Science.gov

Sample records for acquired functional magnetic

  1. Acquiring functional object knowledge through motor imagery?

    PubMed

    Paulus, Markus; van Elk, Michiel; Bekkering, Harold

    2012-04-01

    A widely investigated question in the research on the acquisition of novel functional object representations is the role of the action system. Whereas most studies so far have investigated the role of active action training on the acquisition of object representation, we investigated whether people are able to acquire object representations by just imagining the use of novel objects, given that previous findings suggested that executed and imagined actions share a common representational format. To this end, participants trained the use of novel objects in a motor imagery condition. Training comprised the particular grip applied to the objects and the objects' typical end location. Subsequently, participants' object representations were assessed by means of an object detection task. The results show that participants responded slower when the novel objects were presented at functionally incorrect end locations, indicating that the participants had acquired functional knowledge about object use. Yet, there was no effect of correct versus incorrect grip. Altogether, the findings suggest that motor imagery can facilitate the acquisition of novel object representations, but point also to differences between first-hand action training and training by imagery.

  2. Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Toronov, Vladislav; Webb, Andrew; Choi, Jee Hyun; Wolf, Martin; Safonova, Larisa; Wolf, Ursula; Gratton, Enrico

    2001-10-01

    The aim of our study was to explore the possibility of detecting hemodynamic changes in the brain using the phase of the intensity modulated optical signal. To obtain optical signals with the highest possible signal-to-noise ratio, we performed a series of simultaneous NIRS-fMRI measurements, with subsequent correlation of the time courses of both measurements. The cognitive paradigm used arithmetic calculations, with optical signals acquired with sensors placed on the forehead. Measurements were done on seven healthy subjects. In five subjects we demonstrated correlation between the hemodynamic signals obtained using NIRS and BOLD fMRI. In four subjects correlation was found for the hemodynamic signal obtained using the phase of the intensity modulated signal.

  3. Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging.

    PubMed

    Toronov, V; Webb, A; Choi, J H; Wolf, M; Safonova, L; Wolf, U; Gratton, E

    2001-10-01

    The aim of our study was to explore the possibility of detecting hemodynamic changes in the brain using the phase of the intensity modulated optical signal. To obtain optical signals with the highest possible signal-to-noise ratio, we performed a series of simultaneous NIRS-fMRI measurements, with subsequent correlation of the time courses of both measurements. The cognitive paradigm used arithmetic calculations, with optical signals acquired with sensors placed on the forehead. Measurements were done on seven healthy subjects. In five subjects we demonstrated correlation between the hemodynamic signals obtained using NIRS and BOLD fMRI. In four subjects correlation was found for the hemodynamic signal obtained using the phase of the intensity modulated signal.

  4. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  5. Functional magnetic microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Landel, Robert F. (Inventor)

    1981-01-01

    Functional magnetic particles are formed by dissolving a mucopolysaccharide such as chitosan in acidified aqueous solution containing a mixture of ferrous chloride and ferric chloride. As the pH of the solution is raised magnetite is formed in situ in the solution by raising the pH. The dissolved chitosan is a polyelectrolyte and forms micelles surrounding the granules at pH of 8-9. The chitosan precipitates on the granules to form microspheres containing the magnetic granules. On addition of the microspheres to waste aqueous streams containing dissolved ions, the hydroxyl and amine functionality of the chitosan forms chelates binding heavy metal cations such as lead, copper, and mercury and the chelates in turn bind anions such as nitrate, fluoride, phosphate and borate.

  6. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  7. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. PMID:27432660

  8. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks.

  9. Monocyte function in the acquired immune deficiency syndrome. Defective chemotaxis.

    PubMed Central

    Smith, P D; Ohura, K; Masur, H; Lane, H C; Fauci, A S; Wahl, S M

    1984-01-01

    The ineffective immune response in patients with the acquired immune deficiency syndrome (AIDS) contributes to severe and widespread infections and unrestricted growth by certain tumors. To determine whether monocyte dysfunction contributes to this immunosuppressed condition, we investigated monocyte chemotaxis in patients with AIDS. Using three different chemotactic stimuli, N-formylmethionylleucylphenylalanine, lymphocyte-derived chemotactic factor, and C5a des Arg, we studied the chemotactic responses of monocytes from seven homosexual men with AIDS, three homosexuals with lymphadenopathy and an abnormal immunological profile, seven healthy homosexual men, and 23 heterosexual control individuals. Monocytes from each of the AIDS patients with Kaposi's sarcoma and/or opportunistic infection exhibited a marked reduction in chemotaxis to all stimuli compared with the healthy control subjects. The reduced chemotactic responses were observed over a wide range of concentrations for each stimulus. Monocytes from AIDS patients who had clinically apparent opportunistic infection(s) exhibited a greater reduction in monocyte migration to all three stimuli than monocytes from the AIDS patient with only Kaposi's sarcoma. Monocytes from each of three homosexuals with lymphadenopathy and an abnormal immunological profile exhibited decreased chemotactic responses that were intermediate between those of the AIDS patients and the healthy heterosexual control subjects. In contrast to these findings, monocytes from each of seven healthy homosexuals exhibited normal chemotactic responses to the same stimuli. In addition, monocytes from AIDS patients exhibited reduced chemotaxis to soluble products of Giardia lamblia, one of several protozoan parasites prevalent in AIDS patients. Thus the immune abnormality in AIDS, previously thought to involve only the T-, B-, and natural killer lymphocytes, extends to the monocyte-macrophage. Defective monocyte migratory function may contribute to

  10. A measurement setup for acquiring the local magnetic properties of plastically deformed soft magnetic materials

    SciTech Connect

    Bi Shasha; Sutor, Alexander; Lerch, Reinhard; Xiao Yunshi

    2011-04-01

    This paper introduces a new measurement setup for extraction of the local magnetic properties. With the help of finite element method simulations, modifications are made on the previous double-C-yoke method. Small dimension measuring coils are applied in the stray field produced by the magnetic circuit to evaluate the local magnetic properties of the specified part of the specimen. Through the measurements with the plastically deformed materials at different temperatures, it indicates that the magnetic properties of soft magnetic materials are quite sensitive to plastic straining. After high-temperature thermal treatment on the plastically deformed specimen, the local magnetic properties exhibit an obvious recovery.

  11. Functional magnetic resonance imaging studies of language.

    PubMed

    Small, Steven L; Burton, Martha W

    2002-11-01

    Functional neuroimaging of language builds on almost 150 years of study in neurology, psychology, linguistics, anatomy, and physiology. In recent years, there has been an explosion of research using functional imaging technology, especially positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), to understand the relationship between brain mechanisms and language processing. These methods combine high-resolution anatomic images with measures of language-specific brain activity to reveal neural correlates of language processing. This article reviews some of what has been learned about the neuroanatomy of language from these imaging techniques. We first discuss the normal case, organizing the presentation according to the levels of language, encompassing words (lexicon), sound structure (phonemes), and sentences (syntax and semantics). Next, we delve into some unusual language processing circumstances, including second languages and sign languages. Finally, we discuss abnormal language processing, including developmental and acquired dyslexia and aphasia.

  12. Improving automatic analysis of the electrocardiogram acquired during magnetic resonance imaging using magnetic field gradient artefact suppression.

    PubMed

    Abächerli, Roger; Hornaff, Sven; Leber, Remo; Schmid, Hans-Jakob; Felblinger, Jacques

    2006-10-01

    The electrocardiogram (ECG) used for patient monitoring during magnetic resonance imaging (MRI) unfortunately suffers from severe artefacts. These artefacts are due to the special environment of the MRI. Modeling helped in finding solutions for the suppression of these artefacts superimposed on the ECG signal. After we validated the linear and time invariant model for the magnetic field gradient artefact generation, we applied offline and online filters for their suppression. Wiener filtering (offline) helped in generating reference annotations of the ECG beats. In online filtering, the least-mean-square filter suppressed the magnetic field gradient artefacts before the acquired ECG signal was input to the arrhythmia algorithm. Comparing the results of two runs (one run using online filtering and one run without) to our reference annotations, we found an eminent improvement in the arrhythmia module's performance, enabling reliable patient monitoring and MRI synchronization based on the ECG signal. PMID:17015063

  13. Magnetic Wood Achieving a Harmony between Magnetic and Woody Functions

    NASA Astrophysics Data System (ADS)

    Oka, Hideo

    Magnetic wood, which was first introduced and developed by the Oka group in 1991, achieves a good balance of both woody and magnetic functions through the active addition of magnetic characteristics to the wood itself. In addition to showing magnetic characteristics, this magnetic wood also offers a woody texture, low specific gravity, humidity control, acoustic absorption and is very easy to process.

  14. Lift outs: how to acquire a high-functioning team.

    PubMed

    Groysberg, Boris; Abrahams, Robin

    2006-12-01

    More and more, expanding companies are hiring high-functioning groups of people who have been working together effectively within one company and can rapidly come up to speed in a new environment. These lifted-out teams don't need to get acquainted with one another or to establish shared values, mutual accountability, or group norms; their long-standing relationships and trust help them make an impact very quickly. Of course, the process is not without risks: A failed lift out can lead to loss of money, opportunity, credibility, and even native talent. Boris Groysberg and Robin Abrahams studied more than 40 high-profile moves and interviewed team leaders in multiple industries and countries to examine the risks and opportunities that lift outs present. They concluded that, regardless of industry, nationality, or size of the team, a successful lift out unfolds over four consecutive, interdependent stages that must be meticulously managed. In the courtship stage, the hiring company and the leader of the targeted team determine whether the proposed move is, in fact, a good idea, and then define their business goals and discuss strategies. At the same time, the team leader discusses the potential move with the other members of his or her group to assess their level of interest and prepare them for the change. The second stage involves the integration of the team leader with the new company's top leadership. This part of the process ensures the team's access to senior executives-the most important factor in a lift out's success. Operational integration is the focus of the third stage. Ideally, teams will start out working with the same or similar clients, vendors, and industry standards. The fourth stage entails full cultural integration. To succeed, the lifted-out team members must be willing to re-earn credibility by proving their value and winning their new colleagues' trust.

  15. Lift outs: how to acquire a high-functioning team.

    PubMed

    Groysberg, Boris; Abrahams, Robin

    2006-12-01

    More and more, expanding companies are hiring high-functioning groups of people who have been working together effectively within one company and can rapidly come up to speed in a new environment. These lifted-out teams don't need to get acquainted with one another or to establish shared values, mutual accountability, or group norms; their long-standing relationships and trust help them make an impact very quickly. Of course, the process is not without risks: A failed lift out can lead to loss of money, opportunity, credibility, and even native talent. Boris Groysberg and Robin Abrahams studied more than 40 high-profile moves and interviewed team leaders in multiple industries and countries to examine the risks and opportunities that lift outs present. They concluded that, regardless of industry, nationality, or size of the team, a successful lift out unfolds over four consecutive, interdependent stages that must be meticulously managed. In the courtship stage, the hiring company and the leader of the targeted team determine whether the proposed move is, in fact, a good idea, and then define their business goals and discuss strategies. At the same time, the team leader discusses the potential move with the other members of his or her group to assess their level of interest and prepare them for the change. The second stage involves the integration of the team leader with the new company's top leadership. This part of the process ensures the team's access to senior executives-the most important factor in a lift out's success. Operational integration is the focus of the third stage. Ideally, teams will start out working with the same or similar clients, vendors, and industry standards. The fourth stage entails full cultural integration. To succeed, the lifted-out team members must be willing to re-earn credibility by proving their value and winning their new colleagues' trust. PMID:17183798

  16. Functional magnetic resonance imaging using RASER

    PubMed Central

    Goerke, Ute; Garwood, Michael; Ugurbil, Kamil

    2010-01-01

    Although functional imaging of neuronal activity by magnetic resonance imaging (fMRI) has become the primary methodology employed in studying the brain, significant portions of the brain are inaccessible by this methodology due to its sensitivity to macroscopic magnetic field inhomogeneities induced near air filled cavities in the head. In this paper, we demonstrate that this sensitivity is eliminated by a novel pulse sequence, RASER (rapid acquisition by sequential excitation and refocusing) (Chamberlain et al., 2007), that can generate functional maps. This is accomplished because RASER acquired signals are purely and perfectly T2 weighted, without any T2*-effects that are inherent in the other image acquisition schemes employed to date. T2-weighted fMRI sequences are also more specific to the site of neuronal activity at ultrahigh magnetic fields than T2*-variations since they are dominated by signal components originating from the tissue in the capillary bed. The RASER based fMRI response is quantified; it is shown to have inherently less noisy time series and to provide fMRI in brain regions, such as the orbitofrontal cortex, which are challenging to image with conventional techniques. PMID:20699123

  17. Human cord blood CD34+ progenitor cells acquire functional cardiac properties through a cell fusion process.

    PubMed

    Avitabile, Daniele; Crespi, Alessia; Brioschi, Chiara; Parente, Valeria; Toietta, Gabriele; Devanna, Paolo; Baruscotti, Mirko; Truffa, Silvia; Scavone, Angela; Rusconi, Francesca; Biondi, Andrea; D'Alessandra, Yuri; Vigna, Elisa; Difrancesco, Dario; Pesce, Maurizio; Capogrossi, Maurizio C; Barbuti, Andrea

    2011-05-01

    The efficacy of cardiac repair by stem cell administration relies on a successful functional integration of injected cells into the host myocardium. Safety concerns have been raised about the possibility that stem cells may induce foci of arrhythmia in the ischemic myocardium. In a previous work (36), we showed that human cord blood CD34(+) cells, when cocultured on neonatal mouse cardiomyocytes, exhibit excitation-contraction coupling features similar to those of cardiomyocytes, even though no human genes were upregulated. The aims of the present work are to investigate whether human CD34(+) cells, isolated after 1 wk of coculture with neonatal ventricular myocytes, possess molecular and functional properties of cardiomyocytes and to discriminate, using a reporter gene system, whether cardiac differentiation derives from a (trans)differentiation or a cell fusion process. Umbilical cord blood CD34(+) cells were isolated by a magnetic cell sorting method, transduced with a lentiviral vector carrying the enhanced green fluorescent protein (EGFP) gene, and seeded onto primary cultures of spontaneously beating rat neonatal cardiomyocytes. Cocultured EGFP(+)/CD34(+)-derived cells were analyzed for their electrophysiological features at different time points. After 1 wk in coculture, EGFP(+) cells, in contact with cardiomyocytes, were spontaneously contracting and had a maximum diastolic potential (MDP) of -53.1 mV, while those that remained isolated from the surrounding myocytes did not contract and had a depolarized resting potential of -11.4 mV. Cells were then resuspended and cultured at low density to identify EGFP(+) progenitor cell derivatives. Under these conditions, we observed single EGFP(+) beating cells that had acquired an hyperpolarization-activated current typical of neonatal cardiomyocytes (EGFP(+) cells, -2.24 ± 0.89 pA/pF; myocytes, -1.99 ± 0.63 pA/pF, at -125 mV). To discriminate between cell autonomous differentiation and fusion, EGFP(+)/CD34

  18. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    ERIC Educational Resources Information Center

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  19. Functionalization of whole‐cell bacterial reporters with magnetic nanoparticles

    PubMed Central

    Zhang, Dayi; Fakhrullin, Rawil F.; Özmen, Mustafa; Wang, Hui; Wang, Jian; Paunov, Vesselin N.; Li, Guanghe; Huang, Wei E.

    2011-01-01

    Summary We developed a biocompatible and highly efficient approach for functionalization of bacterial cell wall with magnetic nanoparticles (MNPs). Three Acinetobacter baylyi ADP1 chromosomally based bioreporters, which were genetically engineered to express bioluminescence in response to salicylate, toluene/xylene and alkanes, were functionalized with 18 ± 3 nm iron oxide MNPs to acquire magnetic function. The efficiency of MNPs functionalization of Acinetobacter bioreporters was 99.96 ± 0.01%. The MNPs‐functionalized bioreporters (MFBs) can be remotely controlled and collected by an external magnetic field. The MFBs were all viable and functional as good as the native cells in terms of sensitivity, specificity and quantitative response. More importantly, we demonstrated that salicylate sensing MFBs can be applied to sediments and garden soils, and semi‐quantitatively detect salicylate in those samples by discriminably recovering MFBs with a permanent magnet. The magnetically functionalized cells are especially useful to complex environments in which the indigenous cells, particles and impurities may interfere with direct measurement of bioreporter cells and conventional filtration is not applicable to distinguish and harvest bioreporters. The approach described here provides a powerful tool to remotely control and selectively manipulate MNPs‐functionalized cells in water and soils. It would have a potential in the application of environmental microbiology, such as bioremediation enhancement and environment monitoring and assessment. PMID:21255376

  20. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  1. A cascade reaction network mimicking the basic functional steps of acquired immune response

    PubMed Central

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-01-01

    Biological systems use complex ‘information processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS which we call Adaptive Immune Response Simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system which responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner which is superficially similar to the most basic responses of the vertebrate acquired immune system, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices. PMID:26391084

  2. Magnetic fields and density functional theory

    SciTech Connect

    Salsbury Jr., Freddie

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  3. Acquired Phototrophy through Retention of Functional Chloroplasts Increases Growth Efficiency of the Sea Slug Elysia viridis

    PubMed Central

    Baumgartner, Finn A.; Pavia, Henrik; Toth, Gunilla B.

    2015-01-01

    Photosynthesis is a fundamental process sustaining heterotrophic organisms at all trophic levels. Some mixotrophs can retain functional chloroplasts from food (kleptoplasty), and it is hypothesized that carbon acquired through kleptoplasty may enhance trophic energy transfer through increased host growth efficiency. Sacoglossan sea slugs are the only known metazoans capable of kleptoplasty, but the relative fitness contributions of heterotrophy through grazing, and phototrophy via kleptoplasts, are not well understood. Fitness benefits (i.e. increased survival or growth) of kleptoplasty in sacoglossans are commonly studied in ecologically unrealistic conditions under extended periods of complete darkness and/or starvation. We compared the growth efficiency of the sacoglossan Elysia viridis with access to algal diets providing kleptoplasts of differing functionality under ecologically relevant light conditions. Individuals fed Codium fragile, which provide highly functional kleptoplasts, nearly doubled their growth efficiency under high compared to low light. In contrast, individuals fed Cladophora rupestris, which provided kleptoplasts of limited functionality, showed no difference in growth efficiency between light treatments. Slugs feeding on Codium, but not on Cladophora, showed higher relative electron transport rates (rETR) in high compared to low light. Furthermore, there were no differences in the consumption rates of the slugs between different light treatments, and only small differences in nutritional traits of algal diets, indicating that the increased growth efficiency of E. viridis feeding on Codium was due to retention of functional kleptoplasts. Our results show that functional kleptoplasts from Codium can provide sacoglossan sea slugs with fitness advantages through photosynthesis. PMID:25830355

  4. Impairment of polymorphonuclear leucocyte function in patients with acquired immunodeficiency syndrome and with lymphadenopathy syndrome.

    PubMed Central

    Lazzarin, A; Uberti Foppa, C; Galli, M; Mantovani, A; Poli, G; Franzetti, F; Nóvati, R

    1986-01-01

    Granulocyte functions were studied in 20 patients with acquired immunodeficiency syndrome (AIDS), 20 subjects with lymphadenopathy syndrome (LAS) and 15 symptom-free drug addicts (SFDA). Polymorphonuclear leucocyte (PMNL) phagocytosis and killing of C. albicans appeared normal in homosexual men with AIDS, while drug addicts with AIDS or LAS and SFDA showed a significant defect of these functions as compared to healthy controls. Migration of PMNL in response to a chemoattractant was normal in SFDA, but markedly defective both in LAS and in AIDS patients. In the AIDS group no significant differences were evident between homosexual men and drug addicts. We conclude that defective PMNL phagocytosis and killing, unlike defective migration, are somehow related to drug abuse rather than to infection with the causative agent of the immunodeficiency. PMID:3791696

  5. Magnetic Anisotropy in Functionalized Bipyridyl Cryptates.

    PubMed

    Kreidt, Elisabeth; Bischof, Caroline; Platas-Iglesias, Carlos; Seitz, Michael

    2016-06-01

    The magnetic properties of molecular lanthanoid complexes are very important for a variety of scientific and technological applications, with the unique magnetic anisotropy being one of the most important features. In this context, a very rigid tris(bipyridine) cryptand was synthesized with a primary amine functionality for future bioconjugation. The magnetic anisotropy was investigated for the corresponding paramagnetic ytterbium cryptate. With the use of a combination of density functional theory calculations and lanthanoid-induced NMR shift analysis, the magnetic susceptibility tensor was determined and compared to the unfunctionalized cryptate analogue. The size and orientation of the axial and rhombic tensor components show remarkably great resilience toward the decrease of local symmetry around the metal and anion exchange in the inner coordination sphere. In addition, the functionalized ytterbium cryptate also exhibits efficient near-IR luminescence. PMID:27214575

  6. Intrinsic Functional Connectivity Patterns Predict Consciousness Level and Recovery Outcome in Acquired Brain Injury

    PubMed Central

    Wu, Xuehai; Zou, Qihong; Hu, Jin; Tang, Weijun; Mao, Ying; Gao, Liang; Zhu, Jianhong; Jin, Yi; Wu, Xin; Lu, Lu; Zhang, Yaojun; Zhang, Yao; Dai, Zhengjia; Gao, Jia-Hong; Weng, Xuchu; Northoff, Georg; Giacino, Joseph T.; He, Yong

    2015-01-01

    For accurate diagnosis and prognostic prediction of acquired brain injury (ABI), it is crucial to understand the neurobiological mechanisms underlying loss of consciousness. However, there is no consensus on which regions and networks act as biomarkers for consciousness level and recovery outcome in ABI. Using resting-state fMRI, we assessed intrinsic functional connectivity strength (FCS) of whole-brain networks in a large sample of 99 ABI patients with varying degrees of consciousness loss (including fully preserved consciousness state, minimally conscious state, unresponsive wakefulness syndrome/vegetative state, and coma) and 34 healthy control subjects. Consciousness level was evaluated using the Glasgow Coma Scale and Coma Recovery Scale-Revised on the day of fMRI scanning; recovery outcome was assessed using the Glasgow Outcome Scale 3 months after the fMRI scanning. One-way ANOVA of FCS, Spearman correlation analyses between FCS and the consciousness level and recovery outcome, and FCS-based multivariate pattern analysis were performed. We found decreased FCS with loss of consciousness primarily distributed in the posterior cingulate cortex/precuneus (PCC/PCU), medial prefrontal cortex, and lateral parietal cortex. The FCS values of these regions were significantly correlated with consciousness level and recovery outcome. Multivariate support vector machine discrimination analysis revealed that the FCS patterns predicted whether patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%, and the most discriminative region was the PCC/PCU. These findings suggest that intrinsic functional connectivity patterns of the human posteromedial cortex could serve as a potential indicator for consciousness level and recovery outcome in individuals with ABI. SIGNIFICANCE STATEMENT Varying degrees of consciousness loss and recovery are commonly observed in acquired brain injury patients, yet the

  7. Functional characterization and phylogenetic analysis of acquired and intrinsic macrolide phosphotransferases in the Bacillus cereus group.

    PubMed

    Wang, Chao; Sui, Zhihai; Leclercq, Sébastien Olivier; Zhang, Gang; Zhao, Meilin; Chen, Weiqi; Feng, Jie

    2015-05-01

    The Bacillus cereus group is composed of Gram-positive spore-forming bacteria of clinical and ecological importance. More than 200 B. cereus group isolates have been sequenced. However, there are few reports of B. cereus group antibiotic resistance genes. This study identified two functional classes of macrolide phosphotransferases (Mphs) in the B. cereus group. Cluster A Mphs inactivate 14- and 15-membered macrolides while Cluster B Mphs inactivate 14-, 15- and 16-membered compounds. The genomic region surrounding the Cluster B Mph gene is related to various plasmid sequences, suggesting that this gene is an acquired resistance gene. In contrast, the Cluster A Mph gene is located in a chromosomal region conserved among all B. cereus group isolates, and data indicated that it was acquired early in the evolution of the group. Therefore, the Cluster A gene can be considered an intrinsic resistance gene. However, the gene itself is not present in all strains and our comparative genomics analyses showed that it is exchanged among strains of the B. cereus group by the mean of homologous recombination. These results provide an alternative mechanism to intrinsic resistance.

  8. Functional Nanomaterials Useful for Magnetic Refrigeration Systems

    NASA Astrophysics Data System (ADS)

    Aslani, Amir

    Magnetic refrigeration is an emerging energy efficient and environmentally friendly refrigeration technology. The principle of magnetic refrigeration is based on the effect of varying a magnetic field on the temperature change of a magnetocaloric material (refrigerant). By applying a magnetic field, the magnetic moments of a magnetic material tend to align parallel to it, and the thermal energy released in this process heats the material. Reversibly, the magnetic moments become randomly oriented when the magnetic field is removed, and the material cools down. The heating and the cooling of a refrigerant in response to a changing magnetic field is similar to the heating and the cooling of a gaseous medium in response to an adiabatic compression and expansion in a conventional refrigeration system. One requirement to make a practical magnetic refrigerator is to have a large temperature change per unit of applied magnetic field, with sufficiently wide operating temperature. So far, no commercially viable magnetic refrigerator has been built primarily due to the low temperature change of bulk refrigerants, the added burden of hysteresis, and the system's low cooling capacity. The purpose of this dissertation is to explore magnetic refrigeration system. First, the Active Magnetic Regenerator (AMR) system built by Shir et al at the GWU's Institute for Magnetics Research (IMR) is optimized by tuning the heat transfer medium parameters and system's operating conditions. Next, by reviewing literature and works done so far on refrigerants, a number of materials that may be suitable to be used in magnetic refrigeration technology were identified. Theoretical work by Bennett et al showed an enhancement in magnetocaloric effect of magnetic nanoparticles. Research was performed on functional magnetic nanoparticles and their use in magnetic refrigeration technology. Different aspects such as the size, shape, chemical composition, structure and interaction of the nanoparticle with

  9. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  10. Functionalized magnetic nanoparticle analyte sensor

    DOEpatents

    Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

    2014-03-25

    A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

  11. Making Sense of Real-Time Functional Magnetic Resonance Imaging (rtfMRI) and rtfMRI Neurofeedback

    PubMed Central

    2015-01-01

    This review explains the mechanism of functional magnetic resonance imaging in general and specifically introduces real-time functional magnetic resonance imaging as a method for training self-regulation of brain activity. Using real-time functional magnetic resonance imaging neurofeedback, participants can acquire control over their own brain activity. In patients with neuropsychiatric disorders, this control can potentially have therapeutic implications. In this review, the technical requirements are presented and potential applications and limitations are discussed. PMID:25716778

  12. Making sense of real-time functional magnetic resonance imaging (rtfMRI) and rtfMRI neurofeedback.

    PubMed

    Brühl, Annette B

    2015-02-25

    This review explains the mechanism of functional magnetic resonance imaging in general and specifically introduces real-time functional magnetic resonance imaging as a method for training self-regulation of brain activity. Using real-time functional magnetic resonance imaging neurofeedback, participants can acquire control over their own brain activity. In patients with neuropsychiatric disorders, this control can potentially have therapeutic implications. In this review, the technical requirements are presented and potential applications and limitations are discussed.

  13. Dissipation function in a magnetic field (Review)

    NASA Astrophysics Data System (ADS)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  14. Increasing functional rehabilitation in acquired brain injury treatment: effective applications of behavioural principles.

    PubMed

    Guercio, John; Davis, Paula; Faw, Gerry; McMorrow, Martin; Ori, Lindsay; Berkowitz, Brooke; Nigra, Megan

    2002-10-01

    This paper investigated ways to increase the participation of direct care staff in the functional rehabilitation activities (FRAs) of adults with acquired brain injuries (ABIs). FRAs were rehabilitation agendas written by clinical staff for delivery by paraprofessionals. Increases in FRA completion were believed to be directly related to clinical success. These FRAs had been identified as key components in the rehabilitation programmes of the adults living within the residential facilities. Increases in FRAs were crucial in improving the quality of the rehabilitation programmes of the participants involved. The study observed four residential settings serving adults with ABIs using a multiple baseline design. The treatment approach consisted of public posting of weekly FRA documentation, incorporation of staff input, and reinforcement for documentation of FRAs. The results indicated a positive impact on the participation of staff in all of the residences in the study, consistent with implementation of the treatment package. PMID:12418998

  15. Discovery of functional genes for systemic acquired resistance in Arabidopsis thaliana through integrated data mining.

    PubMed

    Pan, Youlian; Pylatuik, Jeffrey D; Ouyang, Junjun; Famili, A Fazel; Fobert, Pierre R

    2004-12-01

    Various data mining techniques combined with sequence motif information in the promoter region of genes were applied to discover functional genes that are involved in the defense mechanism of systemic acquired resistance (SAR) in Arabidopsis thaliana. A series of K-Means clustering with difference-in-shape as distance measure was initially applied. A stability measure was used to validate this clustering process. A decision tree algorithm with the discover-and-mask technique was used to identify a group of most informative genes. Appearance and abundance of various transcription factor binding sites in the promoter region of the genes were studied. Through the combination of these techniques, we were able to identify 24 candidate genes involved in the SAR defense mechanism. The candidate genes fell into 2 highly resolved categories, each category showing significantly unique profiles of regulatory elements in their promoter regions. This study demonstrates the strength of such integration methods and suggests a broader application of this approach.

  16. Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition

    PubMed Central

    Muir, Amanda B.; Dods, Kara; Noah, Yuli; Toltzis, Sarit; Chandramouleeswaran, Prasanna Modayur; Lee, Anna; Benitez, Alain; Bedenbaugh, Adam; Falk, Gary W.; Wells, Rebecca G.; Nakagawa, Hiroshi; Wang, Mei-Lun

    2015-01-01

    Background and Aims Eosinophilic esophagitis (EoE) is an allergic inflammatory disease that leads to esophageal fibrosis and stricture. We have recently shown that in EoE, esophageal epithelial cells undergo an epithelial to mesenchymal transition (EMT), characterized by gain of mesenchymal markers and loss of epithelial gene expression. Whether epithelial cells exposed to profibrotic cytokines can also acquire the functional characteristics of activated myofibroblasts, including migration, contraction, and extracellular matrix deposition, is relevant to our understanding and treatment of EoE-associated fibrogenesis. In the current study, we characterize cell migration, contraction, and collagen production by esophageal epithelial cells that have undergone cytokine-induced EMT in vitro. Methods and Results Stimulation of human non-transformed immortalized esophageal epithelial cells (EPC2-hTERT) with profibrotic cytokines TNFα, TGFβ, and IL1β for three weeks led to acquisition of mesenchymal αSMA and vimentin, and loss of epithelial E-cadherin expression. Upon removal of the profibrotic stimulus, epithelial characteristics were partially rescued. TGFβ stimulation had a robust effect upon epithelial collagen production. Surprisingly, TNFα stimulation had the most potent effect upon cell migration and contraction, exceeding the effects of the prototypical profibrotic cytokine TGFβ. IL1β stimulation alone had minimal effect upon esophageal epithelial migration, contraction, and collagen production. Conclusions Esophageal epithelial cells that have undergone EMT acquire functional characteristics of activated myofibroblasts in vitro. Profibrotic cytokines exert differential effects upon esophageal epithelial cells, underscoring complexities of fibrogenesis in EoE, and implicating esophageal epithelial cells as effector cells in EoE-associated fibrogenesis. PMID:25183431

  17. Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury.

    PubMed

    Castellanos, Nazareth P; Paúl, Nuria; Ordóñez, Victoria E; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomás; del-Pozo, Francisco; Maestú, Fernando

    2010-08-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on functional connectivity patterns. Networks were calculated from resting-state magnetoencephalographic recordings from 15 brain injured patients and 14 healthy controls by means of wavelet coherence in standard frequency bands. We compared the parameters defining the network, such as number and strength of interactions as well as their topology, in controls and patients for two conditions: following a traumatic brain injury and after a rehabilitation treatment. A loss of delta- and theta-based connectivity and conversely an increase in alpha- and beta-band-based connectivity were found. Furthermore, connectivity parameters approached controls in all frequency bands, especially in slow-wave bands. A correlation between network reorganization and cognitive recovery was found: the reduction of delta-band-based connections and the increment of those based on alpha band correlated with Verbal Fluency scores, as well as Perceptual Organization and Working Memory Indexes, respectively. Additionally, changes in connectivity values based on theta and beta bands correlated with the Patient Competency Rating Scale. The current study provides new evidence of the neurophysiological mechanisms underlying neuronal plasticity processes after brain injury, and suggests that these changes are related with observed changes at the behavioural level.

  18. Optimization of multiply acquired magnetic flux density B(z) using ICNE-Multiecho train in MREIT.

    PubMed

    Nam, Hyun Soo; Kwon, Oh In

    2010-05-01

    The aim of magnetic resonance electrical impedance tomography (MREIT) is to visualize the electrical properties, conductivity or current density of an object by injection of current. Recently, the prolonged data acquisition time when using the injected current nonlinear encoding (ICNE) method has been advantageous for measurement of magnetic flux density data, Bz, for MREIT in the signal-to-noise ratio (SNR). However, the ICNE method results in undesirable side artifacts, such as blurring, chemical shift and phase artifacts, due to the long data acquisition under an inhomogeneous static field. In this paper, we apply the ICNE method to a gradient and spin echo (GRASE) multi-echo train pulse sequence in order to provide the multiple k-space lines during a single RF pulse period. We analyze the SNR of the measured multiple B(z) data using the proposed ICNE-Multiecho MR pulse sequence. By determining a weighting factor for B(z) data in each of the echoes, an optimized inversion formula for the magnetic flux density data is proposed for the ICNE-Multiecho MR sequence. Using the ICNE-Multiecho method, the quality of the measured magnetic flux density is considerably increased by the injection of a long current through the echo train length and by optimization of the voxel-by-voxel noise level of the B(z) value. Agarose-gel phantom experiments have demonstrated fewer artifacts and a better SNR using the ICNE-Multiecho method. Experimenting with the brain of an anesthetized dog, we collected valuable echoes by taking into account the noise level of each of the echoes and determined B(z) data by determining optimized weighting factors for the multiply acquired magnetic flux density data.

  19. Magnetic spectroscopy and microscopy of functional materials

    SciTech Connect

    Jenkins, Catherine Ann

    2011-05-01

    Heusler intermetallics Mn2Y Ga and X2MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X2MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn2Y Ga to the logical Mn3Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co2FeSi (Appendix B).

  20. Association between muscle hydration measures acquired using bioelectrical impedance spectroscopy and magnetic resonance imaging in healthy and hemodialysis population

    PubMed Central

    Sawant, Anuradha; House, Andrew A.; Chesworth, Bert M.; Connelly, Denise M.; Lindsay, Robert; Gati, Joe; Bartha, Robert; Overend, Tom J.

    2015-01-01

    Abstract Establishing the effect of fluctuating extracellular fluid (ECF) volume on muscle strength in people with end‐stage renal disease (ESRD) on hemodialysis (HD) is essential, as inadequate hydration of the skeletal muscles impacts its strength and endurance. Bioelectrical impedance spectroscopy (BIS) has been a widely used method for estimating ECF volume of a limb or calf segment. Magnetic resonance imaging (MRI)‐acquired transverse relaxation times (T2) has also been used for estimating ECF volumes of individual skeletal muscles. The purpose of this study was to determine the association between T2 (gold standard) of tibialis anterior (TA), medial (MG), and lateral gastrocnemius (LG), and soleus muscles and calf BIS ECF, in healthy and in people with ESRD/HD. Calf BIS and MRI measures were collected on two occasions before and after HD session in people with ESRD/HD and on a single occasion for the healthy participants. Linear regression analysis was used to establish the association between these measures. Thirty‐two healthy and 22 participants on HD were recruited. The association between T2 of TA, LG, MG, and soleus muscles and ratio of calf BIS‐acquired ECF and intracellular fluids (ICF) were: TA: β = 0.30, P > 0.05; LG: β = 0.37, P = 0.035; MG: β = 0.43, P = 0.014; soleus: β = 0.60, P < 0.001. For the HD group, calf ECF was significantly associated with T2 of TA (β = 0.44, P = 0.042), and medial gastrocnemius (β = 0.47, P = 0.027) following HD only. Hence BIS‐acquired measures cannot be used to measure ECF volumes of a single muscle in the ESRD/HD population; however, BIS could be utilized to estimate ratio of ECF: ICF in healthy population for the LG, MG, and soleus muscles. PMID:25626863

  1. Myocardial iron overload assessment by T2* magnetic resonance imaging in adult transfusion dependent patients with acquired anemias.

    PubMed

    Di Tucci, Anna Angela; Matta, Gildo; Deplano, Simona; Gabbas, Attilio; Depau, Cristina; Derudas, Daniele; Caocci, Giovanni; Agus, Annalisa; Angelucci, Emanuele

    2008-09-01

    Only limited data are available regarding myocardial iron overload in adult patients with transfusion dependent acquired anemias. To address this topic using MRI T2* we studied 27 consecutive chronic transfusion dependent patients with acquired anemias: (22 myelodysplastic syndrome, 5 primary myelofibrosis). Cardiac MRI T2* values obtained ranged from 5.6 to 58.7 (median value 39.8) milliseconds. Of the 24 analyzable patients, cardiac T2* correlated with transfusion burden (p=0.0002). No patient who had received less than 290 mL/kg of packed red blood cells (101 units=20 grams of iron) had a pathological cardiac T2* value (< 20 ms). All patients who had received at least 24 PRBC units showed MRI T2* detectable hepatic iron (liver T2* value magnetic resonance imaging provides a rapid and reproducible method for detecting myocardial iron overload which developed after a heavy transfusion burden equal to or greater than 290 mL/kg of packed red blood cell units. PMID:18603557

  2. Initial Sensorimotor and Cardiovascular Data Acquired from Soyuz Landings: Establishing a Functional Performance Recovery Time Constant

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskaya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Lee, S. M. C.; Wood, S. J.; Mulavara, A. P.; Feiveson, A. H.; Fisher, E. A.

    2015-01-01

    testing (quiet stance sway) as well as cardiovascular responses during sensorimotor testing on all of the above measures. We have also collected motion sickness data associated with each of the postflight tests. When possible rudimentary cerebellar assessment was undertaken. In addition to the immediate post-landing collection of data, postflight data has been acquired twice more within 24 hours after landing and measurements continue until sensorimotor and cardiovascular responses have returned to preflight normative values (approximately 60 days postflight). SUMMARY The level of functional deficit observed in the crew tested to date is more severe than expected, clearly triggered by the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiologic data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers for exploration missions where the crew will be unassisted after landing. Overall, these early functional and related physiologic measurements will allow the estimation of nonlinear sensorimotor and cardiovascular recovery trends that have not been previously captured.

  3. Magnetic resonance imaging depiction of acquired Dyke-Davidoff-Masson syndrome with crossed cerebro-cerebellar diaschisis: Report of two cases.

    PubMed

    Gupta, Ranjana; Joshi, Sandeep; Mittal, Amit; Luthra, Ishita; Mittal, Puneet; Verma, Vibha

    2015-01-01

    Acquired Dyke-Davidoff-Masson syndrome, also known as hemispheric atrophy, is characterized by loss of volume of one cerebral hemisphere from an insult in early life. Crossed cerebellar diaschisis refers to dysfunction/atrophy of cerebellar hemisphere which is secondary to contralateral supratentorial insult. We describe magnetic resonance imaging findings in two cases of acquired Dyke-Davidoff-Masson syndrome with crossed cerebro-cerebellar diaschisis.

  4. Capable of Suicide: A Functional Model of the Acquired Capability Component of the Interpersonal-Psychological Theory of Suicide

    PubMed Central

    Smith, Phillip N.; Cukrowicz, Kelly C.

    2016-01-01

    The current review aims to present a functional model of the acquired capability for suicide; a component of Joiner’s (2005) Interpersonal-Psychological Theory of Suicide. This review is aimed at integrating the points discussed by Joiner into a unified and specific conceptualization of acquired capability. Additionally, we offer some points of elaboration; such as the interaction between specific diatheses with life events, the role of short-term bolstering of the capability for suicide, and how contextual factors moderate the experience of painful and provocative life events; thereby leading to fearlessness and pain insensitivity to the actions and ideas involved in suicide. PMID:20560748

  5. Simulating functional magnetic materials on supercomputers.

    PubMed

    Gruner, Markus Ernst; Entel, Peter

    2009-07-22

    The recent passing of the petaflop per second landmark by the Roadrunner project at the Los Alamos National Laboratory marks a preliminary peak of an impressive world-wide development in the high-performance scientific computing sector. Also, purely academic state-of-the-art supercomputers such as the IBM Blue Gene/P at Forschungszentrum Jülich allow us nowadays to investigate large systems of the order of 10(3) spin polarized transition metal atoms by means of density functional theory. Three applications will be presented where large-scale ab initio calculations contribute to the understanding of key properties emerging from a close interrelation between structure and magnetism. The first two examples discuss the size dependent evolution of equilibrium structural motifs in elementary iron and binary Fe-Pt and Co-Pt transition metal nanoparticles, which are currently discussed as promising candidates for ultra-high-density magnetic data storage media. However, the preference for multiply twinned morphologies at smaller cluster sizes counteracts the formation of a single-crystalline L1(0) phase, which alone provides the required hard magnetic properties. The third application is concerned with the magnetic shape memory effect in the Ni-Mn-Ga Heusler alloy, which is a technologically relevant candidate for magnetomechanical actuators and sensors. In this material strains of up to 10% can be induced by external magnetic fields due to the field induced shifting of martensitic twin boundaries, requiring an extremely high mobility of the martensitic twin boundaries, but also the selection of the appropriate martensitic structure from the rich phase diagram.

  6. Covariant density functional theory for magnetic rotation

    NASA Astrophysics Data System (ADS)

    Peng, J.; Meng, J.; Ring, P.; Zhang, S. Q.

    2008-08-01

    The tilted axis cranking formalism is implemented in relativistic mean field (RMF) theory. It is used for a microscopic description of magnetic rotation in the framework of covariant density functional theory. We assume that the rotational axis is in the xz plane and consider systems with the two symmetries P (space reflection) and PyT (a combination of a reflection in the y direction and time reversal). A computer code based on these symmetries is developed, and first applications are discussed for the nucleus Gd142: the rotational band based on the configuration πh11/22⊗νh11/2-2 is investigated in a fully microscopic and self-consistent way. The results are compared with available data, such as spectra and electromagnetic transition ratios B(M1)/B(E2). The relation between rotational velocity and angular momentum are discussed in detail together with the shears mechanism characteristic of magnetic rotation.

  7. Dynamic magnetic resonance imaging of endoscopic third ventriculostomy patency with differently acquired fast imaging with steady-state precession sequences.

    PubMed

    Lucic, Milos A; Koprivsek, Katarina; Kozic, Dusko; Spero, Martina; Spirovski, Milena; Lucic, Silvija

    2014-08-16

    The aim of the study was to determine the possibilities of two differently acquired two-dimensional fast imaging with steady-state precession (FISP 2D) magnetic resonance sequences in estimation of the third ventricle floor fenestration patency after endoscopic third ventriculostomy (ETV) in the subjects with aqueductal stenosis/obstruction.Fifty eight subjects (37 males, 21 females, mean age 27 years) with previously successfully performed ETV underwent brain MRI on 1.5T MR imager 3-6 months after the procedure. Two different FISP 2D sequences (one included in the standard vendor provided software package, and the other, experimentally developed by our team) were performed respectively at two fixed slice positions: midsagittal and perpendicular to the ETV fenestration, and displayed in a closed-loop cinematographic format in order to estimate the patency. The ventricular volume reduction has been observed as well.Cerebrospinal fluid (CSF) flow through the ETV fenestration was observed in midsagittal plane with both FISP 2D sequences in 93.11% subjects, while in 6.89% subjects the dynamic CSF flow MRI was inconclusive. In the perpendicular plane CSF flow through the ETV fenestration was visible only by use of experimentally developed FISP 2D (TR30/FA70) sequence. Postoperative volume reduction of lateral and third ventricle was detected in 67.24% subjects.Though both FISP 2D sequences acquired in midsagittal plane may be used to estimate the effects of performed ETV, due to achieved higher CSF pulsatile flow sensitivity, only the use of FISP 2D (TR30/FA70) sequence enables the estimation of the treatment effect in perpendicular plane in the absence of phase-contrast sequences. 

  8. Functions of innate and acquired immune system are reduced in domestic pigeons (Columba livia domestica) given a low protein diet

    PubMed Central

    Mabuchi, Yuko; Frankel, Theresa L.

    2016-01-01

    Racing pigeons are exposed to and act as carriers of diseases. Dietary protein requirement for their maintenance has not been determined experimentally despite their being domesticated for over 7000 years. A maintenance nitrogen (protein) requirement (MNR) for pigeons was determined in a balance study using diets containing 6, 10 and 14% crude protein (CP). Then, the effects of feeding the diets were investigated to determine whether they were adequate to sustain innate and acquired immune functions. Nitrogen intake from the 6% CP diet was sufficient to maintain nitrogen balance and body weight in pigeons. However, the immune functions of phagocytosis, oxidative burst and lymphocyte proliferation in pigeons fed this diet were reduced compared with those fed 10 and 14% CP diets. Pigeons given the 6 and 10% CP diets had lower antibody titres following inoculation against Newcastle disease (ND) than those on the 14% CP diet. A confounding factor found on autopsy was the presence of intestinal parasites in some of the pigeons given the 6 and 10% CP diets; however, none of the pigeons used to measure MNR or acquired immunity to ND were infested with parasites. In conclusion, neither the 6 nor 10% CP diets adequately sustained acquired immune function of pigeons. PMID:27069640

  9. Functions of innate and acquired immune system are reduced in domestic pigeons (Columba livia domestica) given a low protein diet.

    PubMed

    Mabuchi, Yuko; Frankel, Theresa L

    2016-03-01

    Racing pigeons are exposed to and act as carriers of diseases. Dietary protein requirement for their maintenance has not been determined experimentally despite their being domesticated for over 7000 years. A maintenance nitrogen (protein) requirement (MNR) for pigeons was determined in a balance study using diets containing 6, 10 and 14% crude protein (CP). Then, the effects of feeding the diets were investigated to determine whether they were adequate to sustain innate and acquired immune functions. Nitrogen intake from the 6% CP diet was sufficient to maintain nitrogen balance and body weight in pigeons. However, the immune functions of phagocytosis, oxidative burst and lymphocyte proliferation in pigeons fed this diet were reduced compared with those fed 10 and 14% CP diets. Pigeons given the 6 and 10% CP diets had lower antibody titres following inoculation against Newcastle disease (ND) than those on the 14% CP diet. A confounding factor found on autopsy was the presence of intestinal parasites in some of the pigeons given the 6 and 10% CP diets; however, none of the pigeons used to measure MNR or acquired immunity to ND were infested with parasites. In conclusion, neither the 6 nor 10% CP diets adequately sustained acquired immune function of pigeons.

  10. Functionalized magnetic nanoparticles: A novel heterogeneous catalyst support

    EPA Science Inventory

    Functionalized magnetic nanoparticles have emerged as viable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. Post-synthetic surface modification protocol for magnetic nanoparticles has been developed that imparts desirable che...

  11. Clinicoepidemiological Observational Study of Acquired Alopecias in Females Correlating with Anemia and Thyroid Function

    PubMed Central

    Deo, Kirti; Sharma, Yugal K.; Wadhokar, Meenakshi; Tyagi, Neha

    2016-01-01

    Alopecia can either be inherited or acquired; the latter, more common, can be diffuse, patterned, and focal, each having cicatricial and noncicatricial forms. This observational study of 135 cases in a semiurban Indian population aimed to detect the prevalence of various forms of acquired alopecia in females and correlate the same with levels of hemoglobin, serum ferritin, triiodothyronine, thyroxin, and thyroid stimulating hormone. The majority (84, 62.2%) of our cases of alopecia had telogen effluvium followed by female pattern alopecia (32, 23.7%). Stress (86, 63.7%), topical application of chemicals (72, 53.3%), systemic medications for concurrent illnesses (62, 5%), and pregnancy (14, 10.3%) were the common exacerbating factors. Neither low hemoglobin (<12 gm%, 73.4%) nor low serum ferritin (<12 μg/L, 6.7%) was found to be statistically significant. A majority (90, 90.9%) of 99 cases with anemia (hemoglobin levels of <12 gm%) had serum ferritin levels >12 μg/L. Though lack of vitamin B12 testing was a limitation of our study, its deficiency could be the probable cause of iron deficiency as the majority (58, 64.4%) of these cases, as indeed majority (89, 65.4%) of our study population, were vegetarians. Thyroid disorders (23, 17%, including 9 newly diagnosed) were not of significance statistically. PMID:26904106

  12. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  13. Acoustic noise during functional magnetic resonance imaging.

    PubMed

    Ravicz, M E; Melcher, J R; Kiang, N Y

    2000-10-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  14. Functionalization of magnetic nanowires by charged biopolymers.

    PubMed

    Magnin, D; Callegari, V; Mátéfi-Tempfli, S; Mátéfi-Tempfli, M; Glinel, K; Jonas, A M; Demoustier-Champagne, S

    2008-09-01

    We report on a facile method for the preparation of biocompatible and bioactive magnetic nanowires. The method consists of the direct deposition of polysaccharides by layer-by-layer (LbL) assembly onto a brush of metallic nanowires obtained by electrodeposition of the metal within the nanopores of an alumina template supported on a silicon wafer. Carboxymethylpullulan (CMP) and chitosan (CHI) multilayers were grown on brushes of Ni nanowires; subsequent grafting of an enzyme was performed by conjugating free amine side groups of chitosan with carboxylic groups of the enzyme. The nanowires are finally released by a gentle ultrasonic treatment. Transmission electron microscopy, electron energy-dispersive loss spectroscopy, and x-ray photoelectron spectroscopy indicate the formation of an homogeneous coating onto the nickel nanowires when one, two, or three CMP/CHI bilayers are deposited. This easy and efficient route to the biochemical functionalization of magnetic nanowires could find widespread use for the preparation of a broad range of nanowires with tailored surface properties. PMID:18715031

  15. Facile Surface Functionalization of Hydrophobic Magnetic Nanoparticles

    PubMed Central

    2015-01-01

    Nonpolar phase synthesized hydrophobic nanocrystals show attractive properties and have demonstrated prominent potential in biomedical applications. However, the preparation of biocompatible nanocrystals is made difficult by the presence of hydrophobic surfactant stabilizer on their surfaces. To address this limitation, we have developed a facile, high efficiency, single-phase and low-cost method to convert hydrophobic magnetic nanoparticles (MNPs) to an aqueous phase using tetrahydrofuran, NaOH and 3,4-dihydroxyhydrocinnamic acid without any complicated organic synthesis. The as-transferred hydrophilic MNPs are water-soluble over a wide pH range (pH = 3–12), and the solubility is pH-controllable. Furthermore, the as-transferred MNPs with carboxylate can be readily adapted with further surface functionalization, varying from small molecule dyes to oligonucleotides and enzymes. Finally, the strategy developed here can easily be extended to other types of hydrophobic nanoparticles to facilitate biomedical applications of nanomaterials. PMID:25140614

  16. Structure and function in acquired prosopagnosia: lessons from a series of 10 patients with brain damage.

    PubMed

    Barton, Jason J S

    2008-03-01

    Acquired prosopagnosia varies in both behavioural manifestations and the location and extent of underlying lesions. We studied 10 patients with adult-onset lesions on a battery of face-processing tests. Using signal detection methods, we found that discriminative power for the familiarity of famous faces was most reduced by bilateral occipitotemporal lesions that involved the fusiform gyri, and better preserved with unilateral right-sided lesions. Tests of perception of facial structural configuration showed severe deficits with lesions that included the right fusiform gyrus, whether unilateral or bilateral. This deficit was most consistent for eye configuration, with some patients performing normally for mouth configuration. Patients with anterior temporal lesions had better configuration perception, though at least one patient showed a more subtle failure to integrate configural data from different facial regions. Facial imagery, an index of facial memories, was severely impaired by bilateral lesions that included the right anterior temporal lobe and marginally impaired by fusiform lesions alone; unilateral right fusiform lesions tended to spare imagery for facial features. These findings suggest that (I) prosopagnosia is more severe with bilateral than unilateral lesions, indicating a minor contribution of the left hemisphere to face recognition, (2) perception of facial configuration critically involves the right fusiform gyrus and (3) access to facial memories is most disrupted by bilateral lesions that also include the right anterior temporal lobe. This supports assertions that more apperceptive variants of prosopagnosia are linked to fusiform damage, whereas more associative variants are linked to anterior temporal damage. Next, we found that behavioural indices of covert recognition correlated with measures of overt familiarity, consistent with theories that covert behaviour emerges from the output of damaged neural networks, rather than alternative

  17. Social cognition and its relationship to functional outcomes in patients with sustained acquired brain injury

    PubMed Central

    Ubukata, Shiho; Tanemura, Rumi; Yoshizumi, Miho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita

    2014-01-01

    Deficits in social cognition are common after traumatic brain injury (TBI). However, little is known about how such deficits affect functional outcomes. The purpose of this study was to investigate the relationship between social cognition and functional outcomes in patients with TBI. We studied this relationship in 20 patients with TBI over the course of 1 year post-injury. Patients completed neurocognitive assessments and social cognition tasks. The social cognition tasks included an emotion-perception task and three theory of mind tasks: the Faux Pas test, Reading the Mind in the Eyes (Eyes) test, and the Moving-Shapes paradigm. The Craig Handicap Assessment and Reporting Technique was used to assess functional outcomes. Compared with our database of normal subjects, patients showed impairments in all social cognition tasks. Multiple regression analysis revealed that theory of mind ability as measured by the Eyes test was the best predictor of the cognitive aspects of functional outcomes. The findings of this pilot study suggest that the degree to which a patient can predict what others are thinking is an important measure that can estimate functional outcomes over 1 year following TBI. PMID:25395854

  18. Selecting for Function: Solution Synthesis of Magnetic Nanopropellers

    PubMed Central

    2013-01-01

    We show that we can select magnetically steerable nanopropellers from a set of carbon coated aggregates of magnetic nanoparticles using weak homogeneous rotating magnetic fields. The carbon coating can be functionalized, enabling a wide range of applications. Despite their arbitrary shape, all nanostructures propel parallel to the vector of rotation of the magnetic field. We use a simple theoretical model to find experimental conditions to select nanopropellers which are predominantly smaller than previously published ones. PMID:24127909

  19. Vestibulo-ocular function during co-ordinated head and eye movements to acquire visual targets.

    PubMed Central

    Barnes, G R

    1979-01-01

    1. Experiments have been conducted on human subjects in an attempt to establish the role of the vestibulo-ocular reflex in the co-ordination of head and eye movements during visual target acquisition. 2. When the subject moved head and eyes to acquire visual targets in the horizontal plane, the eye movement consisted of an initial saccade in the direction of head movement followed by a slower return towards orbital centre which compensated for remaining head movement. 3. When the head was moved either voluntarily or passively in the dark the pattern of eye movement was very similar to that seen during target acquisition. 4. The mean latency between the start of head acceleration and the onset of the saccadic eye movement was greater in the dark (108 msec, S.D. 85 msec) than for the visually induced responses (14 msec, S.D. 59 msec), in which eye movement often preceded head movement when moving to small ( less than 45 degrees) target offset angles. 5. In all experimental conditions gaze displacement at the end of the initial saccade was normally related in a predictive manner to final head position, but when fixating visual targets offset by more than 60 degrees from the central position there were often large errors, 22% of responses undershooting the target by more than 15 degrees. 6. A highly significant (P less than 0.001) linear relationship was found between gaze displacement and head velocity under all experimental conditions. During target acquisition head velocity was normally positively correlated with amplitude of target offset. The large errors in gaze displacement in response to the larger target offsets occurred at levels of head velocity lower than normally associated with such target offsets. 7. The results have led to the suggestion of a dual mode of control for head-eye co-ordination. In one mode, normally associated with small target offsets (less than 45 degrees), control is mediated by retinal error information. In the other mode, associated

  20. How Toddlers Acquire and Transfer Tool Knowledge: Developmental Changes and the Role of Executive Functions

    ERIC Educational Resources Information Center

    Pauen, Sabina; Bechtel-Kuehne, Sabrina

    2016-01-01

    This report investigates tool learning and its relations to executive functions (EFs) in toddlers. In Study 1 (N = 93), 18-, 20-, 22-, and 24-month-old children learned equally well to choose a correct tool from observation, whereas performance based on feedback improved with age. Knowledge transfer showed significant progress after 22 months of…

  1. Synthesis and characterization of functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Biswal, Dipti; Peeples, Brianna N.; Spence, Destiny D.; Peeples, Caryn; Bell, Crystal N.; Pradhan, A. K.

    2012-04-01

    Magnetic nanoparticles have been used in a wide array of industrial and biomedical applications due to their unique properties at the nanoscale level. They are extensively used in magnetic resonance imaging (MRI), magnetic hyperthermia treatment, drug delivery, and in assays for biological separations. Furthermore, superparamagnetic nanoparticles are of large interest for in vivo applications. However, these unmodified nanoparticles aggregate and consequently lose their superparamagnetic behaviors, due to high surface to volume ratio and strong dipole to dipole interaction. For these reasons, surface coating is necessary for the enhancement and effectiveness of magnetic nanoparticles to be used in various applications. In addition to providing increased stability to the nanoparticles in different solvents or media, stabilizers such as surfactants, organic/inorganic molecules, polymer and co-polymers are employed as surface coatings, which yield magnetically responsive systems. In this work we present the synthesis and magnetic characterization of Fe3O4 nanoparticles coated with 3-aminopropyltriethoxy silane (APS) and citric acid. The particles magnetic hysteresis was measured by a superconducting quantum interference device (SQUID) magnetometer with an in-plane magnetic field. The uncoated and coated magnetic nanoparticles were characterized by using fourier transform infrared (FTIR), UV-vis, X-ray diffraction, transmission electron microscopy, and thermo-gravimetric analysis.

  2. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype.

    PubMed

    Zheng, Feimeng; Yue, Caifeng; Li, Guohui; He, Bin; Cheng, Wei; Wang, Xi; Yan, Min; Long, Zijie; Qiu, Wanshou; Yuan, Zhongyu; Xu, Jie; Liu, Bing; Shi, Qian; Lam, Eric W-F; Hung, Mien-Chie; Liu, Quentin

    2016-01-01

    Centrosome-localized mitotic Aurora kinase A (AURKA) facilitates G2/M events. Here we show that AURKA translocates to the nucleus and causes distinct oncogenic properties in malignant cells by enhancing breast cancer stem cell (BCSC) phenotype. Unexpectedly, this function is independent of its kinase activity. Instead, AURKA preferentially interacts with heterogeneous nuclear ribonucleoprotein K (hnRNP K) in the nucleus and acts as a transcription factor in a complex that induces a shift in MYC promoter usage and activates the MYC promoter. Blocking AURKA nuclear localization inhibits this newly discovered transactivating function of AURKA, sensitizing resistant BCSC to kinase inhibition. These findings identify a previously unknown oncogenic property of the spatially deregulated AURKA in tumorigenesis and provide a potential therapeutic opportunity to overcome kinase inhibitor resistance. PMID:26782714

  3. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype

    PubMed Central

    Zheng, Feimeng; Yue, Caifeng; Li, Guohui; He, Bin; Cheng, Wei; Wang, Xi; Yan, Min; Long, Zijie; Qiu, Wanshou; Yuan, Zhongyu; Xu, Jie; Liu, Bing; Shi, Qian; Lam, Eric W.-F.; Hung, Mien-Chie; Liu, Quentin

    2016-01-01

    Centrosome-localized mitotic Aurora kinase A (AURKA) facilitates G2/M events. Here we show that AURKA translocates to the nucleus and causes distinct oncogenic properties in malignant cells by enhancing breast cancer stem cell (BCSC) phenotype. Unexpectedly, this function is independent of its kinase activity. Instead, AURKA preferentially interacts with heterogeneous nuclear ribonucleoprotein K (hnRNP K) in the nucleus and acts as a transcription factor in a complex that induces a shift in MYC promoter usage and activates the MYC promoter. Blocking AURKA nuclear localization inhibits this newly discovered transactivating function of AURKA, sensitizing resistant BCSC to kinase inhibition. These findings identify a previously unknown oncogenic property of the spatially deregulated AURKA in tumorigenesis and provide a potential therapeutic opportunity to overcome kinase inhibitor resistance. PMID:26782714

  4. Production and function of cytokines in natural and acquired immunity to Candida albicans infection.

    PubMed Central

    Ashman, R B; Papadimitriou, J M

    1995-01-01

    Host resistance against infections caused by the yeast Candida albicans is mediated predominantly by polymorphonuclear leukocytes and macrophages. Antigens of Candida stimulate lymphocyte proliferation and cytokine synthesis, and in both humans and mice, these cytokines enhance the candidacidal functions of the phagocytic cells. In systemic candidiasis in mice, cytokine production has been found to be a function of the CD4+ T helper (Th) cells. The Th1 subset of these cells, characterized by the production of gamma interferon and interleukin-2, is associated with macrophage activation and enhanced resistance against reinfection, whereas the Th2 subset, which produces interleukins-4, -6, and -10, is linked to the development of chronic disease. However, other models have generated divergent data. Mucosal infection generally elicits Th1-type cytokine responses and protection from systemic challenge, and identification of cytokine mRNA present in infected tissues of mice that develop mild or severe lesions does not show pure Th1- or Th2-type responses. Furthermore, antigens of C. albicans, mannan in particular, can induce suppressor cells that modulate both specific and nonspecific cellular and humoral immune responses, and there is an emerging body of evidence that molecular mimicry may affect the efficiency of anti-Candida responses within defined genetic contexts. PMID:8531890

  5. [Study of the pre- and post-treatment functionality of unilateral acquired brain injuries].

    PubMed

    Huertas-Hoyas, Elisabet; Pedrero-Pérez, Eduardo J; Águila-Maturana, Ana M; González-Alted, Carlos

    2014-04-16

    Introduccion. La mayoria de las personas que han sobrevivido a un daño cerebral lateralizado presenta secuelas que afectan a componentes sensoriomotores, cognitivos o conductuales. Estos deficits repercuten en la correcta ejecucion de actividades de la vida diaria, antes y despues de un tratamiento multidisciplinar. El objetivo de este estudio es analizar y comparar el perfil ocupacional de las personas con daño cerebral adquirido unilateral, tanto en personas con traumatismo craneoencefalico (TCE) como accidentes cerebrovasculares (ACV), mediante la independencia funcional, la capacidad, la participacion y la calidad del desempeño de las actividades cotidianas. Pacientes y metodos. Diseño cuasi experimental de cohortes con medidas transversales pre y postratamiento con una muestra de 58 personas, 28 con TCE y 30 con ACV, en ambos casos lateralizados. Las medidas utilizadas fueron la Functional Independence Measure + Functional Assessment Measure, la clasificacion internacional del funcionamiento, la discapacidad y la salud, y el Assessment of Motor and Process Skills. Resultados. Teniendo en cuenta los grupos analizados (muestra completa lateralizada, muestra por diagnostico), los resultados del analisis apuntan hacia la existencia de diferencias significativas y un moderado tamaño del efecto en las dos estimaciones transversales, otorgando mayores niveles de independencia a las lesiones sobrevenidas en el hemisferio derecho (p < 0,001). Sin embargo, al dividir la muestra segun el diagnostico, no aparecen diferencias significativas, salvo en las habilidades motoras, donde se muestran mayores puntuaciones en los TCE (p < 0,05). Conclusiones. Se piensa que lo que justifica las diferencias no es la modalidad de la lesion (TCE o ACV), sino la localizacion hemisferica. Por ello, se sugiere que las personas con daño cerebral adquirido en el hemisferio izquierdo requeriran una intervencion mas intensa.

  6. Delineating potential epileptogenic areas utilizing resting functional magnetic resonance imaging (fMRI) in epilepsy patients.

    PubMed

    Pizarro, Ricardo; Nair, Veena; Meier, Timothy; Holdsworth, Ryan; Tunnell, Evelyn; Rutecki, Paul; Sillay, Karl; Meyerand, Mary E; Prabhakaran, Vivek

    2016-08-01

    Seizure localization includes neuroimaging like electroencephalogram, and magnetic resonance imaging (MRI) with limited ability to characterize the epileptogenic network. Temporal clustering analysis (TCA) characterizes epileptogenic network congruent with interictal epileptiform discharges by clustering together voxels with transient signals. We generated epileptogenic areas for 12 of 13 epilepsy patients with TCA, congruent with different areas of seizure onset. Resting functional MRI (fMRI) scans are noninvasive, and can be acquired quickly, in patients with different levels of severity and function. Analyzing resting fMRI data using TCA is quick and can complement clinical methods to characterize the epileptogenic network. PMID:27362339

  7. An Inexpensive Biophysics Laboratory Apparatus for Acquiring Pulmonary Function Data with Clinical Applications

    NASA Astrophysics Data System (ADS)

    Harkay, Gregory

    2001-11-01

    Interest on the part of the Physics Department at KSC in developing a computer interfaced lab with appeal to biology majors and a need to perform a clinical pulmonological study to fulfill a biology requirement led to the author's undergraduate research project in which a recording spirometer (typical cost: $15K) was constructed from readily available materials and a typical undergraduate lab computer interface. Simple components, including a basic photogate circuit, CPU fan, and PVC couplings were used to construct an instrument for measuring flow rates as a function of time. Pasco software was used to build an experiment in which data was collected and integration performed such that one could obtain accurate values for FEV1 (forced expiratory volume for one second) and FVC (forced vital capacity) and their ratio for a large sample of subjects. Results were compared to published norms and subjects with impaired respiratory mechanisms identified. This laboratory exercise is one with which biology students can clearly identify and would be a robust addition to the repertoire for a HS or college physics or biology teaching laboratory.

  8. Design for a high field combined function superferric magnet

    NASA Astrophysics Data System (ADS)

    Gupta, R. C.; Morgan, G. H.

    A combined function superferric magnet option was investigated for the Relativistic Heavy Ion Collider (RHIC). The option requires the maximum value of the field in the magnet to be much higher than that achieved in any existing combined function accelerator magnet. A model is presented in which a good field quality can be maintained up to 2T. It is done by carefully designing the yoke structure and positioning the coils in such a way that the iron poles tend to saturate evenly across the gap. A cold iron model might be necessary for this magnet.

  9. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core-shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase.

  10. Magnetic Resonance, Functional (fMRI) -- Brain

    MedlinePlus

    ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ... The images can then be examined on a computer monitor, transmitted electronically, printed or copied to a ...

  11. Bilingual brain organization: a functional magnetic resonance adaptation study.

    PubMed

    Klein, Denise; Zatorre, Robert J; Chen, Jen-Kai; Milner, Brenda; Crane, Joelle; Belin, Pascal; Bouffard, Marc

    2006-05-15

    We used functional magnetic resonance adaptation (fMRA) to examine whether intra-voxel functional specificity may be present for first (L1)- and second (L2)-language processing. We examined within- and across-language adaptation for spoken words in English-French bilinguals who had acquired their L2 after the age of 4 years. Subjects listened to words presented binaurally through earphones. In two control conditions (one for each language), six identical words were presented to obtain maximal adaptation. The remaining six conditions each consisted of five words that were identical followed by a sixth word that differed. There were thus a total of eight experimental conditions: no-change (sixth word identical to first five); a change in meaning (different final word in L1); a change in language (final item translated into L2); a change in meaning and language (different final word in L2). The same four conditions were presented in L2. The study also included a silent baseline. At the neural level, within- and across-language word changes resulted in release from adaptation. This was true for separate analyses of L1 and L2. We saw no evidence for greater recovery from adaptation in across-language relative to within-language conditions. While many brain regions were common to L1 and L2, we did observe differences in adaptation for forward translation (L1 to L2) as compared to backward translation (L2 to L1). The results support the idea that, at the lexical level, the neural substrates for L1 and L2 in bilinguals are shared, but with some populations of neurons within these shared regions showing language-specific responses.

  12. I kappa B kinase alpha (IKKα) activity is required for functional maturation of dendritic cells and acquired immunity to infection.

    PubMed

    Mancino, Alessandra; Habbeddine, Mohamed; Johnson, Ella; Luron, Lionel; Bebien, Magali; Memet, Sylvie; Fong, Carol; Bajenoff, Marc; Wu, Xuefeng; Karin, Michael; Caamano, Jorge; Chi, Hongbo; Seed, Michael; Lawrence, Toby

    2013-03-20

    Dendritic cells (DC) are required for priming antigen-specific T cells and acquired immunity to many important human pathogens, including Mycobacteriuim tuberculosis (TB) and influenza. However, inappropriate priming of auto-reactive T cells is linked with autoimmune disease. Understanding the molecular mechanisms that regulate the priming and activation of naïve T cells is critical for development of new improved vaccines and understanding the pathogenesis of autoimmune diseases. The serine/threonine kinase IKKα (CHUK) has previously been shown to have anti-inflammatory activity and inhibit innate immunity. Here, we show that IKKα is required in DC for priming antigen-specific T cells and acquired immunity to the human pathogen Listeria monocytogenes. We describe a new role for IKKα in regulation of IRF3 activity and the functional maturation of DC. This presents a unique role for IKKα in dampening inflammation while simultaneously promoting adaptive immunity that could have important implications for the development of new vaccine adjuvants and treatment of autoimmune diseases.

  13. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  14. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    SciTech Connect

    Nan, Alexandrina Bunge, Alexander; Turcu, Rodica

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  15. Functional magnetic resonance imaging of internet addiction in young adults

    PubMed Central

    Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo

    2016-01-01

    AIM: To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. METHODS: We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20th, 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients’ age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. RESULTS: We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant

  16. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei

    2016-11-01

    We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  17. Arbitrary function generator for APS injector synchrotron correction magnets

    SciTech Connect

    Despe, O.D.

    1990-11-07

    The APS injector synchrotron ring measures about 368 m in circumference. In order to obtain the precision of the magnetic field required for the positron acceleration from 450 Mev to 7.7 Gev with low beam loss, eighty correction magnets are distributed around its circumference. These magnets provide the vernier field changes required for beam orbit correction during the acceleration phase of the injector synchrotron cycle. Because of mechanical imperfections in the construction, as well as installation of real dipole and multi-pole magnets, the exact field correction required at each correction magnet location is not known until a beam is actually accelerated. It is therefore essential that a means is provided to generate a correction field that is a function of the beam energy from injection until extraction for each correction magnet. The fairly large number of correction magnets in the system requires that the arbitrary function generator design be as simple as possible yet provide the required performance. An important, required performance feature is that the function can be changed or modified ``on the fly``, to provide the operator with a real-time feel during the tune up process. The arbitrary function generator described in this report satisfies these requirements.

  18. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    NASA Astrophysics Data System (ADS)

    Wu, Wei; He, Quanguo; Jiang, Changzhong

    2008-10-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed.

  19. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    PubMed Central

    2008-01-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed. PMID:21749733

  20. Functional cliques in the amygdala and related brain networks driven by fear assessment acquired during movie viewing.

    PubMed

    Kinreich, Sivan; Intrator, Nathan; Hendler, Talma

    2011-01-01

    One of the greatest challenges involved in studying the brain mechanisms of fear is capturing the individual's unique instantaneous experience. Brain imaging studies to date commonly sacrifice valuable information regarding the individual real-time conscious experience, especially when focusing on elucidating the amygdala's activity. Here, we assumed that by using a minimally intrusive cue along with applying a robust clustering approach to probe the amygdala, it would be possible to rate fear in real time and to derive the related network of activation. During functional magnetic resonance imaging scanning, healthy volunteers viewed two excerpts from horror movies and were periodically auditory cued to rate their instantaneous experience of "I'm scared." Using graph theory and community mathematical concepts, data-driven clustering of the fear-related functional cliques in the amygdala was performed guided by the individually marked periods of heightened fear. Individually tailored functions derived from these amygdala activation cliques were subsequently applied as general linear model predictors to a whole-brain analysis to reveal the correlated networks. Our results suggest that by using a localized robust clustering approach, it is possible to probe activation in the right dorsal amygdala that is directly related to individual real-time emotional experience. Moreover, this fear-evoked amygdala revealed two opposing networks of co-activation and co-deactivation, which correspond to vigilance and rest-related circuits, respectively.

  1. Functional cliques in the amygdala and related brain networks driven by fear assessment acquired during movie viewing.

    PubMed

    Kinreich, Sivan; Intrator, Nathan; Hendler, Talma

    2011-01-01

    One of the greatest challenges involved in studying the brain mechanisms of fear is capturing the individual's unique instantaneous experience. Brain imaging studies to date commonly sacrifice valuable information regarding the individual real-time conscious experience, especially when focusing on elucidating the amygdala's activity. Here, we assumed that by using a minimally intrusive cue along with applying a robust clustering approach to probe the amygdala, it would be possible to rate fear in real time and to derive the related network of activation. During functional magnetic resonance imaging scanning, healthy volunteers viewed two excerpts from horror movies and were periodically auditory cued to rate their instantaneous experience of "I'm scared." Using graph theory and community mathematical concepts, data-driven clustering of the fear-related functional cliques in the amygdala was performed guided by the individually marked periods of heightened fear. Individually tailored functions derived from these amygdala activation cliques were subsequently applied as general linear model predictors to a whole-brain analysis to reveal the correlated networks. Our results suggest that by using a localized robust clustering approach, it is possible to probe activation in the right dorsal amygdala that is directly related to individual real-time emotional experience. Moreover, this fear-evoked amygdala revealed two opposing networks of co-activation and co-deactivation, which correspond to vigilance and rest-related circuits, respectively. PMID:22432905

  2. Effect of Skin-To-Skin Contact on Preterm Infant Skin Barrier Function and Hospital-Acquired Infection

    PubMed Central

    Abouelfettoh, Amel; Ludington-Hoe, Susan M.; Burant, Chris J.; Visscher, Marty O.

    2011-01-01

    Background The preterm infants' skin is structurally and functionally immature at birth because of immature stratum corneum barrier function, leading to problems with fluid loses, thermoregulation, and infection. Two parameters of barrier function can be non-invasively assessed: Stratum Corneum Hydration (SCH) and Transepidermal Water Loss (TEWL). Skin-to-Skin Care (SSC) is the proposed independent variable that might affect barrier function by decreasing TEWL and increasing SCH, thereby improving stratum corneum barrier function and consequently decreasing the rate of infection. No study of SSC's effects on TEWL and SCH of preterm infants could be found. The purpose of the study was to determine the effect of 5 daily Skin-to-Skin Contact sessions on infant skin hydration (SCH), transepidermal evaporated water loss (TEWL), and on SCH when TEWL was controlled, and on the presence of hospital acquired infection. Methods A one-group pretest-test-posttest design with 10 preterm infants (28 - 30 wks GA < 32 wks postmenstrual age, and no infection at entry). Test = 90 minutes of SSC; pre-test and post-test = 30 minutes each of prone positioning in an incubator. SCH and TEWL were taken on Days 1 and 5 at the beginning, middle and end of each period using Multi-Probe Adaptor. A 3 X 3 X 2 Repeated Measures Mixed Models Design, including a covariate, was used to analyze level of Skin Hydration. Specifically, the model tested comparisons in SCH made across repetitions, time, and days, as well as all possible interactions while controlling for TEWL. Descriptive statistics described the number of positive blood cultures during hospitalization and the presence of infections four weeks post-discharge. Results Significant differences in skin hydration were found across TIME (Pre-SSC, SSC, Post-SSC) (F = 21.86; p < 0.001). One infant had a positive blood culture during hospitalization; no infants had signs of infection by 4 weeks post-discharge. Conclusions The study has begun

  3. Acquired lymphangiectasis.

    PubMed

    Celis, A V; Gaughf, C N; Sangueza, O P; Gourdin, F W

    1999-01-01

    Acquired lymphangiectasis is a dilatation of lymphatic vessels that can result as a complication of surgical intervention and radiation therapy for malignancy. Acquired lymphangiectasis shares clinical and histologic features with the congenital lesion, lymphangioma circumscriptum. Diagnosis and treatment of these vesiculo-bullous lesions is important because they may be associated with pain, chronic drainage, and cellulitis. We describe two patients who had these lesions after treatment for cancer and review the pertinent literature. Although a number of treatment options are available, we have found CO2 laser ablation particularly effective. PMID:9932832

  4. Functionalization of polydopamine coated magnetic nanoparticles with biological entities

    NASA Astrophysics Data System (ADS)

    Mǎgeruşan, Lidia; Mrówczyński, Radosław; Turcu, Rodica

    2015-12-01

    New hybrid materials, obtained through introduction of cysteine, lysine and folic acid as biological entities into polydopamine-coated magnetite nanoparticles, are reported. The syntheses are straight forward and various methods were applied for structural and morphological characterization of the resulting nanoparticles. XPS proved a very powerful tool for surface chemical analysis and it evidences the functionalization of polydopamine coated magnetite nanoparticles. The superparamagnetic behavior and the high values of saturation magnetization recommend all products for further application where magnetism is important for targeting, separation, or heating by alternative magnetic fields.

  5. Functional magnetic resonance imaging in neurology.

    PubMed

    Auer, Tibor; Schwarcz, Attila; Horváth, Réka A; Barsi, Péter; Janszky, József

    2008-01-30

    The present contribution discusses the clinical use of functional MRI (fMRI) and its role in the most common neurological diseases. FMRI was found a reliable and reproducible examination tool resulting in a wide distribution of fMRI methods in presurgical evaluation of epilepsy in determining the relationship of eloquent areas and the epileptic focus. Preliminary data suggest that fMRI using memory paradigms can predict the postoperative memory decline in epilepsy surgery by determining whether a reorganization of memory functions took place. Speech-activated fMRI became the most used tool in determining hemispheric dominance. Visual and sensory-motor cortex can also be routinely investigated by fMRI which helps in decision on epilepsy surgery. FMRI combined with EEG is a new diagnostic tool in epilepsy and sleep disorders. FMRI can identify the penumbra after stroke and can provide an additional information on metabolic state of the threatened brain tissue. FMRI has a predictive role in post-stroke recovery. In relapsing-remitting MS an adaptive reorganization can be demonstrated by fMRI affecting the visual, motor, and memory systems, despite preserved functional performance. Much more extensive reorganization can be demonstrated in secondary progressive MS. These findings suggest that the different stages of MS are related to different stages of the reorganization and MS becomes progressive when there is no more reserve capacity in the brain for reorganization. FMRI offers the capability of detecting early functional hemodynamic alterations in Alzheimer's disease before morphological changes. FMRI can be a valuable tool to test and monitor treatment efficacy in AD. FMRI can also provide information about the mechanisms of different therapeutic approaches in Parkinson disorder including drug treatment and deep brain stimulation.

  6. Seven topics in functional magnetic resonance imaging.

    PubMed

    Bandettini, Peter A

    2009-09-01

    Functional MRI (fMRI) is a non-invasive brain imaging methodology that started in 1991 and allows human brain activation to be imaged at high resolution within only a few minutes. Because it has extremely high sensitivity, is relatively easy to implement, and can be performed on most standard clinical MRI scanners. It continues to grow at an explosive rate throughout the world. Over the years, at any given time, fMRI has been defined by only a handful of major topics that have been the focus of researchers using and developing the methodology. In this review, I attempt to take a snapshot of the field of fMRI as it is in mid-2009 by discussing the seven topics that I feel are most on the minds of fMRI researchers. The topics are, in no particular order or grouping: (1) Clinical impact, (2) Utilization of individual functional maps, (3) fMRI signal interpretation, (4) Pattern effect mapping and decoding, (5) Endogenous oscillations, (6) MRI technology, and (7) Alternative functional contrast mechanisms. Most of these topics are highly interdependent, each advancing as the others advance. While most fMRI involves applications towards clinical or neuroscience questions, all applications are fundamentally dependent on advances in basic methodology as well as advances in our understanding of the relationship between neuronal activity and fMRI signal changes. This review neglects almost completely an in-depth discussion of applications. Rather the discussions are on the methods and interpretation.

  7. SEVEN TOPICS IN FUNCTIONAL MAGNETIC RESONANCE IMAGING

    PubMed Central

    BANDETTINI, PETER A.

    2010-01-01

    Functional MRI (fMRI) is a non-invasive brain imaging methodology that started in 1991 and allows human brain activation to be imaged at high resolution within only a few minutes. Because it has extremely high sensitivity, is relatively easy to implement, and can be performed on most standard clinical MRI scanners. It continues to grow at an explosive rate throughout the world. Over the years, at any given time, fMRI has been defined by only a handful of major topics that have been the focus of researchers using and developing the methodology. In this review, I attempt to take a snapshot of the field of fMRI as it is in mid-2009 by discussing the seven topics that I feel are most on the minds of fMRI researchers. The topics are, in no particular order or grouping: (1) Clinical impact, (2) Utilization of individual functional maps, (3) fMRI signal interpretation, (4) Pattern effect mapping and decoding, (5) Endogenous oscillations, (6) MRI technology, and (7) Alternative functional contrast mechanisms. Most of these topics are highly interdependent, each advancing as the others advance. While most fMRI involves applications towards clinical or neuroscience questions, all applications are fundamentally dependent on advances in basic methodology as well as advances in our understanding of the relationship between neuronal activity and fMRI signal changes. This review neglects almost completely an in-depth discussion of applications. Rather the discussions are on the methods and interpretation. PMID:19938211

  8. Acquired hyperpigmentations*

    PubMed Central

    Cestari, Tania Ferreira; Dantas, Lia Pinheiro; Boza, Juliana Catucci

    2014-01-01

    Cutaneous hyperpigmentations are frequent complaints, motivating around 8.5% of all dermatological consultations in our country. They can be congenital, with different patterns of inheritance, or acquired in consequence of skin problems, systemic diseases or secondary to environmental factors. The vast majority of them are linked to alterations on the pigment melanin, induced by different mechanisms. This review will focus on the major acquired hyperpigmentations associated with increased melanin, reviewing their mechanisms of action and possible preventive measures. Particularly prominent aspects of diagnosis and therapy will be emphasized, with focus on melasma, post-inflammatory hyperpigmentation, periorbital pigmentation, dermatosis papulosa nigra, phytophotodermatoses, flagellate dermatosis, erythema dyschromicum perstans, cervical poikiloderma (Poikiloderma of Civatte), acanthosis nigricans, cutaneous amyloidosis and reticulated confluent dermatitis PMID:24626644

  9. First results about recovery of walking function in patients with intensive care unit-acquired muscle weakness from the General Weakness Syndrome Therapy (GymNAST) cohort study

    PubMed Central

    Mehrholz, Jan; Mückel, Simone; Oehmichen, Frank; Pohl, Marcus

    2015-01-01

    Objectives To describe the time course of recovery of walking function and other activities of daily living in patients with intensive care unit (ICU)-acquired muscle weakness. Design This is a cohort study. Participants We included critically ill patients with ICU-acquired muscle weakness. Setting Post-acute ICU and rehabilitation units in Germany. Measures We measured walking function, muscle strength, activities in daily living, motor and cognitive function. Results We recruited 150 patients (30% female) who fulfilled our inclusion and exclusion criteria. The primary outcome recovery of walking function was achieved after a median of 28.5 days (IQR=45) after rehabilitation onset and after a median of 81.5 days (IQR=64) after onset of illness. Our final multivariate model for recovery of walking function included two clinical variables from baseline: the Functional Status Score ICU (adjusted HR=1.07 (95% CI 1.03 to 1.12) and the ability to reach forward in cm (adjusted HR=1.02 (95% CI 1.00 to 1.04). All secondary outcomes but not pain improved significantly in the first 8 weeks after study onset. Conclusions We found good recovery of walking function for most patients and described the recovery of walking function of people with ICU-acquired muscle weakness. Trials registrations number Sächsische Landesärztekammer EK-BR-32/13-1; DRKS00007181, German Register of Clinical Trials. PMID:26700274

  10. Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia.

    SciTech Connect

    Liu, X.; Novosad, V.; Rozhkova, E. A.; Chen, H.; Yefremenko, V.; Pearson, J.; Torno, M.; Bader, S. D.; Rosengart, A. J.; Univ. Chicago Pritzker School of Medicine

    2007-06-01

    We report a simplified single emulsion (oil-in-water) solvent evaporation protocol to synthesize surface functionalized biocompatible magnetic nanospheres by using highly concentrated hydrophobic magnetite (gel) and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol-maleimide) (PLA-PEG-maleimide) (10:1 by mass) polymers. The as-synthesized particles are approximately spherical with an average diameter of 360-370 nm with polydispersity index of 0.12-0.18, are surface-functionalized with maleimide groups, and have saturation magnetization values of 25-40 emu/g. The efficiency of the heating induced by 400-kHz oscillating magnetic fields is compared for two samples with different magnetite loadings. Results show that these nanospheres have the potential to provide an efficient cancer-targeted hyperthermia.

  11. Peptide-functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Hauser, Anastasia Kruse

    Lung cancer is one of the leading causes of cancer deaths in the United States. Radiation and chemotherapy are conventional treatments, but they result in serious side effects and the probability of tumor recurrence remains high. Therefore, there is an increasing need to enhance the efficacy of conventional treatments. Magnetic nanoparticles have been previously studied for a variety of applications such as magnetic resonance imaging contrast agents, anemia treatment, magnetic cell sorting and magnetically mediated hyperthermia (MMH). In this work, dextran coated iron oxide nanoparticles were developed and functionalized with peptides to target the nanoparticles to either the extracellular matrix (ECM) of tumor tissue or to localize the nanoparticles in subcellular regions after cell uptake. The magnetic nanoparticles were utilized for a variety of applications. First, heating properties of the nanoparticles were utilized to administer hyperthermia treatments combined with chemotherapy. The nanoparticles were functionalized with peptides to target fibrinogen in the ECM and extensively characterized for their physicochemical properties, and MMH combined with chemotherapy was able to enhance the toxicity of chemotherapy. The second application of the nanoparticles was magnetically mediated energy delivery. This treatment does not result in a bulk temperature rise upon actuation of the nanoparticles by an alternating magnetic field (AMF) but rather results in intracellular damage via friction from Brownian rotation or nanoscale heating effects from Neel relaxations. The nanoparticles were functionalized with a cell penetrating peptide to facilitate cell uptake and lysosomal escape. The intracellular effects of the internalized nanoparticles alone and with activation by an AMF were evaluated. Iron concentrations in vivo are highly regulated as excess iron can catalyze the formation of the hydroxyl radical through Fenton chemistry. Although often a concern of using iron

  12. Functional Connectivity Magnetic Resonance Imaging Classification of Autism

    ERIC Educational Resources Information Center

    Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.

    2011-01-01

    Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear…

  13. Human brain somatic representation: a functional magnetic resonance mapping

    NASA Astrophysics Data System (ADS)

    Romero-Romo, Juan; Rojas, Rafael; Salgado, Perla; Sánchez-Cortázar, Julián; Vazquez-Vela, Arturo; Barrios, Fernando A.

    2001-10-01

    Central nervous system studies of injury and plasticity for the reorganization in the phantom limb sensation area presented. In particular functional magnetic resonance imaging (fMRI) mapping of the somatic and motor cortex of amputee patients, in the case of referred sensations. Using fMRI we can show the correlation between structure and functional field and study the reorganization due to plasticity in the brain.

  14. Electronic and magnetic properties of functionalized BN sheet

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru

    2010-03-01

    First principles calculations based on density functional theory reveal some unusual properties of BN sheet functionalized with hydrogen and fluorine. These properties differ from those of similarly functionalized graphene even though both share the same honeycomb structure. (1) Unlike graphene which undergoes a metal to insulator transition when fully hydrogenated, the band gap of the BN sheet significantly narrows when fully saturated with hydrogen. Furthermore, the band gap of the BN sheet can be tuned from 4.7 eV to 0.6 eV and the system can be a direct or an indirect semiconductor or even a half-metal depending upon surface coverage. (2) Unlike graphene, BN sheet, due to its hetero-atomic composition, permits the surface to be co-decorated with H and F, thus leading to anisotropic structures with rich electronic and magnetic properties. (3) Unlike graphene, BN sheets can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. (4) Unlike graphene, the stability of magnetic coupling of functionalized BN sheet can be modulated by applying external strain. Our study highlights the potential of functionalized BN sheets for novel applications.

  15. New Constraints on the Age of the Opening of the South Atlantic Basin As Revealed By Recently Acquired Magnetic, Gravity and Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Hall, S. A.; Bird, D. E.; Danque, H. A.; Grant, J. V.; McLean, D. J.; Towle, P. J.

    2014-12-01

    Detailed, high quality, marine total field magnetic data has been recently acquired over parts of the South Atlantic ocean off the southwestern margin of South Africa. These data display a pattern of well-defined, NW-SE striking linear magnetic anomalies along the margin that can be traced with confidence over distances > 150 km. The anomalies are interpreted to be M-series seafloor spreading anomalies M9 to M11, which are consistent with the initiation of seafloor spreading around 135 Ma (Late Valanginian). Corresponding M-series anomalies M9 and M10 have previously been reported for the conjugate South American margin offshore Argentina, however the presence of the M11 series SE of the Cape Lineament suggests an earlier opening of the southern South Atlantic basin than previously recognized. Breaks in the continuity of the linear anomaly pattern, observed in map view, have generally NE-SW trends and are considered sites of possible fracture zones. One such discontinuity, which we have termed the "Cape Lineament" (CL), marks a significant change in crustal character and Cretaceous depositional history, as revealed by gravity data and seismic reflection data respectively. Crust NW of CL appears to be characterized by greater thicknesses and the presence of seaward dipping reflectors (SDRs), whereas crust SE of CL has more "normal" oceanic thicknesses and SDRs that are either absent or more limited in areal extent. Although linear magnetic anomalies are observed both NW and SE of CL, anomalies to the SE display a better correlation with those predicted by our seafloor spreading model.

  16. Early functional magnetic resonance imaging activations predict language outcome after stroke.

    PubMed

    Saur, Dorothee; Ronneberger, Olaf; Kümmerer, Dorothee; Mader, Irina; Weiller, Cornelius; Klöppel, Stefan

    2010-04-01

    An accurate prediction of system-specific recovery after stroke is essential to provide rehabilitation therapy based on the individual needs. We explored the usefulness of functional magnetic resonance imaging scans from an auditory language comprehension experiment to predict individual language recovery in 21 aphasic stroke patients. Subjects with an at least moderate language impairment received extensive language testing 2 weeks and 6 months after left-hemispheric stroke. A multivariate machine learning technique was used to predict language outcome 6 months after stroke. In addition, we aimed to predict the degree of language improvement over 6 months. 76% of patients were correctly separated into those with good and bad language performance 6 months after stroke when based on functional magnetic resonance imaging data from language relevant areas. Accuracy further improved (86% correct assignments) when age and language score were entered alongside functional magnetic resonance imaging data into the fully automatic classifier. A similar accuracy was reached when predicting the degree of language improvement based on imaging, age and language performance. No prediction better than chance level was achieved when exploring the usefulness of diffusion weighted imaging as well as functional magnetic resonance imaging acquired two days after stroke. This study demonstrates the high potential of current machine learning techniques to predict system-specific clinical outcome even for a disease as heterogeneous as stroke. Best prediction of language recovery is achieved when the brain activation potential after system-specific stimulation is assessed in the second week post stroke. More intensive early rehabilitation could be provided for those with a predicted poor recovery and the extension to other systems, for example, motor and attention seems feasible. PMID:20299389

  17. Acquired and congenital cholesteatoma: determination of tumor necrosis factor-alpha, intercellular adhesion molecule-1, interleukin-1-alpha and lymphocyte functional antigen-1 in the inflammatory process.

    PubMed

    Akimoto, R; Pawankar, R; Yagi, T; Baba, S

    2000-01-01

    The molecular and cellular factors resulting in the pathologic features of acquired and congenital cholesteatomas are not completely known. Recently, proinflammatory cytokines like interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha) have been shown to induce bone resorption, in vitro. To elucidate the key molecules involved in bone resorption and cell infiltration associated with cholesteatoma, we examined the in vivo levels of IL-1 alpha and TNF-alpha, intercellular adhesion molecule-1 (ICAM-1) and lymphocyte functional antigen-1 (LFA-1) in acquired and congenital cholesteatomas, by reverse transcriptase-polymerase chain reaction, immunohistochemistry, and ELISA. Increased levels of IL-1 and TNF-alpha were detected in both types of cholesteatomas as compared to normal skin. Increased ICAM-1 expression and LFA-1+ cells were detected in acquired but not congenital cholesteatoma. Strong correlation was detected between TNF-alpha and bone resorption in both types of cholesteatoma, and between TNF-alpha and ICAM, TNF-alpha and severity of infection, or cell infiltration in acquired cholesteatoma. No correlation existed between various parameters and IL-1 alpha. These results suggest that TNF-alpha may play a crucial role in the pathogenesis of both acquired and congenital cholesteatomas by regulating bone resorption and cell infiltration.

  18. Functional magnetic resonance imaging in medicine and physiology

    SciTech Connect

    Moonen, C.T.W.; van Zijl, P.C.M.; Frank, J.A.; Bihan, D.L.; Becker, E.D. )

    1990-10-05

    Magnetic resonance imaging (MRI) is a well-established diagnostic tool that provides detailed information about macroscopic structure and anatomy. Recent advances in MRI allow the noninvasive spatial evaluation of various biophysical and biochemical processes in living systems. Specifically, the motion of water can be measured in processes such as vascular flow, capillary flow, diffusion, and exchange. In addition, the concentrations of various metabolites can be determined for the assessment of regional regulation of metabolism. Examples are given that demonstrate the use of functional MRI for clinical and research purposes. This development adds a new dimension to the application of magnetic resonance to medicine and physiology.

  19. Assessment of cardiac function: magnetic resonance and computed tomography.

    PubMed

    Greenberg, S B

    2000-10-01

    A complete cardiac study requires both anatomic and physiologic evaluation. Cardiac function can be evaluated noninvasively by magnetic resonance imaging (MRI)or ultrafast computed tomography (CT). MRI allows for evaluation of cardiac function by cine gradient echo imaging of the ventricles and flow analysis across cardiac valves and the great vessels. Cine gradient echo imaging is useful for evaluation of cardiac wall motion, ventricular volumes and ventricular mass. Flow analysis allows for measurement of velocity and flow during the cardiac cycle that reflects cardiac function. Ultrafast CT allows for measurement of cardiac indices similar to that provided by gradient echo imaging of the ventricles.

  20. Left Ventricular Function Evaluation on a 3T MR Scanner with Parallel RF Transmission Technique: Prospective Comparison of Cine Sequences Acquired before and after Gadolinium Injection

    PubMed Central

    Caspar, Thibault; Schultz, Anthony; Schaeffer, Mickaël; Labani, Aïssam; Jeung, Mi-Young; Jurgens, Paul Thomas; El Ghannudi, Soraya; Roy, Catherine; Ohana, Mickaël

    2016-01-01

    Objectives To compare cine MR b-TFE sequences acquired before and after gadolinium injection, on a 3T scanner with a parallel RF transmission technique in order to potentially improve scanning time efficiency when evaluating LV function. Methods 25 consecutive patients scheduled for a cardiac MRI were prospectively included and had their b-TFE cine sequences acquired before and right after gadobutrol injection. Images were assessed qualitatively (overall image quality, LV edge sharpness, artifacts and LV wall motion) and quantitatively with measurement of LVEF, LV mass, and telediastolic volume and contrast-to-noise ratio (CNR) between the myocardium and the cardiac chamber. Statistical analysis was conducted using a Bayesian paradigm. Results No difference was found before or after injection for the LVEF, LV mass and telediastolic volume evaluations. Overall image quality and CNR were significantly lower after injection (estimated coefficient cine after > cine before gadolinium: -1.75 CI = [-3.78;-0.0305], prob(coef>0) = 0% and -0.23 CI = [-0.49;0.04], prob(coef>0) = 4%) respectively), but this decrease did not affect the visual assessment of LV wall motion (cine after > cine before gadolinium: -1.46 CI = [-4.72;1.13], prob(coef>0) = 15%). Conclusions In 3T cardiac MRI acquired with parallel RF transmission technique, qualitative and quantitative assessment of LV function can reliably be performed with cine sequences acquired after gadolinium injection, despite a significant decrease in the CNR and the overall image quality. PMID:27669571

  1. Exponentially localized Wannier functions in periodic zero flux magnetic fields

    NASA Astrophysics Data System (ADS)

    De Nittis, G.; Lein, M.

    2011-11-01

    In this work, we investigate conditions which ensure the existence of an exponentially localized Wannier basis for a given periodic hamiltonian. We extend previous results [Panati, G., Ann. Henri Poincare 8, 995-1011 (2007), 10.1007/s00023-007-0326-8] to include periodic zero flux magnetic fields which is the setting also investigated by Kuchment [J. Phys. A: Math. Theor. 42, 025203 (2009), 10.1088/1751-8113/42/2/025203]. The new notion of magnetic symmetry plays a crucial rôle; to a large class of symmetries for a non-magnetic system, one can associate "magnetic" symmetries of the related magnetic system. Observing that the existence of an exponentially localized Wannier basis is equivalent to the triviality of the so-called Bloch bundle, a rank m hermitian vector bundle over the Brillouin zone, we prove that magnetic time-reversal symmetry is sufficient to ensure the triviality of the Bloch bundle in spatial dimension d = 1, 2, 3. For d = 4, an exponentially localized Wannier basis exists provided that the trace per unit volume of a suitable function of the Fermi projection vanishes. For d > 4 and d ⩽ 2m (stable rank regime) only the exponential localization of a subset of Wannier functions is shown; this improves part of the analysis of Kuchment [J. Phys. A: Math. Theor. 42, 025203 (2009), 10.1088/1751-8113/42/2/025203]. Finally, for d > 4 and d > 2m (unstable rank regime) we show that the mere analysis of Chern classes does not suffice in order to prove triviality and thus exponential localization.

  2. Effects of Hospital-Based Physical Therapy on Hospital Discharge Outcomes among Hospitalized Older Adults with Community-Acquired Pneumonia and Declining Physical Function.

    PubMed

    Kim, Sun Jung; Lee, Joo Hun; Han, Boram; Lam, Julia; Bukowy, Elizabeth; Rao, Avinash; Vulcano, Jordan; Andreeva, Anelia; Bertelson, Heather; Shin, Hyun Phil; Yoo, Ji Won

    2015-06-01

    To examine whether hospital-based physical therapy is associated with functional changes and early hospital readmission among hospitalized older adults with community-acquired pneumonia and declining physical function. Study design was a retrospective observation study. Participants were community-dwelling older adults admitted to medicine floor for community-acquired pneumonia (n = 1,058). Their physical function using Katz activities of daily living (ADL) Index declined between hospital admission and 48 hours since hospital admission (Katz ADL Index 6→5). The intervention group was those receiving physical therapy for ≥ 0.5 hour/day. Outcomes were Katz ADL Index at hospital discharge and all-cause 30-day hospital readmission rate. The intervention and control groups did not differ in the Katz ADL Index at hospital discharge (p = 0.11). All-cause 30-day hospital readmission rate was lower in the intervention than in control groups (OR = 0.65, p = 0.02). Hospital-based physical therapy has the benefits toward reducing 30-day hospital readmission rate of acutely ill older adults with community-acquired pneumonia and declining physical function. PMID:26029475

  3. Effects of Hospital-Based Physical Therapy on Hospital Discharge Outcomes among Hospitalized Older Adults with Community-Acquired Pneumonia and Declining Physical Function

    PubMed Central

    Kim, Sun Jung; Lee, Joo Hun; Han, Boram; Lam, Julia; Bukowy, Elizabeth; Rao, Avinash; Vulcano, Jordan; Andreeva, Anelia; Bertelson, Heather; Shin, Hyun Phil; Yoo, Ji Won

    2015-01-01

    To examine whether hospital-based physical therapy is associated with functional changes and early hospital readmission among hospitalized older adults with community-acquired pneumonia and declining physical function. Study design was a retrospective observation study. Participants were community-dwelling older adults admitted to medicine floor for community-acquired pneumonia (n = 1,058). Their physical function using Katz activities of daily living (ADL) Index declined between hospital admission and 48 hours since hospital admission (Katz ADL Index 6→5). The intervention group was those receiving physical therapy for ≥ 0.5 hour/day. Outcomes were Katz ADL Index at hospital discharge and all-cause 30-day hospital readmission rate. The intervention and control groups did not differ in the Katz ADL Index at hospital discharge (p = 0.11). All-cause 30-day hospital readmission rate was lower in the intervention than in control groups (OR = 0.65, p = 0.02). Hospital-based physical therapy has the benefits toward reducing 30-day hospital readmission rate of acutely ill older adults with community-acquired pneumonia and declining physical function. PMID:26029475

  4. Functional magnetic resonance imaging in oncology: state of the art*

    PubMed Central

    Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson

    2014-01-01

    In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate. PMID:25741058

  5. Magnetic anisotropy of metal functionalized phthalocyanine 2D networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guojun; Zhang, Yun; Xiao, Huaping; Cao, Juexian

    2016-06-01

    The magnetic anisotropy of metal including Cr, Mn, Fe, Co, Mo, Tc, Ru, Rh, W, Re, Os, Ir atoms functionalized phthalocyanine networks have been investigated with first-principles calculations. The magnetic moments can be expressed as 8-n μB with n the electronic number of outmost d shell in the transition metals. The huge magnetocrystalline anisotropy energy (MAE) is obtained by torque method. Especially, the MAE of Re functionalized phthalocyanine network is about 20 meV with an easy axis perpendicular to the plane of phthalocyanine network. The MAE is further manipulated by applying the external biaxial strain. It is found that the MAE is linear increasing with the external strain in the range of -2% to 2%. Our results indicate an effective approach to modulate the MAE for practical application.

  6. Functional magnetic resonance imaging in oncology: state of the art.

    PubMed

    Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson

    2014-01-01

    In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate.

  7. Lanthanide-Functionalized Hydrophilic Magnetic Hybrid Nanoparticles: Assembly, Magnetic Behaviour, and Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Tang, Yu; Guo, Haijun; Qin, Shenjun; Wu, Jiang

    2016-05-01

    The lanthanide-functionalized multifunctional hybrid nanoparticles combining the superparamagnetic core and the luminescent europium complex were successfully designed and assembled via layer-by-layer strategy in this work. It is noted that the hybrid nanoparticles were modified by a hydrophilic polymer polyethyleneimine (PEI) through hydrogen bonding which bestowed excellent hydrophilicity and biocompatibility on this material. A bright-red luminescence was observed by fluorescence microscopy, revealing that these magnetic-luminescent nanoparticles were both colloidally and chemically stable in PBS solution. Therefore, the nanocomposite with magnetic resonance response and fluorescence probe property is considered to be of great potential in multi-modal bioimaging and diagnostic applications.

  8. Lanthanide-Functionalized Hydrophilic Magnetic Hybrid Nanoparticles: Assembly, Magnetic Behaviour, and Photophysical Properties.

    PubMed

    Han, Shuai; Tang, Yu; Guo, Haijun; Qin, Shenjun; Wu, Jiang

    2016-12-01

    The lanthanide-functionalized multifunctional hybrid nanoparticles combining the superparamagnetic core and the luminescent europium complex were successfully designed and assembled via layer-by-layer strategy in this work. It is noted that the hybrid nanoparticles were modified by a hydrophilic polymer polyethyleneimine (PEI) through hydrogen bonding which bestowed excellent hydrophilicity and biocompatibility on this material. A bright-red luminescence was observed by fluorescence microscopy, revealing that these magnetic-luminescent nanoparticles were both colloidally and chemically stable in PBS solution. Therefore, the nanocomposite with magnetic resonance response and fluorescence probe property is considered to be of great potential in multi-modal bioimaging and diagnostic applications. PMID:27245169

  9. Functional magnetic resonance imaging of the brain: a quick review.

    PubMed

    Vaghela, Viratsinh; Kesavadas, Chandrasekharan; Thomas, Bejoy

    2010-01-01

    Ability to non-invasively map the hemodynamic changes occurring focally in areas of brain involved in various motor, sensory and cognitive functions by functional magnetic resonance imaging (fMRI) has revolutionized research in neuroscience in the last two decades. This technique has already gained clinical use especially in pre-surgical evaluation of epilepsy and neurosurgical planning of resection of mass lesions adjacent to eloquent cortex. In this review we attempt to illustrate basic principles and techniques of fMRI, its applications, practical points to consider while performing and evaluating clinical fMRI and its limitations.

  10. Magnetic Helicity Spectrum of Solar Wind Fluctuations as a Function of the Angle with Respect to the Local Mean Magnetic Field

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.; Gary, S. P.

    2011-06-01

    Magnetic field data acquired by the Ulysses spacecraft in high-speed streams over the poles of the Sun are used to investigate the normalized magnetic helicity spectrum σ m as a function of the angle θ between the local mean magnetic field and the flow direction of the solar wind. This spectrum provides important information about the constituent modes at the transition to kinetic scales that occurs near the spectral break separating the inertial range from the dissipation range. The energetically dominant signal at scales near the thermal proton gyroradius k bottomρ i ~ 1 often covers a wide band of propagation angles centered about the perpendicular direction, θ ~= 90° ± 30°. This signal is consistent with a spectrum of obliquely propagating kinetic Alfvén waves with k bottom Gt k par in which there is more energy in waves propagating away from the Sun and along the direction of the local mean magnetic field than toward the Sun. Moreover, this signal is principally responsible for the reduced magnetic helicity spectrum measured using Fourier transform techniques. The observations also reveal a subdominant population of nearly parallel propagating electromagnetic waves near the proton inertial scale k par c/ωpi ~ 1 that often exhibit high magnetic helicity |σ m | ~= 1. These waves are believed to be caused by proton pressure anisotropy instabilities that regulate distribution functions in the collisionless solar wind. Because of the existence of a drift of alpha particles with respect to the protons, the proton temperature anisotropy instability that operates when T pbottom/T ppar > 1 preferentially generates outward propagating ion-cyclotron waves and the fire-hose instability that operates when T pbottom/T ppar < 1 preferentially generates inward propagating whistler waves. These kinetic processes provide a natural explanation for the magnetic field observations.

  11. MAGNETIC HELICITY SPECTRUM OF SOLAR WIND FLUCTUATIONS AS A FUNCTION OF THE ANGLE WITH RESPECT TO THE LOCAL MEAN MAGNETIC FIELD

    SciTech Connect

    Podesta, J. J.; Gary, S. P.

    2011-06-10

    Magnetic field data acquired by the Ulysses spacecraft in high-speed streams over the poles of the Sun are used to investigate the normalized magnetic helicity spectrum {sigma}{sub m} as a function of the angle {theta} between the local mean magnetic field and the flow direction of the solar wind. This spectrum provides important information about the constituent modes at the transition to kinetic scales that occurs near the spectral break separating the inertial range from the dissipation range. The energetically dominant signal at scales near the thermal proton gyroradius k{sub perpendicular{rho}i} {approx} 1 often covers a wide band of propagation angles centered about the perpendicular direction, {theta} {approx_equal} 90{sup 0} {+-} 30{sup 0}. This signal is consistent with a spectrum of obliquely propagating kinetic Alfven waves with k{sub perpendicular} >> k{sub ||} in which there is more energy in waves propagating away from the Sun and along the direction of the local mean magnetic field than toward the Sun. Moreover, this signal is principally responsible for the reduced magnetic helicity spectrum measured using Fourier transform techniques. The observations also reveal a subdominant population of nearly parallel propagating electromagnetic waves near the proton inertial scale k{sub ||} c/{omega}{sub pi} {approx} 1 that often exhibit high magnetic helicity |{sigma}{sub m}| {approx_equal} 1. These waves are believed to be caused by proton pressure anisotropy instabilities that regulate distribution functions in the collisionless solar wind. Because of the existence of a drift of alpha particles with respect to the protons, the proton temperature anisotropy instability that operates when T{sub pperpendicular}/T{sub p||} > 1 preferentially generates outward propagating ion-cyclotron waves and the fire-hose instability that operates when T{sub pperpendicular}/T{sub p||} < 1 preferentially generates inward propagating whistler waves. These kinetic processes

  12. Magnetic Alignment and Charge Transport Improvement in Functional Soft Materials

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel W.

    The realization of nanostructured functional materials by self-assembly in polymers and polymer nanocomposites is adversely affected by persisting structural defects which greatly diminish the performance of the material. The use of magnetic fields to impose long-range order is investigated in three distinct systems - ion-conducting block copolymers, semiconducting nanowire-polymer composites and lyotropic surfactant mesophases. The alignment process is quantitatively studied with X-ray scattering and microscopic methods. Time and temperature resolved data collected in situ during the magnetic experiments provide an insight into the thermodynamic and kinetic aspects of the process. These data together with simultaneous electrical conductivity measurements allow relating fundamental structural properties (e.g., morphology and long-range order) to transport properties (i.e., conductivity). In particular, it is demonstrated that magnetic fields offer a viable route for improvement of electric conductivity in these systems. More than an order of magnitude increase in conductivity is recorded in magnetically-annealed materials. The resulting aligned nanostructured systems are attractive for ordered solid polymer electrolyte membranes, heterojunction photovoltaic devices and generally help to understand charge transport mechanisms in anisotropic heterogeneous systems.

  13. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.

    PubMed

    Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang

    2011-05-01

    A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. PMID:21503355

  14. Principal and independent component analysis of concomitant functional near infrared spectroscopy and magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Schelkanova, Irina; Toronov, Vladislav

    2011-07-01

    Although near infrared spectroscopy (NIRS) is now widely used both in emerging clinical techniques and in cognitive neuroscience, the development of the apparatuses and signal processing methods for these applications is still a hot research topic. The main unresolved problem in functional NIRS is the separation of functional signals from the contaminations by systemic and local physiological fluctuations. This problem was approached by using various signal processing methods, including blind signal separation techniques. In particular, principal component analysis (PCA) and independent component analysis (ICA) were applied to the data acquired at the same wavelength and at multiple sites on the human or animal heads during functional activation. These signal processing procedures resulted in a number of principal or independent components that could be attributed to functional activity but their physiological meaning remained unknown. On the other hand, the best physiological specificity is provided by broadband NIRS. Also, a comparison with functional magnetic resonance imaging (fMRI) allows determining the spatial origin of fNIRS signals. In this study we applied PCA and ICA to broadband NIRS data to distill the components correlating with the breath hold activation paradigm and compared them with the simultaneously acquired fMRI signals. Breath holding was used because it generates blood carbon dioxide (CO2) which increases the blood-oxygen-level-dependent (BOLD) signal as CO2 acts as a cerebral vasodilator. Vasodilation causes increased cerebral blood flow which washes deoxyhaemoglobin out of the cerebral capillary bed thus increasing both the cerebral blood volume and oxygenation. Although the original signals were quite diverse, we found very few different components which corresponded to fMRI signals at different locations in the brain and to different physiological chromophores.

  15. Magnetic resonance imaging in the evaluation of cognitive function.

    PubMed

    Bigler, Erin D

    2014-10-01

    Image quality of magnetic resonance imaging (MRI) scans of the brain currently approximate gross anatomy as would be viewed at autopsy. During the first decade of the 21st Century incredible advances in image processing and quantification have occurred permitting more refined methods for studying brain-behavior-cognitive functioning. The current presentation overviews the current status of MRI methods for routine clinical assessment of brain pathology, how these techniques identify neuropathology and how pathological findings are quantified. Diffusion tensor imaging (DTI), functional MRI (fMRI), and resting state fMRI are all reviewed, emphasizing how these techniques permit an examination of brain function and connectivity. General regional relationships of brain function associated with cognitive control will be highlighted.

  16. Advanced Morphological and Functional Magnetic Resonance Techniques in Glaucoma

    PubMed Central

    Mastropasqua, Rodolfo; Agnifili, Luca; Mattei, Peter A.; Caulo, Massimo; Fasanella, Vincenzo; Navarra, Riccardo; Mastropasqua, Leonardo; Marchini, Giorgio

    2015-01-01

    Glaucoma is a multifactorial disease that is the leading cause of irreversible blindness. Recent data documented that glaucoma is not limited to the retinal ganglion cells but that it also extends to the posterior visual pathway. The diagnosis is based on the presence of signs of glaucomatous optic neuropathy and consistent functional visual field alterations. Unfortunately these functional alterations often become evident when a significant amount of the nerve fibers that compose the optic nerve has been irreversibly lost. Advanced morphological and functional magnetic resonance (MR) techniques (morphometry, diffusion tensor imaging, arterial spin labeling, and functional connectivity) may provide a means for observing modifications induced by this fiber loss, within the optic nerve and the visual cortex, in an earlier stage. The aim of this systematic review was to determine if the use of these advanced MR techniques could offer the possibility of diagnosing glaucoma at an earlier stage than that currently possible. PMID:26167474

  17. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    PubMed Central

    Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.

    2013-01-01

    Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948

  18. Integrating Functional and Diffusion Magnetic Resonance Imaging for Analysis of Structure-Function Relationship in the Human Language Network

    PubMed Central

    Morgan, Victoria L.; Mishra, Arabinda; Newton, Allen T.; Gore, John C.; Ding, Zhaohua

    2009-01-01

    Background The capabilities of magnetic resonance imaging (MRI) to measure structural and functional connectivity in the human brain have motivated growing interest in characterizing the relationship between these measures in the distributed neural networks of the brain. In this study, we attempted an integration of structural and functional analyses of the human language circuits, including Wernicke's (WA), Broca's (BA) and supplementary motor area (SMA), using a combination of blood oxygen level dependent (BOLD) and diffusion tensor MRI. Methodology/Principal Findings Functional connectivity was measured by low frequency inter-regional correlations of BOLD MRI signals acquired in a resting steady-state, and structural connectivity was measured by using adaptive fiber tracking with diffusion tensor MRI data. The results showed that different language pathways exhibited different structural and functional connectivity, indicating varying levels of inter-dependence in processing across regions. Along the path between BA and SMA, the fibers tracked generally formed a single bundle and the mean radius of the bundle was positively correlated with functional connectivity. However, fractional anisotropy was found not to be correlated with functional connectivity along paths connecting either BA and SMA or BA and WA. Conclusions/Significance These findings suggest that structure-function relations in the human language circuits may involve a number of confounding factors that need to be addressed. Nevertheless, the insights gained from this work offers a useful guidance for continued studies that may provide a non-invasive means to evaluate brain network integrity in vivo for use in diagnosing and determining disease progression and recovery. PMID:19684850

  19. The physics of functional magnetic resonance imaging (fMRI)

    NASA Astrophysics Data System (ADS)

    Buxton, Richard B.

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  20. The physics of functional magnetic resonance imaging (fMRI)

    PubMed Central

    Buxton, Richard B

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360

  1. Real time three-dimensional echocardiography for quantification of ventricular volumes, mass, and function in children with congenital and acquired heart diseases.

    PubMed

    Balluz, Rula; Liu, Liwen; Zhou, Xiaodong; Ge, Shuping

    2013-04-01

    Quantitative measurement of left ventricular (LV) volumes, mass, and function is one of the most common and important indications for echocardiography. These measurements are among the most powerful tools for diagnosis and prognosis of congenital and acquired heart diseases and for assessment of medical, percutaneous, and surgical interventions. Awareness is also growing of the importance of right ventricular (RV) volume, mass, and function in many cardiopulmonary diseases. Furthermore, there are challenges and opportunities to measure the volume, mass, and function of complex chambers such as the left atrium, right atrium, and the univentricular heart. As echocardiography continues to be the imaging modality of choice for these measurements, the strengths and limitations of M-mode, two-dimensional (2D), and recently three-dimensional (3D) echocardiographic (3DE) methodologies for accurate and reproducible measurement of these indices have been extensively investigated for congenital and acquired heart diseases. Evidence suggests that 3DE provides improved accuracy and reproducibility over 2D methods for measurement of LV volume and function calculation in adults and in children. Data have accumulated on the utility of 3DE for measuring chamber volumes and function for the RV and for the single ventricle, which may become more widely used in clinical and research arenas in the future. Finally, new advanced modes of analysis such as 3D strain and synchrony analysis by 3DE are promising methodologies that warrant further investigation.

  2. Nuclear chiral and magnetic rotation in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Zhao, Pengwei

    2016-05-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC-CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.

  3. Coupled particle-fluid transport and magnetic separation in microfluidic systems with passive magnetic functionality

    NASA Astrophysics Data System (ADS)

    Khashan, Saud A.; Furlani, Edward P.

    2013-03-01

    A study is presented of coupled particle-fluid transport and field-directed particle capture in microfluidic systems with passive magnetic functionality. These systems consist of a microfluidic flow cell on a substrate that contains embedded magnetic elements. Two systems are considered that utilize soft- and hard-magnetic elements, respectively. In the former, an external field is applied to magnetize the elements, and in the latter, they are permanently magnetized. The field produced by the magnetized elements permeates into the flow cell giving rise to an attractive force on magnetic particles that flow through it. The systems are studied using a novel numerical/closed-form modelling approach that combines numerical transport analysis with closed-form field analysis. Particle-fluid transport is computed using computational fluid dynamics (CFD), while the magnetic force that governs particle capture is obtained in closed form. The CFD analysis takes into account dominant particle forces and two-way momentum transfer between the particles and the fluid. The two-way particle-fluid coupling capability is an important feature of the model that distinguishes it from more commonly used and simplified one-way coupling analysis. The model is used to quantify the impact of two-way particle-fluid coupling on both the capture efficiency and the flow pattern in the systems considered. Many effects such as particle-induced flow-enhanced capture efficiency and flow circulation are studied that cannot be predicted using one-way coupling analysis. In addition, dilute particle dispersions are shown to exhibit significant localized particle-fluid coupling near the capture regions, which contradicts the commonly held view that two-way coupling can be ignored when analysing high-gradient magnetic separation involving such particle systems. Overall, the model demonstrates that two-way coupling needs to be taken into account for rigorous predictions of capture efficiency, especially

  4. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.

    PubMed

    Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C

    2005-11-01

    Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI.

  5. A method for functional magnetic resonance imaging of olfaction.

    PubMed

    Sobel, N; Prabhakaran, V; Desmond, J E; Glover, G H; Sullivan, E V; Gabrieli, J D

    1997-12-30

    A method for generating olfactory stimuli for humans within a functional magnetic resonance imaging (fMRI) experimental design is described. The system incorporates a nasal-mask in which the change from odorant to no-odorant conditions occurs in less than 500 ms and is not accompanied by visual, auditory, tactile, or thermal cues. The mask provides an ordorant-free environment following prolonged ordorant presence. Specific imaging parameters that are conducive to the study of the human olfactory system are described. In a pilot study performed using these methods, the specific patterns of activation observed converged with published experimental and clinical findings. PMID:9497007

  6. The economics of functional magnetic resonance imaging: clinical and research.

    PubMed

    Yousem, David M

    2014-11-01

    It is difficult to justify maintaining a clinical functional magnetic resonance imaging (fMRI) program based solely on revenue generation. The use of fMRI is, therefore, based mostly in patient care considerations, leading to better outcomes. The high costs of the top-of-the-line equipment, hardware, and software needed for state-of-the-art fMRI and the time commitment by multiple professionals are not adequately reimbursed at a representative rate by current payor schemes for the Current Procedure Terminology codes assigned.

  7. Visualizing Functional Pathways in the Human Brain Using Correlation Tensors and Magnetic Resonance Imaging

    PubMed Central

    Ding, Zhaohua; Xu, Ran; Bailey, Stephen K.; Wu, Tung-Lin; Morgan, Victoria L.; Cutting, Laurie E.; Anderson, Adam W.; Gore, John C.

    2016-01-01

    Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. PMID:26477562

  8. A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.

    PubMed

    Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F

    2004-01-30

    A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals. PMID:14706710

  9. Functional imaging of the human placenta with magnetic resonance.

    PubMed

    Siauve, Nathalie; Chalouhi, Gihad E; Deloison, Benjamin; Alison, Marianne; Clement, Olivier; Ville, Yves; Salomon, Laurent J

    2015-10-01

    Abnormal placentation is responsible for most failures in pregnancy; however, an understanding of placental functions remains largely concealed from noninvasive, in vivo investigations. Magnetic resonance imaging (MRI) is safe in pregnancy for magnetic fields of up to 3 Tesla and is being used increasingly to improve the accuracy of prenatal imaging. Functional MRI (fMRI) of the placenta has not yet been validated in a clinical setting, and most data are derived from animal studies. FMRI could be used to further explore placental functions that are related to vascularization, oxygenation, and metabolism in human pregnancies by the use of various enhancement processes. Dynamic contrast-enhanced MRI is best able to quantify placental perfusion, permeability, and blood volume fractions. However, the transplacental passage of Gadolinium-based contrast agents represents a significant safety concern for this procedure in humans. There are alternative contrast agents that may be safer in pregnancy or that do not cross the placenta. Arterial spin labeling MRI relies on magnetically labeled water to quantify the blood flows within the placenta. A disadvantage of this technique is a poorer signal-to-noise ratio. Based on arterial spin labeling, placental perfusion in normal pregnancy is 176 ± 91 mL × min(-1) × 100 g(-1) and decreases in cases with intrauterine growth restriction. Blood oxygen level-dependent and oxygen-enhanced MRIs do not assess perfusion but measure the response of the placenta to changes in oxygen levels with the use of hemoglobin as an endogenous contrast agent. Diffusion-weighted imaging and intravoxel incoherent motion MRI do not require exogenous contrast agents, instead they use the movement of water molecules within tissues. The apparent diffusion coefficient and perfusion fraction are significantly lower in placentas of growth-restricted fetuses when compared with normal pregnancies. Magnetic resonance spectroscopy has the ability to extract

  10. Functional imaging of the human placenta with magnetic resonance.

    PubMed

    Siauve, Nathalie; Chalouhi, Gihad E; Deloison, Benjamin; Alison, Marianne; Clement, Olivier; Ville, Yves; Salomon, Laurent J

    2015-10-01

    Abnormal placentation is responsible for most failures in pregnancy; however, an understanding of placental functions remains largely concealed from noninvasive, in vivo investigations. Magnetic resonance imaging (MRI) is safe in pregnancy for magnetic fields of up to 3 Tesla and is being used increasingly to improve the accuracy of prenatal imaging. Functional MRI (fMRI) of the placenta has not yet been validated in a clinical setting, and most data are derived from animal studies. FMRI could be used to further explore placental functions that are related to vascularization, oxygenation, and metabolism in human pregnancies by the use of various enhancement processes. Dynamic contrast-enhanced MRI is best able to quantify placental perfusion, permeability, and blood volume fractions. However, the transplacental passage of Gadolinium-based contrast agents represents a significant safety concern for this procedure in humans. There are alternative contrast agents that may be safer in pregnancy or that do not cross the placenta. Arterial spin labeling MRI relies on magnetically labeled water to quantify the blood flows within the placenta. A disadvantage of this technique is a poorer signal-to-noise ratio. Based on arterial spin labeling, placental perfusion in normal pregnancy is 176 ± 91 mL × min(-1) × 100 g(-1) and decreases in cases with intrauterine growth restriction. Blood oxygen level-dependent and oxygen-enhanced MRIs do not assess perfusion but measure the response of the placenta to changes in oxygen levels with the use of hemoglobin as an endogenous contrast agent. Diffusion-weighted imaging and intravoxel incoherent motion MRI do not require exogenous contrast agents, instead they use the movement of water molecules within tissues. The apparent diffusion coefficient and perfusion fraction are significantly lower in placentas of growth-restricted fetuses when compared with normal pregnancies. Magnetic resonance spectroscopy has the ability to extract

  11. Approach to combined-function magnets via symplectic slicing

    NASA Astrophysics Data System (ADS)

    Titze, M.

    2016-05-01

    In this article we describe how to obtain symplectic "slice" maps for combined-function magnets, by using a method of generating functions. A feature of this method is that one can use an unexpanded and unsplit Hamiltonian. From such a slice map we obtain a first-order map which is symplectic at the closed orbit. We also obtain a symplectic kick map. Both results were implemented into the widely used program MAD-X to regain, in particular, the twiss parameters for the sliced model of the Proton Synchrotron at CERN. In addition, we obtain recursion equations for symplectic maps of general time-dependent Hamiltonians, which might be useful even beyond the scope of accelerator physics.

  12. Magnetic resonance and the human brain: anatomy, function and metabolism.

    PubMed

    Talos, I-F; Mian, A Z; Zou, K H; Hsu, L; Goldberg-Zimring, D; Haker, S; Bhagwat, J G; Mulkern, R V

    2006-05-01

    The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth.

  13. Pulmonary functional magnetic resonance imaging for paediatric lung disease.

    PubMed

    Kirby, Miranda; Coxson, Harvey O; Parraga, Grace

    2013-09-01

    A better understanding of the anatomic structure and physiological function of the lung is fundamental to understanding the pathogenesis of pulmonary disease and how to design and deliver better treatments and measure response to intervention. Magnetic resonance imaging (MRI) with the hyperpolarised noble gases helium-3 ((3)He) and xenon-129 ((129)Xe) provides both structural and functional pulmonary measurements, and because it does not require the use of x-rays or other ionising radiation, offers the potential for intensive serial and longitudinal studies in paediatric patients. These facts are particularly important in the evaluation of chronic lung diseases such as asthma and cystic fibrosis- both of which can be considered paediatric respiratory diseases with unmet therapy needs. This review discusses MRI-based imaging methods with a focus on hyperpolarised gas MRI. We also discuss the strengths and limitations as well as the future work required for clinical translation towards paediatric respiratory disease. PMID:23522599

  14. Magnetic resonance and the human brain: anatomy, function and metabolism.

    PubMed

    Talos, I-F; Mian, A Z; Zou, K H; Hsu, L; Goldberg-Zimring, D; Haker, S; Bhagwat, J G; Mulkern, R V

    2006-05-01

    The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth. PMID:16568243

  15. Bayesian spatiotemporal inference in functional magnetic resonance imaging.

    PubMed

    Gössl, C; Auer, D P; Fahrmeir, L

    2001-06-01

    Mapping of the human brain by means of functional magnetic resonance imaging (fMRI) is an emerging field in cognitive and clinical neuroscience. Current techniques to detect activated areas of the brain mostly proceed in two steps. First, conventional methods of correlation, regression, and time series analysis are used to assess activation by a separate, pixelwise comparison of the fMRI signal time courses to the reference function of a presented stimulus. Spatial aspects caused by correlations between neighboring pixels are considered in a separate second step, if at all. The aim of this article is to present hierarchical Bayesian approaches that allow one to simultaneously incorporate temporal and spatial dependencies between pixels directly in the model formulation. For reasons of computational feasibility, models have to be comparatively parsimonious, without oversimplifying. We introduce parametric and semiparametric spatial and spatiotemporal models that proved appropriate and illustrate their performance applied to visual fMRI data.

  16. Functional magnetic resonance imaging at 0.2 Tesla.

    PubMed

    Stroman, P W; Malisza, K L; Onu, M

    2003-10-01

    Functional magnetic resonance imaging of healthy human volunteers was carried out at 0.2 T, using proton-density weighted (TE = 24 ms) spin-echo imaging, in order to eliminate any contribution from the blood oxygenation-level dependent (BOLD) effect. The purpose of the study was to verify the existence of a proton-density change contribution to spin-echo functional magnetic resonance imaging (fMRI) data. Results demonstrated signal intensity changes in motor and sensory areas of the brain during performance of a motor task and cold sensory stimulation of the hand, with signal changes ranging from 1.7 to 2.3%. These values are consistent with 1.9% signal changes observed previously under similar conditions at 3 T. These findings confirm the proton-density change contribution to spin-echo fMRI data and support the theory of signal enhancement by extravascular water protons (SEEP) as a non-BOLD fMRI contrast mechanism. This study also demonstrates that fMRI based on the SEEP contrast mechanism can be carried out at low fields where the BOLD effect is expected to be negligible.

  17. Functional Magnetic Resonance Imaging in Acute Kidney Injury: Present Status

    PubMed Central

    Zhou, Hai Ying; Chen, Tian Wu; Zhang, Xiao Ming

    2016-01-01

    Acute kidney injury (AKI) is a common complication of hospitalization that is characterized by a sudden loss of renal excretory function and associated with the subsequent development of chronic kidney disease, poor prognosis, and increased mortality. Although the pathophysiology of renal functional impairment in the setting of AKI remains poorly understood, previous studies have identified changes in renal hemodynamics, perfusion, and oxygenation as key factors in the development and progression of AKI. The early assessment of these changes remains a challenge. Many established approaches are not applicable to humans because of their invasiveness. Functional renal magnetic resonance (MR) imaging offers an alternative assessment tool that could be used to evaluate renal morphology and function noninvasively and simultaneously. Thus, the purpose of this review is to illustrate the principle, application, and role of the techniques of functional renal MR imaging, including blood oxygen level-dependent imaging, arterial spin labeling, and diffusion-weighted MR imaging, in the management of AKI. The use of gadolinium in MR imaging may exacerbate renal impairment and cause nephrogenic systemic fibrosis. Therefore, dynamic contrast-enhanced MR imaging will not be discussed in this paper. PMID:26925411

  18. Probing Corticospinal Recruitment Patterns and Functional Synergies with Transcranial Magnetic Stimulation

    PubMed Central

    Mathew, James; Kübler, Angelika; Bauer, Robert; Gharabaghi, Alireza

    2016-01-01

    Background: On the one hand, stimulating the motor cortex at different spots may activate the same muscle and result in a muscle-specific cortical map. Maps of different muscles, which are functionally coupled, may present with a large overlap but may also show a relevant variability. On the other hand, stimulation of the motor cortex at one spot with different stimulation intensities results in a characteristic input–output (IO) curve for one specific muscle but may simultaneously also activate different, functionally coupled muscles. A comparison of the cortical map overlap of synergistic muscles and their IO curves has not yet been carried out. Objective: The aim of this study was to probe functional synergies of forearm muscles with transcranial magnetic stimulation by harnessing the convergence and divergence of the corticospinal output. Methods: We acquired bihemispheric cortical maps and IO curves of the extensor carpi ulnaris, extensor carpi radialis, and extensor digitorum communis muscles by subjecting 11 healthy subjects to both monophasic and biphasic pulse waveforms. Results: The degree of synergy between pairs of forearm muscles was captured by the overlap of the cortical motor maps and the respective IO curves which were influenced by the pulse waveform. Monophasic and biphasic stimulation were particularly suitable for disentangling synergistic muscles in the right and left hemisphere, respectively. Conclusion: Combining IO curves and different pulse waveforms may provide complementary information on neural circuit dynamics and corticospinal recruitment patterns of synergistic muscles and their neuroplastic modulation. PMID:27458344

  19. A resting state functional magnetic resonance imaging study of concussion in collegiate athletes.

    PubMed

    Czerniak, Suzanne M; Sikoglu, Elif M; Liso Navarro, Ana A; McCafferty, Joseph; Eisenstock, Jordan; Stevenson, J Herbert; King, Jean A; Moore, Constance M

    2015-06-01

    Sports-related concussions are currently diagnosed through multi-domain assessment by a medical professional and may utilize neurocognitive testing as an aid. However, these tests have only been able to detect differences in the days to week post-concussion. Here, we investigate a measure of brain function, namely resting state functional connectivity, which may detect residual brain differences in the weeks to months after concussion. Twenty-one student athletes (9 concussed within 6 months of enrollment; 12 non-concussed; between ages 18 and 22 years) were recruited for this study. All participants completed the Wisconsin Card Sorting Task and the Color-Word Interference Test. Neuroimaging data, specifically resting state functional Magnetic Resonance Imaging data, were acquired to examine resting state functional connectivity. Two sample t-tests were used to compare the neurocognitive scores and resting state functional connectivity patterns among concussed and non-concussed participants. Correlations between neurocognitive scores and resting state functional connectivity measures were also determined across all subjects. There were no significant differences in neurocognitive performance between concussed and non-concussed groups. Concussed subjects had significantly increased connections between areas of the brain that underlie executive function. Across all subjects, better neurocognitive performance corresponded to stronger brain connectivity. Even at rest, brains of concussed athletes may have to 'work harder' than their healthy peers to achieve similar neurocognitive results. Resting state brain connectivity may be able to detect prolonged brain differences in concussed athletes in a more quantitative manner than neurocognitive test scores.

  20. A Resting State Functional Magnetic Resonance Imaging Study of Concussion in Collegiate Athletes

    PubMed Central

    Czerniak, Suzanne M; Sikoglu, Elif M; Navarro, Ana A Liso; McCafferty, Joseph; Eisenstock, Jordan; Stevenson, J Herbert; King, Jean A; Moore, Constance M

    2015-01-01

    Sports-related concussions are currently diagnosed through multi-domain assessment by a medical professional and may utilize neurocognitive testing as an aide. However, these tests have only been able to detect differences in the days to week post-concussion. Here, we investigate a measure of brain function, namely resting state functional connectivity, which may detect residual brain differences in the weeks to months after concussion. Twenty-one student athletes (9 concussed within 6 months of enrollment; 12 non-concussed; between ages 18 to 22 years) were recruited for this study. All participants completed the Wisconsin Card Sort Task and the Color-Word Interference Test. Neuroimaging data, specifically resting state functional Magnetic Resonance Imaging data, were acquired to examine resting state functional connectivity. Two sample t-tests were used to compare the neurocognitive scores and resting state functional connectivity patterns among concussed and non-concussed participants. Correlations between neurocognitive scores and resting state functional connectivity measures were also determined across all subjects. There were no significant differences in neurocognitive performance between concussed and non-concussed groups. Concussed subjects had significantly increased connections between areas of the brain that underlie executive function. Across all subjects, better neurocognitive performance corresponded to stronger brain connectivity. Even at rest, brains of concussed athletes may have to ‘work harder’ than their healthy peers to achieve similar neurocognitive results. Resting state brain connectivity may be able to detect prolonged brain differences in concussed athletes in a more quantitative manner than neurocognitive test scores. PMID:25112544

  1. Modulating functional and dysfunctional mentalizing by transcranial magnetic stimulation

    PubMed Central

    Schuwerk, Tobias; Langguth, Berthold; Sommer, Monika

    2014-01-01

    Mentalizing, the ability to attribute mental states to others and oneself, is a cognitive function with high relevance for social interactions. Recent neuroscientific research has increasingly contributed to attempts to decompose this complex social cognitive function into constituting neurocognitive building blocks. Additionally, clinical research that focuses on social cognition to find links between impaired social functioning and neurophysiological deviations has accumulated evidence that mentalizing is affected in most psychiatric disorders. Recently, both lines of research have started to employ transcranial magnetic stimulation: the first to modulate mentalizing in order to specify its neurocognitive components, the latter to treat impaired mentalizing in clinical conditions. This review integrates findings of these two different approaches to draw a more detailed picture of the neurocognitive basis of mentalizing and its deviations in psychiatric disorders. Moreover, we evaluate the effectiveness of hitherto employed stimulation techniques and protocols, paradigms and outcome measures. Based on this overview we highlight new directions for future research on the neurocognitive basis of functional and dysfunctional social cognition. PMID:25477838

  2. [Functional magnetic resonance imaging of psychopharmacological brain effects: an update].

    PubMed

    Braus, D F; Brassen, S; Weimer, E; Tost, H

    2003-02-01

    Functional magnetic resonance imaging (fMRI) is well established for the examination of functional activity in the living brain. The method permits the development of functional activation maps during perceptual, cognitive and emotional efforts with a high temporal and spatial resolution. As of late there has been growing interest in using this technique to investigate regionally specific brain activity following the administration of drugs such as nicotine, cocaine, lorazepam, scopolamine, antipsychotics or antidepressants. Studies in experimental animals investigate signal changes associated with the administration of psychopharmacological substances in different brain areas using a high magnetising field (> 4 Tesla). FMRI-studies in healthy human volunteers and psychiatric patients focus on cerebral activity following acute drug administration (single challenge) and on adaptive effects of the CNS due to long- term medication. Their results provide insights into brain physiology and neuropharmacological mechanisms which are in turn relevant for preclinical pharmacological studies, responder analyses and for the investigation of pathogenetic models in psychiatric diseases. However, with these new opportunities, additional methodological considerations and limitations emerge. Besides the need of controlling motion artefacts, the influence of interfering psychological variables, an exact specification of the experimental design, a standardised analysis for data adjustment and technical limitations have to be considered. This article provides an overview of the underlying model of brain function, present applications, future possibilities and methodological limitations of fMRI for the understanding of human psychopharmacology. PMID:12579470

  3. Longitudinal functional magnetic resonance imaging in animal models.

    PubMed

    Silva, Afonso C; Liu, Junjie V; Hirano, Yoshiyuki; Leoni, Renata F; Merkle, Hellmut; Mackel, Julie B; Zhang, Xian Feng; Nascimento, George C; Stefanovic, Bojana

    2011-01-01

    Functional magnetic resonance imaging (fMRI) has had an essential role in furthering our understanding of brain physiology and function. fMRI techniques are nowadays widely applied in neuroscience research, as well as in translational and clinical studies. The use of animal models in fMRI studies has been fundamental in helping elucidate the mechanisms of cerebral blood-flow regulation, and in the exploration of basic neuroscience questions, such as the mechanisms of perception, behavior, and cognition. Because animals are inherently non-compliant, most fMRI performed to date have required the use of anesthesia, which interferes with brain function and compromises interpretability and applicability of results to our understanding of human brain function. An alternative approach that eliminates the need for anesthesia involves training the animal to tolerate physical restraint during the data acquisition. In the present chapter, we review these two different approaches to obtaining fMRI data from animal models, with a specific focus on the acquisition of longitudinal data from the same subjects.

  4. Hyperpolarized Xenon-129 Magnetic Resonance Imaging of Functional Lung Microstructure

    NASA Astrophysics Data System (ADS)

    Dregely, Isabel

    Hyperpolarized 129Xe (HXe) is a non-invasive contrast agent for lung magnetic resonance imaging (MRI), which upon inhalation follows the functional pathway of oxygen in the lung by dissolving into lung tissue structures and entering the blood stream. HXe MRI therefore provides unique opportunities for functional lung imaging of gas exchange which occurs from alveolar air spaces across the air-blood boundary into parenchymal tissue. However challenges in acquisition speed and signal-to-noise ratio have limited the development of a HXe imaging biomarker to diagnose lung disease. This thesis addresses these challenges by introducing parallel imaging to HXe MRI. Parallel imaging requires dedicated hardware. This work describes design, implementation, and characterization of a 32-channel phased-array chest receive coil with an integrated asymmetric birdcage transmit coil tuned to the HXe resonance on a 3 Tesla MRI system. Using the newly developed human chest coil, a functional HXe imaging method, multiple exchange time xenon magnetization transfer contrast (MXTC) is implemented. MXTC dynamically encodes HXe gas exchange into the image contrast. This permits two parameters to be derived regionally which are related to gas-exchange functionality by characterizing tissue-to-alveolar-volume ratio and alveolar wall thickness in the lung parenchyma. Initial results in healthy subjects demonstrate the sensitivity of MXTC by quantifying the subtle changes in lung microstructure in response to orientation and lung inflation. Our results in subjects with lung disease show that the MXTC-derived functional tissue density parameter exhibits excellent agreement with established imaging techniques. The newly developed dynamic parameter, which characterizes the alveolar wall, was elevated in subjects with lung disease, most likely indicating parenchymal inflammation. In light of these observations we believe that MXTC has potential as a biomarker for the regional quantification of 1

  5. A General Method for Calculating the External Magnetic Field from a Cylindrical Magnetic Source using Toroidal Functions

    SciTech Connect

    J Selvaggi; S Salon; O Kwon CVK Chari

    2006-02-14

    An alternative method is developed to compute the magnetic field from a circular cylindrical magnetic source. Specifically, a Fourier series expansion whose coefficients are toroidal functions is introduced which yields an alternative to the more familiar spherical harmonic solution or the Elliptic integral solution. This alternate formulation coupled with a method called charge simulation allows one to compute the external magnetic field from an arbitrary magnetic source in terms of a toroidal expansion. This expansion is valid on any finite hypothetical external observation cylinder. In other words, the magnetic scalar potential or the magnetic field intensity is computed on a exterior cylinder which encloses the magnetic source. This method can be used to accurately compute the far field where a finite element formulation is known to be inaccurate.

  6. Monocyte function in intravenous drug abusers with lymphadenopathy syndrome and in patients with acquired immunodeficiency syndrome: selective impairment of chemotaxis.

    PubMed Central

    Poli, G; Bottazzi, B; Acero, R; Bersani, L; Rossi, V; Introna, M; Lazzarin, A; Galli, M; Mantovani, A

    1985-01-01

    We have investigated monocyte function in 17 intravenous drug abusers with the clinical and laboratory features of lymphadenopathy syndrome (LAS). LAS patients had normal numbers of circulating monocytes. Monocytes from LAS patients were comparable to cells from normal donors in terms of phagocytosis of latex beads, interleukin-1 secretion, O2- release and killing of antibody-sensitized lymphoma cells or actinomycin D pretreated WEHI 164 cells. In contrast 13 out of 17 LAS subjects tested in this respect as well as six out of nine AIDS patients showed a marked defect of monocyte chemotaxis. Thus monocytes from patients with LAS or AIDS have a selective defect of monocyte chemotaxis. PMID:2998656

  7. Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians.

    PubMed

    Irie, Masahito; Yoshikawa, Masanobu; Ono, Ryuichi; Iwafune, Hirotaka; Furuse, Tamio; Yamada, Ikuko; Wakana, Shigeharu; Yamashita, Yui; Abe, Takaya; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2015-09-01

    Gene targeting of mouse Sushi-ichi-related retrotransposon homologue 11/Zinc finger CCHC domain-containing 16 (Sirh11/Zcchc16) causes abnormal behaviors related to cognition, including attention, impulsivity and working memory. Sirh11/Zcchc16 encodes a CCHC type of zinc-finger protein that exhibits high homology to an LTR retrotransposon Gag protein. Upon microdialysis analysis of the prefrontal cortex region, the recovery rate of noradrenaline (NA) was reduced compared with dopamine (DA) after perfusion of high potassium-containing artificial cerebrospinal fluid in knockout (KO) mice. These data indicate that Sirh11/Zcchc16 is involved in cognitive function in the brain, possibly via the noradrenergic system, in the contemporary mouse developmental systems. Interestingly, it is highly conserved in three out of the four major groups of the eutherians, euarchontoglires, laurasiatheria and afrotheria, but is heavily mutated in xenarthran species such as the sloth and armadillo, suggesting that it has contributed to brain evolution in the three major eutherian lineages, including humans and mice. Sirh11/Zcchc16 is the first SIRH gene to be involved in brain function, instead of just the placenta, as seen in the case of Peg10, Peg11/Rtl1 and Sirh7/Ldoc1.

  8. Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians.

    PubMed

    Irie, Masahito; Yoshikawa, Masanobu; Ono, Ryuichi; Iwafune, Hirotaka; Furuse, Tamio; Yamada, Ikuko; Wakana, Shigeharu; Yamashita, Yui; Abe, Takaya; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2015-09-01

    Gene targeting of mouse Sushi-ichi-related retrotransposon homologue 11/Zinc finger CCHC domain-containing 16 (Sirh11/Zcchc16) causes abnormal behaviors related to cognition, including attention, impulsivity and working memory. Sirh11/Zcchc16 encodes a CCHC type of zinc-finger protein that exhibits high homology to an LTR retrotransposon Gag protein. Upon microdialysis analysis of the prefrontal cortex region, the recovery rate of noradrenaline (NA) was reduced compared with dopamine (DA) after perfusion of high potassium-containing artificial cerebrospinal fluid in knockout (KO) mice. These data indicate that Sirh11/Zcchc16 is involved in cognitive function in the brain, possibly via the noradrenergic system, in the contemporary mouse developmental systems. Interestingly, it is highly conserved in three out of the four major groups of the eutherians, euarchontoglires, laurasiatheria and afrotheria, but is heavily mutated in xenarthran species such as the sloth and armadillo, suggesting that it has contributed to brain evolution in the three major eutherian lineages, including humans and mice. Sirh11/Zcchc16 is the first SIRH gene to be involved in brain function, instead of just the placenta, as seen in the case of Peg10, Peg11/Rtl1 and Sirh7/Ldoc1. PMID:26402067

  9. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  10. Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians

    PubMed Central

    Irie, Masahito; Yoshikawa, Masanobu; Ono, Ryuichi; Iwafune, Hirotaka; Furuse, Tamio; Yamada, Ikuko; Wakana, Shigeharu; Yamashita, Yui; Abe, Takaya; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2015-01-01

    Gene targeting of mouse S ushi- i chi-related r etrotransposon h omologue 11 / Z inc finger CCHC domain-containing 16 (Sirh11/Zcchc16) causes abnormal behaviors related to cognition, including attention, impulsivity and working memory. Sirh11/Zcchc16 encodes a CCHC type of zinc-finger protein that exhibits high homology to an LTR retrotransposon Gag protein. Upon microdialysis analysis of the prefrontal cortex region, the recovery rate of noradrenaline (NA) was reduced compared with dopamine (DA) after perfusion of high potassium-containing artificial cerebrospinal fluid in knockout (KO) mice. These data indicate that Sirh11/Zcchc16 is involved in cognitive function in the brain, possibly via the noradrenergic system, in the contemporary mouse developmental systems. Interestingly, it is highly conserved in three out of the four major groups of the eutherians, euarchontoglires, laurasiatheria and afrotheria, but is heavily mutated in xenarthran species such as the sloth and armadillo, suggesting that it has contributed to brain evolution in the three major eutherian lineages, including humans and mice. Sirh11/Zcchc16 is the first SIRH gene to be involved in brain function, instead of just the placenta, as seen in the case of Peg10, Peg11/Rtl1 and Sirh7/Ldoc1. PMID:26402067

  11. Unusual Function of Modified Polyolefins for Manipulating Magnetic Nanostructures

    NASA Astrophysics Data System (ADS)

    He, Qingliang; Yuan, Tingting; Wei, Suying; Guo, Zhanhu

    2014-04-01

    The unusual function of a long known plastic additive in industry, polypropylene- graft-maleic anhydride (PP- g-MA), is reviewed for serving as a polymeric surfactant to synthesize and stabilize magnetic nanoparticles (NPs) with tunable morphology and crystalline structure. The synthesis route employs a solution-based, one-pot, bottom-up method. Specifically, magnetic NPs were synthesized through thermo-decomposing organo-metallic precursors [i.e., Fe(CO)5 or Co2(CO)8] in the presence of PP- g-MA in solvent xylene. By simply changing the backbone length/concentration of PP- g-MA, different morphologies (monodispersed hollow vs. chain-like solid, or chain-like vs. monodispersed polyhedral-shaped NPs) and crystalline structures [α- vs. γ-phase for Fe2O3 NPs, or face-centered cubic (fcc)- vs. ɛ-phase for Co NPs] can be controlled simultaneously. In addition, for the chain-like Fe2O3 NPs, a different chain diameter and building block morphology can be controlled by only varying the molecular weight of PP- g-MA.

  12. Functional magnetic resonance imaging of autism spectrum disorders

    PubMed Central

    Dichter, Gabriel S.

    2012-01-01

    This review presents an overview of functional magnetic resonance imaging findings in autism spectrum disorders (ASDs), Although there is considerable heterogeneity with respect to results across studies, common themes have emerged, including: (i) hypoactivation in nodes of the “social brain” during social processing tasks, including regions within the prefrontal cortex, the posterior superior temporal sulcus, the amygdala, and the fusiform gyrus; (ii) aberrant frontostriatal activation during cognitive control tasks relevant to restricted and repetitive behaviors and interests, including regions within the dorsal prefrontal cortex and the basal ganglia; (iii) differential lateralization and activation of language processing and production regions during communication tasks; (iv) anomalous mesolimbic responses to social and nonsocial rewards; (v) task-based long-range functional hypoconnectivity and short-range hyper-connectivity; and (vi) decreased anterior-posterior functional connectivity during resting states. These findings provide mechanistic accounts of ASD pathophysiology and suggest directions for future research aimed at elucidating etiologic models and developing rationally derived and targeted treatments. PMID:23226956

  13. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms.

    PubMed Central

    Howseman, A M; Bowtell, R W

    1999-01-01

    Functional magnetic resonance imaging (fMRI) is a widely used technique for generating images or maps of human brain activity. The applications of the technique are widespread in cognitive neuroscience and it is hoped they will eventually extend into clinical practice. The activation signal measured with fMRI is predicated on indirectly measuring changes in the concentration of deoxyhaemoglobin which arise from an increase in blood oxygenation in the vicinity of neuronal firing. The exact mechanisms of this blood oxygenation level dependent (BOLD) contrast are highly complex. The signal measured is dependent on both the underlying physiological events and the imaging physics. BOLD contrast, although sensitive, is not a quantifiable measure of neuronal activity. A number of different imaging techniques and parameters can be used for fMRI, the choice of which depends on the particular requirements of each functional imaging experiment. The high-speed MRI technique, echo-planar imaging provides the basis for most fMRI experiments. The problems inherent to this method and the ways in which these may be overcome are particularly important in the move towards performing functional studies on higher field MRI systems. Future developments in techniques and hardware are also likely to enhance the measurement of brain activity using MRI. PMID:10466145

  14. Functional magnetic resonance imaging of autism spectrum disorders.

    PubMed

    Dichter, Gabriel S

    2012-09-01

    This review presents an overview of functional magnetic resonance imaging findings in autism spectrum disorders (ASDS), although there is considerable heterogeneity with respect to results across studies, common themes have emerged, including: (i) hypoactivation in nodes of the "social brain" during social processing tasks, including regions within the prefrontal cortex, the posterior superior temporal sulcus, the amygdala, and the fusiform gyrus; (ii) aberrant frontostriatal activation during cognitive control tasks relevant to restricted and repetitive behaviors and interests, including regions within the dorsal prefrontal cortex and the basal ganglia; (iii) differential lateralization and activation of language processing and production regions during communication tasks; (iv) anomalous mesolimbic responses to social and nonsocial rewards; (v) task-based long-range functional hypoconnectivity and short-range hyper-connectivity; and (vi) decreased anterior-posterior functional connectivity during resting states. These findings provide mechanistic accounts of ASD pathophysiology and suggest directions for future research aimed at elucidating etiologic models and developing rationally derived and targeted treatments.

  15. Functional magnetic resonance imaging in chronic ischaemic stroke.

    PubMed

    Lake, Evelyn M R; Bazzigaluppi, Paolo; Stefanovic, Bojana

    2016-10-01

    Ischaemic stroke is the leading cause of adult disability worldwide. Effective rehabilitation is hindered by uncertainty surrounding the underlying mechanisms that govern long-term ischaemic injury progression. Despite its potential as a sensitive non-invasive in vivo marker of brain function that may aid in the development of new treatments, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has found limited application in the clinical research on chronic stage stroke progression. Stroke affects each of the physiological parameters underlying the BOLD contrast, markedly complicating the interpretation of BOLD fMRI data. This review summarizes current progress on application of BOLD fMRI in the chronic stage of ischaemic injury progression and discusses means by which more information may be gained from such BOLD fMRI measurements. Concomitant measurements of vascular reactivity, neuronal activity and metabolism in preclinical models of stroke are reviewed along with illustrative examples of post-ischaemic evolution in neuronal, glial and vascular function. The realization of the BOLD fMRI potential to propel stroke research is predicated on the carefully designed preclinical research establishing an ischaemia-specific quantitative model of BOLD signal contrast to provide the framework for interpretation of fMRI findings in clinical populations.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  16. Functional magnetic resonance imaging in chronic ischaemic stroke.

    PubMed

    Lake, Evelyn M R; Bazzigaluppi, Paolo; Stefanovic, Bojana

    2016-10-01

    Ischaemic stroke is the leading cause of adult disability worldwide. Effective rehabilitation is hindered by uncertainty surrounding the underlying mechanisms that govern long-term ischaemic injury progression. Despite its potential as a sensitive non-invasive in vivo marker of brain function that may aid in the development of new treatments, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has found limited application in the clinical research on chronic stage stroke progression. Stroke affects each of the physiological parameters underlying the BOLD contrast, markedly complicating the interpretation of BOLD fMRI data. This review summarizes current progress on application of BOLD fMRI in the chronic stage of ischaemic injury progression and discusses means by which more information may be gained from such BOLD fMRI measurements. Concomitant measurements of vascular reactivity, neuronal activity and metabolism in preclinical models of stroke are reviewed along with illustrative examples of post-ischaemic evolution in neuronal, glial and vascular function. The realization of the BOLD fMRI potential to propel stroke research is predicated on the carefully designed preclinical research establishing an ischaemia-specific quantitative model of BOLD signal contrast to provide the framework for interpretation of fMRI findings in clinical populations.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574307

  17. Surface functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Wydra, Robert John

    Despite recent advances, cancer remains the second leading cause of deaths in the United States. Magnetic nanoparticles have found various applications in cancer research as drug delivery platforms, enhanced contrast agents for improved diagnostic imaging, and the delivery of thermal energy as standalone therapy. Iron oxide nanoparticles absorb the energy from an alternating magnetic field and convert it into heat through Brownian and Neel relaxations. To better utilize magnetic nanoparticles for cancer therapy, surface functionalization is essential for such factors as decreasing cytotoxicity of healthy tissue, extending circulation time, specific targeting of cancer cells, and manage the controlled delivery of therapeutics. In the first study, iron oxide nanoparticles were coated with a poly(ethylene glycol) (PEG) based polymer shell. The PEG coating was selected to prevent protein adsorption and thus improve circulation time and minimize host response to the nanoparticles. Thermal therapy application feasibility was demonstrated in vitro with a thermoablation study on lung carcinoma cells. Building on the thermal therapy demonstration with iron oxide nanoparticles, the second area of work focused on intracellular delivery. Nanoparticles can be appropriately tailored to enter the cell and deliver energy on the nanoscale eliminating individual cancer cells. The underlying mechanism of action is still under study, and we were interested in determining the role of reactive oxygen species (ROS) catalytically generated from the surface of iron oxide nanoparticles in this measured cytotoxicity. When exposed to an AMF, the nanoscale heating effects are capable of enhancing the Fenton-like generation of ROS determined through a methylene blue degradation assay. To deliver this enhanced ROS effect to cells, monosaccharide coated nanoparticles were developed and successfully internalized by colon cancer cell lines. Upon AMF exposure, there was a measured increase in

  18. Rehabilitation of Executive Functions in Patients with Chronic Acquired Brain Injury with Goal Management Training, External Cuing, and Emotional Regulation: A Randomized Controlled Trial.

    PubMed

    Tornås, Sveinung; Løvstad, Marianne; Solbakk, Anne-Kristin; Evans, Jonathan; Endestad, Tor; Hol, Per Kristian; Schanke, Anne-Kristine; Stubberud, Jan

    2016-04-01

    Executive dysfunction is a common consequence of acquired brain injury (ABI), causing significant disability in daily life. This randomized controlled trial investigated the efficacy of Goal Management Training (GMT) in improving executive functioning in patients with chronic ABI. Seventy patients with a verified ABI and executive dysfunction were randomly allocated to GMT (n=33) or a psycho-educative active control condition, Brain Health Workshop (BHW) (n=37). In addition, all participants received external cueing by text messages. Neuropsychological tests and self-reported questionnaires of executive functioning were administered pre-intervention, immediately after intervention, and at 6 months follow-up. Assessors were blinded to group allocation. Questionnaire measures indicated significant improvement of everyday executive functioning in the GMT group, with effects lasting at least 6 months post-treatment. Both groups improved on the majority of the applied neuropsychological tests. However, improved performance on tests demanding executive attention was most prominent in the GMT group. The results indicate that GMT combined with external cueing is an effective metacognitive strategy training method, ameliorating executive dysfunction in daily life for patients with chronic ABI. The strongest effects were seen on self-report measures of executive functions 6 months post-treatment, suggesting that strategies learned in GMT were applied and consolidated in everyday life after the end of training. Furthermore, these findings show that executive dysfunction can be improved years after the ABI.

  19. Achromatic synesthesias - a functional magnetic resonance imaging study.

    PubMed

    Melero, H; Ríos-Lago, M; Peña-Melián, A; Álvarez-Linera, J

    2014-09-01

    Grapheme-color synesthetes experience consistent, automatic and idiosyncratic colors associated with specific letters and numbers. Frequently, these specific associations exhibit achromatic synesthetic qualities (e.g. white, black or gray). In this study, we have investigated for the first time the neural basis of achromatic synesthesias, their relationship to chromatic synesthesias and the achromatic congruency effect in order to understand not only synesthetic color but also other components of the synesthetic experience. To achieve this aim, functional magnetic resonance imaging experiments were performed in a group of associator grapheme-color synesthetes and matched controls who were stimulated with real chromatic and achromatic stimuli (Mondrians), and with letters and numbers that elicited different types of grapheme-color synesthesias (i.e. chromatic and achromatic inducers which elicited chromatic but also achromatic synesthesias, as well as congruent and incongruent ones). The information derived from the analysis of Mondrians and chromatic/achromatic synesthesias suggests that real and synesthetic colors/achromaticity do not fully share neural mechanisms. The whole-brain analysis of BOLD signals in response to the complete set of synesthetic inducers revealed that the functional peculiarities of the synesthetic brain are distributed, and reflect different components of the synesthetic experience: a perceptual component, an (attentional) feature binding component, and an emotional component. Additionally, the inclusion of achromatic experiences has provided new evidence in favor of the emotional binding theory, a line of interpretation which constitutes a bridge between grapheme-color synesthesia and other developmental modalities of the phenomenon.

  20. Functional magnetic resonance imaging (FMRI) and expert testimony.

    PubMed

    Kulich, Ronald; Maciewicz, Raymond; Scrivani, Steven J

    2009-03-01

    Medical experts frequently use imaging studies to illustrate points in their court testimony. This article reviews how these studies impact the credibility of expert testimony with judges and juries. The apparent "objective" evidence provided by such imaging studies can lend strong credence to a judge's or jury's appraisal of medical expert's testimony. However, as the court usually has no specialized scientific expertise, the use of complex images as part of courtroom testimony also has the potential to mislead or at least inappropriately bias the weight given to expert evidence. Recent advances in brain imaging may profoundly impact forensic expert testimony. Functional magnetic resonance imaging and other physiologic imaging techniques currently allow visualization of the activation pattern of brain regions associated with a wide variety of cognitive and behavioral tasks, and more recently, pain. While functional imaging technology has a valuable role in brain research and clinical investigation, it is important to emphasize that the use of imaging studies in forensic matters requires a careful scientific foundation and a rigorous legal assessment. PMID:19254335

  1. Achromatic synesthesias - a functional magnetic resonance imaging study.

    PubMed

    Melero, H; Ríos-Lago, M; Peña-Melián, A; Álvarez-Linera, J

    2014-09-01

    Grapheme-color synesthetes experience consistent, automatic and idiosyncratic colors associated with specific letters and numbers. Frequently, these specific associations exhibit achromatic synesthetic qualities (e.g. white, black or gray). In this study, we have investigated for the first time the neural basis of achromatic synesthesias, their relationship to chromatic synesthesias and the achromatic congruency effect in order to understand not only synesthetic color but also other components of the synesthetic experience. To achieve this aim, functional magnetic resonance imaging experiments were performed in a group of associator grapheme-color synesthetes and matched controls who were stimulated with real chromatic and achromatic stimuli (Mondrians), and with letters and numbers that elicited different types of grapheme-color synesthesias (i.e. chromatic and achromatic inducers which elicited chromatic but also achromatic synesthesias, as well as congruent and incongruent ones). The information derived from the analysis of Mondrians and chromatic/achromatic synesthesias suggests that real and synesthetic colors/achromaticity do not fully share neural mechanisms. The whole-brain analysis of BOLD signals in response to the complete set of synesthetic inducers revealed that the functional peculiarities of the synesthetic brain are distributed, and reflect different components of the synesthetic experience: a perceptual component, an (attentional) feature binding component, and an emotional component. Additionally, the inclusion of achromatic experiences has provided new evidence in favor of the emotional binding theory, a line of interpretation which constitutes a bridge between grapheme-color synesthesia and other developmental modalities of the phenomenon. PMID:24845620

  2. Methodological challenges and solutions in auditory functional magnetic resonance imaging.

    PubMed

    Peelle, Jonathan E

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies involve substantial acoustic noise. This review covers the difficulties posed by such noise for auditory neuroscience, as well as a number of possible solutions that have emerged. Acoustic noise can affect the processing of auditory stimuli by making them inaudible or unintelligible, and can result in reduced sensitivity to auditory activation in auditory cortex. Equally importantly, acoustic noise may also lead to increased listening effort, meaning that even when auditory stimuli are perceived, neural processing may differ from when the same stimuli are presented in quiet. These and other challenges have motivated a number of approaches for collecting auditory fMRI data. Although using a continuous echoplanar imaging (EPI) sequence provides high quality imaging data, these data may also be contaminated by background acoustic noise. Traditional sparse imaging has the advantage of avoiding acoustic noise during stimulus presentation, but at a cost of reduced temporal resolution. Recently, three classes of techniques have been developed to circumvent these limitations. The first is Interleaved Silent Steady State (ISSS) imaging, a variation of sparse imaging that involves collecting multiple volumes following a silent period while maintaining steady-state longitudinal magnetization. The second involves active noise control to limit the impact of acoustic scanner noise. Finally, novel MRI sequences that reduce the amount of acoustic noise produced during fMRI make the use of continuous scanning a more practical option. Together these advances provide unprecedented opportunities for researchers to collect high-quality data of hemodynamic responses to auditory stimuli using fMRI. PMID:25191218

  3. McMillan Magnet School: A Case History of a School Acquiring a Critical Mass of Computer Technology and Internet Connectivity.

    ERIC Educational Resources Information Center

    Grandgenett, Neal; And Others

    McMillan Magnet Center is located in urban Omaha, Nebraska, and specializes in math, computers, and communications. Once a junior high school, it was converted to a magnet center for seventh and eighth graders in the 1983-84 school year as part of Omaha's voluntary desegregation plan. Now the ethnic makeup of the student population is about 50%…

  4. Altered Functional Connectivity in Patients with Subcortical Vascular Cognitive Impairment—A Resting-State Functional Magnetic Resonance Imaging Study

    PubMed Central

    Wang, Yao; Sun, Yawen; Chen, Xue; Xu, Jianrong

    2015-01-01

    Recent neuroimaging studies have shown that people with subcortical vascular cognitive impairment (sVCI) have structural and functional abnormalities in the frontal lobe and subcortical brain sites. In this study, we used seed-based resting-state functional connectivity (rsFC) analysis and voxel-mirrored homotopic connectivity (VMHC) techniques to investigate the alteration of rsFC in patients with sVCI. rsFC and structural magnetic resonance images were acquired for 51 patients with subcortical cerebrovascular disease. All patients were subdivided based on cognitive status into 29 with sVCI and 22 controls; patient characteristics were matched. rsFC of the posterior cingulate cortex (PCC) and VMHC were calculated separately, and rsFC of the PCC and VMHC between the two groups were compared. The regions showing abnormal rsFC of the PCC or VMHC in sVCI patients were adopted as regions of interest for correlation analyses. Our results are as follows: The patients with sVCI exhibited increases in rsFC in the left middle temporal lobe, right inferior temporal lobe and left superior frontal gyrus, and significant decreases in rsFC of the left thalamus with the PCC. sVCI patients showed a significant deficit in VMHC between the bilateral lingual gyrus, putamen, and precentral gyrus. Additionally, the z-memory score was significantly positively associated with connectivity between the left thalamus and the PCC (r = 0.41, p = 0.03, uncorrected) in the sVCI group. Our findings suggest that the frontal lobe and subcortical brain sites play an important role in the pathogenesis of sVCI. Furthermore, rsFC between the left thalamus and the PCC might indicate the severity of sVCI. PMID:26376180

  5. [Participation limitations following acquired brain damage: a pilot study on the relationship among functional disorders as well as personal and environmental context factors].

    PubMed

    Fries, W; Fischer, S

    2008-10-01

    The SGB IX, book 9 of the German social code (Sozialgesetzbuch, SGB), which is the legal basis of rehabilitation in Germany, states "participation and self-determined conduct of life" as the ultimate ambition of rehabilitation. This concept of participation and disability is based on the WHO model expressed in the International Classification of Functioning, Disability and Health (ICF). In this model, participation after the onset of a health problem may not only be infringed by disturbances in body functions and structures and the resulting activity limitations but also by contextual factors such as environmental and personal factors. In an outpatient neurological rehabilitation centre we prospectively rated for 49 patients the influence of these contextual factors as well as of objectively assessed functional/activity limitations on the overall disability. On average, functional/activity limitations were rated as contributing 58.4% (SD=17.2%), personal factors 26.4% (SD=12.7%) and environmental factors 15.1% (SD=11.2%) to the overall disability. The functional/activity limitations closely matched the expected limitations based on the underlying brain lesions. The degree of disability based on contextual factors was not related to activity limitations based on disturbances of body functions and structures. Also, demographic variables such as age, sex or chronicity were not significantly linked to contextual factors. Since contextual factors together contributed 41.6% (SD=17.2%) to the overall disability they have major relevance for the rehabilitation process, because they essentially decide on the extent to which abilities acquired by the rehabilitant during rehabilitation actually be transfered to his everyday life. Therefore, rehabilitation programmes need to include assessment and treatment of contextual factors. It hence is necessary to develop instruments to quantify contextual factors.

  6. An oculomotor decision process revealed by functional magnetic resonance imaging.

    PubMed

    Heinen, Stephen J; Rowland, Jess; Lee, Byeong-Taek; Wade, Alex R

    2006-12-27

    It is not known how the brain decides to act on moving objects. We demonstrated previously that neurons in the macaque supplementary eye field (SEF) reflect the rule of ocular baseball, a go/nogo task in which eye movements signal the rule-guided interpretation of the trajectory of a target. In ocular baseball, subjects must decide whether to pursue a moving spot target with an eye movement after discriminating whether the target will cross a distal, visible line segment. Here we identify cortical regions active during the ocular baseball task using event-related human functional magnetic resonance imaging (fMRI) and concurrent eye-movement monitoring. Task-related activity was observed in the SEF, the frontal eye field (FEF), the superior parietal lobule (SPL), and the right ventrolateral prefrontal cortex (VLPFC). The SPL and right VLPFC showed heightened activity only during ocular baseball, despite identical stimuli and oculomotor demands in the control task, implicating these areas in the decision process. Furthermore, the right VLPFC but not the SPL showed the greatest activation during the nogo decision trials. This suggests both a functional dissociation between these areas and a role for the right VLPFC in rule-guided inhibition of behavior. In the SEF and FEF, activity was similar for ocular baseball and a control eye-movement task. We propose that, although the SEF reflects the ocular baseball rule, both areas in humans are functionally closer to motor processing than the SPL and the right VLPFC. By recording population activity with fMRI during the ocular baseball task, we have revealed the cortical substrate of an oculomotor decision process.

  7. Investigation of the structure and lithology of bedrock concealed by basin fill, using ground-based magnetic-field-profile data acquired in the San Rafael Basin, southeastern Arizona

    USGS Publications Warehouse

    Bultman, Mark W.

    2013-01-01

    Data on the Earth’s total-intensity magnetic field acquired near ground level and at measurement intervals as small as 1 m include information on the spatial distribution of nearsurface magnetic dipoles that in many cases are unique to a specific lithology. Such spatial information is expressed in the texture (physical appearance or characteristics) of the data at scales of hundreds of meters to kilometers. These magnetic textures are characterized by several descriptive statistics, their power spectrum, and their multifractal spectrum. On the basis of a graphical comparison and textural characterization, ground-based magnetic-field profile data can be used to estimate bedrock lithology concealed by as much as 100 m of basin fill in some cases, information that is especially important in assessing and exploring for concealed mineral deposits. I demonstrate that multifractal spectra of ground-based magnetic-field-profile data can be used to differentiate exposed lithologies and that the shape and position of the multifractal spectrum of the ground-based magnetic-field-profile of concealed lithologies can be matched to the upward-continued multifractal spectrum of an exposed lithology to help distinguish the concealed lithology. In addition, ground-based magnetic-field-profile data also detect minute differences in the magnetic susceptibility of rocks over small horizontal and vertical distances and so can be used for precise modeling of bedrock geometry and structure, even when that bedrock is concealed by 100 m or more of nonmagnetic basin fill. Such data contain valuable geologic information on the bedrock concealed by basin fill that may not be so visible in aeromagnetic data, including areas of hydrothermal alteration, faults, and other bedrock structures. Interpretation of these data in the San Rafael Basin, southeastern Arizona, has yielded results for estimating concealed lithologies, concealed structural geology, and a concealed potential mineral

  8. [Magnetic micro-/nano-materials: functionalization and their applications in pretreatment for food samples].

    PubMed

    Gao, Qiang; Feng, Yuqi

    2014-10-01

    Magnetic solid phase extraction technique, based on functional magnetic materials, is currently a hot topic in the separation and analysis of complex samples. This paper reviews the reported methods for the functionalization of magnetic micro-/nano-materials, such as sur- face grafting organic groups, coating carbon or inorganic oxide, grafting or coating polymer, being loaded to the surface or pores of supports, being introduced into the skeleton of sup- ports, and physically co-mixing methods. Moreover, we briefly introduce the applications of the functional magnetic micro-/nano-materials in pretreatment for food samples.

  9. Mapping Depression in Schizophrenia: A Functional Magnetic Resonance Imaging Study.

    PubMed

    Kumari, Veena; Peters, Emmanuelle; Guinn, Ashley; Fannon, Dominic; Russell, Tamara; Sumich, Alexander; Kuipers, Elizabeth; Williams, Steven C R; Ffytche, Dominic H

    2016-05-01

    Depressive symptoms are common in schizophrenia, often left untreated, and associated with a high relapse rate, suicidal ideation, increased mortality, reduced social adjustment and poor quality of life. The neural mechanisms underlying depression in psychosis are poorly understood. Given reports of altered brain response to negative facial affect in depressive disorders, we examined brain response to emotive facial expressions in relation to levels of depression in people with psychosis. Seventy outpatients (final N= 63) and 20 healthy participants underwent functional magnetic resonance imaging during an implicit affect processing task involving presentation of facial expressions of fear, anger, happiness as well as neutral expressions and a (no face) control condition. All patients completed Beck Depression Inventory (BDI-II) and had their symptoms assessed on the Positive and Negative Syndrome Scale (PANSS). In patients, depression (BDI-II) scores associated positively with activation of the left thalamus, extending to the putamen-globus pallidus, insula, inferior-middle frontal and para-post-pre-central gyri during fearful expressions. Furthermore, patients with moderate-to-severe depression had significantly higher activity in these brain regions during fearful expressions relative to patients with no, minimal, or mild depression and healthy participants. The study provides first evidence of enhanced brain response to fearful facial expressions, which signal an uncertain source of threat in the environment, in patients with psychosis and a high level of self-reported depression. PMID:26712855

  10. Mapping Depression in Schizophrenia: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Kumari, Veena; Peters, Emmanuelle; Guinn, Ashley; Fannon, Dominic; Russell, Tamara; Sumich, Alexander; Kuipers, Elizabeth; Williams, Steven C. R.; ffytche, Dominic H.

    2016-01-01

    Depressive symptoms are common in schizophrenia, often left untreated, and associated with a high relapse rate, suicidal ideation, increased mortality, reduced social adjustment and poor quality of life. The neural mechanisms underlying depression in psychosis are poorly understood. Given reports of altered brain response to negative facial affect in depressive disorders, we examined brain response to emotive facial expressions in relation to levels of depression in people with psychosis. Seventy outpatients (final N = 63) and 20 healthy participants underwent functional magnetic resonance imaging during an implicit affect processing task involving presentation of facial expressions of fear, anger, happiness as well as neutral expressions and a (no face) control condition. All patients completed Beck Depression Inventory (BDI-II) and had their symptoms assessed on the Positive and Negative Syndrome Scale (PANSS). In patients, depression (BDI-II) scores associated positively with activation of the left thalamus, extending to the putamen-globus pallidus, insula, inferior-middle frontal and para-post-pre-central gyri during fearful expressions. Furthermore, patients with moderate-to-severe depression had significantly higher activity in these brain regions during fearful expressions relative to patients with no, minimal, or mild depression and healthy participants. The study provides first evidence of enhanced brain response to fearful facial expressions, which signal an uncertain source of threat in the environment, in patients with psychosis and a high level of self-reported depression. PMID:26712855

  11. [Functional magnetic resonance imaging and dynamic neuroanatomy of addictive disorders].

    PubMed

    Mel'nikov, M E; Shtark, M B

    2014-01-01

    Research into the cerebral patterns that govern the formation and development of addictive behavior is one of the most interesting goals of neurophysiology. Authors of contemporary papers on the matter define a number of symptoms that are all part of substance or non-substance dependence, each one of them leading to abnormalities in the corresponding system of the brain. During the last twenty years the functional magnetic resonance imaging (fMR1) technology has been instrumental in locating such abnormalities, identifying specific parts of the brain that, when dysfunctional, may enhance addiction and cause its positive or negative symptoms. This article reviews fMRI studies aimed toward locating areas in the brain that are responsible for cognitive, emotional, and motivational dysfunction. Cerebral correlatives of impulsiveness, behavior control, and drug cravings are reviewed separately. The article also contains an overview of possibilities to further investigate the Selves of those dependent on substances, identify previously unknown diagnostic markers of substance dependence, and evaluate the effectiveness of therapy. The research under review in this article provides data that points to a special role of the nucleus caudatus as well as the nucleus accumbens, the thalamus, the insular cortex (IC), the anterior cingulate, prefrontal and orbitofrontal areas in psychological disorders that are part of substance dependence. General findings of the article are in accordance with contemporary models of addictive pattern. PMID:25729844

  12. Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging.

    PubMed

    Babiloni, Claudio; Pizzella, Vittorio; Gratta, Cosimo Del; Ferretti, Antonio; Romani, Gian Luca

    2009-01-01

    This review introduces readers to fundamentals of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI). EEG and MEG signals are mainly produced by postsynaptic ionic currents of synchronically active pyramidal cortical neurons. These signals reflect the integrative information processing of neurons representing the output of cortical neural modules. EEG and MEG signals have a high temporal resolution (<1ms) ideal to investigate an emerging propriety of brain physiology, namely the brain rhythms. A background spontaneous oscillatory activity of brain neurons at about 10Hz generates dominant alpha rhythms of resting-state EEG and MEG activity. This background activity is blocked during sensory and cognitive-motor events. Standard EEG shows a low spatial resolution (5-9cm), which partially improves by high-resolution EEG including 64-128 channels and source estimation techniques (1-3cm); source estimation of MEG data shows a better spatial resolution (0.5-2cm). fMRI is an indirect measurement of regional brain activity based on the ratio between deoxyhemoglobin and oxyhemoglobin blood (BOLD) during events referenced to baseline conditions. Event-related BOLD response has low temporal resolution (>1s) and quite high spatial resolution (<1cm), and is especially suitable to investigate spatial details of both cortical and subcortical activation.

  13. [Functional magnetic resonance imaging and dynamic neuroanatomy of addictive disorders].

    PubMed

    Mel'nikov, M E; Shtark, M B

    2014-01-01

    Research into the cerebral patterns that govern the formation and development of addictive behavior is one of the most interesting goals of neurophysiology. Authors of contemporary papers on the matter define a number of symptoms that are all part of substance or non-substance dependence, each one of them leading to abnormalities in the corresponding system of the brain. During the last twenty years the functional magnetic resonance imaging (fMR1) technology has been instrumental in locating such abnormalities, identifying specific parts of the brain that, when dysfunctional, may enhance addiction and cause its positive or negative symptoms. This article reviews fMRI studies aimed toward locating areas in the brain that are responsible for cognitive, emotional, and motivational dysfunction. Cerebral correlatives of impulsiveness, behavior control, and drug cravings are reviewed separately. The article also contains an overview of possibilities to further investigate the Selves of those dependent on substances, identify previously unknown diagnostic markers of substance dependence, and evaluate the effectiveness of therapy. The research under review in this article provides data that points to a special role of the nucleus caudatus as well as the nucleus accumbens, the thalamus, the insular cortex (IC), the anterior cingulate, prefrontal and orbitofrontal areas in psychological disorders that are part of substance dependence. General findings of the article are in accordance with contemporary models of addictive pattern.

  14. Multi-function magnetic jack control drive mechanism

    DOEpatents

    Bollinger, L.R.; Crawford, D.C.

    1983-10-06

    A multi-function magnetic jack control drive mechanism for controlling a nuclear reactor is provided. The mechanism includes an elongate pressure housing in which a plurality of closely spaced drive rods are located. Each drive rod is connected to a rod which is insertable in the reactor core. An electromechanical stationary latch device is provided which is actuatable to hold each drive rod stationary with respect to the pressure housing. An electromechanical movable latch device is also provided for each one of the drive rods. Each movable latch device is provided with a base and is actuatable to hold a respective drive rod stationary with respect to the base. An electromechanical lift device is further provided for each base which is actuatable for moving a respective base longitudinally along the pressure housing. In this manner, one or more drive rods can be moved in the pressure housing by sequentially and repetitively operating the electromechanical devices. Preferably, each latch device includes a pair of opposed latches which grip teeth located on the respective drive rod. Two, three, or four drive rods can be located symmetrically about the longitudinal axis of the pressure housing.

  15. Multi-function magnetic jack control drive mechanism

    DOEpatents

    Bollinger, Lawrence R.; Crawford, Donald C.

    1986-01-01

    A multi-function magnetic jack control drive mechanism for controlling a nuclear reactor is provided. The mechanism includes an elongate pressure housing in which a plurality of closely spaced drive rods are located. Each drive rod is connected to a rod which is insertable in the reactor core. An electromechanical stationary latch device is provided which is actuatable to hold each drive rod stationary with respect to the pressure housing. An electromechanical movable latch device is also provided for each one of the drive rods. Each movable latch device is provided with a base and is actuatable to hold a respective drive rod stationary with respect to the base. An electromechanical lift device is further provided for each base which is actuatable for moving a respective base longitudinally along the pressure housing. In this manner, one or more drive rods can be moved in the pressure housing by sequentially and repetitively operating the electromechanical devices. Preferably, each latch device includes a pair of opposed latches which grip teeth located on the respective drive rod. Two, three, or four drive rods can be located symmetrically about the longitudinal axis of the pressure housing.

  16. Cerebellum and speech perception: a functional magnetic resonance imaging study.

    PubMed

    Mathiak, Klaus; Hertrich, Ingo; Grodd, Wolfgang; Ackermann, Hermann

    2002-08-15

    A variety of data indicate that the cerebellum participates in perceptual tasks requiring the precise representation of temporal information. Access to the word form of a lexical item requires, among other functions, the processing of durational parameters of verbal utterances. Therefore, cerebellar dysfunctions must be expected to impair word recognition. In order to specify the topography of the assumed cerebellar speech perception mechanism, a functional magnetic resonance imaging study was performed using the German lexical items "Boden" ([bodn], Engl. "floor") and "Boten" ([botn], "messengers") as test materials. The contrast in sound structure of these two lexical items can be signaled either by the length of the wordmedial pause (closure time, CLT; an exclusively temporal measure) or by the aspiration noise of wordmedial "d" or "t" (voice onset time, VOT; an intrasegmental cue). A previous study found bilateral cerebellar disorders to compromise word recognition based on CLT whereas the encoding of VOT remained unimpaired. In the present study, two series of "Boden - Boten" utterances were resynthesized, systematically varying either in CLT or VOT. Subjects had to identify both words "Boden" and "Boten" by analysis of either the durational parameter CLT or the VOT aspiration segment. In a subtraction design, CLT categorization as compared to VOT identification (CLT - VOT) yielded a significant hemodynamic response of the right cerebellar hemisphere (neocerebellum Crus I) and the frontal lobe (anterior to Broca's area). The reversed contrast ( VOT - CLT) resulted in a single activation cluster located at the level of the supratemporal plane of the dominant hemisphere. These findings provide first evidence for a distinct contribution of the right cerebellar hemisphere to speech perception in terms of encoding of durational parameters of verbal utterances. Verbal working memory tasks, lexical response selection, and auditory imagery of word strings have been

  17. Identification of human brain regions underlying responses to resistive inspiratory loading with functional magnetic resonance imaging.

    PubMed Central

    Gozal, D; Omidvar, O; Kirlew, K A; Hathout, G M; Hamilton, R; Lufkin, R B; Harper, R M

    1995-01-01

    Compensatory ventilatory responses to increased inspiratory loading are essential for adequate breathing regulation in a number of pulmonary diseases; however, the human brain sites mediating such responses are unknown. Midsagittal and axial images were acquired in 11 healthy volunteers during unloaded and loaded (30 cmH2O; 1 cmH2O = 98 Pa) inspiratory breathing, by using functional magnetic resonance imaging (fMRI) strategies (1.5-tesla MR; repetition time, 72 msec; echo time, 45 msec; flip angle, 30 degrees; field of view, 26 cm; slice thickness, 5 mm; number of excitations, 1; matrix, 128 x 256). Digital image subtractions and region of interest analyses revealed significantly increased fMRI signal intensity in discrete areas of the ventral and dorsal pons, interpeduncular nucleus, basal forebrain, putamen, and cerebellar regions. Upon load withdrawal, certain regions displayed a rapid fMRI signal off-transient, while in others, a slower fMRI signal decay emerged. Sustained loading elicited slow decreases in fMRI signal across activated regions, while second application of an identical load resulted in smaller signal increases compared to initial signal responses (P < 0.001). A moderate inspiratory load is associated with consistent regional activation of discrete brain locations; certain of these regions have been implicated in mediation of loaded breathing in animal models. We speculate that temporal changes in fMRI signal may indicate respiratory after-discharge and/or habituation phenomena. Images Fig. 1 Fig. 3 PMID:7604040

  18. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury.

    PubMed

    Bardin, Jonathan C; Fins, Joseph J; Katz, Douglas I; Hersh, Jennifer; Heier, Linda A; Tabelow, Karsten; Dyke, Jonathan P; Ballon, Douglas J; Schiff, Nicholas D; Voss, Henning U

    2011-03-01

    Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects.

  19. Effects of a 60 Hz Magnetic Field Exposure Up to 3000 μT on Human Brain Activation as Measured by Functional Magnetic Resonance Imaging

    PubMed Central

    Legros, Alexandre; Modolo, Julien; Brown, Samantha; Roberston, John; Thomas, Alex W.

    2015-01-01

    Several aspects of the human nervous system and associated motor and cognitive processes have been reported to be modulated by extremely low-frequency (ELF, < 300 Hz) time-varying Magnetic Fields (MF). Due do their worldwide prevalence; power-line frequencies (60 Hz in North America) are of particular interest. Despite intense research efforts over the last few decades, the potential effects of 60 Hz MF still need to be elucidated, and the underlying mechanisms to be understood. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to characterize potential changes in functional brain activation following human exposure to a 60 Hz MF through motor and cognitive tasks. First, pilot results acquired in a first set of subjects (N=9) were used to demonstrate the technical feasibility of using fMRI to detect subtle changes in functional brain activation with 60 Hz MF exposure at 1800 μT. Second, a full study involving a larger cohort of subjects tested brain activation during 1) a finger tapping task (N=20), and 2) a mental rotation task (N=21); before and after a one-hour, 60 Hz, 3000 μT MF exposure. The results indicate significant changes in task-induced functional brain activation as a consequence of MF exposure. However, no impact on task performance was found. These results illustrate the potential of using fMRI to identify MF-induced changes in functional brain activation, suggesting that a one-hour 60 Hz, 3000 μT MF exposure can modulate activity in specific brain regions after the end of the exposure period (i.e., residual effects). We discuss the possibility that MF exposure at 60 Hz, 3000 μT may be capable of modulating cortical excitability via a modulation of synaptic plasticity processes. PMID:26214312

  20. Studies in nonlinear optics and functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Dai, Tehui

    There are two parts in this thesis. The first part will involve a study in the anomalous dispersion phase matched second-harmonic generation, and the second part will be a study in functional magnetic resonance imaging (fMRI) and a biophysical model of the human muscle. In part I, we report on a series of tricyanovinylaniline chromophores for use as dopants in poled poly(methyl methacrylate) waveguides for anomalous-dispersion phase- matched second-harmonic generation. Second-harmonic generation measurements as a function of mode index confirmed anomalous dispersion phase-matching efficiencies as large as 245%/Wcm2 over a propagation length of ~35 μm. The waveguide coupling technique limited the interaction length. The photostability of the chromophores was measured directly and found to agree qualitatively with second-harmonic measurements over time and was found to be improved over previously reported materials. In part II, we designed a system that could record joint force and surface electromyography (EMG) simultaneously with fMRI data. I-Egh quality force and EMG data were obtained at the same time that excellent fMRI brain images were achieved. Using this system we determined the relationship between the fMRI-measured brain activation and the handgrip force, and between the fMRI-measured brain activation and the EMG of finger flexor muscles. We found that in the whole brain and in the majority of motor function-related cortical fields, the degree of muscle activation is directly proportional to the amplitude of the brain signal determined by the fMRI measurement. The similarity in the relationship between muscle output and fMRI signal in a number of brain areas suggests that multiple cortical fields are involved in controlling muscle force. The factors that may contribute to the fMRI signals are discussed. A biophysical twitch force model was developed to predict force response under electrical stimulation. Comparison between experimental and modeled force

  1. Investigating short-range magnetism in strongly correlated materials via magnetic pair distribution function analysis and ab initio theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin; Page, Katharine; Brunelli, Michela; Staunton, Julie; Billinge, Simon

    Short-range magnetic correlations are known to exist in a variety of strongly correlated electron systems, but our understanding of the role they play is challenged by the difficulty of experimentally probing such correlations. Magnetic pair distribution function (mPDF) analysis is a newly developed neutron total scattering method that can reveal short-range magnetic correlations directly in real space, and may therefore help ameliorate this difficulty. We present temperature-dependent mPDF measurements of the short-range magnetic correlations in the paramagnetic phase of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. We observe significant correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range-ordered spin arrangement. With no free parameters, ab initio calculations using the self-interaction-corrected local spin density approximation of density functional theory quantitatively reproduce the magnetic correlations to a high degree of accuracy. These results yield valuable insight into the magnetic exchange in MnO and showcase the utility of the mPDF technique for studying magnetic properties of strongly correlated electron systems.

  2. Cardiovascular risks and brain function: a functional magnetic resonance imaging study of executive function in older adults.

    PubMed

    Chuang, Yi-Fang; Eldreth, Dana; Erickson, Kirk I; Varma, Vijay; Harris, Gregory; Fried, Linda P; Rebok, George W; Tanner, Elizabeth K; Carlson, Michelle C

    2014-06-01

    Cardiovascular (CV) risk factors, such as hypertension, diabetes, and hyperlipidemia are associated with cognitive impairment and risk of dementia in older adults. However, the mechanisms linking them are not clear. This study aims to investigate the association between aggregate CV risk, assessed by the Framingham general cardiovascular risk profile, and functional brain activation in a group of community-dwelling older adults. Sixty participants (mean age: 64.6 years) from the Brain Health Study, a nested study of the Baltimore Experience Corps Trial, underwent functional magnetic resonance imaging using the Flanker task. We found that participants with higher CV risk had greater task-related activation in the left inferior parietal region, and this increased activation was associated with poorer task performance. Our results provide insights into the neural systems underlying the relationship between CV risk and executive function. Increased activation of the inferior parietal region may offer a pathway through which CV risk increases risk for cognitive impairment.

  3. Nuclear magnetic resonance imaging and spectroscopy of human brain function.

    PubMed Central

    Shulman, R G; Blamire, A M; Rothman, D L; McCarthy, G

    1993-01-01

    The techniques of in vivo magnetic resonance (MR) imaging and spectroscopy have been established over the past two decades. Recent applications of these methods to study human brain function have become a rapidly growing area of research. The development of methods using standard MR contrast agents within the cerebral vasculature has allowed measurements of regional cerebral blood volume (rCBV), which are activity dependent. Subsequent investigations linked the MR relaxation properties of brain tissue to blood oxygenation levels which are also modulated by consumption and blood flow (rCBF). These methods have allowed mapping of brain activity in human visual and motor cortex as well as in areas of the frontal lobe involved in language. The methods have high enough spatial and temporal sensitivity to be used in individual subjects. MR spectroscopy of proton and carbon-13 nuclei has been used to measure rates of glucose transport and metabolism in the human brain. The steady-state measurements of brain glucose concentrations can be used to monitor the glycolytic flux, whereas subsequent glucose metabolism--i.e., the flux into the cerebral glutamate pool--can be used to measure tricarboxylic acid cycle flux. Under visual stimulation the concentration of lactate in the visual cortex has been shown to increase by MR spectroscopy. This increase is compatible with an increase of anaerobic glycolysis under these conditions as earlier proposed from positron emission tomography studies. It is shown how MR spectroscopy can extend this understanding of brain metabolism. Images Fig. 1 Fig. 2 Fig. 3 PMID:8475050

  4. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574313

  5. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  6. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage

    PubMed Central

    Frey, Natalie A.; Peng, Sheng; Cheng, Kai; Sun, Shouheng

    2009-01-01

    This tutorial review summarizes the recent advances in the chemical synthesis and potential applications of monodisperse magnetic nanoparticles. After a brief introduction to nanomagnetism, the review focuses on recent developments in solution phase syntheses of monodisperse MFe2O4, Co, Fe, CoFe, FePt and SmCo5 nanoparticles. The review further outlines the surface, structural, and magnetic properties of these nanoparticles for biomedicine and magnetic energy storage applications. PMID:19690734

  7. Biomedical Applications of Magnetically Functionalized Organic/Inorganic Hybrid Nanofibers

    PubMed Central

    Lee, Hwa-Jeong; Lee, Sang Joon; Uthaman, Saji; Thomas, Reju George; Hyun, Hoon; Jeong, Yong Yeon; Cho, Chong-Su; Park, In-Kyu

    2015-01-01

    Nanofibers are one-dimensional nanomaterial in fiber form with diameter less than 1 µm and an aspect ratio (length/diameter) larger than 100:1. Among the different types of nanoparticle-loaded nanofiber systems, nanofibers loaded with magnetic nanoparticles have gained much attention from biomedical scientists due to a synergistic effect obtained from the unique properties of both the nanofibers and magnetic nanoparticles. These magnetic nanoparticle-encapsulated or -embedded nanofiber systems can be used not only for imaging purposes but also for therapy. In this review, we focused on recent advances in nanofibers loaded with magnetic nanoparticles, their biomedical applications, and future trends in the application of these nanofibers. PMID:26084046

  8. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Semen ejaculates contain heterogeneous sperm populations that can jeopardize male fertility. Recent development of nanotechnology in physiological systems may have applications in reproductive biology. Here, we used magnetic nanoparticles as a novel strategy for sperm purification to imp...

  9. Dual-function magnetic structure for toroidal plasma devices

    DOEpatents

    Brown, Robert L.

    1978-01-01

    This invention relates to a support system wherein the iron core and yoke of the plasma current system of a tokamak plasma containment device is redesigned to support the forces of the magnet coils. The containment rings, which occupy very valuable space around the magnet coils, are utilized to serve as yokes for the core such that the conventional yoke is eliminated. The overall result is an improved aspect ratio, reduction in structure, smaller overall size, and improved access to the plasma ring.

  10. Cardiac magnetic resonance determinants of functional mitral regurgitation in ischemic and non ischemic left ventricular dysfunction.

    PubMed

    Fernández-Golfín, Covadonga; De Agustin, Alberto; Manzano, M Carmen; Bustos, Ana; Sánchez, Tibisay; Pérez de Isla, Leopoldo; Fuentes, Manuel; Macaya, Carlos; Zamorano, José

    2011-04-01

    Functional mitral regurgitation (FMR) is frequent in left ventricular (LV) dilatation/dysfunction. Echocardiographic predictors of FMR are known. However, cardiac magnetic resonance (CMR) predictors of FMR have not been fully addressed. The aim of the study was to evaluate CMR mitral valve (MV) parameters associated with FMR in ischemic and non ischemic LV dysfunction. 80 patients with LV ejection fraction below 45% and/or left ventricular dilatation of ischemic and non ischemic etiology were included. Cine-MR images (steady state free-precession) were acquired in a short-axis and 4 chambers views where MV evaluation was performed. Delayed enhancement was performed as well. Significant FMR was established as more than mild MR according to the echocardiographic report. Mean age was 59 years, males 79%. FMR was detected in 20 patients (25%) Significant differences were noted in LV functional parameters and in most MV parameters according to the presence of significant FMR. However, differences were noted between ischemic and non ischemic groups. In the first, differences in most MV parameters remained significant while in the non ischemic, only systolic and diastolic interpapillary muscle distance (1.60 vs. 2.19 cm, P = 0.001; 2. 51 vs. 3.04, P = 0.008) were predictors of FMR. FMR is associated with a more severe LV dilatation/dysfunction in the overall population. CMR MV parameters are associated with the presence of significant FMR and are different between ischemic and non ischemic patients. CMR evaluation of these patients may help in risk stratification as well as in surgical candidate selection.

  11. Functionalized polymeric magnetic nanoconstructs for selective capturing and sensitive detection of Salmonella typhimurium.

    PubMed

    Chattopadhyay, Sruti; Kaur, Avneet; Jain, Swati; Sabharwal, Prabhjot K; Singh, Harpal

    2016-09-21

    Rapid detection and enumeration of pathogens is essential for monitoring contamination and spoilage of food products to ensure improved quality control management. Functionalized polymeric magnetic nanoconstructs (FPMNCs) were developed as an effective immunomagnetic separator and sensing platform for the selective capturing of Salmonella typhimurium. Novel FPMNCs were prepared in three stages involving synthesis of iron oxide (IO) dispersion, capping with sodium oleate and encapsulation of preformed IO nanoparticles by in-situ free radical emulsion polymerization of styrene (St), methyl methacrylate (MMA) and acetoacetoxy ethylmethacrylate (AAEM). PMMA improves the stability of FPMNCs by bridging extremely hydrophobic PS and hydrophilic PAAEM. Core-shell morphology of hydrophobic core of IO, PS & PMMA and hydrophilic shell of PAAEM was demonstrated by SEM, TEM and FTIR studies. FPMNCs with surface functionalized acetoacetoxy groups were covalently attached with polyclonal antibodies against Salmonella common structural antigen (CSA-1-Ab) without using any linker and catalyst. Colorimetric readout signal was acquired using CSA-1-Ab-HRP as secondary antibody after formation of sandwich immunocomplex with bacteria where the optical density of the samples were recorded using ELISA plate reader at 450 nm. The developed immunoassay was specific and selective which captures only targeted S. typhimurium with a detection limit of 10 cells/mL lower than infectious dose of salmonellosis infection. Minimal interference of food matrix with high signal to noise ratio was shown by various food samples. In addition, the performance of developed FPMNC based immunoassay was superior to commercially available immunomagnetic microbeads demonstrating undisputed advantage for capturing and detecting specific bacteria without any pre-enrichment of sample. PMID:27590554

  12. Electron distribution function and recombination coefficient in ultracold plasma in a magnetic field

    SciTech Connect

    Bobrov, A. A.; Bronin, S. Ya.; Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Khikhlukha, D. R.

    2013-07-15

    The electron distribution function and diffusion coefficient in energy space have been calculated for the first time for a weakly coupled ultracold plasma in a magnetic field in the range of magnetic fields B = 100-50000 G for various temperatures. The dependence of these characteristics on the magnetic field is analyzed and the distribution function is shown to depend on the electron energy shift in a magnetic field. The position of the 'bottleneck' of the distribution function has been found to be shifted toward negative energies with increasing magnetic field. The electron velocity autocorrelators as a function of the magnetic field have been calculated; their behavior suggests that the frequency of collisions between charged particles decreases significantly with increasing magnetic field. The collisional recombination coefficient {alpha}{sub B} has been calculated in the diffusion approximation for a weakly coupled ultracold plasma in a magnetic field. An increase in magnetic field is shown to lead to a decrease in {alpha}{sub B} and this decrease can be several orders of magnitude.

  13. Low-pathogenicity Mycoplasma spp. alter human monocyte and macrophage function and are highly prevalent among patients with ventilator-acquired pneumonia

    PubMed Central

    Nolan, T J; Gadsby, N J; Templeton, K E; McMullan, R; McKenna, J P; Rennie, J; Robb, C T; Walsh, T S; Rossi, A G; Conway Morris, A; Simpson, A J

    2016-01-01

    Background Ventilator-acquired pneumonia (VAP) remains a significant problem within intensive care units (ICUs). There is a growing recognition of the impact of critical-illness-induced immunoparesis on the pathogenesis of VAP, but the mechanisms remain incompletely understood. We hypothesised that, because of limitations in their routine detection, Mycoplasmataceae are more prevalent among patients with VAP than previously recognised, and that these organisms potentially impair immune cell function. Methods and setting 159 patients were recruited from 12 UK ICUs. All patients had suspected VAP and underwent bronchoscopy and bronchoalveolar lavage (BAL). VAP was defined as growth of organisms at >104 colony forming units per ml of BAL fluid on conventional culture. Samples were tested for Mycoplasmataceae (Mycoplasma and Ureaplasma spp.) by PCR, and positive samples underwent sequencing for speciation. 36 healthy donors underwent BAL for comparison. Additionally, healthy donor monocytes and macrophages were exposed to Mycoplasma salivarium and their ability to respond to lipopolysaccharide and undertake phagocytosis was assessed. Results Mycoplasmataceae were found in 49% (95% CI 33% to 65%) of patients with VAP, compared with 14% (95% CI 9% to 25%) of patients without VAP. Patients with sterile BAL fluid had a similar prevalence to healthy donor BAL fluid (10% (95% CI 4% to 20%) vs 8% (95% CI 2% to 22%)). The most common organism identified was M. salivarium. Blood monocytes from healthy volunteers incubated with M. salivarium displayed an impaired TNF-α response to lipopolysaccharide (p=0.0003), as did monocyte-derived macrophages (MDMs) (p=0.024). MDM exposed to M. salivarium demonstrated impaired phagocytosis (p=0.005). Discussion and conclusions This study demonstrates a high prevalence of Mycoplasmataceae among patients with VAP, with a markedly lower prevalence among patients with suspected VAP in whom subsequent cultures refuted the diagnosis. The most

  14. A putative inhibitory mechanism in the tenase complex responsible for loss of coagulation function in acquired haemophilia A patients with anti-C2 autoantibodies.

    PubMed

    Matsumoto, Tomoko; Nogami, Keiji; Ogiwara, Kenichi; Shima, Midori

    2012-02-01

    Acquired haemophilia A (AHA) is caused by the development of factor (F)VIII autoantibodies, demonstrating type 1 or type 2 inhibitory behaviour, and results in more serious haemorrhagic symptoms than in congenital severe HA. The reason(s) for this remains unknown, however. The global coagulation assays, thrombin generation tests and clot waveform analysis, demonstrated that coagulation parameters in patients with AHA-type 2 inhibitor were more significantly depressed than those in patients with moderate HA with similar FVIII activities. Thrombin and intrinsic FXa generation tests were significantly depressed in AHA-type 1 and AHA-type 2 compared to severe HA, and more defective in AHA-type 1 than in AHA-type 2. To investigate these inhibitory mechanism(s), anti-FVIII autoantibodies were purified from AHA plasmas. AHA-type 1 autoantibodies, containing an anti-C2 ESH4-epitope, blocked FVIII(a)-phospholipid binding, whilst AHA-type 2, containing an anti-C2 ESH8-epitope, inhibited thrombin-catalysed FVIII activation. The coagulation function in a reconstituted AHA-model containing exogenous ESH4 or ESH8 was more abnormal than in severe HA. The addition of anti-FIX antibody to FVIII-deficient plasma resulted in lower coagulation function than its absence. These results support the concept that global coagulation might be more suppressed in AHA than in severe HA due to the inhibition of FIXa-dependent FX activation by steric hindrance in the presence of FVIII-anti-C2 autoantibodies. Additionally, AHA-type 1 inhibitors prevented FVIIIa-phospholipid binding, essential for the tenase complex, whilst AHA-type 2 antibodies decreased FXa generation by inhibiting thrombin-catalysed FVIII activation. These two distinct mechanisms might, in part, contribute to and exacerbate the serious haemorrhagic symptoms in AHA.

  15. Non-perturbative calculation of molecular magnetic properties within current-density functional theory

    SciTech Connect

    Tellgren, E. I. Lange, K. K.; Ekström, U.; Helgaker, T.; Teale, A. M.; Furness, J. W.

    2014-01-21

    We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  16. Density-functional study of two Fe4-based single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Ribas-Arino, Jordi; Baruah, Tunna; Pederson, Mark R.

    2005-07-01

    We present the results of our all-electron density-functional calculations on the electronic structure and magnetic anisotropy energy of the [Fe4(OMe)6(dpm)6] and [Fe4(thme)2(dpm)6] molecular clusters, which are experimentally found to behave as single-molecule magnets. The calculated magnetic anisotropy energy barriers are 2.65 and 15.8K, respectively, which agree with the experimental data. We also present a density-functional study on the effect of the structure distortions on the magnetic anisotropy of the [Fe(H2O)6]3+ complex. This study, together with an analysis of the projected anisotropies of each iron ion in both molecular clusters, allows us to qualitatively understand why the magnetic anisotropy energy (MAE) barrier of the second single-molecule magnet (SMM) is larger than the MAE of the first SMM.

  17. Chiral dynamics in a magnetic field from the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Kamikado, Kazuhiko; Kanazawa, Takuya

    2014-03-01

    We investigate the quark-meson model in a magnetic field using the functional renormalization group equation beyond the local-potential approximation. Our truncation of the effective action involves anisotropic wave function renormalization for mesons, which allows us to investigate how the magnetic field distorts the propagation of neutral mesons. Solving the flow equation numerically, we find that the transverse velocity of mesons decreases with the magnetic field at all temperatures, which is most prominent at zero temperature. The meson screening masses and the pion decay constants are also computed. The constituent quark mass is found to increase with magnetic field at all temperatures, resulting in the crossover temperature that increases monotonically with the magnetic field. This tendency is consistent with most model calculations but not with the lattice simulation performed at the physical point. Our work suggests that the strong anisotropy of meson propagation may not be the fundamental origin of the inverse magnetic catalysis.

  18. Functionalization and magnetization of carbon nanotubes using Co-60 gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Fu, M. J.; Tsai, C. Y.; Lin, F. H.; Chen, K. Y.

    2014-10-01

    Functionalized magnetic carbon nanotubes (CNTs) can be used in the biological and biomedical fields as biosensors, drug delivery systems, etc., which makes research into processes for manufacturing modified CNTs quite important. In this paper, Co-60 gamma irradiation is shown to be an effective tool for fabricating functionalized and magnetized CNTs. After the Co-60 gamma irradiation, the presence of carboxylic functional groups on the CNT walls was confirmed by their Fourier transform infrared spectra, and the presence of Fe3O4 was verified by the X-ray diffraction patterns. The functionalized and magnetized CNTs produced using Co-60 gamma irradiation have excellent dispersion properties. The techniques for functionalizing and magnetizing CNTs are introduced in this paper, and applications of the modified CNTs will be reported after more data are gathered.

  19. Force-free magnetic fields - Generating functions and footpoint displacements

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard; Verma, Ritu

    1991-01-01

    This paper presents analytic and numerical calculations that explore equilibrium sequences of bipolar force-free magnetic fields in relation to displacments of their magnetic footpoints. It is shown that the appearance of magnetic islands - sometimes interpreted as marking the loss of equilibrium in models of the solar atmosphere - is likely associated only with physically unrealistic footpoint displacements such as infinite separation or 'tearing' of the model photosphere. The work suggests that the loss of equilibrium in bipolar configurations, sometimes proposed as a mechanism for eruptive solar events, probably requires either fully three-dimensional field configurations or nonzero plasma pressure. The results apply only to fields that are strictly bipolar, and do not rule out equilibrium loss in more complex structures such as quadrupolar fields.

  20. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia.

    PubMed

    Yoo, Dongwon; Jeong, Heeyeong; Noh, Seung-Hyun; Lee, Jae-Hyun; Cheon, Jinwoo

    2013-12-01

    Overcoming resistance: Heat-treated cancer cells possess a protective mechanism for resistance and survival. Resistance-free apoptosis-inducing magnetic nanoparticles (RAINs) successfully promote hyperthermic apoptosis, obstructing cell survival by triggering two functional units of heat generation and the release of geldanamycin (GM) for heat shock protein (Hsp) inhibition under an alternating magnetic field (AMF). PMID:24281889

  1. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia.

    PubMed

    Yoo, Dongwon; Jeong, Heeyeong; Noh, Seung-Hyun; Lee, Jae-Hyun; Cheon, Jinwoo

    2013-12-01

    Overcoming resistance: Heat-treated cancer cells possess a protective mechanism for resistance and survival. Resistance-free apoptosis-inducing magnetic nanoparticles (RAINs) successfully promote hyperthermic apoptosis, obstructing cell survival by triggering two functional units of heat generation and the release of geldanamycin (GM) for heat shock protein (Hsp) inhibition under an alternating magnetic field (AMF).

  2. Superconducting toroidal combined-function magnet for a compact ion beam cancer therapy gantry

    NASA Astrophysics Data System (ADS)

    Robin, D. S.; Arbelaez, D.; Caspi, S.; Sun, C.; Sessler, A.; Wan, W.; Yoon, M.

    2011-12-01

    A superconducting, combined-function, 5 T, 90°, toroidal magnet with a large bore is described in this paper. This magnet is designed to be the last and most difficult part of a compact superconducting magnet-based carbon gantry optics for ion beam cancer therapy. The relatively small size of this toroidal magnet allows for a gantry the size of which is smaller or at least comparable to that of a proton gantry. The gantry design places the toroidal magnet between the scanning magnets and the patient, that is the scanning magnets are placed midway through the gantry. By optimizing the coil winding configuration of this magnet, near point-to-parallel optics is achieved between the scanning magnets and the patient; while at the same time there is only a small distortion of the beam-shape when scanning. We show that the origin of the beam-shape distortion is the strong sextupole components, whose effects are greatly pronounced when the beam is widely steered in the magnet. A method to correct such an undesirable effect is suggested and demonstrated by a numerical particle tracking through the calculated three-dimensional magnetic field.

  3. Magnetic and antimagnetic rotation in covariant density functional theory

    SciTech Connect

    Zhao, P. W.; Liang, H. Z.; Peng, J.; Ring, P.; Zhang, S. Q.; Meng, J.

    2012-10-20

    Progress on microscopic and self-consistent description of the magnetic rotation and antimagnetic rotation phenomena in tilted axis cranking relativistic mean-field theory based on a point-coupling interaction are briefly reviewed. In particular, the microscopic pictures of the shears mechanism in {sup 60}Ni and the two shears-like mechanism in {sup 105}Cd are discussed.

  4. STE20/SPS1-Related Proline/Alanine-Rich Kinase Is Involved in Plasticity of GABA Signaling Function in a Mouse Model of Acquired Epilepsy

    PubMed Central

    Zhou, Jueqian; Chen, Shuda; Chen, Yishu; Chen, Ziyi; Wang, Qian; Fang, Ziyan; Zhou, Liemin

    2013-01-01

    The intracellular concentration of chloride ([Cl-]i) determines the strength and polarity of GABA neurotransmission. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is known as an indirect regulator of [Cl-]i for its activation of Na-K-2 Cl-co-transporters (NKCC) and inhibition of K-Cl-co-transporters (KCC) in many organs. NKCC1 or KCC2 expression changes have been demonstrated previously in the hippocampal neurons of mice with pilocarpine-induced status epilepticus (PISE). However, it remains unclear whether SPAK modulates [Cl-]i via NKCC1 or KCC2 in the brain. Also, there are no data clearly characterizing SPAK expression in cortical or hippocampal neurons or confirming an association between SPAK and epilepsy. In the present study, we examined SPAK expression and co-expression with NKCC1 and KCC2 in the hippocampal neurons of mice with PISE, and we investigated alterations in SPAK expression in the hippocampus of such mice. Significant increases in SPAK mRNA and protein levels were detected during various stages of PISE in the PISE mice in comparison to levels in age-matched sham (control) and blank treatment (control) mice. SPAK and NKCC1 expression increased in vitro, while KCC2 was down-regulated in hippocampal neurons following hypoxic conditioning. However, SPAK overexpression did not influence the expression levels of NKCC1 or KCC2. Using co-immunoprecipitation, we determined that the intensity of interaction between SPAK and NKCC1 and between SPAK and KCC2 increased markedly after oxygen-deprivation, whereas SPAK overexpression strengthened the relationships. The [Cl-]i of hippocampal neurons changed in a corresponding manner under the different conditions. Our data suggests that SPAK is involved in the plasticity of GABA signaling function in acquired epilepsy via adjustment of [Cl-]i in hippocampal neurons. PMID:24058604

  5. Functional magnetic resonance imaging reflects changes in brain functioning with sedation.

    PubMed

    Starbuck, Victoria N; Kay, Gary G; Platenberg, R. Craig; Lin, Chin-Shoou; Zielinski, Brandon A

    2000-12-01

    Functional magnetic resonance imaging (fMRI) studies have demonstrated localized brain activation during cognitive tasks. Brain activation increases with task complexity and decreases with familiarity. This study investigates how sleepiness alters the relationship between brain activation and task familiarity. We hypothesize that sleepiness prevents the reduction in activation associated with practice. Twenty-nine individuals rated their sleepiness using the Stanford Sleepiness Scale before fMRI. During imaging, subjects performed the Paced Auditory Serial Addition Test, a continuous mental arithmetic task. A positive correlation was observed between self-rated sleepiness and frontal brain activation. Fourteen subjects participated in phase 2. Sleepiness was induced by evening dosing with chlorpheniramine (CP) (8 mg or 12 mg) and terfenadine (60 mg) in the morning for 3 days before the second fMRI scan. The Multiple Sleep Latency Test (MSLT) was also performed. Results revealed a significant increase in fMRI activation in proportion to the dose of CP. In contrast, for all subjects receiving placebo there was a reduction in brain activation. MSLT revealed significant daytime sleepiness for subjects receiving CP. These findings suggest that sleepiness interferes with efficiency of brain functioning. The sleepy or sedated brain shows increased oxygen utilization during performance of a familiar cognitive task. Thus, the beneficial effect of prior task exposure is lost under conditions of sedation. Copyright 2000 John Wiley & Sons, Ltd. PMID:12404614

  6. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  7. Bilateral responses of prefrontal and motor cortices to repetitive transcranial magnetic stimulation as measured by functional near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Fenghua; Kozel, Frank Andrew; Dhamne, Sameer; McClintock, Shawn M.; Croarkin, Paul; Mapes, Kimberly; Husain, Mustafa M.; Liu, Hanli

    2009-02-01

    Simultaneously acquiring cortical functional Near Infrared Spectroscopy (fNIRS) during repeated Transcranial Magnetic Stimulation (rTMS) offers the possibility of directly investigating the effects of rTMS on brain regions without quantifiable behavioral changes. In this study, the left motor cortex and subsequently the left prefrontal cortex were stimulated at 1 Hz while fNIRS data was simultaneously acquired. Changes in hemodynamic signals were measured on both ipsilateral and contralateral sides. In each cortex, a significantly larger decrease in the concentration of oxygenated hemoglobin and a smaller increase in the concentration of deoxygenated hemoglobin during the stimulation periods were observed in both the motor and prefrontal cortices. The ipsilateral and contralateral changes showed high temporal consistency. Same experiment was repeated for each subject 2 or 3 days later. The hemodynamic responses associated with the stimulation showed good reproducibility in two sessions. To our knowledge, this is the first report of simultaneous fNIRS measurement of ipsilateral and contralateral changes of either the motor or prefrontal cortex during rTMS stimulation.

  8. Small-angle neutron scattering correlation functions of bulk magnetic materials

    PubMed Central

    Mettus, Denis; Michels, Andreas

    2015-01-01

    On the basis of the continuum theory of micromagnetics, the correlation function of the spin-misalignment small-angle neutron scattering cross section of bulk ferromagnets (e.g. elemental polycrystalline ferromagnets, soft and hard magnetic nanocomposites, nanoporous ferromagnets, or magnetic steels) is computed. For such materials, the spin disorder which is related to spatial variations in the saturation magnetization and magnetic anisotropy field results in strong spin-misalignment scattering dΣM/dΩ along the forward direction. When the applied magnetic field is perpendicular to the incoming neutron beam, the characteristics of dΣM/dΩ (e.g. the angular anisotropy on a two-dimensional detector or the asymptotic power-law exponent) are determined by the ratio of magnetic anisotropy field strength H p to the jump ΔM in the saturation magnetization at internal interfaces. Here, the corresponding one- and two-dimensional real-space correlations are analyzed as a function of applied magnetic field, the ratio H p/ΔM, the single-particle form factor and the particle volume fraction. Finally, the theoretical results for the correlation function are compared with experimental data on nanocrystalline cobalt and nickel. PMID:26500464

  9. General protocol for the synthesis of functionalized magnetic nanoparticles for magnetic resonance imaging from protected metal-organic precursors.

    PubMed

    Hu, He; Zhang, Chongkun; An, Lu; Yu, Yanrong; Yang, Hong; Sun, Jin; Wu, Huixia; Yang, Shiping

    2014-06-01

    The development of magnetic nanoparticles (MNPs) with functional groups has been intensively pursued in recent years. Herein, a simple, versatile, and cost-effective strategy to synthesize water-soluble and amino-functionalized MNPs, based on the thermal decomposition of phthalimide-protected metal-organic precursors followed by deprotection, was developed. The resulting amino-functionalized Fe3O4, MnFe2O4, and Mn3O4 MNPs with particle sizes of about 14.3, 7.5, and 6.6 nm, respectively, had narrow size distributions and good dispersibility in water. These MNPs also exhibited high magnetism and relaxivities of r2 = 107.25 mM(-1)  s(-1) for Fe3O4, r2 = 245.75 mM(-1)  s(-1) for MnFe2O4, and r1 = 2.74 mM(-1)  s(-1) for Mn3O4. The amino-functionalized MNPs were further conjugated with a fluorescent dye (rhodamine B) and a targeting ligand (folic acid: FA) and used as multifunctional probes. Magnetic resonance imaging and flow-cytometric studies showed that these probes could specifically target cancer cells overexpressing FA receptors. This new protocol opens a new way for the synthesis and design of water-soluble and amino-functionalized MNPs by an easy and versatile route.

  10. General protocol for the synthesis of functionalized magnetic nanoparticles for magnetic resonance imaging from protected metal-organic precursors.

    PubMed

    Hu, He; Zhang, Chongkun; An, Lu; Yu, Yanrong; Yang, Hong; Sun, Jin; Wu, Huixia; Yang, Shiping

    2014-06-01

    The development of magnetic nanoparticles (MNPs) with functional groups has been intensively pursued in recent years. Herein, a simple, versatile, and cost-effective strategy to synthesize water-soluble and amino-functionalized MNPs, based on the thermal decomposition of phthalimide-protected metal-organic precursors followed by deprotection, was developed. The resulting amino-functionalized Fe3O4, MnFe2O4, and Mn3O4 MNPs with particle sizes of about 14.3, 7.5, and 6.6 nm, respectively, had narrow size distributions and good dispersibility in water. These MNPs also exhibited high magnetism and relaxivities of r2 = 107.25 mM(-1)  s(-1) for Fe3O4, r2 = 245.75 mM(-1)  s(-1) for MnFe2O4, and r1 = 2.74 mM(-1)  s(-1) for Mn3O4. The amino-functionalized MNPs were further conjugated with a fluorescent dye (rhodamine B) and a targeting ligand (folic acid: FA) and used as multifunctional probes. Magnetic resonance imaging and flow-cytometric studies showed that these probes could specifically target cancer cells overexpressing FA receptors. This new protocol opens a new way for the synthesis and design of water-soluble and amino-functionalized MNPs by an easy and versatile route. PMID:24771671

  11. Phonon and magnetic structure in δ-plutonium from density-functional theory

    NASA Astrophysics Data System (ADS)

    Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.

    2015-10-01

    We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, but the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.

  12. Phonon and magnetic structure in δ-plutonium from density-functional theory

    SciTech Connect

    Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.

    2015-10-30

    We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment (DLM) method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, However, the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.

  13. Magnetic assembly of transparent and conducting graphene-based functional composites

    NASA Astrophysics Data System (ADS)

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-06-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.

  14. Phonon and magnetic structure in δ-plutonium from density-functional theory

    PubMed Central

    Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.

    2015-01-01

    We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, but the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments. PMID:26514238

  15. Hyperpolarized Magnetic Resonance as a Sensitive Detector of Metabolic Function

    PubMed Central

    2015-01-01

    Hyperpolarized magnetic resonance allows for noninvasive measurements of biochemical reactions in vivo. Although this technique provides a unique tool for assaying enzymatic activities in intact organs, the scope of its application is still elusive for the wider scientific community. The purpose of this review is to provide key principles and parameters to guide the researcher interested in adopting this technology to address a biochemical, biomedical, or medical issue. It is presented in the form of a compendium containing the underlying essential physical concepts as well as suggestions to help assess the potential of the technique within the framework of specific research environments. Explicit examples are used to illustrate the power as well as the limitations of hyperpolarized magnetic resonance. PMID:25369537

  16. Magnetic resonance imaging and electromyography as indexes of muscle function

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Duvoisin, Marc R.; Dudley, Gary A.

    1992-01-01

    A hypothesis is tested that exercise-induced magnetic resonance (MR) contrast shifts would relate to electromyography (EMG) amplitude if both measures reflect muscle use during exercise. Both magnetic resonance images (MRI) and EMG data were obtained for separate eccentric (ECC) and cocentric (CON) exercise of increasing intensity for seven subjects 30-32 yr old. CON and ECC actions caused increased integrated EMG (IEMG) and T2 values which were strongly related with relative resistance. The rate of increase and absolute value of both T2 and IEMG were found to be greater for CON than for ECC actions. For both actions IEMG and T2 were correlated. Data obtained suggest that surface IEMG accurately reflects the contractile behavior of muscle and exercise-induced increases in MRI T2 values reflect certain processes that scale with muscle use.

  17. Microwave absorption in nanocomposite material of magnetically functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Labunov, V. A.; Danilyuk, A. L.; Prudnikava, A. L.; Komissarov, I.; Shulitski, B. G.; Speisser, C.; Antoni, F.; Le Normand, F.; Prischepa, S. L.

    2012-07-01

    The interaction of electromagnetic radiation in X and Ka bands with magnetic nanocomposite of disordered carbon nanotubes arrays has been investigated both experimentally and theoretically. Samples were synthesized on the quartz reactor walls by decomposition of ferrocene and xylene which provided random intercalation of iron phase nanoparticles in carbon nanotube array. The exhaustive characterization of the samples by means of the scanning electron microscopy, Raman spectroscopy, and x-ray photoemission spectroscopy was performed. It was found that the absorption of the electromagnetic wave monotonically increases with the frequency. To describe these experimental data, we extended the Bruggeman effective medium theory to a more complex case of a magnetic nanocomposite with randomly distributed spherical ferromagnetic nanoparticles in a conducting medium. The essential feature of the developed model is the consideration of the complex nature of the studied material. In particular, such important parameters as magnetic and dielectric properties of both the carbon nanotube medium and the nanoparticles, the volume concentration and the dimensions of the nanoparticles, the wave impedance of the resistive-capacitive shells of the conductive nanoparticles are explicitly taken into account in our model. Moreover, analysing the experimental results, we were able to obtain the frequency dependencies of permittivity and permeability of the studied nanocomposite.

  18. Synthesis and design of functionalized magnetic nanocolloids for water pollution remediation

    NASA Astrophysics Data System (ADS)

    Campos, A. F. C.; Ferreira, M. A.; Marinho, E. P.; Tourinho, F. A.; Depeyrot, J.

    This work focus on the potential applications of magnetic nanoparticles on pollution remediation. We draw attention to the chemical design of functionalized magnetic colloids based on tartrate ligands to be used in magnetic separation of heavy metals from wastewater. Coupling the speciation diagrams of nanoferrites particles surface with that of the tartaric acid, it was possible to provide a theoretical prediction of the optimal pH for particle surface-ligand complexation. Finally, from an electrochemical approach based on simultaneous potentiometric and conductimetric titrations it was possible to determine the saturation value of the surface charge density of the functionalized nanoparticles and its pH dependence.

  19. THEORETICAL ESTIMATES OF TWO-POINT SHEAR CORRELATION FUNCTIONS USING TANGLED MAGNETIC FIELDS

    SciTech Connect

    Pandey, Kanhaiya L.; Sethi, Shiv K.

    2012-03-20

    The existence of primordial magnetic fields can induce matter perturbations with additional power at small scales as compared to the usual {Lambda}CDM model. We study its implication within the context of a two-point shear correlation function from gravitational lensing. We show that a primordial magnetic field can leave its imprints on the shear correlation function at angular scales {approx}< a few arcminutes. The results are compared with CFHTLS data, which yield some of the strongest known constraints on the parameters (strength and spectral index) of the primordial magnetic field. We also discuss the possibility of detecting sub-nano Gauss fields using future missions such as SNAP.

  20. Self-assembly with orthogonal-imposed stimuli to impart structure and confer magnetic function to electrodeposited hydrogels.

    PubMed

    Li, Ying; Liu, Yi; Gao, Tieren; Zhang, Boce; Song, Yingying; Terrell, Jessica L; Barber, Nathan; Bentley, William E; Takeuchi, Ichiro; Payne, Gregory F; Wang, Qin

    2015-05-20

    A magnetic nanocomposite film with the capability of reversibly collecting functionalized magnetic particles was fabricated by simultaneously imposing two orthogonal stimuli (electrical and magnetic). We demonstrate that cathodic codeposition of chitosan and Fe3O4 nanoparticles while simultaneously applying a magnetic field during codeposition can (i) organize structure, (ii) confer magnetic properties, and (iii) yield magnetic films that can perform reversible collection/assembly functions. The magnetic field triggered the self-assembly of Fe3O4 nanoparticles into hierarchical "chains" and "fibers" in the chitosan film. For controlled magnetic properties, the Fe3O4-chitosan film was electrodeposited in the presence of various strength magnetic fields and different deposition times. The magnetic properties of the resulting films should enable broad applications in complex devices. As a proof of concept, we demonstrate the reversible capture and release of green fluorescent protein (EGFP)-conjugated magnetic microparticles by the magnetic chitosan film. Moreover, antibody-functionalized magnetic microparticles were applied to capture cells from a sample, and these cells were collected, analyzed, and released by the magnetic chitosan film, paving the way for applications such as reusable biosensor interfaces (e.g., for pathogen detection). To our knowledge, this is the first report to apply a magnetic field during the electrodeposition of a hydrogel to generate magnetic soft matter. Importantly, the simple, rapid, and reagentless fabrication methodologies demonstrated here are valuable features for creating a magnetic device interface. PMID:25923335

  1. Electronic and magnetic properties of germanene: Surface functionalization and strain effects

    NASA Astrophysics Data System (ADS)

    Liang, Pei; Liu, Yang; Xing, Song; Shu, Haibo; Tai, Bo

    2016-01-01

    The surface functionalization and strain effects on the structural, electronic, and magnetic properties of full-/half-passivated germanenes are investigated systematically by the first-principle calculations within density functional theory. It is found that the germanenes with full-passivation have different band structures. i.e., the band-gap of GeH is larger than that of GeF and GeCl. Interestingly, when surface passivation and strain are utilized, germanenes go through a transformation from semiconductor to semi-metal. Moreover, germanenes with half-passivation present different magnetic characters, i.e,. Ge2H is a ferromagnetic semiconductor, while Ge2F and Ge2Cl are anti-ferromagnetic semiconductors. The stability of magnetic coupling of Ge2Xs can be modulated by external strain. Our calculations indicate that the electronic and magnetic properties of passivated-germanenes strongly depend on their surface functionalization and strain effects.

  2. Non-Invasive Functional Mapping of the Brain Using Magnetoencephalography and Functional Magnetic Resonance Imaging.

    NASA Astrophysics Data System (ADS)

    Wang, Jihong

    Magnetoencephalography (MEG) and Functional Magnetic Resonance Imaging (FMRI) are two non-invasive techniques that can be used to study brain function. The first part of this dissertation discusses experimental factors that affect the accuracy of MEG source localization. These factors include measurement error, signal to noise ratio, number of measurement points and the local curvature of the head. A skull phantom and computer simulation were used to study the accuracy of MEG localization. It was found that the MEG dipole localization error was approximately 5-10 mm in the temporal region. This localization error was directly proportional to the digitization error. An empirical formula is given for the dependence of the MEG localization accuracy on the signal to noise ratio. The dependence of the MEG localization accuracy on the number of measurement points was also studied. Adequate coverage of extrema is necessary for accurate dipole localizations. The local curvature of the head does not affect localization accuracy as long as the center of the best fit sphere to this local surface is within 4 cm of the center of the best fit sphere to the whole head. The second part of the dissertation presents MEG and FMRI results of motor and auditory stimulation. It was found that the locations of auditory and motor activities as identified by MEG were in agreement with those identified by FMRI within 1-2 cm. The reasons for this discrepancy are discussed. The successful FMRI during auditory stimulation is reported. The fundamental aspects of the MEG inverse solution are discussed and a new spatiotemporal inverse solution algorithm is proposed.

  3. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    PubMed

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  4. Longitudinal wave function control in single quantum dots with an applied magnetic field

    PubMed Central

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  5. High-permeability functionalized silicone magnetic microspheres with low autofluorescence for biomedical applications.

    PubMed

    Evans, Benjamin A; Ronecker, Julia C; Han, David T; Glass, Daniel R; Train, Tonya L; Deatsch, Alison E

    2016-05-01

    Functionalized magnetic microspheres are widely used for cell separations, isolation of proteins and other biomolecules, in vitro diagnostics, tissue engineering, and microscale force spectroscopy. We present here the synthesis and characterization of a silicone magnetic microsphere which can be produced in diameters ranging from 0.5 to 50 μm via emulsion polymerization of a silicone ferrofluid precursor. This bottom-up approach to synthesis ensures a uniform magnetic concentration across all sizes, leading to significant advances in magnetic force generation. We demonstrate that in a size range of 5-20 μm, these spheres supply a full order of magnitude greater magnetic force than leading commercial products. In addition, the unique silicone matrix exhibits autofluorescence two orders of magnitude lower than polystyrene microspheres. Finally, we demonstrate the ability to chemically functionalize our silicone microspheres using a standard EDC reaction, and show that our folate-functionalized silicone microspheres specifically bind to targeted HeLa and Jurkat cells. These spheres show tremendous potential for replacing magnetic polystyrene spheres in applications which require either large magnetic forces or minimal autofluorescence, since they represent order-of-magnitude improvements in each. In addition, the unique silicone matrix and proven biocompatibility suggest that they may be useful for encapsulation and targeted delivery of lipophilic pharmaceuticals. PMID:26952493

  6. Structure, function, and use of the magnetic sense in animals (invited)

    NASA Astrophysics Data System (ADS)

    Walker, Michael M.; Diebel, Carol E.; Green, Colin R.

    2000-05-01

    The hypothesis that animals navigate magnetically is attractive because the earth's magnetic field provides consistent information about position and direction in all environments through which animals travel. However, the hypothesis has been difficult to test because (i) the structure and function of the sense could not readily be analyzed in the laboratory and (ii) the effects of experimental treatments on behavior in the laboratory and field could not be reliably predicted. Our research is focused on the structure and function of the sense in rainbow trout and on applying the understanding gained in the laboratory to studies of navigation by homing pigeons. We have found iron-rich crystals (most likely single-domain magnetite) in candidate magnetoreceptor cells located within a discrete layer of sensory tissue in the nose of rainbow trout. The candidate receptor cells are closely associated with a branch of the trigeminal nerve that responds to changes in intensity but not direction of magnetic fields. In parallel work, we have developed a model of magnetic position determination in which pigeons derive magnetic analogues of geographic latitude and longitude from (i) the total intensity and (ii) the direction of the intensity slope of the earth's magnetic field. Taken together with our other results, the model gives us confidence that a coherent understanding of the structure, function, and use of the magnetic sense in animals is now developing.

  7. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    SciTech Connect

    Pearson, William G.; Hindson, David F.; Langmore, Susan E.; Zumwalt, Ann C.

    2013-03-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  8. Effects of the substrate on graphone magnetism: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Buonocore, Francesco; Mosca Conte, Adriano; Lisi, Nicola

    2016-04-01

    The magnetism of graphone, a single-side-hydrogenated graphene derivative, has been related to the localized and unpaired p-electrons associated with the unhydrogenated carbon atoms. In the present density functional theory study, the effects the adhesion to either Cu(111) or α-quartz (0001) surface on the magnetic properties of graphone have been investigated. The total magnetization of the graphone adsorbed to copper and quartz surface is reduced by four and two times, respectively, with respect to the isolated graphone. We have shown there is electronic charge transfer from surface towards three-fold coordinated C atoms of graphone, but the main role in the partial magnetism quenching is played by bond formation and the consequent electron pairing of p-electrons. The critical temperature has been investigated on the basis of the mean field theory to evaluate the stability of the magnetism at ordinary temperature.

  9. Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy

    PubMed Central

    Yallapu, Murali M.; Othman, Shadi F.; Curtis, Evan T.; Gupta, Brij K.; Jaggi, Meena; Chauhan, Subhash C.

    2010-01-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapuetic agent for cancer therapy. PMID:21167595

  10. Brain Activation during Semantic Processing in Autism Spectrum Disorders via Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Harris, Gordon J.; Chabris, Christopher F.; Clark, Jill; Urban, Trinity; Aharon, Itzhak; Steele, Shelley; McGrath, Lauren; Condouris, Karen; Tager-Flusberg, Helen

    2006-01-01

    Language and communication deficits are core features of autism spectrum disorders (ASD), even in high-functioning adults with ASD. This study investigated brain activation patterns using functional magnetic resonance imaging in right-handed adult males with ASD and a control group, matched on age, handedness, and verbal IQ. Semantic processing in…

  11. The geodetic-geophysical flight mission GEOHALO to acquire measurements of the gravity and magnetic fields, of GNSS remote sensing and of laser altimetry over the Mediterranean

    NASA Astrophysics Data System (ADS)

    Scheinert, Mirko

    2013-04-01

    The new German research aircraft HALO was equiped with an ensemble of geodetic-geophysical instrumentation to carry out geoscientific research in the tectonically active region of the Mediterranean and to demonstrate the feasibility and performance of this instrumentation. This so-called GEOHALO flight mission could finally be realized in the time period from June 2 to 12, 2012. The mission flights took place taking off and landing at the special airfield Oberpfaffenhofen (near Munich, Germany), close to the premises of the German Aerospace Center (DLR). The flights were conducted over Italy and the adjacent seas, comprising seven parallel profiles directing from north-west to south-east, in a height of about 3,500 m, with a length of about 1,000 km each and a line spacing of about 40 km. These long profiles were complemented by four crossing profiles and a profile at an altitude of approx. 10 km along the same track as the center long profile. We will give an overview on the challenges to integrate the scientific instrumentation aboard the aircraft, which comprised two airborne spring-type gravity meters, scalar and vector magnetometers, GNSS zenith, sideward and nadir antennas, and a laser altimeter. We discuss the performance of this instrumentation and present preliminary results to accomplish measurements of the gravity and magnetic fields, of GNSS reflectometry, scatterometry and occultation, and of laser altimeter distances over the ocean. The gathered data shall finally be used to investigate the lithospheric structure in the working area, which is characterized by a puzzle of tectonic microplates, yielding to an increased georisk of earthquakes and volcanism. Altogether, GEOHALO is the first geoscientific mission utilizing HALO. Its success was possible only by the joint efforts of the group of German, Swiss and Spanish universities and research institutions, Italian authorities and institutions as well as by the financial and logistic support of the

  12. Magnetic probe response function calibrations for plasma equilibrium reconstructions of CDX-U

    SciTech Connect

    Spaleta, J.; Zakharov, L.; Kaita, R.; Majeski, R.; Gray, T.

    2006-10-15

    A novel response function calibration technique has been developed to account for time-dependent nonaxisymmetric eddy currents near magnetic sensors in toroidal magnetic confinement devices. The response function technique provides a means to cross calibrate against all available external field coil systems to calculate the absolute sensitivity of each magnetic field sensor, even when induced eddy currents are present in the vacuum vessel wall. The response function information derived in the calibration process can be used in equilibrium reconstructions to separate plasma signals from signals due to externally produced eddy currents at magnetic field sensor locations, without invoking localized wall current distribution details. The response function technique was used for the first ever equilibrium reconstructions of spherical torus plasmas, when applied to the Current Drive Experiment-Upgrade (CDX-U) device. In conjunction with the equilibrium and stability code (ESC), equilibria were obtained for recent CDX-U experiments with lithium plasma-facing components. A description of the CDX-U magnetic sensor configuration and the response function calibration technique will be presented along with examples of resulting plasma equilibrium for CDX-U lithium wall operations.

  13. Precise response function for the magnetic component of gravitational waves in scalar-tensor gravity

    SciTech Connect

    Corda, Christian

    2011-03-15

    The important issue of the magnetic component of gravitational waves (GWs) has been considered in various papers in the literature. From such analyses, it has been found that such a magnetic component becomes particularly important in the high-frequency portion of the frequency range of ground based interferometers for GWs which arises from standard general theory of relativity (GTR). Recently, such a magnetic component has been extended to GWs arising from scalar-tensor gravity (STG) too. After a review of some important issues on GWs in STG, in this paper we reanalyze the magnetic component in the framework of STG from a different point of view, by correcting an error in a previous paper and by releasing a more precise response function. In this way, we also show that if one neglects the magnetic contribution considering only the low-frequency approximation of the electric contribution, an important part of the signal could be, in principle, lost. The determination of a more precise response function for the magnetic contribution is important also in the framework of the possibility of distinguishing other gravitational theories from GTR. At the conclusion of this paper, an expansion of the main results is also shown in order to recall the presence of the magnetic component in GTR too.

  14. Advances in functional magnetic resonance imaging: technology and clinical applications.

    PubMed

    Dickerson, Bradford C

    2007-07-01

    Functional MRI (fMRI) is a valuable method for use by clinical investigators to study task-related brain activation in patients with neurological or neuropsychiatric illness. Despite the relative infancy of the field, the rapid adoption of this functional neuroimaging technology has resulted from, among other factors, its ready availability, its relatively high spatial and temporal resolution, and its safety as a noninvasive imaging tool that enables multiple repeated scans over the course of a longitudinal study, and thus may lend itself well as a measure in clinical drug trials. Investigators have used fMRI to identify abnormal functional brain activity during task performance in a variety of patient populations, including those with neurodegenerative, demyelinating, cerebrovascular, and other neurological disorders that highlight the potential utility of fMRI in both basic and clinical spheres of research. In addition, fMRI studies reveal processes related to neuroplasticity, including compensatory hyperactivation, which may be a universally-occurring, adaptive neural response to insult. Functional MRI is being used to study the modulatory effects of genetic risk factors for neurological disease on brain activation; it is being applied to differential diagnosis, as a predictive biomarker of disease course, and as a means to identify neural correlates of neurotherapeutic interventions. Technological advances are rapidly occurring that should provide new applications for fMRI, including improved spatial resolution, which promises to reveal novel insights into the function of fine-scale neural circuitry of the human brain in health and disease.

  15. Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks

    PubMed Central

    Boretti, Albert; Castelletto, Stefania

    2016-01-01

    This contribution highlights and compares some recent achievements in the use of k-space and real space imaging (scanning probe and wide-filed microscope techniques), when applied to a luminescent color center in diamond, known as nitrogen vacancy (NV) center. These techniques combined with the optically detected magnetic resonance of NV, provide a unique platform to achieve nanometric magnetic resonance imaging (MRI) resolution of nearby nuclear spins (known as nanoMRI), and nanometric NV real space localization. • Atomic size optically detectable spin probe. • High magnetic field sensitivity and nanometric resolution. • Non-invasive mapping of functional activity in neuronal networks. PMID:27144128

  16. Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks.

    PubMed

    Boretti, Albert; Castelletto, Stefania

    2016-01-01

    This contribution highlights and compares some recent achievements in the use of k-space and real space imaging (scanning probe and wide-filed microscope techniques), when applied to a luminescent color center in diamond, known as nitrogen vacancy (NV) center. These techniques combined with the optically detected magnetic resonance of NV, provide a unique platform to achieve nanometric magnetic resonance imaging (MRI) resolution of nearby nuclear spins (known as nanoMRI), and nanometric NV real space localization. •Atomic size optically detectable spin probe.•High magnetic field sensitivity and nanometric resolution.•Non-invasive mapping of functional activity in neuronal networks. PMID:27144128

  17. Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks.

    PubMed

    Boretti, Albert; Castelletto, Stefania

    2016-01-01

    This contribution highlights and compares some recent achievements in the use of k-space and real space imaging (scanning probe and wide-filed microscope techniques), when applied to a luminescent color center in diamond, known as nitrogen vacancy (NV) center. These techniques combined with the optically detected magnetic resonance of NV, provide a unique platform to achieve nanometric magnetic resonance imaging (MRI) resolution of nearby nuclear spins (known as nanoMRI), and nanometric NV real space localization. •Atomic size optically detectable spin probe.•High magnetic field sensitivity and nanometric resolution.•Non-invasive mapping of functional activity in neuronal networks.

  18. Electron Velocity Distribution Function in Magnetic Clouds in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Nieves-Chinchil, Teresa; Vinas, Adolfo F.; Bale, Stuart D.

    2006-01-01

    We present a study of the kinetic properties of the electron velocity distribution functions within magnetic clouds, since they are the dominant thermal component. The study is based on high time resolution data from the GSFC WIND/SWE electron spectrometer and the Berkeley 3DP electron plasma instruments. Recent studies on magnetic clouds have shown observational evidence of anti-correlation between the total electron density and electron temperature, which suggest a polytrope law P(sub e) = alpha(Nu(sub e) (sup gamma)) for electrons with the constant gamma approximates 0.5 < 1. This anti-correlation and small polytropic gamma-values is interpreted in the context of the presence of highly non-Maxwellian electron distributions (i.e. non-thermal) within magnetic clouds. These works suggested that the non-thermal electrons can contribute as much as 50% of the total electron pressure within magnetic clouds. We have revisited some of the magnetic cloud events previously studied and attempted to quantify the nature of the non-thermal electrons by modeling the electron velocity distribution function using a kappa distribution function to characterize the kinetic non-thermal effects. If non-thermal tail effects are the source for the anti-correlation between the moment electron temperature and density and if the kappa distribution is a reasonable representative model of non-thermal effects, then the electron velocity distribution within magnetic clouds should show indication for small K-values when gamma < 1.

  19. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    PubMed

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. PMID:25689073

  20. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    PubMed

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging.

  1. Long-circulating heparin-functionalized magnetic nanoparticles for potential application as a protein drug delivery platform.

    PubMed

    Zhang, Jian; Shin, Meong Cheol; David, Allan E; Zhou, Jie; Lee, Kyuri; He, Huining; Yang, Victor C

    2013-10-01

    Starch-coated, PEGylated, and heparin-functionalized iron oxide magnetic nanoparticles (DNPH) were successfully synthesized and characterized in detail. The PEGylation (20 kDa) process resulted in an average coating of 430 PEG molecules per nanoparticle. After that, heparin conjugation was carried out to attain the final DNPH platform with 35.4 μg of heparin/mg of Fe. Commercially acquired heparin-coated magnetic nanoparticles were also PEGylated (HP) and characterized for comparison. Protamine was selected as a model protein to demonstrate the strong binding affinity and high loading content of DNPH for therapeutically relevant cationic proteins. DNPH showed a maximum loading of 22.9 μg of protamine/mg of Fe. In the pharmacokinetic study, DNPH displayed a long-circulating half-life of 9.37 h, 37.5-fold longer than that (0.15 h) of HP. This improved plasma stability enabled extended exposure of DNPH to the tumor lesions, as was visually confirmed in a flank 9L-glioma mouse model using magnetic resonance imaging (MRI). Quantitative analysis of the Fe content in excised tumor lesions further demonstrated the superior tumor targeting ability of DNPH, with up to 31.36 μg of Fe/g of tissue (13.07% injected dose (I.D.)/g of tissue) and 7.5-fold improvement over that (4.27 μg of Fe/g of tissue; 1.78% I.D./g of tissue) of HP. Overall, this study shed light on the potential of DNPH to be used as a protein drug delivery platform. PMID:24024964

  2. Long-Circulating Heparin-Functionalized Magnetic Nanoparticles for Potential Application as a Protein Drug Delivery Platform

    PubMed Central

    Zhang, Jian; Shin, Meong Cheol; David, Allan E.; Zhou, Jie; Lee, Kyuri; He, Huining; Yang, Victor C.

    2013-01-01

    Starch-coated, PEGylated and heparin-functionalized iron oxide magnetic nanoparticles (DNPH) were successfully synthesized and characterized in detail. The PEGylation (20 kDa) process resulted in an average coating of 430 PEG molecules per nanoparticle. After that, heparin conjugation was carried out to attain the final DNPH platform with 35.4 μg of heparin/mg Fe. Commercially acquired heparin-coated magnetic nanoparticles were also PEGylated (HP) and characterized for comparison. Protamine was selected as a model protein to demonstrate the strong binding affinity and high loading content of DNPH for therapeutically relevant cationic proteins. DNPH showed a maximum loading of 22.9 μg protamine/mg Fe. In the pharmacokinetic study, DNPH displayed a long-circulating half-life of 9.37 h, 37.5-fold longer than that (0.15 h) of H P. This improved plasma stability enabled extended exposure of DNPH to the tumor lesions, as was visually confirmed in a flank 9L-glioma mouse model using magnetic resonance imaging (MRI). Quantitative analysis of the Fe content in excised tumor lesions further demonstrated the superior tumor targeting ability of DNPH, with up to 31.36 μg Fe/g tissue (13.07% injected dose (I.D.)/g tissue) and 7.5-fold improvement over that (4.27 μg Fe/g tissue; 1.78% I.D./g tissue) of HP. Overall, DNPH shed light of the potential to be used as a protein drug delivery platform. PMID:24024964

  3. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

  4. Hospital-acquired pneumonia

    MedlinePlus

    ... tends to be more serious than other lung infections because: People in the hospital are often very sick and cannot fight off ... prevent pneumonia. Most hospitals have programs to prevent hospital-acquired infections.

  5. Acquired Cerebral Trauma: Epilogue.

    ERIC Educational Resources Information Center

    Bigler, Erin D., Ed.

    1988-01-01

    The article summarizes a series of articles concerning acquired cerebral trauma. Reviewed are technological advances, treatment, assessment, potential innovative therapies, long-term outcome, family impact of chronic brain injury, and prevention. (DB)

  6. Physiological Noise Reduction Using Volumetric Functional Magnetic Resonance Inverse Imaging

    PubMed Central

    Lin, Fa-Hsuan; Nummenmaa, Aapo; Witzel, Thomas; Polimeni, Jonathan R.; Zeffiro, Thomas A.; Wang, Fu-Nien; Belliveau, John W.

    2013-01-01

    Physiological noise arising from a variety of sources can significantly degrade the detection of task-related activity in BOLD-contrast fMRI experiments. If whole head spatial coverage is desired, effective suppression of oscillatory physiological noise from cardiac and respiratory fluctuations is quite difficult without external monitoring, since traditional EPI acquisition methods cannot sample the signal rapidly enough to satisfy the Nyquist sampling theorem, leading to temporal aliasing of noise. Using a combination of high speed magnetic resonance inverse imaging (InI) and digital filtering, we demonstrate that it is possible to suppress cardiac and respiratory noise without auxiliary monitoring, while achieving whole head spatial coverage and reasonable spatial resolution. Our systematic study of the effects of different moving average (MA) digital filters demonstrates that a MA filter with a 2 s window can effectively reduce the variance in the hemodynamic baseline signal, thereby achieving 57-58% improvements in peak z-statistic values compared to unfiltered InI or spatially smoothed EPI data (FWHM =8.6 mm). In conclusion, the high temporal sampling rates achievable with InI permit significant reductions in physiological noise using standard temporal filtering techniques that result in significant improvements in hemodynamic response estimation. PMID:21954026

  7. A comprehensive neuropsychological mapping battery for functional magnetic resonance imaging.

    PubMed

    Karakas, Sirel; Baran, Zeynel; Ceylan, Arzu Ozkan; Tileylioglu, Emre; Tali, Turgut; Karakas, Hakki Muammer

    2013-11-01

    Existing batteries for FMRI do not precisely meet the criteria for comprehensive mapping of cognitive functions within minimum data acquisition times using standard scanners and head coils. The goal was to develop a battery of neuropsychological paradigms for FMRI that can also be used in other brain imaging techniques and behavioural research. Participants were 61 healthy, young adult volunteers (48 females and 13 males, mean age: 22.25 ± 3.39 years) from the university community. The battery included 8 paradigms for basic (visual, auditory, sensory-motor, emotional arousal) and complex (language, working memory, inhibition/interference control, learning) cognitive functions. Imaging was performed using standard functional imaging capabilities (1.5-T MR scanner, standard head coil). Structural and functional data series were analysed using Brain Voyager QX2.9 and Statistical Parametric Mapping-8. For basic processes, activation centres for individuals were within a distance of 3-11 mm of the group centres of the target regions and for complex cognitive processes, between 7 mm and 15 mm. Based on fixed-effect and random-effects analyses, the distance between the activation centres was 0-4 mm. There was spatial variability between individual cases; however, as shown by the distances between the centres found with fixed-effect and random-effects analyses, the coordinates for individual cases can be used to represent those of the group. The findings show that the neuropsychological brain mapping battery described here can be used in basic science studies that investigate the relationship of the brain to the mind and also as functional localiser in clinical studies for diagnosis, follow-up and pre-surgical mapping.

  8. ``Green'' functionalization of magnetic nanoparticles via tea polyphenol for magnetic resonance/fluorescent dual-imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Wen; Lai, Kuilin; Liu, Kexia; Xia, Rui; Gao, Fabao; Wu, Yao; Gu, Zhongwei

    2014-01-01

    Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T2 relaxivity, autofluorescence and large cellular uptake.Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T2 relaxivity, autofluorescence and large cellular uptake. Electronic supplementary information (ESI) available: Additional information and figures (Fig. S1-S7), including experimental sections, characterization of the products, protein corona analysis, cytotoxicity and cellular uptake quantification. See DOI: 10.1039/c3nr05003c

  9. Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field.

    PubMed

    Mourachkine, A; Yazyev, O V; Ducati, C; Ansermet, J-Ph

    2008-11-01

    Low-cost spintronic devices functioning in zero applied magnetic field are required for bringing the idea of spin-based electronics into the real-world industrial applications. Here we present first microwave measurements performed on nanomagnet devices fabricated by electrodeposition inside porous membranes. In the paper, we discuss in details a microwave resonator consisting of three nanomagnets, which functions in zero external magnetic field. By applying a microwave signal at a particular frequency, the magnetization of the middle nanomagnet experiences the ferromagnetic resonance (FMR), and the device outputs a measurable direct current (spin-torque diode effect). Alternatively, the nanodevice can be used as a microwave oscillator functioning in zero field. To test the resonators at microwave frequencies, we developed a simple measurement setup.

  10. Mapping Dopamine Function in Primates Using Pharmacologic Magnetic Resonance Imaging

    PubMed Central

    Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Chen, Yin-Ching Iris; Isacson, Ole

    2008-01-01

    Dopamine (DA) receptors play a central role in such diverse pathologies as Parkinson's disease, schizophrenia, and drug abuse. We used an amphetamine challenge combined with pharmacologic magnetic resonance imaging (phMRI) to map DA-associated circuitry in nonhuman primates with high sensitivity and spatial resolution. Seven control cynomolgous monkeys and 10 MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated parkinsonian primates were studied longitudinally using both positron emission tomography (PET) and phMRI. Amphetamine challenge (2.5 mg/kg, i.v.) in control monkeys increased relative cerebral blood volume (rCBV) in a number of brain regions not described previously, such as parafascicular thalamus, precentral gyrus, and dentate nucleus of the cerebellum. With the high spatial resolution, we were also able to readily identify changes in rCBV in the anterior cingulate, substantia nigra, ventral tegmental area, caudate (tail and head), putamen, and nucleus accumbens. Amphetamine induced decreases in rCBV in occipital and posterior parietal cortices. Parkinsonian primates had a prominent loss of response to amphetamine, with relative sparing of the nucleus accumbens and parafascicular thalamus. There was a significant correlation between rCBV loss in the substantia nigra and both PET imaging of dopamine transporters and behavioral measures. Monkeys with partial lesions as defined by 2β-carbomethoxy-3β-(4-fluorophenyl) tropane binding to dopamine transporters showed recruitment of premotor and motor cortex after amphetamine stimulus similar to what has been noted in Parkinson's patients during motor tasks. These data indicate that phMRI is a powerful tool for assessment of dynamic changes associated with normal and dysfunctional DA brain circuitry in primates. PMID:15509742

  11. [Acquired haemophilia (acquired factor VIII inhibitor)].

    PubMed

    Ceresetto, José M; Duboscq, Cristina; Fondevila, Carlos; Tezanos Pinto, Miguel

    2015-01-01

    Acquired haemophilia is a rare disorder. The clinical picture ranges from mild ecchymosis and anaemia to life threatening bleeding in up to 20% of patients. The disease is produced by an antibody against Factor VIII and it usually occurs in the elderly, with no previous history of a bleeding disorder. It can be associated to an underlying condition such as cancer, autoimmune disorders, drugs or pregnancy. It has a typical laboratory pattern with isolated prolonged activated partial thromboplastin time (aPTT) that fails to correct upon mixing tests with normal plasma and low levels of factor VIII. Treatment recommendations are based on controlling the acute bleeding episodes with either bypassing agent, recombinant activated factor VII or activated prothrombin complex concentrate, and eradication of the antibody with immunosuppressive therapy.

  12. [Functional magnetic resonance imaging for cortical mapping in epilepsy].

    PubMed

    Lajos, Rudolf Kozák; Tóth, Vivien; Barsi, Péter; Rudas, Gábor

    2011-09-30

    It is not only the total curative resection of pathological tissue or the minimization of symptoms to be considered in epilepsy surgery or other neurosurgical procedures, it is equally desirable to maintain the best possible quality of life. Cortical mapping methods can help achieve this goal by delineating eloquent areas, i.e. brain regions that are vital for providing an acceptable quality of life, albeit not prone to compensatory reorganization. These areas include among others the Broca and Wernicke regions for speech, the primary motor, sensory and visual cortices. Functional MRI gained importance in the last decade as a non-invasive clinical cortical mapping technique. This method is capable of localizing cortical areas selectively activated by a given task condition. Thus, selecting appropriate tasks can help mapping eloquent brain regions. Using functional MRI provides information that is complementary to other mapping methods. Moreover, it can replace invasive methods such as the Wada test. Here, we explain the background of functional MRI, compare it to other clinical mapping methods, explain the intricacies of paradigm selection, and show the limitations of the technique while also pointing out alternative uses.

  13. Functional Magnetic Resonance Imaging in Abstinent MDMA Users: A Review.

    PubMed

    Garg, Aayushi; Kapoor, Saloni; Goel, Mishita; Chopra, Saurav; Chopra, Manav; Kapoor, Anirudh; McCann, Una D; Behera, Chittaranjan

    2015-01-01

    Ecstasy or 3,4-methylenedioxymethamphetamine (MDMA) is a popular drug of abuse. In the animal studies MDMA has been shown to have deleterious effects on the serotonergic neurotransmitter system. Understanding the adverse effects of MDMA on human brain function is of considerable importance owing to the rising number of MDMA users. Various neuroimaging studies have investigated the structural, chemical and functional differences in the brain integrity of chronic MDMA users. Various neurocognitive domains like working memory, episodic memory, semantic memory, visual stimulation, motor function and impulsivity have been compared between chronic MDMA users and nonusers using fMRI. The fMRI studies remain much more sensitive in studying the neurological deficits associated with chronic MDMA use as compared to the cognitive studies alone and therefore they serve as a prelude in our understanding of MDMA induced neurotoxicity. However they still face certain limitations contributing to inconsistency in the results and further research is needed before we can draw definitive conclusions regarding the neurotoxic effects of MDMA.

  14. Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder

    NASA Astrophysics Data System (ADS)

    Mehran, E.; Farjami Shayesteh, S.; Sheykhan, M.

    2016-10-01

    The structural and magnetic properties of the synthesized pure and functionalized CoFe2O4 magnetic nanoparticles (NPs) are studied by analyzing the results from the x-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR spectroscopy, thermogravimetry (TG), and vibrating sample magnetometer (VSM). To extract the structure and lattice parameters from the XRD analysis results, we first apply the pseudo-Voigt model function to the experimental data obtained from XRD analysis and then the Rietveld algorithm is used in order to optimize the model function to estimate the true intensity values. Our simulated intensities are in good agreement with the experimental peaks, therefore, all structural parameters such as crystallite size and lattice constant are achieved through this simulation. Magnetic analysis reveals that the synthesized functionalized NPs have a saturation magnetization almost equal to that of pure nanoparticles (PNPs). It is also found that the presence of the turmeric causes a small reduction in coercivity of the functionalized NPs in comparison with PNP. Our TGA and FTIR results show that the turmeric is bonded very well to the surface of the NPs. So it can be inferred that a nancomposite (NC) powder of turmeric and nanoparticles is produced. As an application, the anti-arsenic characteristic of turmeric makes the synthesized functionalized NPs or NC powder a good candidate for arsenic removal from polluted industrial waste water. Project supported by the University of Guilan and the Iran Nanotechnology Initiative Council.

  15. A comparison of spectral quality in magnetic resonance spectroscopy data acquired with and without a novel EPI-navigated PRESS sequence in school-aged children with fetal alcohol spectrum disorders

    PubMed Central

    Hess, Aaron T.; Jacobson, Sandra W.; Jacobson, Joseph L.; Molteno, Christopher D.; van der Kouwe, André J.W.; Meintjes, Ernesta M.

    2014-01-01

    Single voxel spectroscopy (SVS) can generate useful information regarding metabolite concentrations provided that the MR signal can be averaged over several minutes during which the subject remains stationary. This requirement can be particularly challenging for children who cannot otherwise be scanned without sedation. To address this problem we developed an EPI volume navigated (vNav) SVS PRESS sequence, which applies real-time head pose (location and orientation), frequency, and first-order B0 shim adjustments. A water-independent preprocessing algorithm removes residual frequency and phase shifts resulting from within-TR movements. We compare results and performance of the standard and vNav PRESS sequences in a sample of 9- to 10-year-olds from a South African cohort of children with fetal alcohol spectrum disorders (FASD) and healthy controls. Magnetic resonance spectroscopy (MRS) data in the deep cerebellar nuclei were initially acquired with the standard PRESS sequence. The children were re-scanned 1 year later with the vNav PRESS sequence. Good quality data were acquired in 73% using the vNav PRESS sequence, compared to only 50% for the standard PRESS sequence. Additionally, tighter linewidths and smaller variances in the measured concentrations were observed. These findings confirm previous reports demonstrating the efficacy of our innovative vNav sequence with healthy volunteers and young children with HIV and expand its application to a school-aged population with FASD—disorders often associated with attention problems and hyperactivity. This study provides the most direct evidence to date regarding degree to which these new methods can improve data quality in research studies employing MRS. PMID:24488204

  16. A comparison of spectral quality in magnetic resonance spectroscopy data acquired with and without a novel EPI-navigated PRESS sequence in school-aged children with fetal alcohol spectrum disorders.

    PubMed

    Hess, Aaron T; Jacobson, Sandra W; Jacobson, Joseph L; Molteno, Christopher D; van der Kouwe, André J W; Meintjes, Ernesta M

    2014-06-01

    Single voxel spectroscopy (SVS) can generate useful information regarding metabolite concentrations provided that the MR signal can be averaged over several minutes during which the subject remains stationary. This requirement can be particularly challenging for children who cannot otherwise be scanned without sedation. To address this problem we developed an EPI volume navigated (vNav) SVS PRESS sequence, which applies real-time head pose (location and orientation), frequency, and first-order B0 shim adjustments. A water-independent preprocessing algorithm removes residual frequency and phase shifts resulting from within-TR movements. We compare results and performance of the standard and vNav PRESS sequences in a sample of 9- to 10-year-olds from a South African cohort of children with fetal alcohol spectrum disorders (FASD) and healthy controls. Magnetic resonance spectroscopy (MRS) data in the deep cerebellar nuclei were initially acquired with the standard PRESS sequence. The children were re-scanned 1 year later with the vNav PRESS sequence. Good quality data were acquired in 73% using the vNav PRESS sequence, compared to only 50% for the standard PRESS sequence. Additionally, tighter linewidths and smaller variances in the measured concentrations were observed. These findings confirm previous reports demonstrating the efficacy of our innovative vNav sequence with healthy volunteers and young children with HIV and expand its application to a school-aged population with FASD-disorders often associated with attention problems and hyperactivity. This study provides the most direct evidence to date regarding degree to which these new methods can improve data quality in research studies employing MRS.

  17. Heterologous Expression and Functional Characterization of the Exogenously Acquired Aminoglycoside Resistance Methyltransferases RmtD, RmtD2, and RmtG

    PubMed Central

    Corrêa, Laís L.; Witek, Marta A.; Zelinskaya, Natalia; Picão, Renata C.

    2015-01-01

    The exogenously acquired 16S rRNA methyltransferases RmtD, RmtD2, and RmtG were cloned and heterologously expressed in Escherichia coli, and the recombinant proteins were purified to near homogeneity. Each methyltransferase conferred an aminoglycoside resistance profile consistent with m7G1405 modification, and this activity was confirmed by in vitro 30S methylation assays. Analyses of protein structure and interaction with S-adenosyl-l-methionine suggest that the molecular mechanisms of substrate recognition and catalysis are conserved across the 16S rRNA (m7G1405) methyltransferase family. PMID:26552988

  18. Vortex fluidic entrapment of functional microalgal cells in a magnetic polymer matrix

    NASA Astrophysics Data System (ADS)

    Eroglu, Ela; D'Alonzo, Nicholas J.; Smith, Steven M.; Raston, Colin L.

    2013-03-01

    Composite materials based on superparamagnetic magnetite nanoparticles embedded in polyvinylpyrrolidone (PVP) are generated in a continuous flow vortex fluidic device (VFD). The same device is effective in entrapping microalgal cells within this material, such that the functional cells can be retrieved from aqueous dispersions using an external magnet.Composite materials based on superparamagnetic magnetite nanoparticles embedded in polyvinylpyrrolidone (PVP) are generated in a continuous flow vortex fluidic device (VFD). The same device is effective in entrapping microalgal cells within this material, such that the functional cells can be retrieved from aqueous dispersions using an external magnet. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33813d

  19. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Daniel J; He, Jibao; Spinu, Leonard; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2016-02-01

    Magnetically responsive oil-in-water emulsions are effectively stabilized by a halloysite nanotube supported superparamagnetic iron oxide nanoparticle system. The attachment of the magnetically functionalized halloysite nanotubes at the oil-water interface imparts magnetic responsiveness to the emulsion and provides a steric barrier to droplet coalescence leading to emulsions that are stabilized for extended periods. Interfacial structure characterization by cryogenic scanning electron microscopy reveals that the nanotubes attach at the oil-water interface in a side on-orientation. The tubular structure of the nanotubes is exploited for the encapsulation and release of surfactant species that are typical of oil spill dispersants such as dioctyl sulfosuccinate sodium salt and polyoxyethylene (20) sorbitan monooleate. The magnetically responsive halloysite nanotubes anchor to the oil-water interface stabilizing the interface and releasing the surfactants resulting in reduction in the oil-water interfacial tension. The synergistic adsorption of the nanotubes and the released surfactants at the oil-water interface results in oil emulsification into very small droplets (less than 20μm). The synergy of the unique nanotubular morphology and interfacial activity of halloysite with the magnetic properties of iron oxide nanoparticles has potential applications in oil spill dispersion, magnetic mobilization and detection using magnetic fields. PMID:26555959

  20. Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Roca, A. G.; Carmona, D.; Miguel-Sancho, N.; Bomatí-Miguel, O.; Balas, F.; Piquer, C.; Santamaría, J.

    2012-04-01

    We report here a detailed structural and magnetic study of different silica nanocapsules containing uniform and highly crystalline maghemite nanoparticles. The magnetic phase consists of 5 nm triethylene glycol (TREG)- or dimercaptosuccinic acid (DMSA)-coated maghemite particles. TREG-coated nanoparticles were synthesized by thermal decomposition. In a second step, TREG ligands were exchanged by DMSA. After the ligand exchange, the ζ potential of the particles changed from - 10 to - 40 mV, whereas the hydrodynamic size remained constant at around 15 nm. Particles coated by TREG and DMSA were encapsulated in silica following a sol-gel procedure. The encapsulation of TREG-coated nanoparticles led to large magnetic aggregates, which were embedded in coalesced silica structures. However, DMSA-coated nanoparticles led to small magnetic clusters inserted in silica spheres of around 100 nm. The final nanostructures can be described as the result of several competing factors at play. Magnetic measurements indicate that in the TREG-coated nanoparticles the interparticle magnetic interaction scenario has not dramatically changed after the silica encapsulation, whereas in the DMSA-coated nanoparticles, the magnetic interactions were screened due to the function of the silica template. Moreover, the analysis of the AC susceptibility suggests that our systems essentially behave as cluster spin glass systems.

  1. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology.

    PubMed

    Matsunaga, Tadashi; Suzuki, Takeyuki; Tanaka, Masayoshi; Arakaki, Atsushi

    2007-04-01

    Biomineralization is an elaborate process that produces complex nano-structures consisting of organic and inorganic components of uniform size and highly ordered morphology that self-assemble into structures in a hierarchical manner. Magnetotactic bacteria synthesize nano-sized magnetite crystals that are highly consistent in size and morphology within bacterial species; each particle is surrounded by a thin organic membrane, which facilitates their use for various biotechnological applications. Recent molecular studies, including mutagenesis, whole genome, transcriptome and comprehensive proteome analyses, have elucidated the processes important to bacterial magnetite formation. Some of the genes and proteins identified from these studies have enabled us, through genetic engineering, to express proteins efficiently, with their activity preserved, onto bacterial magnetic particles, leading to the simple preparation of functional protein-magnetic particle complexes. This review describes the recent advances in the fundamental analysis of bacterial magnetic particles and the development of surface-protein-modified magnetic particles for biotechnological applications.

  2. Stability of a pinned magnetic domain wall as a function of its internal configuration

    NASA Astrophysics Data System (ADS)

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M.; Childress, J. R.

    2015-01-01

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  3. Functional magnetic resonance spectroscopy of glutamate in schizophrenia and major depressive disorder: anterior cingulate activity during a color-word Stroop task

    PubMed Central

    Taylor, Reggie; Neufeld, Richard W J; Schaefer, Betsy; Densmore, Maria; Rajakumar, Nagalingam; Osuch, Elizabeth A; Williamson, Peter C; Théberge, Jean

    2015-01-01

    Background: Glutamate abnormalities have been suggested to be associated with symptoms of schizophrenia. Using functional magnetic resonance spectroscopy (1H-fMRS), it is possible to monitor glutamate dynamically in the activated brain areas, which has yet to be reported in schizophrenia. It was hypothesized that subjects with schizophrenia would have weaker glutamatergic responses in the anterior cingulate to a color-word Stroop Task. AIMS: The aim of this study was to gain insight into the health of GLU neurotransmission and the GLU-GLN cycle in SZ using a 1H-fMRS protocol. Methods: Spectra were acquired from the anterior cingulate of 16 participants with schizophrenia, 16 healthy controls and 16 participants with major depressive disorder (MDD) while performing the Stroop task in a 7T magnetic resonance imaging scanner. 1H-fMRS spectra were acquired for 20 min in which there were three 4-min blocks of cross fixation interleaved with two 4-min blocks of the Stroop paradigm. Results: A repeated-measures analysis of variance revealed a main effect of time for glutamate concentrations of all groups (P<0.001). The healthy control group increased glutamate concentrations in the first run of the Stroop task (P=0.006) followed by a decrease in the recovery period (P=0.007). Neither the schizophrenia (P=0.107) nor MDD (P=0.081) groups had significant glutamate changes in the first run of the task, while the schizophrenia group had a significant increase in glutamine (P=0.005). The MDD group decreased glutamate concentrations in the second run of the task (P=0.003), as did all the groups combined (P=0.003). Conclusions: 1H-fMRS data were successfully acquired from psychiatric subjects with schizophrenia and mood disorder using a cognitive paradigm for the first time. Future study designs should further elucidate the glutamatergic response to functional activation in schizophrenia. PMID:27336037

  4. Ionic-liquid-functionalized magnetic particles as an adsorbent for the magnetic SPE of sulfonylurea herbicides in environmental water samples.

    PubMed

    He, Zeying; Liu, Donghui; Zhou, Zhiqiang; Wang, Peng

    2013-10-01

    In this paper, a new ionic-liquid-functionalized magnetic material was prepared based on the immobilization of an ionic liquid on silica magnetic particles that could be successfully used as an adsorbent for the magnetic SPE of five sulfonylurea herbicides (bensulfuron-methyl, prosulfuron, pyrazosulfuron-ethyl, chlorimuron-ethyl and triflusulfuron-methyl) from environmental water samples. The main parameters affecting the extraction efficiency such as desorption conditions, sample pH, extraction time and so on, were optimized using the Taguchi method. Good linearities were obtained with correlation coefficients ranging from 0.9992 to 0.9999 in the concentration range of 0.1-50 μg L(-1) and the LODs were 0.053-0.091 μg L(-1). Under the optimum conditions, the enrichment factors of the method were 1155-1380 and the recoveries ranged from 77.8 to 104.4%. The proposed method was reliable and could be applied to the residue analysis of sulfonylurea herbicides in environmental water samples (tap, reservoir and river).

  5. Emotional attention in acquired prosopagnosia.

    PubMed

    Peelen, Marius V; Lucas, Nadia; Mayer, Eugene; Vuilleumier, Patrik

    2009-09-01

    The present study investigated whether emotionally expressive faces guide attention and modulate fMRI activity in fusiform gyrus in acquired prosopagnosia. Patient PS, a pure case of acquired prosopagnosia with intact right middle fusiform gyrus, performed two behavioral experiments and a functional imaging experiment to address these questions. In a visual search task involving face stimuli, PS was faster to select the target face when it was expressing fear or happiness as compared to when it was emotionally neutral. In a change detection task, PS detected significantly more changes when the changed face was fearful as compared to when it was neutral. Finally, an fMRI experiment showed enhanced activation to emotionally expressive faces and bodies in right fusiform gyrus. In addition, PS showed normal body-selective activation in right fusiform gyrus, partially overlapping the fusiform face area. Together these behavioral and neuroimaging results show that attention was preferentially allocated to emotional faces in patient PS, as observed in healthy subjects. We conclude that systems involved in the emotional guidance of attention by facial expression can function normally in acquired prosopagnosia, and can thus be dissociated from systems involved in face identification.

  6. A facile fabrication of spherical and beanpod-like magnetic-fluorescent particles with targeting functionalities

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Lin; Zhang, Ji-Lin; Cheng, Gong; Hong, Guang-Yan; Ni, Jia-Zuan

    2012-10-01

    Magnetic-fluorescent particles with targeting functionalities were fabricated by a modified Stöber method and two shapes (spherical and beanpod-like) were obtained by simply tuning the reaction temperature. The two multifunctional probes combined the useful functions of magnetism, fluorescence and FA (folic acid)-targeting recognition into one entity. The products were characterized by scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, confocal laser scanning microscopy, by a superconducting quantum interference device and by Fourier transform infrared spectroscopy. The experimental results show that the products possessed rapid magnetic response, relatively strong fluorescent signal, higher photostability and FA-targeting recognition as well as good water-dispersibility, suggesting that they would have potential medical applications in biolabeling and bioimaging.

  7. Community-acquired pneumonia.

    PubMed

    Falguera, M; Ramírez, M F

    2015-11-01

    This article not only reviews the essential aspects of community-acquired pneumonia for daily clinical practice, but also highlights the controversial issues and provides the newest available information. Community-acquired pneumonia is considered in a broad sense, without excluding certain variants that, in recent years, a number of authors have managed to delineate, such as healthcare-associated pneumonia. The latter form is nothing more than the same disease that affects more frail patients, with a greater number of risk factors, both sharing an overall common approach. PMID:26186969

  8. Acquired hypofibrinogenemia: current perspectives

    PubMed Central

    Besser, Martin W; MacDonald, Stephen G

    2016-01-01

    Acquired hypofibrinogenemia is most frequently caused by hemodilution and consumption of clotting factors. The aggressive replacement of fibrinogen has become one of the core principles of modern management of massive hemorrhage. The best method for determining the patient’s fibrinogen level remains controversial, and particularly in acquired dysfibrinogenemia, could have major therapeutic implications depending on which quantification method is chosen. This review introduces the available laboratory and point-of-care methods and discusses the relative advantages and limitations. It also discusses current strategies for the correction of hypofibrinogenemia. PMID:27713652

  9. Community-acquired pneumonia.

    PubMed

    Falguera, M; Ramírez, M F

    2015-11-01

    This article not only reviews the essential aspects of community-acquired pneumonia for daily clinical practice, but also highlights the controversial issues and provides the newest available information. Community-acquired pneumonia is considered in a broad sense, without excluding certain variants that, in recent years, a number of authors have managed to delineate, such as healthcare-associated pneumonia. The latter form is nothing more than the same disease that affects more frail patients, with a greater number of risk factors, both sharing an overall common approach.

  10. Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function

    NASA Astrophysics Data System (ADS)

    Malis, Vadim

    Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on

  11. A Functional Magnetic Resonance Imaging Investigation of Verbal Working Memory in Adolescents with Specific Language Impairment

    ERIC Educational Resources Information Center

    Weismer, Susan Ellis; Plante, Elena; Jones, Maura; Tomblin, Bruce J.

    2005-01-01

    This study used neuroimaging and behavioral techniques to examine the claim that processing capacity limitations underlie specific language impairment (SLI). Functional magnetic resonance imaging (fMRI) was used to investigate verbal working memory in adolescents with SLI and normal language (NL) controls. The experimental task involved a modified…

  12. Functional Magnetic Resonance Imaging of Cognitive Processing in Young Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Jacola, Lisa M.; Byars, Anna W.; Chalfonte-Evans, Melinda; Schmithorst, Vincent J.; Hickey, Fran; Patterson, Bonnie; Hotze, Stephanie; Vannest, Jennifer; Chiu, Chung-Yiu; Holland, Scott K.; Schapiro, Mark B.

    2011-01-01

    The authors used functional magnetic resonance imaging (fMRI) to investigate neural activation during a semantic-classification/object-recognition task in 13 persons with Down syndrome and 12 typically developing control participants (age range = 12-26 years). A comparison between groups suggested atypical patterns of brain activation for the…

  13. Modelling of heat assisted magnetic recording with the Landau-Lifshitz-Bloch equation and Brillouin functions

    NASA Astrophysics Data System (ADS)

    Greaves, Simon John; Muraoka, Hiroaki; Kanai, Yasushi

    2015-05-01

    Brillouin functions were used to model the temperature dependence of magnetisation in media for heat assisted magnetic recording. Although dHk/dT was higher when Brillouin functions with J = 0.5 or J = 1 were used, an earlier onset of the linear reversal mode led to a drop in dHc/dT near to Tc, resulting in wider written bits. Tracks written with a higher thermal gradient were also wider when J was small and had lower SNR.

  14. Hyperpolarized functional magnetic resonance of murine skeletal muscle enabled by multiple tracer-paradigm synchronizations.

    PubMed

    Leftin, Avigdor; Roussel, Tangi; Frydman, Lucio

    2014-01-01

    Measuring metabolism's time- and space-dependent responses upon stimulation lies at the core of functional magnetic resonance imaging. While focusing on water's sole resonance, further insight could arise from monitoring the temporal responses arising from the metabolites themselves, in what is known as functional magnetic resonance spectroscopy. Performing these measurements in real time, however, is severely challenged by the short functional timescales and low concentrations of natural metabolites. Dissolution dynamic nuclear polarization is an emerging technique that can potentially alleviate this, as it provides a massive sensitivity enhancement allowing one to probe low-concentration tracers and products in a single-scan. Still, conventional implementations of this hyperpolarization approach are not immediately amenable to the repeated acquisitions needed in real-time functional settings. This work proposes a strategy for functional magnetic resonance of hyperpolarized metabolites that bypasses this limitation, and enables the observation of real-time metabolic changes through the synchronization of stimuli-triggered, multiple-bolus injections of the metabolic tracer 13C1-pyruvate. This new approach is demonstrated with paradigms tailored to reveal in vivo thresholds of murine hind-limb skeletal muscle activation, involving the conversion of 13C1-pyruvate to 13C1-lactate and 13C1-alanine. These functional hind-limb studies revealed that graded skeletal muscle stimulation causes commensurate increases in glycolytic metabolism in a frequency- and amplitude-dependent fashion, that can be monitored on the seconds/minutes timescale using dissolution dynamic nuclear polarization. Spectroscopic imaging further allowed the in vivo visualization of uptake, transformation and distribution of the tracer and products, in fast-twitch glycolytic and in slow-twitch oxidative muscle fiber groups. While these studies open vistas in time and sensitivity for metabolic

  15. Hyperpolarized Functional Magnetic Resonance of Murine Skeletal Muscle Enabled by Multiple Tracer-Paradigm Synchronizations

    PubMed Central

    Leftin, Avigdor; Roussel, Tangi; Frydman, Lucio

    2014-01-01

    Measuring metabolism's time- and space-dependent responses upon stimulation lies at the core of functional magnetic resonance imaging. While focusing on water's sole resonance, further insight could arise from monitoring the temporal responses arising from the metabolites themselves, in what is known as functional magnetic resonance spectroscopy. Performing these measurements in real time, however, is severely challenged by the short functional timescales and low concentrations of natural metabolites. Dissolution dynamic nuclear polarization is an emerging technique that can potentially alleviate this, as it provides a massive sensitivity enhancement allowing one to probe low-concentration tracers and products in a single-scan. Still, conventional implementations of this hyperpolarization approach are not immediately amenable to the repeated acquisitions needed in real-time functional settings. This work proposes a strategy for functional magnetic resonance of hyperpolarized metabolites that bypasses this limitation, and enables the observation of real-time metabolic changes through the synchronization of stimuli-triggered, multiple-bolus injections of the metabolic tracer 13C1-pyruvate. This new approach is demonstrated with paradigms tailored to reveal in vivo thresholds of murine hind-limb skeletal muscle activation, involving the conversion of 13C1-pyruvate to 13C1-lactate and 13C1-alanine. These functional hind-limb studies revealed that graded skeletal muscle stimulation causes commensurate increases in glycolytic metabolism in a frequency- and amplitude-dependent fashion, that can be monitored on the seconds/minutes timescale using dissolution dynamic nuclear polarization. Spectroscopic imaging further allowed the in vivo visualization of uptake, transformation and distribution of the tracer and products, in fast-twitch glycolytic and in slow-twitch oxidative muscle fiber groups. While these studies open vistas in time and sensitivity for metabolic

  16. Operant-contingency-based preparation of children for functional magnetic resonance imaging.

    PubMed

    Slifer, Keith J; Koontz, Kristine L; Cataldo, Michael F

    2002-01-01

    Functional magnetic resonance imaging (fMRI) is used to study brain function during behavioral tasks. The participation of pediatric subjects is problematic because reliable task performance and control of head movement are simultaneously required. Differential reinforcement decreased head motion and improved vigilance task performance in 4 children (2 with behavioral disorders) undergoing simulated fMRI scans. Results show that behavior analysis techniques can improve child cooperation during fMRI procedures.

  17. Acquired Brain Injury Program.

    ERIC Educational Resources Information Center

    Schwartz, Stacey Hunter

    This paper reviews the Acquired Brain Injury (ABI) Program at Coastline Community College (California). The ABI Program is a two-year, for-credit educational curriculum designed to provide structured cognitive retraining for adults who have sustained an ABI due to traumatic (such as motor vehicle accident or fall) or non-traumatic(such as…

  18. Stationary electron velocity distribution function in crossed electric and magnetic fields with collisions

    SciTech Connect

    Shagayda, Andrey

    2012-08-15

    Analytical studies and numerical simulations show that the electron velocity distribution function in a Hall thruster discharge with crossed electric and magnetic fields is not Maxwellian. This is due to the fact that the mean free path between collisions is greater than both the Larmor radius and the characteristic dimensions of the discharge channel. However in numerical models of Hall thrusters, a hydrodynamic approach is often used to describe the electron dynamics, because discharge simulation in a fully kinetic approach requires large computing resources and is time consuming. A more accurate modeling of the electron flow in the hydrodynamic approximation requires taking into account the non-Maxwellian character of the distribution function and finding its moments, an approach that reflects the properties of electrons drifting in crossed electric and magnetic fields better than the commonly used Euler or Navier-Stokes approximations. In the present paper, an expression for the electron velocity distribution function in rarefied spatially homogeneous stationary plasma with crossed electric and magnetic fields and predominance of collisions with heavy particles is derived in the relaxation approximation. The main moments of the distribution function including longitudinal and transversal temperatures, the components of the viscous stress tensor, and of the heat flux vector are calculated. Distinctive features of the hydrodynamic description of electrons with a strongly non-equilibrium distribution function and the prospects for further development of the proposed approach for calculating the distribution function in spatially inhomogeneous plasma are discussed.

  19. SUPERCONDUCTING COMBINED FUNCTION MAGNET SYSTEM FOR J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    OGITSU, T.; AJIMA, Y.; ANERELLA, M.; ESCALLIER, J.; GANETIS, G.; GUPTA, R.; HAGEDOM, D.; HARRISON, M.; HIGASHI, N.; IWAMOTO, Y.; ICHIKAWA, A.; JAIN, A.; KIMURA, N.; KOBAYASHI, T.; MAKIDA, Y.; MURATORE, J.; NAKAMOTO, T.; OHHATA, H.; TAKASAKI, N.; TANAKA, K.; TERASHIMA, A.; YAMOMOTO, A.; OBANA, T.; PARKER, B.; WANDERER, P.

    2004-10-03

    The J-PARC Neutrino Experiment, the construction of which starts in JFY 2004, will use a superconducting magnet system for its primary proton beam line. The system, which bends the 50 GeV 0.75 MW proton beam by about 80 degrees, consists of 28 superconducting combined function magnets. The magnets utilize single layer left/right asymmetric coils that generate a dipole field of 2.6 T and a quadrupole field of 18.6 T/m with the operation current of about 7.35 kA. The system also contains a few conduction cooled superconducting corrector magnets that serve as vertical and horizontal steering magnets. All the magnets are designed to provide a physical beam aperture of 130 mm in order to achieve a large beam acceptance. Extensive care is also required to achieve safe operation with the high power proton beam. The paper summarizes the system design as well as some safety analysis results.

  20. Investigation of the Magnetic Behavior in Fe3O4 Ferrofluid Functionalized by Carapa Guianensis Oil

    NASA Astrophysics Data System (ADS)

    López, Jorge Luis; Rodriguez, Anselmo Fortunato Ruiz; de Jesus Nascimento Pontes, Maria; de Morais, Paulo Cesar; de Azevedo, Ricardo Bentes; Pfannes, Hans Dieter; Dias Filho, José Higino

    2010-12-01

    A ferrofluid based on Fe3O4 has been synthesized using the condensation method by coprecipitating aqueous solutions of FeSO4 and FeCl3 mixtures in NH4OH and treated further in order to obtain colloidal sols by creating a charge density on their surface and functionalized by carapa guianensis (andiroba oil). Aqueous sample with an average particle diameter ˜7 nm were studied by Mössbauer spectroscopy and dc magnetization measurements in the range of 4.2-250 K. The saturation magnetization (Ms) at 4.2 K was determined from M vs 1/H plots by extrapolating the value of magnetizations to infinite fields, to 5.6 emu/g and coercivity to 344 Oe. The low saturation magnetization value was attributed to spin noncollinearity predominantly at the surface. From the magnetization measurements a magnetic anisotropy energy constant (K) of 1×104 J/m3 was calculated. Fe3O4 spectra at room temperature showed a singlet due to superparamagnetic relaxation and a sextet at low temperature.

  1. Spectral functions in a magnetic field as a probe of spin-charge separation

    NASA Astrophysics Data System (ADS)

    Rabello, Silvio; Si, Qimiao

    2001-03-01

    We show that the single-particle spectral functions in a magnetic field can be used to probe spin-charge separation[1]. For concreteness our discussion will be focused on the Luttinger liquid, but our idea is applicable to spin-charge separated metals in general. We will show two types of manifestations of spin-charge separation. For the energy dispersion away from the Fermi momentum, the magnetic field splits both the spinon peak and holon peak; here the spin-charge separation nature is reflected in the different magnitude of the two splittings. For the energy dispersion at the Fermi momentum, the magnetic field splits the zero-field peak into FOUR peaks. The effect of a magnetic field on the momentum dispersion, on the other hand, is very different. Either at or away from the Fermi energy, the magnetic field splits the zero-field peak into only two peaks; the magnitude of the splittings of the spinon and holon peaks is always the same. The contrast between the energy dispersion and momentum dispersion reflects the generic physics that the magnetic field causes as main effect the splitting of the spinon Fermi momentum. Finally, we will discuss the feasibility of studying this effect using angle-resolved photoemission and momentum-resolved tunneling[2]. [1] S. Rabello and Q. Si, cond-mat/0008065. [2]S. A. Grigera, S. Rabello et al, in preparation; A. Altland et al. Phys. Rev. Lett. 83, 1203 (1999).

  2. Magnetic assembly of transparent and conducting graphene-based functional composites

    PubMed Central

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-01-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol–gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243

  3. A multi-functional testing instrument for heat assisted magnetic recording media

    SciTech Connect

    Yang, H. Z. Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.; Yin, M. J.

    2014-05-07

    With recent developments in heat assisted magnetic recording (HAMR), characterization of HAMR media is becoming very important. We present a multi-functional instrument for testing HAMR media, which integrates HAMR writing, reading, and a micro-magneto-optic Kerr effect (μ-MOKE) testing function. A potential application of the present instrument is to make temperature dependent magnetic property measurement using a pump-probe configuration. In the measurement, the media is heated up by a heating (intense) beam while a testing (weak) beam is overlapped with the heating beam for MOKE measurement. By heating the media with different heating beam power, magnetic measurements by MOKE at different temperatures can be performed. Compared to traditional existing tools such as the vibrating sample magnetometer, the present instrument provides localized and efficient heating at the measurement spot. The integration of HAMR writing and μ-MOKE system can also facilitate a localized full investigation of the magnetic media by potential correlation of HAMR head independent write/read performance to localized magnetic properties.

  4. Phonon and magnetic structure in δ-plutonium from density-functional theory

    DOE PAGES

    Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.

    2015-10-30

    We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure andmore » (ii) the disordered-local-moment (DLM) method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, However, the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.« less

  5. Magnetic assembly of transparent and conducting graphene-based functional composites.

    PubMed

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F; Libanori, Rafael; Studart, André R; Mezzenga, Raffaele

    2016-01-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243

  6. Development of Small-sized Fluid Control Valve with Self-holding Function Using Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Ueda, Hirofumi

    Recently, force feedback devices in virtual reality and power assisted nursing care systems have received much attention and active research. In such a control system, an actuator and a driving device such as a control valve are mounted on the human body. In this condition, the size and weight of the control valve become serious problems. At the same time, the valve should be operated with lower energy consumption because of using a limited electrical power. The typical electro magnetic solenoid valve drives its spool using a larger solenoid to open the valve. The complex construction of the valve for sealing makes its miniaturization and the fabrication of a low cost valve more difficult. In addition, the solenoid in the valve consumes more electrical power while the valve is kept opening. The purpose of our study is to develop a small-sized, lightweight, lower energy consumption and flexible control valve that can be safe enough to mount on the human body at a lower cost. In our pervious study, we proposed and tested the control valve that can open using a vibration motor. In this study, we propose and test a new type of fluid control valve with a self-holding function. The new valve uses a permanent magnet ball. It has a cylindrical magnet and two solenoids. The self-holding function of the valve is done as follows. When one side of the solenoid is stimulated by the current momentarily, the solenoid gives a repulsive force to the cylindrical magnet. The magnet moves toward the opposite side of the solenoid and is attracted to the iron core. Then, the magnet ball moves toward the cylindrical magnet and opens the orifice. The valve can keep open without electrical energy. As a result, the valve with the extremely lower energy consumption can be developed.

  7. Resting state functional connectivity magnetic resonance imaging integrated with intraoperative neuronavigation for functional mapping after aborted awake craniotomy

    PubMed Central

    Batra, Prag; Bandt, S. Kathleen; Leuthardt, Eric C.

    2016-01-01

    Background: Awake craniotomy is currently the gold standard for aggressive tumor resections in eloquent cortex. However, a significant subset of patients is unable to tolerate this procedure, particularly the very young or old or those with psychiatric comorbidities, cardiopulmonary comorbidities, or obesity, among other conditions. In these cases, typical alternative procedures include biopsy alone or subtotal resection, both of which are associated with diminished surgical outcomes. Case Description: Here, we report the successful use of a preoperatively obtained resting state functional connectivity magnetic resonance imaging (MRI) integrated with intraoperative neuronavigation software in order to perform functional cortical mapping in the setting of an aborted awake craniotomy due to loss of airway. Conclusion: Resting state functional connectivity MRI integrated with intraoperative neuronavigation software can provide an alternative option for functional cortical mapping in the setting of an aborted awake craniotomy. PMID:26958419

  8. Evolution of the Red Sea Continental Margin from Integrated Analyses of Gravity, Magnetic, and Receiver Function Observations

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Mohamed, A. A.; Gao, S. S.; Mickus, K. L.; Liu, K. H.; Yu, Y.; Elsheikh, A. A.

    2014-12-01

    The development of evolutionary models and constraints for the extensional mechanisms which govern continental rifting is of fundamental significance toward understanding the breakup of continents and the role of volcanism in achieving successful rifting. To analyze the transitional nature of the Red Sea rift (RSR) passive margins and to quantify the mechanism through which extension has been accommodated, we examined a total of 3531 high-quality radial receiver functions from multiple temporary deployments in Saudi Arabia and the Levant as well as data recently acquired by the Egyptian National Seismic Network. Egypt is characterized by a relatively constant crustal thickness of approximately 37 km, while the southern Arabian Shield is roughly 35 km on average. The crust beneath the Eastern Desert of Egypt is significantly thinned with an average thickness of about 26 km. Observations of Vp/Vs across the Arabian-Nubian Shield indicate highly similar intermediate to mafic compositions, supporting well-accepted theories for juvenile arc accretion of relatively uniform makeup. Thinned crust as far as 130 km inland on the Egyptian margin indicates a highly asymmetric crustal structure across the Red Sea, supporting a model invoking simple shear extensional mechanisms. Joint modeling using satellite gravity and magnetic data with RF Moho depth constraints reveals the presence of high-density high-magnetic susceptibility mafic complexes which we interpret as volcanic margins in the northern RSR at ~25.5°N and the southern RSR at ~19.5°N. We believe the development of the northern RSR margin is accompanied by isolated volcanism associated with slow spreading rates since the Oligocene.

  9. Capsaicin-evoked brain activation and central sensitization in anaesthetised rats: a functional magnetic resonance imaging study.

    PubMed

    Moylan Governo, Ricardo Jose; Morris, Peter Gordon; Prior, Malcolm John William; Marsden, Charles Alexander; Chapman, Victoria

    2006-12-15

    Functional magnetic resonance imaging (fMRI) of blood oxygen level dependent (BOLD) haemodynamic responses was used to study the effects of the noxious substance capsaicin on whole brain activation in isofluorane anaesthetised rats. Rats (n=8) received intradermal injection of capsaicin (30 microg/5 microl), or topical cream (0.1%) capsaicin and BOLD responses were acquired for up to 120 min. Effects of capsaicin versus placebo cream treatment on the BOLD response to a 15 g mechanical stimulus applied adjacent to the site of cream application were also studied. Both injection and cream application of capsaicin activated brain areas involved in pain processing, including the thalamus and periaqueductal grey (PAG) (p<0.05, corrected for multiple comparisons). Capsaicin also produced increases in BOLD signal intensity in other regions that contribute to pain processing, such as the parabrachial nucleus and superior colliculus. Mechanical stimulation in capsaicin-treated rats, but not placebo-treated rats, induced a significant decrease in BOLD signal intensity in the PAG (p<0.001). These data demonstrate that the noxious substance capsaicin produces brain activation in the midbrain regions and reveals the importance of the PAG in central sensitization. PMID:16843597

  10. Cortical activation during word processing in late bilinguals: similarities and differences as revealed by functional magnetic resonance imaging.

    PubMed

    Marian, Viorica; Shildkrot, Yevgeniy; Blumenfeld, Henrike K; Kaushanskaya, Margarita; Faroqi-Shah, Yasmeen; Hirsch, Joy

    2007-04-01

    Functional magnetic resonance imaging was used to compare cortical organization of the first (L1, Russian) and second (L2, English) languages. Six fluent Russian-English bilinguals who acquired their second language postpuberty were tested with words and nonwords presented either auditorily or visually. Results showed that both languages activated similar cortical networks, including the inferior frontal, middle frontal, superior temporal, middle temporal, angular, and supramarginal gyri. Within the inferior frontal gyrus (IFG), L2 activated a larger cortical volume than L1 during lexical and phonological processing. For both languages, the left IFG was more active than the right IFG during lexical processing. Within the left IFG, the distance between centers of activation associated with lexical processing of translation equivalents across languages was larger than the distance between centers of activation associated with lexical processing of different words in the same language. Results of phonological processing analyses revealed different centers of activation associated with the first versus the second language in the IFG, but not in the superior temporal gyrus (STG). These findings are discussed within the context of the current literature on cortical organization in bilinguals and suggest variation in bilingual cortical activation associated with lexical, phonological, and orthographic processing.

  11. Skyrmion core size dependence as a function of the perpendicular anisotropy and radius in magnetic nanodots

    NASA Astrophysics Data System (ADS)

    Castro, M. A.; Allende, S.

    2016-11-01

    A detailed analytical and numerical analysis of the skyrmion core size dependence as a function of the uniaxial perpendicular anisotropy and radius in magnetic nanodots has been carried out. Results from micromagnetic calculations show a non-monotonic behavior between the skyrmion core size and the uniaxial perpendicular anisotropy. The increment of the radius reduces the skyrmion core size at constant uniaxial perpendicular anisotropy. Thus, these results can be used for the control of the core sizes in magnetic artificial skyrmion crystals or spintronic devices that need to use a skyrmion configuration at room temperature.

  12. Green's function of the magnetic topological insulator in a gradient expansion approach

    NASA Astrophysics Data System (ADS)

    Hama, Yusuke; Nagaosa, Naoto

    2016-09-01

    We study the Keldysh Green's function of the Weyl fermion surface state of the three-dimensional topological insulator coupled with a space-time dependent magnetization in the gradient expansion. Based on this, we analyze the electric charge and current densities as well as the energy density and current induced by spatially and temporally slowly varying magnetization fields. We show that all the above quantities except the energy current are generated by the emergent electromagnetic fields. The energy current emerges as the circular current reflecting the spatial modulation of an induced gap of the Weyl fermion.

  13. Magnetic properties of cobalt single layer added on graphene: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Afshar, M.; Doosti, H.

    2015-01-01

    In this paper, we have demonstrated magnetic ordering of single cobalt layer added on graphene using relativistic density functional theory at the level of generalized gradient approximation. We have shown that the single Co layer added on graphene show ferromagnetic ordering with perpendicular alignment to the graphene sheet. In the presence of spin-orbit coupling, a spin-polarization degree of about 92% was found for this quasi-two-dimensional magnetic system where it is shown a nearly half-metallic feature.

  14. Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator.

    PubMed

    Kang, Kiho; Choi, Jinsub; Nam, Joong Hee; Lee, Sang Cheon; Kim, Kyung Ja; Lee, Sang-Won; Chang, Jeong Ho

    2009-01-15

    The work describes a simple and convenient process for highly efficient and direct DNA separation with functionalized silica-coated magnetic nanoparticles. Iron oxide magnetic nanoparticles and silica-coated magnetic nanoparticles were prepared uniformly, and the silica coating thickness could be easily controlled in a range from 10 to 50 nm by changing the concentration of silica precursor (TEOS) including controlled magnetic strength and particle size. A change in the surface modification on the nanoparticles was introduced by aminosilanization to enhance the selective DNA separation resulting from electrostatic interaction. The efficiency of the DNA separation was explored via the function of the amino-group numbers, particle size, the amount of the nanoparticles used, and the concentration of NaCl salt. The DNA adsorption yields were high in terms of the amount of triamino-functionalized nanoparticles used, and the average particle size was 25 nm. The adsorption efficiency of aminofunctionalized nanoparticles was the 4-5 times (80-100%) higher compared to silica-coated nanoparticles only (10-20%). DNA desorption efficiency showed an optimum level of over 0.7 M of the NaCl concentration. To elucidate the agglomeration of nanoparticles after electrostatic DNA binding, the Guinier plots were calculated from small-angle X-ray diffractions in a comparison of the results of energy diffraction TEM and confocal laser scanning microscopy. Additionally, the direct separation of human genomic DNA was achieved from human saliva and whole blood with high efficiency.

  15. Fabrication and hyperthermia effect of magnetic functional fluids based on amorphous particles

    NASA Astrophysics Data System (ADS)

    Yang, Chuncheng; Bian, Xiufang; Qin, Jingyu; Guo, Tongxiao; Zhao, Shuchun

    2015-03-01

    An experimental study conducted on the preparation and hyperthermia effect of magnetic functional fluids based on Fe73.5Nb3Cu1Si13.5B9 amorphous particles, CoFe2O4 nanoparticles and Fe3O4 nanoparticles dispersed in water is presented. Scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and vibrating sample magnetometer methods have been used to characterize the morphology, structure and magnetic property of the amorphous particles. It is disclosed that the Fe73.5Nb3Cu1Si13.5B9 particles are still amorphous after being milled for 48 h. Moreover, the saturation magnetization of metallic glass particles is approximately 75% and 50% larger than that of CoFe2O4 nanoparticles and Fe3O4 nanoparticles, respectively. The hyperthermia experiment results show that when alternating electrical current is 150 A, the temperature of the functional fluids based on amorphous particles could rise to 33 °C in 1500 s. When the current is 300 A, the final stable temperature could reach to 60 °C. This study demonstrates that the Fe73.5Nb3Cu1Si13.5B9 magnetic functional fluids may have potential on biomedical applications.

  16. Event-related functional magnetic resonance imaging: modelling, inference and optimization.

    PubMed Central

    Josephs, O; Henson, R N

    1999-01-01

    Event-related functional magnetic resonance imaging is a recent and popular technique for detecting haemodynamic responses to brief stimuli or events. However, the design of event-related experiments requires careful consideration of numerous issues of measurement, modelling and inference. Here we review these issues, with particular emphasis on the use of basis functions within a general linear modelling framework to model and make inferences about the haemodynamic response. With these models in mind, we then consider how the properties of functional magnetic resonance imaging data determine the optimal experimental design for a specific hypothesis, in terms of stimulus ordering and interstimulus interval. Finally, we illustrate various event-related models with examples from recent studies. PMID:10466147

  17. Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors

    NASA Astrophysics Data System (ADS)

    Mazur, Mykola; Barras, Alexandre; Kuncser, Victor; Galatanu, Andrei; Zaitzev, Vladimir; Turcheniuk, Kostiantyn V.; Woisel, Patrice; Lyskawa, Joel; Laure, William; Siriwardena, Aloysius; Boukherroub, Rabah; Szunerits, Sabine

    2013-03-01

    The synthesis of multifunctional magnetic nanoparticles (MF-MPs) is one of the most active research areas in advanced materials as their multifunctional surfaces allow conjugation of biological and chemical molecules, thus making it possible to achieve target-specific diagnostic in parallel to therapeutics. We report here a simple strategy to integrate in a one-step reaction several reactive sites onto the particles. The preparation of MF-MPs is based on their simultaneous modification with differently functionalized dopamine derivatives using simple solution chemistry. The formed MF-MPs show comparable magnetic properties to those of naked nanoparticles with almost unaltered particle size of around 25 nm. The different termini, amine, azide and maleimide functions, enable further functionalization of MF-MPs by the grafting-on approach. Michael addition, Cu(i) catalyzed « click » chemistry and amidation reactions are performed on the MF-MPs integrating subsequently 6-(ferrocenyl)-hexanethiol, horseradish peroxidase (HRP) and mannose.

  18. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death

    PubMed Central

    Martínez-Banderas, Aldo Isaac; Aires, Antonio; Teran, Francisco J.; Perez, Jose Efrain; Cadenas, Jael F.; Alsharif, Nouf; Ravasi, Timothy; Cortajarena, Aitziber L.; Kosel, Jürgen

    2016-01-01

    Exploiting and combining different properties of nanomaterials is considered a potential route for next generation cancer therapies. Magnetic nanowires (NWs) have shown good biocompatibility and a high level of cellular internalization. We induced cancer cell death by combining the chemotherapeutic effect of doxorubicin (DOX)-functionalized iron NWs with the mechanical disturbance under a low frequency alternating magnetic field. (3-aminopropyl)triethoxysilane (APTES) and bovine serum albumin (BSA) were separately used for coating NWs allowing further functionalization with DOX. Internalization was assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal analysis, BSA formulations demonstrated higher internalization and less agglomeration. The functionalized NWs generated a comparable cytotoxic effect in breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by free DOX and non-functionalized NWs formulations. A synergistic cytotoxic effect is obtained when a magnetic field (1 mT, 10 Hz) is applied to cells treated with DOX-functionalized BSA or APTES-coated NWs, (~70% at the highest concentration). In summary, a bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical properties of iron NWs with the effect of DOX producing better results than the individual effects. PMID:27775082

  19. Cognitive functional magnetic resonance imaging at very-high-field: eye movement control.

    PubMed

    Luna, B; Sweeney, J A

    1999-02-01

    The oculomotor system, which optimizes visual interaction with the environment, provides a valuable model system for probing the building blocks of higher-order cognition. Attention shifting, working memory, and inhibition of prepotent responses can be investigated in healthy individuals and patients with brain disorders. Although the neurophysiology of the oculomotor system has been well characterized at the single-cell level in nonhuman primates, its functional architecture in humans determined by evoked response procedures and studies of patients with focal lesions has been limited. Available evidence points to a widely distributed set of neocortical and subcortical brain regions involved in the control of eye movements, including brain stem, cerebellum, thalamus, striatum, and parietal and frontal cortices. The advent of functional magnetic resonance imaging provides a noninvasive manner of localizing, at high spatial resolution, the brain systems that subserve different aspects of sensory and cognitive processes in humans. Functional magnetic resonance imaging studies have already delineated the brain systems subserving sensorimotor and cognitive control of eye movements in adult and pediatric populations. Hence, the combination of functional magnetic resonance imaging and eye movement procedures can be used to probe the integrity of the brain in neurological and psychiatric disorders as well as provide a window into the changes in brain function subserving cognitive development. PMID:10389669

  20. Interaction of gustatory and lingual somatosensory perceptions at the cortical level in the human: a functional magnetic resonance imaging study.

    PubMed

    Cerf-Ducastel, B; Van de Moortele, P F; MacLeod, P; Le Bihan, D; Faurion, A

    2001-05-01

    The present study has investigated interaction at the cortical level in the human between two major components of flavor perception, pure chemical gustatory and lingual somatosensory perception. Twelve subjects participated in a functional magnetic resonance imaging study and tasted six stimuli, applied on the whole tongue, among which four were pure gustatory stimuli (NaCl, aspartame, quinine and HCl, pH 2.4 or 2.2) and two were both taste and lingual somatosensory stimuli, i.e. somato-gustatory stimuli (HCl, pH 1.6 or 1.5, and aluminum potassium sulfate). Functional images were acquired with an echo planar sequence on a 3 T system and were individually processed by correlation with the temporal perception profile. Both sets of stimuli showed activation in the same cortical areas, namely the insula, the rolandic operculum (base of the pre- and post-central gyri), the frontal operculum and the temporal operculum, confirming a wide overlap of taste and lingual somatosensory representations. However, the relative activation across areas and the analysis of co-activated areas across all runs for each set of stimuli allowed discrimination of taste and somatosensory modalities. Factor analysis of correspondences indicated different patterns of activation across the sub-insular and opercular regions, depending on the gustatory or somato-gustatory nature of the stimuli. For gustatory stimuli different activation patterns for the superior and inferior parts of the insula suggested a difference in function between these two insular sub-regions. Furthermore, the left inferior insula was co-activated with the left angular gyrus, a structure involved in semantic processing. In contrast, only somato-gustatory stimuli specifically produced a simultaneous and symmetrical activation of both the left and right rolandic opercula, which include a part of the sensory homunculus dedicated to the tactile representation of oral structures.

  1. Community-acquired pneumonia.

    PubMed

    Prina, Elena; Ranzani, Otavio T; Torres, Antoni

    2015-09-12

    Community-acquired pneumonia causes great mortality and morbidity and high costs worldwide. Empirical selection of antibiotic treatment is the cornerstone of management of patients with pneumonia. To reduce the misuse of antibiotics, antibiotic resistance, and side-effects, an empirical, effective, and individualised antibiotic treatment is needed. Follow-up after the start of antibiotic treatment is also important, and management should include early shifts to oral antibiotics, stewardship according to the microbiological results, and short-duration antibiotic treatment that accounts for the clinical stability criteria. New approaches for fast clinical (lung ultrasound) and microbiological (molecular biology) diagnoses are promising. Community-acquired pneumonia is associated with early and late mortality and increased rates of cardiovascular events. Studies are needed that focus on the long-term management of pneumonia.

  2. Systemic Acquired Resistance

    PubMed Central

    2006-01-01

    Upon infection with necrotizing pathogens many plants develop an enhanced resistance to further pathogen attack also in the uninoculated organs. This type of enhanced resistance is referred to as systemic acquired resistance (SAR). In the SAR state, plants are primed (sensitized) to more quickly and more effectively activate defense responses the second time they encounter pathogen attack. Since SAR depends on the ability to access past experience, acquired disease resistance is a paradigm for the existence of a form of “plant memory”. Although the phenomenon has been known since the beginning of the 20th century, major progress in the understanding of SAR was made over the past sixteen years. This review covers the current knowledge of molecular, biochemical and physiological mechanisms that are associated with SAR. PMID:19521483

  3. How the blind "see" Braille: lessons from functional magnetic resonance imaging.

    PubMed

    Sadato, Norihiro

    2005-12-01

    What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.

  4. Precision calibration procedure for magnetic loss testers using a digital two-channel function generator

    NASA Astrophysics Data System (ADS)

    Ahlers, H.

    1994-05-01

    For the precision calibration of power meters used for magnetic loss measurements, a two-channel precision generator developed at the PTB is used. The staircase functions of the generator matched to the wattmeters by a current and voltage amplifier are smoothed by low-pass Bessel filters. The complex transfer functions of the filters have been measured for different ranges of voltage, current and frequency. The waveforms to be generated are corrected by means of fast Fourier transformation (FFT) and by multiplying the Fourier coefficients by the inverse complex transfer function. The accuracy of this calibration procedure was estimated to be 0.1%.

  5. Inherited or acquired metabolic disorders.

    PubMed

    Eichler, Florian; Ratai, Eva; Carroll, Jason J; Masdeu, Joseph C

    2016-01-01

    This chapter starts with a description of imaging of inherited metabolic disorders, followed by a discussion on imaging of acquired toxic-metabolic disorders of the adult brain. Neuroimaging is crucial for the diagnosis and management of a number of inherited metabolic disorders. Among these, inherited white-matter disorders commonly affect both the nervous system and endocrine organs. Magnetic resonance imaging (MRI) has enabled new classifications of these disorders that have greatly enhanced both our diagnostic ability and our understanding of these complex disorders. Beyond the classic leukodystrophies, we are increasingly recognizing new hereditary leukoencephalopathies such as the hypomyelinating disorders. Conventional imaging can be unrevealing in some metabolic disorders, but proton magnetic resonance spectroscopy (MRS) may be able to directly visualize the metabolic abnormality in certain disorders. Hence, neuroimaging can enhance our understanding of pathogenesis, even in the absence of a pathologic specimen. This review aims to present pathognomonic brain MRI lesion patterns, the diagnostic capacity of proton MRS, and information from clinical and laboratory testing that can aid diagnosis. We demonstrate that applying an advanced neuroimaging approach enhances current diagnostics and management. Additional information on inherited and metabolic disorders of the brain can be found in Chapter 63 in the second volume of this series. PMID:27432685

  6. Changes in aspects of social functioning depend upon prior changes in neurodisability in people with acquired brain injury undergoing post-acute neurorehabilitation

    PubMed Central

    Fortune, Dónal G.; Walsh, R. Stephen; Waldron, Brian; McGrath, Caroline; Harte, Maurice; Casey, Sarah; McClean, Brian

    2015-01-01

    Post-acute community-based rehabilitation is effective in reducing disability. However, while social participation and quality of life are valued as distal outcomes of neurorehabilitation, it is often not possible to observe improvements on these outcomes within the limited time-frames used in most investigations of rehabilitation. The aim of the current study was to examine differences in the sequence of attainments for people with acquired brain injury (ABI) undergoing longer term post-acute neurorehabilitation. Participants with ABI who were referred to comprehensive home and community-based neurorehabilitation were assessed at induction to service, at 6 months and again at 1.5 years while still in service on the Mayo-Portland Adaptability Index (MPAI-4), Community Integration Questionnaire, Hospital Anxiety and Depression Scale, and World Health Organisation Quality of Life measure. At 6 months post-induction to service, significant differences were evident in MPAI abilities, adjustment, and total neurodisability; and in anxiety and depression. By contrast, there was no significant effect at 6 months on more socially oriented features of experience namely quality of life (QoL), Community Integration and Participation. Eighteen month follow-up showed continuation of the significant positive effects with the addition of QoL-related to physical health, Psychological health, Social aspects of QoL and Participation at this later time point. Regression analyses demonstrated that change in QoL and Participation were dependent upon prior changes in aspects of neurodisability. Age, severity or type of brain injury did not significantly affect outcome. Results suggest that different constructs may respond to neurorehabilitation at different time points in a dose effect manner, and that change in social aspects of experience may be dependent upon the specific nature of prior neurorehabilitation attainments. PMID:26441744

  7. A Novel Data-Driven Approach to Preoperative Mapping of Functional Cortex Using Resting-State Functional Magnetic Resonance Imaging

    PubMed Central

    Mitchell, Timothy J.; Hacker, Carl D.; Breshears, Jonathan D.; Szrama, Nick P.; Sharma, Mohit; Bundy, David T.; Pahwa, Mrinal; Corbetta, Maurizio; Snyder, Abraham Z.; Shimony, Joshua S.

    2013-01-01

    BACKGROUND: Recent findings associated with resting-state cortical networks have provided insight into the brain's organizational structure. In addition to their neuroscientific implications, the networks identified by resting-state functional magnetic resonance imaging (rs-fMRI) may prove useful for clinical brain mapping. OBJECTIVE: To demonstrate that a data-driven approach to analyze resting-state networks (RSNs) is useful in identifying regions classically understood to be eloquent cortex as well as other functional networks. METHODS: This study included 6 patients undergoing surgical treatment for intractable epilepsy and 7 patients undergoing tumor resection. rs-fMRI data were obtained before surgery and 7 canonical RSNs were identified by an artificial neural network algorithm. Of these 7, the motor and language networks were then compared with electrocortical stimulation (ECS) as the gold standard in the epilepsy patients. The sensitivity and specificity for identifying these eloquent sites were calculated at varying thresholds, which yielded receiver-operating characteristic (ROC) curves and their associated area under the curve (AUC). RSNs were plotted in the tumor patients to observe RSN distortions in altered anatomy. RESULTS: The algorithm robustly identified all networks in all patients, including those with distorted anatomy. When all ECS-positive sites were considered for motor and language, rs-fMRI had AUCs of 0.80 and 0.64, respectively. When the ECS-positive sites were analyzed pairwise, rs-fMRI had AUCs of 0.89 and 0.76 for motor and language, respectively. CONCLUSION: A data-driven approach to rs-fMRI may be a new and efficient method for preoperative localization of numerous functional brain regions. ABBREVIATIONS: AUC, area under the curve BA, Brodmann area BOLD, blood oxygen level dependent ECS, electrocortical stimulation fMRI, functional magnetic resonance imaging ICA, independent component analysis MLP, multilayer perceptron MP

  8. Rapid magnetic solid-phase extraction for the selective determination of isoflavones in soymilk using baicalin-functionalized magnetic nanoparticles

    PubMed Central

    Qing, Lin-Sen; Xue, Ying; Liu, Yi-Ming; Liang, Jian; Xie, Jing; Liao, Xun

    2013-01-01

    Most protocols of sample preparation for isoflavone determination in soymilk and other liquid soybean products involves tedious freeze drying and time-consuming extraction procedures. We report a facile and rapid magnetic solid phase extraction (MSPE) of isoflavones from soymilk for subsequent HPLC–ESI-MS/MS analysis. The extraction was based on the selective binding of isoflavones to baicalin functionalized core-shell magnetic nanoparticles (BMNPs). The proposed MSPE-HPLC-MS/MS analytical method had a linear calibration curve in the concentration range from 0.3 to 80 mg/L isoflavones. With the use of calycosin, an isomer of one of the isoflavones targeted as internal standard, inter-day (5 days) precisions of the slope and intercept of the calibration curves were found to be in the range between 2.5% and 3.6% (RSD, n = 5). Six isoflavones, i.e. daidzein, glycitein, genistein, daidzin, glycitin, and genistin were detected in commercial soymilk samples and quantified by the proposed analytical method. The results indicated that the method was useful for fast determination of isoflavones in soymilk and other liquid soybean products. PMID:23898976

  9. Voxel-Wise Functional Connectomics Using Arterial Spin Labeling Functional Magnetic Resonance Imaging: The Role of Denoising.

    PubMed

    Liang, Xiaoyun; Connelly, Alan; Calamante, Fernando

    2015-11-01

    The objective of this study was to investigate voxel-wise functional connectomics using arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI). Since ASL signal has an intrinsically low signal-to-noise ratio (SNR), the role of denoising is evaluated; in particular, a novel denoising method, dual-tree complex wavelet transform (DT-CWT) combined with the nonlocal means (NLM) algorithm is implemented and evaluated. Simulations were conducted to evaluate the performance of the proposed method in denoising images and in detecting functional networks from noisy data (including the accuracy and sensitivity of detection). In addition, denoising was applied to in vivo ASL datasets, followed by network analysis using graph theoretical approaches. Efficiencies cost was used to evaluate the performance of denoising in detecting functional networks from in vivo ASL fMRI data. Simulations showed that denoising is effective in detecting voxel-wise functional networks from low SNR data and/or from data with small total number of time points. The capability of denoised voxel-wise functional connectivity analysis was also demonstrated with in vivo data. We concluded that denoising is important for voxel-wise functional connectivity using ASL fMRI and that the proposed DT-CWT-NLM method should be a useful ASL preprocessing step.

  10. Simple enrichment of thiol-containing biomolecules by using zinc(II)-cyclen-functionalized magnetic beads.

    PubMed

    Fujioka, Haruto; Tsunehiro, Masaya; Kawaguchi, Maho; Kuramoto, Yasuhiro; Kurosaki, Hiromasa; Hieda, Yuhzo; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2014-07-01

    A simple and efficient method based on magnetic-bead technology has been developed for the enrichment of thiol-containing biomolecules, such as l-glutathione and cysteine-containing peptides. The thiol-binding site on the bead is a mononuclear complex of zinc(II) with 1,4,7,10-tetraazacyclododecane (cyclen); this is linked to a hydrophilic cross-linked agarose coating on a particle that has a magnetic core. All steps for the thiol-affinity separation are conducted in aqueous buffers with 0.10 mL of the magnetic beads in a 1.5 mL microtube. The entire separation protocol for thiol-containing compounds, from addition to elution, requires less than one hour per sample, provided the buffers and the zinc(II)-cyclen-functionalized magnetic beads have been prepared in advance. The thiol-affinity magnetic beads are reusable at least 15 times without a decrease in their thiol-binding ability, and they are stable for six months at room temperature.

  11. Calculation of the magnetic surface function gradient in stellarators with broken stellarator symmetry

    SciTech Connect

    Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.; Seiwald, B.

    2010-05-15

    The computation of the gradient of the magnetic surface function, nablapsi, plays an essential role in plasma physics, e.g., for investigations of plasma equilibrium currents or transport fluxes in stellarators. The evaluation of nablapsi becomes more complicated if the magnetic field B does not exhibit stellarator symmetry. Here, a scheme for computation of nablapsi for magnetic configurations which do not show stellarator symmetry is presented. The proposed method is based on computations of gradients of integrals of magnetic field line equations. This new technique for nablapsi calculations is applied to Uragan-2M [O. S. Pavlichenko for the U-2M group, Plasma Phys. Controlled Fusion 35, B223 (1993)]. Taking into account the influence of current feeds and detachable joints of the helical winding the magnetic configuration does not exhibit stellarator symmetry. Computations of nablapsi, the effective ripple epsilon{sub eff}, and the geometrical factor lambda{sub b} for the bootstrap current in the 1/nu transport regime are performed.

  12. Ion energy-angle distribution functions at the plasma-material interface in oblique magnetic fields

    SciTech Connect

    Khaziev, Rinat; Curreli, Davide

    2015-04-15

    The ion energy-angle distribution (IEAD) at the wall of a magnetized plasma is of fundamental importance for the determination of the material processes occurring at the plasma-material interface, comprising secondary emissions and material sputtering. Here, we present a numerical characterization of the IEAD at the wall of a weakly collisional magnetized plasma with the magnetic field inclined at an arbitrary angle with respect to the wall. The analysis has been done using two different techniques: (1) a fluid-Monte Carlo method, and (2) particle-in-cell simulations, the former offering a fast but approximate method for the determination of the IEADs, the latter giving a computationally intensive but self-consistent treatment of the plasma behavior from the quasi-neutral region to the material boundary. The two models predict similar IEADs, whose similarities and differences are discussed. Data are presented for magnetic fields inclined at angles from normal to grazing incidence (0°–85°). We show the scaling factors of the average and peak ion energy and trends of the pitch angle at the wall as a function of the magnetic angle, for use in the correlation of fluid plasma models to material models.

  13. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles.

    PubMed

    Okoli, Chuka; Sanchez-Dominguez, Margarita; Boutonnet, Magali; Järås, Sven; Civera, Concepción; Solans, Conxita; Kuttuva, Gunaratna Rajarao

    2012-06-01

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications. PMID:22578053

  14. Hydrazide functionalized core-shell magnetic nanocomposites for highly specific enrichment of N-glycopeptides.

    PubMed

    Liu, Liting; Yu, Meng; Zhang, Ying; Wang, Changchun; Lu, Haojie

    2014-05-28

    In view of the biological significance of glycosylation for human health, profiling of glycoproteome from complex biological samples is highly inclined toward the discovery of disease biomarkers and clinical diagnosis. Nevertheless, because of the existence of glycopeptides at relatively low abundances compared with nonglycosylated peptides and glycan microheterogeneity, glycopeptides need to be highly selectively enriched from complex biological samples for mass spectrometry analysis. Herein, a new type of hydrazide functionalized core-shell magnetic nanocomposite has been synthesized for highly specific enrichment of N-glycopeptides. The nanocomposites with both the magnetic core and the polymer shell hanging high density of hydrazide groups were prepared by first functionalization of the magnetic core with polymethacrylic acid by reflux precipitation polymerization to obtain the Fe3O4@poly(methacrylic acid) (Fe3O4@PMAA) and then modification of the surface of Fe3O4@PMAA with adipic acid dihydrazide (ADH) to obtain Fe3O4@poly(methacrylic hydrazide) (Fe3O4@PMAH). The abundant hydrazide groups toward highly specific enrichment of glycopeptides and the magnetic core make it suitable for large-scale, high-throughput, and automated sample processing. In addition, the hydrophilic polymer surface can provide low nonspecific adsorption of other peptides. Compared to commercially available hydrazide resin, Fe3O4@PMAH improved more than 5 times the signal-to-noise ratio of standard glycopeptides. Finally, this nanocomposite was applied in the profiling of N-glycoproteome from the colorectal cancer patient serum. In total, 175 unique glycopeptides and 181 glycosylation sites corresponding to 63 unique glycoproteins were identified in three repeated experiments, with the specificities of the enriched glycopeptides and corresponding glycoproteins of 69.6% and 80.9%, respectively. Because of all these attractive features, we believe that this novel hydrazide functionalized

  15. Functional expression of an scFv on bacterial magnetic particles by in vitro docking

    SciTech Connect

    Sugamata, Yasuhiro; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Yoshino, Tomoko

    2014-02-28

    Highlights: • We present a novel expression system called “in vitro docking” on bacterial magnetic particles. • An scFv–Fc was functionally expressed on bacterial magnetic particles of magnetotactic bacteria. • Our novel expression system on BacMPs will be effective for disulfide-bonded proteins. - Abstract: A Gram-negative, magnetotactic bacterium, Magnetospirillum magneticum AMB-1 produces nano-sized magnetic particles (BacMPs) in the cytoplasm. Although various applications of genetically engineered BacMPs have been demonstrated, such as immunoassay, ligand–receptor interaction or cell separation, by expressing a target protein on BacMPs, it has been difficult to express disulfide-bonded proteins on BacMPs due to lack of disulfide-bond formation in the cytoplasm. Here, we propose a novel dual expression system, called in vitro docking, of a disulfide-bonded protein on BacMPs by directing an immunoglobulin Fc-fused target protein to the periplasm and its docking protein ZZ on BacMPs. By in vitro docking, an scFv–Fc fusion protein was functionally expressed on BacMPs in the dimeric or trimeric form. Our novel disulfide-bonded protein expression system on BacMPs will be useful for efficient screening of potential ligands or drugs, analyzing ligand–receptor interactions or as a magnetic carrier for affinity purification.

  16. Isolation of N-linked glycopeptides by hydrazine-functionalized magnetic particles.

    PubMed

    Sun, Shisheng; Yang, Ganglong; Wang, Ting; Wang, Qinzhe; Chen, Chao; Li, Zheng

    2010-04-01

    We introduce a novel combination of magnetic particles with hydrazine chemistry, dubbed as hydrazine-functionalized magnetic particles (HFMP) for isolation of glycopeptides. Four methods have been developed and compared for the production of HFMP by hydrazine modification of the surface of the carboxyl and epoxy-silanized magnetic particles, respectively. The evaluation of the capability and specificity of HFMP as well as the optimization of the coupling condition for capturing of glycoproteins were systematically investigated. The results showed that HFMP prepared by adipic dihydrazide functionalization from carboxyl-silanized magnetic particles (HFCA) displayed the maximum capture capacity and isolated efficiency for glycoprotein. When measured with glycoproteins, the capacity of the HFCA (1 g) for coupling bovine fetuin was 130 +/- 5.3 mg. The capability of this method was also confirmed by successful isolation of all formerly glycosylated peptides from standard glycoproteins and identification of their glycosylation sites, which demonstrated the feasibility of the HFCA as an alternative solid support for isolation of glycoproteins/glycopeptides. PMID:20169334

  17. Optimizing the function of upstanding activities in adult patients with acquired lesions of the central nervous system by using the Bobath concept approach - A case report.

    PubMed

    Jelica, Stjepan; Seper, Vesna; Davidović, Erna; Bujisić, Gordana

    2011-01-01

    Nonspecific medical gymnastic therapy may help patients after stroke achieve certain results in terms of efficiency but not in terms of quality of movement. The goal of treatment by Bobath concept is development of movement (effectiveness) and optimization of movement (efficiency). This article presents the case of a 62-year old patient who had experienced a stroke and has difficulties with standing up activities. It underscores the importance of not only recovery of function but also optimization of the function in such patients. PMID:21648353

  18. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  19. Functional mapping of the human visual cortex by magnetic resonance imaging

    SciTech Connect

    Belliveau, J.W.; Kennedy, D.N.; McKinstry, R.C.; Buchbinder, B.R.; Weisskoff, R.M.; Cohen, M.S.; Vevea, J.M.; Brady, T.J.; Rosen, B.R. Harvard Medical School, Boston, MA )

    1991-11-01

    Knowledge of regional cerebral hemodynamics has widespread application for both physiological research and clinical assessment because of the well-established interrelation between physiological function, energy metabolism, and localized blood supply. A magnetic resonance technique was developed for quantitative imaging of cerebral hemodynamics, allowing for measurement of regional cerebral blood volume during resting and activated cognitive states. This technique was used to generate the first functional magnetic resonance amps of human task activation, by using a visual stimulus paradigm. During photic stimulation, localized increases in blood volume (32 {plus minus} 10%, n = 7 subjects) were detected in the primary visual cortex. Center-of-mass coordinates and linear extends of brain activation within the plane of the calcarine fissure are reported.

  20. Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica

    PubMed Central

    Radecki, Guillaume; Nargeot, Romuald; Jelescu, Ileana Ozana; Le Bihan, Denis; Ciobanu, Luisa

    2014-01-01

    In this work, we show the feasibility of performing functional MRI studies with single-cell resolution. At ultrahigh magnetic field, manganese-enhanced magnetic resonance microscopy allows the identification of most motor neurons in the buccal network of Aplysia at low, nontoxic Mn2+ concentrations. We establish that Mn2+ accumulates intracellularly on injection into the living Aplysia and that its concentration increases when the animals are presented with a sensory stimulus. We also show that we can distinguish between neuronal activities elicited by different types of stimuli. This method opens up a new avenue into probing the functional organization and plasticity of neuronal networks involved in goal-directed behaviors with single-cell resolution. PMID:24872449

  1. Shared and differential neural substrates of copying versus drawing: a functional magnetic resonance imaging study.

    PubMed

    Ferber, Susanne; Mraz, Richard; Baker, Nicole; Graham, Simon J

    2007-07-16

    Copying and drawing-from-memory tasks are popular clinical tests to assess visuo-motor skills in neurological patients. The tasks share some motor and visual processes; however, they differ substantially in their cognitive demands. We used functional magnetic resonance imaging to identify brain regions underlying processes involved in these tasks while avoiding confounds related to basic motor requirements, through use of a specially developed functional magnetic resonance imaging-compatible computer tablet. For the copying task, activation was observed in brain regions subserving visual processing and crossmodal attention (e.g. left lingual gyrus, cuneus). Drawing activated the anterior cingulate, an area associated with motor control and linking intention with action. These findings suggest distinct neural networks subserving copying and drawing.

  2. Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude /L = 7/

    NASA Technical Reports Server (NTRS)

    Singh, N.; Raitt, W. J.; Yasuhara, F.

    1982-01-01

    Ion energy and pitch angle distribution functions are examined for a magnetically quiet day using averaged data from ATS 6. For both field-aligned and perpendicular fluxes, the populations have a mixture of characteristic energies, and the distribution functions can be fairly well approximated by Maxwellian distributions over three different energy bands in the range 3-600 eV. Pitch angle distributions varying with local time, and energy distributions are used to compute total ion density. Pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution are examined, and it is found that a magnetic noise of a certain power spectral density belonging to the electromagnetic ion cyclotron mode near the ion cyclotron frequency can be effective in trapping the field aligned fluxes by pitch angle scattering.

  3. Nature versus nurture: Functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Richardson, C. J.; Gleason, Robert A.; Pellechia, Perry J.; Honomichl, Shawn

    2009-02-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts.

  4. Functionalization of PEGylated Fe3O4 magnetic nanoparticles with tetraphosphonate cavitand for biomedical application

    NASA Astrophysics Data System (ADS)

    Tudisco, C.; Bertani, F.; Cambria, M. T.; Sinatra, F.; Fantechi, E.; Innocenti, C.; Sangregorio, C.; Dalcanale, E.; Condorelli, G. G.

    2013-11-01

    In this contribution, Fe3O4 magnetic nanoparticles (MNPs) have been functionalized with a tetraphosphonate cavitand receptor (Tiiii), capable of complexing N-monomethylated species with high selectivity, and polyethylene glycol (PEG) via click-chemistry. The grafting process is based on MNP pre-functionalization with a bifunctional phosphonic linker, 10-undecynylphosphonic acid, anchored on an iron surface through the phosphonic group. The Tiiii cavitand and the PEG modified with azide moieties have then been bonded to the resulting alkyne-functionalized MNPs through a ``click'' reaction. Each reaction step has been monitored by using X-ray photoelectron and FTIR spectroscopies. PEG and Tiiii functionalized MNPs have been able to load N-methyl ammonium salts such as the antitumor drug procarbazine hydrochloride and the neurotransmitter epinephrine hydrochloride and release them as free bases. In addition, the introduction of PEG moieties promoted biocompatibility of functionalized MNPs, thus allowing their use in biological environments.

  5. Nature versus nurture: functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    USGS Publications Warehouse

    Sundareshwar, P.V.; Richardson, C.J.; Gleason, R.A.; Pellechia, P.J.; Honomichl, S.

    2009-01-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts. Copyright 2009 by the American Geophysical Union.

  6. Impact of a High Magnetic Field on the Orientation of Gravitactic Unicellular Organisms—A Critical Consideration about the Application of Magnetic Fields to Mimic Functional Weightlessness

    PubMed Central

    Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C.M.; Albers, Peter W.; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-01-01

    Abstract The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity. Key Words: Levitation—Microgravity—Gravitaxis—Gravikinesis—Gravity. Astrobiology 14, 205–215. PMID:24621307

  7. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    PubMed

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.

  8. Comprehensive mathematical simulation of functional magnetic resonance imaging time series including motion-related image distortion and spin saturation effect.

    PubMed

    Kim, Boklye; Yeo, Desmond T B; Bhagalia, Roshni

    2008-02-01

    There has been vast interest in determining the feasibility of functional magnetic resonance imaging (fMRI) as an accurate method of imaging brain function for patient evaluations. The assessment of fMRI as an accurate tool for activation localization largely depends on the software used to process the time series data. The performance evaluation of different analysis tools is not reliable unless truths in motion and activation are known. Lack of valid truths has been the limiting factor for comparisons of different algorithms. Until now, currently available phantom data do not include comprehensive accounts of head motion. While most fMRI studies assume no interslice motion during the time series acquisition in fMRI data acquired using a multislice and single-shot echo-planar imaging sequence, each slice is subject to a different set of motion parameters. In this study, in addition to known three-dimensional motion parameters applied to each slice, included in the time series computation are geometric distortion from field inhomogeneity and spin saturation effect as a result of out-of-plane head motion. We investigated the effect of these head motion-related artifacts and present a validation of the mapping slice-to-volume (MSV) algorithm for motion correction and activation detection against the known truths. MSV was evaluated, and showed better performance in comparison with other widely used fMRI data processing software, which corrects for head motion with a volume-to-volume realignment method. Furthermore, improvement in signal detection was observed with the implementation of the geometric distortion correction and spin saturation effect compensation features in MSV. PMID:17662548

  9. Acquired methemoglobinemia revisited.

    PubMed

    Trapp, Larry; Will, John

    2010-10-01

    Dentistry has two medications in its pain management armamentarium that may cause the potentially life-threatening disorder methemoglobinemia. The first medications are the topical local anesthetics benzocaine and prilocaine. The second medication is the injectable local anesthetic prilocaine. Acquired methemoglobinemia remains a source of morbidity and mortality in dental and medical patients despite the fact that it is better understood now than it was even a decade ago. It is in the interest of all dental patients that their treating dentists review this disorder. The safety of dental patients mandates professional awareness.

  10. Fluorochrome-functionalized magnetic nanoparticles for high-sensitivity monitoring of the polymerase chain reaction by magnetic resonance.

    PubMed

    Alcantara, David; Guo, Yanyan; Yuan, Hushan; Goergen, Craig J; Chen, Howard H; Cho, Hoonsung; Sosnovik, David E; Josephson, Lee

    2012-07-01

    Easy to find: magnetic nanoparticles bearing fluorochromes (red) that intercalate with DNA (green) form microaggregates with DNA generated by the polymerase chain reaction (PCR). These aggregates can be detected at low cycle numbers by magnetic resonance (MR).

  11. Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of Izumo1.

    PubMed

    Baker, Mark A; Hetherington, Louise; Weinberg, Anita; Naumovski, Nenad; Velkov, Tony; Pelzing, Matthias; Dolman, Sebastiaan; Condina, Mark R; Aitken, R John

    2012-11-01

    Spermatozoa are functionally inert when they emerge from the testes. Functional competence is conferred upon these cells during a post-testicular phase of sperm maturation in the epididymis. Remarkably, this functional transformation of epididymal spermatozoa occurs in the absence of nuclear gene transcription or protein translation. To understand the cellular mechanisms underpinning epididymal maturation, we have performed a label-free, MS-based, comparative quantification of peptides from caput, corpus and caudal epididymal spermatozoa. In total, 68 phosphopeptide changes could be detected during epididymal maturation corresponding to the identification of 22 modified proteins. Included in this list are the sodium-bicarbonate cotransporter, the sperm specific serine kinase 1, AKAP4 and protein kinase A regulatory subunit. Furthermore, four phosphopeptide changes came from Izumo1, the sperm-egg fusion protein, in the cytoplasmic segment of the protein. 2D-PAGE confirmed that Izumo1 is post-translationally modified during epididymal transit. Interestingly, phosphorylation on Izumo1 was detected on residue S339 in the caput and corpus but not caudal cells. Furthermore, Izumo1 exhibited four phosphorylated residues when spermatozoa reached the cauda, which were absent from caput cells. A model is advanced suggesting that these phospho-regulations are likely to act as a scaffold for the association of adaptor proteins with Izumo1 as these cells prepare for fertilization. PMID:22954305

  12. Network asymmetry of motor areas revealed by resting-state functional magnetic resonance imaging.

    PubMed

    Yan, Li-Rong; Wu, Yi-Bo; Hu, De-Wen; Qin, Shang-Zhen; Xu, Guo-Zheng; Zeng, Xiao-Hua; Song, Hua

    2012-02-01

    There are ample functional magnetic resonance imaging (fMRI) studies on functional brain asymmetries, and the asymmetry of cerebral network in the resting state may be crucial to brain function organization. In this paper, a unified schema of voxel-wise functional connectivity and asymmetry analysis was presented and the network asymmetry of motor areas was studied. Twelve healthy male subjects with mean age 29.8 ± 6.4 were studied. Functional network in the resting state was described by using functional connectivity magnetic resonance imaging (fcMRI) analysis. Motor areas were selected as regions of interest (ROIs). Network asymmetry, including intra- and inter-network asymmetries, was formulated and analyzed. The intra-network asymmetry was defined as the difference between the left and right part of a particular functional network. The inter-network asymmetry was defined as the difference between the networks for a specific ROI in the left hemisphere and its homotopic ROI in the right hemisphere. Primary motor area (M1), primary sensory area (S1) and premotor area (PMA) exhibited higher functional correlation with the right parietal-temporal-occipital circuit and the middle frontal gyrus than they did with the left hemisphere. Right S1 and right PMA exhibited higher functional correlation with the ipsilateral precentral and supramarginal areas. There exist the large-scale hierarchical network asymmetries of the motor areas in the resting state. These asymmetries imply the right hemisphere dominance for predictive motor coding based on spatial attention and higher sensory processing load for the motor performance of non-dominant hemisphere.

  13. Arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube

    DOEpatents

    Pidcoe, Stephen V.; Zink, Roger A.; Boroski, William N.; McCaw, William R.

    1993-01-01

    An arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube of a magnet such as is used with the Superconducting Super Collider (SSC). The arrangement includes a magnetic field alignment gauge that is carried through the magnet bore tube by a positioning shuttle in predetermined increments. The positioning shuttle includes an extensible body assembly which is actuated by an internal piston arrangement. A pair of spaced inflatable cuffs are carried by the body assembly and are selectively actuated in cooperation with pressurizing of the piston to selectively drive the positioning shuttle in an axial direction. Control of the shuttle is provided by programmed electronic computer means located exteriorly of the bore tube and which controls valves provided pressurized fluid to the inflatable cuss and the piston arrangement.

  14. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Chen, Linfeng; Varadan, Vijay K.; Yancey, Justin; Srivatsan, Malathi

    2008-03-01

    In this in vitro study the efficiency of magnetic nanotubes to bind with nerve growth factor (NGF) and the ability of NGF-incorporated magnetic nanotubes to release the bound NGF are investigated using rat pheochromocytoma cells (PC12 cells). It is found that functional magnetic nanotubes with NGF incorporation enabled the differentiation of PC12 cells into neurons exhibiting growth cones and neurite outgrowth. Microscope observations show that filopodia extending from neuron growth cones were in close proximity to the NGF-incorporated magnetic nanotubes, at times appearing to extend towards or into them. These results show that magnetic nanotubes can be used as a delivery vehicle for NGF and thus may be exploited in attempts to treat neurodegenerative disorders such as Parkinson's disease with neurotrophins. Further neurite outgrowth can be controlled by manipulating magnetic nanotubes with external magnetic fields, thus helping in directed regeneration.

  15. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery

    NASA Astrophysics Data System (ADS)

    van de Kraats, Everine B.; Carelsen, Bart; Fokkens, Wytske J.; Boon, Sjirk N.; Noordhoek, Niels; Niessen, Wiro J.; van Walsum, Theo

    2005-12-01

    Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon.

  16. Prediction of d^0 magnetism in self-interaction corrected density functional theory

    NASA Astrophysics Data System (ADS)

    Das Pemmaraju, Chaitanya

    2010-03-01

    Over the past couple of years, the phenomenon of ``d^0 magnetism'' has greatly intrigued the magnetism community [1]. Unlike conventional magnetic materials, ``d^0 magnets'' lack any magnetic ions with open d or f shells but surprisingly, exhibit signatures of ferromagnetism often with a Curie temperature exceeding 300 K. Current research in the field is geared towards trying to understand the mechanism underlying this observed ferromagnetism which is difficult to explain within the conventional m-J paradigm [1]. The most widely studied class of d^0 materials are un-doped and light element doped wide gap Oxides such as HfO2, MgO, ZnO, TiO2 all of which have been put forward as possible d0 ferromagnets. General experimental trends suggest that the magnetism is a feature of highly defective samples leading to the expectation that the phenomenon must be defect related. In particular, based on density functional theory (DFT) calculations acceptor defects formed from the O-2p states in these Oxides have been proposed as being responsible for the ferromagnetism [2,3]. However. predicting magnetism originating from 2p orbitals is a delicate problem, which depends on the subtle interplay between covalency and Hund's coupling. DFT calculations based on semi-local functionals such as the local spin-density approximation (LSDA) can lead to qualitative failures on several fronts. On one hand the excessive delocalization of spin-polarized holes leads to half-metallic ground states and the expectation of room-temperature ferromagnetism. On the other hand, in some cases a magnetic ground state may not be predicted at all as the Hund's coupling might be under estimated. Furthermore, polaronic distortions which are often a feature of acceptor defects in Oxides are not predicted [4,5]. In this presentation, we argue that the self interaction error (SIE) inherent to semi-local functionals is responsible for the failures of LSDA and demonstrate through various examples that beyond

  17. Comprehensive study of mesoporous carbon functionalized with carboxylate groups and magnetic nanoparticles as a promising adsorbent.

    PubMed

    Chi, Yue; Geng, Wangchang; Zhao, Liang; Yan, Xiao; Yuan, Qing; Li, Nan; Li, Xiaotian

    2012-03-01

    Highly ordered mesoporous carbon functionalized with carboxylate groups and magnetic nanoparticles has been successfully synthesized. By oxidative treatment using (NH(4))(2)S(2)O(8) and H(2)SO(4) mixed solution, numerous hydrophilic groups were created in the mesopores without destroying the ordered mesostructure of CMK-3. Through the in situ reduction in Fe(3+), magnetic nanoparticles were successfully introduced into the mesopores, resulting in the multifunctional mesoporous carbon Fe-CMK-3. The obtained hybrid carbon material possesses ordered mesostructure, high Brunauer-Emmett-Teller (BET) surface area up to 1013 m(2)/g, large pore volume of about 1.16 cm(3)/g, carboxylic surface, and excellent magnetic property. When used as an adsorbent, Fe-CMK-3 exhibits excellent performances for removing toxic organic compounds from waster-water, with a high adsorption capacity, an extremely rapid adsorption rate, and an easy magnetically separable process. In the case of requiring emergency removal of large amount of organic pollutants in aqueous, the hybrid carbon adsorbent would be an ideal choice.

  18. Removal of total organic carbon from sewage wastewater using poly(ethylenimine)-functionalized magnetic nanoparticles.

    PubMed

    Lakshmanan, Ramnath; Sanchez-Dominguez, Margarita; Matutes-Aquino, Jose A; Wennmalm, Stefan; Kuttuva Rajarao, Gunaratna

    2014-02-01

    The increased levels of organic carbon in sewage wastewater during recent years impose a great challenge to the existing wastewater treatment process (WWTP). Technological innovations are therefore sought that can reduce the release of organic carbon into lakes and seas. In the present study, magnetic nanoparticles (NPs) were synthesized, functionalized with poly(ethylenimine) (PEI), and characterized using TEM (transmission electron microscopy), X-ray diffraction (XRD), FTIR (Fourier transform infrared spectroscopy), CCS (confocal correlation spectroscopy), SICS (scattering interference correlation spectroscopy), magnetism studies, and thermogravimetric analysis (TGA). The removal of total organic carbon (TOC) and other contaminants using PEI-coated magnetic nanoparticles (PEI-NPs) was tested in wastewater obtained from the Hammarby Sjöstadsverk sewage plant, Sweden. The synthesized NPs were about 12 nm in diameter and showed a homogeneous particle size distribution in dispersion by TEM and CCS analyses, respectively. The magnetization curve reveals superparamagnetic behavior, and the NPs do not reach saturation because of surface anisotropy effects. A 50% reduction in TOC was obtained in 60 min when using 20 mg/L PEI-NPs in 0.5 L of wastewater. Along with TOC, other contaminants such as turbidity (89%), color (86%), total nitrogen (24%), and microbial content (90%) were also removed without significant changes in the mineral ion composition of wastewater. We conclude that the application of PEI-NPs has the potential to reduce the processing time, complexity, sludge production, and use of additional chemicals in the WWTP.

  19. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater.

    PubMed

    Li, Dien; Egodawatte, Shani; Kaplan, Daniel I; Larsen, Sarah C; Serkiz, Steven M; Seaman, John C

    2016-11-01

    U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), (13)C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100-200nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  20. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater.

    PubMed

    Li, Dien; Egodawatte, Shani; Kaplan, Daniel I; Larsen, Sarah C; Serkiz, Steven M; Seaman, John C

    2016-11-01

    U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), (13)C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100-200nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production. PMID:27341378

  1. Community-acquired pneumonia.

    PubMed

    Polverino, E; Torres Marti, A

    2011-02-01

    Despite the remarkable advances in antibiotic therapies, diagnostic tools, prevention campaigns and intensive care, community-acquired pneumonia (CAP) is still among the primary causes of death worldwide, and there have been no significant changes in mortality in the last decades. The clinical and economic burden of CAP makes it a major public health problem, particularly for children and the elderly. This issue provides a clinical overview of CAP, focusing on epidemiology, economic burden, diagnosis, risk stratification, treatment, clinical management, and prevention. Particular attention is given to some aspects related to the clinical management of CAP, such as the microbial etiology and the available tools to achieve it, the usefulness of new and old biomarkers, and antimicrobial and other non-antibiotic adjunctive therapies. Possible scenarios in which pneumonia does not respond to treatment are also analyzed to improve clinical outcomes of CAP. PMID:21242952

  2. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Turcheniuk, Kostiantyn; Tarasevych, Arkadii V.; Kukhar, Valeriy P.; Boukherroub, Rabah; Szunerits, Sabine

    2013-10-01

    The synthesis of superparamagnetic nanostructures, especially iron-oxide based nanoparticles (IONPs), with appropriate surface functional groups has been intensively researched for many high-technological applications, including high density data storage, biosensing and biomedicine. In medicine, IONPs are nowadays widely used as contrast agents for magnetic resonance imaging (MRI), in hyperthermia therapy, but are also exploited for drug and gene delivery, detoxification of biological fluids or immunoassays, as they are relatively non-toxic. The use of magnetic particles in vivo requires IONPs to have high magnetization values, diameters below 100 nm with overall narrow size distribution and long time stability in biological fluids. Due to the high surface energies of IONPs agglomeration over time is often encountered. It is thus of prime importance to modify their surface to prevent aggregation and to limit non-specific adsorption of biomolecules onto their surface. Such chemical modifications result in IONPs being well-dispersed and biocompatible, and allow for targeted delivery and specific interactions. The chemical nature of IONPs thus determines not only the overall size of the colloid, but also plays a significant role for in vivo and in vitro applications. This review discusses the different concepts currently used for the surface functionalization and coating of iron oxide nanoparticles. The diverse strategies for the covalent linking of drugs, proteins, enzymes, antibodies, and nucleotides will be discussed and the chemically relevant steps will be explained in detail.

  3. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute During Forward Osmosis.

    PubMed

    Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2015-10-01

    Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.

  4. Highly Stable Amine Functionalized Iron Oxide Nanoparticles Designed for Magnetic Particle Imaging (MPI)

    PubMed Central

    Arami, Hamed; Krishnan, Kannan M.

    2014-01-01

    Magnetic particle imaging (MPI) is a promising medical imaging technology that uses iron oxide nanoparticles (NPs) as clinically safe tracers. The core and hydrodynamic size of these NPs determine the signal intensity and spatial resolution in MPI, whilst their monodispersity when preserved during the biomedical applications, generates a consistently high quality MPI image. Using an effective process to coat the synthesized NPs with amine terminated PEG molecules, we show by dynamic light scattering (DLS) that they are water-soluble with long-term stability in biological media such as phosphate buffered saline (PBS) and sodium bicarbonate buffers and Dulbecco’s modified Eagle medium (DMEM) enriched with 10% fetal bovine serum (FBS). Further, using magnetic particle spectroscopy (MPS), to measure the particle response function (PRF), defined as the derivative of the magnetization of the nanoparticles, we predict the MPI performance of these nanoparticles at a driving field frequency of 25 kHz. The MPS efficacy of the functionalized nanoparticles was also monitored over time, and both signal intensity and resolution remained unchanged even after seven days of incubation. This is attributed to the dominant contribution of the Néel relaxation mechanism of the monodisperse and highly stable nanoparticles, which was preserved through the incubation period. PMID:25554710

  5. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute During Forward Osmosis.

    PubMed

    Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2015-10-01

    Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes. PMID:26726503

  6. MULTIPASS MUON RLA RETURN ARCS BASED ON LINEAR COMBINED-FUNCTION MAGNETS

    SciTech Connect

    Vasiliy Morozov, Alex Bogacz, Yves Roblin, Kevin Beard

    2011-09-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to the multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper we present a design of a two-pass RLA return arc based on linear combined function magnets, in which both charge muons with momenta different by a factor of two are transported through the same string of magnets. The arc is composed of 60{sup o}-bending symmetric super cells allowing for a simple arc geometry closing. By adjusting the dipole and quadrupole components of the combined-function magnets, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both muon momenta. Such a design provides a greater compactness than, for instance, an FFAG lattice with its regular alternating bends and is expected to possess a large dynamic aperture characteristic of linear-field lattices.

  7. Density-functional-theory calculations of matter in strong magnetic fields. I. Atoms and molecules

    NASA Astrophysics Data System (ADS)

    Medin, Zach; Lai, Dong

    2006-12-01

    We present calculations of the electronic structure of various atoms and molecules in strong magnetic fields ranging from B=1012Gto2×1015G , appropriate for radio pulsars and magnetars. For these field strengths, the magnetic forces on the electrons dominate over the Coulomb forces, and to a good approximation the electrons are confined to the ground Landau level. Our calculations are based on the density functional theory, and use a local magnetic exchange-correlation function which is tested to be reliable in the strong field regime. Numerical results of the ground-state energies are given for HN (up to N=10 ), HeN (up to N=8 ), CN (up to N=5 ), and FeN (up to N=3 ), as well as for various ionized atoms. Fitting formulae for the B dependence of the energies are also given. In general, as N increases, the binding energy per atom in a molecule, ∣EN∣/N , increases and approaches a constant value. For all the field strengths considered in this paper, hydrogen, helium, and carbon molecules are found to be bound relative to individual atoms (although for B less than a few ×1012G , carbon molecules are very weakly bound relative to individual atoms). Iron molecules are not bound at B≲1013G , but become energetically more favorable than individual atoms at larger field strengths.

  8. Effect of growth hormone (hGH) replacement therapy on physical work capacity and cardiac and pulmonary function in patients with hGH deficiency acquired in adulthood.

    PubMed

    Nass, R; Huber, R M; Klauss, V; Müller, O A; Schopohl, J; Strasburger, C J

    1995-02-01

    The effects of 6 months of replacement therapy with recombinant human GH (hGH) on physical work capacity and cardiac structure and function were investigated in 20 patients with hGH deficiency of adult onset in a double blind, placebo-controlled trial. The GH dose of 12.5 micrograms/kg BW was self-administered daily sc. Oxygen consumption (VO2), CO2 production, and ventilatory volumes were measured during exercise on a bicycle spiroergometer. M-Mode echocardiography was performed using standard techniques. The VO2 max data, expressed per kg BW (mL/min.kg BW) showed a significant increase from 23.2 +/- 2.4 to 30.0 +/- 2.3 (P < 0.01) in the hGH-treated group, whereas the VO2 max data, expressed per lean body mass (milliliters per min/kg lean body mass) did not change significantly in either group. Maximal O2 pulse (milliliters per beat) increased significantly from 15.2 +/- 5.6 to 19.6 +/- 3.3 mL/beat (P < 0.01), but remained constant in the placebo group. The maximal power output (watts +/- SE) increased significantly (P < 0.01) from 192.5 +/- 13.5 to 227.5 +/- 11.5 in the hGH-treated group, but remained constant in the placebo group. Cardiac structure (left ventricular posterior wall, interventricular septum thickness, left ventricular mass, left ventricular end-systolic dimension, and left ventricular end-diastolic dimension) as well as echocardiographically assessed cardiac function did not change significantly after 6 months of treatment in either group. We conclude that hGH replacement in hGH-deficient adults improves oxygen uptake and exercise capacity. These improvements in pulmonary parameters might be due to an increase in respiratory muscle strength and partly to the changes in muscle volume per se observed during hGH replacement therapy. Furthermore, an increased cardiac output might contribute to the improvement in exercise performance during hGH treatment. According to our data, hGH replacement therapy leads to an improvement of exercise capacity and

  9. SiN-SiC nanofilm: A nano-functional ceramic with bipolar magnetic semiconducting character

    SciTech Connect

    Zhang, Jiahui; Li, Xingxing; Yang, Jinlong

    2014-04-28

    Nowadays, functional ceramics have been largely explored for application in various fields. However, magnetic functional ceramics for spintronics remain little studied. Here, we propose a nano-functional ceramic of sphalerite SiN-SiC nanofilm with intrinsic ferromagnetic order. Based on first principles calculations, the SiN-SiC nanofilm is found to be a ferromagnetic semiconductor with an indirect band gap of 1.71 eV. By mean field theory, the Curie temperature is estimated to be 304 K, close to room temperature. Furthermore, the valence band and conduction band states of the nanofilm exhibit inverse spin-polarization around the Fermi level. Thus, the SiN-SiC nanofilm is a typical bipolar magnetic semiconductor in which completely spin-polarized currents with reversible spin polarization can be created and controlled by applying a gate voltage. Such a nano-functional ceramic provides a possible route for electrical manipulation of carrier's spin orientation.

  10. Duplex communicable implanted antenna for magnetic direct feeding method: Functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Kato, Kentaro; Matsuki, Hidetoshi; Sato, Fumihiro; Satoh, Tadakuni; Handa, Nobuyasu

    2009-04-01

    Functional electrical stimulation (FES) is the therapy used for the rehabilitation of lost movement function by applying electrical stimulation (ES) to paralyzed extremities. To realize ES, we adapted the implanted direct feeding method (DFM). In this method, small implanted stimulators are placed under the skin at a depth of 10-20 mm and stimulus energy and signals for controlling devices are applied to them by a mounted system using magnetic coupling. This method has the merits of having no percutaneous points and high-precision stimulation. However, since the mounted system and implanted elements are separated, it is necessary to add feedback information from inside the body to confirm the system operation for safety therapy or to rehabilitate motor function smoothly. Satisfying both restrictions, we propose the magnetic connective dual resonance (MCDR) antenna, which has two resonance circuits. Adding the LC serial circuit to the LC parallel circuit gives the sending function. In this paper, we report the principle of the MCDR antenna and verify its duplex communication ability through communication experiment. This antenna enables DFM of FES to rehabilitate more complex movements.

  11. A portable single-sided magnet system for remote NMR measurements of pulmonary function

    PubMed Central

    Mikayel, Dabaghyan; Iga, Muradyan; James, Butler; Eric, Frederick; Feng, Zhou; Angelos, Kyriazis; Charles, Hardin; Samuel, Patz; Mirko, Hrovat

    2014-01-01

    In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). PMID:24953556

  12. Magnetic properties and paleointensities as function of depth in a Hawaiian lava flow

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart V.; Dekkers, Mark J.; Visscher, Martijn; ter Maat, Geertje W.

    2014-04-01

    outcome of paleointensity experiments largely depends on the rock-magnetic properties of the samples. To assess the relation between volcanic emplacement processes and rock-magnetic properties, we sampled a vertical transect in a ˜6 m thick inflated lava flow at Hawaii, emplaced in ˜588 AD. Its rock-magnetic properties vary as function of distance from the flow top; the observations can be correlated to the typical cooling rate profile for such a flow. The top and to a lesser extent the bottom parts of the flow cooled faster and reveal a composition of ˜TM60 in which the magnetic remanence is carried by fine-grained titanomagnetites, relatively rich in titanium, with associated low Curie and unblocking temperatures. The titanomagnetite in the slower cooled central part of the flow is unmixed into the magnetite and ülvospinel end-members as evidenced by scanning electron microscope observation. The remanence is carried by coarse-grained magnetite lamella (˜TM0) with high Curie and unblocking temperatures. The calibrated pseudo-Thellier results that can be accepted yield an average paleointensity of 44.1 ± 2.4 μT. This is in good agreement with the paleointensity results obtained using the thermal IZZI-Thellier technique (41.6 ± 7.4 μT) and a recently proposed record for Hawaii. We therefore suggest that the chance of obtaining a reliable paleointensity from a particular cooling unit can be increased by sampling lavas at multiple levels at different distances from the top of the flow combined with careful preliminary testing of the rock-magnetic properties.

  13. Development of Magnetic Resonance-based Functional Imaging: The Past, the Present, and the Future.

    PubMed

    Matsumoto, Ken-Ichiro

    2016-01-01

    The term "theranostics" is a compound word combining "therapeutics" and "diagnostics". Discovery of the X-ray made an extraordinary contribution to the field of medical science. Development of computer science after World War II has been absolutely imperative for the development of medical imaging technology to date. The invention of X-ray computed tomography (CT) has revolutionized medical image diagnostic systems. Several functional imaging modalities emerged not only in the radiological field but also in magnetic resonance and ultrasonic fields. The fusion of three digital imaging techniques, MR Redox imaging, electron paramagnetic resonance (EPR) oxygen mapping, and hyperpolarized (13)C MRI techniques in the magnetic resonance field, contribute to the newly-termed theranostics. Future development of a suitable contrast agent for each imaging modality will be a key for the success of theranositics.

  14. Development of Magnetic Resonance-based Functional Imaging: The Past, the Present, and the Future.

    PubMed

    Matsumoto, Ken-Ichiro

    2016-01-01

    The term "theranostics" is a compound word combining "therapeutics" and "diagnostics". Discovery of the X-ray made an extraordinary contribution to the field of medical science. Development of computer science after World War II has been absolutely imperative for the development of medical imaging technology to date. The invention of X-ray computed tomography (CT) has revolutionized medical image diagnostic systems. Several functional imaging modalities emerged not only in the radiological field but also in magnetic resonance and ultrasonic fields. The fusion of three digital imaging techniques, MR Redox imaging, electron paramagnetic resonance (EPR) oxygen mapping, and hyperpolarized (13)C MRI techniques in the magnetic resonance field, contribute to the newly-termed theranostics. Future development of a suitable contrast agent for each imaging modality will be a key for the success of theranositics. PMID:27477720

  15. Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents

    PubMed Central

    Wang, Lingyan; Luo, Jin; Shan, Shiyao; Crew, Elizabeth; Yin, Jun; Zhong, Chuan-Jian; Wallek, Brandi; Wong, Season

    2011-01-01

    The ability for silver nanoparticles to function as an antibacterial agent while being separable from the target fluids is important for bacterial inactivation in biological fluids. This report describes the analysis of the antimicrobial activities of silver-coated magnetic nanoparticles synthesized by wet chemical methods. The bacterial inactivation of several types of bacteria was analyzed, including Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli). The results have demonstrated the viability of the silver-coated magnetic nanoparticles for achieving effective bacterial inactivation efficiency comparable to and better than silver nanoparticles conventionally used. The bacteria inactivation efficiency of our MZF@Ag nanoparticles were also determined for blood platelets samples, demonstrating the potential of utilization in inactivating bacterial growth in platelets prior to transfusion to ensure blood product safety, which also has important implications for enabling the capability of effective separation, delivery and targeting of the antibacterial agents. PMID:21999710

  16. Electronic and magnetic properties of yttrium-doped silicon carbide nanotubes: Density functional theory investigations

    SciTech Connect

    Khaira, Jobanpreet S.; Jain, Richa N.; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2015-06-24

    The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 Å from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 µ{sub B} due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.

  17. DEVELOPMENT OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE PROTON TRANSPORT LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    NAKAMOTO, T.; AJIMA, Y.; FUJII, Y.; HIGASHI, N.; ICHIKAWA, A.; KIMURA, N.; KOBAYASHI, T.; MAKIDA, Y.; OGITSU, T.; OHHATA, H.; OKAMURA, T.; SASAKI, K.; ET AL.

    2005-05-16

    Superconducting combined function magnets will be utilized for the 50 GeV, 750 kW proton beam line for the J-PARC neutrino experiment. The magnet is designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7345 A. Two full-scale prototype magnets to verify the magnet performance were successfully developed. The first prototype experienced no training quench during the excitation test and good field quality was confirmed.

  18. Neural Correlates of Symptom Dimensions in Pediatric Obsessive-Compulsive Disorder: A Functional Magnetic Resonance Imaging Study

    ERIC Educational Resources Information Center

    Gilbert, Andrew R.; Akkal, Dalila; Almeida, Jorge R. C.; Mataix-Cols, David; Kalas, Catherine; Devlin, Bernie; Birmaher, Boris; Phillips, Mary L.

    2009-01-01

    The use of functional magnetic resonance imaging on a group of pediatric subjects with obsessive compulsive disorder reveals that this group has reduced activity in neural regions underlying emotional processing, cognitive processing, and motor performance as compared to control subjects.

  19. Effect of propofol on the medial temporal lobe emotional memory system: a functional magnetic resonance imaging study in human subjects

    PubMed Central

    Pryor, K. O.; Root, J. C.; Mehta, M.; Stern, E.; Pan, H.; Veselis, R. A.; Silbersweig, D. A.

    2015-01-01

    Background Subclinical doses of propofol produce anterograde amnesia, characterized by an early failure of memory consolidation. It is unknown how propofol affects the amygdala-dependent emotional memory system, which modulates consolidation in the hippocampus in response to emotional arousal and neurohumoral stress. We present an event-related functional magnetic resonance imaging study of the effects of propofol on the emotional memory system in human subjects. Methods Thirty-five healthy subjects were randomized to receive propofol, at an estimated brain concentration of 0.90 μg ml−1, or placebo. During drug infusion, emotionally arousing and neutral images were presented in a continuous recognition task, while blood-oxygen-level-dependent activation responses were acquired. After a drug-free interval of 2 h, subsequent memory for successfully encoded items was assessed. Imaging analysis was performed using statistical parametric mapping and behavioural analysis using signal detection models. Results Propofol had no effect on the stereotypical amygdalar response to emotional arousal, but caused marked suppression of the hippocampal response. Propofol caused memory performance to become uncoupled from amygdalar activation, but it remained correlated with activation in the posterior hippocampus, which decreased in proportion to amnesia. Conclusions Propofol is relatively ineffective at suppressing amygdalar activation at sedative doses, but abolishes emotional modulation and causes amnesia via mechanisms that commonly involve hyporesponsiveness of the hippocampus. These findings raise the possibility that amygdala-dependent fear systems may remain intact even when a patient has diminished memory of events. This may be of clinical importance in the perioperative development of fear-based psychopathologies, such as post-traumatic stress disorder. Clinical trial registration NCT00504894. PMID:26174294

  20. Phase transitions, magnetism and surface adsorptions assessed by meta-GGA functionals and random phase approximation

    NASA Astrophysics Data System (ADS)

    Xiao, Bing

    investigated the electronic structures and magnetism of R-VO2 using exchange-correlation functionals of all five rungs on Jacob's ladder. Our calculations show that all semilocal functionals (LSDA, GGAs and meta-GGAs) and hybrid functionals (HSE06) stabilize the spin-polarized states (ferromagnetic and anti-ferromagnetic states) over non-magentic state, which are completely opposite to experimental observation. Suprisingly, LSDA gives the best energetic descriptions for magnetic and non-magnetic phases of R-VO2 among semilocal functionals and HSE06. Othwerwise, RPA calculations are highly dependent on the inputs in the spin polarized case. With PBE inputs, RPA also fails, giving lower energies for spin-polarized states than for the non-magnetic phase. Meawhile, the results are reversed using LSDA inputs. From the computed equilibrium cell volume, we observe the error cancellation in the exchange-correlation hole of most semilocal functionals in the spin-polarized calculations. LSDA and RPA do not fit to this picture. By analyzing the local magnetic moments of vanadium atoms, it is found that the magnetic property predicted from meta-GGA can be related to its exchange enhancement factor. The physisorption of a molecule on a transition metal surface is also another difficult problem in DFT because of the long-range van der Waals interactions. The recently developed MGGA_MS family of density functionals is able to capture a portion of intermediate range dispersion interactions. Therefore, we employed MGGA_MS2 to study the physisorption of CO2 on Pt (111) surface, and the results are compared to those of PBE, PBE+D2 and optB88-vdW methods. The computed binding curves comfirm that that MGGA_MS2 indeed captures the van der Waals interactions near the equilibrium binding distance, and the obtained binding distance is also in good agreement with PBE+D2 and optB88-vdW calculations. By computing the electron density difference map (EDDM), we find that the electron densities of CO2 and

  1. Neuroelectrical decomposition of spontaneous brain activity measured with functional magnetic resonance imaging.

    PubMed

    Liu, Zhongming; de Zwart, Jacco A; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H

    2014-11-01

    Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity.

  2. GPU-based parallel group ICA for functional magnetic resonance data.

    PubMed

    Jing, Yanshan; Zeng, Weiming; Wang, Nizhuan; Ren, Tianlong; Shi, Yingchao; Yin, Jun; Xu, Qi

    2015-04-01

    The goal of our study is to develop a fast parallel implementation of group independent component analysis (ICA) for functional magnetic resonance imaging (fMRI) data using graphics processing units (GPU). Though ICA has become a standard method to identify brain functional connectivity of the fMRI data, it is computationally intensive, especially has a huge cost for the group data analysis. GPU with higher parallel computation power and lower cost are used for general purpose computing, which could contribute to fMRI data analysis significantly. In this study, a parallel group ICA (PGICA) on GPU, mainly consisting of GPU-based PCA using SVD and Infomax-ICA, is presented. In comparison to the serial group ICA, the proposed method demonstrated both significant speedup with 6-11 times and comparable accuracy of functional networks in our experiments. This proposed method is expected to perform the real-time post-processing for fMRI data analysis.

  3. Visual object agnosia and pure word alexia: correlation of functional magnetic resonance imaging and lesion localization.

    PubMed

    Salvan, Carmen V; Ulmer, John L; DeYoe, Edgar A; Wascher, Thomas; Mathews, Vincent P; Lewis, James W; Prost, Robert W

    2004-01-01

    We present a case of a 64-year-old, right-handed female with a metastatic breast cancer lesion involving the left posterior inferior temporal lobe causing complete loss of the ability to recognize visually common objects and words. After her symptoms resolved on corticosteroid therapy, functional magnetic resonance imaging (fMRI) mapping demonstrated strong left-hemispheric dominance for word recognition and right-hemispheric dominance for object recognition. The case illustrates the relationships among ventral occipito-temporal cortical activation, lesion localization, and lesion-induced deficits of higher visual function. The relationship between hemispheric dominance determined by fMRI and risk of postoperative deficit depends on the specific visual function of interest.

  4. Independent Component Analysis Involving Autocorrelated Sources With an Application to Functional Magnetic Resonance Imaging

    PubMed Central

    Lee, Seonjoo; Shen, Haipeng; Truong, Young; Lewis, Mechelle; Huang, Xuemei

    2016-01-01

    Independent component analysis (ICA) is an effective data-driven method for blind source separation. It has been successfully applied to separate source signals of interest from their mixtures. Most existing ICA procedures are carried out by relying solely on the estimation of the marginal density functions, either parametrically or nonparametrically. In many applications, correlation structures within each source also play an important role besides the marginal distributions. One important example is functional magnetic resonance imaging (fMRI) analysis where the brain-function-related signals are temporally correlated. In this article, we consider a novel approach to ICA that fully exploits the correlation structures within the source signals. Specifically, we propose to estimate the spectral density functions of the source signals instead of their marginal density functions. This is made possible by virtue of the intrinsic relationship between the (unobserved) sources and the (observed) mixed signals. Our methodology is described and implemented using spectral density functions from frequently used time series models such as autoregressive moving average (ARMA) processes. The time series parameters and the mixing matrix are estimated via maximizing the Whittle likelihood function. We illustrate the performance of the proposed method through extensive simulation studies and a real fMRI application. The numerical results indicate that our approach outperforms several popular methods including the most widely used fastICA algorithm. This article has supplementary material online. PMID:27524847

  5. Copper Ferrocyanide-Functionalized Magnetic Adsorbents Using Polyethyleneimine Coated Fe3O4 Nanoparticles for the Removal of Radioactive Cesium.

    PubMed

    Yang, Hee-Man; Hong, Sang Bum; Cho, Yong Suk; Lee, Kune-Woo; Seo, Bum-Kyoung; Moon, Jei-Kwon

    2016-03-01

    Copper ferrocyanide-functionalized magnetic nano-adsorbents were successfully synthesized by electrostatic coating of citric acid coated Fe3O4 nanoparticles with polyethyleneimine, and immobilizing copper and ferrocyanide on the surfaces of polyethyleneimine-coated nanoparticles. Radioactive cesium (Cs) adsorption tests were conducted to investigate the effectiveness of the copper ferrocyanide-functionalized magnetic nano-adsorbents toward the removal of radioactive Cs. PMID:27455762

  6. Vectorial Slepian functions and the estimation of the crustal magnetic field

    NASA Astrophysics Data System (ADS)

    Plattner, Alain; Simons, Frederik

    2013-04-01

    Within the past two decades increasingly sophisticated magnetometry satellite missions have brought us data of ever improving quality and will reach a new pinnacle with the Swarm satellite mission to be launched in 2013. In order to make optimal use of this rich source of information for the lithospheric structure of Earth, and other planets, the computational algorithms used to obtain the crustal magnetic field from satellite data should be designed to take the specific properties of the data into account (e.g. their bandlimitation, their noise properties, the satellite altitude, their vectorial character). Ideally, the method should also be able to focus on chosen regions, be it as a means of regularization in a specifically targeted investigation or in order to discern between areas of intrinsically different properties of the field, such as for example crustal versus oceanic field. Such a merging of properties can be achieved using Slepian functions, a basis of bandlimited and spatially concentrated functions. The scalar version of Slepian functions has proven to be useful in a wide range of fields including geodesy, gravimetry, geomagnetism, and geodynamics. In order to make use of all three components of the vectorial data set we recently developed vectorial Slepian functions. In this presentation we combine the vectorial Slepian functions with the up- and downward continuation of vector fields to construct a fully vectorial estimation scheme for the regional crustal magnetic field from data at satellite altitude. We test our method with artificial data for different regions and bandlimits and compare different implementations of the method including regional concentration at satellite altitude, regional concentration on Earth's surface, and an estimation scheme employing vectorial Slepian functions that are constructed to ideally incorporate the defocusing effect due to altitude continuation.

  7. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation.

    PubMed

    Liu, Xiaojie; Marangon, Iris; Melinte, Georgian; Wilhelm, Claire; Ménard-Moyon, Cécilia; Pichon, Benoit P; Ersen, Ovidiu; Aubertin, Kelly; Baaziz, Walid; Pham-Huu, Cuong; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Bégin, Dominique

    2014-11-25

    Nanocomposites combining multiple functionalities in one single nano-object hold great promise for biomedical applications. In this work, carbon nanotubes (CNTs) were filled with ferrite nanoparticles (NPs) to develop the magnetic manipulation of the nanotubes and their theranostic applications. The challenges were both the filling of CNTs with a high amount of magnetic NPs and their functionalization to form biocompatible water suspensions. We propose here a filling process using CNTs as nanoreactors for high-yield in situ growth of ferrite NPs into the inner carbon cavity. At first, NPs were formed inside the nanotubes by thermal decomposition of an iron stearate precursor. A second filling step was then performed with iron or cobalt stearate precursors to enhance the encapsulation yield and block the formed NPs inside the tubes. Water suspensions were then obtained by addition of amino groups via the covalent functionalization of the external surface of the nanotubes. Microstructural and magnetic characterizations confirmed the confinement of NPs into the anisotropic structure of CNTs making them suitable for magnetic manipulations and MRI detection. Interactions of highly water-dispersible CNTs with tumor cells could be modulated by magnetic fields without toxicity, allowing control of their orientation within the cell and inducing submicron magnetic stirring. The magnetic properties were also used to quantify CNTs cellular uptake by measuring the cell magnetophoretic mobility. Finally, the photothermal ablation of tumor cells could be enhanced by magnetic stimulus, harnessing the hybrid properties of NP loaded-CNTs.

  8. Evidence for correlations between distant intentionality and brain function in recipients: a functional magnetic resonance imaging analysis.

    PubMed

    Achterberg, Jeanne; Cooke, Karin; Richards, Todd; Standish, Leanna J; Kozak, Leila; Lake, James

    2005-12-01

    This study, using functional magnetic resonance imaging (fMRI) technology, demonstrated that distant intentionality (DI), defined as sending thoughts at a distance, is correlated with an activation of certain brain functions in the recipients. Eleven healers who espoused some form for connecting or healing at a distance were recruited from the island of Hawaii. Each healer selected a person with whom they felt a special connection as a recipient for DI. The recipient was placed in the MRI scanner and isolated from all forms of sensory contact from the healer. The healers sent forms of DI that related to their own healing practices at random 2-minute intervals that were unknown to the recipient. Significant differences between experimental (send) and control (no send) procedures were found (p = 0.000127). Areas activated during the experimental procedures included the anterior and middle cingulate area, precuneus, and frontal area. It was concluded that instructions to a healer to make an intentional connection with a sensory isolated person can be correlated to changes in brain function of that individual.

  9. Acquired aplastic anemia.

    PubMed

    Keohane, Elaine M

    2004-01-01

    Acquired aplastic anemia (AA) is a disorder characterized by a profound deficit of hematopoietic stem and progenitor cells, bone marrow hypocellularity, and peripheral blood pancytopenia. It primarily affects children, young adults, and those over 60 years of age. The majority of cases are idiopathic; however, idiosyncratic reactions to some drugs, chemicals, and viruses have been implicated in its etiology. An autoimmune T-cell reaction likely causes the stem cell depletion, but the precise mechanism, as well as the eliciting and target antigens, is unknown. Symptoms vary from severe life-threatening cytopenias to moderate or non-severe disease that does not require transfusion support. The peripheral blood typically exhibits pancytopenia, reticulocytopenia, and normocytic or macrocytic erythrocytes. The bone marrow is hypocellular and may exhibit dysplasia of the erythrocyte precursors. First line treatment for severe AA consists of hematopoietic stem cell transplantation in young patients with HLA identical siblings, while immunosuppression therapy is used for older patients and for those of any age who lack a HLA matched donor. Patients with AA have an increased risk of developing paroxysmal nocturnal hemoglobinuria (PNH), myelodysplastic syndrome (MDS), or acute leukemia. Further elucidation of the pathophysiology of this disease will result in a better understanding of the interrelationship among AA, PNH, and MDS, and may lead to novel targeted therapies.

  10. Affinity capture using peptide-functionalized magnetic nanoparticles to target Staphylococcus aureus.

    PubMed

    Kuo, Fang-Yin; Lin, Wei-Lien; Chen, Yu-Chie

    2016-04-28

    Staphylococcus aureus, a commonly found pathogen, can cause food poisoning and infections. Thus, it is necessary to develop analytical methods for the rapid screening of S. aureus in suspicious samples. Magnetic nanoparticles (MNPs) are widely used as affinity probes to selectively enrich target species from complex samples because of their high specific surface area and magnetic properties. The MNP surface should be functionalized to have the capability to target specific species. We herein propose a straightforward method to functionalize aluminum oxide-coated iron oxide (Fe3O4@Al2O3) MNPs with the peptide HHHHHHDEEGLFVD (D). The peptide D was comprised of three domains: polyhistidine (H6) used as the linker, DEE added as the spacer, and GLFVD used for targeting S. aureus. D was immobilized on the surface of Fe3O4@Al2O3 MNPs through H6-Al chelation. Our results showed that the D-functionalized Fe3O4@Al2O3 MNPs (D-Fe3O4 MNPs) possess the capability to target S. aureus. The selective trapping experiments were conducted under microwave-heating for only 60 s, and sufficient bacterial cells were trapped by the MNPs to be identified by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). We demonstrated that the D-Fe3O4@Al2O3 MNPs combined with MALDI-MS can be used to rapidly characterize trace amounts of S. aureus in complex juice and egg samples. PMID:27087258

  11. DESIGN OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    WANDERER,P.; ET AL.

    2003-06-15

    Superconducting combined function magnets will be utilized for the 50GeV-750kW proton beam line for the J-PARC neutrino experiment and an R and D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2-D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.

  12. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.

    PubMed

    Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z

    2016-09-01

    The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations.

  13. Investigating the emotional response to room acoustics: A functional magnetic resonance imaging study.

    PubMed

    Lawless, M S; Vigeant, M C

    2015-10-01

    While previous research has demonstrated the powerful influence of pleasant and unpleasant music on emotions, the present study utilizes functional magnetic resonance imaging (fMRI) to assess the positive and negative emotional responses as demonstrated in the brain when listening to music convolved with varying room acoustic conditions. During fMRI scans, subjects rated auralizations created in a simulated concert hall with varying reverberation times. The analysis detected activations in the dorsal striatum, a region associated with anticipation of reward, for two individuals for the highest rated stimulus, though no activations were found for regions associated with negative emotions in any subject.

  14. Temperature dependence of spin density in FeCo alloy: Magnetic response function

    NASA Astrophysics Data System (ADS)

    Petrillo, C.; Sacchetti, F.

    1994-02-01

    The magnetic structure factor of the equiatomic FeCo alloy has been measured in the disordered phase at 1000 K by polarized neutron diffraction. A comparison with the data collected in the ordered phase at room temperature [E. Di Fabrizio et al., Phys. Rev.B40, 9502 (1989)] shows marked variations that can be ascribed to the thermal motion of nuclei. From the complete set of data vs temperature, the experimental ion-electron linear response function has been deduced and compared to a theoretical Random Phase Approximation model.

  15. Nature versus nurture in ventral visual cortex: a functional magnetic resonance imaging study of twins.

    PubMed

    Polk, Thad A; Park, Joonkoo; Smith, Mason R; Park, Denise C

    2007-12-19

    Using functional magnetic resonance imaging, we estimated neural activity in twins to study genetic influences on the cortical response to categories of visual stimuli (faces, places, and pseudowords) that are known to elicit distinct patterns of activity in ventral visual cortex. The neural activity patterns in monozygotic twins were significantly more similar than in dizygotic twins for the face and place stimuli, but there was no effect of zygosity for pseudowords (or chairs, a control category). These results demonstrate that genetics play a significant role in determining the cortical response to faces and places, but play a significantly smaller role (if any) in the response to orthographic stimuli. PMID:18094229

  16. Optimizing the design and analysis of clinical functional magnetic resonance imaging research studies.

    PubMed

    Carter, Cameron S; Heckers, Stephan; Nichols, Thomas; Pine, Daniel S; Strother, Stephen

    2008-11-15

    With the widespread availability of functional magnetic resonance imaging (fMRI), there has been rapid progress in identifying neural correlates of cognition and emotion in the human brain. In conjunction with basic research studies, fMRI has been increasingly applied in clinical disorders, making it a central research tool in human psychopathology, psychopharmacology, and genetics. In the present article, we discuss a number of conceptual and methodological challenges that confront the implementation of fMRI in clinical and translational research, and we offer a set of recommendations intended to enhance the interpretability and reproducibility of results in clinical fMRI.

  17. Functional Magnetic Resonance Imaging of Motor Cortex: Hemispheric Asymmetry and Handedness

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Gi; Ashe, James; Hendrich, Kristy; Ellermann, Jutta M.; Merkle, Hellmut; Ugurbil, Kamil; Georgopoulos, Apostolos P.

    1993-07-01

    A hemispheric asymmetry in the functional activation of the human motor cortex during contralateral (C) and ipsilateral (I) finger movements, especially in right-handed subjects, was documented with nuclear magnetic resonance imaging at high field strength (4 tesla). Whereas the right motor cortex was activated mostly during contralateral finger movements in both right-handed (C/I mean area of activation = 36.8) and left-handed (C/I = 29.9) subjects, the left motor cortex was activated substantially during ipsilateral movements in left-handed subjects (C/I = 5.4) and even more so in right-handed subjects (C/I = 1.3).

  18. Investigating the emotional response to room acoustics: A functional magnetic resonance imaging study.

    PubMed

    Lawless, M S; Vigeant, M C

    2015-10-01

    While previous research has demonstrated the powerful influence of pleasant and unpleasant music on emotions, the present study utilizes functional magnetic resonance imaging (fMRI) to assess the positive and negative emotional responses as demonstrated in the brain when listening to music convolved with varying room acoustic conditions. During fMRI scans, subjects rated auralizations created in a simulated concert hall with varying reverberation times. The analysis detected activations in the dorsal striatum, a region associated with anticipation of reward, for two individuals for the highest rated stimulus, though no activations were found for regions associated with negative emotions in any subject. PMID:26520354

  19. Vital functions of organisms in infra-low frequency magnetic fields 3. The embryogeny of mammals

    SciTech Connect

    Khizhenkov, P.K.; Bilobrov, V.M.; Zinkevich, I.I.; Zyablitsev, S.V.

    1994-10-01

    Results are presented of the experimental studies of the effect of variable (rotary) magnetic fields H at f = 6.5 Hz on the reproduction function of rats. It is shown that a pregnancy does not occur when mating takes place under the action of the field H. In the second quarter of pregnancy, the effect of the field is characterized by an increase of the mass of the body and of the internal organs of the new-born rats, among which, the growth of gemmae, spleen and of the thymus gland are particularly significant. The relative composition of the white blood cells changes as well.

  20. pH-responsive deoxyribonucleic acid capture/release by polydopamine functionalized magnetic nanoparticles.

    PubMed

    Wang, Yu; Ma, Xiangdong; Ding, Chun; Jia, Li

    2015-03-01

    Polydopamine functionalized magnetic nanoparticles (PDA@Fe3O4) were prepared and characterized by transmission electron microscopy, scanning electron microscopy, zeta potential and vibrating sample magnetometry. They were found to enable highly efficient capture of genomic deoxyribonucleic acid (DNA). The adsorption capacity of PDA@Fe3O4 for genomic DNA can reach 161 mg g(-1). The extraction protocol used aqueous solutions for DNA binding to and releasing from the surface of the magnetic particles based on the pH inducing the charge switch of amino and phenolic hydroxyl groups on PDA@Fe3O4. The extracted DNA with high quality (A260/A280=1.80) can be directly used as templates for polymerase chain reaction (PCR) followed by capillary electrophoresis (CE) analysis. None of the toxic chemical reagents and PCR inhibitors was used throughout the whole procedure. PDA@Fe3O4 based magnetic solid phase extraction (MSPE) method was superior to those using commercial kit and traditional phenol-chloroform extraction methods in yield of DNA. The developed PDA@Fe3O4 based MSPE-PCR-CE method was applied for simultaneous and fast detection of Listeria monocytogenes and Escherichia coli O157:H7 in milk. PMID:25682426

  1. Structural, electronic and magnetic effects of Al-doped niobium clusters: a density functional theory study.

    PubMed

    Wang, Huai-Qian; Li, Hui-Fang; Wang, Jia-Xian; Kuang, Xiao-Yu

    2012-07-01

    The application of the ab initio stochastic search procedure with Saunders "kick" method has been carried out for the elucidation of global minimum structures of a series of Al-doped clusters, Nb(n)Al (1 ≤ n ≤ 10). We have studied the structural characters, growth behaviors, electronic and magnetic properties of Nb(n)Al by the density functional theory calculations. Unlike the previous literature reported on Al-doped systems where ground state structures undergo a structural transition from the Al-capped frame to Al-encapsulated structure, we found that Al atom always occupies the surface of Nb(n)Al clusters and structural transition does not take place until n = 10. Note that the fragmentation proceeds preferably by the ejection of an aluminum atom other than niobium atom. According to the natural population analysis, charges always transfer from aluminum to niobium atoms. Furthermore, the magnetic moments of the Nb(n)Al clusters are mainly located on the 4d orbital of niobium atoms, and aluminum atom possesses very small magnetic moments.

  2. High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites.

    PubMed

    Song, Wen; Gao, Baoyu; Zhang, Tengge; Xu, Xing; Huang, Xin; Yu, Huan; Yue, Qinyan

    2015-08-01

    Easily separable amine-functionalized magnetic corn stalk composites (AF-MCS) were employed for effective adsorption and reduction of toxic hexavalent chromium [Cr(VI)] to nontoxic Cr(III). The saturated magnetization of AF-MCS reached 6.2emu/g, and as a result, it could be separated from aqueous solution by a magnetic process for its superparamagnetism. The studies of various factors influencing the sorption behavior indicated that the optimum AF-MCS dosage for Cr(VI) adsorption was 1g/L, and the maximum adsorption capacity was observed at pH 3.0. The chromium adsorption perfectly fitted the Langmuir isotherm model and pseudo second order kinetic model. Furthermore, characterization of AF-MCS was investigated by means of XRD, SEM, TEM, FT-IR, BET, VSM and XPS analysis to discuss the uptake mechanism. Basically, these results demonstrated that AF-MCS prepared in this work has shown its merit in effective removal of Cr(VI) and rapid separation from effluents simultaneously.

  3. H-1 Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel Urinary Biomarkers for Lung Function

    SciTech Connect

    MCClay, Joseph L.; Adkins, Daniel E.; Isern, Nancy G.; O'Connell, Thomas M.; Wooten, Jan B.; Zedler, Barbara K.; Dasika, Madhukar S.; Webb, B. T.; Webb-Robertson, Bobbie-Jo M.; Pounds, Joel G.; Murrelle, Edward L.; Leppert, Mark F.; van den Oord, Edwin J.

    2010-06-04

    Chronic obstructive pulmonary disease (COPD), characterized by chronic airflow limitation, is a serious and growing public health concern. The major environmental risk factor for COPD is tobacco smoking, but the biological mechanisms underlying COPD are not well understood. In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to identify and quantify metabolites associated with lung function in COPD. Plasma and urine were collected from 197 adults with COPD and from 195 adults without COPD. Samples were assayed using a 600 MHz NMR spectrometer, and the resulting spectra were analyzed against quantitative spirometric measures of lung function. After correcting for false discoveries and adjusting for covariates (sex, age, smoking) several spectral regions in urine were found to be significantly associated with baseline lung function. These regions correspond to the metabolites trigonelline, hippurate and formate. Concentrations of each metabolite, standardized to urinary creatinine, were associated with baseline lung function (minimum p-value = 0.0002 for trigonelline). No significant associations were found with plasma metabolites. Two of the three urinary metabolites positively associated with baseline lung function, i.e. hippurate and formate, are often related to gut microflora. This suggests that the microbiome composition is variable between individuals with different lung function. Alternatively, the nature and origins of all three associated metabolites may reflect lifestyle differences affecting overall health. Our results will require replication and validation, but demonstrate the utility of NMR metabolomics as a screening tool for identifying novel biomarkers of lung disease or disease risk.

  4. Testing the Jacob's ladder of density functionals for electronic structure and magnetism of rutile VO2

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sun, Jianwei; Ruzsinszky, Adrienn; Perdew, John P.

    2014-08-01

    We employ semilocal density functionals [local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and meta-GGAs)], LSDA plus Hubbard U (LSDA+U) theory, a nonlocal range-separated Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), and the random-phase approximation (RPA) to assess their performances for the ground-state magnetism and electronic structure of a strongly correlated metal, rutile VO2. Using recent quantum Monte Carlo results as the benchmark, all tested semilocal and hybrid functionals as well as the RPA (with PBE inputs) predict the correct magnetic ground states for rutile VO2. The observed paramagnetism could arise from temperature-disordered local spin moments or from the thermal destruction of these moments. All semilocal functionals also give the correct ground-state metallicity for rutile VO2. However, in the ferromagnetic (FM) and antiferromagnetic (AFM) phases, LSDA+U and HSE06 incorrectly predict rutile VO2 to be a Mott-Hubbard insulator. For the computed electronic structures of FM and AFM phases, we find that the Tao-Perdew-Staroverov-Scuseria (TPSS) and revised TPSS (revTPSS) meta-GGAs give strong 2p-3d hybridizations, resulting in a depopulation of the 2p bands of O atoms, in comparison with other tested meta-GGAs. The regularized TPSS (regTPSS) and meta-GGAs made simple, i.e., MGGA_MS0 and MGGA_MS2, which are free of the spurious order-of-limits problem of TPSS and revTPSS, give electronic states close to those of the PBE GGA and LSDA. In comparison to experiment, semilocal functionals predict better equilibrium cell volumes for rutile VO2 in FM and AFM states than in the spin-unpolarized state. For meta-GGAs, a monotonic decrease of the exchange enhancement factor Fx(s,α) with α for small s, as in the MGGA_MS functionals, leads to large (probably too large) local magnetic moments in spin-polarized states.

  5. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  6. Detection of cannabinoid agonist evoked increase in BOLD contrast in rats using functional magnetic resonance imaging.

    PubMed

    Shah, Y B; Prior, M J W; Dixon, A L; Morris, P G; Marsden, C A

    2004-03-01

    BOLD-contrast functional magnetic resonance imaging (fMRI) was used to investigate the effects of the synthetic cannabinoid agonist HU210 on the rat brain in order to determine potential CNS sites of action for the functional effects of cannabinoids. After obtaining basal data, rats (n=8) were given the cannabinoid agonist HU210 (10 microg/kg i.v.) and volume data sets collected for 85 mins. Significant increases in functional BOLD activity were observed in specific brain regions including those important in pain (PAG), reward (VTA and accumbens) and motor function (striatum). In order to confirm cannabinoid receptor involvement in the HU210 evoked functional BOLD activity, rats (n=8) were pre-treated with the CB1 cannabinoid receptor antagonist SR141716A (100 microg/kg i.v.) prior to HU210. Pretreatment with SR141716A abolished all significant evoked HU210 functional BOLD activity. To exclude the involvement of potential systemic effects induced by the cannabinoid agonist administration on the observed evoked functional BOLD activity a separate experiment investigated the effect of HU210 (10 microg/kg i.v.) on mean arterial pressure and showed that HU210 had no significant effect on pressure under chloral hydrate anaesthesia. In summary, this study demonstrates that the cannabinoid agonist HU210 evokes a significant increase in BOLD functional activity in specific regions and that this was cannabinoid receptor mediated. Furthermore the study indicates the potential value of fMRI in rodents to delineate pharmacologically induced changes in regional brain function. PMID:14975693

  7. Seeing mathematics: perceptual experience and brain activity in acquired synesthesia.

    PubMed

    Brogaard, Berit; Vanni, Simo; Silvanto, Juha

    2013-01-01

    We studied the patient JP who has exceptional abilities to draw complex geometrical images by hand and a form of acquired synesthesia for mathematical formulas and objects, which he perceives as geometrical figures. JP sees all smooth curvatures as discrete lines, similarly regardless of scale. We carried out two preliminary investigations to establish the perceptual nature of synesthetic experience and to investigate the neural basis of this phenomenon. In a functional magnetic resonance imaging (fMRI) study, image-inducing formulas produced larger fMRI responses than non-image inducing formulas in the left temporal, parietal and frontal lobes. Thus our main finding is that the activation associated with his experience of complex geometrical images emerging from mathematical formulas is restricted to the left hemisphere.

  8. Low-Functioning Autism and Nonsyndromic Intellectual Disability: Magnetic Resonance Imaging (MRI) Findings.

    PubMed

    Erbetta, Alessandra; Bulgheroni, Sara; Contarino, Valeria Elisa; Chiapparini, Luisa; Esposito, Silvia; Annunziata, Silvia; Riva, Daria

    2015-10-01

    Previous neuroradiologic studies reported a high incidence of abnormalities in low-functioning autistic children. In this population, it is difficult to know which abnormality depends on autism itself and which is related to intellectual disability associated with autism. The aim of this study was to evaluate the frequency of neuroradiologic abnormalities in low-functioning autistic children compared to Intellectual Quotient and age-matched nonsyndromic children, using the same set of magnetic resonance imaging (MRI) sequences. MRI was rated as abnormal in 44% of autistic and 54% of children with intellectual disability. The main results were mega cisterna magna in autism and hypoplastic corpus callosum in intellectual disability. These abnormalities are morphologically visible signs of altered brain development. These findings, more frequent than expected, are not specific to the 2 conditions. Although MRI cannot be considered mandatory, it allows an in-depth clinical assessment in nonsyndromic intellectual-disabled and autistic children.

  9. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: a review.

    PubMed

    Chalbot, Marie-Cecile G; Kavouras, Ilias G

    2014-08-01

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole.

  10. [Event-related functional magnetic resonance imaging of cerebral pain processing].

    PubMed

    Meyer, H; Kleinböhl, D; Baudendistel, K; Bock, M; Trojan, J; Rabuffetti-Lehle, M; Hölzl, R; Schad, L R

    2001-01-01

    Neurofunctional magnetic resonance imaging (fMRI) offers the possibility to map cerebral activity non-invasively. The development of event-related techniques during the past years allows to study brain processes with high spatial and temporal resolution. Based on these techniques, EPI- and FLASH sequences were developed in this study, to investigate cerebral processing of experimental thermal pain stimulation. Phasic and tonic stimulation paradigms were developed with an MR-compatible contact thermode. Functional mapping of pain-relevant areas was performed with these paradigms, as well as a specification of the temporal characteristics of the activation. Further, a randomized paradigm with several stimulus intensities could differentiate graded functional responses, dependent on stimulus intensity in specific "regions-of-interest". In this design, randomizing the stimulus order reduced habituation effects, while continuous subjective magnitude estimation of the stimuli kept attention of subjects maximal. PMID:11487860

  11. Liquid Crystalline Block Copolymers with Brush Type Architecture: Toward Functional Membranes by Magnetic Field Alignment

    NASA Astrophysics Data System (ADS)

    Choo, Youngwoo; Gopinadhan, Manesh; Mahajan, Lalit; Kasi, Rajeswari; Osuji, Chinedum

    2015-03-01

    We introduce a novel liquid crystalline block copolymer with brush type architecture for membrane applications by magnetic field directed self-assembly. Ring-opening metathesis of n-alkyloxy cyanobiphenyl and polylactide (PLA) functionalized norbornene monomers provides efficient polymerization yielding low polydispersity block copolymers. The molecular weight of the PLA side chains, spacer length of the cyanobiphenyl mesogens are systematically varied to form well-ordered BCP morphologies at varying volume fractions. Interestingly, the system features morphology dependent anchoring condition where mesogens adopt planar anchoring on cylindrical interface while homeotropic anchoring was preferred on a planar block interface. The minority PLA domains from highly aligned materials can be readily degraded by hydrolysis to produce vertically aligned nanoporous polymer films which exhibit reversible thermal switching behavior. The polymers introduced here provide a versatile platform for scalable fabrication of aligned membranes and further functional materials based on such templates. This work was supported by NSF(CCMI-1246804).

  12. The impact of data preprocessing in traumatic brain injury detection using functional magnetic resonance imaging.

    PubMed

    Vergara, Victor M; Damaraju, Eswar; Mayer, Andrew B; Miller, Robyn; Cetin, Mustafa S; Calhoun, Vince

    2015-01-01

    Traumatic brain injury (TBI) can adversely affect a person's thinking, memory, personality and behavior. For this reason new and better biomarkers are being investigated. Resting state functional network connectivity (rsFNC) derived from functional magnetic resonance (fMRI) imaging is emerging as a possible biomarker. One of the main concerns with this technique is the appropriateness of methods used to correct for subject movement. In this work we used 50 mild TBI patients and matched healthy controls to explore the outcomes obtained from different fMRI data preprocessing. Results suggest that correction for motion variance before spatial smoothing is the best alternative. Following this preprocessing option a significant group difference was found between cerebellum and supplementary motor area/paracentral lobule. In this case the mTBI group exhibits an increase in rsFNC.

  13. Low-Functioning Autism and Nonsyndromic Intellectual Disability: Magnetic Resonance Imaging (MRI) Findings.

    PubMed

    Erbetta, Alessandra; Bulgheroni, Sara; Contarino, Valeria Elisa; Chiapparini, Luisa; Esposito, Silvia; Annunziata, Silvia; Riva, Daria

    2015-10-01

    Previous neuroradiologic studies reported a high incidence of abnormalities in low-functioning autistic children. In this population, it is difficult to know which abnormality depends on autism itself and which is related to intellectual disability associated with autism. The aim of this study was to evaluate the frequency of neuroradiologic abnormalities in low-functioning autistic children compared to Intellectual Quotient and age-matched nonsyndromic children, using the same set of magnetic resonance imaging (MRI) sequences. MRI was rated as abnormal in 44% of autistic and 54% of children with intellectual disability. The main results were mega cisterna magna in autism and hypoplastic corpus callosum in intellectual disability. These abnormalities are morphologically visible signs of altered brain development. These findings, more frequent than expected, are not specific to the 2 conditions. Although MRI cannot be considered mandatory, it allows an in-depth clinical assessment in nonsyndromic intellectual-disabled and autistic children. PMID:25895913

  14. Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides

    NASA Astrophysics Data System (ADS)

    Ma, Rongna; Hu, Junjie; Cai, Zongwei; Ju, Huangxian

    2014-02-01

    A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe3+ loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid (APBA) via an amide reaction. The introduction of PASE could bridge the MCNT and APBA, suppress the nonspecific adsorption and reduce the steric hindrance among the bound molecules. Due to the excellent structure of the MCNTs, the functionalization of PASE and then APBA on MCNTs was quite simple, specific and effective. The glycopeptides enrichment and separation with a magnetic field could be achieved by their reversible covalent binding with the boronic group of APBA-MCNTs. The exceptionally large specific surface area and the high density of boronic acid groups of APBA-MCNTs resulted in rapid and highly efficient enrichment of glycopeptides, even in the presence of large amounts of interfering nonglycopeptides. The functional MCNTs possessed high selectivity for enrichment of 21 glycopeptides from the digest of horseradish peroxidase demonstrated by MALDI-TOF mass spectrometric analysis showing more glycopeptides detected than the usual 9 glycopeptides with commercially available APBA-agarose. The proposed system showed better specificity for glycopeptides even in the presence of non-glycopeptides with 50 times higher concentration. The boronic acid functionalized MCNTs provide a promising selective enrichment platform for precise glycoproteomic analysis.A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe3+ loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid

  15. The effects of antiepileptic drugs on cognitive functional magnetic resonance imaging

    PubMed Central

    Beltramini, Guilherme Coco; Cendes, Fernando

    2015-01-01

    The cognitive dysfunction caused by antiepileptic drugs (AEDs) has been extensively described, although the mechanisms underlying such collateral effects are still poorly understood. The combination of functional magnetic resonance imaging (fMRI) studies with pharmacological intervention (pharmaco-MRI or ph-MRI) offers the opportunity to investigate the effect of drugs such as AEDs on brain activity, including cognitive tasks. Here we review the studies that investigated the effects of AEDs [topiramate (TPM), lamotrigine (LMT), carbamazepine (CBZ), pregabalin (PGB), valproate (VPA) and levetiracetam (LEV)] on cognitive fMRI tasks. Despite the scarcity of fMRI studies focusing on the impact of AEDs on cognitive task, the results of recent work have provided important information about specific drug-related changes of brain function. PMID:25853082

  16. Magnetically induced behaviour of ferritin corpuscles in avian ears: can cuticulosomes function as magnetosomes?

    PubMed Central

    Jandacka, Petr; Burda, Hynek; Pistora, Jaromir

    2015-01-01

    Magnetoreception is an enigmatic, poorly understood sensory ability, described mainly on the basis of behavioural studies in animals of diverse taxa. Recently, corpuscles containing superparamagnetic iron-storage protein ferritin were found in the inner ear hair cells of birds, a predominantly single ferritin corpuscle per cell. It was suggested that these corpuscles might represent magnetosomes and function as magnetosensors. Here we determine ferritin low-field paramagnetic susceptibility to estimate its magnetically induced intracellular behaviour. Physical simulations show that ferritin corpuscles cannot be deformed or rotate in weak geomagnetic fields, and thus cannot provide magnetoreception via deformation of the cuticular plate. Furthermore, we reached an alternative hypothesis that ferritin corpuscle in avian ears may function as an intracellular electromagnetic oscillator. Such an oscillator would generate additional cellular electric potential related to normal cell conditions. Though the phenomenon seems to be weak, this effect deserves further analyses. PMID:25551148

  17. The impact of data preprocessing in traumatic brain injury detection using functional magnetic resonance imaging.

    PubMed

    Vergara, Victor M; Damaraju, Eswar; Mayer, Andrew B; Miller, Robyn; Cetin, Mustafa S; Calhoun, Vince

    2015-01-01

    Traumatic brain injury (TBI) can adversely affect a person's thinking, memory, personality and behavior. For this reason new and better biomarkers are being investigated. Resting state functional network connectivity (rsFNC) derived from functional magnetic resonance (fMRI) imaging is emerging as a possible biomarker. One of the main concerns with this technique is the appropriateness of methods used to correct for subject movement. In this work we used 50 mild TBI patients and matched healthy controls to explore the outcomes obtained from different fMRI data preprocessing. Results suggest that correction for motion variance before spatial smoothing is the best alternative. Following this preprocessing option a significant group difference was found between cerebellum and supplementary motor area/paracentral lobule. In this case the mTBI group exhibits an increase in rsFNC. PMID:26737520

  18. Assembly of cyanometalate-functionalized phosphotungstates with magnetic properties and bifunctional electrocatalytic activities.

    PubMed

    Wang, Ya; Sun, Ming-Hui; Li, Feng-Yan; Sun, Zhi-Xia; Xu, Lin

    2015-03-14

    Two cyanometalate-functionalized heteropolytungstates (C4H10ON)23[HN(CH2CH2OH)3]11H[Fe(III()CN)6(α2-P2W17O61Ni(II))4]·31H2O (1) and (C4H10ON)23[HN(CH2CH2OH)3]10H2[Fe(III)(CN)6(α2-P2W17O61Co(II))4]·27H2O (2) (C4H10ON = morpholine, HN(CH2CH2OH)3 = triethanol amine) have been successfully synthesized in aqueous solution under conventional reaction conditions, which demonstrated that it is a successful strategy to incorporate the cyanometalate fragment into lacunary heteropolytungstates. These polyanions were characterized by single-crystal X-ray diffraction, IR spectra, elemental analysis, thermogravimetric analysis, magnetic studies, and electrochemistry. Interestingly, the electrochemical studies have shown that the two complexes have bifunctional electrocatalytic activities towards not only the reduction of potassium iodate (KIO3) ascribed to the function of POM, but also the oxidation of the biological molecule ascorbic acid (AA) ascribed to the Fe-center in [M(II)4Fe(III)(CN)6](5+). Significantly, the magnetic investigations demonstrate the presence of ferromagnetic exchange interactions in 1 (Ni4Fe) and antiferromagnetic interactions in 2 (Co4Fe).

  19. Magnetic hydrogels from alkyne/cobalt carbonyl-functionalized ABA triblock copolymers

    DOE PAGES

    Jiang, Bingyin; Hom, Wendy L.; Chen, Xianyin; Yu, Pengqing; Pavelka, Laura C.; Kisslinger, Kim; Parise, John B.; Bhatia, Surita R.; Grubbs, Robert B.

    2016-03-09

    A series of alkyne-functionalized poly(4-(phenylethynyl)styrene)-block-poly(ethylene oxide)-block-poly(4-(phenylethynyl)styrene) (PPES-b-PEO-b-PPES) ABA triblock copolymers was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. PESn[Co2(CO)6]x-EO800-PESn[Co2(CO)6]x ABA triblock copolymer/cobalt adducts (10–67 wt % PEO) were subsequently prepared by reaction of the alkyne-functionalized PPES block with Co2(CO)8 and their phase behavior was studied by TEM. Heating triblock copolymer/cobalt carbonyl adducts at 120 °C led to cross-linking of the PPES/Co domains and the formation of magnetic cobalt nanoparticles within the PPES/Co domains. Magnetic hydrogels could be prepared by swelling the PEO domains of the cross-linked materials with water. Furthermore, swelling tests, rheological studies and actuation tests demonstrated thatmore » the water capacity and modulus of the hydrogels were dependent upon the composition of the block copolymer precursors.« less

  20. Functionalized magnetic nanoparticles for the decontamination of water polluted with cesium

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed S.; Decorse, Philippe; Perruchot, Christian; Novak, Sophie; Lion, Claude; Ammar, Souad; El Hage Chahine, Jean-Michel; Hémadi, Miryana

    2016-05-01

    Magnetic nanoparticles are attracting considerable interest because of their potential applications in practically all fields of science and technology, including the removal of heavy metals from contaminated waters. It is, therefore, of great importance to adapt the surfaces of these nanoparticles according to the application. In this work advanced nanoparticles (NPs) with well-tailored surface functionalities were synthesized using the polyol method. The efficiency of a chelating agent, succinyl-β-cyclodextrin (SBCD), was first investigated spectrophotometrically and by Isothermal Titration Calorimetry (ITC). SBCD was then grafted onto nanoparticles previously functionalized with 3-aminopropyl triethoxsilane (NP-APTES). The resulting NP-SBCD system was then incubated with a solution of cesium. After magnetic separation, the solid residue was removed from the supernatant and characterized by X-Ray Photoelectron spectrometry (XPS), X-Ray Fluorescence spectrometry (XRF) and Superconducting QUantum Interference Device (SQUID) magnetometry. These characterizations show the presence of cesium in the solid residue, which indicates Cs uptake by the NP-SBCD system. This nanohybrid system constitutes a promising model for heavy metal decontamination.

  1. Lateral flow biosensor for multiplex detection of nitrofuran metabolites based on functionalized magnetic beads.

    PubMed

    Lu, Xuewen; Liang, Xiaoling; Dong, Jianghong; Fang, Zhiyuan; Zeng, Lingwen

    2016-09-01

    The use of potential mutagenic nitrofuran antibiotic in food animal production has been banned world-wide. Common methods for nitrofuran detection involve complex extraction procedures. In the present study, magnetic beads functionalized with antibody against nitrofuran derivative were used as both the extraction and color developing media in lateral flow biosensor. Derivatization reagent carboxybenzaldehyde is firstly modified with ractopamine. After reaction with nitrofuran metabolites, the resultant molecule has two functional groups: the metabolite moiety and the ractopamine moiety. Metabolite moiety is captured by the antibody that is coated on magnetic beads. This duplex is then loaded onto biosensor and ractopamine moiety is further captured by the antibody immobilized on the test zone of nitrocellulose membrane. Without tedious organic reagent-based extraction procedure, this biosensor was capable of visually detecting four metabolites simultaneously with a detection limit of 0.1 μg/L. No cross-reactivity was observed in the presence of 50 μg/L interferential components. Graphical abstract Derivatization of nitrofuran metabolites (AHD, AOZ, SEM, or AMOZ) and LFA detection of the derivative products. PMID:27438720

  2. Magnetically-tunable spin-selective positioning of wave functions in asymmetric semiconductor quantum structures

    NASA Astrophysics Data System (ADS)

    Lee, S.; Titova, L. V.; Furdyna, Jacek K.; Dobrowolska, M.

    2000-03-01

    It has been recently reported that the properties of self-organized CdSe quantum dots (QDs) on ZnSe change significantly when they are grown on ZnMnSe spacers separating CdSe form ZnSe.[1] To explore this effect futher, we have prepared a series of samples by depositing one monolayer (ML) of CdSe on ZnMnSe spacer layers of different thickness and different Mn concentration. The system is then capped with ZnSe. The band structure for this geometry results in an asymmetric quantum structure, where the 1 ML thick CdSe acts as a "well" between barriers comprised of ZnSe on side, and ZnMnSe on the other. When a magnetic field is applied, the Zeeman splitting of the band edges in ZnMnSe spacer moves the position of the wave function toward or away from the spacer, depending on spin orientation. Such spin-selective repositioning of the wave functions is fully confirmed by magnetic field dependence of ground state exciton transitions observed in PL. This work was supported by NSF Grant DMR 9705064. [1]C.S. Kim et.al., 9th International conference on II-VI compounds, Kyoto, Nov. 1-5, 1999.

  3. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

    PubMed Central

    Chen, Yi-Yu; Tsai, Ming-Gen; Chi, Meng-Chun; Wang, Tzu-Fan; Lin, Long-Liu

    2013-01-01

    This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT). Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES) to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT. PMID:23443161

  4. Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films

    NASA Astrophysics Data System (ADS)

    Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee

    2015-04-01

    Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide

  5. Effect of the double-counting functional on the electronic and magnetic properties of half-metallic magnets using the GGA+U method

    NASA Astrophysics Data System (ADS)

    Tsirogiannis, Christos; Galanakis, Iosif

    2015-11-01

    Methods based on the combination of the usual density functional theory (DFT) codes with the Hubbard models are widely used to investigate the properties of strongly correlated materials. Using first-principle calculations we study the electronic and magnetic properties of 20 half-metallic magnets performing self-consistent GGA+U calculations using both the atomic-limit (AL) and around-mean-field (AMF) functionals for the double counting term, used to subtract the correlation part from the DFT total energy, and compare these results to the usual generalized-gradient-approximation (GGA) calculations. Overall the use of AMF produces results similar to the GGA calculations. On the other hand the effect of AL is diversified depending on the studied material. In general the AL functional produces a stronger tendency towards magnetism leading in some cases to unphysical electronic and magnetic properties. Thus the choice of the adequate double-counting functional is crucial for the results obtained using the GGA+U method.

  6. Functional imaging as an indicator of diagnostic information in cardiac magnetic-resonance images

    NASA Astrophysics Data System (ADS)

    Klingler, Joseph W.; Andrews, Lee T.; Begeman, Michael S.; Zeiss, Jacob; Leighton, Richard F.

    1990-08-01

    Magnetic Resonance (MR) images of the human heart provide three dimensional geometric information about the location of cardiac structures throughout the cardiac cycle. Analysis of this four dimensional data set allows detection of abnormal cardiac function related to the presence of coronary artery disease. To assist in this analysis, quantitative measurements of cardiac performance are made from the MR data including ejection fractions, regional wall motion and myocardial wall thickening. Analysis of cardiac performance provided by quantitative analysis of MR data can be aided by computer graphics presentation techniques. Two and three dimensional functional images are computed to indicate regions of abnormality based on the previous methods. The two dimensional images are created using color graphics overlays on the original MR image to represent performance. Polygon surface modeling techniques are used to represent data which is three dimensional, such as blood pool volumes. The surface of these images are color encoded by regional ejection fraction, wall motion or wall thickening. A functional image sequence is constructed at each phase of the cardiac cycle and displayed as a movie loop for review by the physician. Selection of a region on the functional image allows visual interpretation of the original MR images, graphical plots of cardiac function and tabular results. Color encoding is based on absolute measurements and comparison to standard normal templates of cardiac performance.

  7. Group Treatment in Acquired Brain Injury Rehabilitation

    ERIC Educational Resources Information Center

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  8. Comparison of three magnetic bead surface functionalities for RNA extraction and detection.

    PubMed

    Adams, Nicholas M; Bordelon, Hali; Wang, Kwo-Kwang A; Albert, Laura E; Wright, David W; Haselton, Frederick R

    2015-03-25

    Magnetic beads are convenient for extracting nucleic acid biomarkers from biological samples prior to molecular detection. These beads are available with a variety of surface functionalities designed to capture particular subsets of RNA. We hypothesized that bead surface functionality affects binding kinetics, processing simplicity, and compatibility with molecular detection strategies. In this report, three magnetic bead surface chemistries designed to bind nucleic acids, silica, oligo (dT), and a specific oligonucleotide sequence were evaluated. Commercially available silica-coated and oligo (dT) beads, as well as beads functionalized with oligonucleotides complementary to respiratory syncytial virus (RSV) nucleocapsid gene, respectively recovered ∼75, ∼71, and ∼7% target RSV mRNA after a 1 min of incubation time in a surrogate patient sample spiked with the target. RSV-specific beads required much longer incubation times to recover amounts of the target comparable to the other beads (∼77% at 180 min). As expected, silica-coated beads extracted total RNA, oligo (dT) beads selectively extracted total mRNA, and RSV-specific beads selectively extracted RSV N gene mRNA. The choice of bead functionality is generally dependent on the target detection strategy. The silica-coated beads are most suitable for applications that require nucleic acids other than mRNA, especially with detection strategies that are tolerant of a high concentration of nontarget background nucleic acids, such as RT-PCR. On the other hand, oligo (dT) beads are best-suited for mRNA targets, as they bind biomarkers rapidly, have relatively high recovery, and enable detection strategies to be performed directly on the bead surface. Sequence-specific beads may be best for applications that are not tolerant of a high concentration of nontarget nucleic acids that require short RNA sequences without poly(A) tails, such as microRNAs, or that perform RNA detection directly on the bead surface.

  9. L-cysteine functionalized magnetic nanoparticles (LCMNP): a novel magnetically separable organocatalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitriles in water.

    PubMed

    Khalafi-Nezhad, Ali; Nourisefat, Maryam; Panahi, Farhad

    2015-07-28

    In this study, L-cysteine was chemically grafted to magnetic nanoparticles in order to prepare a reusable magnetic material incorporating an amino acid moiety. For this purpose, silica-coated magnetic nanoparticles (Fe3O4@SiO2) were reacted with trimethoxy(vinyl)silane to produce vinyl-functionalized magnetic nanoparticles (VMNP). Reaction of a VMNP substrate with L-cysteine in the presence of azobisisobutyronitrile (AIBN) resulted in the production of L-cysteine-functionalized magnetic nanoparticles (LCMNP). The LCMNP material was characterized using different microscopy and spectroscopy techniques such as FT-IR, XRD, TEM, SEM, EDX, VSM, and elemental analysis. Also, LCMNP was analyzed by thermogravimetric analysis (TGA) in order to determine its thermal behavior. The applicability of the LCMNP material was evaluated in a three-component coupling reaction between a nucleophile, salicylaldehyde and malononitrile as the catalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives. The catalyst system showed high catalytic activity in this process and target products were obtained in high isolated yields in water as a green solvent. The LCMNP catalyst was reusable in this reaction at least 7 times with no significant decrease in its catalytic activity.

  10. Functional magnetic resonance imaging blood oxygenation level-dependent signal and magnetoencephalography evoked responses yield different neural functionality in reading.

    PubMed

    Vartiainen, Johanna; Liljeström, Mia; Koskinen, Miika; Renvall, Hanna; Salmelin, Riitta

    2011-01-19

    It is often implicitly assumed that the neural activation patterns revealed by hemodynamic methods, such as functional magnetic resonance imaging (fMRI), and electrophysiological methods, such as magnetoencephalography (MEG) and electroencephalography (EEG), are comparable. In early sensory processing that seems to be the case, but the assumption may not be correct in high-level cognitive tasks. For example, MEG and fMRI literature of single-word reading suggests differences in cortical activation, but direct comparisons are lacking. Here, while the same human participants performed the same reading task, analysis of MEG evoked responses and fMRI blood oxygenation level-dependent (BOLD) signals revealed marked functional and spatial differences in several cortical areas outside the visual cortex. Divergent patterns of activation were observed in the frontal and temporal cortex, in accordance with previous separate MEG and fMRI studies of reading. Furthermore, opposite stimulus effects in the MEG and fMRI measures were detected in the left occipitotemporal cortex: MEG evoked responses were stronger to letter than symbol strings, whereas the fMRI BOLD signal was stronger to symbol than letter strings. The EEG recorded simultaneously during MEG and fMRI did not indicate neurophysiological differences that could explain the observed functional discrepancies between the MEG and fMRI results. Acknowledgment of the complementary nature of hemodynamic and electrophysiological measures, as reported here in a cognitive task using evoked response analysis in MEG and BOLD signal analysis in fMRI, represents an essential step toward an informed use of multimodal imaging that reaches beyond mere combination of location and timing of neural activation.

  11. Magnetic capture from blood rescues molecular motor function in diagnostic nanodevices

    PubMed Central

    2013-01-01

    Background Introduction of effective point-of-care devices for use in medical diagnostics is part of strategies to combat accelerating health-care costs. Molecular motor driven nanodevices have unique potentials in this regard due to unprecedented level of miniaturization and independence of external pumps. However motor function has been found to be inhibited by body fluids. Results We report here that a unique procedure, combining separation steps that rely on antibody-antigen interactions, magnetic forces applied to magnetic nanoparticles (MPs) and the specificity of the actomyosin bond, can circumvent the deleterious effects of body fluids (e.g. blood serum). The procedure encompasses the following steps: (i) capture of analyte molecules from serum by MP-antibody conjugates, (ii) pelleting of MP-antibody-analyte complexes, using a magnetic field, followed by exchange of serum for optimized biological buffer, (iii) mixing of MP-antibody-analyte complexes with actin filaments conjugated with same polyclonal antibodies as the magnetic nanoparticles. This causes complex formation: MP-antibody-analyte-antibody-actin, and magnetic separation is used to enrich the complexes. Finally (iv) the complexes are introduced into a nanodevice for specific binding via actin filaments to surface adsorbed molecular motors (heavy meromyosin). The number of actin filaments bound to the motors in the latter step was significantly increased above the control value if protein analyte (50–60 nM) was present in serum (in step i) suggesting appreciable formation and enrichment of the MP-antibody-analyte-antibody-actin complexes. Furthermore, addition of ATP demonstrated maintained heavy meromyosin driven propulsion of actin filaments showing that the serum induced inhibition was alleviated. Detailed analysis of the procedure i-iv, using fluorescence microscopy and spectroscopy identified main targets for future optimization. Conclusion The results demonstrate a promising approach for

  12. 16 CFR 801.2 - Acquiring and acquired persons.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.2 Acquiring... each holds half of V's shares. Therefore, A and B each control V (see § 801.1(b)), and V is included...” are acquiring persons. (b) Except as provided in paragraphs (a) and (b) of § 801.12, the...

  13. 16 CFR 801.2 - Acquiring and acquired persons.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.2 Acquiring... each holds half of V's shares. Therefore, A and B each control V (see § 801.1(b)), and V is included...” are acquiring persons. (b) Except as provided in paragraphs (a) and (b) of § 801.12, the...

  14. 16 CFR 801.2 - Acquiring and acquired persons.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...” are acquiring persons. (b) Except as provided in paragraphs (a) and (b) of § 801.12, the person(s.... Examples: 1. Corporation A (the ultimate parent entity included within person “A”) proposes to acquire Y, a... to be carried out by merging Y into X, a wholly-owned subsidiary of A, with X surviving, and...

  15. 16 CFR 801.2 - Acquiring and acquired persons.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...” are acquiring persons. (b) Except as provided in paragraphs (a) and (b) of § 801.12, the person(s.... Examples: 1. Corporation A (the ultimate parent entity included within person “A”) proposes to acquire Y, a... to be carried out by merging Y into X, a wholly-owned subsidiary of A, with X surviving, and...

  16. Congenital and acquired bleeding disorders in infancy.

    PubMed

    Campbell, Sally Elizabeth; Bolton-Maggs, Paula H B

    2015-11-01

    The diagnosis of congenital and acquired bleeding disorders in infants requires an understanding of developmental haemostasis and the effect on laboratory testing. A systematic approach to bleeding in neonates will aid clinicians in the diagnosis and treatment, which may be caused by a wide variety of diseases. The clinical setting will help to direct the diagnostic pathway. This review will focus on the presentation and diagnosis of congenital and acquired bleeding disorders, including platelet disorders. Current research in this field is ongoing, including investigation into neonatal platelets and their different functionalities, platelet transfusion thresholds and how changes in coagulation factors may be linked to other homeostatic mechanisms.

  17. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    PubMed

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-01

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order. PMID:27430742

  18. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    PubMed

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-01

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.

  19. Vacancy-induced magnetism in BaTiO3(001) thin films based on density functional theory.

    PubMed

    Cao, Dan; Cai, Meng-Qiu; Hu, Wang-Yu; Yu, Ping; Huang, Hai-Tao

    2011-03-14

    The origin of magnetism induced by vacancies on BaTiO(3)(001) surfaces is investigated systematically by first-principles calculations within density-functional theory. The calculated results show that O vacancy is responsible for the magnetism of the BaO-terminated surface and the magnetism of the TiO(2)-terminated surface is induced by Ti vacancy. For the BaO-terminated surface, the magnetism mainly arises from the unpaired electrons that are localized in the O vacancy basin. In contrast, for the TiO(2)-terminated surface, the magnetism mainly originates from the partially occupied O-2p states of the first nearest neighbor O atoms surrounding the Ti vacancy. These results suggest the possibility of implementing magneto-electric coupling in conventional ferroelectric materials.

  20. Evolution of an electron energy distribution function in a weak dc magnetic field in solenoidal inductive plasma

    SciTech Connect

    Lee, Min-Hyong; Choi, Seong Wook

    2008-12-01

    We investigated the evolution of the electron energy distribution function (EEDF) in a solenoidal inductively coupled plasma surrounded by an axial dc magnetic field. The increase in the dc magnetic field caused the EEDF to evolve from a bi-Maxwellian to a Maxwellian distribution. At the discharge center, the number of low energy electrons was significantly reduced while the high energy electron population showed little change when a weak dc magnetic field was present. However, at the discharge radial boundary, the high energy electron population decreased significantly with the magnetic field while the change in low energy population was not prominent compared to the discharge boundary. These changes in EEDFs at the boundary and center of the discharge are due to the radial confinement and the restriction of radial transport of electrons by dc magnetic field.

  1. Neural Alterations in Acquired Age-Related Hearing Loss

    PubMed Central

    Mudar, Raksha A.; Husain, Fatima T.

    2016-01-01

    Hearing loss is one of the most prevalent chronic health conditions in older adults. Growing evidence suggests that hearing loss is associated with reduced cognitive functioning and incident dementia. In this mini-review, we briefly examine literature on anatomical and functional alterations in the brains of adults with acquired age-associated hearing loss, which may underlie the cognitive consequences observed in this population, focusing on studies that have used structural and functional magnetic resonance imaging, diffusion tensor imaging, and event-related electroencephalography. We discuss structural and functional alterations observed in the temporal and frontal cortices and the limbic system. These neural alterations are discussed in the context of common cause, information-degradation, and sensory-deprivation hypotheses, and we suggest possible rehabilitation strategies. Although, we are beginning to learn more about changes in neural architecture and functionality related to age-associated hearing loss, much work remains to be done. Understanding the neural alterations will provide objective markers for early identification of neural consequences of age-associated hearing loss and for evaluating benefits of intervention approaches. PMID:27313556

  2. Parceling of mesial frontal motor areas during ideation and movement using functional magnetic resonance imaging at 1.5 tesla.

    PubMed

    Tyszka, J M; Grafton, S T; Chew, W; Woods, R P; Colletti, P M

    1994-06-01

    Finger movement-related responses were identified in three discrete sites of mesial frontal cortex in 7 normal subjects using high resolution functional magnetic resonance imaging. During imagination of the same movements there was a differential response with rostral areas more active than caudal areas. Humans have multiple motor areas in mesial frontal cortex that subserve different functions in motor planning and execution.

  3. Affinity capture using peptide-functionalized magnetic nanoparticles to target Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Kuo, Fang-Yin; Lin, Wei-Lien; Chen, Yu-Chie

    2016-04-01

    Staphylococcus aureus, a commonly found pathogen, can cause food poisoning and infections. Thus, it is necessary to develop analytical methods for the rapid screening of S. aureus in suspicious samples. Magnetic nanoparticles (MNPs) are widely used as affinity probes to selectively enrich target species from complex samples because of their high specific surface area and magnetic properties. The MNP surface should be functionalized to have the capability to target specific species. We herein propose a straightforward method to functionalize aluminum oxide-coated iron oxide (Fe3O4@Al2O3) MNPs with the peptide HHHHHHDEEGLFVD (D). The peptide D was comprised of three domains: polyhistidine (H6) used as the linker, DEE added as the spacer, and GLFVD used for targeting S. aureus. D was immobilized on the surface of Fe3O4@Al2O3 MNPs through H6-Al chelation. Our results showed that the D-functionalized Fe3O4@Al2O3 MNPs (D-Fe3O4 MNPs) possess the capability to target S. aureus. The selective trapping experiments were conducted under microwave-heating for only 60 s, and sufficient bacterial cells were trapped by the MNPs to be identified by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). We demonstrated that the D-Fe3O4@Al2O3 MNPs combined with MALDI-MS can be used to rapidly characterize trace amounts of S. aureus in complex juice and egg samples.Staphylococcus aureus, a commonly found pathogen, can cause food poisoning and infections. Thus, it is necessary to develop analytical methods for the rapid screening of S. aureus in suspicious samples. Magnetic nanoparticles (MNPs) are widely used as affinity probes to selectively enrich target species from complex samples because of their high specific surface area and magnetic properties. The MNP surface should be functionalized to have the capability to target specific species. We herein propose a straightforward method to functionalize aluminum oxide-coated iron oxide (Fe3O4@Al2O3) MNPs with the

  4. Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease.

    PubMed

    Pinto, Serge; Mancini, Laura; Jahanshahi, Marjan; Thornton, John S; Tripoliti, Elina; Yousry, Tarek A; Limousin, Patricia

    2011-10-01

    Among the repertoire of motor functions, although hand movement and speech production tasks have been investigated widely by functional neuroimaging, paradigms combining both movements have been studied less so. Such paradigms are of particular interest in Parkinson's disease, in which patients have specific difficulties performing two movements simultaneously. In 9 unmedicated patients with Parkinson's disease and 15 healthy control subjects, externally cued tasks (i.e., hand movement, speech production, and combined hand movement and speech production) were performed twice in a random order and functional magnetic resonance imaging detected cerebral activations, compared to the rest. F-statistics tested within-group (significant activations at P values < 0.05, familywise error corrected), between-group, and between-task comparisons (regional activations significant at P values < 0.001, uncorrected, with cluster size > 10 voxels). For control subjects, the combined task activations comprised the sum of those obtained during hand movement and speech production performed separately, reflecting the neural correlates of performing movements sharing similar programming modalities. In patients with Parkinson's disease, only activations underlying hand movement were observed during the combined task. We interpreted this phenomenon as patients' potential inability to recruit facilitatory activations while performing two movements simultaneously. This lost capacity could be related to a functional prioritization of one movement (i.e., hand movement), in comparison with the other (i.e., speech production). Our observation could also reflect the inability of patients with Parkinson's disease to intrinsically engage the motor coordination necessary to perform a combined task.

  5. Influence of intermittency on the anisotropy of magnetic structure functions of solar wind turbulence

    NASA Astrophysics Data System (ADS)

    Pei, Zhongtian; He, Jiansen; Wang, Xin; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua; Yan, Limei

    2016-02-01

    Intermittency appears to be connected with the spectral anisotropy of solar wind turbulence. We use the Local Intermittency Measure to identify and remove intermittency from the magnetic field data measured by the Ulysses spacecraft in fast solar wind. Structure functions are calculated based on the time sequences as obtained before and after removing intermittency and arranged by time scale (τ) and ΘRB (the angle between local mean magnetic field B0 and radial direction R). Thus, the scaling exponent (ξ(p, ΘRB)) of every structure function of order (p) is obtained for different angles. Before removing intermittency, ξ(p, ΘRB) shows a distinctive dependence on ΘRB: from monofractal scaling law at ΘRB ~0° to multifractal scaling law at ΘRB ~90°. In contrast after eliminating the intermittency, ξ(p, ΘRB) is found to be more monofractal for all ΘRB. The extended structure-function model is applied to ξ(p, ΘRB), revealing differences of its fitting parameters α (a proxy of the power spectral index) and P1 (fragmentation fraction) for the cases with and without intermittency. Parameter α shows an evident angular trend falling from 1.9 to 1.6 for the case with intermittency but has a relatively flat profile around 1.8 for the case without intermittency. Parameter P1 rises from around 0.5 to above 0.8 with increasing ΘRB for the intermittency case and is located between 0.5 and 0.8 for the case lacking intermittency. Therefore, we may infer that it is the anisotropy of intermittency that causes the scaling anisotropy of energy spectra and the unequal fragmentation of energy cascading.

  6. Magnetic properties and paleointensities as function of depth in a Hawai'ian lava flow

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; de Groot, L. V.; ter Maat, G. W.

    2013-12-01

    The outcome of paleointensity experiments largely depends on the rock-magnetic properties of the samples. To assess the relation between volcanic emplacement processes and rock-magnetic properties we sampled a vertical transect in a ~6 m thick inflated lava flow at Hawai'i, with an age of 588 (558 - 640) AD (Rubin et al., 1987, recalibrated with INTCAL.09). This profile was sampled at sixteen levels in the flow; at six of these levels up to twelve samples were taken horizontally to have sufficient sample material for paleointensity experiments. Samples from all levels were rock magnetically characterized by determining hysteresis loops and FORC (first-order-reversal-curve) diagrams, and the low-field susceptibility, all at room temperature. To test for thermochemical alteration the temperature dependence of the low-field susceptibility and magnetization was determined. Overall, rock magnetic properties appear to vary as function of distance from the top; the observations can be correlated to the typical cooling rate profile for such a flow. The solidified crust under which the flow continued to flow during emplacement is ~1.8 m thick. Its rock-magnetic properties - notably the low-field susceptibility and the coercivity ratio - are more variable than those of the inflated part underneath. FORC diagrams indicate a fair portion of very small superparamagnetic particles in the top and to a lesser extent the bottom parts of the flow. In line with their faster cooling the dominant titanomagnetite composition is ~TM60 with associated low Curie and unblocking temperatures. The titanomagnetite in the slower cooled central part of the flow is unmixed into the magnetite (~TM0) and ülvospinel end-members; the remanence has therefore high Curie and unblocking temperatures. FORC diagrams and hysteresis parameters indicate larger pseudo-single-domain particles. We performed both IZZI-Thellier and calibrated pseudo-Thellier (AGU Fall 2012 contribution GP43A-1122, submitted

  7. Surface Functionalization of Magnetic Iron Oxide Nanoparticles for MRI Applications – Effect of Anchoring Group and Ligand Exchange Protocol

    PubMed Central

    Smolensky, Eric D.; Park, Hee-Yun E.; Berquó, Thelma S.; Pierre, Valérie C.

    2011-01-01

    Hydrophobic magnetite nanoparticles synthesized from thermal decomposition of iron salts must be rendered hydrophilic for their application as MRI contrast agents. This process requires refunctionalizing the surface of the nanoparticles with a hydrophilic organic coating such as polyethylene glycol. Two parameters were found to influence the magnetic behavior and relaxivity of the resulting hydrophilic iron oxide nanoparticles: the functionality of the anchoring group and the protocol followed for the functionalization. Nanoparticles coated with PEGs via a catecholate-type anchoring moiety maintain the saturation magnetization and relaxivity of the hydrophobic magnetite precursor. Other anchoring functionalities, such as phosphonate, carboxylate, and dopamine decrease the magnetization and relaxivity of the contrast agent. The protocol for functionalizing the nanoparticles also influences the magnetic behavior of the material. Nanoparticles refunctionalized according to a direct biphasic protocol exhibit higher relaxivity than those refunctionalized according to a two-step procedure which first involves stripping the nanoparticles. This research presents the first systematic study of both the binding moiety and the functionalization protocol on the relaxivity and magnetization of water-soluble coated iron oxide nanoparticles used as MRI contrast agents. PMID:21861279

  8. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    PubMed Central

    Cao, Yue; Wang, Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  9. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  10. Towards an automated selection of spontaneous co-activity maps in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Sourty, Marion; Thoraval, Laurent; Roquet, Daniel; Armspach, Jean-Paul; Foucher, Jack

    2015-03-01

    Functional magnetic resonance imaging allows to assess large scale functional integration of the brain. One of the leading techniques to extract functionally relevant networks is spatial independent component analysis (ICA). Spatial ICA separates independent spatial sources, many of whom are noise or imaging artifacts, whereas some do correspond to functionally relevant Spontaneous co-Activity Maps (SAMs). For research purposes, ICA is generally performed on group data. This strategy is well adapted to uncover commonly shared networks, e.g. resting-state networks, but fails to capture idiosyncratic functional networks which may be related to pathological activity, e.g. epilepsy, hallucinations. To capture these subject specific networks, ICA has to be applied to single subjects using a large number of components, from which a tenth are SAMs. Up to now, SAMs have to be selected manually by an expert based on predefined criteria. We aim to semi-automate the selection process in order to save time. To this end, some approaches have been proposed but none with the near 100 % sensitivity required for clinical purposes. In this paper, we propose a computerized version of the SAM's criteria used by experts, based on frequential and spatial characteristics of functional networks. Here we present a pre-selection method and its results at different resolutions, with different scanners or imaging sequences. While preserving a near 100 % sensitivity, it allows an average of 70 % reduction of components to be classified which save 55% of experts' time. In comparison, group ICA fails to detect about 25% of the SAMs.

  11. Acquired bleeding disorders in the elderly.

    PubMed

    Kruse-Jarres, Rebecca

    2015-01-01

    The hemostatic balance changes with advancing age which may be due to factors such as platelet activation, increase of certain clotting factor proteins, slowing of the fibrinolytic system, and modification of the endothelium and blood flow. Generally, this predisposes the elderly to thrombosis rather than bleeding. It often necessitates antiplatelet or anticoagulation therapy, which can cause significant bleeding problems in an aging population. Additionally, changing renal function, modification in immune regulation, and a multitude of other disease processes, can give rise to acquired bleeding disorders. Bleeding can prove difficult to treat in a dynamic environment and in a population that may have underlying thrombotic risk factors.This article discusses some specific challenges of acquired bleeding arising in the elderly. The use of anticoagulation and nonsteroidal anti-inflammatory medications is prevalent in the treatment of the elderly and predisposes them to increased bleeding risk as their physiology changes. When prescribing and monitoring these therapies, it is exceedingly important to weigh thrombotic versus bleeding risks. There are additional rare acquired bleeding disorders that predominantly affect the elderly. One of them is acquired hemophilia, which is an autoimmune disorder arising from antibodies against factor VIII. The treatment challenge rests in the use of hemostatic agents in a population that is already at increased risk for thrombotic complications. Another rare disorder of intensifying interest, acquired von Willebrand syndrome, has a multitude of etiologic mechanisms. Understanding the underlying pathophysiology is essential in making a treatment decision for this disorder.

  12. Acquiring and Organizing Curriculum Materials.

    ERIC Educational Resources Information Center

    Lare, Gary A.

    This book addresses two areas of need in a curriculum materials center--where to find curriculum materials for acquisition and how to organize these materials for efficient and effective access once they are acquired. The book is arranged in two parts: "Acquiring and Organizing the Collection" and "Resources." The book brings together many…

  13. Electronic and magnetic properties of N-N split substitution in GaAs: A hybrid density functional study

    SciTech Connect

    Huang, Ruiqi; Wang, Qingxia; Cai, Xiaolin; Li, Chong; Jia, Yu; Wang, Fei; Wang, Sanjun

    2015-07-15

    Employing the first-principles combined with hybrid functional calculations, the electronic and magnetic properties of GaAs doped with a N{sub 2} molecule are investigated in this work. We find that in Ga{sub 32}As{sub 31}(N{sub 2}){sub As} the N-N split is able to saturate the dangling bond of Ga atom ,form sp{sup 3}-like hybridization, and simultaneously supply an extra localized electron, leading to a magnetic ground state with a magnetic moment of ∼1μ{sub B}. This magnetic ground state is different from previously nonmagnetic results predicted by PBE functional, which results from the self-interaction error inherent in semi-local density functional theory. Moreover, the band gap of magnetic ground state of Ga{sub 32}As{sub 31}(N{sub 2}){sub As} alloy decreases, which is relative to GaAs . Finally we discuss and explain why the magnetism is not discovered in previous experiments and theories.

  14. Quantal density-functional theory in the presence of a magnetic field

    SciTech Connect

    Yang Tao; Pan Xiaoyin; Sahni, Viraht

    2011-04-15

    We generalize the quantal density-functional theory (QDFT) of electrons in the presence of an external electrostatic field E(r)=-{nabla}v(r) to include an external magnetostatic field B(r)={nabla}xA(r), where (v(r),A(r)) are the respective scalar and vector potentials. The generalized QDFT, valid for nondegenerate ground and excited states, is the mapping from the interacting system of electrons to a model of noninteracting fermions with the same density {rho}(r) and physical current density j(r), and from which the total energy can be obtained. The properties ({rho}(r),j(r)) constitute the basic quantum-mechanical variables because, as proved previously, for a nondegenerate ground state they uniquely determine the potentials (v(r),A(r)). The mapping to the noninteracting system is arbitrary in that the model fermions may be either in their ground or excited state. The theory is explicated by application to a ground state of the exactly solvable (two-dimensional) Hooke's atom in a magnetic field, with the mapping being to a model system also in its ground state. The majority of properties of the model are obtained in closed analytical or semianalytical form. A comparison with the corresponding mapping from a ground state of the (three-dimensional) Hooke's atom in the absence of a magnetic field is also made.

  15. A Combined Density Functional Theory and Monte Carlo Study of Manganites for Magnetic Refrigeration

    NASA Astrophysics Data System (ADS)

    Korotana, Romi; Mallia, Giuseppe; Gercsi, Zsolt; Harrison, Nicholas

    2015-03-01

    Perovskite oxides are considered to be strong candidates for applications in magnetic refrigeration technology, due to their remarkable properties, in addition to low processing costs. Manganites with the general formula R1-xAxMnO3, particularly for A=Ca and 0 . 2 < x < 0 . 5 , undergo a field driven transition from a paramagnetic to ferromagnetic state, which is accompanied by changes in the lattice and electronic structure. Therefore, one may anticipate a large entropy change across the phase transition due to the first order nature. The present work aims to achieve an understanding of the relevant structural, magnetic, and electronic entropy contributions in the doped compound La0.75Ca0.25MnO3. A combination of thermodynamics and first principles theory is applied to determine individual contributions to the total entropy change of the system. Hybrid-exchange density functional (B3LYP) calculations for La0.75Ca0.25MnO3 predict an anti-Jahn-Teller polaron in the localised hole state, which is influenced by long-range cooperative Jahn-Teller distortions. Through the analysis of individual entropy contributions, it is identified that the electronic and vibrational terms have a deleterious effect on the total entropy change.

  16. Transients may occur in functional magnetic resonance imaging without physiological basis.

    PubMed

    Renvall, Ville; Hari, Riitta

    2009-12-01

    Functional magnetic resonance imaging (fMRI) has revolutionized the study of human brain activity, in both basic and clinical research. The commonly used blood oxygen level dependent (BOLD) signal in fMRI derives from changes in oxygen saturation of cerebral blood flow as a result of brain activity. Beyond the traditional spatial mapping of stimulus-activation correspondences, the detailed waveforms of BOLD responses are of high interest. Especially intriguing are the transient overshoots and undershoots, often, although inconclusively, attributed to the interplay between changes in cerebral blood flow and volume after neuronal activation. While physically simulating the BOLD response in fMRI phantoms, we encountered prominent transient deflections, although the magnetic field inside the phantom varied in a square-wave manner. Detailed analysis and modeling indicated that the transients arise from activation-related partial misalignment of the imaging slices and depend heavily on measurement parameters, such as the time between successive excitations. The results suggest that some transients encountered in normal fMRI recordings may be spurious, potentially compromising the physiological interpretation of BOLD signal overshoots and undershoots.

  17. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study

    PubMed Central

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d’Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an “in-love” group (LG, N = 34, currently intensely in love), an “ended-love” group (ELG, N = 34, ended romantic relationship recently), and a “single” group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate

  18. 2-Deoxy-D-Glucose Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging.

    PubMed

    Zhao, Lingyun; Zheng, Yajing; Yan, Hao; Xie, WenSheng; Sun, Xiaodan; Li, Ning; Tang, Jintian

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with appropriate surface chemistry have attracted wild attention in medical and biological application because of their current and potential usefulness such as magnetic resonance imaging (MRI) contrast enhancement, magnetic mediated hyperthermia (MMH), immunoassay, and in drug delivery, etc. In this study, we investigated the MRI contrast agents and MMH mediators properties of the novel 2-deoxy-D-glucose (2-DG) modified SPIONs. As a non-metabolizable glucose analogue, 2-DG can block glycolysis and inhibits protein glycosylation. Moreover, SPIONs coated with 2-DG molecules can be particularly attractive to resource-hungry cancer cells, therefore to realize the targeting strategy for the SPIONs. SPIONs with amino silane as the capping agent for amino-group surface modification were synthesized by the chemical co-precipitation method with modification. Glutaraldehyde was further applied as an activation agent through which 2-DG was conjugated to the amino-coated SPIONs. Physicochemical characterizations of the 2-DG-SPIONs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), ζ-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the 2-DG-SPIONs were analyzed by exposing the SPIONs suspension (magnetic fluid) under alternative magnetic field (AMF). U-251 human glioma cells with expression of glucose transport proteins type 1 and 3 (GLUT1 and GLUT 3), and L929 murine fibroblast cell as negative control, were employed to study the effect of 2-DG modification on the cell uptake for SPIONs. TEM images for ultra-thin sections as well as ICP-MS were applied to evaluate the SPIONs internalization within the cells. In vitro MRI was performed after cells were co-incubated with SPIONs and the T2 relaxation time was measured and compared. The results demonstrate that 2-DG-SPIONs were supermagnetic and in

  19. 2-Deoxy-D-Glucose Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging.

    PubMed

    Zhao, Lingyun; Zheng, Yajing; Yan, Hao; Xie, WenSheng; Sun, Xiaodan; Li, Ning; Tang, Jintian

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with appropriate surface chemistry have attracted wild attention in medical and biological application because of their current and potential usefulness such as magnetic resonance imaging (MRI) contrast enhancement, magnetic mediated hyperthermia (MMH), immunoassay, and in drug delivery, etc. In this study, we investigated the MRI contrast agents and MMH mediators properties of the novel 2-deoxy-D-glucose (2-DG) modified SPIONs. As a non-metabolizable glucose analogue, 2-DG can block glycolysis and inhibits protein glycosylation. Moreover, SPIONs coated with 2-DG molecules can be particularly attractive to resource-hungry cancer cells, therefore to realize the targeting strategy for the SPIONs. SPIONs with amino silane as the capping agent for amino-group surface modification were synthesized by the chemical co-precipitation method with modification. Glutaraldehyde was further applied as an activation agent through which 2-DG was conjugated to the amino-coated SPIONs. Physicochemical characterizations of the 2-DG-SPIONs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), ζ-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the 2-DG-SPIONs were analyzed by exposing the SPIONs suspension (magnetic fluid) under alternative magnetic field (AMF). U-251 human glioma cells with expression of glucose transport proteins type 1 and 3 (GLUT1 and GLUT 3), and L929 murine fibroblast cell as negative control, were employed to study the effect of 2-DG modification on the cell uptake for SPIONs. TEM images for ultra-thin sections as well as ICP-MS were applied to evaluate the SPIONs internalization within the cells. In vitro MRI was performed after cells were co-incubated with SPIONs and the T2 relaxation time was measured and compared. The results demonstrate that 2-DG-SPIONs were supermagnetic and in

  20. Functionalized magnetic microparticle-based colorimetric platform for influenza A virus detection.

    PubMed

    Chen, Chaohui; Zou, Zhong; Chen, Lu; Ji, Xinghu; He, Zhike

    2016-10-28

    A colorimetric platform for influenza A virus detection was developed by using the high efficiency of enzymatic catalysis and the reduction of gold ions with hydrogen peroxide. Aptamer-functionalized magnetic microparticles were synthesized to capture the influenza A virus. This was followed by the binding of ConA-GOx-AuNPs to the H3N2 virus through the ConA-glycan interaction. The sandwich complex was subsequently dispersed in glucose solution to trigger an enzymatic reaction to produce hydrogen peroxide, which controlled the growth of gold nanoparticles and produced colored solutions. The determination of H3N2 concentration was realized by comparing the two differently colored gold nanoparticles. This method could detect the target virus as low as 11.16 μg ml(-1). Furthermore, it opens new opportunities for sensitive and colorimetric detection of viruses and proteins. PMID:27655150

  1. Who is telling what from where? A functional magnetic resonance imaging study.

    PubMed

    Mathiak, Klaus; Menning, Hans; Hertrich, Ingo; Mathiak, Krystyna A; Zvyagintsev, Mikhail; Ackermann, Hermann

    2007-03-26

    The human central-auditory system exhibits distinct lateralization effects (speech, space) and encompasses different processing pathways (where, what, who). Using spatialized pseudoword utterances, attentional modulation of the networks bound to sound source localization ('where'), voice recognition ('who'), and the encoding of phonetic-linguistic information ('what') was evaluated by silent functional magnetic resonance imaging. The 'where'-pathway was found to be restricted to posterior parts of the left superior temporal gyrus, speaker ('auditory face') identification exclusively activated temporal lobe structures, and the representation of the sound structure of the utterances was associated with hemodynamic activation of Broca's area. Speech perception in space, therefore, engages at least three distinct neural networks. Furthermore, the findings indicate that voice recognition may depend upon template matching within auditory association cortex whereas the sequencing of phonetic-linguistic information extends to frontal areas. PMID:17496793

  2. Functionalized magnetic microparticle-based colorimetric platform for influenza A virus detection.

    PubMed

    Chen, Chaohui; Zou, Zhong; Chen, Lu; Ji, Xinghu; He, Zhike

    2016-10-28

    A colorimetric platform for influenza A virus detection was developed by using the high efficiency of enzymatic catalysis and the reduction of gold ions with hydrogen peroxide. Aptamer-functionalized magnetic microparticles were synthesized to capture the influenza A virus. This was followed by the binding of ConA-GOx-AuNPs to the H3N2 virus through the ConA-glycan interaction. The sandwich complex was subsequently dispersed in glucose solution to trigger an enzymatic reaction to produce hydrogen peroxide, which controlled the growth of gold nanoparticles and produced colored solutions. The determination of H3N2 concentration was realized by comparing the two differently colored gold nanoparticles. This method could detect the target virus as low as 11.16 μg ml(-1). Furthermore, it opens new opportunities for sensitive and colorimetric detection of viruses and proteins.

  3. Mapping brain region activity during chewing: a functional magnetic resonance imaging study.

    PubMed

    Onozuka, M; Fujita, M; Watanabe, K; Hirano, Y; Niwa, M; Nishiyama, K; Saito, S

    2002-11-01

    Mastication has been suggested to increase neuronal activities in various regions of the human brain. However, because of technical difficulties, the fine anatomical and physiological regions linked to mastication have not been fully elucidated. Using functional magnetic resonance imaging during cycles of rhythmic gum-chewing and no chewing, we therefore examined the interaction between chewing and brain regional activity in 17 subjects (aged 20-31 years). In all subjects, chewing resulted in a bilateral increase in blood oxygenation level-dependent (BOLD) signals in the sensorimotor cortex, supplementary motor area, insula, thalamus, and cerebellum. In addition, in the first three regions, chewing of moderately hard gum produced stronger BOLD signals than the chewing of hard gum. However, the signal was higher in the cerebellum and not significant in the thalamus, respectively. These results suggest that chewing causes regional increases in brain neuronal activities which are related to biting force.

  4. Quantification of cardiovascular disease biomarkers via functionalized magnetic beads and on-demand detachable quantum dots.

    PubMed

    Park, Hoyoung; Lee, Jong-Wook; Hwang, Mintai P; Lee, Kwan Hyi

    2013-09-21

    Cardiovascular disease (CVD) is a potent cause of mortality in both advanced and developing countries. While soluble CD40L (sCD40L) has been implicated as a correlative factor among CVD patients, methods to quantify sCD40L are not yet well-established. In this paper, we present an ability to separate and quantify sCD40L via a simple immunomagnetic assay. Composed of functionalized magnetic beads conferred with directionality and on-demand detachable quantum dots for subsequent optical analysis, our system utilizes the competitive nature of imidazole and nickel ions for histidine. In essence, we demonstrate the capacity to effectively separate and detect sCD40L within a clinically relevant range that contains the cut-off value for acute coronary disease. While sCD40L was used to conduct this study, we envision the use of our system for the separation and quantification of other biomarkers. PMID:23893124

  5. Studies of chinese original quiet sitting by using functional magnetic resonance imaging.

    PubMed

    Liou, Chien-Hui; Hsieh, Chang-Wei; Hsieh, Chao-Hsien; Chen, Jyh-Horng; Wang, Chi-Hong; Lee, Si-Chen

    2005-01-01

    Since different meditations may activate different regions in brain, we can use functional magnetic resonance imaging (fMRI) to investigate it. Chinese original quiet sitting is mainly one kind of traditional Chinese meditation. It contains two different parts: a short period of keeping phrase and intake spiritual energy, and a long period of relaxation with no further action. In this paper, both those two stages were studied by fMRI. We performed two different paradigms and found the accurate positions in the brain. The pineal gland and the hypothalamus showed positive activation during the first and second stages of this meditation. The BOLD (Blood Oxygenation Level Dependent) signal changes had also been found.

  6. Improving the Description of Nonmagnetic and Magnetic Molecular Crystals via the van der Waals Density Functional

    NASA Astrophysics Data System (ADS)

    Obata, Masao; Nakamura, Makoto; Hamada, Ikutaro; Oda, Tatsuki

    2015-02-01

    We have derived and implemented a stress tensor formulation for the van der Waals density functional (vdW-DF) with spin-polarization-dependent gradient correction (GC) recently proposed by the authors [J. Phys. Soc. Jpn. 82, 093701 (2013)] and applied it to nonmagnetic and magnetic molecular crystals under ambient condition. We found that the cell parameters of the molecular crystals obtained with vdW-DF show an overall improvement compared with those obtained using local density and generalized gradient approximations. In particular, the original vdW-DF with GC gives the equilibrium structural parameters of solid oxygen in the α-phase, which are in good agreement with the experiment.

  7. Impaired Inhibitory Control in ‘Internet Addiction Disorder’ : A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Dong, Guangheng; DeVito, Elise E.; Du, Xiaoxia; Cui, Zhuoya

    2013-01-01

    ‘Internet addiction disorder’ (IAD) is rapidly becoming a prevalent mental health concern in many countries around the world. The neurobiological underpinning of internet addiction should be studied to unravel the potential heterogeneity. The present study examines the neural correlates of response inhibition in males with and without IAD using an event-related functional magnetic resonance imaging (fMRI) Stroop task. The IAD group demonstrated greater ‘Stroop effect’-related activity in the anterior and posterior cingulate cortices (pFDR<0.05) compared to their healthy peers. These results may suggest diminished efficiency of response inhibition processes in the IAD group relative to healthy controls. PMID:22892351

  8. Functionalized magnetic microparticle-based colorimetric platform for influenza A virus detection

    NASA Astrophysics Data System (ADS)

    Chen, Chaohui; Zou, Zhong; Chen, Lu; Ji, Xinghu; He, Zhike

    2016-10-01

    A colorimetric platform for influenza A virus detection was developed by using the high efficiency of enzymatic catalysis and the reduction of gold ions with hydrogen peroxide. Aptamer-functionalized magnetic microparticles were synthesized to capture the influenza A virus. This was followed by the binding of ConA-GOx-AuNPs to the H3N2 virus through the ConA-glycan interaction. The sandwich complex was subsequently dispersed in glucose solution to trigger an enzymatic reaction to produce hydrogen peroxide, which controlled the growth of gold nanoparticles and produced colored solutions. The determination of H3N2 concentration was realized by comparing the two differently colored gold nanoparticles. This method could detect the target virus as low as 11.16 μg ml-1. Furthermore, it opens new opportunities for sensitive and colorimetric detection of viruses and proteins.

  9. Quantification of cardiovascular disease biomarkers via functionalized magnetic beads and on-demand detachable quantum dots

    NASA Astrophysics Data System (ADS)

    Park, Hoyoung; Lee, Jong-Wook; Hwang, Mintai P.; Lee, Kwan Hyi

    2013-08-01

    Cardiovascular disease (CVD) is a potent cause of mortality in both advanced and developing countries. While soluble CD40L (sCD40L) has been implicated as a correlative factor among CVD patients, methods to quantify sCD40L are not yet well-established. In this paper, we present an ability to separate and quantify sCD40L via a simple immunomagnetic assay. Composed of functionalized magnetic beads conferred with directionality and on-demand detachable quantum dots for subsequent optical analysis, our system utilizes the competitive nature of imidazole and nickel ions for histidine. In essence, we demonstrate the capacity to effectively separate and detect sCD40L within a clinically relevant range that contains the cut-off value for acute coronary disease. While sCD40L was used to conduct this study, we envision the use of our system for the separation and quantification of other biomarkers.

  10. Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation.

    PubMed

    Sanchez Panchuelo, Rosa Maria; Ackerley, Rochelle; Glover, Paul M; Bowtell, Richard W; Wessberg, Johan; Francis, Susan T; McGlone, Francis

    2016-05-07

    Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit's receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex.

  11. Functional Neurosurgery in the Human Thalamus by Transcranial Magnetic Resonance Guided Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Werner, Beat; Morel, Anne; Jeanmonod, Daniel; Martin, Ernst

    2009-04-01

    Potential applications of Transcranial Magnetic Resonance guided Focused Ultrasound (TcMRgFUS) include treatment of functional brain disorders, such as Parkinson's disease, dystonia and tremor, neurogenic pain and tinnitus, neuropsychiatric disorders and epilepsy. In this study we demonstrate the feasibility of non-invasive TcMRgFUS ablation of clinically well established targets in the human thalamus that are currently accessed stereotactically by interventional strategies based on the concept of the thalamocortical dysrhythmia (TCD). Thermal hotspots suitable for clinical intervention were created successfully in anatomical preparations of human ex-vivo heads under pseudo clinical conditions. The hotspots could be positioned at the target locations as needed and local energy deposition was sufficient to create tissue ablation. Numerical simulations based on these experimental data predict that the acoustic energy needed to create ablative lesions in-vivo will be within limits that can safely applied.

  12. Neurovisualization of the dynamics of real and simulation biofeedback: functional magnetic resonance imaging study.

    PubMed

    Mazhirina, K G; Pokrovskiy, M A; Rezakova, M V; Savelov, A A; Savelova, O A; Shtark, M B

    2013-04-01

    On-line brain mapping in subjects operating a competitive virtual gameplay was performed using functional magnetic resonance imaging. The interaction between the brain and visceral systems was studied on the model of real and simulated adaptive biofeedback. The immersion into a virtual story leads to a large-scale activation of cortical regions characterized by high values of voxels in the midtemporal, occipital, and frontal areas as well as in cingulate gyrus, cuneus, and precuneus (Brodmann areas 6, 7, 9, 10, 19, 24, 32, 39, 40, 45). The maximum increase in activity was observed during stage 2 of the game biofeedback, when the volumes of activated voxels increased several times in comparison with the starting phase. Qualitative characteristics of real and imitation game periods are discussed.

  13. Articulation in early and late bilinguals' two languages: evidence from functional magnetic resonance imaging.

    PubMed

    Frenck-Mestre, Cheryl; Anton, Jean Luc; Roth, Muriel; Vaid, Jyotsna; Viallet, François

    2005-05-12

    The network of cortical and subcortical regions that contribute to articulation was examined in bilinguals using functional magnetic resonance imaging. Participants were all fluent in French and English: half were bilingual from birth and half were 'late bilinguals' who had learned French after the age of 12. Overt articulation resulted in the bilateral activation of the motor cortex, basal ganglia and cerebellum, and also the supplementary motor area, independent of the language spoken. Furthermore, the threshold and extent of the network involved in articulation was identical for the two bilingual groups with the exception of greater variation in the left putamen for the late bilinguals. These data challenge claims that age of acquisition results in fundamental differences in the neural substrates that subserve language in bilinguals.

  14. Cognitive functioning and deep transcranial magnetic stimulation (DTMS) in major psychiatric disorders: A systematic review.

    PubMed

    Kedzior, Karina Karolina; Gierke, Lioba; Gellersen, Helena Marie; Berlim, Marcelo T

    2016-04-01

    Deep transcranial magnetic stimulation (DTMS) is a non-invasive brain stimulation method mostly utilised in the treatment of major depression. The aim of the current study was to systematically review the literature on the cognitive effects of DTMS applied with the H-coil system in major psychiatric disorders. Following a literature search in PsycInfo and PubMed (any time to December 2015), 13 out of 32 studies on DTMS and cognitive functioning were included in the current review. Three studies included 38 healthy participants, eight studies included 158 unipolar or bipolar depression patients and two studies included 45 schizophrenia patients. Low-frequency DTMS (1-3 sessions) had little effect on cognitive functioning in healthy participants. The most consistent cognitive and clinical improvements were reported in the short-term (after 20 daily sessions of high-frequency DTMS with H1-coil) in studies with major depression patients. There was also a trend towards a short-term cognitive and clinical improvement in studies with schizophrenia patients. High-frequency DTMS might improve cognitive functioning and alleviate clinical symptoms in the short-term, particularly in major depression. However, this conclusion is based on data from mostly uncontrolled, open-label studies with patients receiving concurrent antidepressants or antipsychotics. Randomised, sham-controlled trials are needed to investigate the magnitude of the cognitive outcomes of DTMS in the short-term and beyond the daily stimulation phase in major psychiatric disorders. PMID:26828370

  15. The effect of magnetic resonance imaging noise on cochlear function in dogs.

    PubMed

    Venn, R E; McBrearty, A R; McKeegan, D; Penderis, J

    2014-10-01

    Noise produced by magnetic resonance imaging (MRI) scanners (which can peak at a sound pressure level of 131 dB) has been shown to cause noise-induced cochlear dysfunction in people. The aim of this study was to investigate whether noise produced during MRI had a deleterious effect on cochlear function in dogs, using distortion product otoacoustic emission (DPOAE) testing, which allows frequency specific, non-invasive assessment of cochlear function. DPOAE testing was performed before and after MRI in one or both ears under general anaesthesia at 14 frequency pairs (f2 frequency ranging from 0.84 kHz to 8.0 kHz). A control group comprised dogs undergoing anaesthesia of a similar duration for quiet procedures. Thirty-six dogs (66 ears) and 17 dogs (28 ears) were included in the MRI and control groups respectively. There was a reduction in DPOAE at all frequencies tested in the MRI group; a similar effect was not evident in the control group. This reduction in the MRI group was statistically significant in five of the 14 frequencies assessed (P < 0.05). These results demonstrate that exposure to MRI noise results in a significant reduction in frequency-specific cochlear function in dogs, although it is not known whether this is reversible or permanent. This suggests that all dogs undergoing MRI studies should be provided with ear protection as a routine precautionary measure.

  16. Functional Magnetic Resonance Imaging for Imaging Neural Activity in the Human Brain: The Annual Progress

    PubMed Central

    Chen, Shengyong; Li, Xiaoli

    2012-01-01

    Functional magnetic resonance imaging (fMRI) is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area. PMID:22319550

  17. Auditory orienting and inhibition of return in schizophrenia: A functional magnetic resonance imaging study

    PubMed Central

    Abbott, Christopher C.; Merideth, Flannery; Ruhl, David; Yang, Zhen; Clark, Vincent P.; Calhoun, Vince D.; Hanlon, Faith M.; Mayer, Andrew R.

    2011-01-01

    Patients with schizophrenia (SP) exhibit deficits in both attentional reorienting and inhibition of return (IOR) during visual tasks. However, it is currently unknown whether these deficits are supramodal in nature and how these deficits relate to other domains of cognitive dysfunction. In addition, the neuronal correlates of this pathological orienting response have not been investigated in either the visual or auditory modality. Therefore, thirty SP and 30 healthy controls (HC) were evaluated with an extensive clinical protocol and functional magnetic resonance imaging (fMRI) during an auditory cuing paradigm. SP exhibited both increased costs and delayed IOR during auditory orienting, suggesting a prolonged interval for attentional disengagement from cued locations. Moreover, a delay in the development of IOR was associated with cognitive deficits on formal neuropsychological testing in the domains of attention/inhibition and working memory. Event-related fMRI showed the characteristic activation of a frontoparietal network (invalid trials > valid trials), but there were no differences in functional activation between patients and HC during either attentional reorienting or IOR. Current results suggest that orienting deficits are supramodal in nature in SP, and are related to higher-order cognitive deficits that directly interfere with day-to-day functioning. PMID:22230646

  18. Neural correlates of attachment trauma in borderline personality disorder: a functional magnetic resonance imaging study.

    PubMed

    Buchheim, Anna; Erk, Susanne; George, Carol; Kächele, Horst; Kircher, Tilo; Martius, Philipp; Pokorny, Dan; Ruchsow, Martin; Spitzer, Manfred; Walter, Henrik

    2008-08-30

    Functional imaging studies have shown that individuals with borderline personality disorder (BPD) display prefrontal and amygdala dysfunction while viewing or listening to emotional or traumatic stimuli. The study examined for the first time the functional neuroanatomy of attachment trauma in BPD patients using functional magnetic resonance imaging (fMRI) during the telling of individual stories. A group of 11 female BPD patients and 17 healthy female controls, matched for age and education, told stories in response to a validated set of seven attachment pictures while being scanned. Group differences in narrative and neural responses to "monadic" pictures (characters facing attachment threats alone) and "dyadic" pictures (interaction between characters in an attachment context) were analyzed. Behavioral narrative data showed that monadic pictures were significantly more traumatic for BPD patients than for controls. As hypothesized BPD patients showed significantly more anterior midcingulate cortex activation in response to monadic pictures than controls. In response to dyadic pictures patients showed more activation of the right superior temporal sulcus and less activation of the right parahippocampal gyrus compared to controls. Our results suggest evidence for potential neural mechanisms of attachment trauma underlying interpersonal symptoms of BPD, i.e. fearful and painful intolerance of aloneness, hypersensitivity to social environment, and reduced positive memories of dyadic interactions. PMID:18635342

  19. Functional magnetic resonance imaging for imaging neural activity in the human brain: the annual progress.

    PubMed

    Chen, Shengyong; Li, Xiaoli

    2012-01-01

    Functional magnetic resonance imaging (fMRI) is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area.

  20. Using functional magnetic resonance imaging and electroencephalography to detect consciousness after severe brain injury.

    PubMed

    Owen, Adrian M

    2015-01-01

    In recent years, rapid technological developments in the field of neuroimaging have provided new methods for revealing thoughts, actions, and intentions based solely on the pattern of activity that is observed in the brain. In specialized centres, these methods are now being employed routinely in the assessment of patients diagnosed with so-called "disorders of consciousness," mapping patterns of residual function and dysfunction and helping to reduce diagnostic errors between related conditions such as the vegetative and minimally conscious states. Both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) have now been shown to be effective tools for detecting covert awareness in behaviorally nonresponsive patients when standard clinical approaches have been unable to provide that information. Indeed, in some patients, communication with the outside world via simple "yes" and "no" questions has been achieved, even in cases where no possibility for behavioral interaction exists. These studies have profound implications for clinical care, diagnosis, prognosis and medical-legal decision making relating to the prolongation, or otherwise, of life after severe brain injury. Moreover, the results suggest an urgent need for a re-evaluation of the existing diagnostic guidelines for behaviorally nonresponsive patients to include information derived from functional neuroimaging.

  1. Associative Learning Through Acquired Salience.

    PubMed

    Treviño, Mario

    2015-01-01

    Most associative learning studies describe the salience of stimuli as a fixed learning-rate parameter. Presumptive saliency signals, however, have also been linked to motivational and attentional processes. An interesting possibility, therefore, is that discriminative stimuli could also acquire salience as they become powerful predictors of outcomes. To explore this idea, we first characterized and extracted the learning curves from mice trained with discriminative images offering varying degrees of structural similarity. Next, we fitted a linear model of associative learning coupled to a series of mathematical representations for stimulus salience. We found that the best prediction, from the set of tested models, was one in which the visual salience depended on stimulus similarity and a non-linear function of the associative strength. Therefore, these analytic results support the idea that the net salience of a stimulus depends both on the items' effective salience and the motivational state of the subject that learns about it. Moreover, this dual salience model can explain why learning about a stimulus not only depends on the effective salience during acquisition but also on the specific learning trajectory that was used to reach this state. Our mathematical description could be instrumental for understanding aberrant salience acquisition under stressful situations and in neuropsychiatric disorders like schizophrenia, obsessive-compulsive disorder, and addiction.

  2. Associative Learning Through Acquired Salience

    PubMed Central

    Treviño, Mario

    2016-01-01

    Most associative learning studies describe the salience of stimuli as a fixed learning-rate parameter. Presumptive saliency signals, however, have also been linked to motivational and attentional processes. An interesting possibility, therefore, is that discriminative stimuli could also acquire salience as they become powerful predictors of outcomes. To explore this idea, we first characterized and extracted the learning curves from mice trained with discriminative images offering varying degrees of structural similarity. Next, we fitted a linear model of associative learning coupled to a series of mathematical representations for stimulus salience. We found that the best prediction, from the set of tested models, was one in which the visual salience depended on stimulus similarity and a non-linear function of the associative strength. Therefore, these analytic results support the idea that the net salience of a stimulus depends both on the items' effective salience and the motivational state of the subject that learns about it. Moreover, this dual salience model can explain why learning about a stimulus not only depends on the effective salience during acquisition but also on the specific learning trajectory that was used to reach this state. Our mathematical description could be instrumental for understanding aberrant salience acquisition under stressful situations and in neuropsychiatric disorders like schizophrenia, obsessive-compulsive disorder, and addiction. PMID:26793078

  3. Associative Learning Through Acquired Salience.

    PubMed

    Treviño, Mario

    2015-01-01

    Most associative learning studies describe the salience of stimuli as a fixed learning-rate parameter. Presumptive saliency signals, however, have also been linked to motivational and attentional processes. An interesting possibility, therefore, is that discriminative stimuli could also acquire salience as they become powerful predictors of outcomes. To explore this idea, we first characterized and extracted the learning curves from mice trained with discriminative images offering varying degrees of structural similarity. Next, we fitted a linear model of associative learning coupled to a series of mathematical representations for stimulus salience. We found that the best prediction, from the set of tested models, was one in which the visual salience depended on stimulus similarity and a non-linear function of the associative strength. Therefore, these analytic results support the idea that the net salience of a stimulus depends both on the items' effective salience and the motivational state of the subject that learns about it. Moreover, this dual salience model can explain why learning about a stimulus not only depends on the effective salience during acquisition but also on the specific learning trajectory that was used to reach this state. Our mathematical description could be instrumental for understanding aberrant salience acquisition under stressful situations and in neuropsychiatric disorders like schizophrenia, obsessive-compulsive disorder, and addiction. PMID:26793078

  4. Magnetic property variation in carbon steel and chrome-molybdenum steel as a function of uniaxial stress noncoaxial with the magnetic field (abstract)

    SciTech Connect

    Sablik, M.J. ); Kaminski, D.A.; Jiles, D.C.; Biner, S.B. )

    1993-05-15

    Magnescope[sup 1] magnetic measurements were made on carbon steel specimens ranging from 0.1--0.8 wt %C and on chrome-molybdenum steel specimens cut from electric power plant pipes previously in service. The carbon steel specimens were heat-treated using three procedures: (1) spheroidization, (2) quenching, and (3) quench and tempering. The specimens were subjected to uniaxial tension up to 40 ksi. The inspection head was aligned so that the magnetic field was oriented at different angles with respect to the stress axis. Magnetic properties (such as coercivity and maximum differential permeability) were extracted from digitized magnetic hysteresis loop measurements. Magnetic properties were studied as a function of stress at each angle of stress-field orientation. To our knowledge, such a comprehensive study of noncoaxial stress and field effects has never been accomplished before for such a wide variety of steel specimens. Results for the various materials are presented for different orientation angles and compared to numerical results from the noncoaxial magnetomechanical hysteresis model of Sablik [ital et] [ital al].[sup 2

  5. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies

    PubMed Central

    Fusar-Poli, Paolo; Placentino, Anna; Carletti, Francesco; Landi, Paola; Allen, Paul; Surguladze, Simon; Benedetti, Francesco; Abbamonte, Marta; Gasparotti, Roberto; Barale, Francesco; Perez, Jorge; McGuire, Philip; Politi, Pierluigi

    2009-01-01

    Background Most of our social interactions involve perception of emotional information from the faces of other people. Furthermore, such emotional processes are thought to be aberrant in a range of clinical disorders, including psychosis and depression. However, the exact neurofunctional maps underlying emotional facial processing are not well defined. Methods Two independent researchers conducted separate comprehensive PubMed (1990 to May 2008) searches to find all functional magnetic resonance imaging (fMRI) studies using a variant of the emotional faces paradigm in healthy participants. The search terms were: “fMRI AND happy faces,” “fMRI AND sad faces,” “fMRI AND fearful faces,” “fMRI AND angry faces,” “fMRI AND disgusted faces” and “fMRI AND neutral faces.” We extracted spatial coordinates and inserted them in an electronic database. We performed activation likelihood estimation analysis for voxel-based meta-analyses. Results Of the originally identified studies, 105 met our inclusion criteria. The overall database consisted of 1785 brain coordinates that yielded an overall sample of 1600 healthy participants. Quantitative voxel-based meta-analysis of brain activation provided neurofunctional maps for 1) main effect of human faces; 2) main effect of emotional valence; and 3) modulatory effect of age, sex, explicit versus implicit processing and magnetic field strength. Processing of emotional faces was associated with increased activation in a number of visual, limbic, temporoparietal and prefrontal areas; the putamen; and the cerebellum. Happy, fearful and sad faces specifically activated the amygdala, whereas angry or disgusted faces had no effect on this brain region. Furthermore, amygdala sensitivity was greater for fearful than for happy or sad faces. Insular activation was selectively reported during processing of disgusted and angry faces. However, insular sensitivity was greater for disgusted than for angry faces. Conversely

  6. Diverse Ligand-Functionalized Mixed-Valent Hexamanganese Sandwiched Silicotungstates with Single-Molecule Magnet Behavior.

    PubMed

    Xue, Han; Zhao, Jun-Wei; Pan, Rui; Yang, Bai-Feng; Yang, Guo-Yu; Liu, Hong-Sheng

    2016-08-22

    Under hydrothermal conditions, replacement of the water molecules in the [Mn(III) 4 Mn(II) 2 O4 (H2 O)4 ](8+) cluster of mixed-valent Mn6 sandwiched silicotungstate [(B-α-SiW9 O34 )2 Mn(III) 4 Mn(II) 2 O4 (H2 O)4 ](12-) (1 a) with organic N ligands led to the isolation of five organic-inorganic hybrid, Mn6 -substituted polyoxometalates (POMs) 2-6. They were all structurally characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, diffuse-reflectance spectroscopy, and powder and single-crystal X-ray diffraction. Compounds 2-6 represent the first series of mixed-valent {Mn(III) 4 Mn(II) 2 O4 (H2 O)4-n (L)n } sandwiched POMs covalently functionalized by organic ligands. The preparation of 1-6 not only indicates that the double-cubane {Mn(III) 4 Mn(II) 2 O4 (H2 O)4-n (L)n } clusters are very stable fragments in both conventional aqueous solution and hydrothermal systems and that organic functionalization of the [Mn(III) 4 Mn(II) 2 O4 (H2 O)4 ](8+) cluster by substitution reactions is feasible, but also demonstrates that hydrothermal environments can promote and facilitate the occurrence of this substitution reaction. This work confirms that hydrothermal synthesis is effective for making novel mixed-valent POMs substituted with transition-metal (TM) clusters by combining lacunary Keggin precursors with TM cations and tunable organic ligands. Furthermore, magnetic measurements reveal that 3 and 6 exhibit single-molecule magnet behavior. PMID:27373550

  7. Hypothalamus, sexual arousal and psychosexual identity in human males: a functional magnetic resonance imaging study.

    PubMed

    Brunetti, M; Babiloni, C; Ferretti, A; Del Gratta, C; Merla, A; Olivetti Belardinelli, M; Romani, G L

    2008-06-01

    In a recent functional magnetic resonance imaging study, a complex neural circuit was shown to be involved in human males during sexual arousal [A. Ferretti et al. (2005) Neuroimage, 26, 1086]. At group level, there was a specific correlation between penile erection and activations in anterior cingulate, insula, amygdala, hypothalamus and secondary somatosensory regions. However, it is well known that there are remarkable inter-individual differences in the psychological view and attitude to sex of human males. Therefore, a crucial issue is the relationship among cerebral responses, sexual arousal and psychosexual identity at individual level. To address this issue, 18 healthy male subjects were recruited. Their deep sexual identity (DSI) was assessed following the construct revalidation by M. Olivetti Belardinelli [(1994) Sci. Contrib. Gen. Psychol., 11, 131] of the Franck drawing completion test, a projective test providing, according to this revalidation, quantitative scores on 'accordance/non-accordance' between self-reported and psychological sexual identity. Cerebral activity was evaluated by means of functional magnetic resonance imaging during hard-core erotic movies and sport movies. Results showed a statistically significant positive correlation between the blood oxygen level-dependent signal in bilateral hypothalamus and the Franck drawing completion test score during erotic movies. The higher the blood oxygen level-dependent activation in bilateral hypothalamus, the higher the male DSI profile. These results suggest that, in male subjects, inter-individual differences in the DSI are strongly correlated with blood flow to the bilateral hypothalamus, a dimorphic brain region deeply implicated in instinctual drives including reproduction. PMID:18588532

  8. Diverse Ligand-Functionalized Mixed-Valent Hexamanganese Sandwiched Silicotungstates with Single-Molecule Magnet Behavior.

    PubMed

    Xue, Han; Zhao, Jun-Wei; Pan, Rui; Yang, Bai-Feng; Yang, Guo-Yu; Liu, Hong-Sheng

    2016-08-22

    Under hydrothermal conditions, replacement of the water molecules in the [Mn(III) 4 Mn(II) 2 O4 (H2 O)4 ](8+) cluster of mixed-valent Mn6 sandwiched silicotungstate [(B-α-SiW9 O34 )2 Mn(III) 4 Mn(II) 2 O4 (H2 O)4 ](12-) (1 a) with organic N ligands led to the isolation of five organic-inorganic hybrid, Mn6 -substituted polyoxometalates (POMs) 2-6. They were all structurally characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, diffuse-reflectance spectroscopy, and powder and single-crystal X-ray diffraction. Compounds 2-6 represent the first series of mixed-valent {Mn(III) 4 Mn(II) 2 O4 (H2 O)4-n (L)n } sandwiched POMs covalently functionalized by organic ligands. The preparation of 1-6 not only indicates that the double-cubane {Mn(III) 4 Mn(II) 2 O4 (H2 O)4-n (L)n } clusters are very stable fragments in both conventional aqueous solution and hydrothermal systems and that organic functionalization of the [Mn(III) 4 Mn(II) 2 O4 (H2 O)4 ](8+) cluster by substitution reactions is feasible, but also demonstrates that hydrothermal environments can promote and facilitate the occurrence of this substitution reaction. This work confirms that hydrothermal synthesis is effective for making novel mixed-valent POMs substituted with transition-metal (TM) clusters by combining lacunary Keggin precursors with TM cations and tunable organic ligands. Furthermore, magnetic measurements reveal that 3 and 6 exhibit single-molecule magnet behavior.

  9. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal.

    PubMed Central

    Logothetis, Nikos K

    2002-01-01

    Magnetic resonance imaging (MRI) has rapidly become an important tool in clinical medicine and biological research. Its functional variant (functional magnetic resonance imaging; fMRI) is currently the most widely used method for brain mapping and studying the neural basis of human cognition. While the method is widespread, there is insufficient knowledge of the physiological basis of the fMRI signal to interpret the data confidently with respect to neural activity. This paper reviews the basic principles of MRI and fMRI, and subsequently discusses in some detail the relationship between the blood-oxygen-level-dependent (BOLD) fMRI signal and the neural activity elicited during sensory stimulation. To examine this relationship, we conducted the first simultaneous intracortical recordings of neural signals and BOLD responses. Depending on the temporal characteristics of the stimulus, a moderate to strong correlation was found between the neural activity measured with microelectrodes and the BOLD signal averaged over a small area around the microelectrode tips. However, the BOLD signal had significantly higher variability than the neural activity, indicating that human fMRI combined with traditional statistical methods underestimates the reliability of the neuronal activity. To understand the relative contribution of several types of neuronal signals to the haemodynamic response, we compared local field potentials (LFPs), single- and multi-unit activity (MUA) with high spatio-temporal fMRI responses recorded simultaneously in monkey visual cortex. At recording sites characterized by transient responses, only the LFP signal was significantly correlated with the haemodynamic response. Furthermore, the LFPs had the largest magnitude signal and linear systems analysis showed that the LFPs were better than the MUAs at predicting the fMRI responses. These findings, together with an analysis of the neural signals, indicate that the BOLD signal primarily measures the input

  10. Recent developments of functional magnetic resonance imaging research for drug development in Alzheimer's disease.

    PubMed

    Hampel, Harald; Prvulovic, David; Teipel, Stefan J; Bokde, Arun L W

    2011-12-01

    The objective of this review is to evaluate recent advances in functional magnetic resonance imaging (fMRI) research in Alzheimer's disease for the development of therapeutic agents. The basic building block underpinning cognition is a brain network. The measured brain activity serves as an integrator of the various components, from genes to structural integrity, that impact the function of networks underpinning cognition. Specific networks can be interrogated using cognitive paradigms such as a learning task or a working memory task. In addition, recent advances in our understanding of neural networks allow one to investigate the function of a brain network by investigating the inherent coherency of the brain networks that can be measured during resting state. The coherent resting state networks allow testing in cognitively impaired patients that may not be possible with the use of cognitive paradigms. In particular the default mode network (DMN) includes the medial temporal lobe and posterior cingulate, two key regions that support episodic memory function and are impaired in the earliest stages of Alzheimer's disease (AD). By investigating the effects of a prospective drug compound on this network, it could illuminate the specificity of the compound with a network supporting memory function. This could provide valuable information on the methods of action at physiological and behaviourally relevant levels. Utilizing fMRI opens up new areas of research and a new approach for drug development, as it is an integrative tool to investigate entire networks within the brain. The network based approach provides a new independent method from previous ones to translate preclinical knowledge into the clinical domain. PMID:21777651

  11. Recent developments of functional magnetic resonance imaging research for drug development in Alzheimer's disease.

    PubMed

    Hampel, Harald; Prvulovic, David; Teipel, Stefan J; Bokde, Arun L W

    2011-12-01

    The objective of this review is to evaluate recent advances in functional magnetic resonance imaging (fMRI) research in Alzheimer's disease for the development of therapeutic agents. The basic building block underpinning cognition is a brain network. The measured brain activity serves as an integrator of the various components, from genes to structural integrity, that impact the function of networks underpinning cognition. Specific networks can be interrogated using cognitive paradigms such as a learning task or a working memory task. In addition, recent advances in our understanding of neural networks allow one to investigate the function of a brain network by investigating the inherent coherency of the brain networks that can be measured during resting state. The coherent resting state networks allow testing in cognitively impaired patients that may not be possible with the use of cognitive paradigms. In particular the default mode network (DMN) includes the medial temporal lobe and posterior cingulate, two key regions that support episodic memory function and are impaired in the earliest stages of Alzheimer's disease (AD). By investigating the effects of a prospective drug compound on this network, it could illuminate the specificity of the compound with a network supporting memory function. This could provide valuable information on the methods of action at physiological and behaviourally relevant levels. Utilizing fMRI opens up new areas of research and a new approach for drug development, as it is an integrative tool to investigate entire networks within the brain. The network based approach provides a new independent method from previous ones to translate preclinical knowledge into the clinical domain.

  12. Energy distribution functions of kilovolt ions parallel and perpendicular to the magnetic field of a modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1973-01-01

    The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space and cause an isotropic energy distribution. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail.

  13. A comparative physicochemical, morphological and magnetic study of silane-functionalized superparamagnetic iron oxide nanoparticles prepared by alkaline coprecipitation.

    PubMed

    Mireles, Laura-Karina; Sacher, Edward; Yahia, L'Hocine; Laurent, Sophie; Stanicki, Dimitri

    2016-06-01

    The characterization of synthetic superparamagnetic iron oxide nanoparticle (SPION) surfaces prior to functionalization is an essential step in the prediction of their successful functionalization, and in uncovering issues that may influence their selection as magnetically targeted drug delivery vehicles (prodrugs). Here, three differently functionalized magnetite (Fe3O4) SPIONs are considered. All were identically prepared by the alkaline coprecipitation of Fe(2+) and Fe(3+) salts. We use X-ray photoelectron spectroscopy, electron microscopy, time-of-flight SIMS, FTIR spectroscopy and magnetic measurements to characterize their chemical, morphological and magnetic properties, in order to aid in determining how their surfaces differ from those prepared by Fe(CO)5 decomposition, which we have already studied, and in assessing their potential use as drug delivery carriers.

  14. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy

    NASA Astrophysics Data System (ADS)

    Du, Bin; Han, Shuping; Li, Hongyan; Zhao, Feifei; Su, Xiangjie; Cao, Xiaohui; Zhang, Zhenzhong

    2015-03-01

    Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.

  15. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy.

    PubMed

    Du, Bin; Han, Shuping; Li, Hongyan; Zhao, Feifei; Su, Xiangjie; Cao, Xiaohui; Zhang, Zhenzhong

    2015-03-12

    Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.

  16. Functional magnetic mesoporous nanoparticles for efficient purification of laccase from fermentation broth in magnetically stabilized fluidized bed.

    PubMed

    Wang, Feng; Guo, Chen; Liu, Chun-Zhao

    2013-12-01

    A magnetically stabilized fluidized bed (MSFB) with the Cu(2+)-chelated magnetic mesoporous silica nanoparticles (MMSNPs-Cu(2+)) was established to purify laccase directly from the fermentation broth of Trametes versicolor. The MMSNPs-Cu(2+) particles in the MSFB maintained a stable bed expansion of two to threefold at a flow rate of 120-180 cm/h. At the optimal magnetic field intensity of 120 Gs, both the maximal Bodenstein number and the smallest axial dispersion coefficient were achieved, which resulted in a stable fluidization stage. The dynamic binding capacity of laccase in the MSFB decreased from 192.5 to144.3 mg/g when the flow velocity through the bed increased from 44.2 to 69.8 cm/h. The MSFB with MMSNPs-Cu(2+) achieved efficient laccase purification from the fermentation broth with 62.4-fold purification of laccase and 108.9 % activity yield. These results provided an excellent platform for the application of these magnetic mesoporous nanoparticles integrated with the MSFB in developing novel protein purification process.

  17. Acquired cystic kidney disease.

    PubMed

    Levine, E

    1996-09-01

    ACKD is characterized by the development of many fluid-filled renal cysts and sometimes neoplasms in the kidneys of individuals with chronic renal failure but without a history of hereditary cystic disease. The condition is seen mainly in dialysis patients, but often begins in patients with ESRD before dialysis is started. Most patients with ACKD are asymptomatic, but the disorder may be associated with such serious complications as retroperitoneal hemorrhage and metastatic renal cell carcinoma. The diagnosis of ACKD and its complications is best achieved by CT scanning, although US and MR imaging may be useful in evaluation, particularly in patients not treated with dialysis. Cyst hemorrhage is common in ACKD and may cause flank pain and hematuria. Hemorrhagic cysts may be recognized by their CT scan, sonographic, or MR imaging features. Hemorrhagic cysts may rupture into the perinephric space causing large perinephric hematomas. These can usually be treated-conservatively. Patients with ACKD, particularly those treated with dialysis, have an increased risk of renal cell carcinoma. Renal cell carcinoma may also develop in the native kidneys of renal transplant recipients with good graft function many years after transplantation. Annual imaging of the native kidneys of all dialysis patients or of transplant recipients for the development of carcinoma is not justified, however, because it has not been shown to have a significant effect on patient outcome. Screening may, however, be useful in selected dialysis patients with good general medical condition and who have known risk factors for renal cell carcinoma including prolonged dialysis, large kidneys, ACKD, and male gender. Screening of the native kidneys of transplant recipients may be performed when they are referred for US evaluation of the renal allograft.

  18. Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles

    PubMed Central

    2010-01-01

    Background For clinical applications of mesenchymal stem cells (MSCs), labeling and tracking is crucial to evaluate cell distribution and homing. Magnetic resonance imaging (MRI) has been successfully established detecting MSCs labeled with superparamagnetic particles of iron oxide (SPIO). Despite initial reports that labeling of MSCs with SPIO is safe without affecting the MSC's biology, recent studies report on influences of SPIO-labeling on metabolism and function of MSCs. Exposition of cells and tissues to high magnetic fields is the functional principle of MRI. In this study we established innovative labeling protocols for human MSCs using clinically established SPIO in combination with magnetic fields and investigated on functional effects (migration assays, quantification of colony forming units, analyses of gene and protein expression and analyses on the proliferation capacity, the viability and the differentiation potential) of magnetic fields on unlabeled and labeled human MSCs. To evaluate the imaging properties, quantification of the total iron load per cell (TIL), electron microscopy, and MRI at 3.0 T were performed. Results Human MSCs labeled with SPIO permanently exposed to magnetic fields arranged and grew according to the magnetic flux lines. Exposure of MSCs to magnetic fields after labeling with SPIO significantly enhanced the TIL compared to SPIO labeled MSCs without exposure to magnetic fields resulting in optimized imaging properties (detection limit: 1,000 MSCs). Concerning the TIL and the imaging properties, immediate exposition to magnetic fields after labeling was superior to exposition after 24 h. On functional level, exposition to magnetic fields inhibited the ability of colony formation of labeled MSCs and led to an enhanced expression of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in labeled MSCs under adipogenic differentiation, and to a reduced expression of alkaline phosphatase in unlabeled MSCs under

  19. On the analytical form of the Earth's magnetic attraction expressed as a function of time

    NASA Technical Reports Server (NTRS)

    Carlheim-Gyllenskold, V.

    1983-01-01

    An attempt is made to express the Earth's magnetic attraction in simple analytical form using observations during the 16th to 19th centuries. Observations of the magnetic inclination in the 16th and 17th centuries are discussed.

  20. Effect of functional grade and etiology on in vivo hepatic phosphorus-31 magnetic resonance spectroscopy in cirrhosis: biochemical basis of spectral appearances.

    PubMed

    Menon, D K; Sargentoni, J; Taylor-Robinson, S D; Bell, J D; Cox, I J; Bryant, D J; Coutts, G A; Rolles, K; Burroughs, A K; Morgan, M Y

    1995-02-01

    Hepatic phosphorus-31 magnetic resonance spectroscopy (31P MRS) was undertaken in 85 patients with histologically proven cirrhosis of varying etiologies and functional severity. Reference data were acquired from 16 healthy volunteers who had no history or evidence of liver disease or alcohol abuse. In vivo hepatic 31P MR spectra were acquired with pulse angle 45 degrees and repetition times (TR) of 5 and 0.5 seconds. Peak area ratios of phosphomonoesters (PME), inorganic phosphate (Pi), and phosphodiesters (PDE) relative to beta ATP, and of PME relative to PDE were calculated from spectra acquired at TR 5 seconds. Estimates of saturation effects for individual resonances were obtained by dividing the peak height at TR 5 seconds by that at TR 0.5 seconds to yield a T1-related signal height ratio (SHR). When compared with reference values, the patients with liver disease showed a significantly higher PME/ATP (P < .0001), PME/PDE (P < .0001), PME SHR (P < .001), and Pi SHR (P < .02), and a lower PDE/ATP (P < .001) and PDE SHR (P < .001). The magnitude of these changes increased significantly and progressively with increasing functional impairment. In patients with compensated cirrhosis spectral appearances varied with etiology; thus, patients with postviral cirrhosis showed a significantly higher Pi/ATP; those with alcoholic cirrhosis, a significantly lower PDE/ATP; and those with cirrhosis secondary to primary sclerosing cholangitis, a significantly lower Pi/ATP than the healthy volunteers or other etiological groups. However, spectral appearances did not vary with etiology in patients with decompensated disease. In vitro 31P MRS of perchloric extracts of samples of liver tissue obtained from 10 patients with cirrhosis at transplant hepatectomy showed increases in levels of the soluble PME metabolites, phosphorylcholine and phosphorylethanolamine, and reductions in the levels of the soluble PDE metabolites, glycerophosphorylcholine and glycerophosphorylethanolamine

  1. The Solar Wind - Magnetosphere Energy Coupling Function and Open Magnetic Flux Estimation: Two Science Aspects of the SMILE Mission

    NASA Astrophysics Data System (ADS)

    Wang, C.; Dai, L.; Sun, T.; Han, J.

    2015-12-01

    The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a novel self-standing mission to observe solar wind - magnetosphere coupling via simultaneous in situ solar wind /magnetosheath plasma and magnetic field measurements, X-ray images of the magnetosphere, and UV images of global auroral distribution defining system - level consequences. The SMILE mission is jointly supported by ESA and CSA, and the launch date is expected to be in 2021. SMILE will address several key outstanding questions concerning how the solar wind interacts with the magnetospheres on a global level. Quantitatively estimating the energy input from the solar wind into the magnetosphere on a global scale is still an observational challenge. Using global MHD simulations, we derive a new solar wind - magnetosphere energy coupling function. The X-ray images of the magnetosphere from the SMILE mission will help estimate the energy transfer from the solar wind into the magnetosphere. A second aspect SMILE can address is the open magnetic flux, which is closely related to magnetic reconnections in the dayside magnetopause and magnetotail. In a similar way, we find that the open magnetic flux can be estimated through a combined parameter f, which is a function of the solar wind velocity, number density, the southern interplanetary magnetic field strength, and the ionospheric Pederson conductance. The UV auroral images from SMILE will be used to determine the open magnetic flux, which may serve as a key space weather forecast element in the future.

  2. Generation of Internal-Image Functional Aptamers of Okadaic Acid via Magnetic-Bead SELEX

    PubMed Central

    Lin, Chao; Liu, Zeng-Shan; Wang, Dong-Xu; Li, Lin; Hu, Pan; Gong, Sheng; Li, Yan-Song; Cui, Cheng; Wu, Zong-Cheng; Gao, Yang; Zhou, Yu; Ren, Hong-Lin; Lu, Shi-Ying

    2015-01-01

    Okadaic acid (OA) is produced by Dinophysis and Prorocentrum dinoflagellates and primarily accumulates in bivalves, and this toxin has harmful effects on consumers and operators. In this work, we first report the use of aptamers as novel non-toxic probes capable of binding to a monoclonal antibody against OA (OA-mAb). Aptamers that mimic the OA toxin with high affinity and selectivity were generated by the magnetic bead-assisted systematic evolution of ligands by exponential enrichment (SELEX) strategy. After 12 selection rounds, cloning, sequencing and enzyme-linked immunosorbent assay (ELISA) analysis, four candidate aptamers (O24, O31, O39, O40) were selected that showed high affinity and specificity for OA-mAb. The affinity constants of O24, O31, O39 and O40 were 8.3 × 108 M−1, 1.47 × 109 M−1, 1.23 × 109 M−1 and 1.05 × 109 M−1, respectively. Indirect competitive ELISA was employed to determine the internal-image function of the aptamers. The results reveal that O31 has a similar competitive function as free OA toxin, whereas the other three aptamers did not bear the necessary internal-image function. Based on the derivation of the curvilinear equation for OA/O31, the equation that defined the relationship between the OA toxin content and O31 was Y = 2.185X − 1.78. The IC50 of O31 was 3.39 ng·mL−1, which was close to the value predicted by the OA ELISA (IC50 = 4.4 ng·mL−1); the IC10 was 0.33 ng·mL−1. The above data provides strong evidence that internal-image functional aptamers could be applicable as novel probes in a non-toxic assay. PMID:26694424

  3. In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders.

    PubMed

    Sherry, Erica B; Lee, Phil; Choi, In-Young

    2015-12-01

    Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.

  4. Structure, magnetism, and dissociation energy of small bimetallic cobalt-chromium oxide cluster cations: A density-functional-theory study

    NASA Astrophysics Data System (ADS)

    Pham, Hung Tan; Cuong, Ngo Tuan; Tam, Nguyen Minh; Lam, Vu Dinh; Tung, Nguyen Thanh

    2016-01-01

    We study CoxCryOm+ (x + y = 2, 3 and 1 ≤ m ≤ 4) clusters by means of density-functional-theory calculations. It is found that the clusters grow preferentially through maximizing the number of metal-oxygen bonds with a favor on Cr sites. The size- and composition-dependent magnetic behavior is discussed in relation with the local atomic magnetic moments. While doped species show an oscillatory magnetic behavior, the total magnetic moment of pure cobalt and chromium oxide clusters tends to enhance or reduce as increasing the oxygen content, respectively. The dissociation energies for different evaporation channels are also calculated to suggest the stable patterns, as fingerprints for future photofragmentation experiments.

  5. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  6. ROAM: a Radial-basis-function Optimization Approximation Method for diagnosing the three-dimensional coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Dalmasse, Kevin; Nychka, Douglas; Gibson, Sarah; Flyer, Natasha; Fan, Yuhong

    2016-07-01

    The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 Å and 10798 Å lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM). Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analogue. Speed and efficiency are obtained by combining sparse evaluation of the magnetic model with radial-basis-function (RBF) decomposition of the log-likelihood function. The RBF decomposition provides an analytical expression for the log-likelihood function that is used to inexpensively estimate the set of parameter values optimizing it. We test and validate ROAM on a synthetic test bed of a coronal magnetic flux rope and show that it performs well with a significantly sparse sample of the parameter space. We conclude that our optimization method is well-suited for fast and efficient model-data fitting and can be exploited for converting coronal polarimetric measurements, such as the ones provided by CoMP, into coronal magnetic field data.

  7. When structure affects function--the need for partial volume effect correction in functional and resting state magnetic resonance imaging studies.

    PubMed

    Dukart, Juergen; Bertolino, Alessandro

    2014-01-01

    Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality--an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.

  8. Empirical compensation function for eddy current effects in pulsed field gradient nuclear magnetic resonance experiments.

    PubMed

    Zhu, X X; Macdonald, P M

    1995-05-01

    An empirical compensation function for the correction of eddy current effects in the Stejskal-Tanner pulsed-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiments has been established. Eddy currents may arise as a result of the application of sharp and strong gradient pulses and may cause severe distortion of the NMR signals. In this method, the length of one gradient pulse is altered to compensate for the eddy current effects. The compensation is considered to be ideal when the position and the phase of the spin-echo maximum obtained from an aqueous solution of poly(ethylene glycol) (PEG) is the same in the presence and absence of a gradient pulse in the PGSE pulse sequence. We first characterized the functional dependence of the length of the required compensation on the three principal variables in the PGSE experiment: the gradient strength, the duration of the gradient pulse, and the interval between the two gradient pulses. Subsequently, we derived a model which successfully describes the general relationship between these variables and the size of the induced eddy current. The parameters extracted from fitting the model to the experimental compensation data may be used to predict the correct compensation for any combination of the three principal variables.

  9. Reward Abnormalities Among Women with Full and Subthreshold Bulimia Nervosa: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Bohon, Cara; Stice, Eric

    2010-01-01

    Objective To test the hypothesis that women with full and subthreshold bulimia nervosa show abnormal neural activation in response to food intake and anticipated food intake relative to healthy control women. Method Females with and without full/subthreshold bulimia nervosa recruited from the community (N = 26) underwent functional magnetic resonance imaging (fMRI) during receipt and anticipated receipt of chocolate milkshake and a tasteless control solution. Results Women with bulimia nervosa showed trends for less activation than healthy controls in the right anterior insula in response to anticipated receipt of chocolate milkshake (versus tasteless solution) and in the left middle frontal gyrus, right posterior insula, right precentral gyrus, and right mid dorsal insula in response to consumptions of milkshake (versus tasteless solution). Discussion Bulimia nervosa may be related to potential hypo-functioning of the brain reward system, which may lead these individuals to binge eat to compensate for this reward deficit, though the hypo-responsivity might be a result of a history of binge eating highly palatable foods. PMID:21997421

  10. Density functional calculations for structural, electronic, and magnetic properties of gadolinium-oxide clusters

    NASA Astrophysics Data System (ADS)

    Yuan, H. K.; Chen, H.; Tian, C. L.; Kuang, A. L.; Wang, J. Z.

    2014-04-01

    Gadolinium-oxide clusters in various sizes and stoichiometries have been systematically studied by employing the density functional theory with the generalized gradient approximation. The clusters in bulk stoichiometry are relatively more stable and their binding energies increase with the increasing size. Stoichiometric (Gd2O3)n clusters of n = 1-3 prefer cage-like structures, whereas the clusters of n = 4-30 prefer compact structures layered by wedge-like units and exhibit a rough feature toward the bulk-like arrangement with small disorders of atomic positions. The polyhedral-cages analogous to carbon-fullerenes are stable isomers yet not the minimum energy configurations. Their stabilities can be improved by embedding one oxygen atom or a suitable cage to form core-shell configurations. The mostly favored antiferromagnetic couplings between adjacent Gd atoms are nearly degenerated in energy with their ferromagnetic couplings, resulting in super-paramagnetic characters of gadolinium-oxide clusters. The Ruderman-Kittel-Kasuya-Yosida (RKKY)-type mechanism together with the superexchange-type mechanism plays cooperation role for the magnetic interactions in clusters. We present, as a function of n, calculated binding energies, ionization potential, electron affinity, and electronic dipole moment.

  11. [Quantification and improvement of speech transmission performance using headphones in acoustic stimulated functional magnetic resonance imaging].

    PubMed

    Yamamura, Ken ichiro; Takatsu, Yasuo; Miyati, Tosiaki; Kimura, Tetsuya

    2014-10-01

    Functional magnetic resonance imaging (fMRI) has made a major contribution to the understanding of higher brain function, but fMRI with auditory stimulation, used in the planning of brain tumor surgery, is often inaccurate because there is a risk that the sounds used in the trial may not be correctly transmitted to the subjects due to acoustic noise. This prompted us to devise a method of digitizing sound transmission ability from the accuracy rate of 67 syllables, classified into three types. We evaluated this with and without acoustic noise during imaging. We also improved the structure of the headphones and compared their sound transmission ability with that of conventional headphones attached to an MRI device (a GE Signa HDxt 3.0 T). We calculated and compared the sound transmission ability of the conventional headphones with that of the improved model. The 95 percent upper confidence limit (UCL) was used as the threshold for accuracy rate of hearing for both headphone models. There was a statistically significant difference between the conventional model and the improved model during imaging (p < 0.01). The rate of accuracy of the improved model was 16 percent higher. 29 and 22 syllables were accurate at a 95% UCL in the improved model and the conventional model, respectively. This study revealed the evaluation system used in this study to be useful for correctly identifying syllables during fMRI.

  12. A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging.

    PubMed

    Peng, Peng; Lekadir, Karim; Gooya, Ali; Shao, Ling; Petersen, Steffen E; Frangi, Alejandro F

    2016-04-01

    Cardiovascular magnetic resonance (CMR) has become a key imaging modality in clinical cardiology practice due to its unique capabilities for non-invasive imaging of the cardiac chambers and great vessels. A wide range of CMR sequences have been developed to assess various aspects of cardiac structure and function, and significant advances have also been made in terms of imaging quality and acquisition times. A lot of research has been dedicated to the development of global and regional quantitative CMR indices that help the distinction between health and pathology. The goal of this review paper is to discuss the structural and functional CMR indices that have been proposed thus far for clinical assessment of the cardiac chambers. We include indices definitions, the requirements for the calculations, exemplar applications in cardiovascular diseases, and the corresponding normal ranges. Furthermore, we review the most recent state-of-the art techniques for the automatic segmentation of the cardiac boundaries, which are necessary for the calculation of the CMR indices. Finally, we provide a detailed discussion of the existing literature and of the future challenges that need to be addressed to enable a more robust and comprehensive assessment of the cardiac chambers in clinical practice.

  13. Physiological recordings: basic concepts and implementation during functional magnetic resonance imaging.

    PubMed

    Gray, Marcus A; Minati, Ludovico; Harrison, Neil A; Gianaros, Peter J; Napadow, Vitaly; Critchley, Hugo D

    2009-09-01

    Combining human functional neuroimaging with other forms of psychophysiological measurement, including autonomic monitoring, provides an empirical basis for understanding brain-body interactions. This approach can be applied to characterize unwanted physiological noise, examine the neural control and representation of bodily processes relevant to health and morbidity, and index covert expression of affective and cognitive processes to enhance the interpretation of task-evoked regional brain activity. In recent years, human neuroimaging has been dominated by functional magnetic resonance imaging (fMRI) studies. The spatiotemporal information of fMRI regarding central neural activity is valuably complemented by parallel physiological monitoring, yet such studies still remain in the minority. This review article highlights fMRI studies that employed cardiac, vascular, respiratory, electrodermal, gastrointestinal and pupillary psychophysiological indices to address specific questions regarding interaction between brain and bodily state in the context of experience, cognition, emotion and behaviour. Physiological monitoring within the fMRI environment presents specific technical issues, most importantly related to safety. Mechanical and electrical hazards may present dangers to scanned subjects, operator and/or equipment. Furthermore, physiological monitoring may interfere with the quality of neuroimaging data, or itself be compromised by artefacts induced by the operation of the scanner. We review the sources of these potential problems and the current approaches and advice to enable the combination of fMRI and physiological monitoring in a safe and effective manner.

  14. Density functional calculations for structural, electronic, and magnetic properties of gadolinium-oxide clusters

    SciTech Connect

    Yuan, H. K.; Chen, H. Tian, C. L.; Kuang, A. L.; Wang, J. Z.

    2014-04-21

    Gadolinium-oxide clusters in various sizes and stoichiometries have been systematically studied by employing the density functional theory with the generalized gradient approximation. The clusters in bulk stoichiometry are relatively more stable and their binding energies increase with the increasing size. Stoichiometric (Gd{sub 2}O{sub 3}){sub n} clusters of n = 1–3 prefer cage-like structures, whereas the clusters of n = 4–30 prefer compact structures layered by wedge-like units and exhibit a rough feature toward the bulk-like arrangement with small disorders of atomic positions. The polyhedral-cages analogous to carbon-fullerenes are stable isomers yet not the minimum energy configurations. Their stabilities can be improved by embedding one oxygen atom or a suitable cage to form core-shell configurations. The mostly favored antiferromagnetic couplings between adjacent Gd atoms are nearly degenerated in energy with their ferromagnetic couplings, resulting in super-paramagnetic characters of gadolinium-oxide clusters. The Ruderman-Kittel-Kasuya-Yosida (RKKY)-type mechanism together with the superexchange-type mechanism plays cooperation role for the magnetic interactions in clusters. We present, as a function of n, calculated binding energies, ionization potential, electron affinity, and electronic dipole moment.

  15. A polymeric fastener can easily functionalize liposome surfaces with gadolinium for enhanced magnetic resonance imaging.

    PubMed

    Smith, Cartney E; Shkumatov, Artem; Withers, Sarah G; Yang, Binxia; Glockner, James F; Misra, Sanjay; Roy, Edward J; Wong, Chun-Ho; Zimmerman, Steven C; Kong, Hyunjoon

    2013-11-26

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization and, therefore, has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication.

  16. Physiological recordings: Basic concepts and implementation during functional magnetic resonance imaging

    PubMed Central

    Gray, Marcus A.; Minati, Ludovico; Harrison, Neil A.; Gianaros, Peter J.; Napadow, Vitaly; Critchley, Hugo D.

    2009-01-01

    Combining human functional neuroimaging with other forms of psychophysiological measurement, including autonomic monitoring, provides an empirical basis for understanding brain–body interactions. This approach can be applied to characterize unwanted physiological noise, examine the neural control and representation of bodily processes relevant to health and morbidity, and index covert expression of affective and cognitive processes to enhance the interpretation of task-evoked regional brain activity. In recent years, human neuroimaging has been dominated by functional magnetic resonance imaging (fMRI) studies. The spatiotemporal information of fMRI regarding central neural activity is valuably complemented by parallel physiological monitoring, yet such studies still remain in the minority. This review article highlights fMRI studies that employed cardiac, vascular, respiratory, electrodermal, gastrointestinal and pupillary psychophysiological indices to address specific questions regarding interaction between brain and bodily state in the context of experience, cognition, emotion and behaviour. Physiological monitoring within the fMRI environment presents specific technical issues, most importantly related to safety. Mechanical and electrical hazards may present dangers to scanned subjects, operator and/or equipment. Furthermore, physiological monitoring may interfere with the quality of neuroimaging data, or itself be compromised by artefacts induced by the operation of the scanner. We review the sources of these potential problems and the current approaches and advice to enable the combination of fMRI and physiological monitoring in a safe and effective manner. PMID:19460445

  17. How pain empathy depends on ingroup/outgroup decisions: A functional magnet resonance imaging study.

    PubMed

    Ruckmann, Judith; Bodden, Maren; Jansen, Andreas; Kircher, Tilo; Dodel, Richard; Rief, Winfried

    2015-10-30

    Showing empathy is crucial for social functioning and empathy is related to group membership. The aim of the current study was to investigate the influence of experimentally generated groups on empathy for pain in a functional magnetic resonance imaging (fMRI) paradigm. Thirty healthy participants underwent a minimal group paradigm to create two groups. While BOLD contrast was measured using fMRI, subjects were instructed to empathize with ingroup and outgroup members, who were depicted in a picture paradigm of painful and neutral situations. Behavioral measure of state empathy was measured using a visual analog scale. Furthermore, self-reported trait empathy measures were obtained. Repeated-measures ANOVAs were conducted for fMRI and behavioral data. In addition to a main effect of pain in pain-related areas, a main effect of group in areas belonging to the visual cortex was found. Although there was no ingroup bias for empathy ratings, subjects showed altered neural activation in regions of the right fusiform gyrus, the cerebellum, the hippocampal and amygdala region during the pain×group interaction. Activation in the preceding structures, revealed by the interaction of pain by group, suggests that activation in the pallidum might reflect specific empathy for pain-related regulation processes. PMID:26323252

  18. How pain empathy depends on ingroup/outgroup decisions: A functional magnet resonance imaging study.

    PubMed

    Ruckmann, Judith; Bodden, Maren; Jansen, Andreas; Kircher, Tilo; Dodel, Richard; Rief, Winfried

    2015-10-30

    Showing empathy is crucial for social functioning and empathy is related to group membership. The aim of the current study was to investigate the influence of experimentally generated groups on empathy for pain in a functional magnetic resonance imaging (fMRI) paradigm. Thirty healthy participants underwent a minimal group paradigm to create two groups. While BOLD contrast was measured using fMRI, subjects were instructed to empathize with ingroup and outgroup members, who were depicted in a picture paradigm of painful and neutral situations. Behavioral measure of state empathy was measured using a visual analog scale. Furthermore, self-reported trait empathy measures were obtained. Repeated-measures ANOVAs were conducted for fMRI and behavioral data. In addition to a main effect of pain in pain-related areas, a main effect of group in areas belonging to the visual cortex was found. Although there was no ingroup bias for empathy ratings, subjects showed altered neural activation in regions of the right fusiform gyrus, the cerebellum, the hippocampal and amygdala region during the pain×group interaction. Activation in the preceding structures, revealed by the interaction of pain by group, suggests that activation in the pallidum might reflect specific empathy for pain-related regulation processes.

  19. [Functional magnetic resonance imaging in the determination of dominant language cerebral area].

    PubMed

    Meneses, Murilo S; Rocha, Samanta F Blattes; Blood, Marcelo R Young; Trentin, Alcides; Benites Filho, Paulo Roberto; Kowacs, Pedro André; Oliveira, Nelson de Andrade; Simão, Cristiane A; Awamura, Yumi; Vítola, Maria L A

    2004-03-01

    Functional magnetic resonance imaging (fMRI) is a technique for detecting minimal changes in brain perfusion and oxygenation secondary to neuronal activation. Its application in the pre-surgical evaluation of epileptic patients with temporal mesial sclerosis is currently being under investigation in several centers. This study aims to describe an activation paradigm for the evaluation of language and memory functions, as an alternative to the worldwide used Wada test, which is an invasive procedure. In order to propose a paradigm adapted to the Portuguese language, we report our experience in determining the dominant cerebral area for language through fMRI with a verbal fluency task. The results of the fMRI from 19 patients studied in Curitiba in a period of approximately two years were studied. Sixteen of them presented with left hemispheric cerebral language dominance. In five patients, results from fMRI and Wada test could be compared and agreed in localization. Our results reinforce the view that fMRI may become an essential tool for medical practice, perhaps for the determination of eloquent areas in the evaluation of candidates for epilepsy surgery.

  20. Surface-based analysis methods for high-resolution funct