primary motor cortices, but weaker in inferior frontal cortex (IFG, Broca’s area), caudate, putamen, and thalamus. Additionally, causal influences were significantly weaker in PWS from the IFG to SMA, and from the basal ganglia to IFG through the thalamus, compared to TD controls. ICA and GC indices together yielded an accuracy of 92.7% in classifying PWS from TD controls. Our findings suggest the presence of dysfunctional circuits that support speech planning and timing cues for the initiation and execution of motor sequences in PWS. Our high accuracy of classification further suggests that these aberrant brain features may serve as robust biomarkers for PWS. PMID:28759567

  1. Functional neural circuits that underlie developmental stuttering.

    PubMed

    Qiao, Jianping; Wang, Zhishun; Zhao, Guihu; Huo, Yuankai; Herder, Carl L; Sikora, Chamonix O; Peterson, Bradley S

    2017-01-01

    The aim of this study was to identify differences in functional and effective brain connectivity between persons who stutter (PWS) and typically developing (TD) fluent speakers, and to assess whether those differences can serve as biomarkers to distinguish PWS from TD controls. We acquired resting-state functional magnetic resonance imaging data in 44 PWS and 50 TD controls. We then used Independent Component Analysis (ICA) together with Hierarchical Partner Matching (HPM) to identify networks of robust, functionally connected brain regions that were highly reproducible across participants, and we assessed whether connectivity differed significantly across diagnostic groups. We then used Granger Causality (GC) to study the causal interactions (effective connectivity) between the regions that ICA and HPM identified. Finally, we used a kernel support vector machine to assess how well these measures of functional connectivity and granger causality discriminate PWS from TD controls. Functional connectivity was stronger in PWS compared with TD controls in the supplementary motor area (SMA) and primary motor cortices, but weaker in inferior frontal cortex (IFG, Broca's area), caudate, putamen, and thalamus. Additionally, causal influences were significantly weaker in PWS from the IFG to SMA, and from the basal ganglia to IFG through the thalamus, compared to TD controls. ICA and GC indices together yielded an accuracy of 92.7% in classifying PWS from TD controls. Our findings suggest the presence of dysfunctional circuits that support speech planning and timing cues for the initiation and execution of motor sequences in PWS. Our high accuracy of classification further suggests that these aberrant brain features may serve as robust biomarkers for PWS.

  2. Beyond Utterances: Distributed Cognition as a Framework for Studying Discourse in Adults with Acquired Brain Injury

    PubMed Central

    Duff, Melissa C.; Mutlu, Bilge; Byom, Lindsey; Turkstra, Lyn S.

    2014-01-01

    Considerable effort has been directed at understanding the nature of the communicative deficits observed in individuals with acquired brain injuries. Yet several theoretical, methodological, and clinical challenges remain. In this article, we examine distributed cognition as a framework for understanding interaction among communication partners, interaction of communication and cognition, and interaction with the environments and contexts of everyday language use. We review the basic principles of distributed cognition and the implications for applying this approach to the study of discourse in individuals with cognitive-communication disorders. We also review a range of protocols and findings from our research that highlight how the distributed cognition approach might offer a deeper understanding of communicative mechanisms and deficits in individuals with cognitive communication impairments. The advantages and implications of distributed cognition as a framework for studying discourse in adults with acquired brain injury are discussed. PMID:22362323

  3. Scientific and Policy Statements on Environmental Agents Associated with Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Gilbert, Steven G.; Miller, Elise; Martin, Joyce; Abulafia, Laura

    2010-01-01

    Damage to the brain or nervous system at an early developmental stage creates lifelong challenges for the individual. To examine one source of harm to the developing nervous system, the Collaborative on Health and the Environment's (CHE) Learning and Developmental Disabilities Initiative (LDDI) (Collaborative on Health and the Environment, 2009)…

  4. Rett'S syndrome : a case report.

    PubMed

    Gupta, V

    2001-01-01

    Rett's syndrome is a rare condition affecting only the girl child. It presents as a pervasive developmental disorder with a remarkable behavioural phenotype. The cause for this remains unknown but genetic factors and brain dysfunction have been implicated. This case report emphasises the importance of being aware of rare yet significant disorders of interest to neuro-developmental psychiatrists.

  5. Dysfunctional Neural Network of Spatial Working Memory Contributes to Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Rotzer, S.; Loenneker, T.; Kucian, K.; Martin, E.; Klaver, P.; von Aster, M.

    2009-01-01

    The underlying neural mechanisms of developmental dyscalculia (DD) are still far from being clearly understood. Even the behavioral processes that generate or influence this heterogeneous disorder are a matter of controversy. To date, the few studies examining functional brain activation in children with DD mainly focus on number and counting…

  6. Magnetic Resonance Imaging and Developmental Outcome Following Preterm Birth: Review of Current Evidence

    ERIC Educational Resources Information Center

    Hart, Anthony R.; Whitby, Elspeth W.; Griffiths, Paul D.; Smith, Michael F.

    2008-01-01

    Preterm birth is associated with an increased risk of developmental difficulties. Magnetic resonance imaging (MRI) is increasingly being used to identify damage to the brain following preterm birth. It is hoped this information will aid prognostication and identify neonates who would benefit from early therapeutic intervention. Cystic…

  7. Predictive Models of Cognitive Outcomes of Developmental Insults

    NASA Astrophysics Data System (ADS)

    Chan, Yupo; Bouaynaya, Nidhal; Chowdhury, Parimal; Leszczynska, Danuta; Patterson, Tucker A.; Tarasenko, Olga

    2010-04-01

    Representatives of Arkansas medical, research and educational institutions have gathered over the past four years to discuss the relationship between functional developmental perturbations and their neurological consequences. We wish to track the effect on the nervous system by developmental perturbations over time and across species. Except for perturbations, the sequence of events that occur during neural development was found to be remarkably conserved across mammalian species. The tracking includes consequences on anatomical regions and behavioral changes. The ultimate goal is to develop a predictive model of long-term genotypic and phenotypic outcomes that includes developmental insults. Such a model can subsequently be fostered into an educated intervention for therapeutic purposes. Several datasets were identified to test plausible hypotheses, ranging from evoked potential datasets to sleep-disorder datasets. An initial model may be mathematical and conceptual. However, we expect to see rapid progress as large-scale gene expression studies in the mammalian brain permit genome-wide searches to discover genes that are uniquely expressed in brain circuits and regions. These genes ultimately control behavior. By using a validated model we endeavor to make useful predictions.

  8. Structural and Functional Plasticity in the Maternal Brain Circuitry

    ERIC Educational Resources Information Center

    Pereira, Mariana

    2016-01-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…

  9. Brain Wave Biofeedback: Benefits of Integrating Neurofeedback in Counseling

    ERIC Educational Resources Information Center

    Myers, Jane E.; Young, J. Scott

    2012-01-01

    Consistent with the "2009 Standards" of the Council for Accreditation of Counseling and Related Educational Programs, counselors must understand neurobiological behavior in individuals of all developmental levels. This requires understanding the brain and strategies for applying neurobiological concepts in counseling practice, training, and…

  10. Childhood-Onset Schizophrenia: Insights from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Gogtay, Nitin; Rapoport, Judith L.

    2008-01-01

    The use of longitudinal neuroimaging to study the developmental perspectives of brain pathology in children with childhood-onset schizophrenia (COS) is described. Structural neuroimaging is capable of providing evidence of neurobiological specificity of COS to distinguish it from other brain abnormalities seen in neuropsychiatric illnesses like…

  11. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Gideon; Zhang Chunyan; Zhuo Lang

    2007-05-15

    Gliosis is a universal response of Brain to almost all types of neural insults, including neurotoxicity, neurodegeneration, viral infection, and stroke. A hallmark of gliotic reaction is the up-regulation of the astrocytic biomarker GFAP (glial fibrillary acidic protein), which often precedes the anatomically apparent damages in Brain. In this study, neonatal transgenic mice at postnatal day (PD) 4 expressing GFP (green fluorescent protein) under the control of a widely used 2.2-kb human GFAP promoter in Brain are treated with two model neurotoxicants, 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH{sub 3}-MPTP), and kainic acid (KA), respectively, to induce gliosis. Here we show that the neurotoxicant-induced acutemore » gliosis can be non-invasively imaged and quantified in Brain of conscious (un-anesthetized) mice in real-time, at 0, 2, 4, 6, and 8 h post-toxicant dosing. Therefore the current methodology could be a useful tool for studying the developmental aspects of neuropathies and neurotoxicity.« less

  12. What has fMRI told us about the Development of Cognitive Control through Adolescence?

    PubMed Central

    Luna, Beatriz; Padmanabhan, Aarthi; O’Hearn, Kirsten

    2009-01-01

    Cognitive control, the ability to voluntarily guide our behavior, continues to improve throughout adolescence. Below we review the literature on age-related changes in brain function related to response inhibition and working memory, which support cognitive control. Findings from studies using functional magnetic imaging (fMRI) indicate that processing errors, sustaining a cognitive control state, and reaching adult levels of precision, persist through adolescence. Developmental changes in patterns of brain function suggest that core regions of the circuitry underlying cognitive control are on-line early in development. However, age-related changes in localized processes across the brain and in establishing long range connections that support top-down modulation of behavior may support more effective neural processing for optimal mature executive function. While great progress has been made in understanding the age-related changes in brain processes underlying cognitive development, there are still important challenges in developmental neuroimaging methods and the interpretation of data that need to be addressed. PMID:19765880

  13. Brain plasticity and motor practice in cognitive aging.

    PubMed

    Cai, Liuyang; Chan, John S Y; Yan, Jin H; Peng, Kaiping

    2014-01-01

    For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population.

  14. The development of hub architecture in the human functional brain network.

    PubMed

    Hwang, Kai; Hallquist, Michael N; Luna, Beatriz

    2013-10-01

    Functional hubs are brain regions that play a crucial role in facilitating communication among parallel, distributed brain networks. The developmental emergence and stability of hubs, however, is not well understood. The current study used measures of network topology drawn from graph theory to investigate the development of functional hubs in 99 participants, 10-20 years of age. We found that hub architecture was evident in late childhood and was stable from adolescence to early adulthood. Connectivity between hub and non-hub ("spoke") regions, however, changed with development. From childhood to adolescence, the strength of connections between frontal hubs and cortical and subcortical spoke regions increased. From adolescence to adulthood, hub-spoke connections with frontal hubs were stable, whereas connectivity between cerebellar hubs and cortical spoke regions increased. Our findings suggest that a developmentally stable functional hub architecture provides the foundation of information flow in the brain, whereas connections between hubs and spokes continue to develop, possibly supporting mature cognitive function.

  15. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia.

    PubMed

    Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B

    2013-01-08

    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.

  16. Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome

    PubMed Central

    Holtzman, David M.; Santucci, Daniela; Kilbridge, Joshua; Chua-Couzens, Jane; Fontana, David J.; Daniels, Scott E.; Johnson, Randolph M.; Chen, Karen; Sun, Yuling; Carlson, Elaine; Alleva, Enrico; Epstein, Charles J.; Mobley, William C.

    1996-01-01

    To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain. PMID:8917591

  17. Psychopathy: Developmental Perspectives and their Implications for Treatment

    PubMed Central

    Anderson, Nathaniel E.; Kiehl, Kent A.

    2015-01-01

    Psychopathy is a neuropsychiatric disorder marked by deficient emotional responses, lack of empathy, and poor behavioral controls, commonly resulting in persistent antisocial deviance and criminal behavior. Accumulating research suggests that psychopathy follows a developmental trajectory with strong genetic influences, and which precipitates deleterious effects on widespread functional networks, particularly within paralimbic regions of the brain. While traditional therapeutic interventions commonly administered in prisons and forensic institutions have been notoriously ineffective at combating these outcomes, alternative strategies informed by an understanding of these specific neuropsychological obstacles to healthy development, and which target younger individuals with nascent symptoms of psychopathy are more promising. Here we review recent neuropsychiatric and neuroimaging literature that informs our understanding of the brain systems compromised in psychopathy, and apply these data to a broader understanding of its developmental course, ultimately promoting more proactive intervention strategies profiting from adaptive neuroplasticity in youth. PMID:23542910

  18. Tract-Based Spatial Statistics in Preterm-Born Neonates Predicts Cognitive and Motor Outcomes at 18 Months.

    PubMed

    Duerden, E G; Foong, J; Chau, V; Branson, H; Poskitt, K J; Grunau, R E; Synnes, A; Zwicker, J G; Miller, S P

    2015-08-01

    Adverse neurodevelopmental outcome is common in children born preterm. Early sensitive predictors of neurodevelopmental outcome such as MR imaging are needed. Tract-based spatial statistics, a diffusion MR imaging analysis method, performed at term-equivalent age (40 weeks) is a promising predictor of neurodevelopmental outcomes in children born very preterm. We sought to determine the association of tract-based spatial statistics findings before term-equivalent age with neurodevelopmental outcome at 18-months corrected age. Of 180 neonates (born at 24-32-weeks' gestation) enrolled, 153 had DTI acquired early at 32 weeks' postmenstrual age and 105 had DTI acquired later at 39.6 weeks' postmenstrual age. Voxelwise statistics were calculated by performing tract-based spatial statistics on DTI that was aligned to age-appropriate templates. At 18-month corrected age, 166 neonates underwent neurodevelopmental assessment by using the Bayley Scales of Infant Development, 3rd ed, and the Peabody Developmental Motor Scales, 2nd ed. Tract-based spatial statistics analysis applied to early-acquired scans (postmenstrual age of 30-33 weeks) indicated a limited significant positive association between motor skills and axial diffusivity and radial diffusivity values in the corpus callosum, internal and external/extreme capsules, and midbrain (P < .05, corrected). In contrast, for term scans (postmenstrual age of 37-41 weeks), tract-based spatial statistics analysis showed a significant relationship between both motor and cognitive scores with fractional anisotropy in the corpus callosum and corticospinal tracts (P < .05, corrected). Tract-based spatial statistics in a limited subset of neonates (n = 22) scanned at <30 weeks did not significantly predict neurodevelopmental outcomes. The strength of the association between fractional anisotropy values and neurodevelopmental outcome scores increased from early-to-late-acquired scans in preterm-born neonates, consistent with brain dysmaturation in this population. © 2015 by American Journal of Neuroradiology.

  19. Interactions of sex and early life social experiences at two developmental stages shape nonapeptide receptor profiles.

    PubMed

    Hiura, Lisa C; Ophir, Alexander G

    2018-05-31

    Early life social experiences are critical to behavioral and cognitive development, and can have a tremendous influence on developing social phenotypes. Most work has focused on outcomes of experiences at a single stage of development (e.g., perinatal, or post-weaning). Few studies have assessed the impact of social experience at multiple developmental stages and across sex. Oxytocin and vasopressin are profoundly important for modulating social behavior and these nonapeptide systems are highly sensitive to developmental social experience, particularly in brain areas important for social behavior. We investigated whether oxytocin receptor (OTR) and vasopressin receptor (V1aR) distributions of prairie voles (Microtus ochrogaster) change as a function of parental composition within the natal nest or social composition after weaning. We raised pups either in the presence or absence of their fathers. At weaning, offspring were housed either individually or with a same-sex sibling. We also examined whether changes in receptor distributions are sexually dimorphic because the impact of the developmental environment on the nonapeptide system could be sex-dependent. We found that differences in nonapeptide receptor expression were region-, sex-, and rearing condition-specific, indicating a high level of complexity in the ways that early life experiences shape the social brain. We found many more differences in V1aR density compared to OTR density, indicating that nonapeptide receptors demonstrate differential levels of neural plasticity and sensitivity to environmental and biological variables. Our data highlight that critical factors including biological sex and multiple experiences across the developmental continuum interact in complex ways to shape the social brain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. The International Society for Developmental Psychobiology Annual Meeting Symposium: Impact of Early Life Experiences on Brain and Behavioral Development

    PubMed Central

    Sullivan, Regina; Wilson, Donald A.; Feldon, Joram; Yee, Benjamin K.; Meyer, Urs; Richter-Levin, Gal; Avi, Avital; Michael, Tsoory; Gruss, Michael; Bock, Jörg; Helmeke, Carina; Braun, Katharina

    2007-01-01

    Decades of research in the area of developmental psychobiology have shown that early life experience alters behavioral and brain development, which canalizes development to suit different environments. Recent methodological advances have begun to identify the mechanisms by which early life experiences cause these diverse adult outcomes. Here we present four different research programs that demonstrate the intricacies of early environmental influences on behavioral and brain development in both pathological and normal development. First, an animal model of schizophrenia is presented that suggests prenatal immune stimulation influences the postpubertal emergence of psychosis-related behavior in mice. Second, we describe a research program on infant rats that demonstrates how early odor learning has unique characteristics due to the unique functioning of the infant limbic system. Third, we present work on the rodent Octodon degus, which shows that early paternal and/or maternal deprivation alters development of limbic system synaptic density that corresponds to heightened emotionality. Fourth, ajuvenile model of stress is presented that suggests this developmental period is important in determining adulthood emotional well being. The approach of each research program is strikingly different, yet all succeed in delineating a specific aspect of early development and its effects on infant and adult outcome that expands our understanding of the developmental impact of infant experiences on emotional and limbic system development. Together, these research programs suggest that the developing organism’s developmental trajectory is influenced by environmental factors beginning in the fetus and extending through adolescence, although the specific timing and nature of the environmental influence has unique impact on adult mental health. PMID:17016842

  1. IT-25DEVELOPMENTALLY REGULATED ANTIGENS FOR IMMUNOLOGIC TARGETING OF MEDULLOBLASTOMA SUBTYPES

    PubMed Central

    Pham, Christina; Flores, Catherine; Pei, Yanxin; Wechsler-Reya, Robert; Mitchell, Duane

    2014-01-01

    INTRODUCTION: Medulloblastoma (MB) remains incurable in one third of patients despite aggressive multi-modality standard therapies. Immunotherapy presents a promising alternative by specifically targeting cancer cells. To date, there have been no successful immunologic applications targeting MB. Emerging evidence from integrated genomic studies has suggested MB variants arise from deregulation of pathways affecting proliferation of progenitor cell populations within the developing cerebellum. Using total embryonic RNA as a source of tumor rejection antigens is attractive because it can be delivered as a single vaccine, target both known and unknown fetal proteins, and can be refined to preferentially treat distinct MB subtypes. METHODS: We have created two transplantable, syngeneic animal MB models recapitulating human SHH and Group 3 variants to investigate the immunologic targeting of different MB subtypes. We generated T cells specific to the developing mouse cerebellum (P5) and tested their reactivity to target cells pulsed with total RNA from two MB subtypes and the normal brain. Immune responses were evaluated by measuring cytokine secretion following re-stimulation of activated T cells with both normal and tumor cell targets. In vivo antitumor efficacy was also tested in survival studies of intracranial tumor-bearing animals. RESULTS: We generated T cells specific to the developing cerebellum in vitro, confirming the immunogenicity of developmentally regulated antigens. Additionally, we have shown that developmental antigen-specific T cells produce high levels of Th1-type cytokines in response to tumor cells of two immunologically distinct subtypes of MB. Interestingly, developmental antigen specific T cells do not show cross reactivity with the normal brain or subsequent stages of the developing brain after P5. Targeting developmental antigens also conferred a significant survival benefit in a treatment model of Group 3 tumor bearing animals. CONCLUSIONS: Developmental antigens can safely target multiple MB subtypes with equal effectiveness compared to previously established total tumor strategies.

  2. A systematic review of the efficacy of self-management programs for increasing physical activity in community-dwelling adults with acquired brain injury (ABI).

    PubMed

    Jones, Taryn M; Dean, Catherine M; Hush, Julia M; Dear, Blake F; Titov, Nickolai

    2015-04-19

    Individuals living with acquired brain injury, typically caused by stroke or trauma, are far less likely to achieve recommended levels of physical activity for optimal health and well-being. With a growing number of people living with chronic disease and disability globally, self-management programs are seen as integral to the management of these conditions and the prevention of secondary health conditions. However, to date, there has been no systematic review of the literature examining the efficacy of self-management programs specifically on physical activity in individuals with acquired brain injury, whether delivered face-to-face or remotely. Therefore, the purpose of this review is to evaluate the efficacy of self-management programs in increasing physical activity levels in adults living in the community following acquired brain injury. The efficacy of remote versus face-to-face delivery was also examined. A systematic review of the literature was conducted. Electronic databases were searched. Two independent reviewers screened all studies for eligibility, assessed risk of bias, and extracted relevant data. Five studies met the inclusion criteria for this review. Studies were widely heterogeneous with respect to program content and delivery characteristics and outcomes, although all programs utilized behavioral change principles. Four of the five studies examined interventions in which physical activity was a component of a multifaceted intervention, where the depth to which physical activity specific content was covered, and the extent to which skills were taught and practiced, could not be clearly established. Three studies showed favorable physical activity outcomes following self-management interventions for stroke; however, risk of bias was high, and overall efficacy remains unclear. Although not used in isolation from face-to-face delivery, remote delivery via telephone was the predominant form of delivery in two studies with support for its inclusion in self-management programs for individuals following stroke. The efficacy of self-management programs in increasing physical activity levels in community-dwelling adults following acquired brain injury (ABI) is still unknown. Research into the efficacy of self-management programs specifically aimed at improving physical activity in adults living in the community following acquired brain injury is needed. The efficacy of remote delivery methods also warrants further investigation. PROSPERO CRD42013006748.

  3. Current Evidence for Developmental, Structural, and Functional Brain Defects following Prenatal Radiation Exposure

    PubMed Central

    Verreet, Tine; Quintens, Roel; Baatout, Sarah; Benotmane, Mohammed A.

    2016-01-01

    Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic) and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered. PMID:27382490

  4. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering.

    PubMed

    Sitek, Kevin R; Cai, Shanqing; Beal, Deryk S; Perkell, Joseph S; Guenther, Frank H; Ghosh, Satrajit S

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers.

  5. Present and future of developmental neuropsychopharmacology.

    PubMed

    Arango, Celso

    2015-05-01

    The field of child and adolescent psychiatry has always lagged behind adult psychiatry. With recent evidence that the vast majority of mental disorders, even when they emerge in adulthood, cause abnormal neurodevelopment and resultant emphasis on prevention and early intervention, there is a need to put child psychiatry at the top of the agenda in mental health research. This should also be the case for developmental neuropsychopharmacology. The target of drug discovery should shift toward a population younger than the one that is typically included in clinical trials. This is not only a matter of trying to replicate what has been found in individuals with mature brains; it is about searching for new strategies that address developing brains while the therapeutic window for their effect is still open. At present, major concerns in developmental psychopharmacology are over-prescription rates and use of psychotropic medications for conditions with a particularly underdeveloped evidence base, as well as adverse effects, especially potentially life-shortening cardiometabolic effects and suicidal ideation. The future of research in this area should focus on the use of drugs for primary and secondary prevention that would modify abnormal brain development. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  6. The GABA excitatory/inhibitory developmental sequence: a personal journey.

    PubMed

    Ben-Ari, Y

    2014-10-24

    The developing brain is talkative but its language is not that of the adult. Most if not all voltage and transmitter-gated ionic currents follow a developmental sequence and network-driven patterns differ in immature and adult brains. This is best illustrated in studies engaged almost three decades ago in which we observed elevated intracellular chloride (Cl(-))i levels and excitatory GABA early during development and a perinatal excitatory/inhibitory shift. This sequence is observed in a wide range of brain structures and animal species suggesting that it has been conserved throughout evolution. It is mediated primarily by a developmentally regulated expression of the NKCC1 and KCC2 chloride importer and exporter respectively. The GABAergic depolarization acts in synergy with N-methyl-d-aspartate (NMDA) receptor-mediated and voltage-gated calcium currents to enhance intracellular calcium exerting trophic effects on neuritic growth, migration and synapse formation. These sequences can be deviated in utero by genetic or environmental insults leading to a persistence of immature features in the adult brain. This "neuroarcheology" concept paves the way to novel therapeutic perspectives based on the use of drugs that block immature but not adult currents. This is illustrated notably with the return to immature high levels of chloride and excitatory actions of GABA observed in many pathological conditions. This is due to the fact that in the immature brain a down regulation of KCC2 and an up regulation of NKCC1 are seen. Here, I present a personal history of how an unexpected observation led to novel concepts in developmental neurobiology and putative treatments of autism and other developmental disorders. Being a personal account, this review is neither exhaustive nor provides an update of this topic with all the studies that have contributed to this evolution. We all rely on previous inventors to allow science to advance. Here, I present a personal summary of this topic primarily to illustrate why we often fail to comprehend the implications of our own observations. They remind us - and policy deciders - why Science cannot be programed, requiring time, and risky investigations that raise interesting questions before being translated from bench to bed. Discoveries are always on sideways, never on highways. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  7. A developmental and genetic classification for midbrain-hindbrain malformations

    PubMed Central

    Millen, Kathleen J.; Dobyns, William B.

    2009-01-01

    Advances in neuroimaging, developmental biology and molecular genetics have increased the understanding of developmental disorders affecting the midbrain and hindbrain, both as isolated anomalies and as part of larger malformation syndromes. However, the understanding of these malformations and their relationships with other malformations, within the central nervous system and in the rest of the body, remains limited. A new classification system is proposed, based wherever possible, upon embryology and genetics. Proposed categories include: (i) malformations secondary to early anteroposterior and dorsoventral patterning defects, or to misspecification of mid-hindbrain germinal zones; (ii) malformations associated with later generalized developmental disorders that significantly affect the brainstem and cerebellum (and have a pathogenesis that is at least partly understood); (iii) localized brain malformations that significantly affect the brain stem and cerebellum (pathogenesis partly or largely understood, includes local proliferation, cell specification, migration and axonal guidance); and (iv) combined hypoplasia and atrophy of putative prenatal onset degenerative disorders. Pertinent embryology is discussed and the classification is justified. This classification will prove useful for both physicians who diagnose and treat patients with these disorders and for clinical scientists who wish to understand better the perturbations of developmental processes that produce them. Importantly, both the classification and its framework remain flexible enough to be easily modified when new embryologic processes are described or new malformations discovered. PMID:19933510

  8. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations

    PubMed Central

    Cid, Elena; Gomez-Dominguez, Daniel; Martin-Lopez, David; Gal, Beatriz; Laurent, François; Ibarz, Jose M.; Francis, Fiona; Menendez de la Prida, Liset

    2014-01-01

    Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders. PMID:24782720

  9. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations.

    PubMed

    Cid, Elena; Gomez-Dominguez, Daniel; Martin-Lopez, David; Gal, Beatriz; Laurent, François; Ibarz, Jose M; Francis, Fiona; Menendez de la Prida, Liset

    2014-01-01

    Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.

  10. Enuresis as a Premorbid Developmental Marker of Schizophrenia

    ERIC Educational Resources Information Center

    Hyde, Thomas M.; Deep-Soboslay, Amy; Iglesias, Bianca; Callicott, Joseph H.; Gold, James M.; Meyer-Lindenberg, Andreas; Honea, Robyn A.; Bigelow, Llewellyn B.; Egan, Michael F.; Emsellem, Esther M.; Weinberger, Daniel R.

    2008-01-01

    There is comparatively little information about premorbid maturational brain abnormalities in schizophrenia (SCZ). We investigated whether a history of childhood enuresis, a well-established marker of neurodevelopmental delay, is associated with SCZ and with measures of brain abnormalities also associated with SCZ. A Diagnostic and Statistical…

  11. Schizophrenia: do all roads lead to dopamine or is this where they start? Evidence from two epidemiologically informed developmental rodent models

    PubMed Central

    Eyles, D; Feldon, J; Meyer, U

    2012-01-01

    The idea that there is some sort of abnormality in dopamine (DA) signalling is one of the more enduring hypotheses in schizophrenia research. Opinion leaders have published recent perspectives on the aetiology of this disorder with provocative titles such as ‘Risk factors for schizophrenia—all roads lead to dopamine' or ‘The dopamine hypothesis of schizophrenia—the final common pathway'. Perhaps, the other most enduring idea about schizophrenia is that it is a neurodevelopmental disorder. Those of us that model schizophrenia developmental risk-factor epidemiology in animals in an attempt to understand how this may translate to abnormal brain function have consistently shown that as adults these animals display behavioural, cognitive and pharmacological abnormalities consistent with aberrant DA signalling. The burning question remains how can in utero exposure to specific (environmental) insults induce persistent abnormalities in DA signalling in the adult? In this review, we summarize convergent evidence from two well-described developmental animal models, namely maternal immune activation and developmental vitamin D deficiency that begin to address this question. The adult offspring resulting from these two models consistently reveal locomotor abnormalities in response to DA-releasing or -blocking drugs. Additionally, as adults these animals have DA-related attentional and/or sensorimotor gating deficits. These findings are consistent with many other developmental animal models. However, the authors of this perspective have recently refocused their attention on very early aspects of DA ontogeny and describe reductions in genes that induce or specify dopaminergic phenotype in the embryonic brain and early changes in DA turnover suggesting that the origins of these behavioural abnormalities in adults may be traced to early alterations in DA ontogeny. Whether the convergent findings from these two models can be extended to other developmental animal models for this disease is at present unknown as such early brain alterations are rarely examined. Although it is premature to conclude that such mechanisms could be operating in other developmental animal models for schizophrenia, our convergent data have led us to propose that rather than all roads leading to DA, perhaps, this may be where they start. PMID:22832818

  12. Validation of the Middlesex Elderly Assessment of Mental State (MEAMS) as a cognitive screening test in patients with acquired brain injury in Turkey.

    PubMed

    Kutlay, Sehim; Kuçukdeveci, Ayse A; Elhan, Atilla H; Yavuzer, Gunes; Tennant, Alan

    2007-02-28

    Assessment of cognitive impairment with a valid cognitive screening tool is essential in neurorehabilitation. The aim of this study was to test the reliability and validity of the Turkish-adapted version of the Middlesex Elderly Assessment of Mental State (MEAMS) among acquired brain injury patients in Turkey. Some 155 patients with acquired brain injury admitted for rehabilitation were assessed by the adapted version of MEAMS at admission and discharge. Reliability was tested by internal consistency, intra-class correlation coefficient (ICC) and person separation index; internal construct validity by Rasch analysis; external construct validity by associations with physical and cognitive disability (FIM); and responsiveness by Effect Size. Reliability was found to be good with Cronbach's alpha of 0.82 at both admission and discharge; and likewise an ICC of 0.80. Person separation index was 0.813. Internal construct validity was good by fit of the data to the Rasch model (mean item fit -0.178; SD 1.019). Items were substantially free of differential item functioning. External construct validity was confirmed by expected associations with physical and cognitive disability. Effect size was 0.42 compared with 0.22 for cognitive FIM. The reliability and validity of the Turkish version of MEAMS as a cognitive impairment screening tool in acquired brain injury has been demonstrated.

  13. The timing of language learning shapes brain structure associated with articulation.

    PubMed

    Berken, Jonathan A; Gracco, Vincent L; Chen, Jen-Kai; Klein, Denise

    2016-09-01

    We compared the brain structure of highly proficient simultaneous (two languages from birth) and sequential (second language after age 5) bilinguals, who differed only in their degree of native-like accent, to determine how the brain develops when a skill is acquired from birth versus later in life. For the simultaneous bilinguals, gray matter density was increased in the left putamen, as well as in the left posterior insula, right dorsolateral prefrontal cortex, and left and right occipital cortex. For the sequential bilinguals, gray matter density was increased in the bilateral premotor cortex. Sequential bilinguals with better accents also showed greater gray matter density in the left putamen, and in several additional brain regions important for sensorimotor integration and speech-motor control. Our findings suggest that second language learning results in enhanced brain structure of specific brain areas, which depends on whether two languages are learned simultaneously or sequentially, and on the extent to which native-like proficiency is acquired.

  14. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development

    PubMed Central

    Contreras, Esteban G.; Sierralta, Jimena

    2018-01-01

    Background Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called ‘brain sparing’. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Results Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Conclusions Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals. PMID:29621246

  15. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development.

    PubMed

    Contreras, Esteban G; Sierralta, Jimena; Glavic, Alvaro

    2018-01-01

    Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.

  16. Determination of regional brain temperature using proton magnetic resonance spectroscopy to assess brain-body temperature differences in healthy human subjects.

    PubMed

    Childs, Charmaine; Hiltunen, Yrjö; Vidyasagar, Rishma; Kauppinen, Risto A

    2007-01-01

    Proton magnetic resonance spectroscopy ((1)H MRS) was used to determine brain temperature in healthy volunteers. Partially water-suppressed (1)H MRS data sets were acquired at 3T from four different gray matter (GM)/white matter (WM) volumes. Brain temperatures were determined from the chemical-shift difference between the CH(3) of N-acetyl aspartate (NAA) at 2.01 ppm and water. Brain temperatures in (1)H MRS voxels of 2 x 2 x 2 cm(3) showed no substantial heterogeneity. The volume-averaged temperature from single-voxel spectroscopy was compared with body temperatures obtained from the oral cavity, tympanum, and temporal artery regions. The mean brain parenchyma temperature was 0.5 degrees C cooler than readings obtained from three extra-brain sites (P < 0.01). (1)H MRS imaging (MRSI) data were acquired from a slice encompassing the single-voxel volumes to assess the ability of spectroscopic imaging to determine regional brain temperature within the imaging slice. Brain temperature away from the center of the brain determined by MRSI differed from that obtained by single-voxel MRS in the same brain region, possibly due to a poor line width (LW) in MRSI. The data are discussed in the light of proposed brain-body temperature gradients and the use of (1)H MRSI to monitor brain temperature in pathologies, such as brain trauma.

  17. Developmental process emerges from extended brain-body-behavior networks

    PubMed Central

    Byrge, Lisa; Sporns, Olaf; Smith, Linda B.

    2014-01-01

    Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple time scales, and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; these networks, in turn, promote further change in behavior and input. PMID:24862251

  18. Cerebellum volume in high-risk offspring from multiplex alcohol dependence families: Association with allelic variation in GABRA2 and BDNF

    PubMed Central

    Hill, Shirley Y.; Wang, Shuhui; Carter, Howard; Tessner, Kevin; Holmes, Brian; McDermott, Michael; Zezza, Nicholas; Stiffler, Scott

    2012-01-01

    Offspring from families with multiple cases of alcohol dependence have a greater likelihood of developing alcohol dependence (AD) and related substance use disorders. Greater susceptibility for developing these disorders may be related to structural differences in brain circuits that influence the salience of rewards or modify the efficiency of information processing and AD susceptibility. We examined the cerebellum of 71 adolescent/young adult high-risk (HR) offspring from families with multiple cases of alcohol dependence (multiplex families), and 60 low-risk (LR) controls with no family history of alcohol or drug dependence who were matched for age, gender, socioeconomic status and IQ, with attention given to possible effects of personal use of substances and maternal use during pregnancy. Magnetic resonance images were acquired on a General Electric 1.5-Tesla scanner and manually traced (BRAINS2) blind to clinical information. GABRA2 and BDNF variation were tested for their association with cerebellar volumes. High-risk offspring from multiplex AD families showed greater total volume of the cerebellum and total gray matter (GM), in comparison with LR controls. An interaction between allelic variation in GABRA2 and BDNF genes was associated with GM volumes, suggesting that inherited variation in these genes may promote early developmental differences in neuronal proliferation of the cerebellum. PMID:22047728

  19. Do dual-route models accurately predict reading and spelling performance in individuals with acquired alexia and agraphia?

    PubMed

    Rapcsak, Steven Z; Henry, Maya L; Teague, Sommer L; Carnahan, Susan D; Beeson, Pélagie M

    2007-06-18

    Coltheart and co-workers [Castles, A., Bates, T. C., & Coltheart, M. (2006). John Marshall and the developmental dyslexias. Aphasiology, 20, 871-892; Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204-256] have demonstrated that an equation derived from dual-route theory accurately predicts reading performance in young normal readers and in children with reading impairment due to developmental dyslexia or stroke. In this paper, we present evidence that the dual-route equation and a related multiple regression model also accurately predict both reading and spelling performance in adult neurological patients with acquired alexia and agraphia. These findings provide empirical support for dual-route theories of written language processing.

  20. Brief Report: Methods for Acquiring Structural MRI Data in Very Young Children with Autism Without the Use of Sedation

    PubMed Central

    Simon, Tony J.; Zierhut, Cynthia; Solomon, Marjorie; Rogers, Sally J.; Amaral, David G.

    2016-01-01

    We describe a protocol with which we achieved a 93% success rate in acquiring high quality MRI scans without the use of sedation in 2.5–4.5 year old children with autism, developmental delays, and typical development. Our main strategy was to conduct MRIs during natural nocturnal sleep in the evenings after the child's normal bedtime. Alternatively, with some older and higher functioning children, the MRI was conducted while the child was awake and watching a video. Both strategies relied heavily on the creation of a child and family friendly MRI environment and the involvement of parents as collaborators in the project. Scanning very young children with autism, typical development, and developmental delays without the use of sedation or anesthesia was possible in the majority of cases. PMID:18157624

  1. Monophasic demyelination reduces brain growth in children

    PubMed Central

    Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S.; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E. Ann; Narayanan, Sridar; Arnold, Douglas L.; Verhey, Leonard H.; Banwell, Brenda; Collins, D. Louis

    2017-01-01

    Objective: To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. Methods: We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Results: Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Conclusions: Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. PMID:28381515

  2. Monophasic demyelination reduces brain growth in children.

    PubMed

    Aubert-Broche, Bérengère; Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E Ann; Narayanan, Sridar; Arnold, Douglas L; Verhey, Leonard H; Banwell, Brenda; Collins, D Louis

    2017-05-02

    To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. © 2017 American Academy of Neurology.

  3. Comparative developmental psychology: how is human cognitive development unique?

    PubMed

    Rosati, Alexandra G; Wobber, Victoria; Hughes, Kelly; Santos, Laurie R

    2014-04-29

    The fields of developmental and comparative psychology both seek to illuminate the roots of adult cognitive systems. Developmental studies target the emergence of adult cognitive systems over ontogenetic time, whereas comparative studies investigate the origins of human cognition in our evolutionary history. Despite the long tradition of research in both of these areas, little work has examined the intersection of the two: the study of cognitive development in a comparative perspective. In the current article, we review recent work using this comparative developmental approach to study non-human primate cognition. We argue that comparative data on the pace and pattern of cognitive development across species can address major theoretical questions in both psychology and biology. In particular, such integrative research will allow stronger biological inferences about the function of developmental change, and will be critical in addressing how humans come to acquire species-unique cognitive abilities.

  4. Semantic memory in developmental amnesia.

    PubMed

    Elward, Rachael L; Vargha-Khadem, Faraneh

    2018-04-30

    Patients with developmental amnesia resulting from bilateral hippocampal atrophy associated with neonatal hypoxia-ischaemia typically show relatively preserved semantic memory and factual knowledge about the natural world despite severe impairments in episodic memory. Understanding the neural and mnemonic processes that enable this context-free semantic knowledge to be acquired throughout development without the support of the contextualised episodic memory system is a serious challenge. This review describes the clinical presentation of patients with developmental amnesia, contrasts its features with those reported for adult-onset hippocampal amnesia, and analyses the effects of variables that influence the learning of new semantic information. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Cycles of Research and Application in Education: Learning Pathways for Energy Concepts

    ERIC Educational Resources Information Center

    Dawson, Theo L.; Stein, Zachary

    2008-01-01

    We begin this article by situating a methodology called "developmental maieutics" in the emerging field of mind, brain, and education. Then, we describe aspects of a project in which we collaborated with a group of physical science teachers to design developmentally informed activities and assessments for a unit on energy. Pen-and-paper…

  6. Functional-Lesion Investigation of Developmental Stuttering with Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Ingham, Roger J.; And Others

    1996-01-01

    Analysis of use of positron emission tomographic measurements of resting-state regional cerebral blood flow in 29 men, 10 of whom stuttered, did not support the idea that developmental stuttering is associated with abnormalities of blood flow at rest. Findings did suggest an essentially normal functional brain terrain with a small number of minor…

  7. An Electro-Physiological Temporal Principal Component Analysis of Processing Stages of Number Comparison in Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Soltesz, Fruzsina; Szucs, Denes

    2009-01-01

    Developmental dyscalculia (DD) still lacks a generally accepted definition. A major problem is that the cognitive component processes contributing to arithmetic performance are still poorly defined. By a reanalysis of our previous event-related brain potential (ERP) data (Soltesz et al., 2007) here our objective was to identify and compare…

  8. The Significance of Human-Animal Relationships as Modulators of Trauma Effects in Children: A Developmental Neurobiological Perspective

    ERIC Educational Resources Information Center

    Yorke, Jan

    2010-01-01

    Emotional stress and trauma impacts the neurobiology of children. They are especially vulnerable given the developmental plasticity of the brain. The neural synaptic circular processes between the anterior cingulated cortex, prefrontal cortex, amygdala and the hypothalamus are altered. Trauma results in the release of the peptide glucocortisoid,…

  9. RETT'S SYNDROME : A CASE REPORT

    PubMed Central

    Gupta, Vinay

    2001-01-01

    Rett's syndrome is a rare condition affecting only the girl child. It presents as a pervasive developmental disorder with a remarkable behavioural phenotype. The cause for this remains unknown but genetic factors and brain dysfunction have been implicated. This case report emphasises the importance of being aware of rare yet significant disorders of interest to neuro-developmental psychiatrists. PMID:21407847

  10. Project: "Teach 'n' Reach" Learning Handicapped: Developmentally Disabled, Learning Disabled. (Book 3 out of 4.)

    ERIC Educational Resources Information Center

    Kagan, Arleen

    The fourth of five volumes (and the third of four curriculum guides) in the Project Teach 'n' Reach series presents curriculum suggestions to help regular classroom teachers teach nondisabled students about learning handicaps. The developmentally disabled are considered in terms of anatomical structures of the brain, etiology, definition, sensory…

  11. Mindfulness and Compassion Training in Adolescence: A Developmental Contemplative Science Perspective

    ERIC Educational Resources Information Center

    Roeser, Robert W.; Pinela, Cristi

    2014-01-01

    Adolescence is a developmental period of risk, as well as a window of opportunity for cultivating positive development and thriving. It is characterized by simultaneous changes in the brain, body, mind, and social domains that offer a platform for building new skills and habits. This chapter discusses the role that secular forms of mindfulness and…

  12. Traumatic Brain Injury in Early Childhood: Developmental Effects and Interventions.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara; Lowenthal, Barbara

    1998-01-01

    Describes the unique effects of traumatic brain injury (TBI) on development in early childhood and offers suggestions for interventions in the cognitive, language, social-emotional, motor, and adaptive domains. Urges more intensive, long-term studies on the immediate and long-term effects of TBI. (Author/DB)

  13. Nativism versus Neuroconstructivism: Rethinking the Study of Developmental Disorders

    ERIC Educational Resources Information Center

    Karmiloff-Smith, Annette

    2009-01-01

    This article argues that one dominant position in psychology, linguistics, neuroscience, and philosophy about how genetic disorders point to the innate specification of dissociated modules in the human brain should be replaced by a dynamic, neuroconstructivist approach in which genes, brain, cognition, and environment interact multidirectionally.…

  14. DEVELOPMENTAL HYPOTHYROIDISM INDUCES A NEURONAL HETEROTOPIA IN THE CORPUS CALLOSUM OF THE RAT.

    EPA Science Inventory

    It is well established that severe hypothyroidism leads to profound alterations in brain development and mental retardation. In this study we examined the effect of subtle decreases in maternal thyroid hormones (TH) on brain development in the rat. To induce TH insufficiency pr...

  15. Brain Hemisphericity and Developmental Dyslexia

    ERIC Educational Resources Information Center

    Vlachos, Filippos; Andreou, Eleni; Delliou, Afroditi

    2013-01-01

    The present study examined the link between brain hemisphericity and dyslexia in secondary school students, using the Preference Test (PT), a widely used self-report index of preferred hemisphere thinking styles. The hypothesis was that differences would be revealed between the dyslexic group and their peers in hemispheric preference. A total of…

  16. The Relationship between Puberty and Social Emotion Processing

    ERIC Educational Resources Information Center

    Goddings, Anne-Lise; Burnett Heyes, Stephanie; Bird, Geoffrey; Viner, Russell M.; Blakemore, Sarah-Jayne

    2012-01-01

    The social brain undergoes developmental change during adolescence, and pubertal hormones are hypothesized to contribute to this development. We used fMRI to explore how pubertal indicators (salivary concentrations of testosterone, oestradiol and DHEA; pubertal stage; menarcheal status) relate to brain activity during a social emotion task.…

  17. Implications of Post-Natal Cortical Development for Creativity Research.

    ERIC Educational Resources Information Center

    Gordon, Marjory; Dacey, John

    Man's long period of cerebral growth has important implications for education. The brain goes through major developmental changes after birth, and researchers have suggested that this growth process presents an opportunity for fostering the plasticity of genetically determined connections. Animal studies show that postnatal growth of the brain is…

  18. Morphological Encoding in German Children's Language Production: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Jessen, Anna; Fleischhauer, Elisabeth; Clahsen, Harald

    2017-01-01

    This study reports developmental changes in morphological encoding across late childhood. We examined event-related brain potentials (ERPs) during the silent production of regularly vs. irregularly inflected verb forms (viz. "-t" vs. "-n" participles of German) in groups of eight- to ten-year-olds, eleven- to…

  19. Cortical Brain Malformation and Learning Impairments Induced by Developmental Thyroid Hormone Insufficiency: A Cross-Fostering Study

    EPA Science Inventory

    Although it is clear that severe reductions in thyroid hormones (TH) during development alter brain structure and function, the impact of low level, timing, and duration of TH insufficiency is less well understood. We have previously reported the presence of a cortical heterotopi...

  20. Development of Relational Reasoning during Adolescence

    ERIC Educational Resources Information Center

    Dumontheil, Iroise; Houlton, Rachael; Christoff, Kalina; Blakemore, Sarah-Jayne

    2010-01-01

    Non-linear changes in behaviour and in brain activity during adolescent development have been reported in a variety of cognitive tasks. These developmental changes are often interpreted as being a consequence of changes in brain structure, including non-linear changes in grey matter volumes, which occur during adolescence. However, very few…

Top