Science.gov

Sample records for acquired tamoxifen resistance

  1. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration

    PubMed Central

    2012-01-01

    Introduction Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam). Methods We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions. Results Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility. Conclusions Our data demonstrate that the adaptive changes in the proteome of

  2. Tamoxifen Resistance: Emerging Molecular Targets.

    PubMed

    Rondón-Lagos, Milena; Villegas, Victoria E; Rangel, Nelson; Sánchez, Magda Carolina; Zaphiropoulos, Peter G

    2016-01-01

    17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM's biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein-coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer. PMID:27548161

  3. Tamoxifen Resistance: Emerging Molecular Targets

    PubMed Central

    Rondón-Lagos, Milena; Villegas, Victoria E.; Rangel, Nelson; Sánchez, Magda Carolina; Zaphiropoulos, Peter G.

    2016-01-01

    17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer. PMID:27548161

  4. Pathways to Tamoxifen Resistance

    PubMed Central

    Riggins, Rebecca B.; Schrecengost, Randy S.; Guerrero, Michael S.; Bouton, Amy H.

    2007-01-01

    Therapies that target the synthesis of estrogen or the function of estrogen receptor(s) have been developed to treat breast cancer. While these approaches have proven to be beneficial to a large number of patients, both de novo and acquired resistance to these drugs is a significant problem. Recent advances in our understanding of the molecular mechanisms that contribute to resistance have provided a means to begin to predict patient responses to these drugs and develop rational approaches for combining therapeutic agents to circumvent or desensitize the resistant phenotype. Here, we review common mechanisms of antiestrogen resistance and discuss the implications for prediction of response and design of effective combinatorial treatments. PMID:17475399

  5. Acquired resistance to tamoxifen is associated with loss of the type I insulin-like growth factor receptor: implications for breast cancer treatment.

    PubMed

    Fagan, Dedra H; Uselman, Ryan R; Sachdev, Deepali; Yee, Douglas

    2012-07-01

    The role of the insulin-like growth factor (IGF) system in breast cancer is well defined, and inhibitors of this pathway are currently in clinical trials. The majority of anti-IGF1R clinical trials are in estrogen receptor-positive patients who have progressed on prior endocrine therapy; early reports show no benefit for addition of IGF1R inhibitors to endocrine therapy in this setting. In this study, we examined the effectiveness of IGF1R inhibitors in vitro by generating tamoxifen-resistant (TamR) cells. We found that TamR cells had diminished levels of IGF1R with unchanged levels of insulin receptor (IR), and failed to respond to IGF-I-induced Akt activation, proliferation, and anchorage-independent growth while retaining responsiveness to both insulin and IGF-II. The IGF1R antibody dalotuzumab inhibited IGF-I-mediated Akt phosphorylation, proliferation, and anchorage-independent growth in parental cells, but had no effect on TamR cells. An IGF1R tyrosine kinase inhibitor, AEW541, with equal potency for the IGF1R and IR, inhibited IGF-I-, IGF-II-, and insulin-stimulated Akt phosphorylation, proliferation, and anchorage-independent growth in parental cells. Interestingly, AEW541 also inhibited insulin- and IGF-II-stimulated effects in TamR cells. Tamoxifen-treated xenografts also had reduced levels of IGF1R, and dalotuzumab did not enhance the effect of tamoxifen. We conclude that cells selected for tamoxifen resistance in vitro have downregulated IGF1R making antibodies directed against this receptor ineffective. Inhibition of IR may be necessary to manage tamoxifen-resistant breast cancer.

  6. MicroRNA-320a sensitizes tamoxifen-resistant breast cancer cells to tamoxifen by targeting ARPP-19 and ERRγ.

    PubMed

    Lü, Mingrong; Ding, Keshuo; Zhang, Guofeng; Yin, Mianmian; Yao, Guidong; Tian, Hui; Lian, Jie; Liu, Lin; Liang, Meng; Zhu, Tao; Sun, Fei

    2015-01-01

    Tamoxifen represents a major adjuvant therapy to those patients with estrogen receptor-alpha positive breast cancer. However, tamoxifen resistance occurs quite often, either de novo or acquired during treatment. To investigate the role of miR-320a in the development of resistance to tamoxifen, we established tamoxifen-resistant (TamR) models by continually exposing MCF-7 or T47D breast cancer cells to tamoxifen, and identified microRNA(miRNA)-320a as a down-regulated miRNA in tamoxifen resistant cells. Re-expression of miR-320a was sufficient to sensitize TamR cells to tamoxifen by targeting cAMP-regulated phosphoprotein (ARPP-19) and estrogen-related receptor gamma (ERRγ) as well as their downstream effectors, c-Myc and Cyclin D1. Furthermore, progesterone (P4) promoted the expression of miR-320a by repressing c-Myc expression, while estrogen (E2) exerted the opposite effect. These results suggest the potential therapeutic approach for tamoxifen-resistant breast cancer by restorating miR-320a expression or depleting ARPP-19/ERRγ expression. PMID:25736597

  7. Estrogen receptor-α36 is involved in development of acquired tamoxifen resistance via regulating the growth status switch in breast cancer cells.

    PubMed

    Li, Guangliang; Zhang, Jing; Jin, Ketao; He, Kuifeng; Zheng, Yi; Xu, Xin; Wang, Haohao; Wang, Haiyong; Li, Zhongqi; Yu, Xiongfei; Teng, Xiaodong; Cao, Jiang; Teng, Lisong

    2013-06-01

    Acquired tamoxifen (TAM) resistance limits the therapeutic benefit of TAM in patients with hormone-dependent breast cancer. The switch from estrogen-dependent to growth factor-dependent growth is a critical step in this process. However, the molecular mechanisms underlying this switch remain poorly understood. In this study, we established a TAM resistant cell sub line (MCF-7/TAM) from estrogen receptor-α (ER-α66) positive breast cancer MCF-7 cells by culturing ER-α66-positive MCF-7 cells in medium plus 1 μM TAM over 6 months. MCF-7/TAM cells were then found to exhibit accelerated proliferation rate together with enhanced in vitro migratory and invasive ability. And the estrogen receptor-α36 (ER-α36), a novel 36-kDa variant of ER-α66, was dramatically overexpressed in this in vitro model, compared to the parental MCF-7 cells. Meanwhile, the expression of epidermal growth factor receptor (EGFR) in MCF-7/TAM cells was significantly up-regulated both in mRNA level and protein level, and the expression of ER-α66 was greatly down-regulated oppositely. In the subsequent studies, we overexpressed ER-α36 in MCF-7 cells by stable transfection and found that ER-α36 transfected MCF-7 cells (MCF-7/ER-α36) similarly exhibited decreased sensitivity to TAM, accelerated proliferative rate and enhanced in vitro migratory and invasive ability, compared to empty vector transfected MCF-7 cells (MCF-7/V). Real-time qPCR and Western blotting analysis revealed that MCF-7/ER-α36 cells possessed increased EGFR expression but decreased ER-α66 expression both in mRNA level and protein level, compared to MCF-7/V cells. This change in MCF-7/ER-α36 cells could be reversed by neutralizing anti-ER-α36 antibody treatment. Furthermore, knock-down of ER-α36 expression in MCF-7/TAM cells resulted in reduced proliferation rate together with decreased in vitro migratory and invasive ability. Decreased EGFR mRNA and protein expression as well as increased ER-α66 mRNA expression were

  8. Evaluation of interacellular tamoxifen-induced fluorescence in tamoxifen-resistant human breast adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Bachmann, Nathalie; Barberi-Heyob, Muriel; Gramain, Marie-Pierre; Bour, Corinne; Marchal, Sophie; Parache, Robert M.; Guillemin, Francois H.; Merlin, Jean-Louis

    1997-12-01

    A tamoxifen resistant cell line (MCF7TAM) was established from tamoxifen sensitive MCF-7 human adenocarcinoma cells expressing estrogen receptors. The resistant cell line was found to express estrogen receptors to similar level as the parent cell line but the receptors were found to be altered, having lost their ability to bind estradiol or tamoxifen. The fluorescence of eosin-tamoxifen ionic association was used to investigate intracellular location of tamoxifen in both sensitive and resistant cell lines. Fluorescence emission spectra of eosin, tamoxifen and eosin-tamoxifen complex ((lambda) exc equals 480 nm) were analyzed and showed that maximal fluorescence intensity of the complex ((lambda) em equals 540 nm) was four times higher than that of eosin alone while tamoxifen alone did not emit any fluorescence in this spectral range. In MCF-7 cells, tamoxifen was found to be diffusively located in the cytoplasm and nuclear fluorescence intensity was significantly lower. No difference was observed in fluorescence intensity or location in tamoxifen resistant cells, although it has been previously correlated with clinical responsiveness. Improvement of this fluorescence microscopy methodology appears necessary to provide accurate results taking into account the complexity of tamoxifen resistance molecular pathways.

  9. The Effect of Selective Estrogen Receptor Modulators (SERMs) on the Tamoxifen Resistant Breast Cancer Cells.

    PubMed

    Chang, Bo Yoon; Kim, Sae Am; Malla, Bindu; Kim, Sung Yeon

    2011-06-01

    Selective estrogen receptor modulators (SERMs) are synthetic molecules which bind to estrogen receptors (ER) and can modulate its transcriptional capabilities in different ways in diverse estrogen target tissues. Tamoxifen, the prototypical SERM, is extensively used for targeted therapy of ER positive breast cancers. Unfortunately, the use of tamoxifen is associated with acquired resistance and some undesirable side effects. This study investigated the availability of the conventional SERMs on the TAM-resistance breast cancer cells. SERMs showed more effectiveness in MCF-7 cells than tamoxifen resistant cells, except toremifene and ospemifene. Especially, toremifene was more efficacious in tamoxifen resistant cells than MCF-7. Ospemifene had similar cytotoxic activity on the two types of breast cancers. The other SERMs used in this experiment didn't inhibit efficiently the proliferation of tamoxifen resistant cells. These results support the possibility to usage of toremifene on tamoxifen resistant cancer. The effectiveness by toremifene on tamoxifen resistant cells might be different pathways from the apoptosis and the autophagy. Further study should be needed to elucidate the underlying mechanism of effect of toremifene on tamoxifen resistant cancer.

  10. Reprogramming of the ERRα and ERα target gene landscape triggers tamoxifen resistance in breast cancer.

    PubMed

    Thewes, Verena; Simon, Ronald; Schroeter, Petra; Schlotter, Magdalena; Anzeneder, Tobias; Büttner, Reinhard; Benes, Vladimir; Sauter, Guido; Burwinkel, Barbara; Nicholson, Robert I; Sinn, Hans-Peter; Schneeweiss, Andreas; Deuschle, Ulrich; Zapatka, Marc; Heck, Stefanie; Lichter, Peter

    2015-02-15

    Endocrine treatment regimens for breast cancer that target the estrogen receptor-α (ERα) are effective, but acquired resistance remains a limiting drawback. One mechanism of acquired resistance that has been hypothesized is functional substitution of the orphan receptor estrogen-related receptor-α (ERRα) for ERα. To examine this hypothesis, we analyzed ERRα and ERα in recurrent tamoxifen-resistant breast tumors and conducted a genome-wide target gene profiling analysis of MCF-7 breast cancer cell populations that were sensitive or resistant to tamoxifen treatment. This analysis uncovered a global redirection in the target genes controlled by ERα, ERRα, and their coactivator AIB1, defining a novel set of target genes in tamoxifen-resistant cells. Beyond differences in the ERα and ERRα target gene repertoires, both factors were engaged in similar pathobiologic processes relevant to acquired resistance. Functional analyses confirmed a requirement for ERRα in tamoxifen- and fulvestrant-resistant MCF-7 cells, with pharmacologic inhibition of ERRα sufficient to partly restore sensitivity to antiestrogens. In clinical specimens (n = 1041), increased expression of ERRα was associated with enhanced proliferation and aggressive disease parameters, including increased levels of p53 in ERα-positive cases. In addition, increased ERRα expression was linked to reduced overall survival in independent tamoxifen-treated patient cohorts. Taken together, our results suggest that ERα and ERRα cooperate to promote endocrine resistance, and they provide a rationale for the exploration of ERRα as a candidate drug target to treat endocrine-resistant breast cancer.

  11. Identification of a putative protein profile associating with tamoxifen therapy resistance in breast cancer

    SciTech Connect

    Umar, Arzu; Kang, Hyuk; Timmermans, A. M.; Look, Maxime P.; Meijer-van Gelder, M. E.; den Bakker, Michael A.; Jaitly, Navdeep; Martens, John W.; Luider, Theo M.; Foekens, John A.; Pasa-Tolic, Ljiljana

    2009-06-01

    Tamoxifen-resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that associate with tamoxifen-resistance is a first step towards better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy-resistance in breast cancer, using nanoLC coupled with FTICR MS. Comparative proteome analysis was performed on ~5,500 pooled tumor cells (corresponding to ~550 ng protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data sets (n=24 and n=27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag (AMT) reference databases.

  12. Minireview: The Link Between ERα Corepressors and Histone Deacetylases in Tamoxifen Resistance in Breast Cancer.

    PubMed

    Légaré, Stéphanie; Basik, Mark

    2016-09-01

    Approximately 70% of breast cancers express the estrogen receptor (ER)α and are treated with the ERα antagonist, tamoxifen. However, resistance to tamoxifen frequently develops in advanced breast cancer, in part due to a down-regulation of ERα corepressors. Nuclear receptor corepressors function by attenuating hormone responses and have been shown to potentiate tamoxifen action in various biological systems. Recent genomic data on breast cancers has revealed that genetic and/or genomic events target ERα corepressors in the majority of breast tumors, suggesting that the loss of nuclear receptor corepressor activity may represent an important mechanism that contributes to intrinsic and acquired tamoxifen resistance. Here, the biological functions of ERα corepressors are critically reviewed to elucidate their role in modifying endocrine sensitivity in breast cancer. We highlight a mechanism of gene repression common to corepressors previously shown to enhance the antitumorigenic effects of tamoxifen, which involves the recruitment of histone deacetylases (HDACs) to DNA. As an indicator of epigenetic disequilibrium, the loss of ERα corepressors may predispose cancer cells to the cytotoxic effects of HDAC inhibitors, a class of drug that has been shown to effectively reverse tamoxifen resistance in numerous studies. HDAC inhibition thus appears as a promising therapeutic approach that deserves to be further explored as an avenue to restore drug sensitivity in corepressor-deficient and tamoxifen-resistant breast cancers. PMID:27581354

  13. AIB1 is required for the acquisition of epithelial growth factor receptor-mediated tamoxifen resistance in breast cancer cells

    SciTech Connect

    Zhao Wenhui; Zhang Qingyuan Kang Xinmei; Jin Shi; Lou Changjie

    2009-03-13

    Acquired resistance to tamoxifen has become a serious obstacle in breast cancer treatment. The underlying mechanism responsible for this condition has not been completely elucidated. In this study, a tamoxifen-resistant (Tam-R) MCF-7 breast cancer cell line was developed to mimic the occurrence of acquired tamoxifen resistance as seen in clinical practice. Increased expression levels of HER1, HER2 and the estrogen receptor (ER)-AIB1 complex were found in tamoxifen-resistant cells. EGF stimulation and gefitinib inhibition experiments further demonstrated that HER1/HER2 signaling and AIB1 were involved in the proliferation of cells that had acquired Tam resistance. However, when AIB1 was silenced with AIB1-siRNA in Tam-R cells, the cell growth stimulated by the HER1/HER2 signaling pathway was significantly reduced, and the cells were again found to be inhibited by tamoxifen. These results suggest that the AIB1 protein could be a limiting factor in the HER1/HER2-mediated hormone-independent growth of Tam-R cells. Thus, AIB1 may be a new therapeutic target, and the removal of AIB1 may decrease the crosstalk between ER and the HER1/HER2 pathway, resulting in the restoration of tamoxifen sensitivity in tamoxifen-resistant cells.

  14. Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth.

    PubMed

    Catalano, Stefania; Giordano, Cinzia; Panza, Salvatore; Chemi, Francesca; Bonofiglio, Daniela; Lanzino, Marilena; Rizza, Pietro; Romeo, Francesco; Fuqua, Suzanne A W; Maggiolini, Marcello; Andò, Sebastiano; Barone, Ines

    2014-07-01

    Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Aromatase inhibitors are effective in women who progressed or recurred on tamoxifen, suggesting a role of local estrogen production by aromatase in driving tamoxifen-resistant phenotype. However, the link between aromatase activity and tamoxifen resistance has not yet been reported. We investigated whether long-term tamoxifen exposure may affect aromatase activity and/or expression, which may then sustain tamoxifen-resistant breast cancer cell growth. We employed MCF-7 breast cancer cells, tamoxifen-resistant MCF-7 cells (MCF-7 TR1 and TR2), SKBR-3 breast cancer cells, cancer-associated fibroblasts (CAFs1 and CAFs2). We used tritiated-water release assay, realtime-RT-PCR, and immunoblotting analysis for evaluating aromatase activity and expression; anchorage-independent assays for growth; reporter-gene, electrophoretic-mobility-shift, and chromatin-immunoprecipitation assays for promoter activity studies. We demonstrated an increased aromatase activity and expression, which supports proliferation in tamoxifen-resistant breast cancer cells. This is mediated by the G-protein-coupled receptor GPR30/GPER, since knocking-down GPER expression or treatment with a GPER antagonist reversed the enhanced aromatase levels induced by long-term tamoxifen exposure. The molecular mechanism was investigated in ER-negative, GPER/aromatase-positive SKBR3 cells, in which tamoxifen acts as a GPER agonist. Tamoxifen treatment increased aromatase promoter activity through an enhanced recruitment of c-fos/c-jun complex to AP-1 responsive elements located within the promoter region. As tamoxifen via GPER induced aromatase expression also in CAFs, this pathway may be involved in promoting aggressive behavior of breast tumors in response to tamoxifen treatment. Blocking estrogen production and/or GPER signaling activation may represent a valid option to overcome tamoxifen-resistance in breast cancers.

  15. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance

    PubMed Central

    Bekele, Raie T.; Venkatraman, Ganesh; Liu, Rong-Zong; Tang, Xiaoyun; Mi, Si; Benesch, Matthew G. K.; Mackey, John R.; Godbout, Roseline; Curtis, Jonathan M.; McMullen, Todd P. W.; Brindley, David N.

    2016-01-01

    Tamoxifen is the accepted therapy for patients with estrogen receptor-α (ERα)-positive breast cancer. However, clinical resistance to tamoxifen, as demonstrated by recurrence or progression on therapy, is frequent and precedes death from metastases. To improve breast cancer treatment it is vital to understand the mechanisms that result in tamoxifen resistance. This study shows that concentrations of tamoxifen and its metabolites, which accumulate in tumors of patients, killed both ERα-positive and ERα-negative breast cancer cells. This depended on oxidative damage and anti-oxidants rescued the cancer cells from tamoxifen-induced apoptosis. Breast cancer cells responded to tamoxifen-induced oxidation by increasing Nrf2 expression and subsequent activation of the anti-oxidant response element (ARE). This increased the transcription of anti-oxidant genes and multidrug resistance transporters. As a result, breast cancer cells are able to destroy or export toxic oxidation products leading to increased survival from tamoxifen-induced oxidative damage. These responses in cancer cells also occur in breast tumors of tamoxifen-treated mice. Additionally, high levels of expression of Nrf2, ABCC1, ABCC3 plus NAD(P)H dehydrogenase quinone-1 in breast tumors of patients at the time of diagnosis were prognostic of poor survival after tamoxifen therapy. Therefore, overcoming tamoxifen-induced activation of the ARE could increase the efficacy of tamoxifen in treating breast cancer. PMID:26883574

  16. Resveratrol sensitizes tamoxifen in antiestrogen-resistant breast cancer cells with epithelial-mesenchymal transition features.

    PubMed

    Shi, Xiao-Peng; Miao, Shan; Wu, Yin; Zhang, Wei; Zhang, Xiao-Fang; Ma, Hua-Zhao; Xin, Hai-Li; Feng, Juan; Wen, Ai-Dong; Li, Yan

    2013-07-26

    Tamoxifen resistance remains to be a huge obstacle in the treatment of hormone-dependent breast cancer, and this therefore highlights the dire need to explore the underlying mechanisms. The epithelial-mesenchymal transition (EMT) is a molecular process through which an epithelial cell transfers into a mesenchymal phenotype. Roles of EMT in embryo development, cancer invasion and metastasis have been extensively reported. Herein, we established tamoxifen-resistant MCF-7/TR breast cancer cells and showed that MCF-7/TR cells underwent EMT driven by enhanced endogenous TGF-β/Smad signaling. Ectopic supplement of TGF-β promoted in MCF-7 cells a mesenchymal and resistant phenotype. In parallel, we demonstrated that resveratrol was capable of synergizing with tamoxifen and triggering apoptosis in MCF-7/TR cells. Further Western blot analysis indicated that the chemosensitizing effects of resveratrol were conferred with its modulation on endogenous TGF-β production and Smad phosphorylation. In particular, 50 μM resveratrol had minor effects on MCF-7/TR cell proliferation, but could significantly attenuate endogenous TGF-β production and the Smad pathway, ultimately leading to reversion of EMT. Collectively, our study highlighted distinct roles of EMT in tamoxifen resistance and resveratrol as a potential agent to overcome acquired tamoxifen resistance. The molecular mechanism of resveratrol chemosensitizing effects is, at least in part, TGF-β/Smad-dependent.

  17. Leishmania is not prone to develop resistance to tamoxifen.

    PubMed

    Coelho, Adriano C; Trinconi, Cristiana T; Senra, Luisa; Yokoyama-Yasunaka, Jenicer K U; Uliana, Silvia R B

    2015-12-01

    Tamoxifen, an antineoplastic agent, is active in vitro and in vivo against the parasitic protozoa Leishmania. As part of our efforts to unravel this drug's mechanisms of action against the parasite and understand how resistance could arise, we tried to select tamoxifen-resistant Leishmania amazonensis. Three different strategies to generate tamoxifen resistant mutants were used: stepwise increase in drug concentration applied to promastigote cultures, chemical mutagenesis followed by drug selection and treatment of infected mice followed by selection of amastigotes. For amastigote selection, we employed a method with direct plating of parasites recovered from lesions into semi-solid media. Tamoxifen resistant parasites were not rescued by any of these methods. Miltefosine was used as a control in selection experiments and both stepwise selection and chemical mutagenesis allowed successful isolation of miltefosine resistant mutants. These findings are consistent with a multi-target mode of action to explain tamoxifen's leishmanicidal properties. Considering that drug resistance is a major concern in anti-parasitic chemotherapy, these findings support the proposition of using tamoxifen as a partner in drug combination schemes for the treatment of leishmaniasis.

  18. Identification of a Putative Protein Profile Associated with Tamoxifen Therapy Resistance in Breast Cancer*S⃞

    PubMed Central

    Umar, Arzu; Kang, Hyuk; Timmermans, Annemieke M.; Look, Maxime P.; Meijer-van Gelder, Marion E.; den Bakker, Michael A.; Jaitly, Navdeep; Martens, John W. M.; Luider, Theo M.; Foekens, John A.; Paša-Tolić, Ljiljana

    2009-01-01

    Tamoxifen resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that are associated with tamoxifen resistance is a first step toward better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy resistance in breast cancer using nano-LC coupled with FTICR MS. Comparative proteome analysis was performed on ∼5,500 pooled tumor cells (corresponding to ∼550 ng of protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data sets (n = 24 and n = 27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag reference databases. A total of 17,263 unique peptides were identified that corresponded to 2,556 non-redundant proteins identified with ≥2 peptides. 1,713 overlapping proteins between the two data sets were used for further analysis. Comparative proteome analysis revealed 100 putatively differentially abundant proteins between tamoxifen-sensitive and tamoxifen-resistant tumors. The presence and relative abundance for 47 differentially abundant proteins were verified by targeted nano-LC-MS/MS in a selection of unpooled, non-microdissected discovery set tumor tissue extracts. ENPP1, EIF3E, and GNB4 were significantly associated with progression-free survival upon tamoxifen treatment for recurrent disease. Differential abundance of our top discriminating protein, extracellular matrix metalloproteinase inducer, was validated by tissue microarray in an independent patient cohort (n = 156). Extracellular matrix metalloproteinase inducer levels were higher in therapy-resistant

  19. Tamoxifen

    MedlinePlus

    ... the disease due to their age, personal medical history, and family medical history.Tamoxifen is in a class of medications known ... any products such as vitamins, minerals, or other dietary supplements. You should bring this list with you ...

  20. Systemic Acquired Resistance

    PubMed Central

    2006-01-01

    Upon infection with necrotizing pathogens many plants develop an enhanced resistance to further pathogen attack also in the uninoculated organs. This type of enhanced resistance is referred to as systemic acquired resistance (SAR). In the SAR state, plants are primed (sensitized) to more quickly and more effectively activate defense responses the second time they encounter pathogen attack. Since SAR depends on the ability to access past experience, acquired disease resistance is a paradigm for the existence of a form of “plant memory”. Although the phenomenon has been known since the beginning of the 20th century, major progress in the understanding of SAR was made over the past sixteen years. This review covers the current knowledge of molecular, biochemical and physiological mechanisms that are associated with SAR. PMID:19521483

  1. Mitogen-activated protein kinase phosphatase 1 is involved in tamoxifen resistance in MCF7 cells.

    PubMed

    Ma, Gang; Pan, Yixia; Zhou, Can; Sun, Ruifang; Bai, Jingjing; Liu, Peijun; Ren, Yu; He, Jianjun

    2015-11-01

    Tamoxifen resistance is a major clinical problem for ER-positive breast cancer, but the underlying mechanism is not completely elucidated. In the present study, we reported that mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1), a member of the family of MKPs, is involved in tamoxifen resistance. We found that MKP1 expression increased in tamoxifen resistant MCF7 cells. To explore the possible role of MKP1 in tamoxifen resistance, siRNA targeting MKP1 was transfected into tamoxifen resistant MCF7 cells. To our surprise, knockdown of MKP-1 promoted cell death induced by tamoxifen. On the other hand, the MKP1 overexpressed MCF7 cell clone was established and MKP1 overexpression effectively attenuated MCF7 cell death induced by tamoxifen. In addition, we revealed that MKP1 inhibited tamoxifen‑mediated JNK activation in tamoxifen resistant MCF7 and MCF7 cells, and by this mechanism MKP1 was able to inhibit tamoxifen-induced cell death. We also showed that combined appliaction of MKP1 inhibitor triptolide and tamoxifen can effectively increase tamoxifen sensitivity in tamoxifen resistant MCF7 cells. Collectively, our results indicated that MKP-1 can attenuate tamoxifen-induced cell death through inhibiting the JNK signal pathway, which represents a novel mechanism of tamoxifen resistance in MCF7 cells.

  2. Regulation of p130Cas/BCAR1 Expression in Tamoxifen-Sensitive and Tamoxifen-Resistant Breast Cancer Cells by EGR1 and NAB21

    PubMed Central

    Kumbrink, Joerg; Kirsch, Kathrin H

    2012-01-01

    Elevated levels of p130Cas/BCAR1 (Crk-associated substrate/breast cancer antiestrogen resistance 1) are found in aggressive breast tumors and are associated with tamoxifen resistance of mammary cancers. p130Cas promotes the integration of protein complexes involved in multiple signaling pathways frequently deregulated in breast cancer. To elucidate mechanisms leading to p130Cas up-regulation in mammary carcinomas and during acquired tamoxifen resistance, the regulation of p130Cas/BCAR1 was studied. Because multiple putative binding motifs for the inducible transcription factor EGR1 were identified in the 5′ region of BCAR1, the p130Cas/BCAR1 regulation by EGR1 and its coregulator NAB2 was investigated. Overexpression or short interfering RNA (siRNA)-mediated down-regulation of EGR1 or NAB2, and chromatin immunoprecipitations indicated that EGR1 and NAB2 act in concert to positively regulate p130Cas/BCAR1 expression in breast cancer cells. p130Cas depletion using siRNA showed that, in tamoxifen-sensitive MCF-7 cells, p130Cas regulates EGR1 and NAB2 expression, whereas in the derivative tamoxifen-resistant TAM-R cells, only NAB2 levels were influenced. BCAR1 messenger RNA and p130Cas protein were upregulated by phorbol esters following the kinetics of late response genes in MCF-7 but not in TAM-R cells. Thus, in MCF-7 cells, we identified a positive feedback loop where p130Cas positively regulates EGR1 and NAB2, which in turn induce p130Cas expression. Importantly, compared with MCF-7, enhanced NAB2 expression and increased EGR1 binding to the BCAR1 5′ region observed in TAM-R may lead to the constitutively increased p130Cas/BCAR1 levels in TAM-R cells. The uncovered differences in this EGR1/NAB2/p130Cas network in MCF-7 versus TAM-R cells may also contribute to p130Cas up-regulation during acquired tamoxifen resistance. PMID:22431919

  3. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells.

    PubMed

    Ignatov, Atanas; Ignatov, Tanja; Roessner, Albert; Costa, Serban Dan; Kalinski, Thomas

    2010-08-01

    Tamoxifen is the most frequently used anti-hormonal drug for treatment of women with hormone-dependent breast cancer. The aim of this study is to investigate the mechanism of tamoxifen resistance and the impact of the new estrogen G-protein coupled receptor (GPR30). MCF-7 cells were continuously exposed to tamoxifen for 6 months to induce resistance to the inhibitory effect of tamoxifen. These tamoxifen-resistant cells (TAM-R) exhibited enhanced sensitivity to 17-ss-estradiol and GPR30 agonist, G1, when compared to the parental cells. In TAM-R cells, tamoxifen was able to stimulate the cell growth and MAPK phosphorylation. These effects were abolished by EGFR inhibitor AG1478, GPR30 anti-sense oligonucleotide, and the selective c-Src inhibitor PP2. Only EGFR basal expression was slightly elevated in the TAM-R cells, whereas GPR30 expression and the basal phosphorylation of Akt and MAPK remained unchanged when compared to the parental cells. Interestingly, estrogen treatment significantly increased GPR30 translocation to the cell surface, which was stronger in TAM-R cells. Continuous treatment of MCF-7 cells with GPR30 agonist G1 mimics the long-term treatment with tamoxifen and increases drastically its agonistic activity. This data suggests the important role of GPR30/EGFR receptor signaling in the development of tamoxifen resistance. The inhibition of this pathway is a valid option to improve anti-hormone response in breast cancer.

  4. Comparison of tamoxifen and letrozole response in mammary preneoplasia of ER and aromatase overexpressing mice defines an immune-associated gene signature linked to tamoxifen resistance.

    PubMed

    Dabydeen, Sarah A; Kang, Keunsoo; Díaz-Cruz, Edgar S; Alamri, Ahmad; Axelrod, Margaret L; Bouker, Kerrie B; Al-Kharboosh, Rawan; Clarke, Robert; Hennighausen, Lothar; Furth, Priscilla A

    2015-01-01

    Response to breast cancer chemoprevention can depend upon host genetic makeup and initiating events leading up to preneoplasia. Increased expression of aromatase and estrogen receptor (ER) is found in conjunction with breast cancer. To investigate response or resistance to endocrine therapy, mice with targeted overexpression of Esr1 or CYP19A1 to mammary epithelial cells were employed, representing two direct pathophysiological interventions in estrogen pathway signaling. Both Esr1 and CYP19A1 overexpressing mice responded to letrozole with reduced hyperplastic alveolar nodule prevalence and decreased mammary epithelial cell proliferation. CYP19A1 overexpressing mice were tamoxifen sensitive but Esr1 overexpressing mice were tamoxifen resistant. Increased ER expression occurred with tamoxifen resistance but no consistent changes in progesterone receptor, pSTAT3, pSTAT5, cyclin D1 or cyclin E levels in association with response or resistance were found. RNA-sequencing (RNA-seq) was employed to seek a transcriptome predictive of tamoxifen resistance using these models and a second tamoxifen-resistant model, BRCA1 deficient/Trp53 haploinsufficient mice. Sixty-eight genes associated with immune system processing were upregulated in tamoxifen-resistant Esr1- and Brca1-deficient mice, whereas genes related to aromatic compound metabolic process were upregulated in tamoxifen-sensitive CYP19A1 mice. Interferon regulatory factor 7 was identified as a key transcription factor regulating these 68 immune processing genes. Two loci encoding novel transcripts with high homology to human immunoglobulin lambda-like polypeptide 1 were uniquely upregulated in the tamoxifen-resistant models. Letrozole proved to be a successful alternative to tamoxifen. Further study of transcriptional changes associated with tamoxifen resistance including immune-related genes could expand our mechanistic understanding and lead to biomarkers predictive of escape or response to endocrine therapies

  5. Dose-dependent effect of tamoxifen in tamoxifen-resistant breast cancer cells via stimulation by the ERK1/2 and AKT signaling pathways.

    PubMed

    Wang, Li-Juan; Han, Su-Xia; Bai, E; Zhou, Xia; Li, Meng; Jing, Gui-Hua; Zhao, Jing; Yang, An-Gang; Zhu, Qing

    2013-04-01

    The majority of breast cancers undergo progression from an initially endocrine responsive phenotype to an endocrine therapy-resistant phenotype, and acquired resistance to tamoxifen (Tam) is a major clinical problem. In the present study, we aimed to identify the function and mechanism of Tam at different concentrations in cells with acquired Tam resistance. Estrogen-dependent MCF-7 cells were cultured with Tam to generate Tam-resistant (TAM-R) breast cancer cells or in estrogen-free medium to mimic the effects of clinical treatment. In addition, we analyzed the effects of different concentrations of Tam on TAM-R cells by cell counting. Furthermore, the crosstalk between the stimulatory G protein α subunit (Gαs) and the activation of ERK1/2 and AKT in TAM-R cells was examined by small interfering RNA (siRNA) and immunoblotting methods. Low-dose Tam was found to act as an estrogen agonist via stimulation of the ERK1/2 signaling pathway, resulting in acquired resistance to Tam, whereas high-dose Tam inhibited TAM-R cell growth by blocking the activation of ERK1/2 and AKT. Moreover, Gαs was involved in Tam resistance in breast cancer cells. Taken together, our study demonstrated a dose-dependent growth response to Tam in TAM-R cells, which will promote the understanding of the importance of the appropriate use and dosage of Tam in the clinic.

  6. Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer

    PubMed Central

    Johansson, Henrik J.; Sanchez, Betzabe C.; Mundt, Filip; Forshed, Jenny; Kovacs, Aniko; Panizza, Elena; Hultin-Rosenberg, Lina; Lundgren, Bo; Martens, Ulf; Máthé, Gyöngyvér; Yakhini, Zohar; Helou, Khalil; Krawiec, Kamilla; Kanter, Lena; Hjerpe, Anders; Stål, Olle; Linderholm, Barbro K.; Lehtiö, Janne

    2013-01-01

    About one-third of oestrogen receptor alpha-positive breast cancer patients treated with tamoxifen relapse. Here we identify the nuclear receptor retinoic acid receptor alpha as a marker of tamoxifen resistance. Using quantitative mass spectrometry-based proteomics, we show that retinoic acid receptor alpha protein networks and levels differ in a tamoxifen-sensitive (MCF7) and a tamoxifen-resistant (LCC2) cell line. High intratumoural retinoic acid receptor alpha protein levels also correlate with reduced relapse-free survival in oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen solely. A similar retinoic acid receptor alpha expression pattern is seen in a comparable independent patient cohort. An oestrogen receptor alpha and retinoic acid receptor alpha ligand screening reveals that tamoxifen-resistant LCC2 cells have increased sensitivity to retinoic acid receptor alpha ligands and are less sensitive to oestrogen receptor alpha ligands compared with MCF7 cells. Our data indicate that retinoic acid receptor alpha may be a novel therapeutic target and a predictive factor for oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen. PMID:23868472

  7. COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR

    PubMed Central

    Lu, Renquan; Hu, Xiaobo; Zhou, Junmei; Sun, Jiajun; Zhu, Alan Z.; Xu, Xiaofeng; Zheng, Hui; Gao, Xiang; Wang, Xian; Jin, Hongchuan; Zhu, Ping; Guo, Lin

    2016-01-01

    Oestrogen receptor α (ERα) antagonists are used in endocrine therapies for ERα-positive (ERα+) breast cancer patients. Unfortunately the clinical benefit is limited due to intrinsic and acquired drug resistance. Here using integrated genomic and functional studies, we report that amplification and/or overexpression of COPS5 (CSN5/JAB1) confers resistance to tamoxifen. Amplification and overexpression of COPS5, a catalytic subunit of the COP9 complex, is present in about 9% of the ERα+ primary breast cancer and more frequently (86.7%, 26/30) in tamoxifen-refractory tumours. Overexpression of COPS5, through its isopeptidase activity, leads to ubiquitination and proteasome-mediated degradation of NCoR, a key corepressor for ERα and tamoxifen-mediated suppression of ERα target genes. Importantly, COPS5 overexpression causes tamoxifen-resistance in preclinical breast cancer models in vitro and in vivo. We also demonstrate that genetic inhibition of the isopeptidase activity of COPS5 is sufficient to re-sensitize the resistant breast cancer cells to tamoxifen-treatment, offering a potential therapeutic approach for endocrine-resistant breast cancer patients. PMID:27375289

  8. MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers

    PubMed Central

    Mohseni, Morassa; Cidado, Justin; Croessmann, Sarah; Cravero, Karen; Cimino-Mathews, Ashley; Wong, Hong Yuen; Scharpf, Rob; Zabransky, Daniel J.; Abukhdeir, Abde M.; Garay, Joseph P.; Wang, Grace M.; Beaver, Julia A.; Cochran, Rory L.; Blair, Brian G.; Rosen, D. Marc; Erlanger, Bracha; Argani, Pedram; Hurley, Paula J.; Lauring, Josh; Park, Ben Ho

    2014-01-01

    Tamoxifen is effective for treating estrogen receptor-alpha (ER) positive breast cancers. However, few molecular mediators of tamoxifen resistance have been elucidated. Here we describe a previously unidentified gene, MACROD2 that confers tamoxifen resistance and estrogen independent growth. We found MACROD2 is amplified and overexpressed in metastatic tamoxifen-resistant tumors. Transgene overexpression of MACROD2 in breast cancer cell lines results in tamoxifen resistance, whereas RNAi-mediated gene knock down reverses this phenotype. MACROD2 overexpression also leads to estrogen independent growth in xenograft assays. Mechanistically, MACROD2 increases p300 binding to estrogen response elements in a subset of ER regulated genes. Primary breast cancers and matched metastases demonstrate MACROD2 expression can change with disease evolution, and increased expression and amplification of MACROD2 in primary tumors is associated with worse overall survival. These studies establish MACROD2 as a key mediator of estrogen independent growth and tamoxifen resistance, as well as a potential novel target for diagnostics and therapy. PMID:25422431

  9. Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells.

    PubMed

    Woo, Yu Mi; Shin, Yubin; Lee, Eun Ji; Lee, Sunyoung; Jeong, Seung Hun; Kong, Hyun Kyung; Park, Eun Young; Kim, Hyoung Kyu; Han, Jin; Chang, Minsun; Park, Jong-Hoon

    2015-01-01

    Tamoxifen resistance is often observed in the majority of estrogen receptor-positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9--tamoxifen-resistant human breast cancer cell lines derived from MCF7--are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O2-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer. PMID:26158266

  10. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells.

    PubMed

    Radde, Brandie N; Ivanova, Margarita M; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P; Muluhngwi, Penn; Kalbfleisch, Ted S; Rouchka, Eric C; Hill, Bradford G; Klinge, Carolyn M

    2016-09-10

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. PMID:27515002

  11. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields.

    PubMed

    Girgert, Rainer; Schimming, Hartmut; Körner, Wolfgang; Gründker, Carsten; Hanf, Volker

    2005-11-01

    The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50Hz electromagnetic fields and IC(50) values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2muT was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.

  12. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields

    SciTech Connect

    Girgert, Rainer . E-mail: rainer.girgert@med.uni-goettingen.de; Schimming, Hartmut; Koerner, Wolfgang; Gruendker, Carsten; Hanf, Volker

    2005-11-04

    The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50 Hz electromagnetic fields and IC{sub 50} values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2 {mu}T was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.

  13. MEK activity controls IL-8 expression in tamoxifen-resistant MCF-7 breast cancer cells.

    PubMed

    Kim, Sangmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin

    2016-04-01

    Although tamoxifen reduces disease progression, tamoxifen resistance occurs during the course of estrogen receptor-positive [ER+] breast cancer treatment. In the present study, we investigated the possibility that interleukin-8 (IL-8) is a prognostic marker for tamoxifen resistance and aimed to clarify the regulation of IL-8 expression in tamoxifen-resistant cells. Clinically, IL-8 expression is positively correlated with survival in luminal A type breast cancer patients, but not in luminal B type breast cancer patients. In addition, the levels of IL-8 mRNA and protein expression were significantly increased in tamoxifen-resistant (TamR) cells compared to tamoxifen-sensitive (TamS) cells. To determine the regulatory mechanism of IL-8 expression in TamR cells, we analyzed the activities of signaling molecules. Our results showed that the phosphorylation levels of MEK and Akt were markedly increased in TamR cells, but there was no change in the phosphorylation level of p38 MAPK. On the contrary, we observed that elevated IL-8 mRNA expression was suppressed by a specific MEK1/2 inhibitor, UO126, but not by the specific PI-3K inhibitor LY294002, in TamR cells, whereas, we found that overexpression of constitutively active-MEK (CA-MEK) significantly increased the levels of IL-8 mRNA expression in TamS cells. Finally, we investigated the effect of the specific CXCR1/2 inhibitor SB225002 on anchorage-independent growth of TamR cells, and found that the growth was completely suppressed by SB225002. Taken together, our results demonstrate that IL-8 expression is regulated through a MEK/ERK-dependent pathway in TamR cells, suggesting that IL-8 and its receptors may be promising therapeutic targets for overcoming tamoxifen resistance.

  14. Cytotoxic Activities of Silver Nanoparticles and Silver Ions in Parent and Tamoxifen-Resistant T47D Human Breast Cancer Cells and Their Combination Effects with Tamoxifen against Resistant Cells.

    PubMed

    Ostad, Seyed Naser; Dehnad, Shahrzad; Nazari, Zeinab Esmail; Fini, Shohreh Tavajohi; Mokhtari, Narges; Shakibaie, Mojtaba; Shahverdi, Ahmad Reza

    2010-10-01

    Studies on biomedical applications of nanoparticles are growing with a rapid pace. In medicine, nanoparticles may be the solution for multi-drug-resistance which is still a major drawback in chemotherapy of cancer. In the present study, we investigated the potential cytotoxic effect of silver nanoparticles (Ag NPs) and silver ions (Ag(+)) in both parent and tamoxifen-resistant T47D cells in presence and absence of tamoxifen. Ag NPs were synthesized (< 28 nm) and MTT assay was carried out. The associated IC(50) values were found to be: 6.31 µg/ml for Ag NPs/parent cells, 37.06 µg/ml for Ag NPs/tamoxifen-resistant cells, 33.06 µg/ml for Ag(+)/parent cells and 10.10 µg/ml for Ag(+)/resistant cells. As a separate experiment, the effect of subinhibitory concentrations of Ag NPs and Ag(+) on the proliferation of tamoxifen-resistant cells was evaluated at non-toxic concentrations of tamoxifen. Our results suggested that in non-cytotoxic concentrations of silver nanomaterials and tamoxifen, the combinations of Ag(+)-tamoxifen and Ag NPs-tamoxifen are still cytotoxic. This finding may be of great potential benefit in chemotherapy of breast cancer; since much lower doses of tamoxifen may be needed to produce the same cytotoxic effect and side effects will be reduced. PMID:23408729

  15. Cytotoxic Activities of Silver Nanoparticles and Silver Ions in Parent and Tamoxifen-Resistant T47D Human Breast Cancer Cells and Their Combination Effects with Tamoxifen against Resistant Cells

    PubMed Central

    Ostad, Seyed Naser; Dehnad, Shahrzad; Nazari, Zeinab Esmail; Fini, Shohreh Tavajohi; Mokhtari, Narges; Shakibaie, Mojtaba; Shahverdi, Ahmad Reza

    2010-01-01

    Studies on biomedical applications of nanoparticles are growing with a rapid pace. In medicine, nanoparticles may be the solution for multi-drug-resistance which is still a major drawback in chemotherapy of cancer. In the present study, we investigated the potential cytotoxic effect of silver nanoparticles (Ag NPs) and silver ions (Ag+) in both parent and tamoxifen-resistant T47D cells in presence and absence of tamoxifen. Ag NPs were synthesized (< 28 nm) and MTT assay was carried out. The associated IC50 values were found to be: 6.31 µg/ml for Ag NPs/parent cells, 37.06 µg/ml for Ag NPs/tamoxifen-resistant cells, 33.06 µg/ml for Ag+/parent cells and 10.10 µg/ml for Ag+/resistant cells. As a separate experiment, the effect of subinhibitory concentrations of Ag NPs and Ag+ on the proliferation of tamoxifen-resistant cells was evaluated at non-toxic concentrations of tamoxifen. Our results suggested that in non-cytotoxic concentrations of silver nanomaterials and tamoxifen, the combinations of Ag+-tamoxifen and Ag NPs-tamoxifen are still cytotoxic. This finding may be of great potential benefit in chemotherapy of breast cancer; since much lower doses of tamoxifen may be needed to produce the same cytotoxic effect and side effects will be reduced. PMID:23408729

  16. Novel selective estrogen mimics for the treatment of tamoxifen-resistant breast cancer.

    PubMed

    Molloy, Mary Ellen; White, Bethany E Perez; Gherezghiher, Teshome; Michalsen, Bradley T; Xiong, Rui; Patel, Hitisha; Zhao, Huiping; Maximov, Philipp Y; Jordan, V Craig; Thatcher, Gregory R J; Tonetti, Debra A

    2014-11-01

    Endocrine-resistant breast cancer is a major clinical obstacle. The use of 17β-estradiol (E2) has reemerged as a potential treatment option following exhaustive use of tamoxifen or aromatase inhibitors, although side effects have hindered its clinical usage. Protein kinase C alpha (PKCα) expression was shown to be a predictor of disease outcome for patients receiving endocrine therapy and may predict a positive response to an estrogenic treatment. Here, we have investigated the use of novel benzothiophene selective estrogen mimics (SEM) as an alternative to E2 for the treatment of tamoxifen-resistant breast cancer. Following in vitro characterization of SEMs, a panel of clinically relevant PKCα-expressing, tamoxifen-resistant models were used to investigate the antitumor effects of these compounds. SEM treatment resulted in growth inhibition and apoptosis of tamoxifen-resistant cell lines in vitro. In vivo SEM treatment induced tumor regression of tamoxifen-resistant T47D:A18/PKCα and T47D:A18-TAM1 tumor models. T47D:A18/PKCα tumor regression was accompanied by translocation of estrogen receptor (ER) α to extranuclear sites, possibly defining a mechanism through which these SEMs initiate tumor regression. SEM treatment did not stimulate growth of E2-dependent T47D:A18/neo tumors. In addition, unlike E2 or tamoxifen, treatment with SEMs did not stimulate uterine weight gain. These findings suggest the further development of SEMs as a feasible therapeutic strategy for the treatment of endocrine-resistant breast cancer without the side effects associated with E2.

  17. IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer.

    PubMed

    Sun, X; Mao, Y; Wang, J; Zu, L; Hao, M; Cheng, G; Qu, Q; Cui, D; Keller, E T; Chen, X; Shen, K; Wang, J

    2014-06-01

    Cancer-associated fibroblasts (CAFs) have been implicated in the development of resistance to anticancer drugs; however, the role and mechanism underlying CAFs in luminal breast cancer (BrCA) tamoxifen resistance are unclear. We found that stromal fibroblasts isolated from the central or peripheral area of BrCA have similar CAF phenotype and activity. In vitro and in vivo experiments showed that CAFs derived from clinical-luminal BrCAs induce tamoxifen resistance through decreasing estrogen receptor-α (ER-α) level when cultured with luminal BrCA cell lines MCF7 and T47D. CAFs promoted tamoxifen resistance through interleukin-6 (IL-6) secretion, which activates Janus kinase/signal transducers and activators of transcription (JAK/STAT3) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways in tumor cells, followed by induction of epithelial-mesenchymal transition and upregulation of E3 ubiquitin ligase anaphase-promoting complex 10 activity, which targeted ER-α degradation through the ubiquitin-proteasome pathway. Inhibition of proteasome activity, IL-6 activity or either the JAK/STAT3 or PI3K/AKT pathways markedly reduced CAF-induced tamoxifen resistance. In xenograft experiments of CAFs mixed with MCF7 cells, CAF-specific IL-6 knockdown inhibited tumorigenesis and restored tamoxifen sensitivity. These findings indicate that CAFs mediate tamoxifen resistance through IL-6-induced degradation of ER-α in luminal BrCAs.Oncogene advance online publication, 9 June 2014; doi:10.1038/onc.2014.158.

  18. NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen.

    PubMed

    deGraffenried, L A; Chandrasekar, B; Friedrichs, W E; Donzis, E; Silva, J; Hidalgo, M; Freeman, J W; Weiss, G R

    2004-06-01

    Studies show that high Akt activity in breast carcinoma is associated with endocrine therapy resistance. Breast cancer cell lines expressing a constitutively active Akt are able to proliferate under reduced estrogen conditions, and are resistant to the growth inhibitory effects of tamoxifen. Understanding the targets of Akt signaling mediating tamoxifen resistance is of clinical significance. One possible target is nuclear factor kappa B (NF-kappa B), a transcription factor that plays a critical role in resistance to apoptosis and the induction of angiogenesis and invasion. In the present study, we found that Akt activity correlated with phosphorylation of I kappa B (the negative regulator of NF-kappa B), NF-kappa B DNA binding and tamoxifen resistance in vivo. Importantly, we found that co-treatment with the NF-kappa B inhibitor, parthenolide, or overexpression of I kappa B superrepressor restored tamoxifen sensitivity to our refractory Akt MCF-7 cells. These data suggest that activation of NF-kappa B via the PI3K/Akt signaling pathway may be a significant mechanism for development of endocrine therapy resistance in breast cancer, and that inhibition of NF-kappa B may be an effective treatment strategy to limit the progression of this disease.

  19. Development and characterization of a tamoxifen-resistant breast carcinoma xenograft.

    PubMed

    Naundorf, H; Becker, M; Lykkesfeldt, A E; Elbe, B; Neumann, C; Büttner, B; Fichtner, I

    2000-06-01

    A human tamoxifen-resistant mammary carcinoma, MaCa 3366/TAM, originating from a sensitive parental xenograft 3366 was successfully established by treatment of tumour-bearing nude mice with 1-50 mg kg(-1) tamoxifen for 3 years during routine passaging. Both tumours did not differ significantly in OR- and PR-positivity, however, when compared with the sensitive tumour line, the mean OR content of the TAM-resistant subline is slightly lower. An OR-upregulation following withdrawal of oestradiol treatment was observed in the parental tumours but not in the resistant xenografts. Following long-term treatment with tamoxifen, the histological pattern of the breast carcinoma changed. The more differentiated structures being apparent after treatment with 17beta-oestradiol in the original 3366 tumour were not induced in the resistant line. Tamoxifen failed to induce a tumour growth inhibition in comparison to the tamoxifen-sensitive line. The pure anti-oestrogen, ICI 182 780, revealed cross-resistance. Sequence analysis of the hormone-binding domain of the OR of both lines showed no differences, suggesting that either mutations in other regions of the OR are involved in the TAM-resistance phenotype or that mechanisms outside of this protein induced this phenotype. Oestrogen and anti-oestrogen regulate pS2 and cathepsin D expression in 3366 tumours as in the human breast cancer cell line MCF-7. The resistant 3366/TAM tumours have lost this regulation. The established breast cancer xenografts 3366 and 3366/TAM offer the possibility of investigating mechanisms of anti-oestrogen resistance in an in vivo situation. They can be used to test novel approaches to prevent, or to overcome, this resistance in a clinically related manner. PMID:10839300

  20. ERBB2 influences the subcellular localization of the estrogen receptor in tamoxifen-resistant MCF-7 cells leading to the activation of AKT and RPS6KA2.

    PubMed

    Pancholi, Sunil; Lykkesfeldt, Anne E; Hilmi, Caroline; Banerjee, Susana; Leary, Alexandra; Drury, Suzanne; Johnston, Stephen; Dowsett, Mitch; Martin, Lesley-Ann

    2008-12-01

    Acquired resistance to endocrine therapies remains a major clinical obstacle in hormone-sensitive breast tumors. We used an MCF-7 breast tumor cell line (Tam(R)-1) resistant to tamoxifen to investigate this mechanism. We demonstrate that Tam(R)-1 express elevated levels of phosphorylated AKT and MAPK3/1-activated RPS6KA2 compared with the parental MCF-7 cell line (MCF-7). There was no change in the level of total ESR between the two cell lines; however, the Tam(R)-1 cells had increased phosphorylation of ESR1 ser(167). SiRNA blockade of AKT or MAPK3/1 had little effect on ESR1 ser(167) phosphorylation, but a combination of the two siRNAs abrogated this. Co-localization studies revealed an association between ERBB2 and ESR1 in the Tam(R)-1 but not MCF-7 cells. ESR1 was redistributed to extranuclear sites in Tam(R)-1 and was less transcriptionally competent compared with MCF-7 suggesting that nuclear ESR1 activity was suppressed in Tam(R)-1. Tamoxifen resistance in the Tam(R)-1 cells could be partially overcome by the ERBB2 inhibitor AG825 in combination with tamoxifen, and this was associated with re-localization of ESR1 to the nucleus. These data demonstrate that tamoxifen-resistant cells have the ability to switch between ERBB2 or ESR1 pathways promoting cell growth and that pharmacological inhibition of ERBB2 may be a therapeutic strategy for overcoming tamoxifen resistance.

  1. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer

    PubMed Central

    Law, Emily K.; Sieuwerts, Anieta M.; LaPara, Kelly; Leonard, Brandon; Starrett, Gabriel J.; Molan, Amy M.; Temiz, Nuri A.; Vogel, Rachel Isaksson; Meijer-van Gelder, Marion E.; Sweep, Fred C. G. J.; Span, Paul N.; Foekens, John A.; Martens, John W. M.; Yee, Douglas; Harris, Reuben S.

    2016-01-01

    Breast tumors often display extreme genetic heterogeneity characterized by hundreds of gross chromosomal aberrations and tens of thousands of somatic mutations. Tumor evolution is thought to be ongoing and driven by multiple mutagenic processes. A major outstanding question is whether primary tumors have preexisting mutations for therapy resistance or whether additional DNA damage and mutagenesis are necessary. Drug resistance is a key measure of tumor evolvability. If a resistance mutation preexists at the time of primary tumor presentation, then the intended therapy is likely to fail. However, if resistance does not preexist, then ongoing mutational processes still have the potential to undermine therapeutic efficacy. The antiviral enzyme APOBEC3B (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3B) preferentially deaminates DNA C-to-U, which results in signature C-to-T and C-to-G mutations commonly observed in breast tumors. We use clinical data and xenograft experiments to ask whether APOBEC3B contributes to ongoing breast tumor evolution and resistance to the selective estrogen receptor modulator, tamoxifen. First, APOBEC3B levels in primary estrogen receptor–positive (ER+) breast tumors inversely correlate with the clinical benefit of tamoxifen in the treatment of metastatic ER+ disease. Second, APOBEC3B depletion in an ER+ breast cancer cell line results in prolonged tamoxifen responses in murine xenograft experiments. Third, APOBEC3B overexpression accelerates the development of tamoxifen resistance in murine xenograft experiments by a mechanism that requires the enzyme’s catalytic activity. These studies combine to indicate that APOBEC3B promotes drug resistance in breast cancer and that inhibiting APOBEC3B-dependent tumor evolvability may be an effective strategy to improve efficacies of targeted cancer therapies. PMID:27730215

  2. NGX6 expression improves the sensitivity of tamoxifen-resistant MCF-7 cells through modulation of the Smad signaling pathway.

    PubMed

    Zhao, Wen-Jing; Wang, Ke

    2013-06-01

    The effects of nasopharyngeal carcinoma-associated gene 6 (NGX6) in breast cancer was studied. We demonstrated that the levels of the NGX6 protein and mRNA were lower in patients with tamoxifen-resistant tumors compared to patients with tamoxifen-sensitive tumors. Tamoxifen was able to decrease proliferation, increase apoptosis and induce G1 arrest in NGX6-expressing TRM-7 cells in vitro. In order to detect the mechanism(s) of tamoxifen action, we first obtain the three-dimensional structure of the NGX6 protein by using Protein Homology/analogY Recognition Engine (PHYRE). Prediction of the docking between the NGX6 protein and tamoxifen was performed using SYBYL-X 1.3. Furthermore, we found that tamoxifen activated Smad2/3, and increased the expression of Smad4 in NGX6-expressing TRM-7 cells as evaluated by western blot analysis. Smad2/3-targeted siRNA was used to confirm the mechanism(s) of tamoxifen action in NGX6-expressing cells. These results indicated that NGX6 may increase the sensitivity of breast cancer cells to tamoxifen.

  3. High-density array analysis of DNA methylation in Tamoxifen-resistant breast cancer cell lines.

    PubMed

    Williams, Kristin E; Anderton, Douglas L; Lee, Maxwell P; Pentecost, Brian T; Arcaro, Kathleen F

    2014-02-01

    Roughly two-thirds of all breast cancers are ERα-positive and can be treated with the antiestrogen, Tamoxifen, however resistance occurs in 33% of women who take the drug for more than 5 y. Aberrant DNA methylation, an epigenetic mechanism that alters gene expression in cancer, is thought to play a role in this resistance. To develop an understanding of Tamoxifen-resistance and identify novel pathways and targets of aberrant methylation, DNA from MCF-7 breast cancer cells and Tamoxifen-resistant derivatives, TMX2-11 and TMX2-28, were analyzed using the Illumina HumanMethylation450 BeadChip. Normalizing against MCF-7 values, ERα-positive TMX2-11 had 4000 hypermethylated sites and ERα-negative TMX2-28 had over 33 000. Analysis of CpG sites altered in both TMX2-11 and TMX2-28 revealed that the Tamoxifen-resistant cell lines share 3000 hypermethylated and 200 hypomethylated CpGs. ZNF350 and MAGED1, two genes hypermethylated in both cell lines, were examined in greater detail. Treatment with 5-aza-2ꞌdeoxycitidine caused a significant reduction in promoter methylation of both ZNF350 and MAGED1 and a corresponding increase in expression in TMX2-28. A similar relationship between methylation and expression was not detected in TMX2-11. Our findings are indicative of the variable responses to methylation-targeted breast cancer therapy and highlight the need for biomarkers that accurately predict treatment outcome.

  4. Inhibition of β-Catenin to Overcome Endocrine Resistance in Tamoxifen-Resistant Breast Cancer Cell Line

    PubMed Central

    Won, Hye Sung; Lee, Kyung Mee; Oh, Ju Eon; Nam, Eun Mi; Lee, Kyoung Eun

    2016-01-01

    Background The β-catenin signaling is important in cell growth and differentiation and is frequently dysregulated in various cancers. The most well-known mechanism of endocrine resistance is cross-talk between the estrogen receptor (ER) and other growth factor signaling, such as phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway. In the present study, we investigated whether β-catenin could be a potential target to overcome endocrine resistance in breast cancer. Methods We established tamoxifen-resistant (TamR) cell line via long-term exposure of MCF-7 breast cancer cells to gradually increasing concentrations of tamoxifen. The levels of protein expression and mRNA transcripts were determined using western blot analysis and real-time quantitative PCR. The transcriptional activity of β-catenin was measured using luciferase activity assay. Results TamR cells showed a mesenchymal phenotype, and exhibited a relatively decreased expression of ER and increased expression of human epidermal growth factor receptor 2 and the epidermal growth factor receptor. We confirmed that the expression and transcriptional activity of β-catenin were increased in TamR cells compared with control cells. The expression and transcriptional activity of β-catenin were inhibited by β-catenin small-molecule inhibitor, ICG-001 or β-catenin siRNA. The viability of TamR cells, which showed no change after treatment with tamoxifen, was reduced by ICG-001 or β-catenin siRNA. The combination of ICG-001 and mTOR inhibitor, rapamycin, yielded an additive effect on the inhibition of viability in TamR cells. Conclusion These results suggest that β-catenin plays a role in tamoxifen-resistant breast cancer, and the inhibition of β-catenin may be a potential target in tamoxifen-resistant breast cancer. PMID:27196739

  5. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    PubMed

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth.

  6. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    PubMed

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth. PMID:26681208

  7. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells.

    PubMed

    Wei, Yifang; Lai, Xiaofeng; Yu, Shentong; Chen, Suning; Ma, Yongzheng; Zhang, Yuan; Li, Huichen; Zhu, Xingmei; Yao, Libo; Zhang, Jian

    2014-09-01

    Recent studies have demonstrated that specific miRNAs, such as miR-221/222, may be responsible for tamoxifen resistance in breast cancer. Secreted miRNAs enclosed in exosomes can act as intercellular bio-messengers. Our objective is to investigate the role of secreted miR-221/222 in tamoxifen resistance of ER-positive breast cancer cells. Transmission electron microscopy analysis and nanoparticle tracking analysis were performed to determine the exosomes difference between MCF-7(TamR) (tamoxifen resistant) and MCF-7(wt) (tamoxifen sensitive) cells. PKH67 fluorescent labeling assay was used to detect exosomes derived from MCF-7(TamR) cells entering into MCF-7(wt) cells. The potential function of exosomes on tamoxifen resistance transmission was analyzed with cell viability, apoptosis ,and colony formation. MiRNA microarrays and qPCR were used to detect and compare the miRNAs expression levels in the two cells and exosomes. As the targets of miR-221/222, p27 and ERα were analyzed with western blot and qPCR. Compared with the MCF-7(wt) exosomes, there were significant differences in the concentration and size distribution of MCF-7(TamR) exosomes. MCF-7(wt) cells had an increased amount of exosomal RNA and proteins compared with MCF-7(TamR) cells. MCF-7(TamR) exosomes could enter into MCF-7(wt) cells, and then released miR-221/222. And the elevated miR-221/222 effectively reduced the target genes expression of P27 and ERα, which enhanced tamoxifen resistance in recipient cells. Our results are the first to show that secreted miR-221/222 serves as signaling molecules to mediate communication of tamoxifen resistance. PMID:25007959

  8. Acquired Antibiotic Resistance Genes: An Overview

    PubMed Central

    van Hoek, Angela H. A. M.; Mevius, Dik; Guerra, Beatriz; Mullany, Peter; Roberts, Adam Paul; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria. PMID:22046172

  9. Loss of B-cell translocation gene 2 expression in estrogen receptor-positive breast cancer predicts tamoxifen resistance

    PubMed Central

    Takahashi, Maiko; Hayashida, Tetsu; Okazaki, Hiroshi; Miyao, Kazuhiro; Jinno, Hiromitsu; Kitagawa, Yuko

    2014-01-01

    B-cell translocation gene 2 (BTG2), a gene suppressed in a subset of aggressive breast cancer, is repressed by estrogen. BTG2 inhibits the expression of HER ligands and promotes AKT activation, which plays an essential role in the tamoxifen resistance of estrogen receptor (ER)-positive breast cancer. To determine if BTG2 expression modifies tamoxifen efficacy, a cohort of 60 patients treated with adjuvant tamoxifen monotherapy was analyzed. We found that increased BTG2 expression showed better clinical survival and was the only independent prognostic factor for disease-free survival (hazard ratio, 0.691; 95% confidence interval, 0.495–0.963; P = 0.029). Tamoxifen suppressed the human epidermal growth factor receptor 2 (HER2)-Akt signaling in BTG2 expressing ER-positive breast cancer cells with a correlated increase in sensitivity, whereas BTG2 knockdown abrogated this sensitivity. Consistent with this observation, tamoxifen significantly suppressed the growth ratio, tumor weight and Ki-67 expression in BTG2 expressing breast cancer xenografts in mice. These studies demonstrate that BTG2 is a significant factor in tamoxifen response, acting through modification of AKT activation in ER-positive/HER2-negative breast cancer. PMID:24698107

  10. Farnesoid X receptor inhibits tamoxifen-resistant MCF-7 breast cancer cell growth through downregulation of HER2 expression.

    PubMed

    Giordano, C; Catalano, S; Panza, S; Vizza, D; Barone, I; Bonofiglio, D; Gelsomino, L; Rizza, P; Fuqua, S A W; Andò, S

    2011-09-29

    Tamoxifen (Tam) treatment is a first-line endocrine therapy for estrogen receptor-α-positive breast cancer patients. Unfortunately, resistance frequently occurs and is often related with overexpression of the membrane tyrosine kinase receptor HER2. This is the rationale behind combined treatments with endocrine therapy and novel inhibitors that reduce HER2 expression and signaling and thus inhibit Tam-resistant breast cancer cell growth. In this study, we show that activation of farnesoid X receptor (FXR), by the primary bile acid chenodeoxycholic acid (CDCA) or the synthetic agonist GW4064, inhibited growth of Tam-resistant breast cancer cells (termed MCF-7 TR1), which was used as an in vitro model of acquired Tam resistance. Our results demonstrate that CDCA treatment significantly reduced both anchorage-dependent and anchorage-independent epidermal growth factor (EGF)-induced growth in MCF-7 TR1 cells. Furthermore, results from western blot analysis and real-time reverse transcription-PCR revealed that CDCA treatment reduced HER2 expression and inhibited EGF-mediated HER2 and p42/44 mitogen-activated protein kinase (MAPK) phosphorylation in these Tam-resistant breast cancer cells. Transient transfection experiments, using a vector containing the human HER2 promoter region, showed that CDCA treatment downregulated basal HER2 promoter activity. This occurred through an inhibition of nuclear factor-κB transcription factor binding to its specific responsive element located in the HER2 promoter region as revealed by mutagenesis studies, electrophoretic mobility shift assay and chromatin immunoprecipitation analysis. Collectively, these data suggest that FXR ligand-dependent activity, blocking HER2/MAPK signaling, may overcome anti-estrogen resistance in human breast cancer cells and could represent a new therapeutic tool to treat breast cancer patients that develop resistance.

  11. Optimization of an indazole series of selective estrogen receptor degraders: Tumor regression in a tamoxifen-resistant breast cancer xenograft.

    PubMed

    Govek, Steven P; Nagasawa, Johnny Y; Douglas, Karensa L; Lai, Andiliy G; Kahraman, Mehmet; Bonnefous, Celine; Aparicio, Anna M; Darimont, Beatrice D; Grillot, Katherine L; Joseph, James D; Kaufman, Joshua A; Lee, Kyoung-Jin; Lu, Nhin; Moon, Michael J; Prudente, Rene Y; Sensintaffar, John; Rix, Peter J; Hager, Jeffrey H; Smith, Nicholas D

    2015-11-15

    Selective estrogen receptor degraders (SERDs) have shown promise for the treatment of ER+ breast cancer. Disclosed herein is the continued optimization of our indazole series of SERDs. Exploration of ER degradation and antagonism in vitro followed by in vivo antagonism and oral exposure culminated in the discovery of indazoles 47 and 56, which induce tumor regression in a tamoxifen-resistant breast cancer xenograft.

  12. Boron-Based 4-Hydroxytamoxifen Bioisosteres for Treatment of de Novo Tamoxifen Resistant Breast Cancer

    PubMed Central

    2012-01-01

    Tamoxifen remains the first line therapy for estrogen receptor positive (ER+) breast cancer. However, polymorphisms of the gene encoding P450 2D6 could result in no protein expression or no CYP2D6 enzymatic activity and may significantly reduce the benefit of the hormone therapy. To address this issue, we designed and synthesized three 4-hydroxytamoxifen bioisosteres utilizing a boron-aryl carbon bond that can be oxidized under physiological conditions to yield 4-hydroxytamoxifen. We show that the bioisosteres inhibit the growth of two ER+ breast cancer cell lines, MCF-7 and T47D, with potencies comparable to or greater than that of 4-hydroxytamoxifen. We further demonstrate that after incubation with breast cancer cells, the majority of the bioisosteres has been converted to 4-hydroxytamoxifen. Our study suggests that boron-based 4-hydroxytamoxifen bioisosteres may be an effective therapeutic remedy for intrinsic tamoxifen resistance in breast cancer patients deficient in CYP2D6 metabolism. PMID:23864928

  13. Signal regulators of systemic acquired resistance

    PubMed Central

    Gao, Qing-Ming; Zhu, Shifeng; Kachroo, Pradeep; Kachroo, Aardra

    2015-01-01

    Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers. PMID:25918514

  14. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen

    SciTech Connect

    Blanquart, Christophe; Karouri, Salah-Eddine; Issad, Tarik

    2009-10-02

    The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.

  15. MECHANISMS OF ACQUIRED RESISTANCE IN MOUSE TYPHOID

    PubMed Central

    Blanden, R. V.; Mackaness, G. B.; Collins, F. M.

    1966-01-01

    Experiments in vitro comparing normal mouse peritoneal macrophages with cells from Salmonella typhimurium-infected mice have shown that the "immune" macrophages have conspicuously enhanced microbicidal properties. Whereas normal macrophages could inactivate only 50 to 60% of intracellular S. typhimurium pretreated with immune serum, cells from infected animals killed virtually all ingested organisms and did so at an accelerated rate. Macrophages from Listeria monocytogenes-infected mice were shown to possess similarly enhanced microbicidal activity against S. typhimurium. Furthermore, the growth of S. typhimurium in the liver and spleen was more effectively restricted in Listeria-infected mice than in animals vaccinated with heat-killed S. typhimurium, even though the Listeria-infected animals possessed no demonstrable cross-reacting antibody to S. typhimurium. The lack of resistance in the mice vaccinated with heat-killed organisms could not be attributed to any deficiency of humoral factors, since the serum from these animals was as effective at promoting phagocytosis and killing by macrophages as serum from actively infected (and demonstrably resistant) mice. Conversely, Salmonella-infected mice were totally resistant to intravenous challenge with L. monocytogenes. The level of resistance in individual animals was related to the numbers of residual Salmonellae remaining in the tissues; mice with heavier residual infections being the more resistant. Specific antiserum from mice vaccinated with heat-killed S. typhimurium was found to be significantly protective only when the intraperitoneal route of challenge was employed. The foregoing studies have been interpreted to mean that enhancement of the microbicidal ability of macrophages is the mechanism of major importance in acquired resistance to S. typhimurium infection in mice. PMID:4958757

  16. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria

    PubMed Central

    Olaitan, Abiola O.; Morand, Serge; Rolain, Jean-Marc

    2014-01-01

    Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp., and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria. PMID:25505462

  17. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria.

    PubMed

    Olaitan, Abiola O; Morand, Serge; Rolain, Jean-Marc

    2014-01-01

    Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp., and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.

  18. δEF1 down-regulates ER-α expression and confers tamoxifen resistance in breast cancer.

    PubMed

    Guo, Shaocong; Li, Yaqing; Tong, Qi; Gu, Feng; Zhu, Tianhui; Fu, Li; Yang, Shuang

    2012-01-01

    Resistance to tamoxifen therapy represents a major barrier to the successful treatment of breast cancer, where a loss of or reduced ER-α level is considered a primary mechanism. Understanding how ER-α expression is regulated would provide insights into new intervention points to overcome tamoxifen resistance. In this study, we report that the expression of δEF1 is up-regulated by 17β-estradiol (E2) in MCF-7 cells in an ER-α-dependent manner, through either PI3K or NF-κB pathway. Ectopic expression of δEF1 in turn repressed ER-α transcription by binding to the E(2)-box on the ER-α promoter. At the tissue level of breast cancer, there is a strong and inverse correlation between the expression levels of δEF1 and ER-α. In MCF-7 cells, an elevated expression of δEF1 made the cells less sensitive to tamoxifen treatment, whereas overexpression of ER-α compromised the effects of δEF1 and restored the sensitivity. Also, depletion of δEF1 by RNA interference in MDA-MB-231 cells restored the expression of ER-α and tamoxifen sensitivity. In conclusion, we have identified an important role of δEF1 in the development of tamoxifen resistance in breast cancer. Inhibiting δEF1 to restore ER-α expression might represent a potential therapeutic strategy for overcoming endocrine resistance in breast cancer.

  19. Amplification of Distant Estrogen Response Elements Deregulates Target Genes Associated with Tamoxifen Resistance in Breast Cancer

    PubMed Central

    Hsu, Pei-Yin; Hsu, Hang-Kai; Lan, Xun; Juan, Liran; Yan, Pearlly S.; Labanowska, Jadwiga; Heerema, Nyla; Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Chen, Yidong; Liu, Yunlong; Li, Lang; Li, Rong; Thompson, Ian M.; Nephew, Kenneth P.; Sharp, Zelton D.; Kirma, Nameer B.; Jin, Victor X.; Huang, Tim H.-M.

    2013-01-01

    SUMMARY A causal role of gene amplification in tumorigenesis is well-known, while amplification of DNA regulatory elements as an oncogenic driver remains unclear. In this study, we integrated next-generation sequencing approaches to map distant estrogen response elements (DEREs) that remotely control transcription of target genes through chromatin proximity. Two densely mapped DERE regions located on chromosomes 17q23 and 20q13 were frequently amplified in ERα-positive luminal breast cancer. These aberrantly amplified DEREs deregulated target gene expression potentially linked to cancer development and tamoxifen resistance. Progressive accumulation of DERE copies was observed in normal breast progenitor cells chronically exposed to estrogenic chemicals. These findings may extend to other DNA regulatory elements, the amplification of which can profoundly alter target transcriptome during tumorigenesis. PMID:23948299

  20. Anticancer effect of metformin on estrogen receptor-positive and tamoxifen-resistant breast cancer cell lines.

    PubMed

    Kim, Jinkyoung; Lee, Jiyun; Jang, Soon Young; Kim, Chungyeul; Choi, Yoojin; Kim, Aeree

    2016-05-01

    Acquisition of tamoxifen resistance (TR) during anti-estrogenic therapy using tamoxifen is a major obstacle in the treatment of estrogen receptor (ER)-positive breast cancer. As a biguanide derivative, metformin is commonly used to treat type II diabetes. It has recently emerged as a potential anticancer agent. The objective of the present study was to investigate the anticancer activity of metformin in relation to ERα expression and its signaling pathway in ERα-positive MCF-7 and MDA-MB-361 breast cancer cells as well as TR MCF-7 breast cancer cells. Metformin inhibited both protein and mRNA levels of ERα in the presence or absence of estrogen (E2) in the MCF-7, TR MCF-7 and MDA-MB-361 cells. Metformin repressed E2-inducible estrogen response element (ERE) luciferase activity, protein levels and mRNA levels of E2/ERα-regulated genes [including c-Myc, cyclin D1, progesterone receptor (PR) and pS2] to a greater degree than tamoxifen, resulting in inhibition of cell proliferation of MCF-7, TR MCF-7 and MDA-MB-361 cells. Collectively, our results suggest that one of the anticancer mechanisms of metformin could be attributable to the repression of expression and transcriptional activity of ERα. Metformin may be a good therapeutic agent for treating ERα-positive breast cancer by inhibiting the expression and function of ERα. In addition, metformin may be useful to treat tamoxifen-resistant breast cancer. PMID:26986571

  1. Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance.

    PubMed

    LeBeau, Aaron M; Sevillano, Natalia; King, Mandy L; Duriseti, Sai; Murphy, Stephanie T; Craik, Charles S; Murphy, Laura L; VanBrocklin, Henry F

    2014-01-01

    Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasive imaging probes that identify drug-resistant lesions are urgently needed to aid in the development of novel drugs and the effective utilization of established therapies for breast cancer. The protease receptor urokinase plasminogen activator receptor (uPAR) is a target that can be exploited for non-invasive imaging. The expression of uPAR has been associated with phenotypically aggressive breast cancer and acquired drug-resistance. Acquired drug-resistance was modeled in cell lines from two different breast cancer subtypes, the uPAR negative luminal A subtype and the uPAR positive triple negative subtype cell line MDA-MB-231. MCF-7 cells, cultured to be resistant to tamoxifen (MCF-7 TamR), were found to significantly over-express uPAR compared to the parental cell line. uPAR expression was maintained when resistance was modeled in triple-negative breast cancer by generating doxorubicin and paclitaxel resistant MDA-MB-231 cells (MDA-MB-231 DoxR and MDA-MB-231 TaxR). Using the antagonistic uPAR antibody 2G10, uPAR was imaged in vivo by near-infrared (NIR) optical imaging and (111)In-single photon emission computed tomography (SPECT). Tumor uptake of the (111)In-SPECT probe was high in the three drug-resistant xenografts (> 46 %ID/g) and minimal in uPAR negative xenografts at 72 hours post-injection. This preclinical study demonstrates that uPAR can be targeted for imaging breast cancer models of acquired resistance leading to potential clinical applications. PMID:24505235

  2. Berberine enhances the anti‑tumor activity of tamoxifen in drug‑sensitive MCF‑7 and drug‑resistant MCF‑7/TAM cells.

    PubMed

    Wen, Chunjie; Wu, Lanxiang; Fu, Lijuan; Zhang, Xue; Zhou, Honghao

    2016-09-01

    Berberine, an isoquinoline alkaloid, has been previously demonstrated to possess anti‑breast cancer properties. Tamoxifen is widely used in the prevention and treatment of estrogen receptor-positive breast cancer. Thus, the aim of the present study was to assess whether berberine enhanced the anticancer effect of tamoxifen, and the underlying mechanism involved in this combined effect in tamoxifen-sensitive (MCF-7) and tamoxifen-resistant (MCF-7/TAM) cells using MTS, flow cytometry and western blot assays. The results indicated that berberine demonstrated dose‑ and time‑dependent anti‑proliferative activity in MCF‑7 and MCF‑7/TAM cells. Furthermore, the combination of berberine and tamoxifen induced cell growth inhibition more effectively than tamoxifen alone. The present study also demonstrated that combinational treatment is more effective in inducing G1 phase arrest and activating apoptosis compared tamoxifen alone, which may be due to upregulation of P21 expression and downregulation of the B‑cell CLL/lymphoma 2(Bcl‑2)/Bcl‑2 associated X protein ratio. The results of the present study suggested that berberine may potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen, which will be useful for anti‑tumor therapy and further research.

  3. Berberine enhances the anti‑tumor activity of tamoxifen in drug‑sensitive MCF‑7 and drug‑resistant MCF‑7/TAM cells.

    PubMed

    Wen, Chunjie; Wu, Lanxiang; Fu, Lijuan; Zhang, Xue; Zhou, Honghao

    2016-09-01

    Berberine, an isoquinoline alkaloid, has been previously demonstrated to possess anti‑breast cancer properties. Tamoxifen is widely used in the prevention and treatment of estrogen receptor-positive breast cancer. Thus, the aim of the present study was to assess whether berberine enhanced the anticancer effect of tamoxifen, and the underlying mechanism involved in this combined effect in tamoxifen-sensitive (MCF-7) and tamoxifen-resistant (MCF-7/TAM) cells using MTS, flow cytometry and western blot assays. The results indicated that berberine demonstrated dose‑ and time‑dependent anti‑proliferative activity in MCF‑7 and MCF‑7/TAM cells. Furthermore, the combination of berberine and tamoxifen induced cell growth inhibition more effectively than tamoxifen alone. The present study also demonstrated that combinational treatment is more effective in inducing G1 phase arrest and activating apoptosis compared tamoxifen alone, which may be due to upregulation of P21 expression and downregulation of the B‑cell CLL/lymphoma 2(Bcl‑2)/Bcl‑2 associated X protein ratio. The results of the present study suggested that berberine may potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen, which will be useful for anti‑tumor therapy and further research. PMID:27432642

  4. D538G mutation in estrogen receptor-α: A novel mechanism for acquired endocrine resistance in breast cancer.

    PubMed

    Merenbakh-Lamin, Keren; Ben-Baruch, Noa; Yeheskel, Adva; Dvir, Addie; Soussan-Gutman, Lior; Jeselsohn, Rinath; Yelensky, Roman; Brown, Myles; Miller, Vincent A; Sarid, David; Rizel, Shulamith; Klein, Baruch; Rubinek, Tami; Wolf, Ido

    2013-12-01

    Resistance to endocrine therapy occurs in virtually all patients with estrogen receptor α (ERα)-positive metastatic breast cancer, and is attributed to various mechanisms including loss of ERα expression, altered activity of coregulators, and cross-talk between the ERα and growth factor signaling pathways. To our knowledge, acquired mutations of the ERα have not been described as mediating endocrine resistance. Samples of 13 patients with metastatic breast cancer were analyzed for mutations in cancer-related genes. In five patients who developed resistance to hormonal therapy, a mutation of A to G at position 1,613 of ERα, resulting in a substitution of aspartic acid at position 538 to glycine (D538G), was identified in liver metastases. Importantly, the mutation was not detected in the primary tumors obtained prior to endocrine treatment. Structural modeling indicated that D538G substitution leads to a conformational change in the ligand-binding domain, which mimics the conformation of activated ligand-bound receptor and alters binding of tamoxifen. Indeed, experiments in breast cancer cells indicated constitutive, ligand-independent transcriptional activity of the D538G receptor, and overexpression of it enhanced proliferation and conferred resistance to tamoxifen. These data indicate a novel mechanism of acquired endocrine resistance in breast cancer. Further studies are needed to assess the frequency of D538G-ERα among patients with breast cancer and explore ways to inhibit its activity and restore endocrine sensitivity.

  5. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer.

    PubMed

    Dauchy, Robert T; Xiang, Shulin; Mao, Lulu; Brimer, Samantha; Wren, Melissa A; Yuan, Lin; Anbalagan, Muralidharan; Hauch, Adam; Frasch, Tripp; Rowan, Brian G; Blask, David E; Hill, Steven M

    2014-08-01

    Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to antiestrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of estrogen receptor (ERα(+)) MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speed the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characteristics were not observed in animals in which the circadian melatonin rhythm was not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen. PMID:25062775

  6. Long Non-Coding RNA (lncRNA) Urothelial Carcinoma-Associated 1 (UCA1) Enhances Tamoxifen Resistance in Breast Cancer Cells via Inhibiting mTOR Signaling Pathway

    PubMed Central

    Wu, Chihua; Luo, Jing

    2016-01-01

    Background Long non-coding RNA (lncRNA) UCA1 is an oncogene in breast cancer. The purpose of this study was to investigate the role of UCA1 in tamoxifen resistance of estrogen receptor positive breast cancer cells. Material/Methods Tamoxifen sensitive MCF-7 cells were transfected for UCA1 overexpression, while tamoxifen resistant LCC2 and LCC9 cells were transfected with UCA siRNA for UCA1 knockdown. qRT-PCR was performed to analyze UCA1 expression. CCK-8 assay, immunofluorescence staining of cleaved caspase-9, and flow cytometric analysis of Annexin V/PI staining were used to assess tamoxifen sensitivity. Western blot analysis was performed to detect p-AKT and p-mTOR expression. Results LncRNA UCA1 was significantly upregulated in tamoxifen resistant breast cancer cells compared to tamoxifen sensitive cells. LCC2 and LCC9 cells transfected with UCA1 siRNA had significantly higher ratio of apoptosis after tamoxifen treatment. UCA1 siRNA significantly decreased the protein levels of p-AKT and p-mTOR in LCC2 and LCC9 cells. Enforced UCA1 expression substantially reduced tamoxifen induced apoptosis in MCF-7 cells, while rapamycin treatment abrogated the protective effect of UCA1. Conclusions UCA1 upregulation was associated with tamoxifen resistance in breast cancer. Mechanistically, UCA1 confers tamoxifen resistance to breast cancer cells partly via activating the mTOR signaling pathway. PMID:27765938

  7. Elevation of cysteine consumption in tamoxifen-resistant MCF-7 cells.

    PubMed

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Ji-Yoon; Oh, Soo Jin; Phuong, Nguyen Thi Thuy; Kang, Keon Wook; Kim, Sang Kyum

    2013-01-15

    Tamoxifen (TAM) resistance is a main cause of therapeutic failure in breast cancers. Although methionine dependency is a phenotypic characteristic of tumor cells, the role of sulfur amino acid metabolism in chemotherapy resistance remains to be elucidated. This study compared metabolite profiles of sulfur amino acid metabolism from methionine to taurine or glutathione (GSH) between normal MCF-7 and TAM-resistant MCF-7 (TAMR-MCF-7) cells. TAMR-MCF-7 cells showed elevated levels and activities of enzymes involved in both transsulfuration from methionine to cysteine and metabolism of cysteine to GSH and taurine. Cysteine concentrations in TAMR-MCF-7 cells and medium conditioned by cell culture for 42h were markedly decreased, while GSH, hypotaurine, and taurine concentrations in the medium were increased. These results show that TAMR-MCF-7 cells display enhanced cysteine utilization. The addition of propargylglycine, a specific cystathionine γ-lyase inhibitor, and buthionine sulfoximine, a specific γ-glutamylcysteine ligase inhibitor, to TAMR-MCF-7 cells, but not to MCF-7 cells, resulted in cytotoxicity after sulfur amino acid deprivation. These results suggest that cell viability of TAMR-MCF-7 cells is affected by inhibition of sulfur amino acid metabolism, particularly cysteine synthesis from homocysteine and GSH synthesis from cysteine. Additionally, the S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in TAMR-MCF-7 cells increased to ~3.6-fold relative to that in MCF-7 cells, a finding that may result from upregulation of methionine adenosyltransferase IIa and S-adenosylhomocysteine hydrolase. In conclusion, this study suggests that TAMR-MCF-7 cells display enhanced cysteine utilization for synthesis of GSH and taurine, and are sensitive to inhibition of cysteine metabolism.

  8. Tamoxifen-resistant fibroblast growth factor-transfected MCF-7 cells are cross-resistant in vivo to the antiestrogen ICI 182,780 and two aromatase inhibitors.

    PubMed

    McLeskey, S W; Zhang, L; El-Ashry, D; Trock, B J; Lopez, C A; Kharbanda, S; Tobias, C A; Lorant, L A; Hannum, R S; Dickson, R B; Kern, F G

    1998-03-01

    Although the antiestrogen tamoxifen has been the mainstay of therapy for estrogen receptor (ER)-positive breast cancer, successful treatment of responsive tumors is often followed by the acquisition of tamoxifen resistance. Subsequently, only 30-40% of patients have a positive response to second hormonal therapies. This lack of response might be explained by mechanisms for tamoxifen resistance that sensitize ER pathways to small amounts of estrogenic activity present in tamoxifen or that bypass ER pathways completely. To elucidate one possible mechanism of tamoxifen resistance, we treated ovariectomized tumor-bearing mice injected with fibroblast growth factor (FGF)-transfected MCF-7 breast carcinoma cells with the steroidal antiestrogen ICI 182,780 or one of two aromatase inhibitors, 4-OHA or letrozole. These treatments did not slow estrogen-independent growth or prevent metastasis of tumors produced by FGF-transfected MCF-7 cells in ovariectomized nude mice. FGF-transfected cells had diminished responses to ICI 182,780 in vitro, suggesting that autocrine activity of the transfected FGF may be replacing estrogen as a mitogenic stimulus for tumor growth. ER levels in FGF transfectants were not down-regulated, and basal levels of transcripts for estrogen-induced genes or of ER-mediated transcription of estrogen response element (ERE) luciferase reporter constructs in the FGF expressing cells were not higher than parental cells, implying that altered hormonal responses are not due to down-regulation of ER or to FGF-mediated activation of ER. These studies indicate that estrogen independence may be achieved through FGF signaling pathways independent of ER pathways. If so, therapies directed at the operative mechanism might produce a therapeutic response or allow a response to a second course of antiestrogen treatment.

  9. Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance123

    PubMed Central

    Putluri, Nagireddy; Maity, Suman; Kommangani, Ramakrishna; Creighton, Chad J.; Putluri, Vasanta; Chen, Fengju; Nanda, Sarmishta; Bhowmik, Salil Kumar; Terunuma, Atsushi; Dorsey, Tiffany; Nardone, Agostina; Fu, Xiaoyong; Shaw, Chad; Sarkar, Tapasree Roy; Schiff, Rachel; Lydon, John P.; O’Malley, Bert W.; Ambs, Stefan; Das, Gokul M.; Michailidis, George; Sreekumar, Arun

    2014-01-01

    Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2–enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry, linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance. Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression of one key gene, ribonucleotide reductase subunit M2 (RRM2) alone, associated significantly with decreased survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2 were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel approach to overcome tamoxifen resistance in BCa. PMID:25016594

  10. Pathway-centric integrative analysis identifies RRM2 as a prognostic marker in breast cancer associated with poor survival and tamoxifen resistance.

    PubMed

    Putluri, Nagireddy; Maity, Suman; Kommagani, Ramakrishna; Kommangani, Ramakrishna; Creighton, Chad J; Putluri, Vasanta; Chen, Fengju; Nanda, Sarmishta; Bhowmik, Salil Kumar; Terunuma, Atsushi; Dorsey, Tiffany; Nardone, Agostina; Fu, Xiaoyong; Shaw, Chad; Sarkar, Tapasree Roy; Schiff, Rachel; Lydon, John P; O'Malley, Bert W; Ambs, Stefan; Das, Gokul M; Michailidis, George; Sreekumar, Arun

    2014-05-01

    Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2-enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry, linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance. Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression of one key gene, ribonucleotide reductase subunit M2 (RRM2) alone, associated significantly with decreased survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2 were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel approach to overcome tamoxifen resistance in BCa. PMID:25016594

  11. The molecular mechanisms of acquired proteasome inhibitor resistance

    PubMed Central

    Kale, Andrew J.; Moore, Bradley S.

    2012-01-01

    The development of proteasome inhibitors (PIs) has transformed the treatment of multiple myeloma and mantle cell lymphoma. To date, two PIs have been FDA approved, the boronate peptide bortezomib and, most recently, the epoxyketone peptide carfilzomib. However, intrinsic and acquired resistance to PIs, for which the underlying mechanisms are poorly understood, may limit their efficacy. In this perspective, we discuss recent advances in the molecular understanding of PI resistance through acquired bortezomib resistance in human cell lines to evolved saliniosporamide A (marizomib) resistance in nature. Resistance mechanisms discussed include the upregulation of proteasome subunits and mutations of the catalytic β-subunits. Additionally, we explore potential strategies to overcome PI resistance. PMID:22978849

  12. Downregulation of Choline Kinase-Alpha Enhances Autophagy in Tamoxifen-Resistant Breast Cancer Cells

    PubMed Central

    Jung, Minji; Choi, Sul Ki; Sun, Yujin; Kim, Hyeonjin; Moon, Woo Kyung

    2015-01-01

    Choline kinase-α (Chk-α) and autophagy have gained much attention, as they relate to the drug-resistance of breast cancer. Here, we explored the potential connection between Chk-α and autophagy in the mechanisms driving to tamoxifen (TAM) resistance, in estrogen receptor positive (ER+) breast cancer cells (BCCs). Human BCC lines (MCF-7 and TAM-resistant MCF-7 (MCF-7/TAM) cells) were used. Chk-α expression and activity was suppressed by the transduction of shRNA (shChk-α) with lentivirus and treatment with CK37, a Chk-α inhibitor. MCF-7/TAM cells had higher Chk-α expression and phosphocholine levels than MCF-7 cells. A specific downregulation of Chk-α by the transduction of shChk-α exhibited a significant decrease in phosphocholine levels in MCF-7 and MCF-7/TAM cells. The autophagy-related protein, cleaved microtubule-associated protein light chain 3 (LC3) and autophagosome-like structures were significantly increased in shChk-α-transduced or CK37-treated MCF-7 and MCF-7/TAM cells. The downregulation of Chk-α attenuated the phosphorylation of AKT, ERK1/2, and mTOR in both MCF-7 and MCF-7/TAM cells. In MCF-7 cells, the downregulation of Chk-α resulted in an induction of autophagy, a decreased proliferation ability and an activation of caspase-3. In MCF-7/TAM cells, despite a significant decrease in proliferation ability and an increase in the percentage of cells in the G0/G1 phase of the cell cycle, the downregulation of Chk-α did not induced caspase-dependent cell death and further enhanced autophagy and G0/G1 phase arrest. An autophagy inhibitor, methyladenine (3-MA) induced death and attenuated the level of elevated LC3 in MCF-7/TAM cells. Elucidating the interplay between choline metabolism and autophagy will provide unique opportunities to identify new therapeutic targets and develop novel treatment strategies that preferentially target TAM-resistance. PMID:26496360

  13. Mechanisms of Gefitinib-mediated reversal of tamoxifen resistance in MCF-7 breast cancer cells by inducing ERα re-expression.

    PubMed

    Zhang, Xia; Zhang, Bin; Liu, Jie; Liu, Jiwei; Li, Changzheng; Dong, Wei; Fang, Shu; Li, Minmin; Song, Bao; Tang, Bo; Wang, Zhehai; Zhang, Yang

    2015-02-03

    Estrogen receptor (ER)-positive breast cancer patients may turn ER-negative and develop acquired drug resistance, which compromises the efficacy of endocrine therapy. By investigating the phenomenon that gefitinib can re-sensitise tamoxifen (TAM)-resistant MCF-7 breast cancer cells (MCF-7/TAM) to TAM, the present study verified that gefitinib could reverse the acquired drug resistance in endocrine therapy and further explored the underlying mechanism.ERα-negative MCF-7/TAM cells were established. Upon treating the cells with gefitinib, the mRNA and protein levels of ERα and ERβ, as well as the expression of molecules involved in the MAPK pathway, were examined using the RT-PCR and immunocytochemistry. The RT-PCR results showed that the mRNA levels of ERα and ERβ in MCF-7/TAM cells were up-regulated following gefitinib treatment; specifically, ERα was re-expressed, and ERβ expression was up-regulated. The expression of molecules involved in the MAPK pathway, including RAS, MEK1/2, and p-ERK1/2, in MCF-7/TAM cells was significantly up-regulated, compared with MCF-7 cells. After the gefitinib treatment, the expression levels of MEK1/2 and p-ERK1/2 were significantly down-regulated. ERα loss is the primary cause for TAM resistance. Gefitinib reverses TAM resistance primarily by up-regulating the ERα mRNA level and inducing the re-expression of ERα. The MAPK pathway plays a key role in ERα re-expression.

  14. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Kipiani, Maia; Mirtskhulava, Veriko; Tukvadze, Nestani; Magee, Matthew J.; Blumberg, Henry M.

    2015-01-01

    Rates and risk factors for acquired drug resistance and association with outcomes among patients with multidrug-resistant tuberculosis (MDR TB) are not well defined. In an MDR TB cohort from the country of Georgia, drug susceptibility testing for second-line drugs (SLDs) was performed at baseline and every third month. Acquired resistance was defined as any SLD whose status changed from susceptible at baseline to resistant at follow-up. Among 141 patients, acquired resistance in Mycobacterium tuberculosis was observed in 19 (14%); prevalence was 9.1% for ofloxacin and 9.8% for capreomycin or kanamycin. Baseline cavitary disease and resistance to >6 drugs were associated with acquired resistance. Patients with M. tuberculosis that had acquired resistance were at significantly increased risk for poor treatment outcome compared with patients without these isolates (89% vs. 36%; p<0.01). Acquired resistance occurs commonly among patients with MDR TB and impedes successful treatment outcomes. PMID:25993036

  15. Detecting mechanisms of acquired BRAF inhibitor resistance in melanoma.

    PubMed

    Lo, Roger S; Shi, Hubing

    2014-01-01

    (V600)BRAF mutation was identified as an ideal target for clinical therapy due to its indispensable roles in supporting melanoma initiation and progression. Despite the fact that BRAF inhibitors (BRAFi) can elicit anti-tumor responses in the majority of treated patients and confer overall survival benefits, acquired drug resistance is a formidable obstacle to long-term management of the disease. Several aberrant events including RTK upregulation, NRAS mutation, mutant BRAF amplification or alternative splicing, and MEK mutation have been reported as acquired BRAFi resistance mechanisms. Clinially, detection of these resistance mechanisms help understand drug response patterns and help guide combinatorial therapeutic strategies. Therefore, quick and accurate diagnosis of the resistant mechanisms in tumor biopsies has become an important starting point for personalized therapy. In this chapter, we review the major acquired BRAFi resistance mechanisms, highlight their therapeutic implications, and provide the diagnostic methods from clinical samples.

  16. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  17. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through β1 integrin.

    PubMed

    Pontiggia, Osvaldo; Sampayo, Rocio; Raffo, Diego; Motter, Andrea; Xu, Ren; Bissell, Mina J; Joffé, Elisa Bal de Kier; Simian, Marina

    2012-06-01

    Tamoxifen resistance has been largely attributed to genetic alterations in the epithelial tumor cells themselves, such as overexpression of HER-2/Neu. However, in the clinic, only about 15-20% of cases of HER-2/Neu amplification has actually been correlated to the acquisition of endocrine resistance, suggesting that other mechanisms must be involved as well. Using the epithelial LM05-E and the fibroblastic LM05-F cell lines, derived from the estrogen dependent spontaneous M05 mouse mammary tumor, as well as MCF-7 cells, we analyzed whether soluble stromal factors or extracellular matrix components protected against tamoxifen induced cell death. Involvement of signaling pathways was determined by using specific inhibitors and western blot, and phosphorylation of the estrogen receptor alpha by western blot and immunofluorescence. Soluble factors produced by the fibroblastic cells protect the epithelial tumor cells from tamoxifen-induced cell death through a mechanism that involves EGFR and matrix metalloproteinases upstream of PI3K/AKT. Exogenous fibronectin by itself confers endocrine resistance through interaction with β1 integrin and activation of PI3K/AKT and MAPK/ERK 1/2 pathways. The conferred resistance is reversed by blocking β1 integrin. We show also that treatment with both conditioned medium and fibronectin leads to the phosphorylation of the estrogen receptor at serine-118, suggesting stromal factors as modulators of ER activity. Our results show that the tumor microenvironment can modulate tamoxifen resistance, providing an alternative explanation for why patients become refractory to hormone-therapy.

  18. The role of captopril and losartan in prevention and regression of tamoxifen-induced resistance of breast cancer cell line MCF-7: an in vitro study.

    PubMed

    Namazi, Soha; Rostami-Yalmeh, Javad; Sahebi, Ebrahim; Jaberipour, Mansooreh; Razmkhah, Mahboobeh; Hosseini, Ahmad

    2014-06-01

    Innate and acquired tamoxifen (TAM) resistance in estrogen receptor positive (ER+) breast cancer is an important problem in adjuvant endocrine therapy. The underlying mechanisms of TAM resistance is yet unknown. In the present study, we evaluated the role of renin-angiotensin system (RAS) in the acquisition of TAM resistance in human breast cancer cell line MCF-7, and the potential role of captopril and captopril+losartan combination in the prevention and reversion of the TAM resistant phenotype. MCF-7 cells were continuously exposed to 1 μmol/L TAM to develop TAM resistant cells (TAM-R). MTT cell viability assay was used to determine the growth response of MCF-7 and TAM-R cells, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess angiotensin I converting enzyme (ACE), angiotensin II receptor type-1 and type-2 (AGTR1 and AGTR2) mRNA expressions. Preventive and therapeutic effects of RAS blockers - captopril and losartan - were examined on MCF-7 and TAM-R cells. Based on qRT-PCR, TAM-R cells compared to MCF-7 cells, had a mean ± SD fold increase of 319.1 ± 204.1 (P = 0.002) in production of ACE mRNA level, 2211.8 ± 777.9 (P = 0.002) in AGTR1 mRNA level, and 265.9 ± 143.9 (P = 0.037) in production of AGTR2 mRNA level. The combination of either captopril or captopril+losartan with TAM led to the prevention and even reversion of TAM resistant phenotype.

  19. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling.

    PubMed

    Scherbakov, Alexander M; Sorokin, Danila V; Tatarskiy, Victor V; Prokhorov, Nikolay S; Semina, Svetlana E; Berstein, Lev M; Krasil'nikov, Mikhail A

    2016-04-01

    Metformin, a biguanide antidiabetic drug, is used to decrease hyperglycemia in patients with type 2 diabetes. Recently, the epidemiological studies revealed the potential of metformin as an anti-tumor drug for several types of cancer, including breast cancer. Anti-tumor metformin action was found to be mediated, at least in part, via activation of adenosine monophosphate-activated protein kinase (AMPK)-intracellular energy sensor, which inhibits the mammalian target of rapamycin (mTOR) and some other signaling pathways. Nevertheless, some patients can be non-sensitive or resistant to metformin action. Here we analyzed the mechanism of the formation of metformin-resistant phenotype in breast cancer cells and its role in estrogen receptor (ER) regulation. The experiments were performed on the ER-positive MCF-7 breast cancer cells and metformin-resistant MCF-7 subline (MCF-7/M) developed due to long-term metformin treatment. The transcriptional activity of NF-κB and ER was measured by the luciferase reporter gene analysis. The protein expression was determined by immunoblotting (Snail1, (phospho)AMPK, (phospho)IκBα, (phospho)mTOR, cyclin D1, (phospho)Akt and ERα) and immunohistochemical analysis (E-cadherin). We have found that: 1) metformin treatment of MCF-7 cells is accompanied with the stimulation of AMPK and inhibition of growth-related proteins including IκBα, NF-κB, cyclin D1 and ERα; 2) long-term metformin treatment lead to the appearance and progression of cross-resistance to metformin and tamoxifen; the resistant cells are characterized with the unaffected AMPK activity, but the irreversible ER suppression and constitutive activation of Akt/Snail1 signaling; 3) Akt/Snail1 signaling is involved into progression of metformin resistance. The results presented may be considered as the first evidence of the progression of cross-resistance to metformin and tamoxifen in breast cancer cells. Importantly, the acquired resistance to both drugs is based on the

  20. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling.

    PubMed

    Scherbakov, Alexander M; Sorokin, Danila V; Tatarskiy, Victor V; Prokhorov, Nikolay S; Semina, Svetlana E; Berstein, Lev M; Krasil'nikov, Mikhail A

    2016-04-01

    Metformin, a biguanide antidiabetic drug, is used to decrease hyperglycemia in patients with type 2 diabetes. Recently, the epidemiological studies revealed the potential of metformin as an anti-tumor drug for several types of cancer, including breast cancer. Anti-tumor metformin action was found to be mediated, at least in part, via activation of adenosine monophosphate-activated protein kinase (AMPK)-intracellular energy sensor, which inhibits the mammalian target of rapamycin (mTOR) and some other signaling pathways. Nevertheless, some patients can be non-sensitive or resistant to metformin action. Here we analyzed the mechanism of the formation of metformin-resistant phenotype in breast cancer cells and its role in estrogen receptor (ER) regulation. The experiments were performed on the ER-positive MCF-7 breast cancer cells and metformin-resistant MCF-7 subline (MCF-7/M) developed due to long-term metformin treatment. The transcriptional activity of NF-κB and ER was measured by the luciferase reporter gene analysis. The protein expression was determined by immunoblotting (Snail1, (phospho)AMPK, (phospho)IκBα, (phospho)mTOR, cyclin D1, (phospho)Akt and ERα) and immunohistochemical analysis (E-cadherin). We have found that: 1) metformin treatment of MCF-7 cells is accompanied with the stimulation of AMPK and inhibition of growth-related proteins including IκBα, NF-κB, cyclin D1 and ERα; 2) long-term metformin treatment lead to the appearance and progression of cross-resistance to metformin and tamoxifen; the resistant cells are characterized with the unaffected AMPK activity, but the irreversible ER suppression and constitutive activation of Akt/Snail1 signaling; 3) Akt/Snail1 signaling is involved into progression of metformin resistance. The results presented may be considered as the first evidence of the progression of cross-resistance to metformin and tamoxifen in breast cancer cells. Importantly, the acquired resistance to both drugs is based on the

  1. Acquired inducible antimicrobial resistance in Gram-positive bacteria

    PubMed Central

    Chancey, Scott T; Zähner, Dorothea; Stephens, David S

    2012-01-01

    A major contributor to the emergence of antibiotic resistance in Gram-positive bacterial pathogens is the expansion of acquired, inducible genetic elements. Although acquired, inducible antibiotic resistance is not new, the interest in its molecular basis has been accelerated by the widening distribution and often ‘silent’ spread of the elements responsible, the diagnostic challenges of such resistance and the mounting limitations of available agents to treat Gram-positive infections. Acquired, inducible antibiotic resistance elements belong to the accessory genome of a species and are horizontally acquired by transformation/recombination or through the transfer of mobile DNA elements. The two key, but mechanistically very different, induction mechanisms are: ribosome-sensed induction, characteristic of the macrolide–lincosamide–streptogramin B antibiotics and tetracycline resistance, leading to ribosomal modifications or efflux pump activation; and resistance by cell surface-associated sensing of β-lactams (e.g., oxacillin), glycopeptides (e.g., vancomycin) and the polypeptide bacitracin, leading to drug inactivation or resistance due to cell wall alterations. PMID:22913355

  2. 1α,25-dihydroxyvitamin D3 inhibits cell growth and NFκB signaling in tamoxifen-resistant breast cancer cells.

    PubMed

    Lundqvist, Johan; Yde, Christina W; Lykkesfeldt, Anne E

    2014-07-01

    Resistance to antiestrogens is a major clinical problem in current breast cancer treatment and development of new treatment strategies for these tumors is highly prioritized. In this study, we have investigated the effects of 1α,25-dihydroxyvitamin D3 on the proliferation of tamoxifen-resistant cells. Further, we have investigated on a molecular level the effects of vitamin D on NFkB signaling in tamoxifen-resistant breast cancer cells. Parental human breast cancer MCF-7 cells and four tamoxifen-resistant sublines have been used to investigate the effects of 1α,25-dihydroxyvitamin D3 on cell proliferation using a colorimetric method, gene expression using quantitative PCR, protein phosphorylation using Western blot analysis and cellular localization of proteins using immunofluorescence microscopy. We found that 1α,25-dihydroxyvitamin D3 is able to strongly decrease the growth of both tamoxifen-sensitive and -resistant breast cancer cells and that this antiproliferative effect of 1α,25-dihydroxyvitamin D3 might be mediated via inhibition of the NFκB pathway. We found that 1α,25-dihydroxyvitamin D3 stimulates the gene expression of IkB, an NFκB-inhibiting protein, and that cells pretreated with 1α,25-dihydroxyvitamin D3 have a decreased sensitivity to TNFα stimulation. Further, we show that 1α,25-dihydroxyvitamin D3 treatment strongly decreases the TNFα-induced translocation of p65 into the nucleus. This manuscript reports novel findings regarding the effects of 1α,25-dihydroxyvitamin D3 on NFκB signaling in tamoxifen-resistant breast cancer cells and suggests that vitamin D might be interesting for further evaluation as a new strategy to treat antiestrogen-resistant breast cancers.

  3. CCAR1 5′ UTR as a natural miRancer of miR-1254 overrides tamoxifen resistance

    PubMed Central

    Li, Gaopeng; Wu, Xiaoli; Qian, Wenchang; Cai, Huayong; Sun, Xinbao; Zhang, Weijie; Tan, Sheng; Wu, Zhengsheng; Qian, Pengxu; Ding, Keshuo; Lu, Xuefei; Zhang, Xiao; Yan, Hong; Song, Haifeng; Guang, Shouhong; Wu, Qingfa; Lobie, Peter E; Shan, Ge; Zhu, Tao

    2016-01-01

    MicroRNAs (miRNAs) typically bind to unstructured miRNA-binding sites in target RNAs, leading to a mutual repression of expression. Here, we report that miR-1254 interacts with structured elements in cell cycle and apoptosis regulator 1 (CCAR1) 5′ untranslated region (UTR) and this interaction enhances the stability of both molecules. miR-1254 can also act as a repressor when binding to unstructured sites in its targets. Interestingly, structured miR-1254-targeting sites act as both a functional RNA motif-sensing unit, and an independent RNA functional unit that enhances miR-1254 expression. Artificially designed miRNA enhancers, termed “miRancers”, can stabilize and enhance the activity of miRNAs of interest. We further demonstrate that CCAR1 5′ UTR as a natural miRancer of endogenous miR-1254 re-sensitizes tamoxifen-resistant breast cancer cells to tamoxifen. Thus, our study presents a novel model of miRNA function, wherein highly structured miRancer-like motif-containing RNA fragments or miRancer molecules specifically interact with miRNAs, leading to reciprocal stabilization. PMID:27002217

  4. Acid-degradable core-shell nanoparticles for reversed tamoxifen-resistance in breast cancer by silencing manganese superoxide dismutase (MnSOD).

    PubMed

    Cho, Soo Kyung; Pedram, Ali; Levin, Ellis R; Kwon, Young Jik

    2013-12-01

    Drug resistance acquired by cancer cells is a significant challenge in the clinic and requires impairing the responsible pathological pathway. Administering chemotherapeutics along with silencing resistance-basis activity using RNA interference (RNAi) is expected to restore the activity of the chemotherapeutic and generate synergistic cancer eradication. This study attempted to reverse tamoxifen (TAM)-resistance in breast cancer by silencing a mitochondrial enzyme, manganese superoxide dismutase (MnSOD), which dismutates TAM-induced reactive oxygen species (ROS) (i.e., superoxide) to less harmful hydrogen peroxide and hampers therapeutic effects. Breast cancer cells were co-treated with TAM and MnSOD siRNA-delivering nanoparticles (NPs) made of a siRNA/poly(amidoamine) (PAMAM) dendriplex core and an acid-degradable polyketal (PK) shell. The (siRNA/PAMAM)-PK NPs were designed for the PK shell to shield siRNA from nucleases, minimize detrimental aggregation in serum, and facilitate cytosolic release of siRNA from endosomal compartments. This method of forming the PK shell around the siRNA/PAMAM core via surface-initiated photo-polymerization enables ease of tuning NPs' size for readily controlled siRNA release kinetics. The resulting NPs were notably homogenous in size, resistant to aggregation in serum, and invulnerable to heparan sulfate-mediated disassembly, compared to siRNA/PAMAM dendriplexes. Gel electrophoresis and confocal microscopy confirmed efficient siRNA release from the (siRNA/PAMAM)-PK NPs upon stimuli-responsive hydrolysis of the PK shell. Sensitization of TAM-resistant MCF7-BK-TR breast cancer cells with (MnSOD siRNA/PAMAM)-PK NPs restored TAM-induced cellular apoptosis in vitro and significantly suppressed tumor growth in vivo, as confirmed by biochemical assays and histological observations. This study implies that combined gene silencing and chemotherapy is a promising strategy to overcoming a significant challenge in cancer therapy. PMID:24055523

  5. Acid-degradable Core-shell Nanoparticles for Reversed Tamoxifen-resistance in Breast Cancer by Silencing Manganese Superoxide Dismutase (MnSOD)

    PubMed Central

    Cho, Soo Kyung; Pedram, Ali; Levin, Ellis R.; Kwon, Young Jik

    2013-01-01

    Drug resistance acquired by cancer cells is a significant challenge in the clinic and requires impairing the responsible pathological pathway. Administering chemotherapeutics along with silencing resistance-basis activity using RNA interference (RNAi) is expected to restore the activity of the chemotherapeutic. generate synergistic cancer eradication. This study attempted to reverse tamoxifen (TAM)-resistance in breast cancer by silencing a mitochondrial enzyme, manganese superoxide dismutase (MnSOD), which dismutates TAM-induced reactive oxygen species (ROS) (i.e., superoxide) to less harmful hydrogen peroxide and hampers therapeutic effects. Breast cancer cells were co-treated with TAM and MnSOD siRNA-delivering nanoparticles (NPs) made of a siRNA/poly(amidoamine) (PAMAM) dendriplex core and an acid-degradable polyketal (PK) shell. The (siRNA/PAMAM)-PK NPs were designed for the PK shell to shield siRNA from nucleases, minimize detrimental aggregation in serum, and facilitate cytosolic release of siRNA from endosomal compartments. This method of forming the PK shell around the siRNA/PAMAM core via surface-initiated photo-polymerization enables ease of tuning NPs’ size for readily controlled siRNA release kinetics. The resulting NPs were notably homogenous in size, resistant to aggregation in serum, and invulnerable to heparan sulfate-mediated disassembly, compared to siRNA/PAMAM dendriplexes. Gel electrophoresis and confocal microscopy confirmed efficient siRNA release from the (siRNA/PAMAM)-PK NPs upon stimuli-responsive hydrolysis of the PK shell. Sensitization of TAM-resistant MCF7-BK-TR breast cancer cells with (MnSOD siRNA/PAMAM)-PK NPs restored TAM-induced cellular apoptosis in vitro and significantly suppressed tumor growth in vivo, as confirmed by biochemical assays and histological observations. This study implies that combined gene silencing and chemotherapy is a promising strategy to overcoming a significant challenge in cancer therapy. PMID:24055523

  6. Hedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/AKT pathway.

    PubMed

    Ramaswamy, Bhuvaneswari; Lu, Yuanzhi; Teng, Kun-yu; Nuovo, Gerard; Li, Xiaobai; Shapiro, Charles L; Majumder, Sarmila

    2012-10-01

    Endocrine resistance is a major challenge in the management of estrogen receptor (ER)-positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of patients developing resistance to endocrine therapy warrants additional studies. Here we show that noncanonical Hedgehog (Hh) signaling is an alternative growth promoting mechanism that is activated in tamoxifen-resistant tumors. Importantly, phosphoinositide 3-kinase inhibitor/protein kinase B (PI3K/AKT) pathway plays a key role in regulating Hh signaling by protecting key components of this pathway from proteasomal degradation. The levels of Hh-signaling molecules SMO and GLI1 and the targets were significantly elevated in tamoxifen-resistant MCF-7 cells and T47D cells. Serial passage of the resistant cells in mice resulted in aggressive tumors that metastasized to distant organs with concurrent increases in Hh marker expression and epithelial mesenchymal transition. RNAi-mediated depletion of SMO or GLI1 in the resistant cells resulted in reduced proliferation, clonogenic survival and delayed G(1)-S transition. Notably, treatment of resistant cells with PI3K inhibitors decreased SMO and GLI1 protein levels and activity that was rescued upon blocking GSK3β and proteasomal degradation. Furthermore, treatment of tamoxifen-resistant xenografts with anti-Hh compound GDC-0449 blocked tumor growth in mice. Importantly, high GLI1 expression correlated inversely with disease-free and overall survival in a cohort of 315 patients with breast cancer. In summary, our results describe a signaling event linking PI3K/AKT pathway with Hh signaling that promotes tamoxifen resistance. Targeting Hh pathway alone or in combination with PI3K/AKT pathway could therefore be a novel therapeutic option in treating endocrine-resistant breast cancer.

  7. Tamoxifen retinopathy.

    PubMed Central

    McKeown, C A; Swartz, M; Blom, J; Maggiano, J M

    1981-01-01

    A 63-year-old female on long-term, high-dose tamoxifen treatment for metastatic breast cancer developed bilateral intraretinal refractile opacities, lesions at the level of the retinal pigment epithelium, and cystoid macular oedema. Images PMID:7225310

  8. Suppression of the death gene BIK is a critical factor for resistance to tamoxifen in MCF-7 breast cancer cells.

    PubMed

    Viedma-Rodriguez, Rubí; Baiza-Gutman, Luis Arturo; García-Carrancá, Alejandro; Moreno-Fierros, Leticia; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego

    2013-12-01

    Apoptosis is controlled by the BCL-2 family of proteins, which can be divided into three different subclasses based on the conservation of BCL-2 homology domains. BIK is a founding member of the BH3-only pro-apoptotic protein family. BIK is predominantly localized in the endoplasmic reticulum (ER) and induces apoptosis through the mitochondrial pathway by mobilizing calcium from the ER to the mitochondria. In this study, we determined that suppression of the death gene Bik promotes resistance to tamoxifen (TAM) in MCF-7 breast cancer cells. We utilized small interfering (siRNA) to specifically knockdown BIK in MCF-7 cells and studied their response to tamoxifen. The levels of cell apoptosis, the potential mitochondrial membrane (∆Ψ(m)), and the activation of total caspases were analyzed. Western blot analysis was used to determine the expression of some BCL-2 family proteins. Flow cytometry studies revealed an increase in apoptosis level in MCF-7 cells and a 2-fold increase in relative BIK messenger RNA (mRNA) expression at a concentration of 6.0 μM of TAM. BIK silencing, with a specific RNAi, blocked TAM-induced apoptosis in 45 ± 6.78% of cells. Moreover, it decreased mitochondrial membrane potential (Ψm) and total caspase activity, and exhibited low expression of pro-apoptotic proteins BAX, BAK, PUMA and a high expression of BCl-2 and MCL-1. The above suggests resistance to TAM, regulating the intrinsic pathway and indicate that BIK comprises an important factor in the process of apoptosis, which may exert an influence the ER pathway, which regulates mitochondrial integrity. Collectively, our results show that BIK is a central component of the programmed cell death of TAM-induced MCF-7 breast cancer cells. The silencing of BIK gene will be useful for future studies to establish the mechanisms of regulation of resistance to TAM.

  9. Targets for Combating the Evolution of Acquired Antibiotic Resistance.

    PubMed

    Culyba, Matthew J; Mo, Charlie Y; Kohli, Rahul M

    2015-06-16

    Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. Here, we review recent advances in our understanding of the processes that contribute to the evolution of antibiotic resistance, with a particular focus on hypermutation mediated by the SOS pathway and horizontal gene transfer. We explore the molecular mechanisms involved in acquired resistance and discuss their viability as potential targets. We propose that additional studies into these adaptive mechanisms not only can provide insights into evolution but also can offer a strategy for potentiating our current antibiotic arsenal.

  10. Targets for Combating the Evolution of Acquired Antibiotic Resistance

    PubMed Central

    2015-01-01

    Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. Here, we review recent advances in our understanding of the processes that contribute to the evolution of antibiotic resistance, with a particular focus on hypermutation mediated by the SOS pathway and horizontal gene transfer. We explore the molecular mechanisms involved in acquired resistance and discuss their viability as potential targets. We propose that additional studies into these adaptive mechanisms not only can provide insights into evolution but also can offer a strategy for potentiating our current antibiotic arsenal. PMID:26016604

  11. Linking Estrogen-Induced Apoptosis With Decreases in Mortality Following Long-term Adjuvant Tamoxifen Therapy

    PubMed Central

    2014-01-01

    The impressive first results of the Adjuvant Tamoxifen: Longer Against Shorter (ATLAS) and the adjuvant Tamoxifen To offer more (aTTom) trials both demonstrate that 10 years of tamoxifen is superior to five years of treatment. Tamoxifen is a nonsteroidal antiestrogen that blocks estrogen-stimulated tumor growth. Paradoxically, mortality decreases dramatically only in the decade after long-term tamoxifen is stopped. It is proposed that the evolution and clonal selection of micrometastases that acquire tamoxifen resistance now become increasingly vulnerable to endogenous estrogen-induced apoptosis. Laboratory and clinical studies confirm the concept, and supporting clinical evidence from the estrogen-alone trial in the Women’s Health Initiative (WHI), demonstrate that long-term estrogen-deprived women given exogenous physiologic estrogen have a decreased incidence of breast cancer and decreased mortality. It is proposed that a natural process of apoptosis is recruited to execute the long-term survival benefit of stopping ten years of adjuvant tamoxifen, but only after clonal selection of vulnerable breast cancer cells in an estrogen-deprived environment. PMID:25269699

  12. ERK/MAPK regulates ERRγ expression, transcriptional activity and receptor-mediated tamoxifen resistance in ER+ breast cancer.

    PubMed

    Heckler, Mary M; Thakor, Hemang; Schafer, Cara C; Riggins, Rebecca B

    2014-05-01

    Selective estrogen receptor modulators such as tamoxifen (TAM) significantly improve breast cancer-specific survival for women with estrogen receptor-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of the estrogen receptor; instead, changes in multiple proliferative and/or survival pathways over-ride the inhibitory effects of TAM. Estrogen-related receptor γ (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. This study sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated, and hence affects TAM resistance. mRNA and protein expression/phosphorylation were monitored by RT-PCR and western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus extracellular signal-regulated kinase (ERK) target sites. Cell proliferation and cell-cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. We show that ERRγ protein levels are affected by the activation state of ERK/mitogen-activated protein kinase, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor.

  13. Identification of cyclohexanone derivatives that act as catalytic inhibitors of topoisomerase I: effects on tamoxifen-resistant MCF-7 cancer cells.

    PubMed

    Leung, Euphemia; Rewcastle, Gordon W; Joseph, Wayne R; Rosengren, Rhonda J; Larsen, Lesley; Baguley, Bruce C

    2012-12-01

    Breast cancer is commonly treated with anti-estrogens or aromatase inhibitors, but resistant disease eventually develops and new therapies for such resistance are of great interest. We have previously isolated several tamoxifen-resistant variant sub-lines of the MCF-7 breast cancer cell line and provided evidence that they arose from expansion of pre-existing minor populations. We have searched for therapeutic agents that exhibit selective growth inhibition of the resistant lines and here investigate 2,6-bis(pyridin-3-ylmethylene)-cyclohexanone (RL90) and 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91). We found that two of the tamoxifen-resistant sub-lines (TamR3 and TamC3) unexpectedly showed increased sensitivity to RL90 and RL91. We utilized growth inhibition assays, flow cytometry and immunoblotting to establish a mechanistic basis for their action. Treated sensitive cells showed S-phase selective DNA damage, as detected by histone H2AX phosphorylation. Cellular responses were similar to those induced by the topoisomerase I poison camptothecin. Although IC(50) values of camptothecin, RL90, RL91 were correlated, studies with purified mammalian topoisomerase I suggested that RL90 and RL91 differed from camptothecin by acting as catalytic topoisomerase I inhibitors. These drugs provide a platform for the further development of DNA damaging drugs that have selective effects on tamoxifen resistant breast cancer cells. The results also raise the question of whether clinical topoisomerase I poisons such as irinotecan and topotecan might be active in the treatment of some types of tamoxifen-resistant cancer.

  14. Estrogen receptor-α variant, ER-α36, is involved in tamoxifen resistance and estrogen hypersensitivity.

    PubMed

    Zhang, Xiantian; Wang, Zhao-Yi

    2013-06-01

    Antiestrogens such as tamoxifen (TAM) provided a successful treatment for estrogen receptor (ER)-positive breast cancer for the past four decades. However, most breast tumors are eventually resistant to TAM therapy. The molecular mechanisms underlying TAM resistance have not been well established. Recently, we reported that breast cancer patients with tumors expressing high concentrations of ER-α36, a variant of ER-α, benefited less from TAM therapy than those with low concentrations of ER-α36, suggesting that increased ER-α36 concentration is one of the underlying mechanisms of TAM resistance. Here, we investigated the function and underlying mechanism of ER-α36 in TAM resistance. We found that TAM increased ER-α36 concentrations, and TAM-resistant MCF7 cells expressed high concentrations of ER-α36. In addition, MCF7 cells with forced expression of recombinant ER-α36 and H3396 cells expressing high concentrations of endogenous ER-α36 were resistant to TAM. ER-α36 down-regulation in TAM-resistant cells with the short hairpinRNA method restored TAM sensitivity. We also found that TAM acted as a potent agonist by activating phosphorylation of the AKT kinase in ER-α36-expressing cells. Finally, we found that cells with high concentration of ER-α36 protein were hypersensitive to estrogen, activating ERK phosphorylation at picomolar range. Our results thus demonstrated that elevated ER-α36 concentration is one of the mechanisms by which ER-positive breast cancer cells escape TAM therapy and provided a rational to develop novel therapeutic approaches for TAM-resistant patients by targeting ER-α36.

  15. Acquired resistance to gemcitabine and cross-resistance in human pancreatic cancer clones.

    PubMed

    Yoneyama, Hiroshi; Takizawa-Hashimoto, Asako; Takeuchi, Osamu; Watanabe, Yukiko; Atsuda, Koichiro; Asanuma, Fumiki; Yamada, Yoshinori; Suzuki, Yukio

    2015-01-01

    The efficacy of gemcitabine (GEM), a standard treatment agent for pancreatic cancer, is insufficient because of primary or acquired resistance to this drug. Patients with tumors intrinsically sensitive to GEM gradually acquire resistance and require a shift to second agents, which are associated with the risk of cross-resistance. However, whether cross-resistance is actually present has long been disputed. Using six GEM-resistant and four highly GEM-resistant clones derived from the pancreatic cancer cell line BxPC-3, we determined the resistance of each clone and parent cell line to GEM and four anticancer agents (5-FU, CDDP, CPT-11, and DTX). The GEM-resistant clones had different resistances to GEM and other agents, and did not develop a specific pattern of cross-resistance. This result shows that tumor cells are heterogeneous. However, all highly GEM-resistant clones presented overexpression of ribonucleotide reductase subunit M1 (RRM1), a target enzyme for metabolized GEM, and showed cross-resistance with 5-FU. The expression level of RRM1 was high; therefore, resistance to GEM was high. We showed that a tumor cell acquired resistance to GEM, and cross-resistance developed in one clone. These results suggest that only cells with certain mechanisms for high-level resistance to GEM survive against selective pressure applied by highly concentrated GEM. RRM1 may be one of the few factors that can induce high resistance to GEM and a suitable therapeutic target for GEM-resistant pancreatic cancer.

  16. Tamoxifen induces a pluripotency signature in breast cancer cells and human tumors.

    PubMed

    Notas, George; Pelekanou, Vassiliki; Kampa, Marilena; Alexakis, Konstantinos; Sfakianakis, Stelios; Laliotis, Aggelos; Askoxilakis, John; Tsentelierou, Eleftheria; Tzardi, Maria; Tsapis, Andreas; Castanas, Elias

    2015-11-01

    Tamoxifen is the treatment of choice in estrogen receptor alpha breast cancer patients that are eligible for adjuvant endocrine therapy. However, ∼50% of ERα-positive tumors exhibit intrinsic or rapidly acquire resistance to endocrine treatment. Unfortunately, prediction of de novo resistance to endocrine therapy and/or assessment of relapse likelihood remain difficult. While several mechanisms regulating the acquisition and the maintenance of endocrine resistance have been reported, there are several aspects of this phenomenon that need to be further elucidated. Altered metabolic fate of tamoxifen within patients and emergence of tamoxifen-resistant clones, driven by evolution of the disease phenotype during treatment, appear as the most compelling hypotheses so far. In addition, tamoxifen was reported to induce pluripotency in breast cancer cell lines, in vitro. In this context, we have performed a whole transcriptome analysis of an ERα-positive (T47D) and a triple-negative breast cancer cell line (MDA-MB-231), exposed to tamoxifen for a short time frame (hours), in order to identify how early pluripotency-related effects of tamoxifen may occur. Our ultimate goal was to identify whether the transcriptional actions of tamoxifen related to induction of pluripotency are mediated through specific ER-dependent or independent mechanisms. We report that even as early as 3 hours after the exposure of breast cancer cells to tamoxifen, a subset of ERα-dependent genes associated with developmental processes and pluripotency are induced and this is accompanied by specific phenotypic changes (expression of pluripotency-related proteins). Furthermore we report an association between the increased expression of pluripotency-related genes in ERα-positive breast cancer tissues samples and disease relapse after tamoxifen therapy. Finally we describe that in a small group of ERα-positive breast cancer patients, with disease relapse after surgery and tamoxifen treatment, ALDH

  17. Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Complex

    PubMed Central

    Rubio, Marc; March, Francesca; Garrigó, Montserrat; Moreno, Carmen; Español, Montserrat; Coll, Pere

    2015-01-01

    Purpose Clarithromycin was considered the cornerstone for the treatment of Mycobacterium abscessus complex infections. Genetic resistance mechanisms have been described and many experts propose amikacin as an alternative. Nevertheless, clarithromycin has several advantages; therefore, it is necessary to identify the non-functional erm(41) allele to determine the most suitable treatment. The aims of this study were to characterize the molecular mechanisms of clarithromycin resistance in a collection of Mycobacterium abscessus complex isolates and to verify the relationship between these mechanisms and the antibiogram. Materials and Methods Clinical isolates of M. abscessus complex (n = 22) from 16 patients were identified using four housekeeping genes (rpoB, secA1, sodA and hsp65), and their genetic resistance was characterized by studying erm(41) and rrl genes. Nine strains were recovered from the clinical isolates and subjected to E-test and microdilution clarithromycin susceptibility tests, with readings at 3, 7 and 14 days. Results We classified 11/16 (68.8%) M. abscessus subsp. abscessus, 4/16 (25.0%) M. abscessus subsp. bolletii, and 1/16 (6.3%) M. abscessus subsp. massiliense. T28 erm(41) allele was observed in 8 Mycobacterium abscessus subps. abscessus and 3 Mycobacterium abscessus subsp. bolletii. One strain of M. abscessus subsp. bolletii had an erm(41) gene truncated and was susceptible to clarithromycin. No mutations were observed in rrl gene first isolates. In three patients, follow-up of initial rrl wild-type strains showed acquired resistance. Conclusions Most clinical isolates of M. abscessus complex had inducible resistance to clarithromycin and total absence of constitutive resistance. Our findings showed that the acquisition of resistance mutations in rrl gene was associated with functional and non-functional erm(41) gene. Caution is needed when using erm(41) sequencing alone to identify M. abscessus subspecies. This study reports an acquired

  18. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition

    PubMed Central

    Neumann, Tobias; Muerdter, Felix; Roe, Jae-Seok; Muhar, Matthias; Deswal, Sumit; Cerny-Reiterer, Sabine; Peter, Barbara; Jude, Julian; Hoffmann, Thomas; Boryń, Łukasz M.; Axelsson, Elin; Schweifer, Norbert; Tontsch-Grunt, Ulrike; Dow, Lukas E.; Gianni, Davide; Pearson, Mark; Valent, Peter; Stark, Alexander; Kraut, Norbert; Vakoc, Christopher R.; Zuber, Johannes

    2016-01-01

    Summary Following the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukemia (AML)1,2, BET inhibitors are being explored as promising therapeutic avenue in numerous cancers3–5. While clinical trials have reported single-agent activity in advanced hematologic malignancies6, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukemia, we performed a chromatin-focused RNAi screen in a sensitive MLL/AF9; NrasG12D -driven AML model, and investigated dynamic transcriptional profiles in sensitive and resistant murine and human leukemias. Our screen reveals that suppression of the PRC2 complex, contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression does not directly affect the regulation of Brd4-dependent transcripts, but facilitates the remodeling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggers acute MYC repression in human leukemias regardless of their sensitivity, resistant leukemias are uniformly characterized by their ability to rapidly restore MYC transcription. This process involves the activation and recruitment of WNT signaling components, which compensate for the loss of BRD4 and drive resistance in various cancer models. Dynamic ChIP- and STARR-seq enhancer profiles reveal that BET-resistant states are characterized by remodeled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Together, our results identify and validate WNT signaling as a driver and candidate biomarker of primary and acquired BET resistance in leukemia, and implicate the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies. PMID:26367798

  19. Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells.

    PubMed

    Kim, Jinkyoung; Lee, Jiyun; Kim, Chungyeul; Choi, Jinhyuk; Kim, Aeree

    2016-05-01

    Development of new therapeutic strategies is becoming increasingly important to overcome tamoxifen resistance. Recently, much interest has been focused on anti-tumor effects of metformin commonly used to treat type II diabetes. Increased protein expression and signaling of epidermal growth factor receptor (EGFR) family is a possible mechanism involved in tamoxifen resistance. Since HER2/HER3 heterodimers are able to induce strong downstream signaling and activate various biological responses such as cellular proliferation and growth, we investigated the anti-cancer effect of metformin by inhibition of signaling pathway via downregulation of HER2 and HER3 using tamoxifen-resistant MCF-7 (TR MCF-7) cells. Compared to MCF-7 cells, TR MCF-7 cells showed increased expression of EGFR, HER2, and HER3, and metformin inhibited the expression of these proteins in a dose- and time-dependent manner. Metformin inhibited activation of HER2 (Tyr1248)/HER3 (Tyr1289)/Akt (Ser473) as well as cell proliferation and colony formation by estrogenic promotion in MCF-7 and TR MCF-7 cells. Known as a HER3 ligand, heregulin (HRG)-β1-induced phosphorylation of HER2, HER3 and Akt, and protein interaction of HER2/HER3 and colony formation were inhibited by metformin in both cells. Consistent with the results in the two cell lines, we identified that metformin inhibited HER2/HER3/Akt signaling axis activated by HRG-β1 using the HER2 and HER3-overexpressing breast cancer cell line SK-BR-3. Lastly, lapatinib-induced HER3 upregulation was significantly inhibited by treatment of metformin in HER3 siRNA-transfected TR MCF-7 cells. These data suggest that metformin might overcome tamoxifen resistance through the inhibition of expression and signaling of receptor tyrosine kinase HER2 and HER3. PMID:26581908

  20. Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells.

    PubMed

    Kim, Jinkyoung; Lee, Jiyun; Kim, Chungyeul; Choi, Jinhyuk; Kim, Aeree

    2016-05-01

    Development of new therapeutic strategies is becoming increasingly important to overcome tamoxifen resistance. Recently, much interest has been focused on anti-tumor effects of metformin commonly used to treat type II diabetes. Increased protein expression and signaling of epidermal growth factor receptor (EGFR) family is a possible mechanism involved in tamoxifen resistance. Since HER2/HER3 heterodimers are able to induce strong downstream signaling and activate various biological responses such as cellular proliferation and growth, we investigated the anti-cancer effect of metformin by inhibition of signaling pathway via downregulation of HER2 and HER3 using tamoxifen-resistant MCF-7 (TR MCF-7) cells. Compared to MCF-7 cells, TR MCF-7 cells showed increased expression of EGFR, HER2, and HER3, and metformin inhibited the expression of these proteins in a dose- and time-dependent manner. Metformin inhibited activation of HER2 (Tyr1248)/HER3 (Tyr1289)/Akt (Ser473) as well as cell proliferation and colony formation by estrogenic promotion in MCF-7 and TR MCF-7 cells. Known as a HER3 ligand, heregulin (HRG)-β1-induced phosphorylation of HER2, HER3 and Akt, and protein interaction of HER2/HER3 and colony formation were inhibited by metformin in both cells. Consistent with the results in the two cell lines, we identified that metformin inhibited HER2/HER3/Akt signaling axis activated by HRG-β1 using the HER2 and HER3-overexpressing breast cancer cell line SK-BR-3. Lastly, lapatinib-induced HER3 upregulation was significantly inhibited by treatment of metformin in HER3 siRNA-transfected TR MCF-7 cells. These data suggest that metformin might overcome tamoxifen resistance through the inhibition of expression and signaling of receptor tyrosine kinase HER2 and HER3.

  1. Involvement of multiple cellular pathways in regulating resistance to tamoxifen in BIK-suppressed MCF-7 cells.

    PubMed

    Viedma-Rodríguez, Rubí; Ruiz Esparza-Garrido, Ruth; Baiza-Gutman, Luis Arturo; Velázquez-Flores, Miguel Ángel; García-Carrancá, Alejandro; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego

    2015-09-01

    Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate. PMID:25861752

  2. Involvement of multiple cellular pathways in regulating resistance to tamoxifen in BIK-suppressed MCF-7 cells.

    PubMed

    Viedma-Rodríguez, Rubí; Ruiz Esparza-Garrido, Ruth; Baiza-Gutman, Luis Arturo; Velázquez-Flores, Miguel Ángel; García-Carrancá, Alejandro; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego

    2015-09-01

    Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate.

  3. Induction of ErbB-3 Expression by α6β4 Integrin Contributes to Tamoxifen Resistance in ERβ1-Negative Breast Carcinomas

    PubMed Central

    Bon, Giulia; Di Carlo, Selene E.; Fabi, Alessandra; Nisticò, Cecilia; Vici, Patrizia; Melucci, Elisa; Buglioni, Simonetta; Perracchio, Letizia; Sperduti, Isabella; Rosanò, Laura; Sacchi, Ada; Mottolese, Marcella; Falcioni, Rita

    2008-01-01

    Background Tamoxifen is still the most widely used drug in hormone therapy for the treatment of breast cancer. Its benefits in adjuvant treatment are well documented in controlled and randomized clinical studies, which have demonstrated an increase in disease-free intervals of patients with positive hormonal receptors. However, the mechanisms involved in endocrine resistance are not clear. Laboratory and clinical data now indicate that bi-directional molecular cross-talk between nuclear or membrane ER and growth factor receptor pathways may be involved in endocrine resistance. We recently found a functional interaction between α6β4 integrin and ErbB-3 receptor to maintain the PI3K/Akt survival pathway of mammary tumour cells. We sought to improve understanding of this process in order to provide the involvement of both receptors insight into mechanism of Tamoxifen resistance. Methods and Findings Using human breast cancer cell lines displaying different levels of α6β4 and ErbB-3 receptors and a series of 232 breast cancer biopsies from patients submitted to adjuvant Tamoxifen monotherapy for five years, we evaluated the functional interaction between both receptors in relationship to Tamoxifen responsiveness. In mammary carcinoma cells, we evidenced that the α6β4 integrin strongly influence Akt phosphorylation through ErbB-3 protein regulation. Moreover, the ErbB-3 inactivation inhibits Akt phosphorylation, induces apoptosis and inhibits in vitro invasion favouring Tamoxifen responsiveness. The analysis of human tumors revealed a significant relationship between α6β4 and ErbB-3 in P-Akt-positive and ERβ1-negative breast cancers derived from patients with lower disease free survival. Conclusions We provided evidence that a strong relationship occurs between α6β4 and ErbB-3 positivity in ERβ1-negative breast cancers. We also found that the association between ErbB-3 and P-Akt positivity mainly occurs in ERβ1-negative breast cancer derived from patients

  4. Identification of GDC-0810 (ARN-810), an Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) that Demonstrates Robust Activity in Tamoxifen-Resistant Breast Cancer Xenografts.

    PubMed

    Lai, Andiliy; Kahraman, Mehmet; Govek, Steven; Nagasawa, Johnny; Bonnefous, Celine; Julien, Jackie; Douglas, Karensa; Sensintaffar, John; Lu, Nhin; Lee, Kyoung-Jin; Aparicio, Anna; Kaufman, Josh; Qian, Jing; Shao, Gang; Prudente, Rene; Moon, Michael J; Joseph, James D; Darimont, Beatrice; Brigham, Daniel; Grillot, Kate; Heyman, Richard; Rix, Peter J; Hager, Jeffrey H; Smith, Nicholas D

    2015-06-25

    Approximately 80% of breast cancers are estrogen receptor alpha (ER-α) positive, and although women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, resistance often emerges. Although a variety of resistance mechanism may be at play in this state, there is evidence that in many cases the ER still plays a central role, including mutations in the ER leading to constitutively active receptor. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and is active in patients who have progressed on antihormonal agents. However, fulvestrant suffers from poor pharmaceutical properties and must be administered by intramuscular injections that limit the total amount of drug that can be administered and hence lead to the potential for incomplete receptor blockade. We describe the identification and characterization of a series of small-molecule, orally bioavailable SERDs which are potent antagonists and degraders of ER-α and in which the ER-α degrading properties were prospectively optimized. The lead compound 11l (GDC-0810 or ARN-810) demonstrates robust activity in models of tamoxifen-sensitive and tamoxifen-resistant breast cancer, and is currently in clinical trials in women with locally advanced or metastatic estrogen receptor-positive breast cancer.

  5. Recent advances in systemic acquired resistance research--a review.

    PubMed

    Hunt, M D; Neuenschwander, U H; Delaney, T P; Weymann, K B; Friedrich, L B; Lawton, K A; Steiner, H Y; Ryals, J A

    1996-11-01

    Little is known about the signal transduction events that lead to the establishment of the broad-spectrum, inducible plant immunity called systemic acquired resistance (SAR). Salicylic acid (SA) accumulation has been shown to be essential for the expression of SAR and plays a key role in SAR signaling. Hydrogen peroxide has been proposed to serve as a second messenger of SA. However, our results do not support such a role in the establishment of SAR. Further elucidation of SAR signal transduction has been facilitated by the identification and characterization of mutants. The lesions simulating disease (lsd). resistance response mutant class exhibits spontaneous lesions similar to those that occur during the hypersensitive response. Interestingly, some lsd mutants lose their lesioned phenotype when SA accumulation is prevented by expression of the nahG gene (encoding salicylate hydroxylase), thereby providing evidence for a feedback loop in SAR signal transduction. Characterization of a mutant non-responsive to SAR activator treatments has provided additional evidence for common signaling components between SAR and gene-for-gene resistance.

  6. Community-Acquired Methicillin-Resistant Pyogenic Liver Abscess

    PubMed Central

    Cherian, Joel; Singh, Rahul; Varma, Muralidhar; Vidyasagar, Sudha; Mukhopadhyay, Chiranjay

    2016-01-01

    Pyogenic liver abscesses are rare with an incidence of 0.5% to 0.8% and are mostly due to hepatobiliary causes (40% to 60%). Most are polymicrobial with less than 10% being caused by Staphylococcus aureus. Of these, few are caused by methicillin-resistant Staphylococcus aureus (MRSA) and fewer still by a community-acquired strain. Here we present a case study of a patient with a community-acquired MRSA liver abscess. The patient presented with fever since 1 month and tender hepatomegaly. Blood tests revealed elevated levels of alkaline phosphatase, C-reactive protein, erythrocyte sedimentation rate, and neutrophilic leukocytosis. Blood cultures were sterile. Ultrasound of the abdomen showed multiple abscesses, from which pus was drained and MRSA isolated. Computed tomography of the abdomen did not show any source of infection, and an amebic serology was negative. The patient was started on vancomycin for 2 weeks, following which he became afebrile and was discharged on oral linezolid for 4 more weeks. Normally a liver abscess is treated empirically with ceftriaxone for pyogenic liver abscess and metronidazole for amebic liver abscess. However, if the patient has risk factors for a Staphylococcal infection, it is imperative that antibiotics covering gram-positive organisms be added while waiting for culture reports. PMID:27540556

  7. Cellular Memory of Acquired Stress Resistance in Saccharomyces cerevisiae

    PubMed Central

    Guan, Qiaoning; Haroon, Suraiya; Bravo, Diego González; Will, Jessica L.; Gasch, Audrey P.

    2012-01-01

    Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria “remembering” prior nutritional status and amoeba “learning” to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H2O2. We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H2O2 resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H2O2 resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H2O2 tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments. PMID:22851651

  8. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.

    PubMed

    Guan, Qiaoning; Haroon, Suraiya; Bravo, Diego González; Will, Jessica L; Gasch, Audrey P

    2012-10-01

    Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria "remembering" prior nutritional status and amoeba "learning" to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H(2)O(2). We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H(2)O(2) resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H(2)O(2) resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H(2)O(2) tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments. PMID:22851651

  9. Adaptive and Acquired Resistance to EGFR Inhibitors Converge on the MAPK Pathway

    PubMed Central

    Ma, Pengfei; Fu, Yujie; Chen, Minjiang; Jing, Ying; Wu, Jie; Li, Ke; Shen, Ying; Gao, Jian-Xin; Wang, Mengzhao; Zhao, Xiaojing; Zhuang, Guanglei

    2016-01-01

    Both adaptive and acquired resistance significantly limits the efficacy of the epidermal growth factor receptor (EGFR) kinase inhibitors. However, the distinct or common mechanisms of adaptive and acquired resistance have not been fully characterized. Here, through systematic modeling of erlotinib resistance in lung cancer, we found that feedback reactivation of MAPK signaling following erlotinib treatment, which was dependent on the MET receptor, contributed to the adaptive resistance of EGFR inhibitors. Interestingly, acquired resistance to erlotinib was also associated with the MAPK pathway activation as a result of CRAF or NRAS amplification. Consequently, combined inhibition of EGFR and MAPK impeded the development of both adaptive and acquired resistance. These observations demonstrate that adaptive and acquired resistance to EGFR inhibitors can converge on the same pathway and credential cotargeting EGFR and MAPK as a promising therapeutic approach in EGFR mutant tumors. PMID:27279914

  10. Tamoxifen-resistant, ER-positive MAC 51 cell line with a high metastatic potential developed from a spontaneous breast cancer mouse model.

    PubMed

    Kumar, Jerald Mahesh; Kombairaju, Ponvijay; Nagarajan, P; Subramanian, Thanumalayan; Jose, Jedy; Ganapathy, Hullathy Subban; Ohsugi, Takeo

    2012-11-01

    We developed and characterized an estrogen-responsive and ER-positive murine breast cancer cell line (MAC51) from a spontaneous breast cancer animal model. These cells are overexpressed with K8, K18 and K19 proteins in an immunofluoresence assay. Upregulation of ER alpha was observed in the immunofluoresence assay, real-time PCR analysis and western blot assay. A colocalization experiment in MAC 51 showed cytoplasmic colocalization of K18 and K19 proteins with ER α. Real-time analysis of tumor samples from engrafted animals, MAC 51, metastatic liver and metastatic ovary revealed overexpression of K8 and K18 compared to the respective controls. A hormone responsive experiment in immunodeficient mice showed highly significant decreases in estrogen and tumor volume after 14 days ovariectomization. The tumorogenicity assay showed higher (3 × 10 (5)) and lower (3 × 10(4)) concentrations of MAC 51 cells that developed tumors within 2 weeks post-transplantation. Tumor morphology and histology resembled a sarcoma pattern but our spontaneous model appeared in an adenocarcinoma pattern. Metastasis to different organs occurred through hematogenous and lymphatic routes. We assessed the potency of the anticancer effect in MAC 51 cells by treating various anticancer drugs with E2, followed by studying apoptotic gene expression profiles. E2 and E2+ tamoxifen-treated cells showed upregulation of apoptotic genes caspase 1, 3, 9, P53 and Bcl-xl but the tamoxifen- and paclitaxel-treated cells did not upregulate the apoptotic genes. Tamoxifen-resistant, ER-positive and high metastatic potential cell lines from murine origin are very rare. Also, estrogen greatly induced apoptosis in this cell line, hence MAC 51 has a greater application potential to evaluate low doses of estrogen with other targeted therapeutic drugs to treat breast cancer.

  11. Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells.

    PubMed

    Jones, H E; Goddard, L; Gee, J M W; Hiscox, S; Rubini, M; Barrow, D; Knowlden, J M; Williams, S; Wakeling, A E; Nicholson, R I

    2004-12-01

    De novo and acquired resistance to the anti-tumour drug gefitinib (ZD1839; Iressa), a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) has been reported. We have determined whether signalling through the IGF-I receptor (IGF-1R) pathway plays a role in the gefitinib-acquired resistance phenotype. Continuous exposure of EGFR-positive MCF-7-derived tamoxifen resistant breast cancer cells (TAM-R) to 1 microM gefitinib resulted in a sustained growth inhibition (90%) for 4 months before the surviving cells resumed proliferation. A stable gefitinib-resistant subline (TAM/TKI-R) was established after a further 2 months and this showed no detectable basal phosphorylated EGFR activity. Compared with the parental TAM-R cells, the TAM/ TKI-R cells demonstrated (a) elevated levels of activated IGF-1R, AKT and protein kinase C (PKC)delta, (b) an increased sensitivity to growth inhibition by the IGF-1R TKI AG1024 and (c) an increased migratory capacity that was reduced by AG1024 treatment. Similarly, the EGFR-positive androgen-independent human prostate cancer cell line DU145 was also continuously challenged with 1 microM gefitinib and, although substantial growth inhibition (60%) was seen initially, a gefitinib-resistant variant (DU145/TKI-R) developed after 3 months. Like their breast cancer counterparts, the DU145/TKI-R cells showed increases in the levels of components of the IGF-1R signalling pathway and an elevated sensitivity to growth inhibition by AG1024 compared with the parent DU145 cell line. Additionally, DU145/TKI-R cell migration was also decreased by this inhibitor. We have therefore concluded that in breast and prostate cancer cells acquired resistance to gefitinib is associated with increased signalling via the IGF-1R pathway, which also plays a role in the invasive capacity of the gefitinib-resistant phenotype.

  12. Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells

    PubMed Central

    Kim, Ji Eun; Rewcastle, Gordon W; Finlay, Graeme J; Baguley, Bruce C

    2011-01-01

    Background Treatment with anti-estrogens or aromatase inhibitors is commonly used for patients with estrogen receptor-positive (ER+) breast cancers; however resistant disease develops almost inevitably, requiring a choice of secondary therapy. One possibility is to use inhibitors of the PI3K/mTOR pathway and several candidate drugs are in development. We examined the in vitro effects of two inhibitors of the PI3K/mTOR pathway on resistant MCF-7 cells. Results The derived sub-lines showed increased resistance to tamoxifen but none exhibited concomitantly increased sensitivity to the PI3K inhibitors. NVP-BEZ235 and GSK2126458 acted mainly by induction of cell cycle arrest, particularly in G1-phase, rather than by induction of apoptosis. The lines varied considerably in their utilization of the AKT, p70S6K and ERK pathways. NVP-BEZ235 and GSK2126458 inhibited AKT signaling but NVP-BEZ235 showed greater effects than GSK2126458 on p70S6K and rpS6 signaling with effects resembling those of rapamycin. Methods We cultured MCF-7 cells for prolonged periods either in the presence of the anti-estrogen tamoxifen (three sub-lines) or in estrogen free medium (two sub-lines) to mimic the effects of clinical treatment. We then analyzed the effects of two dual PI3K/mTOR phosphoinositide-3-kinase inhibitors, NVP-BEZ235 and GSK2126458, on the growth and signaling pathways of these MCF-7 sub-lines. The functional status of the PI3K, mTOR and ERK pathways was analyzed by measuring phosphorylation of AKT, p70S6K, rpS6 and ERK. Conclusion Increased resistance to tamoxifen in these MCF-7 sub-lines is not associated with hypersensitivity to PI3K inhibitors. While both drugs inhibited AKT signaling, NVP-BEZ235 resembled rapamycin in inhibiting the mTOR pathway. PMID:21464613

  13. Genotoxic, epigenetic, and transcriptomic effects of tamoxifen in mouse liver.

    PubMed

    de Conti, Aline; Tryndyak, Volodymyr; Churchwell, Mona I; Melnyk, Stepan; Latendresse, John R; Muskhelishvili, Levan; Beland, Frederick A; Pogribny, Igor P

    2014-11-01

    Tamoxifen is a non-steroidal anti-estrogenic drug widely used for the treatment and prevention of breast cancer in women; however, there is evidence that tamoxifen is hepatocarcinogenic in rats, but not in mice. Additionally, it has been reported that tamoxifen may cause non-alcoholic fatty liver disease (NAFLD) in humans and experimental animals. The goals of the present study were to (i) investigate the mechanisms of the resistance of mice to tamoxifen-induced hepatocarcinogenesis, and (ii) clarify effects of tamoxifen on NAFLD-associated liver injury. Feeding female WSB/EiJ mice a 420 p.p.m. tamoxifen-containing diet for 12 weeks resulted in an accumulation of tamoxifen-DNA adducts, (E)-α-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-TAM) and (E)-α-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-DesMeTAM), in the livers. The levels of hepatic dG-TAM and dG-DesMeTAM DNA adducts in tamoxifen-treated mice were 578 and 340 adducts/108 nucleotides, respectively, while the extent of global DNA and repetitive elements methylation and histone modifications did not differ from the values in control mice. Additionally, there was no biochemical or histopathological evidence of NAFLD-associated liver injury in mice treated with tamoxifen. A transcriptomic analysis of differentially expressed genes demonstrated that tamoxifen caused predominantly down-regulation of hepatic lipid metabolism genes accompanied by a distinct over-expression of the lipocalin 13 (Lcn13) and peroxisome proliferator receptor gamma (Pparγ), which may prevent the development of NAFLD. The results of the present study demonstrate that the resistance of mice to tamoxifen-induced liver carcinogenesis may be associated with its ability to induce genotoxic alterations only without affecting the cellular epigenome and an inability of tamoxifen to induce the development of NAFLD.

  14. Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries.

    PubMed Central

    Okeke, I. N.; Lamikanra, A.; Edelman, R.

    1999-01-01

    In developing countries, acquired bacterial resistance to antimicrobial agents is common in isolates from healthy persons and from persons with community-acquired infections. Complex socioeconomic and behavioral factors associated with antibiotic resistance, particularly regarding diarrheal and respiratory pathogens, in developing tropical countries, include misuse of antibiotics by health professionals, unskilled practitioners, and laypersons; poor drug quality; unhygienic conditions accounting for spread of resistant bacteria; and inadequate surveillance. PMID:10081668

  15. Upregulation of Mucin4 in ER-positive/HER2-Overexpressing Breast Cancer Xenografts with Acquired Resistance to Endocrine and HER2-Targeted Therapies

    PubMed Central

    Chen, Albert C.; Migliaccio, Ilenia; Rimawi, Mothaffar; Lopez-Tarruella, Sara; Creighton, Chad J.; Massarweh, Suleiman; Huang, Catherine; Wang, Yen-Chao; Batra, Surinder K.; Gutierrez, M. Carolina; Osborne, C. Kent; Schiff, Rachel

    2012-01-01

    Background We studied resistance to endocrine and HER2-targeted therapies using a xenograft model of estrogen receptor positive (ER)/HER2-overexpressing breast cancer. Here, we report a novel phenotype of drug resistance in this model. Methods MCF7/HER2-18 xenografts were treated with endocrine therapy alone or in combination with lapatinib and trastuzumab (LT) to inhibit HER2. Archival tumor tissues were stained with hematoxylin & eosin and mucicarmine. RNA extracted from tumors at early time points and late after acquired resistance were analyzed for mucin4 (MUC4) expression by microarray and quantitative reverse transcriptase-PCR. Protein expression of the MUC4, ER and HER2 signaling pathways was measured by immunohistochemistry and Western blotting. Results The combination of the potent anti-HER2 regimen LT with either tamoxifen (Tam+LT) or estrogen deprivation (ED+LT) can cause complete eradication of ER-positive/HER2-overexpressing tumors in mice. Tumors developing resistance to this combination, as well as those acquiring resistance to endocrine therapy alone, exhibited a distinct histological and molecular phenotype—a striking increase in mucin-filled vacuoles and upregulation of several mucins including MUC4. At the onset of resistance, MUC4 mRNA and protein were increased. These tumors also showed upregulation and reactivation of HER2 signaling, while losing ER protein and the estrogen-regulated gene, progesterone receptor. Conclusions Mucins are upregulated in a preclinical model of ER-positive/HER2-overexpressing breast cancer as resistance develops to the combination of endocrine and anti-HER2 therapy. These mucin-rich tumors reactivate the HER2 pathway and shift their molecular phenotype to become more ER-negative/HER2-positive. PMID:22644656

  16. Community-acquired Methicillin-resistant Staphylococcus aureus, Uruguay

    PubMed Central

    Ma, Xiao Xue; Galiana, Antonio; Pedreira, Walter; Mowszowicz, Martin; Christophersen, Inés; Machiavello, Silvia; Lope, Liliana; Benaderet, Sara; Buela, Fernanda; Vicentino, Walter; Albini, María; Bertaux, Olivier; Constenla, Irene; Bagnulo, Homero; Llosa, Luis; Ito, Teruyo

    2005-01-01

    A novel, methicillin-resistant Staphylococcus aureus clone (Uruguay clone) with a non–multidrug-resistant phenotype caused a large outbreak, including 7 deaths, in Montevideo, Uruguay. The clone was distinct from the highly virulent community clone represented by strain MW2, although both clones carried Panton-Valentine leukocidin gene and cna gene. PMID:15963301

  17. Systemic acquired resistance delays race shifts to major resistance genes in bell pepper.

    PubMed

    Romero, A M; Ritchie, D F

    2004-12-01

    ABSTRACT The lack of durability of host plant disease resistance is a major problem in disease control. Genotype-specific resistance that involves major resistance (R) genes is especially prone to failure. The compatible (i.e., disease) host-pathogen interaction with systemic acquired resistance (SAR) has been studied extensively, but the incompatible (i.e., resistant) interaction less so. Using the pepper-bacterial spot (causal agent, Xanthomonas axonopodis pv. vesicatoria) pathosystem, we examined the effect of SAR in reducing the occurrence of race-change mutants that defeat R genes in laboratory, greenhouse, and field experiments. Pepper plants carrying one or more R genes were sprayed with the plant defense activator acibenzolar-S-methyl (ASM) and challenged with incompatible strains of the pathogen. In the greenhouse, disease lesions first were observed 3 weeks after inoculation. ASM-treated plants carrying a major R gene had significantly fewer lesions caused by both the incompatible (i.e., hypersensitive) and compatible (i.e., disease) responses than occurred on nonsprayed plants. Bacteria isolated from the disease lesions were confirmed to be race-change mutants. In field experiments, there was a delay in the detection of race-change mutants and a reduction in disease severity. Decreased disease severity was associated with a reduction in the number of race-change mutants and the suppression of disease caused by the race-change mutants. This suggests a possible mechanism related to a decrease in the pathogen population size, which subsequently reduces the number of race-change mutants for the selection pressure of R genes. Thus, inducers of SAR are potentially useful for increasing the durability of genotype-specific resistance conferred by major R genes.

  18. Overcoming acquired resistance to kinase inhibition: the cases of EGFR, ALK and BRAF.

    PubMed

    Giroux, Simon

    2013-01-15

    In the past decade, several kinase inhibitors have been approved based on their clinical benefit for cancer patients. Unfortunately, in many cases, patients develop resistance to these agents via secondary mutations and alternative mechanisms. This review will focus on the cases of acquired resistance to EGFR and ALK inhibitors for non-small cell lung cancer patients and BRAF inhibitors for melanoma patients. I will overview the main causes of acquired resistance, and explore the chemical scaffolds as well as combination of drugs, used to tackle these major causes of resistance. PMID:23245516

  19. Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance.

    PubMed

    Yamamoto, Tatsuo; Nishiyama, Akihito; Takano, Tomomi; Yabe, Shizuka; Higuchi, Wataru; Razvina, Olga; Shi, Da

    2010-08-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is able to persist not only in hospitals (with a high level of antimicrobial agent use) but also in the community (with a low level of antimicrobial agent use). The former is called hospital-acquired MRSA (HA-MRSA) and the latter community-acquired MRSA (CA-MRSA). It is believed MRSA clones are generated from S. aureus through insertion of the staphylococcal cassette chromosome mec (SCCmec), and outbreaks occur as they spread. Several worldwide and regional clones have been identified, and their epidemiological, clinical, and genetic characteristics have been described. CA-MRSA is likely able to survive in the community because of suitable SCCmec types (type IV or V), a clone-specific colonization/infection nature, toxin profiles (including Pantone-Valentine leucocidin, PVL), and narrow drug resistance patterns. CA-MRSA infections are generally seen in healthy children or young athletes, with unexpected cases of diseases, and also in elderly inpatients, occasionally surprising clinicians used to HA-MRSA infections. CA-MRSA spreads within families and close-contact groups or even through public transport, demonstrating transmission cores. Re-infection (including multifocal infection) frequently occurs, if the cores are not sought out and properly eradicated. Recently, attention has been given to CA-MRSA (USA300), which originated in the US, and is growing as HA-MRSA and also as a worldwide clone. CA-MRSA infection in influenza season has increasingly been noted as well. MRSA is also found in farm and companion animals, and has occasionally transferred to humans. As such, the epidemiological, clinical, and genetic behavior of CA-MRSA, a growing threat, is focused on in this study. PMID:20336341

  20. Community-Acquired Methicillin-Resistant "Staphylococcus aureus": Considerations for School Nurses

    ERIC Educational Resources Information Center

    Alex, Aniltta; Letizia, MariJo

    2007-01-01

    Methicillin-resistant "Staphylococcus aureus" (MRSA) is a disease-causing organism that has been present in hospital settings since the 1960s. However, a genetically distinct strain of MRSA, called community-acquired methicillin-resistant "Staphylococcus aureus" (CA-MRSA), has emerged in recent years in community settings among healthy…

  1. Overexpression of Specific CD44 Isoforms Is Associated with Aggressive Cell Features in Acquired Endocrine Resistance

    PubMed Central

    Bellerby, Rebecca; Smith, Chris; Kyme, Sue; Gee, Julia; Günthert, Ursula; Green, Andy; Rakha, Emad; Barrett-Lee, Peter; Hiscox, Stephen

    2016-01-01

    While endocrine therapy is the mainstay of ER+ breast cancer, the clinical effectiveness of these agents is limited by the phenomenon of acquired resistance that is associated with disease relapse and poor prognosis. Our previous studies revealed that acquired resistance is accompanied by a gain in cellular invasion and migration and also that CD44 family proteins are overexpressed in the resistant phenotype. Given the association of CD44 with tumor progression, we hypothesized that its overexpression may act to promote the aggressive behavior of endocrine-resistant breast cancers. Here, we have investigated further the role of two specific CD44 isoforms, CD44v3 and CD44v6, in the endocrine-resistant phenotype. Our data revealed that overexpression of CD44v6, but not CD44v3, in endocrine-sensitive MCF-7 cells resulted in a gain in EGFR signaling, enhanced their endogenous invasive capacity, and attenuated their response to endocrine treatment. Suppression of CD44v6 in endocrine-resistant cell models was associated with a reduction in their invasive capacity. Our data suggest that upregulation of CD44v6 in acquired resistant breast cancer may contribute to a gain in the aggressive phenotype of these cells and loss of endocrine response through transactivation of the EGFR pathway. Future therapeutic targeting of CD44v6 may prove to be an effective strategy alongside EGFR-targeted agents in delaying/preventing acquired resistance in breast cancer. PMID:27379207

  2. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer.

    PubMed

    Amato, Katherine R; Wang, Shan; Tan, Li; Hastings, Andrew K; Song, Wenqiang; Lovly, Christine M; Meador, Catherine B; Ye, Fei; Lu, Pengcheng; Balko, Justin M; Colvin, Daniel C; Cates, Justin M; Pao, William; Gray, Nathanael S; Chen, Jin

    2016-01-15

    Despite the success of treating EGFR-mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKI), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI-resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib-resistant tumor cells harboring EGFR(T790M) mutations in vitro and inhibited tumor growth and progression in an inducible EGFR(L858R+T790M)-mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib-resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small-molecule inhibitor ALW-II-41-27 decreased both survival and proliferation of erlotinib-resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third-generation EGFR TKI AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI-resistant, EGFR-mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI-resistant tumors.

  3. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer.

    PubMed

    Amato, Katherine R; Wang, Shan; Tan, Li; Hastings, Andrew K; Song, Wenqiang; Lovly, Christine M; Meador, Catherine B; Ye, Fei; Lu, Pengcheng; Balko, Justin M; Colvin, Daniel C; Cates, Justin M; Pao, William; Gray, Nathanael S; Chen, Jin

    2016-01-15

    Despite the success of treating EGFR-mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKI), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI-resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib-resistant tumor cells harboring EGFR(T790M) mutations in vitro and inhibited tumor growth and progression in an inducible EGFR(L858R+T790M)-mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib-resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small-molecule inhibitor ALW-II-41-27 decreased both survival and proliferation of erlotinib-resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third-generation EGFR TKI AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI-resistant, EGFR-mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI-resistant tumors. PMID:26744526

  4. The kinetics and quality of acquired resistance in self-healing and metastatic leishmaniasis.

    PubMed Central

    Poulter, L W

    1979-01-01

    Quantitative methods for enumerating viable L. enriettii in tissues have been used to determine the course of cutaneous leishmaniasis in guinea-pigs. The development and kinetics of acquired resistance have been evaluated in self-healing and chronic metastatic forms of the disease. It is revealed that 3 weeks after a primary local infection, a standard challenge infection is totally eliminated within 7 days. This resistance is as strong in animals with a current infection as it is in those that have fully recovered from such an infection. Animals developing metastatic disease also develop resistance to the standard challenge. This is initially as strong as in animals with only localized disease, but wanes with the progression of the infection. Although the quality of resistance becomes poorer in animals with metastatic infection, it is not lost completely. The relationship between acquired resistance and the resolution of the primary infection is discussed. PMID:380855

  5. Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance.

    PubMed

    Hugo, Willy; Shi, Hubing; Sun, Lu; Piva, Marco; Song, Chunying; Kong, Xiangju; Moriceau, Gatien; Hong, Aayoung; Dahlman, Kimberly B; Johnson, Douglas B; Sosman, Jeffrey A; Ribas, Antoni; Lo, Roger S

    2015-09-10

    Clinically acquired resistance to MAPK inhibitor (MAPKi) therapies for melanoma cannot be fully explained by genomic mechanisms and may be accompanied by co-evolution of intra-tumoral immunity. We sought to discover non-genomic mechanisms of acquired resistance and dynamic immune compositions by a comparative, transcriptomic-methylomic analysis of patient-matched melanoma tumors biopsied before therapy and during disease progression. Transcriptomic alterations across resistant tumors were highly recurrent, in contrast to mutations, and were frequently correlated with differential methylation of tumor cell-intrinsic CpG sites. We identified in the tumor cell compartment supra-physiologic c-MET up-expression, infra-physiologic LEF1 down-expression and YAP1 signature enrichment as drivers of acquired resistance. Importantly, high intra-tumoral cytolytic T cell inflammation prior to MAPKi therapy preceded CD8 T cell deficiency/exhaustion and loss of antigen presentation in half of disease-progressive melanomas, suggesting cross-resistance to salvage anti-PD-1/PD-L1 immunotherapy. Thus, melanoma acquires MAPKi resistance with highly dynamic and recurrent non-genomic alterations and co-evolving intra-tumoral immunity.

  6. Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance

    PubMed Central

    Hugo, Willy; Shi, Hubing; Sun, Lu; Piva, Marco; Song, ChunYing; Kong, Xiangju; Moriceau, Gatien; Hong, Aayoung; Dahlman, Kimberly B.; Johnson, Douglas B.; Sosman, Jeffrey A.; Ribas, Antoni; Lo, Roger S.

    2015-01-01

    SUMMARY Clinically acquired resistance to MAPK inhibitor (MAPKi) therapies for melanoma cannot be fully explained by genomic mechanisms and may be accompanied by co-evolution of intra-tumoral immunity. We sought to discover non-genomic mechanisms of acquired resistance and dynamic immune compositions by a comparative, transcriptomic-methylomic analysis of patient-matched melanoma tumors biopsied before therapy and during disease progression. Transcriptomic alterations across resistant tumors were highly recurrent, in contrast to mutations, and were frequently correlated with differential methylation of tumor cell-intrinsic CpG sites. We identified in the tumor cell compartment supra-physiologic c-MET up-expression, infra-physiologic LEF1 down-expression, and YAP1 signature enrichment as drivers of acquired resistance. Importantly, high intra-tumoral cytolytic T-cell inflammation prior to MAPKi therapy preceded CD8 T-cell deficiency/exhaustion and loss of antigen-presentation in half of disease-progressive melanomas, suggesting cross-resistance to salvage anti-PD-1/PD-L1 immunotherapy. Thus, melanoma acquires MAPKi-resistance with highly dynamic and recurrent non-genomic alterations and co-evolving intra-tumoral immunity. PMID:26359985

  7. Acquired antibiotic resistance among wild animals: the case of Iberian Lynx (Lynx pardinus).

    PubMed

    Sousa, Margarida; Gonçalves, Alexandre; Silva, Nuno; Serra, Rodrigo; Alcaide, Eva; Zorrilla, Irene; Torres, Carmen; Caniça, Manuela; Igrejas, Gilberto; Poeta, Patrícia

    2014-01-01

    The selective pressure generated by the clinical misuse of antibiotics has been the major driving force leading to the emergence of antibiotic resistance among bacteria. Antibiotics or even resistant bacteria are released into the environment and contaminate the surrounding areas. Human and animal populations in contact with these sources are able to become reservoirs of these resistant organisms. Then, due to the convergence between habitats, the contact of wild animals with other animals, humans, or human sources is now more common and this leads to an increase in the exchange of resistance determinants between their microbiota. Indeed, it seems that wildlife populations living in closer proximity to humans have higher levels of antibiotic resistance. Now, the Iberian Lynx (Lynx pardinus) is a part of this issue, being suggested as natural reservoir of acquired resistant bacteria. The emerging public health concern regarding microbial resistance to antibiotics is becoming true: the bacteria are evolving and are now affecting unintentional hosts.

  8. First report of infection with community-acquired methicillin-resistant Staphylococcus aureus in South America.

    PubMed

    Ribeiro, Apoena; Dias, Cícero; Silva-Carvalho, Maria Cícera; Berquó, Laura; Ferreira, Fabienne Antunes; Santos, Raquel Neves Soares; Ferreira-Carvalho, Bernadete Teixeira; Figueiredo, Agnes Marie

    2005-04-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) has recently emerged in the southwestern Pacific, North America, and Europe. These S. aureus isolates frequently shared some genetic characteristics, including the SCCmec type IV and lukS-lukF genes. In this paper we show that typical CA-MRSA isolates have spread to South America (Brazil).

  9. Acquired antimicrobial resistance in the intestinal microbiota of diverse cat populations.

    PubMed

    Moyaert, H; De Graef, E M; Haesebrouck, F; Decostere, A

    2006-08-01

    The aim of this study was to investigate the prevalence of acquired antimicrobial resistance in the resident intestinal microbiota of cats and to identify significant differences between various cat populations. Escherichia coli, Enterococcus faecalis, E. faecium and Streptococcus canis were isolated as faecal indicator bacteria from rectal swabs of 47 individually owned cats, 47 cattery cats and 18 hospitalised cats, and submitted through antimicrobial sensitivity tests. The results revealed that bacteria isolated from hospitalised and/or cattery cats were more frequently resistant than those from individually owned cats. E. coli isolates from hospitalised cats were particularly resistant to ampicillin, tetracycline and sulfonamide. Both enterococci and streptococci showed high resistance to tetracycline and in somewhat lesser extent to erythromycin and tylosin. Most E. faecium isolates were resistant to lincomycin and penicillin. One E. faecalis as well as one E. faecium isolate from hospitalised cats showed 'high-level resistance' (MIC > 500 microg/ml) against gentamicin, a commonly used antimicrobial agent in case of human enterococcal infections. The results of this research demonstrate that the extent of acquired antimicrobial resistance in the intestinal microbiota of cats depends on the social environment of the investigated population. It is obvious that the flora of healthy cats may act as a reservoir of resistance genes. PMID:16330058

  10. Genomic Insights into Intrinsic and Acquired Drug Resistance Mechanisms in Achromobacter xylosoxidans

    PubMed Central

    Hu, Yongfei; Zhu, Yuying; Ma, Yanan; Liu, Fei; Lu, Na; Yang, Xi; Luan, Chunguang; Yi, Yong

    2014-01-01

    Achromobacter xylosoxidans is an opportunistic pathogen known to be resistant to a wide range of antibiotics; however, the knowledge about the drug resistance mechanisms is limited. We used a high-throughput sequencing approach to sequence the genomes of the A. xylosoxidans type strain ATCC 27061 and a clinical isolate, A. xylosoxidans X02736, and then we used different bioinformatics tools to analyze the drug resistance genes in these bacteria. We obtained the complete genome sequence for A. xylosoxidans ATCC 27061 and the draft sequence for X02736. We predicted a total of 50 drug resistance-associated genes in the type strain, including 5 genes for β-lactamases and 17 genes for efflux pump systems; these genes are also conserved among other A. xylosoxidans genomes. In the clinical isolate, except for the conserved resistance genes, we also identified several acquired resistance genes carried by a new transposon embedded in a novel integrative and conjugative element. Our study provides new insights into the intrinsic and acquired drug resistance mechanisms in A. xylosoxidans, which will be helpful for better understanding the physiology of A. xylosoxidans and the evolution of antibiotic resistance in this bacterium. PMID:25487802

  11. Tamoxifen for breast cancer prevention

    SciTech Connect

    Jordan, V.C.

    1995-02-01

    The case for tamoxifen to be tested as a preventive for breast cancer has merit. Animal studies demonstrate that tamoxifen prevents mammary carcinogenesis and clinical studies now confirm that adjuvant tamoxifen therapy is the only systemic treatment that will prevent contralateral breast cancer. Developing clinical studies confirm the laboratory data that tamoxifen will maintain post-menopausal bone density in the lumbar spine and the neck of the femur; two important skeletal sites for the ultimate prevention of osteoporosis. However, a most important target site-specific effect of tamoxifen is the decrease in low-density lipoprotein cholesterol levels in postmenopausal women. This positive property of tamoxifen may be responsible for the recorded decreases in hospital visits for the treatment of cardiac conditions and the significant decrease in fatal myocardial infarction for women treated with 5 years of adjuvant tamoxifen. These data provide the scientific basis to undertake randomized, placebocontrolled clinical trials to test the worth of tamoxifen to prevent breast cancer.

  12. Community-acquired methicillin-resistant Staphylococcus aureus in Central Australia.

    PubMed

    Stevens, Claire L; Ralph, Anna; McLeod, James E T; McDonald, Malcolm I

    2006-01-01

    To date, there has been scant information about the burden of methicillin-resistant Staphylococcus aureus infections in Central Australia. Our aims were to determine the proportion of Staphylococcus aureus infections due to methicillin-resistant strains in Central Australia, to characterise resistance to non-beta lactam antibiotics and to correlate findings with available demographic information. We retrospectively reviewed S. aureus isolates identified by the Microbiology Laboratory of the Pathology Department, Alice Springs Hospital between September 2005 and February 2006. Multi-resistance was defined as resistance to three or more non-beta lactam antibiotics. We identified the recovery site and extended antibiotic resistance profile of each isolate. Demographic data included place of residence, discharge diagnosis and ethnicity. There were 524 S. aureus isolates: 417 (79.6%) methicillin-sensitive S. aureus, 104 (19.7%) non-multi-resistant MRSA (nmrMRSA) and 3 (0.7%) multi-resistant MRSA (mrMRSA). MRSA accounted for 7/22 (32%) invasive infections and 91/474 (19.2%) cases of staphylococcal skin infections. Aboriginal people comprised 89 per cent (93/104) of patients with nmrMRSA; 57 per cent lived in remote communities, 21 per cent in suburban Alice Springs, and 18 per cent in Alice Springs Town Camps. Six per cent (6/104) of nmrMRSA were hospital-acquired. Of the nmrMRSA isolates, 57 per cent (59/104) were resistant to erythromycin and 7 per cent (7/104) to fusidic acid. All MRSA isolates were susceptible to co-trimoxazole. In conclusion, Central Australia has high rates of community-acquired nmrMRSA and low rates of multi-resistant MRSA. Erythromycin resistance in S. aureus is also common. These findings should prompt the review of antimicrobial prescribing guidelines for the region, especially for treatment of skin and soft tissue infections.

  13. CIPROFLOXACIN RESISTANCE PATTERN AMONG BACTERIA ISOLATED FROM PATIENTS WITH COMMUNITY-ACQUIRED URINARY TRACT INFECTION

    PubMed Central

    REIS, Ana Carolina Costa; SANTOS, Susana Regia da Silva; de SOUZA, Siane Campos; SALDANHA, Milena Góes; PITANGA, Thassila Nogueira; OLIVEIRA, Ricardo Riccio

    2016-01-01

    SUMMARY Objective: To identify the main bacterial species associated with community-acquired urinary tract infection (UTI) and to assess the pattern of ciprofloxacin susceptibility among bacteria isolated from urine cultures. Methods: We conducted a retrospective study in all the patients with community-acquired UTI seen in Santa Helena Laboratory, Camaçari, Bahia, Brazil during five years (2010-2014). All individuals who had a positive urine culture result were included in this study. Results: A total of 1,641 individuals met the inclusion criteria. Despite the fact that participants were female, we observed a higher rate of resistance to ciprofloxacin in males. The most frequent pathogens identified in urine samples were Escherichia coli, Klebsiella pneumoniae and Staphylococcus saprophyticus. Antimicrobial resistance has been observed mainly for ampicillin, sulfamethoxazole + trimethoprim and ciprofloxacin. Moreover, E. coli has shown the highest rate of ciprofloxacin resistance, reaching 36% of ciprofloxacin resistant strains in 2014. Conclusion: The rate of bacterial resistance to ciprofloxacin observed in the studied population is much higher than expected, prompting the need for rational use of this antibiotic, especially in infections caused by E. coli. Prevention of bacterial resistance can be performed through control measures to limit the spread of resistant microorganisms and a rational use of antimicrobial policy. PMID:27410913

  14. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat.

    PubMed Central

    Görlach, J; Volrath, S; Knauf-Beiter, G; Hengy, G; Beckhove, U; Kogel, K H; Oostendorp, M; Staub, T; Ward, E; Kessmann, H; Ryals, J

    1996-01-01

    Systemic acquired resistance is an important component of the disease resistance repertoire of plants. In this study, a novel synthetic chemical, benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), was shown to induce acquired resistance in wheat. BTH protected wheat systemically against powdery mildew infection by affecting multiple steps in the life cycle of the pathogen. The onset of resistance was accompanied by the induction of a number of newly described wheat chemically induced (WCI) genes, including genes encoding a lipoxygenase and a sulfur-rich protein. With respect to both timing and effectiveness, a tight correlation existed between the onset of resistance and the induction of the WCI genes. Compared with other plant activators, such as 2,6-dichloroisonicotinic acid and salicylic acid, BTH was the most potent inducer of both resistance and gene induction. BTH is being developed commercially as a novel type of plant protection compound that works by inducing the plant's inherent disease resistance mechanisms. PMID:8624439

  15. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression.

    PubMed

    McMahon, Taegan A; Sears, Brittany F; Venesky, Matthew D; Bessler, Scott M; Brown, Jenise M; Deutsch, Kaitlin; Halstead, Neal T; Lentz, Garrett; Tenouri, Nadia; Young, Suzanne; Civitello, David J; Ortega, Nicole; Fites, J Scott; Reinert, Laura K; Rollins-Smith, Louise A; Raffel, Thomas R; Rohr, Jason R

    2014-07-10

    Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing declines of many taxa, including bats, corals, bees, snakes and amphibians. Currently, there is little evidence that wild animals can acquire resistance to these pathogens. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi and the fact that many animals are capable of learning to avoid natural enemies, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity.

  16. A case of cavernous sinus thrombosis with meningitis caused by community acquired methicillin resistant Staphylococcus aureus.

    PubMed

    Dinaker, Manjunath; Sharabu, Chandrahasa; Kattula, Sri Rama Surya Tez; Kommalapati, Varun

    2014-05-01

    Septic cavernous sinus thrombosis is a rare clinical condition. Although Staphylococcus aureus is the most common pathogen causing septic cavernous sinus thrombosis [CST], it is an uncommon cause of meningitis. We report the first case of CST with meningitis in Hyderabad, Andhra Pradesh, caused by community acquired epidemic strain of Methicillin resistant staphylococcus aureus [MRSA], in a previously healthy individual with no risk factors. The patient recovered completely following treatment with Vancomycin. We consecutively reviewed all cases of community acquired staphylococcus aureus [CA-MRSA] with central nervous system involvement available in literature. PMID:25508014

  17. A case of cavernous sinus thrombosis with meningitis caused by community acquired methicillin resistant Staphylococcus aureus.

    PubMed

    Dinaker, Manjunath; Sharabu, Chandrahasa; Kattula, Sri Rama Surya Tez; Kommalapati, Varun

    2014-05-01

    Septic cavernous sinus thrombosis is a rare clinical condition. Although Staphylococcus aureus is the most common pathogen causing septic cavernous sinus thrombosis [CST], it is an uncommon cause of meningitis. We report the first case of CST with meningitis in Hyderabad, Andhra Pradesh, caused by community acquired epidemic strain of Methicillin resistant staphylococcus aureus [MRSA], in a previously healthy individual with no risk factors. The patient recovered completely following treatment with Vancomycin. We consecutively reviewed all cases of community acquired staphylococcus aureus [CA-MRSA] with central nervous system involvement available in literature. PMID:25438497

  18. Characterization of in vivo-acquired resistance to macrolides of Mycoplasma gallisepticum strains isolated from poultry.

    PubMed

    Gerchman, Irena; Levisohn, Sharon; Mikula, Inna; Manso-Silván, Lucía; Lysnyansky, Inna

    2011-01-01

    The macrolide class of antibiotics, including tylosin and tilmicosin, is widely used in the veterinary field for prophylaxis and treatment of mycoplasmosis. In vitro susceptibility testing of 50 strains of M. gallisepticum isolated in Israel during the period 1997-2010 revealed that acquired resistance to tylosin as well as to tilmicosin was present in 50% of them. Moreover, 72% (13/18) of the strains isolated from clinical samples since 2006 showed acquired resistance to enrofloxacin, tylosin and tilmicosin. Molecular typing of the field isolates, performed by gene-target sequencing (GTS), detected 13 molecular types (I-XIII). Type II was the predominant type prior to 2006 whereas type X, first detected in 2008, is currently prevalent. All ten type X strains were resistant to both fluoroquinolones and macrolides, suggesting selective pressure leading to clonal dissemination of resistance. However, this was not a unique event since resistant strains with other GTS molecular types were also found. Concurrently, the molecular basis for macrolide resistance in M. gallisepticum was identified. Our results revealed a clear-cut correlation between single point mutations A2058G or A2059G in domain V of the gene encoding 23S rRNA (rrnA, MGA_01) and acquired macrolide resistance in M. gallisepticum. Indeed, all isolates with MIC ≥ 0.63 μg/mL to tylosin and with MIC ≥ 1.25 μg/mL to tilmicosin possess one of these mutations, suggesting an essential role in decreased susceptibility of M. gallisepticum to 16-membered macrolides. PMID:21810258

  19. Characterization of in vivo-acquired resistance to macrolides of Mycoplasma gallisepticum strains isolated from poultry

    PubMed Central

    2011-01-01

    The macrolide class of antibiotics, including tylosin and tilmicosin, is widely used in the veterinary field for prophylaxis and treatment of mycoplasmosis. In vitro susceptibility testing of 50 strains of M. gallisepticum isolated in Israel during the period 1997-2010 revealed that acquired resistance to tylosin as well as to tilmicosin was present in 50% of them. Moreover, 72% (13/18) of the strains isolated from clinical samples since 2006 showed acquired resistance to enrofloxacin, tylosin and tilmicosin. Molecular typing of the field isolates, performed by gene-target sequencing (GTS), detected 13 molecular types (I-XIII). Type II was the predominant type prior to 2006 whereas type X, first detected in 2008, is currently prevalent. All ten type X strains were resistant to both fluoroquinolones and macrolides, suggesting selective pressure leading to clonal dissemination of resistance. However, this was not a unique event since resistant strains with other GTS molecular types were also found. Concurrently, the molecular basis for macrolide resistance in M. gallisepticum was identified. Our results revealed a clear-cut correlation between single point mutations A2058G or A2059G in domain V of the gene encoding 23S rRNA (rrnA, MGA_01) and acquired macrolide resistance in M. gallisepticum. Indeed, all isolates with MIC ≥ 0.63 μg/mL to tylosin and with MIC ≥ 1.25 μg/mL to tilmicosin possess one of these mutations, suggesting an essential role in decreased susceptibility of M. gallisepticum to 16-membered macrolides. PMID:21810258

  20. Transcriptome Analysis Reveals Mechanisms by Which Lactococcus lactis Acquires Nisin Resistance

    PubMed Central

    Kramer, Naomi E.; van Hijum, Sacha A. F. T.; Knol, Jan; Kok, Jan; Kuipers, Oscar P.

    2006-01-01

    Nisin, a posttranslationally modified antimicrobial peptide produced by Lactococcus lactis, is widely used as a food preservative. Yet, the mechanisms leading to the development of nisin resistance in bacteria are poorly understood. We used whole-genome DNA microarrays of L. lactis IL1403 to identify the factors underlying acquired nisin resistance mechanisms. The transcriptomes of L. lactis IL1403 and L. lactis IL1403 Nisr, which reached a 75-fold higher nisin resistance level, were compared. Differential expression was observed in genes encoding proteins that are involved in cell wall biosynthesis, energy metabolism, fatty acid and phospholipid metabolism, regulatory functions, and metal and/or peptide transport and binding. These results were further substantiated by showing that several knockout and overexpression mutants of these genes had strongly altered nisin resistance levels and that some knockout strains could no longer become resistant to the same level of nisin as that of the wild-type strain. The acquired nisin resistance mechanism in L. lactis is complex, involving various different mechanisms. The four major mechanisms are (i) preventing nisin from reaching the cytoplasmic membrane, (ii) reducing the acidity of the extracellular medium, thereby stimulating the binding of nisin to the cell wall, (iii) preventing the insertion of nisin into the membrane, and (iv) possibly transporting nisin across the membrane or extruding nisin out of the membrane. PMID:16641446

  1. Overcoming acquired BRAF inhibitor resistance in melanoma via targeted inhibition of Hsp90 with ganetespib.

    PubMed

    Acquaviva, Jaime; Smith, Donald L; Jimenez, John-Paul; Zhang, Chaohua; Sequeira, Manuel; He, Suqin; Sang, Jim; Bates, Richard C; Proia, David A

    2014-02-01

    Activating BRAF kinase mutations serve as oncogenic drivers in over half of all melanomas, a feature that has been exploited in the development of new molecularly targeted approaches to treat this disease. Selective BRAF(V600E) inhibitors, such as vemurafenib, typically induce initial, profound tumor regressions within this group of patients; however, durable responses have been hampered by the emergence of drug resistance. Here, we examined the activity of ganetespib, a small-molecule inhibitor of Hsp90, in melanoma lines harboring the BRAF(V600E) mutation. Ganetespib exposure resulted in the loss of mutant BRAF expression and depletion of mitogen-activated protein kinase and AKT signaling, resulting in greater in vitro potency and antitumor efficacy compared with targeted BRAF and MAP-ERK kinase (MEK) inhibitors. Dual targeting of Hsp90 and BRAF(V600E) provided combinatorial benefit in vemurafenib-sensitive melanoma cells in vitro and in vivo. Importantly, ganetespib overcame mechanisms of intrinsic and acquired resistance to vemurafenib, the latter of which was characterized by reactivation of extracellular signal-regulated kinase (ERK) signaling. Continued suppression of BRAF(V600E) by vemurafenib potentiated sensitivity to MEK inhibitors after acquired resistance had been established. Ganetespib treatment reduced, but not abolished, elevations in steady-state ERK activity. Profiling studies revealed that the addition of a MEK inhibitor could completely abrogate ERK reactivation in the resistant phenotype, with ganetespib displaying superior combinatorial activity over vemurafenib. Moreover, ganetespib plus the MEK inhibitor TAK-733 induced tumor regressions in vemurafenib-resistant xenografts. Overall these data highlight the potential of ganetespib as a single-agent or combination treatment in BRAF(V600E)-driven melanoma, particularly as a strategy to overcome acquired resistance to selective BRAF inhibitors. PMID:24398428

  2. [A mathematical model for the chemical control of Aedes aegypti (Diptera: Culicidae) having acquired chemical resistance].

    PubMed

    Restrepo-Alape, Leonardo D; Toro-Zapata, Hernán D; Muñoz-Loaiza, Aníbal

    2010-12-01

    Dengue fever is a common vector-borne disease in tropical and subtropical areas. It is transmitted to humans by the bite of an infected female Aedes mosquito. Since no vaccines are currently available which can protect against infection, disease control relies on controlling the mosquito population. This work was aimed at modelling such mosquito's population dynamics regarding chemical control of the adult population and its acquired resistance to chemicals. The model was analysed by using classical dynamic system theory techniques and mosquito growth threshold was determined as this establishes when a particular population may prosper in the environment or when it is likely to disappear. A suitable chemical control strategy was developed from such threshold. Simulations were made in control and non-control scenarios; this determined the degree of control application effectiveness against different levels of acquired resistance.

  3. [A mathematical model for the chemical control of Aedes aegypti (Diptera: Culicidae) having acquired chemical resistance].

    PubMed

    Restrepo-Alape, Leonardo D; Toro-Zapata, Hernán D; Muñoz-Loaiza, Aníbal

    2010-12-01

    Dengue fever is a common vector-borne disease in tropical and subtropical areas. It is transmitted to humans by the bite of an infected female Aedes mosquito. Since no vaccines are currently available which can protect against infection, disease control relies on controlling the mosquito population. This work was aimed at modelling such mosquito's population dynamics regarding chemical control of the adult population and its acquired resistance to chemicals. The model was analysed by using classical dynamic system theory techniques and mosquito growth threshold was determined as this establishes when a particular population may prosper in the environment or when it is likely to disappear. A suitable chemical control strategy was developed from such threshold. Simulations were made in control and non-control scenarios; this determined the degree of control application effectiveness against different levels of acquired resistance. PMID:22030690

  4. Community-acquired methicillin-resistant Staphylococcus aureus in a group home setting.

    PubMed

    Collins, Rebeccah J

    2007-09-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is an infection involving methicillin-resistant Staphylococcus aureus (MRSA) with onset in the community in an individual lacking established health care-associated MRSA risk factors. A 74-year-old group home resident with a history of hypertension and mental retardation presents with a spider bite-like lesion that rapidly progresses to multiple areas of her body. Culture results reveal MRSA. The patient's advanced age and the severity and rapidity of progression of the condition warranted treatment, and options are discussed. Pharmacists should assist in selecting antibiotics for patients with resistant infections and provide strategies for preventing the spread of resistant organisms. Current and complete medical records are critical in the group home setting. The role of the caregiver and the consultant pharmacist in this setting is discussed.

  5. Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C

    PubMed Central

    Applegate, Tanya L; Gaudieri, Silvana; Plauzolles, Anne; Chopra, Abha; Grebely, Jason; Lucas, Michaela; Hellard, Margaret; Luciani, Fabio; Dore, Gregory J; Matthews, Gail V

    2014-01-01

    Background Directly Acting Antivirals (DAAs) are predicted to transform hepatitis C (HCV) therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV positive and negative individuals with recent HCV. Methods The NS3 protease, NS5A and NS5B polymerase genes were amplified from fifty genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing. Results Twelve percent of individuals harboured dominant resistance mutations, while 36% demonstrated non dominant resistant variants below that detectable by bulk sequencing (ie < 20%) but above a threshold of 1%. Resistance variants (< 1%) were observed at most sites associated with DAA resistance from all classes, with the exception of sofosbuvir. Conclusions Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low level mutations to all DAA classes were observed by deep sequencing at the majority of sites, and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. PMID:25105742

  6. Disseminated cryptococcosis and fluconazole resistant oral candidiasis in a patient with acquired immunodeficiency syndrome (AIDS).

    PubMed

    Kothavade, Rajendra J; Oberai, Chetan M; Valand, Arvind G; Panthaki, Mehroo H

    2010-10-28

    Disseminated cryptococcosis and recurrent oral candidiasis was presented in a-heterosexual AIDS patient. Candida tropicalis (C.tropicalis) was isolated from the oral pseudomembranous plaques and Cryptococcus neoformans (C. neoformans) was isolated from maculopapular lesions on body parts (face, hands and chest) and body fluids (urine, expectorated sputum, and cerebrospinal fluid). In vitro drug susceptibility testing on the yeast isolates demonstrated resistance to fluconazole acquired by C. tropicalis which was a suggestive possible root cause of recurrent oral candidiasis in this patient.

  7. Community-acquired methicillin resistant Staphylococcus aureus in a women's collegiate basketball team.

    PubMed

    Stevens, Michael P; Bearman, Gonzalo; Rosato, Adriana; Edmond, Michael

    2008-10-01

    Community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) infections are becoming increasingly frequent, and cutaneous disease with this organism is often seen in otherwise healthy organized sports participants. A case of CA-MRSA skin and soft tissue infection in a female collegiate basketball player is presented, and screening and management of her team is discussed. Interestingly, multiple MRSA strains were discovered on testing of the team, raising concern that the prevalence of colonization in this population may be high.

  8. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

    PubMed

    Magiorakos, A-P; Srinivasan, A; Carey, R B; Carmeli, Y; Falagas, M E; Giske, C G; Harbarth, S; Hindler, J F; Kahlmeter, G; Olsson-Liljequist, B; Paterson, D L; Rice, L B; Stelling, J; Struelens, M J; Vatopoulos, A; Weber, J T; Monnet, D L

    2012-03-01

    Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided.

  9. Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation

    PubMed Central

    Tanaka, Nobuyuki; Miyazaki, Yasumasa; Mikami, Shuji; Niwa, Naoya; Otsuka, Yutaro; Mizuno, Ryuichi; Kikuchi, Eiji; Miyajima, Akira; Sabe, Hisataka; Okada, Yasunori; Suematsu, Makoto; Oya, Mototsugu

    2016-01-01

    To identify the molecules involved in epithelial to mesenchymal transition (EMT) in urothelial carcinoma (UC) after acquisition of platinum resistance, here we examined the changes in global gene expression before and after platinum treatment. Four invasive UC cell lines, T24, 5637, and their corresponding sublines T24PR and 5637PR with acquired platinum resistance, were assessed by microarray, and the ubiquitin E3 ligase FBXO32 was newly identified as a negative regulator of EMT in UC tumors after acquisition of platinum resistance. In vitro and in vivo studies showed an intimate relationship between FBXO32 expression and EMT, demonstrating that FBXO32 dysregulation in T24PR cells results in elevated expression of the mesenchymal molecules SNAIL and vimentin and decreased expression of the epithelial molecule E-cadherin. The association between FBXO32 expression and EMT was further validated using clinical samples. Knockdown of MyoD expression, a specific target of FBXO32 polyubiquitination, revealed upregulation of E-cadherin expression and downregulation of SNAIL and vimentin expression in T24PR cells. Comparative genomic hybridization array analysis demonstrated loss of heterozygosity at 8q24.13 in T24PR cells, which harbors FBXO32. Our findings suggest the importance of the association between EMT and ubiquitin-proteasome regulation when tumors develop acquired platinum resistance. PMID:27812537

  10. Bacteraemia and antibiotic-resistant pathogens in community acquired pneumonia: risk and prognosis.

    PubMed

    Torres, Antoni; Cillóniz, Catia; Ferrer, Miquel; Gabarrús, Albert; Polverino, Eva; Villegas, Santiago; Marco, Francesc; Mensa, Josep; Menéndez, Rosario; Niederman, Michael

    2015-05-01

    The sensitivity of blood cultures in the diagnosis of bacteraemia for community-acquired pneumonia is low. Recommendations, by guidelines, to perform blood cultures are discordant. We aimed to determine the incidence, microbial aetiology, risk factors and outcomes of bacteraemic patients with community-acquired pneumonia, including cases with antibiotic-resistant pathogens (ARP). A prospective, observational study was undertaken on consecutive adult patients admitted to the Hospital Clinic of Barcelona (Barcelona, Spain) with community-acquired pneumonia and blood cultures were obtained. Of the 2892 patients included, bacteraemia was present in 297 (10%) patients; 30 (10%) of whom had ARP (multidrug-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and an extended spectrum of beta-lactamase producing Enterobacteriaceae). In multivariate analyses, pleuritic pain, C-reactive protein ≥21.6 mg·dL(-1) and intensive care unit admissions were independently associated with bacteraemia, while prior antibiotic treatment and pneumococcal vaccine were protective factors. The risk factors for ARP bacteraemia were previous antibiotics and C-reactive protein <22.2 mg·dL(-1), while pleuritic pain was the only protective factor in the multivariate analysis. Bacteraemia (excluding ARP), appropriate empiric treatment, neurological disease, arterial oxygen tension/inspiratory oxygen fraction <250, pneumonia severity index risk classes IV and V, and intensive care unit admission were independently associated with a 30-day hospital mortality in the multivariate analysis. Inappropriate therapy was more frequent in ARP bacteraemia, compared with other bacteraemias (27% versus 3%, respectively, p<0.001). Antibiotic therapy protected against bacteraemia, but increased specifically the risk of bacteraemia from ARP due to the inappropriate coverage of these pathogens. Identifying patients at risk of ARP bacteraemia would help in

  11. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression

    PubMed Central

    McMahon, Taegan A.; Sears, Brittany F.; Venesky, Matthew D.; Bessler, Scott M.; Brown, Jenise M.; Deutsch, Kaitlin; Halstead, Neal T.; Lentz, Garrett; Tenouri, Nadia; Young, Suzanne; Civitello, David J.; Ortega, Nicole; Fites, J. Scott; Reinert, Laura K.; Rollins-Smith, Louise A.; Raffel, Thomas R.; Rohr, Jason R.

    2015-01-01

    Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group1, causing declines of many taxa, including bats, corals, bees, snakes and amphibians1–4. Currently, there is little evidence that wild animals can acquire resistance to these pathogens5. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians6. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression7–9 and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi5 and the fact that many animals are capable of learning to avoid natural enemies10, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity. PMID:25008531

  12. Sentinel cases of community-acquired methicillin-resistant Staphylococcus aureus onboard a naval ship.

    PubMed

    LaMar, James E; Carr, Russell B; Zinderman, Craig; McDonald, Kimberly

    2003-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is emerging as a community-acquired organism. A number of recent reports have documented its involvement in a variety of infections in which no risk factors for nosocomial transmission are present. This report presents the initial cases of a MRSA outbreak on a U.S. Navy ship. Each patient failed traditional antibiotic therapy and one required hospitalization. Their presentations evolved simultaneously and proved to be sentinel cases of an outbreak of cutaneous MRSA infections. The events of this outbreak emphasize the growing need to consider the prevalence of resistant organisms in outpatient settings, as well as the impact that infections from resistant organisms might have on the combat readiness of a military unit. Recommendations addressing infection-control guidelines for MRSA within close-quarter environments of healthy adults, such as military units, need to be developed and existing infection-control measures need to be regularly emphasized.

  13. Antimicrobial Resistance in Hospital-Acquired Gram-Negative Bacterial Infections

    PubMed Central

    Mehrad, Borna; Clark, Nina M.; Zhanel, George G.

    2015-01-01

    Aerobic gram-negative bacilli, including the family of Enterobacteriaceae and non-lactose fermenting bacteria such as Pseudomonas and Acinetobacter species, are major causes of hospital-acquired infections. The rate of antibiotic resistance among these pathogens has accelerated dramatically in recent years and has reached pandemic scale. It is no longer uncommon to encounter gram-negative infections that are untreatable using conventional antibiotics in hospitalized patients. In this review, we provide a summary of the major classes of gram-negative bacilli and their key mechanisms of antimicrobial resistance, discuss approaches to the treatment of these difficult infections, and outline methods to slow the further spread of resistance mechanisms. PMID:25940252

  14. O-GlcNAcylation-inducing treatments inhibit estrogen receptor α expression and confer resistance to 4-OH-tamoxifen in human breast cancer-derived MCF-7 cells.

    PubMed

    Kanwal, Shahzina; Fardini, Yann; Pagesy, Patrick; N'tumba-Byn, Thierry; Pierre-Eugène, Cécile; Masson, Elodie; Hampe, Cornelia; Issad, Tarik

    2013-01-01

    O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine residues) is a post-translational modification that regulates stability, activity or localization of cytosolic and nuclear proteins. O-linked N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc from proteins is catalyzed by the β-N-Acetylglucosaminidase (OGA). Recent evidences suggest that O-GlcNAcylation may affect the growth of cancer cells. However, the consequences of O-GlcNAcylation on anti-cancer therapy have not been evaluated. In this work, we studied the effects of O-GlcNAcylation on tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells. Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT expression by siRNA potentiated the effect of tamoxifen on cell death. Since the PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to evaluate the effect of PUGNAc+glucosamine on PIP3 production. We observed that these treatments stimulated PIP3 production in MCF-7 cells. This effect was associated with an increase in Akt phosphorylation. However, the PI-3 kinase inhibitor LY294002, which abolished the effect of PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects of PUGNAc+glucosamine against tamoxifen-induced cell death. These results suggest that the protective effects of O-GlcNAcylation are independent of the PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine on the expression of this receptor. We observed that O-GlcNAcylation-inducing treatment significantly reduced the expression of ERα mRNA and protein, suggesting a potential mechanism for the decreased tamoxifen sensitivity induced by these treatments. Therefore, our

  15. ACE2 overexpression inhibits acquired platinum resistance-induced tumor angiogenesis in NSCLC.

    PubMed

    Cheng, Qijian; Zhou, Ling; Zhou, Jianping; Wan, Huanying; Li, Qingyun; Feng, Yun

    2016-09-01

    Angiotensin II (AngII) is a multifunctional bioactive peptide in the renin-angiotensin system (RAS). Angiotensin-converting enzyme 2 (ACE2) is a newly identified component of RAS. We previously reported that ACE2 overexpression may inhibit cell growth and vascular endothelial growth factor (VEGF) production in vitro and in vivo. In the present study, we investigated the effect of ACE2 on tumor-associated angiogen-esis after the development of acquired platinum resistance in non-small cell lung cancer (NSCLC). Four NSCLC cell lines, A549, LLC, A549-DDP and LLC-DDP, were used in vitro, while A549 and A549-DDP cells were used in vivo. A549-DDP and LLC-DDP cells were newly established at our institution as acquired platinum-resistant sublines by culturing the former parent cells in cisplatin (CDDP)-containing conditioned medium for 6 months. These platinum-resistant cells showed significantly higher angiotensin II type 1 receptor (AT1R), ACE and VEGF production and lower ACE2 expression than their corresponding parent cells. We showed that ACE2 overexpression inhibited the production of VEGF in vitro and in vivo compared to their corresponding parent cells. We also found that ACE2 overexpression reduced the expression of AT1R and ACE. Additionally, we confirmed that ACE2 overexpres-sion inhibited cell growth and VEGF production while simultaneously suppressing ACE and AT1R expression in human lung cancer xenografts. Our findings indicate that ACE2 overexpression may potentially suppress angiogenesis in NSCLC after the development of acquired platinum resistance. PMID:27460845

  16. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials.

    PubMed

    Hernando-Amado, Sara; Blanco, Paula; Alcalde-Rico, Manuel; Corona, Fernando; Reales-Calderón, Jose A; Sánchez, María B; Martínez, José L

    2016-09-01

    Multidrug efflux pumps constitute a group of transporters that are ubiquitously found in any organism. In addition to other functions with relevance for the cell physiology, efflux pumps contribute to the resistance to compounds used for treating different diseases, including resistance to anticancer drugs, antibiotics or antifungal compounds. In the case of antimicrobials, efflux pumps are major players in both intrinsic and acquired resistance to drugs currently in use for the treatment of infectious diseases. One important aspect not fully explored of efflux pumps consists on the identification of effectors able to induce their expression. Indeed, whereas the analysis of clinical isolates have shown that mutants overexpressing these resistance elements are frequently found, less is known on the conditions that may trigger expression of efflux pumps, hence leading to transient induction of resistance in vivo, a situation that is barely detectable using classical susceptibility tests. In the current article we review the structure and mechanisms of regulation of the expression of bacterial and fungal efflux pumps, with a particular focus in those for which a role in clinically relevant resistance has been reported. PMID:27620952

  17. The changing face of community-acquired methicillin-resistant Staphylococcus aureus.

    PubMed

    Kale, P; Dhawan, B

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of infection, both in hospitalised patients with significant healthcare exposure and in patients without healthcare risk factors. Community-acquired methicillin-resistant S. aureus (CA-MRSA) are known for their rapid community transmission and propensity to cause aggressive skin and soft tissue infections and community-acquired pneumonia. The distinction between the healthcare-associated (HA)-MRSA and CA-MRSA is gradually fading owing to the acquisition of multiple virulence factors and genetic elements. The movement of CA-MRSA strains into the nosocomial setting limits the utility of using clinical risk factors alone to designate community or HA status. Identification of unique genetic characteristics and genotyping are valuable tools for MRSA epidemiological studies. Although the optimum pharmacotherapy for CA-MRSA infections has not been determined, many CA-MRSA strains remain broadly susceptible to several non-β-lactam antibacterial agents. This review aimed at illuminating the characteristic features of CA-MRSA, virulence factors, changing clinical settings and molecular epidemiology, insurgence into the hospital settings and therapy with drug resistance. PMID:27514947

  18. The changing face of community-acquired methicillin-resistant Staphylococcus aureus.

    PubMed

    Kale, P; Dhawan, B

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of infection, both in hospitalised patients with significant healthcare exposure and in patients without healthcare risk factors. Community-acquired methicillin-resistant S. aureus (CA-MRSA) are known for their rapid community transmission and propensity to cause aggressive skin and soft tissue infections and community-acquired pneumonia. The distinction between the healthcare-associated (HA)-MRSA and CA-MRSA is gradually fading owing to the acquisition of multiple virulence factors and genetic elements. The movement of CA-MRSA strains into the nosocomial setting limits the utility of using clinical risk factors alone to designate community or HA status. Identification of unique genetic characteristics and genotyping are valuable tools for MRSA epidemiological studies. Although the optimum pharmacotherapy for CA-MRSA infections has not been determined, many CA-MRSA strains remain broadly susceptible to several non-β-lactam antibacterial agents. This review aimed at illuminating the characteristic features of CA-MRSA, virulence factors, changing clinical settings and molecular epidemiology, insurgence into the hospital settings and therapy with drug resistance.

  19. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil.

    PubMed

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; Morais, Marcia Maria Camargo de; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-12-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosa isolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosa isolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.

  20. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil

    PubMed Central

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; de Morais, Marcia Maria Camargo; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-01-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosaisolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosaisolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed. PMID:26676375

  1. Systemic acquired resistance (50 years after discovery): moving from the lab to the field.

    PubMed

    Gozzo, Franco; Faoro, Franco

    2013-12-26

    Induction of plant defense(s) against pathogen challenge(s) has been the object of progressively more intense research in the past two decades. Insights on mechanisms of systemic acquired resistance (SAR) and similar, alternative processes, as well as on problems encountered on moving to their practical application in open field, have been carefully pursued and, as far as possible, defined. In reviewing the number of research works published in metabolomic, genetic, biochemical, and crop protection correlated disciplines, the following outline has been adopted: 1, introduction to the processes currently considered as models of the innate immunity; 2, primary signals, such as salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA), involved with different roles in the above-mentioned processes; 3, long-distance signals, identified from petiole exudates as mobile signaling metabolites during expressed resistance; 4, exogenous inducers, including the most significant chemicals known to stimulate the plant resistance induction and originated from both synthetic and natural sources; 5, fungicides shown to act as stimulators of SAR in addition to their biocidal action; 6, elusive mechanism of priming, reporting on the most recent working hypotheses on the pretranscriptional ways through which treated plants may express resistance upon pathogen attack and how this resistance can be transmitted to the next generation; 7, fitness costs and benefits of SAR so far reported from field application of induced resistance; 8, factors affecting efficacy of induced resistance in the open field, indicating that forces, unrevealed under controlled conditions, may be operative in the field; 9, concluding remarks address the efforts required to apply the strategy of crop resistance induction according to the rules of integrated pest management.

  2. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy.

    PubMed

    Kim, S-M; Kim, H; Yun, M R; Kang, H N; Pyo, K-H; Park, H J; Lee, J M; Choi, H M; Ellinghaus, P; Ocker, M; Paik, S; Kim, H R; Cho, B C

    2016-01-01

    Aberrant fibroblast growth factor receptor (FGFR) activation/expression is a common feature in lung cancer (LC). In this study, we evaluated the antitumor activity of and the mechanisms underlying acquired resistance to two potent selective FGFR inhibitors, AZD4547 and BAY116387, in LC cell lines. The antitumor activity of AZD4547 and BAY1163877 was screened in 24 LC cell lines, including 5 with FGFR1 amplification. Two cell lines containing FGFR1 amplifications, H1581 and DMS114, were sensitive to FGFR inhibitors (IC50<250 nm). Clones of FGFR1-amplified H1581 cells resistant to AZD4547 or BAY116387 (H1581AR and H1581BR cells, respectively) were established. Receptor tyrosine kinase (RTK) array and immunoblotting analyses showed strong overexpression and activation of Met in H1581AR/BR cells, compared with that in the parental cells. Gene set enrichment analysis against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that cytokine-cytokine receptor interaction pathways were significantly enriched in H1581AR/BR cells, with Met contributing significantly to the core enrichment. Genomic DNA quantitative PCR and fluorescent in situ hybridization analyses showed MET amplification in H1581AR, but not in H1581BR, cells. Met amplification drives acquired resistance to AZD4547 in H1581AR cells by activating ErbB3. Combination treatment with FGFR inhibitors and an anaplastic lymphoma kinase (ALK)/Met inhibitor, crizotinib, or Met-specific short interfering RNA (siRNA) synergistically inhibited cell proliferation in both H1581AR and H1581BR cells. Conversely, ectopic expression of Met in H1581 cells conferred resistance to AZD4547 and BAY1163877. Acquired resistance to FGFR inhibitors not only altered cellular morphology, but also promoted migration and invasion of resistant clones, in part by inducing epithelial-to-mesenchymal transition. Taken together, our data suggest that Met activation is sufficient to bypass dependency on FGFR signaling. Concurrent

  3. Surveillance for Travel and Domestically Acquired Multidrug-Resistant Human Shigella Infections-Pennsylvania, 2006-2014.

    PubMed

    Li, Yu Lung; Tewari, Deepanker; Yealy, Courtney C; Fardig, David; M'ikanatha, Nkuchia M

    2016-01-01

    Shigellosis is a leading cause of enteric infections in the United States. We compared antimicrobial resistance in Shigella infections related to overseas travel (travel-associated) and in those acquired domestically by analyzing antimicrobial resistance patterns, geographic distributions, and pulsed-field gel electrophoresis (PFGE) patterns. We tested samples (n = 204) from a collection of isolates recovered from patients in Pennsylvania between 2006 and 2014. Isolates were grouped into travel- and non-travel-associated categories. Eighty-one (79.4%) of the Shigella isolates acquired during international travel were resistant to multiple antibiotics compared to 53 (52.1%) of the infections transmitted in domestic settings. A majority (79.4%) of isolates associated with international travel demonstrated resistance to aminoglycosides and tetracyclines, whereas 47 (46.1%) of the infections acquired domestically were resistant to tetracycline. Almost all isolates (92.2%) transmitted in domestic settings were resistant to aminoglycosides, and 5 isolates from adult male patients were resistant to azithromycin, a drug often used for empiric treatment of severe shigellosis. Twenty (19.6%) isolates associated with illnesses acquired during overseas travel in 4 countries were resistant to quinolones. One S. sonnei PFGE pattern was traced to a multidrug-resistant isolate acquired overseas that had caused a multistate outbreak of shigellosis, suggesting global dissemination of a drug-resistant species. Resistance to certain drugs-for example, tetracycline-increased in both overseas- and domestic-acquired infections during the study period. The prevalence of resistance to macrolides (azithromycin) and third-generation cephalosporins (ceftriaxone) was less than 1%; however, efforts to better monitor changes in drug resistance over time combined with increased antimicrobial stewardship are essential at the local, national, and global levels. PMID:27314654

  4. Hospital-acquired infections due to multidrug-resistant organisms in Hungary, 2005-2010.

    PubMed

    Caini, S; Hajdu, A; Kurcz, A; Borocz, K

    2013-01-10

    Healthcare-associated infections caused by multidrug-resistant organisms are associated with prolonged medical care, worse outcome and costly therapies. In Hungary, hospital-acquired infections (HAIs) due to epidemiologically important multidrug-resistant organisms are notifiable by law since 2004. Overall, 6,845 case-patients (59.8% men; median age: 65 years) were notified in Hungary from 2005 to 2010. One third of case-patients died in hospital. The overall incidence of infections increased from 5.4 in 2005 to 14.7 per 100,000 patient-days in 2010. Meticillin-resistant Staphylococcus aureus (MRSA) was the most frequently reported pathogen (52.2%), but while its incidence seemed to stabilise after 2007, notifications of multidrug-resistant Gram-negative organisms have significantly increased from 2005 to 2010. Surgical wound and bloodstream were the most frequently reported sites of infection. Although MRSA incidence has seemingly reached a plateau in recent years, actions aiming at reducing the burden of HAIs with special focus on Gram-negative multidrug-resistant organisms are needed in Hungary. Continuing promotion of antimicrobial stewardship, infection control methodologies, reinforced HAI surveillance among healthcare and infection control practitioners, and engagement of stakeholders, hospital managers and public health authorities to facilitate the implementation of existing guidelines and protocols are essential.

  5. Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab

    PubMed Central

    Mitsuhashi, Atsushi; Goto, Hisatsugu; Saijo, Atsuro; Trung, Van The; Aono, Yoshinori; Ogino, Hirokazu; Kuramoto, Takuya; Tabata, Sho; Uehara, Hisanori; Izumi, Keisuke; Yoshida, Mitsuteru; Kobayashi, Hiroaki; Takahashi, Hidefusa; Gotoh, Masashi; Kakiuchi, Soji; Hanibuchi, Masaki; Yano, Seiji; Yokomise, Hiroyasu; Sakiyama, Shoji; Nishioka, Yasuhiko

    2015-01-01

    Bevacizumab exerts anti-angiogenic effects in cancer patients by inhibiting vascular endothelial growth factor (VEGF). However, its use is still limited due to the development of resistance to the treatment. Such resistance can be regulated by various factors, although the underlying mechanisms remain incompletely understood. Here we show that bone marrow-derived fibrocyte-like cells, defined as alpha-1 type I collagen-positive and CXCR4-positive cells, contribute to the acquired resistance to bevacizumab. In mouse models of malignant pleural mesothelioma and lung cancer, fibrocyte-like cells mediate the resistance to bevacizumab as the main producer of fibroblast growth factor 2. In clinical specimens of lung cancer, the number of fibrocyte-like cells is significantly increased in bevacizumab-treated tumours, and correlates with the number of treatment cycles, as well as CD31-positive vessels. Our results identify fibrocyte-like cells as a promising cell biomarker and a potential therapeutic target to overcome resistance to anti-VEGF therapy. PMID:26635184

  6. Radiation-resistant acquired immunity of vaccinated mice to Schistosoma mansoni

    SciTech Connect

    Aitken, R.; Coulson, P.S.; Dixon, B.; Wilson, R.A.

    1987-11-01

    Vaccination of mice with attenuated cercariae of Schistosoma mansoni induces specific acquired resistance to challenge infection. This resistance is immunologically-mediated, possibly via a delayed-type hypersensitivity. Studies of parasite migration have shown that the protective mechanism operates most effectively in the lungs of vaccinated mice. We have probed the mechanism by exposing mice to 500 rads of gamma radiation before challenge infection. Our results show that the effector mechanism operative against challenge larvae is resistant to radiation. In contrast, classical immune responses are markedly suppressed by the same treatment. While leukocyte populations in the blood fall dramatically after irradiation, numbers of cells recoverable by bronchoalveolar lavage are unaffected. We suggest that vaccination with attenuated cercariae establishes populations of sensitized cells in the lungs which trigger the mechanism of resistance when challenge schistosomula migrate through pulmonary capillary beds. Although the cells may be partially disabled by irradiation, they remain responsive to worm antigens and thereby capable of initiating the elimination mechanism. This hypothesis would explain the radiation resistance of vaccine-induced immunity to S. mansoni.

  7. Tamoxifen regulation of sphingolipid metabolism—therapeutic implications

    PubMed Central

    Morad, Samy A F; Cabot, Myles C

    2015-01-01

    Tamoxifen, a triphenylethylene antiestrogen and one of the first-line endocrine therapies used to treat estrogen receptor-positive breast cancer, has a number of interesting, off-target effects, and among these is the inhibition of sphingolipid metabolism. More specifically, tamoxifen inhibits ceramide glycosylation, and enzymatic step that can adventitiously support the influential tumor-suppressor properties of ceramide, the aliphatic backbone of sphingolipids. Additionally, tamoxifen and metabolites N-desmethyltamoxifen and 4-hydroxytamoxifen, have been shown to inhibit ceramide hydrolysis by the enzyme acid ceramidase. This particular intervention slows ceramide destruction and thereby depresses formation of sphingosine 1-phosphate, a mitogenic sphingolipid with cancer growth-promoting properties. As ceramide-centric therapies are becoming appealing clinical interventions in the treatment of cancer, agents like tamoxifen that can retard the generation of mitogenic sphingolipids and buffer ceramide clearance via inhibition of glycosylation, take on new importance. In this review, we present an abridged, lay introduction to sphingolipid metabolism, briefly chronicle tamoxifen’s history in the clinic, examine studies that demonstrate the impact of triphenylethylenes on sphingolipid metabolism in cancer cells, and canvass works relevant to the use of tamoxifen as adjuvant to drive ceramide-centric therapies in cancer treatment. The objective is to inform the readership of what could be a novel, off-label indication of tamoxifen and structurally-related triphenylethylenes, an indication divorced from estrogen receptor status and one with application in drug resistance. PMID:25964209

  8. Tamoxifen administration to mice.

    PubMed

    Whitfield, Jonathan; Littlewood, Trevor; Soucek, Laura

    2015-03-01

    The strategy of fusing a protein of interest to a hormone-binding domain (HBD) of a steroid hormone receptor allows fine control of the activity of the fused protein. Such fusion proteins are inactive in the absence of ligand, because they are complexed with a variety of intracellular polypeptides. Upon ligand binding, the receptor is released from its inhibitory complex and the fusion protein becomes functional. In the murine estrogen receptor (ER) fusion system, proteins are fused to the HBD of the ER. The system relies on the use of a mutant ER known as ER(TAM). Compared to the wild-type HBD, ER(TAM) has 1000-fold lower affinity for estrogen, yet remains responsive to activation by the synthetic steroid 4-hydroxytamoxifen (4-OHT). Because 4-OHT is expensive, animals can be treated with the cheaper precursor tamoxifen, which is converted into 4-OHT by a liver enzyme. Here we present an overview of the methods used to deliver tamoxifen to mice. The most used method is intraperitoneal injection, because the amount of administered compound can be better controlled, but delivery by oral gavage is also possible. For short-term and immediate-effect studies or when conversion of tamoxifen by the liver is to be avoided, 4-OHT can be used directly. PMID:25734062

  9. Risk Factors for Acquired Rifamycin and Isoniazid Resistance: A Systematic Review and Meta-Analysis

    PubMed Central

    Rockwood, Neesha; Abdullahi, Leila H.; Wilkinson, Robert J.; Meintjes, Graeme

    2015-01-01

    Background Studies looking at acquired drug resistance (ADR) are diverse with respect to geographical distribution, HIV co-infection rates, retreatment status and programmatic factors such as regimens administered and directly observed therapy. Our objective was to examine and consolidate evidence from clinical studies of the multifactorial aetiology of acquired rifamycin and/or isoniazid resistance within the scope of a single systematic review. This is important to inform policy and identify key areas for further studies. Methods Case-control and cohort studies and randomised controlled trials that reported ADR as an outcome during antitubercular treatment regimens including a rifamycin and examined the association of at least 1 risk factor were included. Post hoc, we carried out random effects Mantel-Haenszel weighted meta-analyses of the impact of 2 key risk factors 1) HIV and 2) baseline drug resistance on the binary outcome of ADR. Heterogeneity was assessed used I2 statistic. As a secondary outcome, we calculated median cumulative incidence of ADR, weighted by the sample size of the studies. Results Meta-analysis of 15 studies showed increased risk of ADR with baseline mono- or polyresistance (RR 4.85 95% CI 3.26 to 7.23, heterogeneity I2 58%, 95% CI 26 to 76%). Meta-analysis of 8 studies showed that HIV co-infection was associated with increased risk of ADR (RR 3.02, 95% CI 1.28 to 7.11); there was considerable heterogeneity amongst these studies (I2 81%, 95% CI 64 to 90%). Non-adherence, extrapulmonary/disseminated disease and advanced immunosuppression in HIV co-infection were other risk factors noted. The weighted median cumulative incidence of acquired multi drug resistance calculated in 24 studies (assuming whole cohort as denominator, regardless of follow up DST) was 0.1% (5th to 95th percentile 0.07 to 3.2%). Conclusion Baseline drug resistance and HIV co-infection were significant risk factors for ADR. There was a trend of positive association with

  10. Arabidopsis TTR1 causes LRR-dependent lethal systemic necrosis, rather than systemic acquired resistance, to Tobacco ringspot virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristi...

  11. Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620

    SciTech Connect

    Tentes, I.K.; Schmidt, W.M.; Krupitza, G.; Steger, G.G.; Mikulits, W.; Kortsaris, A.; Mader, R.M.

    2010-11-15

    Treatment resistance to antineoplastic drugs represents a major clinical problem. Here, we investigated the long-term stability of acquired resistance to 5-fluorouracil (FU) in an in vitro colon cancer model, using four sub-clones characterised by increasing FU-resistance derived from the cell line SW620. The resistance phenotype was preserved after FU withdrawal for 15 weeks ({approx} 100 cell divisions) independent of the established level of drug resistance and of epigenetic silencing. Remarkably, resistant clones tolerated serum deprivation, adopted a CD133{sup +} CD44{sup -} phenotype, and further exhibited loss of membrane-bound E-cadherin together with predominant nuclear {beta}-catenin localisation. Thus, we provide evidence for a long-term memory of acquired drug resistance, driven by multiple cellular strategies (epithelial-mesenchymal transition and selective propagation of CD133{sup +} cells). These resistance phenomena, in turn, accentuate the malignant phenotype.

  12. NF-κB drives acquired resistance to a novel mutant-selective EGFR inhibitor.

    PubMed

    Galvani, Elena; Sun, Jing; Leon, Leticia G; Sciarrillo, Rocco; Narayan, Ravi S; Sjin, Robert Tjin Tham; Lee, Kwangho; Ohashi, Kadoaki; Heideman, Daniëlle A M; Alfieri, Roberta R; Heynen, Guus J; Bernards, René; Smit, Egbert F; Pao, William; Peters, Godefridus J; Giovannetti, Elisa

    2015-12-15

    The clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) harbouring activating EGFR mutations is limited by the emergence of acquired resistance, mostly ascribed to the secondary EGFR-T790M mutation. Selective EGFR-T790M inhibitors have been proposed as a new, extremely relevant therapeutic approach. Here, we demonstrate that the novel irreversible EGFR-TKI CNX-2006, a structural analog of CO-1686, currently tested in a phase-1/2 trial, is active against in vitro and in vivo NSCLC models expressing mutant EGFR, with minimal effect on the wild-type receptor. By integration of genetic and functional analyses in isogenic cell pairs we provide evidence of the crucial role played by NF-κB1 in driving CNX-2006 acquired resistance and show that NF-κB activation may replace the oncogenic EGFR signaling in NSCLC when effective and persistent inhibition of the target is achieved in the presence of the T790M mutation. In this context, we demonstrate that the sole, either genetic or pharmacologic, inhibition of NF-κB is sufficient to reduce the viability of cells that adapted to EGFR-TKIs. Overall, our findings support the rational inhibition of members of the NF-κB pathway as a promising therapeutic option for patients who progress after treatment with novel mutant-selective EGFR-TKIs.

  13. NF-κB drives acquired resistance to a novel mutant-selective EGFR inhibitor

    PubMed Central

    Galvani, Elena; Sun, Jing; Leon, Leticia G.; Sciarrillo, Rocco; Narayan, Ravi S.; Tjin Tham Sjin, Robert; Lee, Kwangho; Ohashi, Kadoaki; Heideman, Daniëlle A.M.; Alfieri, Roberta R.; Heynen, Guus J.; Bernards, René; Smit, Egbert F.; Pao, William; Peters, Godefridus J.; Giovannetti, Elisa

    2015-01-01

    The clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) harbouring activating EGFR mutations is limited by the emergence of acquired resistance, mostly ascribed to the secondary EGFR-T790M mutation. Selective EGFR-T790M inhibitors have been proposed as a new, extremely relevant therapeutic approach. Here, we demonstrate that the novel irreversible EGFR-TKI CNX-2006, a structural analog of CO-1686, currently tested in a phase-1/2 trial, is active against in vitro and in vivo NSCLC models expressing mutant EGFR, with minimal effect on the wild-type receptor. By integration of genetic and functional analyses in isogenic cell pairs we provide evidence of the crucial role played by NF-κB1 in driving CNX-2006 acquired resistance and show that NF-κB activation may replace the oncogenic EGFR signaling in NSCLC when effective and persistent inhibition of the target is achieved in the presence of the T790M mutation. In this context, we demonstrate that the sole, either genetic or pharmacologic, inhibition of NF-κB is sufficient to reduce the viability of cells that adapted to EGFR-TKIs. Overall, our findings support the rational inhibition of members of the NF-κB pathway as a promising therapeutic option for patients who progress after treatment with novel mutant-selective EGFR-TKIs. PMID:26015408

  14. Potential attenuation of p38 signaling by DDB2 as a factor in acquired TNF resistance.

    PubMed

    Sun, Chun-Ling; Chao, Chuck C-K

    2005-06-20

    Our previous study demonstrated that DDB2, a DNA repair protein, attenuates cell surface membrane-associated death signal induced by UV or FasAb; DDB2 is overexpressed in cisplatin-selected cells. However, the molecular mechanism underlying the protective role of DDB2 along the apoptotic pathway remains unknown. Our study identified the cross-resistance of the cisplatin-selected cells to tumor necrosis factor-alpha (TNF-alpha). Since knock-down of the DDB2 level rendered cells (HR18) sensitive to the treatment, the cell sensitivity to TNF-alpha appears inversely proportional to the cellular level of DDB2. Treatment of HeLa cells with TNF-alpha transiently induced activation of p38MAPK signal, but this induction was significantly reduced in the resistant cells. Overexpression of DDB2 attenuated the activation of p38 in cells. TNF-alpha-induced apoptotic signals, represented by caspase-8 and downstream substrate cleavage, were reduced in resistant cells compared to their sensitive counterparts. Inhibition of p38 signal by SB202190 clearly attenuated TNF-alpha-induced apoptotic signals. Moreover, overexpression of DDB2 in HR18 cells also attenuated TNF-alpha induced caspase activation. These results suggest that p38MAPK activation may be a key upstream signal of TNF-alpha-induced apoptosis and that attenuation of p38 signal by DDB2 overexpression may be responsible for acquired TNF-alpha resistance. PMID:15700318

  15. Effects of Sorafenib Dose on Acquired Reversible Resistance and Toxicity in Hepatocellular Carcinoma.

    PubMed

    Kuczynski, Elizabeth A; Lee, Christina R; Man, Shan; Chen, Eric; Kerbel, Robert S

    2015-06-15

    Acquired evasive resistance is a major limitation of hepatocellular carcinoma (HCC) treatment with the tyrosine kinase inhibitor (TKI) sorafenib. Recent findings suggest that resistance to sorafenib may have a reversible phenotype. In addition, loss of responsiveness has been proposed to be due to a gradual decrease in sorafenib plasma levels in patients. Here, the possible mechanisms underlying reversible sorafenib resistance were investigated using a Hep3B-hCG orthotopic human xenograft model of locally advanced HCC. Tissue and plasma sorafenib and metabolite levels, downstream antitumor targets, and toxicity were assessed during standard and dose-escalated sorafenib treatment. Drug levels were found to decline significantly over time in mice treated with 30 mg/kg sorafenib, coinciding with the onset of resistance but a greater magnitude of change was observed in tissues compared with plasma. Skin rash also correlated with drug levels and tended to decrease in severity over time. Drug level changes appeared to be partially tumor dependent involving induction of tumoral CYP3A4 metabolism, with host pretreatment alone unable to generate resistance. Escalation from 30 to 60 mg/kg sorafenib improved antitumor efficacy but worsened survival due to excessive body weight loss. Microvessel density was inhibited by sorafenib treatment but remained suppressed over time and dose increase. In conclusion, tumor CYP3A4 induction by sorafenib is a novel mechanism to account for variability in systemic drug levels; however, declining systemic sorafenib levels may only be a minor resistance mechanism. Escalating the dose may be an effective treatment strategy, provided toxicity can be controlled. PMID:25908587

  16. Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria.

    PubMed

    Yahiaoui, Merzouk; Robin, Frédéric; Bakour, Rabah; Hamidi, Moufida; Bonnet, Richard; Messai, Yamina

    2015-10-01

    The aim of the study was to investigate antibiotic resistance mechanisms, virulence traits, and genetic background of 150 nonrepetitive community-acquired uropathogenic Escherichia coli (CA-UPEC) from Algeria. A rate of 46.7% of isolates was multidrug resistant. bla genes detected were blaTEM (96.8% of amoxicillin-resistant isolates), blaCTX-M-15 (4%), overexpressed blaAmpC (4%), blaSHV-2a, blaTEM-4, blaTEM-31, and blaTEM-35 (0.7%). All tetracycline-resistant isolates (51.3%) had tetA and/or tetB genes. Sulfonamides and trimethoprim resistance genes were sul2 (60.8%), sul1 (45.9%), sul3 (6.7%), dfrA14 (25.4%), dfrA1 (18.2%), dfrA12 (16.3%), and dfrA25 (5.4%). High-level fluoroquinolone resistance (22.7%) was mediated by mutations in gyrA (S83L-D87N) and parC (S80I-E84G/V or S80I) genes. qnrB5, qnrS1, and aac(6')-Ib-cr were rare (5.3%). Class 1 and/or class 2 integrons were detected (40.7%). Isolates belonged to phylogroups B2+D (50%), A+B1 (36%), and F+C+Clade I (13%). Most of D (72.2%) and 38.6% of B2 isolates were multidrug resistant; they belong to 14 different sequence types, including international successful ST131, ST73, and ST69, reported for the first time in the community in Algeria and new ST4494 and ST4529 described in this study. Besides multidrug resistance, B2 and D isolates possessed virulence factors of colonization, invasion, and long-term persistence. The study highlighted multidrug-resistant CA-UPEC with high virulence traits and an epidemic genetic background.

  17. Macrolide-resistant Mycoplasma pneumoniae in adolescents with community-acquired pneumonia

    PubMed Central

    2012-01-01

    Background Although the prevalence of macrolide-resistant Mycoplasma pneumoniae isolates in Japanese pediatric patients has increased rapidly, there have been no reports concerning macrolide-resistant M. pneumoniae infection in adolescents aged 16 to 19 years old. The purpose of this study was to clarify the prevalence and clinical characteristics of macrolide-resistant M. pneumoniae in adolescent patients with community-acquired pneumonia. Methods A total of 99 cases with M. pneumoniae pneumonia confirmed by polymerase chain reaction (PCR) and culture were analyzed. Forty-five cases were pediatric patients less than 16 years old, 26 cases were 16 to 19-year-old adolescent patients and 28 cases were adult patients. Primers for domain V of 23S rRNA were used and DNA sequences of the PCR products were compared with the sequence of an M. pneumoniae reference strain. Results Thirty of 45 pediatric patients (66%), 12 of 26 adolescent patients (46%) and seven of 28 adult patients (25%) with M. pneumoniae pneumonia were found to be infected with macrolide-resistant M. pneumoniae (MR patients). Although the prevalence of resistant strains was similar in pediatric patients between 2008 and 2011, an increase in the prevalence of resistant strains was observed in adolescent patients. Among 30 pediatric MR patients, 26 had an A-to-G transition at position 2063 (A2063G) and four had an A-to-G transition at position 2064 (A2064G). In 12 adolescent MR patients, 10 showed an A2063G transition and two showed an A2064G transition, and in seven adult MR patients, six showed an A2063G transition and one showed an A2064G transition. Conclusions The prevalence of macrolide-resistant M. pneumoniae is high among adolescent patients as well as pediatric patients less than 16-years old. To prevent outbreaks of M. pneumoniae infection, especially macrolide-resistant M. pneumoniae, in closed populations including among families, in schools and in university students, physicians should pay

  18. Acquired resistance to the 16-membered macrolides tylosin and tilmicosin by Mycoplasma bovis.

    PubMed

    Lerner, Uri; Amram, Eytan; Ayling, Roger D; Mikula, Inna; Gerchman, Irena; Harrus, Shimon; Teff, Dina; Yogev, David; Lysnyansky, Inna

    2014-01-31

    The molecular mechanism of acquired resistance to the 16-membered macrolides tylosin (Ty) and tilmicosin (Tm) was investigated in Mycoplasma bovis field isolates. Sequence analysis of domains II and V of the two 23S rRNA alleles and ribosomal proteins L4 and L22 was performed on 54 M. bovis isolates showing different minimal inhibitory concentrations (MIC). The presence of any one of the point mutations G748A, C752T, A2058G, A2059G or A2059C (Escherichia coli numbering) in one or both alleles of the 23S rRNAs was correlated with decreased susceptibility to Ty (8-1024 μg/ml) and to Tm (32 to >256 μg/ml) in 27/27 and 27/31 M. bovis isolates, respectively. Although a single mutation in domain II or V could be sufficient to cause decreased susceptibility to Ty, our data imply that a combination of mutations in two domains is necessary to achieve higher MICs (≥ 128 μg/ml). The influence of a combination of mutations in two domains II and V on enhancement of resistance to Tm was less clear. In addition, the amino acid (aa) substitution L22-Q90H was found in 24/32 representative M. bovis isolates with different MICs, but no correlation with decreased susceptibility to Ty or Tm was identified. Multiple aa substitutions were also identified in the L4 protein, including at positions 185-186 (positions 64 and 65 in E. coli) which are adjacent to the macrolide-binding site. This is the first description of the molecular mechanism of acquired resistance to the 16-membered macrolides in M. bovis. PMID:24393633

  19. Acquired resistance to the 16-membered macrolides tylosin and tilmicosin by Mycoplasma bovis.

    PubMed

    Lerner, Uri; Amram, Eytan; Ayling, Roger D; Mikula, Inna; Gerchman, Irena; Harrus, Shimon; Teff, Dina; Yogev, David; Lysnyansky, Inna

    2014-01-31

    The molecular mechanism of acquired resistance to the 16-membered macrolides tylosin (Ty) and tilmicosin (Tm) was investigated in Mycoplasma bovis field isolates. Sequence analysis of domains II and V of the two 23S rRNA alleles and ribosomal proteins L4 and L22 was performed on 54 M. bovis isolates showing different minimal inhibitory concentrations (MIC). The presence of any one of the point mutations G748A, C752T, A2058G, A2059G or A2059C (Escherichia coli numbering) in one or both alleles of the 23S rRNAs was correlated with decreased susceptibility to Ty (8-1024 μg/ml) and to Tm (32 to >256 μg/ml) in 27/27 and 27/31 M. bovis isolates, respectively. Although a single mutation in domain II or V could be sufficient to cause decreased susceptibility to Ty, our data imply that a combination of mutations in two domains is necessary to achieve higher MICs (≥ 128 μg/ml). The influence of a combination of mutations in two domains II and V on enhancement of resistance to Tm was less clear. In addition, the amino acid (aa) substitution L22-Q90H was found in 24/32 representative M. bovis isolates with different MICs, but no correlation with decreased susceptibility to Ty or Tm was identified. Multiple aa substitutions were also identified in the L4 protein, including at positions 185-186 (positions 64 and 65 in E. coli) which are adjacent to the macrolide-binding site. This is the first description of the molecular mechanism of acquired resistance to the 16-membered macrolides in M. bovis.

  20. Interconnection between flowering time control and activation of systemic acquired resistance

    PubMed Central

    Banday, Zeeshan Z.; Nandi, Ashis K.

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants. PMID:25852723

  1. Interconnection between flowering time control and activation of systemic acquired resistance.

    PubMed

    Banday, Zeeshan Z; Nandi, Ashis K

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.

  2. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy

    PubMed Central

    Kong, Xiangju; Hong, Aayoung; Koya, Richard C.; Moriceau, Gatien; Chodon, Thinle; Guo, Rongqing; Johnson, Douglas B.; Dahlman, Kimberly B.; Kelley, Mark C.; Kefford, Richard F.; Chmielowski, Bartosz; Glaspy, John A.; Sosman, Jeffrey A.; van Baren, Nicolas; Long, Georgina V.; Ribas, Antoni; Lo, Roger S.

    2013-01-01

    BRAF inhibitors elicit rapid anti-tumor responses in the majority of patients with V600BRAF mutant melanoma, but acquired drug resistance is almost universal. We sought to identify the core resistance pathways and the extent of tumor heterogeneity during disease progression. We show that MAPK reactivation mechanisms were detected among 70% of disease-progressive tissues, with RAS mutations, mutant BRAF amplification and alternative splicing being most common. We also detected PI3K-PTEN-AKT-upregulating genetic alterations among 22% of progressive melanomas. Distinct molecular lesions, in both core drug escape pathways, were commonly detected concurrently in the same tumor or among multiple tumors from the same patient. Beyond harboring extensively heterogeneous resistance mechanisms, melanoma re-growth emerging from BRAF inhibitor selection displayed branched evolution marked by altered mutational spectra/signatures and increased fitness. Thus, melanoma genomic heterogeneity contributes significantly to BRAF inhibitor treatment failure, implying upfront, co-targeting of two core pathways as an essential strategy for durable responses. PMID:24265155

  3. The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients

    PubMed Central

    Wu, Shang-Gin; Liu, Yi-Nan; Tsai, Meng-Feng; Chang, Yih-Leong; Yu, Chong-Jen; Yang, Pan-Chyr; Yang, James Chih-Hsin; Wen, Yueh-Feng; Shih, Jin-Yuan

    2016-01-01

    Introduction Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are associated with favorable response in EGFR mutant lung cancer. Acquired resistance to reversible EGFR TKIs remains a significant barrier, and acquired EGFR T790M-mutation is the major mechanism. Second-generation irreversible EGFR TKI, afatinib, had also been approved for treating EGFR mutant lung cancer patients, but the mechanism of acquired resistance to afatinib has not been well studied. Results Forty-two patients had tissue specimens taken after acquiring resistance to afatinib. The sensitizing EGFR mutation were all consistent between pre- and post-afatinib tissues. Twenty patients (47.6%) had acquired T790M mutation. T790M rate was not different between first-generation EGFR TKI-naïve patients (50%) and first-generation EGFR TKI-treated patients (46.4%) (p = 0.827). No clinical characteristics or EGFR mutation types were associated with the development of acquired T790M. No other second-site EGFR mutations were detected. There were no small cell or squamous cell lung cancer transformation. Other genetic mutations were not identified in PIK3CA, BRAF, HER2, KRAS, NRAS, MEK1, AKT2, LKB1 and JAK2. Methods Afatinib-prescription record of our department of pharmacy from January 2007 and December 2014 was retrieved. We investigated patients with tissue specimens available after acquiring resistance to afatinib. Enrolled patients should have partial response or durable stable disease of treatment response to afatinib. Various mechanisms of acquired resistance to first-generation EGFR TKIs were evaluated. Histology and cytology were reviewed. EGFR, PIK3CA, BRAF, HER2, KRAS, NRAS, MEK1, AKT2, LKB1 and JAK2 genetic alterations were evaluated by sequencing. Statistical analysis was performed using Chi-square test and Kaplan-Meier method. Conclusions T790M was detected in half of the lung adenocarcinoma after acquiring resistance to afatinib. T790M is still the major acquired

  4. Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib

    PubMed Central

    Hashida, Shinsuke; Yamamoto, Hiromasa; Shien, Kazuhiko; Miyoshi, Yuichiro; Ohtsuka, Tomoaki; Suzawa, Ken; Watanabe, Mototsugu; Maki, Yuho; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Miyoshi, Shinichiro; Toyooka, Shinichi

    2015-01-01

    Afatinib is an irreversible epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) that is known to be effective against the EGFR T790M variant, which accounts for half of the mechanisms of acquired resistance to reversible EGFR-TKIs. However, acquired resistance to afatinib was also observed in clinical use. Thus, elucidating and overcoming the mechanisms of resistance are important issues in the treatment of non-small cell lung cancer. In this study, we established various afatinib-resistant cell lines and investigated the resistance mechanisms. EGFR T790M mutations were not detected using direct sequencing in established resistant cells. Several afatinib-resistant cell lines displayed MET amplification, and these cells were sensitive to the combination of afatinib plus crizotinib. As a further investigation, a cell line that acquired resistance to afatinib plus crizotinib, HCC827-ACR, was established from one of the MET amplified-cell lines. Several afatinib-resistant cell lines including HCC827-ACR displayed epithelial-to-mesenchymal transition (EMT) features and epigenetic silencing of miR-200c, which is a suppresser of EMT. In addition, these cell lines also exhibited overexpression of ALDH1A1 and ABCB1, which are putative stem cell markers, and resistance to docetaxel. In conclusion, we established afatinib-resistant cells and found that MET amplification, EMT, and stem cell-like features are observed in cells with acquired resistance to EGFR-TKIs. This finding may provide clues to overcoming resistance to EGFR-TKIs. PMID:26202045

  5. Impaired acquired resistance of mice to Klebsiella pneumoniae infection induced by acute NO/sub 2/ exposure

    SciTech Connect

    Bouley, G.; Azoulay-Dupuis, E.; Gaudebout, C.

    1985-12-01

    The natural resistance of nonimmunized C57B1/6 mice to an intraperitoneal Klebsiella pneumoniae challenge was not significantly affected by prior continuous exposure to 20 ppm NO/sub 2/ for 4 days. In contrast, the acquired resistance of mice immunized just before and infected just after NO/sub 2/ exposure was seriously impaired. This could not be explained by the loss of appetite (about 30%) observed in NO/sub 2/ treated mice, for neither the natural nor acquired resistance of control air exposure mice given approximately 70% ad libitum food and water were significantly modified.

  6. Effectiveness of various hospital-based solutions against community- acquired methicillin-resistant Staphylococcus aureus.

    PubMed

    Perona, Paul J; Johnson, Aaron J; Perona, John P; Issa, Kimona; Kapadia, Bhaveen H; Bonutti, Peter M; Mont, Michael A

    2013-01-01

    Periprosthetic infections with methicillin-resistant Staphylococcus aureus (MRSA) can be particularly burdensome and difficult to eradicate. One of the measures that infection control officers have emphasized in our hospitals has been the use of various hand sanitizers throughout the hospital. Our objective was to determine the level of growth inhibition of common hand sanitizers and surgical scrub solutions that are used to prevent the spread of community-acquired strains of MRSA. Various hospital and surgical agents (n = 13) were applied to community-acquired MRSA bacteria that had been cultured on agar plates. These different commercially available solutions were incubated for 48 h, and the plates were assessed to determine the level of growth inhibition (0, 25, 75, or 100%). The negative control was a test in which no agent was added to the MRSA culture, while a positive control tested 100% alcohol. Eight of the solutions tested had 100% growth inhibition, four solutions had partial growth inhibition effects, and one solution did not inhibit MRSA. Of the solutions with alcohol, the 62% solution did not kill MRSA, while the 80% solution only inhibited MRSA. Both the 95 and 100% alcohol solutions had 100% growth inhibition. Of the two surgical scrub solutions, only the one with iodine had 100% growth inhibition, whereas the solution with chloroxylenol (PCMX 3%) had only partial growth inhibition. This study suggests that the solutions with high levels of alcohol, chlorhexidine, or iodine appear to better kill MRSA and might best be used to prevent the spread of community-acquired MRSA in both the hospital and the surgical environment. PMID:24266441

  7. Discovery of functional genes for systemic acquired resistance in Arabidopsis thaliana through integrated data mining.

    PubMed

    Pan, Youlian; Pylatuik, Jeffrey D; Ouyang, Junjun; Famili, A Fazel; Fobert, Pierre R

    2004-12-01

    Various data mining techniques combined with sequence motif information in the promoter region of genes were applied to discover functional genes that are involved in the defense mechanism of systemic acquired resistance (SAR) in Arabidopsis thaliana. A series of K-Means clustering with difference-in-shape as distance measure was initially applied. A stability measure was used to validate this clustering process. A decision tree algorithm with the discover-and-mask technique was used to identify a group of most informative genes. Appearance and abundance of various transcription factor binding sites in the promoter region of the genes were studied. Through the combination of these techniques, we were able to identify 24 candidate genes involved in the SAR defense mechanism. The candidate genes fell into 2 highly resolved categories, each category showing significantly unique profiles of regulatory elements in their promoter regions. This study demonstrates the strength of such integration methods and suggests a broader application of this approach.

  8. A possible mechanism of acquired acid resistance of human dental enamel by laser irradiation.

    PubMed

    Oho, T; Morioka, T

    1990-01-01

    A possible mechanism of acquired acid resistance of lased enamel was proposed on the basis of the investigations of optical properties, compositional and structural changes and permeability of lased and unlased human dental enamel. Lased enamel showed a high positive birefringence, suggesting the formation of 'microspaces' in enamel. No new products were found, though a decrease of lattice strain and a slight a-axis contraction were recognized in lased enamel compared with unlased enamel. The contents of water, carbonate and organic substances were reduced in lased enamel. Gradual changes of birefringence were observed in lased enamel during treatment with acid solutions, and this change was attributed to mineralization of the microspaces. The ions released by an acid decalcification would be trapped in the microspaces in lased enamel, whereas such ions diffuse to the surrounding solution in unlased enamel.

  9. Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa).

    PubMed

    Wise, Mitchell L

    2011-07-13

    Oats produce a group of phenolic antioxidants termed avenanthramides. These metabolites are, among food crops, unique to oats and have shown, in experimental systems, certain desirable nutritional characteristics such as inhibiting atherosclerotic plaque formation and reducing inflammation. Avenanthramides occur in both the leaves and grain of oat. In the leaves they are expressed as phytoalexins in response to crown rust (Puccina coronata) infection. The experiments reported here demonstrate that avenanthramide levels in vegetative tissue can be enhanced by treatment with benzothiadiazole (BTH), an agrochemical formulated to elicit systemic acquired resistance (SAR). The response to BTH was dramatically stronger than those produced with salicylic acid treatment. The roots of BTH treated plants also showed a smaller but distinct increase in avenanthramides. The dynamics of the root avenanthramide increase was substantially slower than that observed in the leaves, suggesting that avenanthramides might be transported from the leaves.

  10. Cardiac tamponade complicating purulent pericarditis due to community acquired methicilin resistant Staphylococcus aureus (CA-MRSA).

    PubMed

    Bagavathy, Kavitha; Raju, Shine K; Joseph, Ranjit; Kumar, Anupam

    2014-03-01

    Community acquired methicillin resistant Staphylococcus aureus(CA-MRSA) is a global pathogen capable of causing life-threatening infections with increasing prevalence since the 1990s. Purulentpericarditis, characterized by accumulation of purulent fluid in the pericardial space was historically a disease of the pediatric and early adult population, but through the years the median age of diagnosis has increased from 21 to 49. Mortality rates are as high as 40% even in the treated population. We report a case of purulent pericarditis due to CA-MRSA that was complicated by cardiac tamponade. Early diagnosis and intervention proved to be life-saving. A brief review of the literature and current management options are discussed.

  11. Fulminant necrotising fasciitis by community-acquired methicillin-resistant Staphylococcus aureus.

    PubMed

    Non, Lemuel; Kosmin, Aaron

    2015-03-30

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is a rare cause of necrotising fasciitis (NF), and is usually not fulminant as in group A Streptococcus (GAS), the archetypal aetiology. We report an unusually fulminant case of NF by CA-MRSA in an immunocompetent patient. A 52-year-old man presented to the emergency department with 1 week of progressive left thigh pain and swelling. The patient had ecchymoses, bullae and hypoesthesia of the involved skin, and CT scan revealed extensive fascial oedema. He was immediately started on broad spectrum antibiotics. Within 12 h of presentation, he underwent surgical debridement. Despite aggressive supportive care, the patient died less than 24 h after presentation. MRSA, with an antibiogram suggestive of a community-acquired strain, was recovered from intraoperative specimens and admission blood cultures. This case underscores that CA-MRSA, while rarely reported, can cause a fulminant presentation of NF similar to GAS in immunocompetent patients.

  12. Community-Acquired Methicillin-Resistant Pyogenic Liver Abscess: A Case Report.

    PubMed

    Cherian, Joel; Singh, Rahul; Varma, Muralidhar; Vidyasagar, Sudha; Mukhopadhyay, Chiranjay

    2016-01-01

    Pyogenic liver abscesses are rare with an incidence of 0.5% to 0.8% and are mostly due to hepatobiliary causes (40% to 60%). Most are polymicrobial with less than 10% being caused by Staphylococcus aureus. Of these, few are caused by methicillin-resistant Staphylococcus aureus (MRSA) and fewer still by a community-acquired strain. Here we present a case study of a patient with a community-acquired MRSA liver abscess. The patient presented with fever since 1 month and tender hepatomegaly. Blood tests revealed elevated levels of alkaline phosphatase, C-reactive protein, erythrocyte sedimentation rate, and neutrophilic leukocytosis. Blood cultures were sterile. Ultrasound of the abdomen showed multiple abscesses, from which pus was drained and MRSA isolated. Computed tomography of the abdomen did not show any source of infection, and an amebic serology was negative. The patient was started on vancomycin for 2 weeks, following which he became afebrile and was discharged on oral linezolid for 4 more weeks. Normally a liver abscess is treated empirically with ceftriaxone for pyogenic liver abscess and metronidazole for amebic liver abscess. However, if the patient has risk factors for a Staphylococcal infection, it is imperative that antibiotics covering gram-positive organisms be added while waiting for culture reports. PMID:27540556

  13. Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway

    PubMed Central

    Weech, Marie-Hélène; Chapleau, Mélanie; Pan, Li; Ide, Christine; Bede, Jacqueline C.

    2008-01-01

    Arabidopsis thaliana (L.) Heynh. genotypes limited in their ability to mount either octadecanoid-dependent induced resistance (IR–) or systemic acquired resistance (SAR–) were used to characterize the roles of these pathways in plant–herbivore interactions. Molecular and biochemical markers of IR were analysed in plants subject to herbivory by caterpillars of the beet armyworm, Spodoptera exigua Hübner, which had either intact or impaired salivary secretions since salivary enzymes, such as glucose oxidase, have been implicated in the ability of caterpillars to circumvent induced plant defences. Transcript expression of genes encoding laccase-like multicopper oxidase [AtLMCO4 (polyphenol oxidase)] and defensin (AtPDF1.2) showed salivary-specific patterns which were disrupted in the SAR– mutant plants. The activity of octadecanoid-associated anti-nutritive proteins, such as LMCO and trypsin inhibitor, showed similar patterns. Gene and protein changes parallel plant hormone levels where elevated jasmonic acid was observed in wild-type plants fed upon by caterpillars with impaired salivary secretions compared with plants subject to herbivory by normal caterpillars. This salivary-specific difference in jasmonic acid levels was alleviated in SAR– mutants. These results support the model that caterpillar saliva interferes with jasmonate-dependent plant defences by activating the SAR pathway. PMID:18487634

  14. Acquired Resistance to Clinical Cancer Therapy: A Twist in Physiological Signaling.

    PubMed

    Wicki, Andreas; Mandalà, Mario; Massi, Daniela; Taverna, Daniela; Tang, Huifang; Hemmings, Brian A; Xue, Gongda

    2016-07-01

    Although modern therapeutic strategies have brought significant progress to cancer care in the last 30 years, drug resistance to targeted monotherapies has emerged as a major challenge. Aberrant regulation of multiple physiological signaling pathways indispensable for developmental and metabolic homeostasis, such as hyperactivation of pro-survival signaling axes, loss of suppressive regulations, and impaired functionalities of the immune system, have been extensively investigated aiming to understand the diversity of molecular mechanisms that underlie cancer development and progression. In this review, we intend to discuss the molecular mechanisms of how conventional physiological signal transduction confers to acquired drug resistance in cancer patients. We will particularly focus on protooncogenic receptor kinase inhibition-elicited tumor cell adaptation through two major core downstream signaling cascades, the PI3K/Akt and MAPK pathways. These pathways are crucial for cell growth and differentiation and are frequently hyperactivated during tumorigenesis. In addition, we also emphasize the emerging roles of the deregulated host immune system that may actively promote cancer progression and attenuate immunosurveillance in cancer therapies. Understanding these mechanisms may help to develop more effective therapeutic strategies that are able to keep the tumor in check and even possibly turn cancer into a chronic disease.

  15. Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism.

    PubMed

    Zhang, Xibo; Fang, Yue; Jaiseng, Wurentuya; Hu, Lingling; Lu, Yabin; Ma, Yan; Furuyashiki, Tomoyuki

    2015-01-01

    Tamoxifen, a selective estrogen receptor modulator used for managing breast cancer, is known to have antifungal activity. However, its molecular mechanism remains unknown. Using the fission yeast Schizosaccharomyces pombe as a model organism, we have explored the mechanism involved in antifungal action of tamoxifen. Since tamoxifen was shown to inhibit the binding of calmodulin to calcineurin in fungi, we first examined involvement of these molecules and found that overexpression of a catalytic subunit of calcineurin and its constitutively active mutant as well as calmodulin increases tamoxifen sensitivity. Since terbinafine and azoles inhibit enzymes for ergosterol biosynthesis, Erg1 and Erg11, for their antifungal actions, we also examined involvement of these molecules. Overexpression of Erg1 and Erg11 reduced the sensitivity to terbinafine and azoles, respectively, but increased tamoxifen sensitivity, suggesting that ergosterol biosynthesis is differently related to the action of tamoxifen and those of terbinafine and azoles. To elucidate molecules involved in tamoxifen action, we performed a genome-wide screen for altered sensitivity to tamoxifen using a fission yeast gene deletion library, and identified various hypersensitive and resistant mutants to this drug. Notably, these mutants are rarely overlapped with those identified in similar genetic screens with currently used antifungals, suggesting a novel mode of antifungal action. Furthermore, tamoxifen augmented antifungal actions of terbinafine and azoles, suggesting synergetic actions between these drugs. Therefore, our findings suggest that calmodulin-calcineurin pathway and ergosterol biosynthesis are related to antifungal action of tamoxifen, and propose novel targets for antifungal development as well as combined therapy with tamoxifen for fungal diseases.

  16. Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism.

    PubMed

    Zhang, Xibo; Fang, Yue; Jaiseng, Wurentuya; Hu, Lingling; Lu, Yabin; Ma, Yan; Furuyashiki, Tomoyuki

    2015-01-01

    Tamoxifen, a selective estrogen receptor modulator used for managing breast cancer, is known to have antifungal activity. However, its molecular mechanism remains unknown. Using the fission yeast Schizosaccharomyces pombe as a model organism, we have explored the mechanism involved in antifungal action of tamoxifen. Since tamoxifen was shown to inhibit the binding of calmodulin to calcineurin in fungi, we first examined involvement of these molecules and found that overexpression of a catalytic subunit of calcineurin and its constitutively active mutant as well as calmodulin increases tamoxifen sensitivity. Since terbinafine and azoles inhibit enzymes for ergosterol biosynthesis, Erg1 and Erg11, for their antifungal actions, we also examined involvement of these molecules. Overexpression of Erg1 and Erg11 reduced the sensitivity to terbinafine and azoles, respectively, but increased tamoxifen sensitivity, suggesting that ergosterol biosynthesis is differently related to the action of tamoxifen and those of terbinafine and azoles. To elucidate molecules involved in tamoxifen action, we performed a genome-wide screen for altered sensitivity to tamoxifen using a fission yeast gene deletion library, and identified various hypersensitive and resistant mutants to this drug. Notably, these mutants are rarely overlapped with those identified in similar genetic screens with currently used antifungals, suggesting a novel mode of antifungal action. Furthermore, tamoxifen augmented antifungal actions of terbinafine and azoles, suggesting synergetic actions between these drugs. Therefore, our findings suggest that calmodulin-calcineurin pathway and ergosterol biosynthesis are related to antifungal action of tamoxifen, and propose novel targets for antifungal development as well as combined therapy with tamoxifen for fungal diseases. PMID:26628015

  17. Persistence and Fitness of Multidrug-Resistant Human Immunodeficiency Virus Type 1 Acquired in Primary Infection

    PubMed Central

    Brenner, Bluma G.; Routy, Jean-Pierre; Petrella, Marco; Moisi, Daniela; Oliveira, Maureen; Detorio, Mervi; Spira, Bonnie; Essabag, Vidal; Conway, Brian; Lalonde, Richard; Sekaly, Rafick-Pierre; Wainberg, Mark A.

    2002-01-01

    This study examines the persistence and fitness of multidrug-resistant (MDR) viruses acquired during primary human immunodeficiency virus infection (PHI). In four individuals, MDR infections persisted over the entire study period, ranging from 36 weeks to 5 years, in the absence of antiretroviral therapy. In stark contrast, identified source partners in two cases showed expected outgrowth of wild-type (WT) virus within 12 weeks of treatment interruption. In the first PHI case, triple-class MDR resulted in low plasma viremia (1.6 to 3 log copies/ml) over time compared with mean values obtained for an untreated PHI group harboring WT infections (4.1 to 4.3 log copies/ml). Increasing viremia in PHI patient 1 at week 52 was associated with the de novo emergence of a protease inhibitor-resistant variant through a recombination event involving the original MDR virus. MDR infections in two other untreated PHI patients yielded viremia levels typical of the untreated WT group. A fourth patient's MDR infection yielded low viremia (<50 to 500 copies/ml) for 5 years despite his having phenotypic resistance to all antiretroviral drugs in his treatment regimen. In two of these PHI cases, a rebound to higher levels of plasma viremia only occurred when the M184V mutation in reverse transcriptase could no longer be detected and, in a third case, nondetection of M184V was associated with an inability to isolate virus. To further evaluate the fitness of MDR variants acquired in PHI, MDR and corresponding WT viruses were isolated from index and source partners, respectively. Although MDR viral infectivity (50% tissue culture infective dose) was comparable to that observed for WT viruses, MDR infections in each case demonstrated 2-fold and 13- to 23-fold reductions in p24 antigen and reverse transcriptase enzymatic activity, respectively. In dual-infection competition assays, MDR viruses consistently demonstrated a marked replicative disadvantage compared with WT virus. These results

  18. Combinatorial therapy with tamoxifen and trifluoperazine effectively inhibits malignant peripheral nerve sheath tumor growth by targeting complementary signaling cascades.

    PubMed

    Brosius, Stephanie N; Turk, Amy N; Byer, Stephanie J; Longo, Jody Fromm; Kappes, John C; Roth, Kevin A; Carroll, Steven L

    2014-11-01

    Chemotherapeutic agents effective against malignant peripheral nerve sheath tumors (MPNSTs) are urgently needed. We recently found that tamoxifen potently impedes xenograft growth. In vitro, tamoxifen inhibits MPNST proliferation and survival in an estrogen receptor-independent manner; these effects are phenocopied by the calmodulin inhibitor trifluoperazine. The present study was performed to establish the mechanism of action of tamoxifen in vivo and optimize its therapeutic effectiveness. To determine if tamoxifen has estrogen receptor-dependent effects in vivo, we grafted MPNST cells in castrated and ovariectomized mice; xenograft growth was unaffected by reductions in sex hormones. To establish whether tamoxifen and trifluoperazine additively or synergistically impede MPNST growth, mice xenografted with neurofibromatosis type 1-associated or sporadic MPNST cells were treated with tamoxifen, trifluoperazine, or both drugs for 30 days. Both monotherapies inhibited graft growth by 50%, whereas combinatorial treatment maximally reduced graft mass by 90% and enhanced decreases in proliferation and survival. Kinomic analyses showed that tamoxifen and trifluoperazine have both shared and distinct targets in MPNSTs. In addition, trifluoperazine prevented tamoxifen-induced increases in serum/glucocorticoid regulated kinase 1, a protein linked to tamoxifen resistance. These findings suggest that combinatorial therapy with tamoxifen and trifluoperazine is effective against MPNSTs because these agents target complementary pathways that are essential for MPNST pathogenesis.

  19. Nasal colonization in children with community acquired methicillin-resistant Staphylococcus aureus

    PubMed Central

    Davoodabadi, Fazlollah; Mobasherizadeh, Sina; Mostafavizadeh, Kamyar; Shojaei, Hasan; Havaei, Seyed Asghar; Koushki, Ali Mehrabi; Moghadasizadeh, Zahra; Meidani, Mohsen; Shirani, Kiana

    2016-01-01

    Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of infections. The changing epidemiology of MRSA became evident in the 1990s when CA-MRSA cases were first reported. Nasal carriage of CA-MRSA is associated with an increased risk for development of infections in various populations. Materials and Methods: Anterior nares culture for the presence of methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA was taken from 345 children attending kindergartens, who didn’t have any known risk factor for MRSA colonization. Also, children demographic variables were recorded. Identification of SA and community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) with standard microbiological test was performed. Finally, the susceptibility of isolated to various antibiotics determined. The data were analyzed with Whonet 5.6 software. Results: Of 345 children, 20 children (5.8%) were colonized with CA-MRSA, 86 children (24.9%) with MSSA and 239 cases (69.3%) didn’t have SA colonization. The highest rate of MSSA and MRSA colonization was obtained at the age of 6 years. The frequency distribution of SA (MSSA and MRSA) colonization prevalence didn’t have any significant differences based on age, gender and the admission time (P > 0.05); but it was significantly different in the urban areas (P < 0.001). The lowest resistance rate of CA-MRSA isolates, with a frequency of 10%, was detected with gentamicin, rifampin, and trimethoprim-sulfamethoxazole. Conclusions: In summary, CA-MRSA colonization was observed in child care centers remarkably. Therefore, by facing various infections due to SA especially in areas of low socio-economic status, it must be considered. Based on antibiogram test, empirical treatment with rifampin, gentamicin and ciprofloxacin is recommended during CA-MRSA infections. PMID:27274501

  20. Systemic Acquired Resistance in Moss: Further Evidence for Conserved Defense Mechanisms in Plants

    PubMed Central

    Winter, Peter S.; Bowman, Collin E.; Villani, Philip J.; Dolan, Thomas E.; Hauck, Nathanael R.

    2014-01-01

    Vascular plants possess multiple mechanisms for defending themselves against pathogens. One well-characterized defense mechanism is systemic acquired resistance (SAR). In SAR, a plant detects the presence of a pathogen and transmits a signal throughout the plant, inducing changes in the expression of various pathogenesis-related (PR) genes. Once SAR is established, the plant is capable of mounting rapid responses to subsequent pathogen attacks. SAR has been characterized in numerous angiosperm and gymnosperm species; however, despite several pieces of evidence suggesting SAR may also exist in non-vascular plants6–8, its presence in non-vascular plants has not been conclusively demonstrated, in part due to the lack of an appropriate culture system. Here, we describe and use a novel culture system to demonstrate that the moss species Amblystegium serpens does initiate a SAR-like reaction upon inoculation with Pythium irregulare, a common soil-borne oomycete. Infection of A. serpens gametophores by P. irregulare is characterized by localized cytoplasmic shrinkage within 34 h and chlorosis and necrosis within 7 d of inoculation. Within 24 h of a primary inoculation (induction), moss gametophores grown in culture became highly resistant to infection following subsequent inoculation (challenge) by the same pathogen. This increased resistance was a response to the pathogen itself and not to physical wounding. Treatment with β-1,3 glucan, a structural component of oomycete cell walls, was equally effective at triggering SAR. Our results demonstrate, for the first time, that this important defense mechanism exists in a non-vascular plant, and, together with previous studies, suggest that SAR arose prior to the divergence of vascular and non-vascular plants. In addition, this novel moss – pathogen culture system will be valuable for future characterization of the mechanism of SAR in moss, which is necessary for a better understanding of the evolutionary history of SAR

  1. Comparative Proteomics Analysis of Phloem Exudates Collected during the Induction of Systemic Acquired Resistance1[OPEN

    PubMed Central

    Wilson, Daniel C.; Dey, Sanjukta; Hauck, Stefanie M.; Vlot, A. Corina; Cameron, Robin K.

    2016-01-01

    Systemic acquired resistance (SAR) is a plant defense response that provides long-lasting, broad-spectrum pathogen resistance to uninfected systemic leaves following an initial localized infection. In Arabidopsis (Arabidopsis thaliana), local infection with virulent or avirulent strains of Pseudomonas syringae pv tomato generates long-distance SAR signals that travel from locally infected to distant leaves through the phloem to establish SAR. In this study, a proteomics approach was used to identify proteins that accumulate in phloem exudates in response to the induction of SAR. To accomplish this, phloem exudates collected from mock-inoculated or SAR-induced leaves of wild-type Columbia-0 plants were subjected to label-free quantitative liquid chromatography-tandem mass spectrometry proteomics. Comparing mock- and SAR-induced phloem exudate proteomes, 16 proteins were enriched in phloem exudates collected from SAR-induced plants, while 46 proteins were suppressed. SAR-related proteins THIOREDOXIN h3, ACYL-COENZYME A-BINDING PROTEIN6, and PATHOGENESIS-RELATED1 were enriched in phloem exudates of SAR-induced plants, demonstrating the strength of this approach and suggesting a role for these proteins in the phloem during SAR. To identify novel components of SAR, transfer DNA mutants of differentially abundant phloem proteins were assayed for SAR competence. This analysis identified a number of new proteins (m-type thioredoxins, major latex protein-like protein, ULTRAVIOLET-B RESISTANCE8 photoreceptor) that contribute to the SAR response. The Arabidopsis SAR phloem proteome is a valuable resource for understanding SAR long-distance signaling and the dynamic nature of the phloem during plant-pathogen interactions. PMID:27208255

  2. Origin and Evolution of European Community-Acquired Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Wirth, Thierry; Andersen, Paal S.; Skov, Robert L.; De Grassi, Anna; Simões, Patricia Martins; Tristan, Anne; Petersen, Andreas; Aziz, Maliha; Kiil, Kristoffer; Cirković, Ivana; Udo, Edet E.; del Campo, Rosa; Vuopio-Varkila, Jaana; Ahmad, Norazah; Tokajian, Sima; Peters, Georg; Schaumburg, Frieder; Olsson-Liljequist, Barbro; Givskov, Michael; Driebe, Elizabeth E.; Vigh, Henrik E.; Shittu, Adebayo; Ramdani-Bougessa, Nadjia; Rasigade, Jean-Philippe; Price, Lance B.; Vandenesch, Francois; Larsen, Anders R.; Laurent, Frederic

    2014-01-01

    ABSTRACT Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations. PMID:25161186

  3. Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide.

    PubMed

    Corriden, Ross; Hollands, Andrew; Olson, Joshua; Derieux, Jaclyn; Lopez, Justine; Chang, John T; Gonzalez, David J; Nizet, Victor

    2015-01-01

    Tamoxifen is a selective oestrogen receptor modulator widely used for the treatment of breast cancer. In addition to its activity as an oestrogen receptor agonist/antagonist, tamoxifen also modulates sphingolipid biosynthesis, which has been shown to play an important role in the regulation of neutrophil activity. Here, we find that tamoxifen stimulation enhances several pro-inflammatory pathways in human neutrophils, including chemotaxis, phagocytosis and neutrophil extracellular trap (NET) formation. The enhancement of NET production occurs via a ceramide/PKCζ-mediated pathway, and treatment with synthetic ceramide is sufficient to promote NET formation. Pretreatment of human neutrophils with tamoxifen boosts neutrophil bactericidal capacity against a variety of pathogens in vitro and enhances clearance of the leading human pathogen methicillin-resistant Staphylococcus aureus in vivo. Our results suggest that tamoxifen, and the lipid signalling pathways it modulates, merit further exploration as targets for boosting host innate immune function. PMID:26458291

  4. Tamoxifen Augments the Innate Immune Function of Neutrophils Through Modulation of Intracellular Ceramide

    PubMed Central

    Corriden, Ross; Hollands, Andrew; Olson, Joshua; Derieux, Jaclyn; Lopez, Justine; Chang, John T.; Gonzalez, David J.; Nizet, Victor

    2015-01-01

    Tamoxifen is a selective estrogen receptor modulator widely used for the treatment of breast cancer. In addition to its activity as an estrogen receptor agonist/antagonist, tamoxifen also modulates sphingolipid biosynthesis, which has been shown to play an important role in the regulation of neutrophil activity. Here, we find that tamoxifen stimulation enhances several pro-inflammatory pathways in human neutrophils, including chemotaxis, phagocytosis and neutrophil extracellular trap (NET) formation. The enhancement of NET production occurs via a ceramide/PKCζ-mediated pathway, and treatment with synthetic ceramide is sufficient to promote NET formation. Pretreatment of human neutrophils with tamoxifen boosts neutrophil bactericidal capacity against a variety of pathogens in vitro and enhances clearance of the leading human pathogen methicillin-resistant Staphylococcus aureus in vivo. Our results suggest that tamoxifen, and the lipid signaling pathways it modulates, merit further exploration as targets for boosting host innate immune function. PMID:26458291

  5. The anticancer drug tamoxifen counteracts the pathology in a mouse model of duchenne muscular dystrophy.

    PubMed

    Dorchies, Olivier M; Reutenauer-Patte, Julie; Dahmane, Elyes; Ismail, Heham M; Petermann, Olivier; Patthey- Vuadens, Ophélie; Comyn, Sophie A; Gayi, Elinam; Piacenza, Tony; Handa, Robert J; Décosterd, Laurent A; Ruegg, Urs T

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.

  6. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells

    PubMed Central

    Liu, P; Kumar, I S; Brown, S; Kannappan, V; Tawari, P E; Tang, J Z; Jiang, W; Armesilla, A L; Darling, J L; Wang, W

    2013-01-01

    Background: Triple-negative breast cancer (TNBC) has significantly worse prognosis. Acquired chemoresistance remains the major cause of therapeutic failure of TNBC. In clinic, the relapsed TNBC is commonly pan-resistant to various drugs with completely different resistant mechanisms. Investigation of the mechanisms and development of new drugs to target pan-chemoresistance will potentially improve the therapeutic outcomes of TNBC patients. Methods: In this study, 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), combination index (CI)–isobologram, western blot, ALDEFLUOR analysis, clonogenic assay and immunocytochemistry were used. Results: The chemoresistant MDA-MB-231PAC10 cells are highly cross-resistant to paclitaxel (PAC), cisplatin (CDDP), docetaxel and doxorubicin. The MDA-MB-231PAC10 cells are quiescent with significantly longer doubling time (64.9 vs 31.7 h). This may be caused by high expression of p21Waf1. The MDA-MB-231PAC10 cells express high aldehyde dehydrogenase (ALDH) activity and a panel of embryonic stem cell-related proteins, for example, Oct4, Sox2, Nanog and nuclealisation of HIF2α and NF-κBp65. We have previously reported that disulfiram (DS), an antialcoholism drug, targets cancer stem cells (CSCs) and enhances cytotoxicity of anticancer drugs. Disulfiram abolished CSC characters and completely reversed PAC and CDDP resistance in MDA-MB-231PAC10 cells. Conclusion: Cancer stem cells may be responsible for acquired pan-chemoresistance. As a drug used in clinic, DS may be repurposed as a CSC inhibitor to reverse the acquired pan-chemoresistance. PMID:24008666

  7. Integrative Analysis of Response to Tamoxifen Treatment in ER-Positive Breast Cancer Using GWAS Information and Transcription Profiling

    PubMed Central

    Hicks, Chindo; Kumar, Ranjit; Pannuti, Antonio; Miele, Lucio

    2012-01-01

    Variable response and resistance to tamoxifen treatment in breast cancer patients remains a major clinical problem. To determine whether genes and biological pathways containing SNPs associated with risk for breast cancer are dysregulated in response to tamoxifen treatment, we performed analysis combining information from 43 genome-wide association studies with gene expression data from 298 ER+ breast cancer patients treated with tamoxifen and 125 ER+ controls. We identified 95 genes which distinguished tamoxifen treated patients from controls. Additionally, we identified 54 genes which stratified tamoxifen treated patients into two distinct groups. We identified biological pathways containing SNPs associated with risk for breast cancer, which were dysregulated in response to tamoxifen treatment. Key pathways identified included the apoptosis, P53, NFkB, DNA repair and cell cycle pathways. Combining GWAS with transcription profiling provides a unified approach for associating GWAS findings with response to drug treatment and identification of potential drug targets. PMID:22399860

  8. Evidence for the role of microRNA 374b in acquired cisplatin resistance in pancreatic cancer cells

    PubMed Central

    Schreiber, R; Mezencev, R; Matyunina, L V; McDonald, J F

    2016-01-01

    Recent evidence has implicated microRNAs (miRNAs) as potentially significant players in the acquisition of cancer-drug resistance in pancreatic and other cancers. To evaluate the potential contribution of miRNAs in acquired resistance to cisplatin in pancreatic cancer, we compared levels of more than 2000 human miRNAs in a cisplatin-resistant cell line (BxPC3-R) derived from parental (BxPC3) cells by step-wise exposure to increasing concentrations of the drug over more than 20 passages. The acquired drug resistance was accompanied by significant changes in the expression of 57 miRNAs, of which 23 were downregulated and 34 were upregulated. Employing a hidden Markov model (HMM) algorithm, we identified downregulation of miR-374b as likely being directly involved in acquisition of the drug-resistant phenotype. Consistent with this prediction, ectopic overexpression of miR-374b in the resistant BxPC3-R cells restored cisplatin sensitivity to levels approaching those displayed by the BxPC3 parental cells. The results are consistent with a growing body of evidence implicating miRNAs in acquired cancer-drug resistance and with the potential therapeutic value of these small regulatory RNAs in blocking and/or reversing the process. PMID:27229158

  9. Increased interleukin-6 expression is associated with poor prognosis and acquired cisplatin resistance in head and neck squamous cell carcinoma

    PubMed Central

    GAO, JIAN; ZHAO, SEN; HALSTENSEN, TROND S.

    2016-01-01

    Increased expression of interleukin 6 (IL-6) is associated with poor prognosis and chemoresistance in many different carcinomas, but its role in head and neck squamous cell carcinoma (HNSCC) is still unsettled. Analyzing tumorous mRNA expression data from 399 HNSCC patients revealed that high IL-6 expression predicted poor prognosis. Similar tendency was observed in platinum treated patients, suggesting an IL-6 associated cisplatin resistance. IL-6 increase was also found in two in-house acquired cisplatin-resistant HNSCC cell lines (both basaloid and conventional squamous cell carcinoma) by using microarray analysis. However, although the in-house acquired cisplatin-resistant cell lines had higher basal and markedly increased cisplatin-induced IL-6 expression, IL-6 did not mediate the cisplatin resistance as neither exogenous IL-6 nor IL-6R/gp130 inhibitors affected cisplatin sensitivity. Moreover, the IL-6/STAT3 pathway was impaired in the resistant cell lines, partly due to decreased IL-6R expression. Thus, high IL-6 expression correlated to poor prognosis and acquired cisplatin resistance, but it did not mediate cisplatin resistance in the HNSCC cell lines. PMID:27108527

  10. Evidence for the role of microRNA 374b in acquired cisplatin resistance in pancreatic cancer cells.

    PubMed

    Schreiber, R; Mezencev, R; Matyunina, L V; McDonald, J F

    2016-08-01

    Recent evidence has implicated microRNAs (miRNAs) as potentially significant players in the acquisition of cancer-drug resistance in pancreatic and other cancers. To evaluate the potential contribution of miRNAs in acquired resistance to cisplatin in pancreatic cancer, we compared levels of more than 2000 human miRNAs in a cisplatin-resistant cell line (BxPC3-R) derived from parental (BxPC3) cells by step-wise exposure to increasing concentrations of the drug over more than 20 passages. The acquired drug resistance was accompanied by significant changes in the expression of 57 miRNAs, of which 23 were downregulated and 34 were upregulated. Employing a hidden Markov model (HMM) algorithm, we identified downregulation of miR-374b as likely being directly involved in acquisition of the drug-resistant phenotype. Consistent with this prediction, ectopic overexpression of miR-374b in the resistant BxPC3-R cells restored cisplatin sensitivity to levels approaching those displayed by the BxPC3 parental cells. The results are consistent with a growing body of evidence implicating miRNAs in acquired cancer-drug resistance and with the potential therapeutic value of these small regulatory RNAs in blocking and/or reversing the process. PMID:27229158

  11. Nuclear factor-ĸB plays a critical role in both intrinsic and acquired resistance against endocrine therapy in human breast cancer cells.

    PubMed

    Oida, Kumiko; Matsuda, Akira; Jung, Kyungsook; Xia, Yan; Jang, Hyosun; Amagai, Yosuke; Ahn, Ginnae; Nishikawa, Sho; Ishizaka, Saori; Jensen-Jarolim, Erika; Matsuda, Hiroshi; Tanaka, Akane

    2014-01-01

    Since more than 75% of breast cancers overexpress estrogen receptors (ER), endocrine therapy targeting ER has significantly improved the survival rate. Nonetheless, breast cancer still afflicts women worldwide and the major problem behind it is resistance to endocrine therapy. We have previously shown the involvement of nuclear factor-κB (NF-κB) in neoplastic proliferation of human breast cancer cells; however, the association with the transformation of ER-positive cells remains unclear. In the current study, we focused on roles of NF-κB in the hormone dependency of breast cancers by means of ER-positive MCF-7 cells. Blocking of NF-κB signals in ER-negative cells stopped proliferation by downregulation of D-type cyclins. In contrast, the MCF-7 cells were resistant to NF-κB inhibition. Under estrogen-free conditions, the ER levels were reduced when compared with the original MCF-7 cells and the established cell subline exhibited tamoxifen resistance. Additionally, NF-κB participated in cell growth instead of the estrogen-ER axis in the subline and consequently, interfering with the NF-κB signals induced additive anticancer effects with tamoxifen. MMP-9 production responsible for cell migration, as well as the cell expansion in vivo, were suppressed by NF-κB inhibition. Therefore, we suggest that NF-κB is a master switch in both ER-positive and ER-negative breast cancers. PMID:24531845

  12. Carbapenem-resistant Acinetobacter baumannii acquired before liver transplantation: Impact on recipient outcomes.

    PubMed

    Freire, Maristela Pinheiro; Pierrotti, Ligia Câmera; Oshiro, Isabel Cristina Villela Soares; Bonazzi, Patrícia Rodrigues; Oliveira, Larissa Marques de; Machado, Anna Silva; Van Der Heijden, Inneke Marie; Rossi, Flavia; Costa, Silvia Figueiredo; D'Albuquerque, Luiz Augusto Carneiro; Abdala, Edson

    2016-05-01

    Infection with carbapenem-resistant Acinetobacter baumannii (CRAB) after liver transplantation (LT) is associated with high mortality. This study aimed to identify risk factors for post-LT CRAB infection, as well as to evaluate the impact of pre-LT CRAB acquisition on the incidence of post-LT CRAB infection. This was a prospective cohort study of all patients undergoing LT at our facility between October 2009 and October 2011. Surveillance cultures (SCs) were collected immediately before LT and weekly thereafter, until discharge. We analyzed 196 patients who were submitted to 222 LTs. CRAB was identified in 105 (53.6%); 24 (22.9%) of these patients were found to have acquired CRAB before LT, and 85 (81.0%) tested positive on SCs. Post-LT CRAB infection occurred in 56 (28.6%), the most common site being the surgical wound. Multivariate analysis showed that the risk factors for developing CRAB infection were prolonged cold ischemia, post-LT dialysis, LT due to fulminant hepatitis, and pre-LT CRAB acquisition with pre-LT CRAB acquisition showing a considerable trend toward significance (P = 0.06). Among the recipients with CRAB infection, 60-day mortality was 46.4%, significantly higher than among those without (P < 0.001). Mortality risk factors were post-LT infection with multidrug-resistant bacteria, LT performed because of fulminant hepatitis, retransplantation, prolonged cold ischemia, longer LT surgical time, and pre-LT CRAB acquisition, the last showing a trend toward significance (P = 0.08). In conclusion, pre-LT CRAB acquisition appears to increase the risk of post-LT CRAB infection, which has a negative impact on recipient survival. Liver Transplantation 22 615-626 2016 AASLD.

  13. Studies on chicken acquired resistance to Argas (persicargas) persicus Latereille (Acari: Argasidae) due to repeated infestation.

    PubMed

    Habeeb, S M; Sayed, M A; El-Kammah, K M

    2001-08-01

    Spring chickens were used for feeding Argas persicus (females) daily over one week during both winter and summer seasons. Acquired resistance to ticks was monitored by: 1) failure of ticks to replenish a blood meal from chickens bitten repeatedly by the infesting ticks during winter and summer seasons; 2) measurements of anti-tick activity in the chicken sera; 3) detection of changes in their serum proteins. Chickens were bled after the 4th feeding, during the 1st, 2nd, 3rd and 4th weeks post-feeding. The titre of anti-tick antibody was determined in the chicken sera by an enzyme-linked immunosorbent assay (ELISA) technique. The change in sera protein bands after Argas persicus female repeated feeding was studied by the use of 10% SDS polyacrylamide gel electrophoresis. The results showed that the nonfeeding percentage in A. persicus was significant in both winter and summer seasons. The highest concentration of antibodies against A. persicus was detected after the fourth feeding and the lowest titre was reported in sera collected after the fourth week in both seasons. Infested chicken serum proteins electrophoresis showed different patterns of separation from the non-infested chickens. The protein bands of the noninfested chicken sera had 5 and 10 bands in the winter and summer seasons, but in infested chicken sera, it ranged between 12-17 and 14-18 bands in winter and summer seasons respectively.

  14. Length of stay an important mediator of hospital-acquired methicillin-resistant Staphylococcus aureus.

    PubMed

    Wong, J G; Chen, M I; Win, M K; Ng, P Y; Chow, A

    2016-04-01

    Hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) is becoming increasingly established in Asian hospitals. The primary aim of this study was to decompose the risk factors for HA-MRSA based on conceptual clinical pathways. The secondary aim was to show the amount of effect attributable to antibiotic exposure and total length of stay before outcome (LBO) so that institutions can manage at-risk patients accordingly. A case-control study consisting of 1200 inpatients was conducted in a large tertiary hospital in Singapore between January and December 2006. Results from the generalized structural equation model (GSEM) show that LBO [adjusted odds ratio (aOR) 14·9, 95% confidence interval (CI) 8·7-25·5], prior hospitalization (aOR 6·2, 95% CI 3·3-11·5), and cumulative antibiotic exposure (aOR 3·5, 95% CI 2·3-5·3), directly affected HA-MRSA acquisition. LBO accounted for the majority of the effects due to age (100%), immunosuppression (67%), and surgery (96%), and to a lesser extent for male gender (22%). Our model enabled us to account and quantify effects of intermediaries. LBO was found to be an important mediator of age, immunosuppression and surgery on MRSA infection. Traditional regression approaches will not only give different conclusions but also underestimate the effects. Hospitals should minimize the hospital stay when possible to reduce the risk of MRSA.

  15. Surveillance of Antibiotic Resistance among Hospital- and Community-Acquired Toxigenic Clostridium difficile Isolates over 5-Year Period in Kuwait

    PubMed Central

    Jamal, Wafaa Y.; Rotimi, Vincent O.

    2016-01-01

    Clostridium difficile infection (CDI) is a leading and an important cause of diarrhea in a healthcare setting especially in industrialized countries. Community-associated CDI appears to add to the burden on healthcare setting problems. The aim of the study was to investigate the antimicrobial resistance of healthcare-associated and community-acquired C. difficile infection over 5 years (2008–2012) in Kuwait. A total of 111 hospital-acquired (HA-CD) and 35 community-acquired Clostridium difficile (CA-CD) clinical isolates from stool of patients with diarrhoea were studied. Antimicrobial susceptibility testing of 15 antimicrobial agents against these pathogens was performed using E test method. There was no evidence of resistance to amoxicillin-clavulanic acid, daptomycin, linezolid, piperacillin-tazobactam, teicoplanin and vancomycin by both HA-CD and CA-CD isolates. Metronidazole had excellent activity against CA-CD but there was a 2.9% resistance rate against HA-CD isolates. Ampicillin, clindamycin, levofloxacin and imipenem resistance rates among the HC-CD vs. CA-CD isolates were 100 vs. 47.4%; 43 vs. 47.4%; 100 vs. 100% and 100 vs. 89%, respectively. An unexpected high rifampicin resistance rate of 15.7% emerged amongst the HA-CD isolates. In conclusion, vancomycin resistance amongst the HA-CD and CA-CD isolates was not encountered in this series but few metronidazole resistant hospital isolates were isolated. High resistance rates of ampicillin, clindamycin, levofloxacin, and imipenem resistance were evident among both CA-CD and HA-CD isolates. Rifampicin resistance is emerging among the HA-CD isolates. PMID:27536994

  16. Community-acquired methicillin-resistant Staphylococcus aureus infections in two scuba divers returning from the Philippines.

    PubMed

    Bochet, Mélanie; Francois, Patrice; Longtin, Yves; Gaide, Olivier; Renzi, Gesuele; Harbarth, Stephan

    2008-01-01

    We describe two patients who had skin infection due to identical strains of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) after returning from the Philippines. Both patients did not share risk factors for CA-MRSA acquisition besides scuba diving. Scuba diving equipment may represent a possible new mode of acquisition of CA-MRSA.

  17. Saccharin-induced systemic acquired resistance against rust (Phakopsora pachyrhizi) infection in soybean: Effects on growth and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effect of saccharin on the systemic acquired resistance (SAR) response of soybean to the fungus Phakopsora pachyrhizi, the causal agent of soybean rust. Plants were grown hydroponically in half-strength Hoagland’s solution and were challenged with the pathogen 1, 5, 10 and 15 days af...

  18. ObRb downregulation increases breast cancer cell sensitivity to tamoxifen.

    PubMed

    Qian, Yingying; Shi, Dongmin; Qiu, Jinrong; Zhu, Fang; Qian, Jing; He, Shaohua; Shu, Yongqian; Yin, Yongmei; Chen, Xiaofeng

    2015-09-01

    Leptin is a potent adipokine that plays an important role in the progression of breast cancer and interferes with the action of tamoxifen. We investigated the molecular mechanism underlying the effect of leptin on tamoxifen resistance in breast cancer cells that express leptin receptor (ObRb), and evaluated the impact of ObRb suppression on tamoxifen treatment in MCF-7 and tamoxifen-resistant (TAM-R) cells. Leptin-induced signaling pathway activation was examined by qRT-PCR and Western blotting. Chromatin immunoprecipitation assays were performed to further examine the binding of estrogen receptor (ER) α on the promoter of cyclin D1 (CCND1) gene. The effects of combined ObRb knockdown and tamoxifen treatment were evaluated in MCF-7 and TAM-R cells. We found that the enhanced proliferation effects induced by leptin were related to extracellular-signal-regulated kinase (ERK) 1/2 and signal transducers and activators of transcription (STAT) 3 signaling pathway activation and CCND1 upregulation. Leptin enhanced CCND1 gene transcription by inducing the binding of ERα to the promoter of CCND1 gene. ObRb knockdown significantly enhanced the inhibitory effects of tamoxifen on TAM-R cell proliferation and survival. This study suggested that long-term endocrine therapy facilitates leptin and ObRb overexpression in breast cancer cells, which attenuates the inhibitory effect of tamoxifen by activating both the ERK1/2 and STAT3 signaling pathways and upregulating CCND1 gene expression. Combination therapy involving ObRb knockdown and tamoxifen treatment may be an alternative therapeutic option for tamoxifen-resistant breast cancer.

  19. Neoadjuvant tamoxifen synchronizes ERα binding and gene expression profiles related to outcome and proliferation

    PubMed Central

    Severson, Tesa M.; Nevedomskaya, Ekaterina; Peeters, Justine; Kuilman, Thomas; Krijgsman, Oscar; van Rossum, Annelot; Droog, Marjolein; Kim, Yongsoo; Koornstra, Rutger; Beumer, Inès; Glas, Annuska M.; Peeper, Daniel; Wesseling, Jelle; Simon, Iris M.; Wessels, Lodewyk; Linn, Sabine C.; Zwart, Wilbert

    2016-01-01

    Estrogen receptor alpha (ERα)-positive breast cancers are frequently treated with tamoxifen, but resistance is common. It remains elusive how tamoxifen resistance occurs and predictive biomarkers for treatment outcome are needed. Because most biomarker discovery studies are performed using pre-treatment surgical resections, the effects of tamoxifen therapy directly on the tumor cell in vivo remain unexamined. In this study, we assessed DNA copy number, gene expression profiles and ERα/chromatin binding landscapes on breast tumor specimens, both before and after neoadjuvant tamoxifen treatment. We observed neoadjuvant tamoxifen treatment synchronized ERα/chromatin interactions and downstream gene expression, indicating that hormonal therapy reduces inter-tumor molecular variability. ERα-synchronized sites are associated with dynamic FOXA1 action at these sites, which is under control of growth factor signaling. Genes associated with tamoxifen-synchronized sites are capable of differentiating patients for tamoxifen benefit. Due to the direct effects of therapeutics on ERα behavior and transcriptional output, our study highlights the added value of biomarker discovery studies after neoadjuvant drug exposure. PMID:27129152

  20. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity.

    PubMed

    Simões, Bruno M; O'Brien, Ciara S; Eyre, Rachel; Silva, Andreia; Yu, Ling; Sarmiento-Castro, Aida; Alférez, Denis G; Spence, Kath; Santiago-Gómez, Angélica; Chemi, Francesca; Acar, Ahmet; Gandhi, Ashu; Howell, Anthony; Brennan, Keith; Rydén, Lisa; Catalano, Stefania; Andó, Sebastiano; Gee, Julia; Ucar, Ahmet; Sims, Andrew H; Marangoni, Elisabetta; Farnie, Gillian; Landberg, Göran; Howell, Sacha J; Clarke, Robert B

    2015-09-29

    Breast cancers (BCs) typically express estrogen receptors (ERs) but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC) activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX) tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers. PMID:26387946

  1. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity

    PubMed Central

    Simões, Bruno M.; O’Brien, Ciara S.; Eyre, Rachel; Silva, Andreia; Yu, Ling; Sarmiento-Castro, Aida; Alférez, Denis G.; Spence, Kath; Santiago-Gómez, Angélica; Chemi, Francesca; Acar, Ahmet; Gandhi, Ashu; Howell, Anthony; Brennan, Keith; Rydén, Lisa; Catalano, Stefania; Andó, Sebastiano; Gee, Julia; Ucar, Ahmet; Sims, Andrew H.; Marangoni, Elisabetta; Farnie, Gillian; Landberg, Göran; Howell, Sacha J.; Clarke, Robert B.

    2015-01-01

    Summary Breast cancers (BCs) typically express estrogen receptors (ERs) but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC) activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX) tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers. PMID:26387946

  2. New Real-Time PCR Assays for Detection of Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Group

    PubMed Central

    Shallom, Shamira J.; Moura, Natalia S.; Olivier, Kenneth N.; Sampaio, Elizabeth P.; Holland, Steven M.

    2015-01-01

    Members of the Mycobacterium abscessus group (MAG) cause lung, soft tissue, and disseminated infections. The oral macrolides clarithromycin and azithromycin are commonly used for treatment. MAG can display clarithromycin resistance through the inducible erm(41) gene or via acquired mutations in the rrl (23S rRNA) gene. Strains harboring a truncation or a T28C substitution in erm(41) lose the inducible resistance trait. Phenotypic detection of clarithromycin resistance requires extended incubation (14 days), highlighting the need for faster methods to detect resistance. Two real-time PCR-based assays were developed to assess inducible and acquired clarithromycin resistance and tested on a total of 90 clinical and reference strains. A SYBR green assay was designed to distinguish between a full-length and truncated erm(41) gene by temperature shift in melting curve analysis. Single nucleotide polymorphism (SNP) allele discrimination assays were developed to distinguish T or C at position 28 of erm(41) and 23S rRNA rrl gene mutations at position 2058 and/or 2059. Truncated and full-size erm(41) genes were detected in 21/90 and 69/90 strains, respectively, with 64/69 displaying T at nucleotide position 28 and 5/69 containing C at that position. Fifteen isolates showed rrl mutations conferring clarithromycin resistance, including A2058G (11 isolates), A2058C (3 isolates), and A2059G (1 isolate). Targeted sequencing and phenotypic assessment of resistance concurred with molecular assay results. Interestingly, we also noted cooccurring strains harboring an active erm(41), inactive erm(41), and/or acquired mutational resistance, as well as slowly growing MAG strains and also strains displaying an inducible resistance phenotype within 5 days, long before the recommended 14-day extended incubation. PMID:26269619

  3. Co-option of Liver Vessels and Not Sprouting Angiogenesis Drives Acquired Sorafenib Resistance in Hepatocellular Carcinoma

    PubMed Central

    Kuczynski, Elizabeth A.; Yin, Melissa; Bar-Zion, Avinoam; Lee, Christina R.; Butz, Henriett; Man, Shan; Daley, Frances; Vermeulen, Peter B.; Yousef, George M.; Foster, F. Stuart

    2016-01-01

    Background: The anti-angiogenic Sorafenib is the only approved systemic therapy for advanced hepatocellular carcinoma (HCC). However, acquired resistance limits its efficacy. An emerging theory to explain intrinsic resistance to other anti-angiogenic drugs is ‘vessel co-option,’ ie, the ability of tumors to hijack the existing vasculature in organs such as the lungs or liver, thus limiting the need for sprouting angiogenesis. Vessel co-option has not been evaluated as a potential mechanism for acquired resistance to anti-angiogenic agents. Methods: To study sorafenib resistance mechanisms, we used an orthotopic human HCC model (n = 4-11 per group), where tumor cells are tagged with a secreted protein biomarker to monitor disease burden and response to therapy. Histopathology, vessel perfusion assessed by contrast-enhanced ultrasound, and miRNA sequencing and quantitative real-time polymerase chain reaction were used to monitor changes in tumor biology. Results: While sorafenib initially inhibited angiogenesis and stabilized tumor growth, no angiogenic ‘rebound’ effect was observed during development of resistance unless therapy was stopped. Instead, resistant tumors became more locally infiltrative, which facilitated extensive incorporation of liver parenchyma and the co-option of liver-associated vessels. Up to 75% (±10.9%) of total vessels were provided by vessel co-option in resistant tumors relative to 23.3% (±10.3%) in untreated controls. miRNA sequencing implicated pro-invasive signaling and epithelial-to-mesenchymal-like transition during resistance development while functional imaging further supported a shift from angiogenesis to vessel co-option. Conclusions: This is the first documentation of vessel co-option as a mechanism of acquired resistance to anti-angiogenic therapy and could have important implications including the potential therapeutic benefits of targeting vessel co-option in conjunction with vascular endothelial growth factor

  4. Bufalin reverses intrinsic and acquired drug resistance to cisplatin through the AKT signaling pathway in gastric cancer cells.

    PubMed

    Zhao, Hongyan; Zhao, Dali; Jin, Huilin; Li, Hongwei; Yang, Xiaoying; Zhuang, Liwei; Liu, Tiefu

    2016-08-01

    Cisplatin is the most common chemotherapeutic agent for gastric cancer (GC), however it activates AKT, which contributes to intrinsic and acquired resistance. Bufalin, a traditional Chinese medicine, shows significant anticancer activity by inhibiting the AKT pathway. It was therefore hypothesized that bufalin could counteract cisplatin resistance in GC cells. SGC7901, MKN‑45 and BGC823 human GC cells were cultured under normoxic and hypoxic conditions. Effects of cisplatin and bufalin on GC cells were measured by a cell counting kit, apoptosis was analyzed by flow cytometry, and immunoblotting was used to detect proteins associated with the AKT signaling pathway. It was demonstrated that bufalin synergized with cisplatin to inhibit proliferation and promote apoptosis of GC cells by diminishing the activation of cisplatin-induced AKT under normoxic and hypoxic conditions. Bufalin also inhibits cisplatin-activated molecules downstream of AKT that affect proliferation and apoptosis, including glycogen synthase kinase, mammalian target of rapamycin, ribosomal protein S6 Kinase and eukaryotic translation initiation factor-4E-binding protein-1. To investigate acquired cisplatin resistance, a cisplatin‑resistant cell line SGC7901‑CR was used. It was demonstrated that bufalin reversed acquired cisplatin resistance and significantly induced apoptosis through the AKT pathway. These results imply that bufalin could extend the therapeutic effect of cisplatin on GC cells when administered in combination. PMID:27357249

  5. Acquired resistance of non-small cell lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Nurwidya, Fariz; Takahashi, Fumiyuki; Murakami, Akiko; Kobayashi, Isao; Kato, Motoyasu; Shukuya, Takehito; Tajima, Ken; Shimada, Naoko; Takahashi, Kazuhisa

    2014-03-01

    Activation of epidermal growth factor receptor (EGFR) triggers anti-apoptotic signaling, proliferation, angiogenesis, invasion, metastasis, and drug resistance, which leads to development and progression of human epithelial cancers, including non-small cell lung cancer (NSCLC). Inhibition of EGFR by tyrosine kinase inhibitors such as gefitinib and erlotinib has provided a new hope for the cure of NSCLC patients. However, acquired resistance to gefitinib and erlotinib via EGFR-mutant NSCLC has occurred through various molecular mechanisms such as T790M secondary mutation, MET amplification, hepatocyte growth factor (HGF) overexpression, PTEN downregulation, epithelial-mesenchymal transition (EMT), and other mechanisms. This review will discuss the biology of receptor tyrosine kinase inhibition and focus on the molecular mechanisms of acquired resistance to tyrosine kinase inhibitors of EGFR-mutant NSCLC.

  6. Comparative efficacy of systemic acquired resistance-inducing compounds against rust infection in sunflower plants.

    PubMed

    Amzalek, Esther; Cohen, Yigal

    2007-02-01

    ABSTRACT Four inducers of systemic acquired resistance (SAR) were examined for their efficacy in controlling rust infection caused by Puccinia helianthi in sunflower plants. Of the four compounds, DL-3-amino-n-butanoic acid (DL-beta-aminobutyric acid [BABA]) was the most effective and sodium salicylate (NaSA) was the least effective in protecting against rust. In leaf disk assays, full protection was obtained with BABA at 25 mug/ml, benzodiathiazol-S-methyl ester (BTH) at 100 mug/ml, 2,6-di-chloroisonicotinic acid (INA) at 100 mug/ml, and NaSA at >200 mug/ml. L-2-amino-n-butanoic acid (AABA) was partially effective, whereas N-methyl-BABA and 4-aminobutnoic acid (GABA) were ineffective. The R-enantiomer of BABA, but not the S-enantiomer, was more effective than the racemic mixture. In intact plants, BABA applied as a foliar spray or a root dip, before or after (up to 48 h) inoculation, provided significant protection for 8 days. BTH, INA, and NaSA were less protective and more phytotoxic compared with BABA. BABA did not affect urediospore germination, germ tube growth, appressorial formation, or initial ingress of P. helianthi, but strongly suppressed mycelial colonization in the mesophyll and, consequently, pustule and urediospore formation. No accumulation of defense compounds (phenolics, lignin, or callose) was detected in BABA-treated inoculated or noninoculated plants. This is the first report on the activity of BABA against an obligate Basidomycete pathogen in planta.

  7. Acquired resistance to daunorubicin in a patient with acute myelogenous leukaemia.

    PubMed Central

    Smith, B. J.; Kundu, D.

    1976-01-01

    Measurement of in vitro and in vivo resistance to daunorubicin in AML patients suggests that there is no simple correlation between the two. In a patient who became clinically resistant and whose cells showed a parallel increased resistance in vitro we found the acquisition of multiple drug resistance. The increased in vitro resistance to daunorubicin could to some extent be overcome by conjugating daunorubicin to DNA. PMID:1066148

  8. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib.

    PubMed

    Giles, Keith M; Kalinowski, Felicity C; Candy, Patrick A; Epis, Michael R; Zhang, Priscilla M; Redfern, Andrew D; Stuart, Lisa M; Goodall, Gregory J; Leedman, Peter J

    2013-11-01

    Elevated expression and activity of the epidermal growth factor receptor (EGFR) is associated with development and progression of head and neck cancer (HNC) and a poor prognosis. Clinical trials with EGFR tyrosine kinase inhibitors (e.g., erlotinib) have been disappointing in HNC. To investigate the mechanisms mediating resistance to these agents, we developed an HNC cell line (HN5-ER) with acquired erlotinib resistance. In contrast to parental HN5 HNC cells, HN5-ER cells exhibited an epithelial-mesenchymal (EMT) phenotype with increased migratory potential, reduced E-cadherin and epithelial-associated microRNAs (miRNA), and elevated vimentin expression. Phosphorylated receptor tyrosine kinase profiling identified Axl activation in HN5-ER cells. Growth and migration of HN5-ER cells were blocked with a specific Axl inhibitor, R428, and R428 resensitized HN5-ER cells to erlotinib. Microarray analysis of HN5-ER cells confirmed the EMT phenotype associated with acquired erlotinib resistance, and identified activation of gene expression associated with cell migration and inflammation pathways. Moreover, increased expression and secretion of interleukin (IL)-6 and IL-8 in HN5-ER cells suggested a role for inflammatory cytokine signaling in EMT and erlotinib resistance. Expression of the tumor suppressor miR-34a was reduced in HN5-ER cells and increasing its expression abrogated Axl expression and reversed erlotinib resistance. Finally, analysis of 302 HNC patients revealed that high tumor Axl mRNA expression was associated with poorer survival (HR = 1.66, P = 0.007). In summary, our results identify Axl as a key mediator of acquired erlotinib resistance in HNC and suggest that therapeutic inhibition of Axl by small molecule drugs or specific miRNAs might overcome anti-EGFR therapy resistance. PMID:24026012

  9. Acquisition of a single EZH2 D1 domain mutation confers acquired resistance to EZH2-targeted inhibitors

    PubMed Central

    Baker, Theresa; Nerle, Sujata; Pritchard, Justin; Zhao, Boyang; Rivera, Victor M.

    2015-01-01

    Although targeted therapies have revolutionized cancer treatment, overcoming acquired resistance remains a major clinical challenge. EZH2 inhibitors (EZH2i), EPZ-6438 and GSK126, are currently in the early stages of clinical evaluation and the first encouraging signs of efficacy have recently emerged in the clinic. To anticipate mechanisms of resistance to EZH2i, we used a forward genetic platform combining a mutagenesis screen with next generation sequencing technology and identified a hotspot of secondary mutations in the EZH2 D1 domain (Y111 and I109). Y111D mutation within the WT or A677G EZH2 allele conferred robust resistance to both EPZ-6438 and GSK126, but it only drove a partial resistance within the Y641F allele. EZH2 mutants required histone methyltransferase (HMT) catalytic activity and the polycomb repressive complex 2 (PRC2) components, SUZ12 and EED, to drive drug resistance. Furthermore, D1 domain mutations not only blocked the ability of EZH2i to bind to WT and A677G mutant, but also abrogated drug binding to the Y641F mutant. These data provide the first cellular validation of the mechanistic model underpinning the oncogenic function of WT and mutant EZH2. Importantly, our findings suggest that acquired-resistance to EZH2i may arise in WT and mutant EZH2 patients through a single mutation that remains targetable by second generation EZH2i. PMID:26360609

  10. Benznidazole-Resistance in Trypanosoma cruzi Is a Readily Acquired Trait That Can Arise Independently in a Single Population

    PubMed Central

    Mejia, Ana Maria; Hall, Belinda S.; Taylor, Martin C.; Gómez-Palacio, Andrés; Wilkinson, Shane R.; Triana-Chávez, Omar; Kelly, John M.

    2012-01-01

    Benznidazole is the frontline drug used against Trypanosoma cruzi, the causative agent of Chagas disease. However, treatment failures are often reported. Here, we demonstrate that independently acquired mutations in the gene encoding a mitochondrial nitroreductase (TcNTR) can give rise to distinct drug-resistant clones within a single population. Following selection of benznidazole-resistant parasites, all clones examined had lost one of the chromosomes containing the TcNTR gene. Sequence analysis of the remaining TcNTR allele revealed 3 distinct mutant genes in different resistant clones. Expression studies showed that these mutant proteins were unable to activate benznidazole. This correlated with loss of flavin mononucleotide binding. The drug-resistant phenotype could be reversed by transfection with wild-type TcNTR. These results identify TcNTR as a central player in acquired resistance to benznidazole. They also demonstrate that T. cruzi has a propensity to undergo genetic changes that can lead to drug resistance, a finding that has implications for future therapeutic strategies. PMID:22551809

  11. A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib.

    PubMed

    Sinnberg, Tobias; Makino, Elena; Krueger, Marcel A; Velic, Ana; Macek, Boris; Rothbauer, Ulrich; Groll, Nicola; Pötz, Oliver; Czemmel, Stefan; Niessner, Heike; Meier, Friedegund; Ikenberg, Kristian; Garbe, Claus; Schittek, Birgit

    2016-06-01

    Acquired resistance to second generation BRAF inhibitors (BRAFis), like vemurafenib is limiting the benefits of long term targeted therapy for patients with malignant melanomas that harbor BRAF V600 mutations. Since many resistance mechanisms have been described, most of them causing a hyperactivation of the MAPK- or PI3K/AKT signaling pathways, one potential strategy to overcome BRAFi resistance in melanoma cells would be to target important common signaling nodes. Known factors that cause secondary resistance include the overexpression of receptor tyrosine kinases (RTKs), alternative splicing of BRAF or the occurrence of novel mutations in MEK1 or NRAS. In this study we show that β-catenin is stabilized and translocated to the nucleus in approximately half of the melanomas that were analyzed and which developed secondary resistance towards BRAFi. We further demonstrate that β-catenin is involved in the mediation of resistance towards vemurafenib in vitro and in vivo. Unexpectedly, β-catenin acts mainly independent of the TCF/LEF dependent canonical Wnt-signaling pathway in resistance development, which partly explains previous contradictory results about the role of β-catenin in melanoma progression and therapy resistance. We further demonstrate that β-catenin interacts with Stat3 after chronic vemurafenib treatment and both together cooperate in the acquisition and maintenance of resistance towards BRAFi. PMID:27428425

  12. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells.

    PubMed

    Karthik, Govindasamy-Muralidharan; Ma, Ran; Lövrot, John; Kis, Lorand Levente; Lindh, Claes; Blomquist, Lennart; Fredriksson, Irma; Bergh, Jonas; Hartman, Johan

    2015-10-10

    Breast cancer cells with stem cell characteristics (CSC) are a distinct cell population with phenotypic similarities to mammary stem cells. CSCs are important drivers of tumorigenesis and the metastatic process. Tamoxifen is the most widely used hormonal therapy for estrogen receptor (ER) positive cancers. In our study, tamoxifen was effective in reducing proliferation of ER + adherent cancer cells, but not their CSC population. We isolated, expanded and incubated CSC from seven breast cancers with or without tamoxifen. By genome-wide transcriptional analysis we identified tamoxifen-induced transcriptional pathways associated with ribosomal biogenesis and mRNA translation, both regulated by the mTOR-pathway. We observed induction of the key mTOR downstream targets S6K1, S6RP and 4E-BP1 in-patient derived CSCs by tamoxifen on protein level. Using the mTOR inhibitors rapamycin, everolimus and PF-04691502 (a dual PI3K/mTOR inhibitor) and in combination with tamoxifen, significant reduction in mammosphere formation was observed. Hence, we suggest that the CSC population play a significant role during endocrine resistance through activity of the mTOR pathway. In addition, tamoxifen further stimulates the mTOR-pathway but can be antagonized using mTOR-inhibitors. PMID:26208432

  13. Omega-3 free fatty acids inhibit tamoxifen-induced cell apoptosis.

    PubMed

    Wu, Shufan; Guo, Yang; Wu, Yikuan; Zhu, Shenglong; He, Zhao; Chen, Yong Q

    2015-04-01

    Fish oil, which contains omega-3 fatty acids mainly in the form of triglycerides, has benefits for reducing breast cancer risk, similar to tamoxifen action. However, it remains to be elucidated whether the combination of omega-3 free fatty acid (ω-3FFA) with tamoxifen leads to improved treatment in breast cancer. In this study, we observed that ω-3FFA induces MCF-7 cell apoptosis to suppress cell growth. The treatment of breast cancer cells with ω-3FFA attenuated tamoxifen-induced cell apoptosis. ω-3FFA and tamoxifen significantly increased Erk1/2 and Akt phosphorylation levels in a dose and time dependent manner. Compared to ω-3FFA alone, the combination of tamoxifen with ω-3FFA significantly increased Erk1/2 and Akt phosphorylation levels. Because Erk1/2 and Akt activation has been linked to tamoxifen-related anti-estrogen resistance in breast cancer patients, these results indicate that ω-3FFA may interfere with the effects of tamoxifen in the prevention of breast cancer risk.

  14. Acquired resistance to the second-generation androgen receptor antagonist enzalutamide in castration-resistant prostate cancer

    PubMed Central

    Kregel, Steven; Chen, James L.; Tom, Westin; Krishnan, Venkatesh; Kach, Jacob; Brechka, Hannah; Fessenden, Tim B.; Isikbay, Masis; Paner, Gladell P.

    2016-01-01

    Enzalutamide (MDV3100) is a second generation Androgen Receptor (AR) antagonist with proven efficacy in the treatment of castration resistant prostate cancer (CRPC). The majority of treated patients, however, develop resistance and disease progression and there is a critical need to identify novel targetable pathways mediating resistance. The purpose of this study was to develop and extensively characterize a series of enzalutamide-resistant prostate cancer cell lines. Four genetically distinct AR-positive and AR-pathway dependent prostate cancer cell lines (CWR-R1, LAPC-4, LNCaP, VCaP) were made resistant to enzalutamide by long-term culture (> 6 months) in enzalutamide. Extensive characterization of these lines documented divergent in vitro growth characteristics and AR pathway modulation. Enzalutamide-resistant LNCaP and CWR-R1 cells, but not LAPC-4 and VCAP cells, demonstrated increased castration-resistant and metastatic growth in vivo. Global gene expression analyses between short-term enzalutamide treated vs. enzalutamide-resistant cells identified both AR pathway and non-AR pathway associated changes that were restored upon acquisition of enzalutamide resistance. Further analyses revealed very few common gene expression changes between the four resistant cell lines. Thus, while AR-mediated pathways contribute in part to enzalutamide resistance, an unbiased approach across several cell lines demonstrates a greater contribution toward resistance via pleiotropic, non-AR mediated mechanisms. PMID:27036029

  15. Telomerase activity and telomere length in human tumor cells with acquired resistance to anticancer agents.

    PubMed

    Smith, V; Dai, F; Spitz, M; Peters, G J; Fiebig, H H; Hussain, A; Burger, A M

    2009-11-01

    Telomeres and telomerase are targets for anticancer drug development and specific inhibitors are currently under clinical investigation. However, it has been reported that standard cytotoxic agents can affect telomere length and telomerase activity suggesting that they also have of a role in drug resistance. in this study, telomere lengths and telomerase activity as well as drug efflux pump expression, glutathione (GSH) levels and polyadenosine-ribose polymerase (PARP) cleavage were assessed in a panel of human tumor cell lines made resistant to vindesine, gemcitabine and cisplatin. these included two lung cancer cell lines resistant to vindesine (LXFL 529L/Vind, LXFA 526L/Vind), a renal cancer cell line (RXF944L/Gem) and an ovarian cancer cell line (AG6000) resistant to gemcitabine, and one resistant to cisplatin (ADDP). The resistant clones were compared to their parental lines and evaluated for cross resistance to other cytotoxic agents. Several drug specific resistance patterns were found, and various complex patterns of cross resistance emerged from some cell lines, but these mechanisms of resistance could not be related to drug efflux pump expression, GSH levels or pARp cleavage. However, all displayed changes in telomerase activity and/or telomere length. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics.

  16. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog.

    PubMed

    Álvarez-Pérez, Sergio; García, Marta E; Cutuli, María Teresa; Fermín, María Luisa; Daza, María Ángeles; Peláez, Teresa; Blanco, José L

    2016-03-01

    Multi-azole resistance acquisition by Candida tropicalis after prolonged antifungal therapy in a dog with urinary candidiasis is reported. Pre- and post-azole treatment isolates were clonally related and had identical silent mutations in the ERG11 gene, but the latter displayed increased azole minimum inhibitory concentrations. A novel frameshift mutation in ERG3 was found in some isolates recovered after resistance development, so it appears unlikely that this mutation is responsible for multi-azole resistance.

  17. Proteomic Signatures of Acquired Letrozole Resistance in Breast Cancer: Suppressed Estrogen Signaling and Increased Cell Motility and Invasiveness*

    PubMed Central

    Tilghman, Syreeta L.; Townley, Ian; Zhong, Qiu; Carriere, Patrick P.; Zou, Jin; Llopis, Shawn D.; Preyan, Lynez C.; Williams, Christopher C.; Skripnikova, Elena; Bratton, Melyssa R.; Zhang, Qiang; Wang, Guangdi

    2013-01-01

    Aromatase inhibitors, such as letrozole, have become the first-line treatment for postmenopausal women with estrogen-dependent breast cancer. However, acquired resistance remains a major clinical obstacle. Previous studies demonstrated constitutive activation of the MAPK signaling, overexpression of HER2, and down-regulation of aromatase and ERα in letrozole-resistant breast cancer cells. Given the complex signaling network involved in letrozole-refractory breast cancer and the lack of effective treatment for hormone resistance, further investigation of aromatase inhibitor resistance by a novel systems biology approach may reveal previously unconsidered molecular changes that could be utilized as therapeutic targets. This study was undertaken to characterize for the first time global proteomic alterations occurring in a letrozole-resistant cell line. A quantitative proteomic analysis of the whole cell lysates of LTLT-Ca (resistant) versus AC-1 cells (sensitive) was performed to identify significant protein expression changes. A total of 1743 proteins were identified and quantified, of which 411 were significantly up-regulated and 452 significantly down-regulated (p < 0.05, fold change > 1.20). Bioinformatics analysis revealed that acquired letrozole resistance is associated with a hormone-independent, more aggressive phenotype. LTLT-Ca cells exhibited 84% and 138% increase in migration and invasion compared with the control cells. The ROCK inhibitor partially abrogated the enhanced migration and invasion of the letrozole-resistant cells. Flow cytometric analyses also demonstrated an increase in vimentin and twist expression in letrozole-resistance cells, suggesting an onset of epithelial to mesenchymal transition (EMT). Moreover, targeted gene expression arrays confirmed a 28-fold and sixfold up-regulation of EGFR and HER2, respectively, whereas ERα and pS2 were dramatically reduced by 28-fold and 1100-fold, respectively. Taken together, our study revealed global

  18. Multiple transport systems mediate virus-induced acquired resistance to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we report the phenomenon of acquired cross-tolerance to oxidative (UV-C and H2O2) stress in Nicotiana benthamiana plants infected with Potato virus X (PVX) and investigate the functional expression of transport systems in mediating this phenomenon. By combining multiple approaches, we...

  19. JNK Pathway Activation Modulates Acquired Resistance to EGFR/HER2-Targeted Therapies.

    PubMed

    Manole, Simin; Richards, Edward J; Meyer, Aaron S

    2016-09-15

    Resistance limits the effectiveness of receptor tyrosine kinase (RTK)-targeted therapies. Combination therapies targeting resistance mechanisms can considerably improve response, but will require an improved understanding of when particular combinations will be effective. One common form of resistance is bypass signaling, wherein RTKs not targeted by an inhibitor can direct reactivation of pathways essential for survival. Although this mechanism of resistance is well appreciated, it is unclear which downstream signaling events are responsible. Here, we apply a combined experimental- and statistical modeling-based approach to identify a set of pathway reactivation essential for RTK-mediated bypass resistance. Differences in the downstream pathway activation provided by particular RTKs lead to qualitative differences in the capacity of each receptor to drive therapeutic resistance. We identify and validate that the JNK pathway is activated during and strongly modulates bypass resistance. These results identify effective therapeutic combinations that block bypass-mediated resistance and provide a basic understanding of this network-level change in kinase dependence that will inform the design of prognostic assays for identifying effective therapeutic combinations in individual patients. Cancer Res; 76(18); 5219-28. ©2016 AACR. PMID:27450453

  20. Recall of acquired cellular resistance in mice by antigens from killed Brucella.

    PubMed

    Halliburton, B L; Hinsdill, R D

    1972-01-01

    Mice infected with Brucella abortus 19 were challenged intravenously with Listeria monocytogenes. Spleen assays to determine the number of viable Listeria cells present revealed that these mice were highly resistant to Listeria when challenged on day 17 of the Brucella infection. Resistance was absent in mice challenged on the 5th day and was declining in mice challenged on the 33rd day. Resistance could not be detected by day 49 of the Brucella infection but could be recalled by the injection of antigens from smooth B. abortus 2308. Thus, extracted antigens appeared to be as effective in recall as the live cells used in earlier studies. Similar injections of extracts from rough B. abortus 45/20, or from B. ovis REO 198, were also effective in recalling resistance; this suggests that the smooth surface agglutinogen may be relatively unimportant in recall. PMID:4632467

  1. Update on the prevention and control of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA).

    PubMed

    Skov, Robert; Christiansen, Keryn; Dancer, Stephanie J; Daum, Robert S; Dryden, Matthew; Huang, Yhu-Chering; Lowy, Franklin D

    2012-03-01

    The rapid dissemination of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA) since the early 2000s and the appearance of new successful lineages is a matter of concern. The burden of these infections varies widely between different groups of individuals and in different regions of the world. Estimating the total burden of disease is therefore problematic. Skin and soft-tissue infections, often in otherwise healthy young individuals, are the most common clinical manifestation of these infections. The antibiotic susceptibilities of these strains also vary, although they are often more susceptible to 'traditional' antibiotics than related hospital-acquired strains. Preventing the dissemination of these organisms throughout the general population requires a multifaceted approach, including screening and decolonisation, general hygiene and cleaning measures, antibiotic stewardship programmes and, in the future, vaccination. The current evidence on the prevention and control of CA-MRSA is appraised and summarised in this review.

  2. Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer

    PubMed Central

    Li, Rui; Hu, Zhongliang; Sun, Shi-Yong; Chen, Zhuo G.; Owonikoko, Taofeek K.; Sica, Gabriel L.; Ramalingam, Suresh S.; Curran, Walter J.; Khuri, Fadlo R.; Deng, Xingming

    2013-01-01

    The emergence of resistance to epidermal growth factor receptor (EGFR) inhibitor therapy is a major clinical problem for patients with non-small cell lung cancer (NSCLC). The mechanisms underlying tumor resistance to inhibitors of the kinase activity of EGFR are not fully understood. Here we found that inhibition of EGFR by erlotinib induces STAT3 phosphorylation at Tyr705 in association with increased Bcl2/Bcl-XL at both mRNA and protein levels in various human lung cancer cells. PTPMeg2 is a physiologic STAT3 phosphatase that can directly dephosphorylate STAT3 at the Tyr705 site. Intriguingly, treatment of cells with erlotinib results in downregulation of PTPMeg2 without activation of STAT3 kinases (i.e. JAK2 or c-Src), suggesting that erlotinib enhanced phosphorylation of STAT3 may occur, at least in part, from suppression of PTPMeg2 expression. Since elevated levels of phosphorylated STAT3 (pSTAT3), Bcl2 and Bcl-XL were observed in erlotinib-resistant lung cancer (HCC827/ER) cells as compared to erlotinib-sensitive parental HCC827 cells, we postulate that erlotinib-activated STAT3/Bcl2/Bcl-XL survival pathway may contribute to acquired resistance to erlotinib. Both blockage of Tyr705 phosphorylation of STAT3 by niclosamide and depletion of STAT3 by RNA interference in HCC827/ER cells reverses erlotinib resistance. Niclosamide in combination with erlotinib potently represses erlotinib-resistant lung cancer xenografts in association with increased apoptosis in tumor tissues, suggesting that niclosamide can restore sensitivity to erlotinib. These findings uncover a novel mechanism of erlotinib resistance and provide a novel approach to overcome resistance by blocking the STAT3/Bcl2/Bcl-XL survival signaling pathway in human lung cancer. PMID:23894143

  3. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer.

    PubMed

    Misale, Sandra; Arena, Sabrina; Lamba, Simona; Siravegna, Giulia; Lallo, Alice; Hobor, Sebastijan; Russo, Mariangela; Buscarino, Michela; Lazzari, Luca; Sartore-Bianchi, Andrea; Bencardino, Katia; Amatu, Alessio; Lauricella, Calogero; Valtorta, Emanuele; Siena, Salvatore; Di Nicolantonio, Federica; Bardelli, Alberto

    2014-02-19

    Colorectal cancers (CRCs) that are sensitive to the anti-epidermal growth factor receptor (EGFR) antibodies cetuximab or panitumumab almost always develop resistance within several months of initiating therapy. We report the emergence of polyclonal KRAS, NRAS, and BRAF mutations in CRC cells with acquired resistance to EGFR blockade. Regardless of the genetic alterations, resistant cells consistently displayed mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) activation, which persisted after EGFR blockade. Inhibition of MEK1/2 alone failed to impair the growth of resistant cells in vitro and in vivo. An RNA interference screen demonstrated that suppression of EGFR, together with silencing of MEK1/2, was required to hamper the proliferation of resistant cells. Indeed, concomitant pharmacological blockade of MEK and EGFR induced prolonged ERK inhibition and severely impaired the growth of resistant tumor cells. Heterogeneous and concomitant mutations in KRAS and NRAS were also detected in plasma samples from patients who developed resistance to anti-EGFR antibodies. A mouse xenotransplant from a CRC patient who responded and subsequently relapsed upon EGFR therapy showed exquisite sensitivity to combinatorial treatment with MEK and EGFR inhibitors. Collectively, these results identify genetically distinct mechanisms that mediate secondary resistance to anti-EGFR therapies, all of which reactivate ERK signaling. These observations provide a rational strategy to overcome the multifaceted clonal heterogeneity that emerges when tumors are treated with targeted agents. We propose that MEK inhibitors, in combination with cetuximab or panitumumab, should be tested in CRC patients who become refractory to anti-EGFR therapies.

  4. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM

    PubMed Central

    Stojcheva, Nina; Schechtmann, Gennadi; Sass, Steffen; Roth, Patrick; Florea, Ana-Maria; Stefanski, Anja; Stühler, Kai; Wolter, Marietta; Müller, Nikola S.; Theis, Fabian J.; Weller, Michael; Reifenberger, Guido; Happold, Caroline

    2016-01-01

    Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RT→TMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo. PMID:26887050

  5. Emergence of Multidrug-Resistant Campylobacter Species Isolates with a Horizontally Acquired rRNA Methylase

    PubMed Central

    Wang, Yang; Zhang, Maojun; Deng, Fengru; Shen, Zhangqi; Wu, Congming; Zhang, Jianzhong

    2014-01-01

    Antibiotic-resistant Campylobacter constitutes a serious threat to public health, and resistance to macrolides is of particular concern, as this class of antibiotics is the drug of choice for clinical therapy of campylobacteriosis. Very recently, a horizontally transferrable macrolide resistance mediated by the rRNA methylase gene erm(B) was reported in a Campylobacter coli isolate, but little is known about the dissemination of erm(B) among Campylobacter isolates and the association of erm(B)-carrying isolates with clinical disease. To address this question and facilitate the control of antibiotic-resistant Campylobacter, we determined the distribution of erm(B) in 1,554 C. coli and Campylobacter jejuni isolates derived from food-producing animals and clinically confirmed human diarrheal cases. The results revealed that 58 of the examined isolates harbored erm(B) and exhibited high-level resistance to macrolides, and most were recent isolates, derived in 2011-2012. In addition, the erm(B)-positive isolates were all resistant to fluoroquinolones, another clinically important antibiotic used for treating campylobacteriosis. The erm(B) gene is found to be associated with chromosomal multidrug resistance genomic islands (MDRGIs) of Gram-positive origin or with plasmids of various sizes. All MDRGIs were transferrable to macrolide-susceptible C. jejuni by natural transformation under laboratory conditions. Molecular typing of the erm(B)-carrying isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) identified diverse genotypes and outbreak-associated diarrheal isolates. Molecular typing also suggested zoonotic transmission of erm(B)-positive Campylobacter. These findings reveal an emerging and alarming trend of dissemination of erm(B) and MDRGIs in Campylobacter and underscore the need for heightened efforts to control their further spread. PMID:24982085

  6. Mechanisms of acquired resistance to insulin-like growth factor 1 receptor inhibitor in MCF-7 breast cancer cell line.

    PubMed

    Ekyalongo, Roudy Chiminch; Mukohara, Toru; Kataoka, Yu; Funakoshi, Yohei; Tomioka, Hideo; Kiyota, Naomi; Fujiwara, Yutaka; Minami, Hironobu

    2013-04-01

    The purpose of this study was to clarify the mechanism of acquired resistance to the insulin-like growth factor-1 receptor (IGF-1R) tyrosine kinase inhibitor NVP-AEW541. We developed an acquired resistant model by continuously exposing MCF-7 breast cancer cells to NVP-AEW541 (MCF-7-NR). MCF-7 and MCF-7-NR were comparatively analyzed for cell signaling and cell growth. While phosphorylation of Akt was completely inhibited by 3 μM NVP-AEW541 in both MCF-7 and MCF-7-NR, phosphorylation of S6K remained high only in MCF-7-NR, suggesting a disconnection between Akt and S6K in MCF-7-NR. Consistently, the mTOR inhibitor everolimus inhibited phosphorylation of S6K and cell growth equally in both lines. Screening of both lines for phosphorylation of 42 receptor tyrosine kinases with and without NVP-AEW541 showed that Tyro3 phosphorylation remained high only in MCF-7-NR. Protein expression of Tyro3 was found to be higher in MCF-7-NR than in MCF-7. Gene silencing of Tyro3 using siRNA resulted in reduced cell growth and cyclin D1 expression in both lines. While Tyro3 expression was inhibited by NVP-AEW541 and everolimus in MCF-7, it was reduced only by everolimus in MCF-7-NR. These findings suggested that cyclin D1 expression was regulated in a S6K/Tyro3-dependent manner in both MCF-7 and MCF-7-NR, and that the disconnection between IGF-1R/Akt and S6K may enable MCF-7-NR to keep cyclin D1 high in the presence of NVP-AEW541. In summary, acquired resistance to NVP-AEW541 appears to result from IGF-1R/Akt-independent activation of S6K and expression of Tyro3 and cyclin D1.

  7. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City.

    PubMed

    Nzalie, Rolf Nyah-Tuku; Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high. PMID:27667998

  8. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City

    PubMed Central

    Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high.

  9. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City

    PubMed Central

    Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high. PMID:27667998

  10. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City.

    PubMed

    Nzalie, Rolf Nyah-Tuku; Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high.

  11. Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater.

    PubMed

    Varela, Ana Rita; Nunes, Olga C; Manaia, Célia M

    2016-01-15

    Members of the genus Aeromonas are recognized carriers of antibiotic resistance in aquatic environments. However, their importance on the spread of resistance from hospital effluents to the environment is poorly understood. Quinolone resistant Aeromonas spp. (n = 112) isolated from hospital effluent (HE) and from raw (RWW) and treated wastewater (TWW) of the receiving urban wastewater treatment plant (UWTP) were characterized. Species identification and genetic intraspecies diversity were assessed based on the 16S rRNA, cpn60 and gyrB genes sequence analysis. The antibiotic resistance phenotypes and genotypes (qnrA, qnrB, qnrC, qnrD, qnrS, qnrVC; qepA; oqxAB; aac(6′)-Ib-cr; blaOXA; incU) were analyzed in function of the origin and taxonomic group. Most isolates belonged to the species Aeromonas caviae and Aeromonas hydrophila (50% and 41%, respectively). The quinolone and the beta-lactamase resistance genes aac(6′)-Ib-cr and blaOXA, including gene blaOXA-101, identified for the first time in Aeromonas spp., were detected in 58% and 56% of the isolates, respectively, with identical prevalence in HE and UWTP wastewater. In contrast, the gene qnrS2 was observed mainly in isolates from the UWTP (51%) and rarely in HE isolates (3%), suggesting that its origin is not the clinical setting. Bacterial groups and genes that allow the identification of major routes of antibiotic resistance dissemination are valuable tools to control this problem. In this study, it was concluded that members of the genus Aeromonas harboring the genes aac(6′)-Ib-cr and blaOXA are relevant tracers of antibiotic resistance dissemination in wastewater habitats, while those yielding the gene qnrS2 allow the traceability from non-clinical sources.

  12. Leiomyomas in patients receiving Tamoxifen.

    PubMed

    Leo, L; Lanza, A; Re, A; Tessarolo, M; Bellino, R; Lauricella, A; Wierdis, T

    1994-01-01

    In literature there have been only 8 cases of unavoidable laparotomy due to uterine leiomyomas performed in patients with breast cancer on Tamoxifen (TAM). Our article describes two cases of rapidly growing leiomyomas in patients treated with TAM: one of these underwent abdominal hysterectomy while the second stopped taking TAM and began therapy with Triptorelin. This therapeutical alternative could be a useful choice. PMID:8070124

  13. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas.

    PubMed

    Quail, Daniela F; Bowman, Robert L; Akkari, Leila; Quick, Marsha L; Schuhmacher, Alberto J; Huse, Jason T; Holland, Eric C; Sutton, James C; Joyce, Johanna A

    2016-05-20

    Macrophages accumulate with glioblastoma multiforme (GBM) progression and can be targeted via inhibition of colony-stimulating factor-1 receptor (CSF-1R) to regress high-grade tumors in animal models of this cancer. However, whether and how resistance emerges in response to sustained CSF-1R blockade is unknown. We show that although overall survival is significantly prolonged, tumors recur in >50% of mice. Gliomas reestablish sensitivity to CSF-1R inhibition upon transplantation, indicating that resistance is tumor microenvironment-driven. Phosphatidylinositol 3-kinase (PI3K) pathway activity was elevated in recurrent GBM, driven by macrophage-derived insulin-like growth factor-1 (IGF-1) and tumor cell IGF-1 receptor (IGF-1R). Combining IGF-1R or PI3K blockade with CSF-1R inhibition in recurrent tumors significantly prolonged overall survival. Our findings thus reveal a potential therapeutic approach for treating resistance to CSF-1R inhibitors. PMID:27199435

  14. Tamoxifen Regulates Cell Fate Through Mitochondrial Estrogen Receptor Beta in Breast Cancer

    PubMed Central

    Razandi, Mahnaz; Pedram, Ali; Jordan, V Craig; Fuqua, Suzanne; Levin, Ellis R

    2012-01-01

    Tamoxifen has both cytostatic and cytotoxic properties for breast cancer. Tamoxifen engaged mitochondrial estrogen receptor beta (ERβ) as an antagonist in MCF-7 BK cells, increasing reactive oxygen species (ROS) concentrations from the mitochondria that were required for cytotoxicity. In part this derived from tamoxifen down-regulating manganese superoxide dismutase (MnSOD) activity through nitrosylating tyrosine 34, thereby increasing ROS. ROS activated protein kinase C delta and c-jun N-terminal kinases, resulting in the mitochondrial translocation of Bax and cytochrome C release. Interestingly, tamoxifen failed to cause high ROS levels or induce cell death in MCF7BK-TR cells due to stimulation of MnSOD activity through agonistic effects at mitochondrial ERβ. In several mouse xenograft models, lentiviral shRNA-induced knockdown of MnSOD caused tumors that grew in the presence of tamoxifen to undergo substantial apoptosis. Tumor MnSOD and mitochondrial ERβ are therefore targets for therapeutic intervention to reverse tamoxifen resistance and enhance a cell death response. PMID:22907432

  15. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  16. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    PubMed Central

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  17. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    SciTech Connect

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  18. Estrogen, tamoxifen, and Akt modulate expression of putative housekeeping genes in breast cancer cells.

    PubMed

    Shah, Khyati N; Faridi, Jesika S

    2011-07-01

    Clinically, Akt overexpression has been associated with tamoxifen resistance, and multiple in vitro breast cancer models of tamoxifen resistance have been developed. In order to study the mechanism of this tamoxifen resistance, differential gene expression studies have been performed utilizing quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Since accurate data normalization requires the use of a stable reference gene, the goal of this study was to identify the most stable reference gene for RT-qPCR (from a panel of putative housekeeping genes) that remains unaltered despite estrogen or tamoxifen treatment or stable overexpression of active Akt. Gene expression of nine candidate genes was determined in parental and Akt overexpressing MCF-7 breast cancer cells treated with estrogen, tamoxifen, or vehicle, and gene stability was analyzed using two different statistical models. Based on our results, we suggest RPL13A as suitable internal reference gene that is both stable and remains unaltered in MCF-7 cells regardless of estrogen or tamoxifen treatment or Akt overexpression. We also validated that expression levels for RPL13A, as well as RPLP0 (another member of the RPL protein family), remain unaltered after estrogen and tamoxifen treatment in the ER positive ZR-75-1 cell line and ER negative MDA-MB-468 breast cancer cell line. Both RPL13A and RPLP0 levels were also stable in normal and tumor mammary tissue from Her2 overexpressing mice. In addition, our work emphasizes the importance of a preliminary study to validate each reference gene that will be used for RT-qPCR.

  19. Ductus arteriosus aneurysm with community-acquired methicillin-resistant Staphylococcus aureus infection and spontaneous rupture: a potentially fatal quandary.

    PubMed

    Stewart, Audra; Dyamenahalli, Umesh; Greenberg, S Bruce; Drummond-Webb, Jonathan

    2006-06-01

    We present the case of a 6-month-old previously healthy girl who presented with high fever, labored breathing, and an enlarged cardiac silhouette on her chest radiograph. Comprehensive evaluation discovered a ductus arteriosus aneurysm and pericardial effusion with methicillin-resistant Staphylococcus aureus bacteremia. Despite pericardiocentesis and appropriate intravenous antibiotics, there was rapid enlargement of the aneurysm and accumulation of echogenic material within the ductus arteriosus aneurysm. Infected aneurysm rupture was identified during emergency surgery. This infant also had vocal cord paresis, a likely complication of the surgery. The clinical course, diagnosis, and treatment of this patient are discussed. Infection of a ductus arteriosus or an infected ductal arteriosus aneurysm is a rare and potentially fatal clinical entity. In the era of increasing community-acquired methicillin-resistant S aureus infections, this is a diagnosis that requires a high index of suspicion.

  20. ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance.

    PubMed

    Liu, Liang; Zuo, Lian Fu; Guo, Jian Wen

    2014-04-01

    Resistance to chemotherapeutic agents is the main reason for treatment failure in patients with cancer. The primary mechanism of multidrug resistance (MDR) is the overexpression of drug efflux transporters, including ATP‑binding cassette transporter G2 (ABCG2). To the best of our knowledge, the MDR mechanisms of esophageal cancer have not been described. An adriamycin (ADM)-resistant subline, Eca109/ADM, was generated from the Eca109 esophageal cancer cell line by a stepwise selection in ADM from 0.002 to 0.02 ng/µl. The resulting subline, designated Eca109/ADM, revealed a 3.29-fold resistance against ADM compared with the Eca109 cell line. The ABCG2 gene expression in the Eca109/ADM cells was increased compared with that of the Eca109 cells. The cellular properties of the Eca109/ADM cells were detected by reverse transcription polymerase chain reaction (RT-PCR), flow cytometry and western blotting. The ABCG2 expression levels were detected by RT-PCR and flow cytometry, and the drug efflux effect was detected by flow cytometry. The present study detected the correlation between ABCG2 and the multidrug resistance of esophageal cancer. ABCG2 gene expression and the drug efflux effect of the Eca109/ADM cells were increased compared with those of the Eca109 cells. Collectively, the results of this study indicated that the overexpression of ABCG2 in the Eca109/ADM cells resulted in drug efflux, which may be responsible for the development of esophageal cancer MDR.

  1. Pharmacogenomic approach for the identification of novel determinants of acquired resistance to oxaliplatin in colorectal cancer.

    PubMed

    Martinez-Cardús, Anna; Martinez-Balibrea, Eva; Bandrés, Eva; Malumbres, Raquel; Ginés, Alba; Manzano, José Luís; Taron, Miquel; Garcia-Foncillas, Jesús; Abad, Albert

    2009-01-01

    Oxaliplatin is a third-generation platinum agent used in colorectal cancer treatment. Oxaliplatin resistance acquisition is a complex process mainly based on alteration of genes and pathways involved in its mechanism of action. Therefore, our purpose was to perform a gene expression screening in an in vitro model to identify genes that could play a role in oxaliplatin resistance acquisition processes. Four colorectal cancer cell lines and their oxaliplatin-resistant derived sublines were compared. Microarray analysis was done using Human 19K Oligo Array Slides. RNA from cells were hybridized with a commercial RNA reference sample and labeled with both fluorochromes Cy3 and Cy5. Data were analyzed by hierarchical clustering method. Subsequently, quantitative real-time PCR (qRT-PCR) was used to corroborate microarray data, considering as positively validated those genes that showed significant differences in expression levels between groups and a correlation between microarray and qRT-PCR data. By microarray analysis, 32 candidate genes were identified. After validation process by qRT-PCR, the genes AKT1, CDK5, TRIP, GARP, RGS11, and UGCGL1 were positively validated. The 3 first genes proved to be involved in regulation of nuclear factor-kappabeta antiapoptotic transcription factor previously related to drug resistance, and the other 3 genes are novel finds. We have identified 6 genes related to oxaliplatin resistance acquisition. These findings are of paramount importance to understand these processes better and open new lines of study to elucidate the relevance of this pharmacogenomic approach into the clinic.

  2. A novel acquired ALK F1245C mutation confers resistance to crizotinib in ALK-positive NSCLC but is sensitive to ceritinib.

    PubMed

    Kodityal, Sandeep; Elvin, Julia A; Squillace, Rachel; Agarwal, Nikita; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J; Ou, Sai-Hong Ignatius

    2016-02-01

    The emergence of acquired anaplastic lymphoma kinase (ALK) resistant mutations is a common molecular mechanism underpinning disease progression during crizotinib treatment of ALK-positive (ALK+) non-small cell lung cancer (NSCLC) patients. Identifying acquired resistance mutations in ALK is paramount for tailoring future therapy with second generation ALK inhibitors and beyond. Comprehensive genomic profiling using hybrid-capture next generation sequencing has been successful in identifying acquired ALK resistance mutations. Here we described the emergence of an ALK F1245C mutation in an advanced ALK+ NSCLC patient (EML4-ALK variant 3a/b) who developed slow disease progression after a durable response to crizotinib. The patient was eventually switched to ceritinib with on-going clinical response. This is the first patient report that ALK F1245C is an acquired resistance mutation to crizotinib that can be overcome by ceritinib. PMID:26775591

  3. Synthesis of novel 1,8-acridinediones derivatives: Investigation of MDR reversibility on breast cancer cell lines T47D and tamoxifen-resistant T47D.

    PubMed

    Moallem, S A; Dehghani, N; Mehri, S; Shahsavand, Sh; Alibolandi, M; Hadizadeh, F

    2015-01-01

    Multi drug resistance (MDR) is a serious obstacle in the management of breast cancer. Therefore, overcoming MDR using novel anticancer agents is a top priority for medicinal chemists. It was found that dihydropyridines lacking calcium antagonistic activity (e.g acridinediones) possess MDR modifier potency. In this study, the capability of four novel acridine-1,8-diones derivatives 3a-d were evaluated as MDR reversing agents. In addition, the relationship between structural properties and biological effects of synthesized compounds was discussed. In vitro cytotoxicity of acridine-1,8-diones 3a-d derivatives in combination with doxorubicin (DOX) on T47D and tomoxifen-resistant T47D (TAMR-6) breast cancer cell lines were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Drug resistant index (DRI), which is equal to the ratio of IC50 in drug-resistant cells over IC50 in drug-sensitive cells, was calculated for each substance. Flowcytometry experiments were also implemented to distinguish cells undergoing apoptosis from those undergoing necrosis. The results from MTT and flowcytometry experiments indicated that 1 nM 3c derivative along with DOX significantly (P<0.05) increased the DOX cytotoxicity in T47D and TAMR-6 breast cancer cell lines. Synthesized compounds 3a and 3b also at concentrations of 1 nM with DOX significantly increased the cytotoxicity of DOX on T47D and TAMR-6 breast cancer cell lines. Meanwhile, 3d derivative with DOX did not exhibit good synergistic effect on cytotoxic activity of DOX, and slightly increased DOX cytotoxicity in both cell lines. Our results proposed that 3c may be an attractive lead compound for further development as a chemotherapeutic agent for MDR breast cancer therapy in combination with routine chemotherapeutic agents such as DOX. PMID:26600848

  4. Acquired Activated Protein C Resistance, Thrombophilia and Adverse Pregnancy Outcomes: A Study Performed in an Irish Cohort of Pregnant Women

    PubMed Central

    Sedano-Balbás, Sara; Lyons, Mark; Cleary, Brendan; Murray, Margaret; Gaffney, Geraldine; Maher, Majella

    2011-01-01

    The combination of thrombophilia and pregnancy increases the risk of thrombosis and the potential for adverse outcomes during pregnancy. The most significant common inherited risk factor for thrombophilia is activated protein C resistance (APCR), a poor anticoagulant response of APC in haemostasis, which is mainly caused by an inherited single-nucleotide polymorphism (SNP), factor V G1691A (FV Leiden) (FVL), referred as inherited APCR. Changes in the levels of coagulation factors: FV, FVIII, and FIX, and anticoagulant factors: protein S (PS) and protein C (PC) can alter APC function causing acquired APCR. Prothrombin G20210A and methylenetetrahydrofolate reductase (MTHFR) C677T are prothrombotic SNPs which in association with APCR can also increase the risk of thrombosis amongst Caucasians. In this study, a correlation between an acquired APCR phenotype and increased levels of factors V, VIII, and IX was demonstrated. Thrombophilic mutations amongst our acquired APCR pregnant women cohort are relatively common but do not appear to exert a severe undue adverse effect on pregnancy. PMID:21869933

  5. In Vitro Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms

    PubMed Central

    Jensen, Rasmus Hare; Cuenca-Estrella, Manuel

    2015-01-01

    ASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity against Aspergillus and Candida glabrata. We compared its in vitro activity against wild-type and azole-resistant A. fumigatus and A. terreus isolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-type A. fumigatus isolates, 24 A. fumigatus isolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), and A. terreus isolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50 values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) against A. fumigatus CYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistant A. fumigatus isolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active against A. terreus CYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayed in vitro activity against A. fumigatus and A. terreus isolates which was independent of the presence or absence of azole target gene resistance mutations in A. fumigatus. The findings are promising at a time when azole-resistant A. fumigatus

  6. In Vitro Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms.

    PubMed

    Arendrup, Maiken Cavling; Jensen, Rasmus Hare; Cuenca-Estrella, Manuel

    2016-01-01

    ASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity against Aspergillus and Candida glabrata. We compared its in vitro activity against wild-type and azole-resistant A. fumigatus and A. terreus isolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-type A. fumigatus isolates, 24 A. fumigatus isolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), and A. terreus isolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50 values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) against A. fumigatus CYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistant A. fumigatus isolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active against A. terreus CYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayed in vitro activity against A. fumigatus and A. terreus isolates which was independent of the presence or absence of azole target gene resistance mutations in A. fumigatus. The findings are promising at a time when azole-resistant A. fumigatus

  7. In Vitro Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms.

    PubMed

    Arendrup, Maiken Cavling; Jensen, Rasmus Hare; Cuenca-Estrella, Manuel

    2015-11-09

    ASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity against Aspergillus and Candida glabrata. We compared its in vitro activity against wild-type and azole-resistant A. fumigatus and A. terreus isolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-type A. fumigatus isolates, 24 A. fumigatus isolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), and A. terreus isolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50 values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) against A. fumigatus CYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistant A. fumigatus isolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active against A. terreus CYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayed in vitro activity against A. fumigatus and A. terreus isolates which was independent of the presence or absence of azole target gene resistance mutations in A. fumigatus. The findings are promising at a time when azole-resistant A. fumigatus

  8. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen

    PubMed Central

    Mendes-Pereira, Ana M.; Sims, David; Dexter, Tim; Fenwick, Kerry; Assiotis, Ioannis; Kozarewa, Iwanka; Mitsopoulos, Costas; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J.; Ashworth, Alan

    2012-01-01

    Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,487 genes on the cellular response to tamoxifen. This screen, along with subsequent validation experiments, identifies a compendium of genes whose silencing causes tamoxifen resistance (including BAP1, CLPP, GPRC5D, NAE1, NF1, NIPBL, NSD1, RAD21, RARG, SMC3, and UBA3) and also a set of genes whose silencing causes sensitivity to this endocrine agent (C10orf72, C15orf55/NUT, EDF1, ING5, KRAS, NOC3L, PPP1R15B, RRAS2, TMPRSS2, and TPM4). Multiple individual genes, including NF1, a regulator of RAS signaling, also correlate with clinical outcome after tamoxifen treatment. PMID:21482774

  9. Addition of a histone deacetylase inhibitor redirects tamoxifen-treated breast cancer cells into apoptosis, which is opposed by the induction of autophagy

    PubMed Central

    Thomas, Scott; Thurn, Kenneth T.; Biçaku, Elona; Marchion, Douglas C.; Münster, Pamela N.

    2013-01-01

    Modulation of estrogen signaling is one of the most successful modalities for the treatment of estrogen receptor (ER)-positive breast cancer, yet de novo and acquired resistance are frequent. Recent data suggests that the induction of autophagy may play a considerable role in promoting tumor cell survival and resistance to anti-estrogen therapy. Hence, bypassing autophagy may offer a novel strategy to enhance the anti-tumor efficacy of anti-estrogens. Histone deacetylases (HDAC) are involved in the regulation of steroid hormone receptor mediated cell signaling and their inhibition potentiates the anti-tumor effects of anti-estrogens. However, the mechanism underlying this anti-tumor activity is poorly understood. In this report, we show that the addition of an HDAC inhibitor redirects the response of ER-positive breast cancer cells when treated with tamoxifen from growth arrest to apoptotic cell death. This redirection requires functional ER signaling and is mediated by a depletion of Bcl-2 and an induction of Bax and Bak, manifesting in cytochrome C release and PARP cleavage. With combined treatment, a subpopulation of cells are refractory to apoptosis and exhibit a strong induction of autophagy. Inhibition of autophagy in these cells, using siRNA directed against Beclin-1 or treatment with chloroquine, further promotes the induction of apoptosis. Thus, supporting prior reports that autophagy acts as a survival mechanism, our findings demonstrate that HDAC and autophagy inhibition directs autophagy-protected cells into apoptotic cell death, which may impair development of tamoxifen resistance. PMID:21298336

  10. Fluoroquinolone susceptibility testing of Salmonella enterica: detection of acquired resistance and selection of zone diameter breakpoints for levofloxacin and ofloxacin.

    PubMed

    Sjölund-Karlsson, Maria; Howie, Rebecca L; Crump, John A; Whichard, Jean M

    2014-03-01

    Fluoroquinolones (e.g., ciprofloxacin) have become a mainstay for treating severe Salmonella infections in adults. Fluoroquinolone resistance in Salmonella is mostly due to mutations in the topoisomerase genes, but plasmid-mediated quinolone resistance (PMQR) mechanisms have also been described. In 2012, the Clinical and Laboratory Standards Institute (CLSI) revised the ciprofloxacin interpretive criteria (breakpoints) for disk diffusion and MIC test methods for Salmonella. In 2013, the CLSI published MIC breakpoints for Salmonella to levofloxacin and ofloxacin, but breakpoints for assigning disk diffusion results to susceptible (S), intermediate (I), and resistant (R) categories are still needed. In this study, the MICs and inhibition zone diameters for nalidixic acid, ciprofloxacin, levofloxacin, and ofloxacin were determined for 100 clinical isolates of nontyphi Salmonella with or without resistance mechanisms. We confirmed that the new levofloxacin MIC breakpoints resulted in the highest category agreement (94%) when plotted against the ciprofloxacin MICs and that the new ofloxacin MIC breakpoints resulted in 92% category agreement between ofloxacin and ciprofloxacin. By applying the new MIC breakpoints in the MIC zone scattergrams for levofloxacin and ofloxacin, the following disk diffusion breakpoints generated the least number of errors: ≥28 mm (S), 19 to 27 mm (I), and ≤18 mm (R) for levofloxacin and ≥25 mm (S), 16 to 24 mm (I), and ≤15 mm (R) for ofloxacin. Neither the levofloxacin nor the ofloxacin disk yielded good separation of isolates with and without resistance mechanisms. Further studies will be needed to develop a disk diffusion assay that efficiently detects all isolates with acquired resistance to fluoroquinolones.

  11. Drug Efflux Transporters Are Overexpressed in Short-Term Tamoxifen-Induced MCF7 Breast Cancer Cells.

    PubMed

    Krisnamurti, Desak Gede Budi; Louisa, Melva; Anggraeni, Erlia; Wanandi, Septelia Inawati

    2016-01-01

    Tamoxifen is the first line drug used in the treatment of estrogen receptor-positive (ER+) breast cancer. The development of multidrug resistance (MDR) to tamoxifen remains a major challenge in the treatment of cancer. One of the mechanisms related to MDR is decrease of drug influx via overexpression of drug efflux transporters such as P-glycoprotein (P-gp/MDR1), multidrug resistance associated protein (MRP), or BCRP (breast cancer resistance protein). We aimed to investigate whether the sensitivity of tamoxifen to the cells is maintained through the short period and whether the expressions of several drug efflux transporters have been upregulated. We exposed MCF7 breast cancer cells with tamoxifen 1 μM for 10 passages (MCF7 (T)). The result showed that MCF7 began to lose their sensitivity to tamoxifen from the second passage. MCF7 (T) also showed a significant increase in all transporters examined compared with MCF7 parent cells. The result also showed a significant increase of CC50 in MCF7 (T) compared to that in MCF7 (97.54 μM and 3.04 μM, resp.). In conclusion, we suggest that the expression of several drug efflux transporters such as P-glycoprotein, MRP2, and BCRP might be used and further studied as a marker in the development of tamoxifen resistance. PMID:26981116

  12. Estimating Trends in the Proportion of Transmitted and Acquired HIV Drug Resistance in a Long Term Observational Cohort in Germany

    PubMed Central

    Schmidt, Daniel; Kollan, Christian; Fätkenheuer, Gerd; Schülter, Eugen; Stellbrink, Hans-Jürgen; Noah, Christian; Jensen, Björn-Erik Ole; Stoll, Matthias; Bogner, Johannes R.; Eberle, Josef; Meixenberger, Karolin; Kücherer, Claudia; Hamouda, Osamah; Bartmeyer, Barbara

    2014-01-01

    Objective We assessed trends in the proportion of transmitted (TDR) and acquired (ADR) HIV drug resistance and associated mutations between 2001 and 2011 in the German ClinSurv-HIV Drug Resistance Study. Method The German ClinSurv-HIV Drug Resistance Study is a subset of the German ClinSurv-HIV Cohort. For the ClinSurv-HIV Drug Resistance Study all available sequences isolated from patients in five study centres of the long term observational ClinSurv-HIV Cohort were included. TDR was estimated using the first viral sequence of antiretroviral treatment (ART) naïve patients. One HIV sequence/patient/year of ART experienced patients was considered to estimate the proportion of ADR. Trends in the proportion of HIV drug resistance were calculated by logistic regression. Results 9,528 patients were included into the analysis. HIV-sequences of antiretroviral naïve and treatment experienced patients were available from 34% (3,267/9,528) of patients. The proportion of TDR over time was stable at 10.4% (95% CI 9.1–11.8; p for trend = 0.6; 2001–2011). The proportion of ADR among all treated patients was 16%, whereas it was high among those with available HIV genotypic resistance test (64%; 1,310/2,049 sequences; 95% CI 62–66) but declined significantly over time (OR 0.8; 95% CI 0.77–0.83; p for trend<0.001; 2001–2011). Viral load monitoring subsequent to resistance testing was performed in the majority of treated patients (96%) and most of them (67%) were treated successfully. Conclusions The proportion of TDR was stable in this study population. ADR declined significantly over time. This decline might have been influenced by broader resistance testing, resistance test guided therapy and the availability of more therapeutic options and not by a decline in the proportion of TDR within the study population. PMID:25148412

  13. Azithromycin Dose To Maximize Efficacy and Suppress Acquired Drug Resistance in Pulmonary Mycobacterium avium Disease

    PubMed Central

    Deshpande, Devyani; Pasipanodya, Jotam G.

    2016-01-01

    Mycobacterium avium complex is now the leading mycobacterial cause of chronic pneumonia in the United States. Macrolides and ethambutol form the backbone of the regimen used in the treatment of pulmonary disease. However, therapy outcomes remain poor, with microbial cure rates of 4% in cavitary disease. The treatment dose of azithromycin has mostly been borrowed from that used to treat other bacterial pneumonias; there are no formal dose-response studies in pulmonary M. avium disease and the optimal dose is unclear. We utilized population pharmacokinetics and pharmacokinetics/pharmacodynamics-derived azithromycin exposures associated with optimal microbial kill or resistance suppression to perform 10,000 patient Monte Carlo simulations of dose effect studies for daily azithromycin doses of 0.5 to 10 g. The currently recommended dose of 500 mg per day achieved the target exposures in 0% of patients. Exposures associated with optimal kill and resistance suppression were achieved in 87 and 54% of patients, respectively, only by the very high dose of 8 g per day. The azithromycin susceptibility breakpoint above which patients failed therapy on the very high doses of 8 g per day was an MIC of 16 mg/liter, suggesting a critical concentration of 32 mg/liter, which is 8-fold lower than the currently used susceptibility breakpoint of 256 mg/liter. If the standard dose of 500 mg a day were used, then the critical concentration would fall to 2 mg/liter, 128-fold lower than 256 mg/liter. The misclassification of resistant isolates as susceptible could explain the high failure rates of current doses. PMID:26810646

  14. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata

    NASA Technical Reports Server (NTRS)

    Stewart, Patricia W.; Chapes, Stephen K.

    2003-01-01

    Genetics plays a substantial role in host resistance in many host-parasite interactions. We examined the prevalence of naturally acquired infection with Syphacia obvelata in a number of mouse strains housed in a non-barrier facility. These mice, which included cross-bred and congenic, inbred strains on various genetic backgrounds, differ in the loci for the immune function genes--major histocompatibility complex class II (MHCII), toll-like receptor 4 (Tlr4), and solute carrier family 11, member 1 (Slc11a1)--which allowed comparisons of the impact of these genes on resistance to pinworm infection. Male and female mice of various ages were sampled over an 18-month period; infection was determined by use of the cellophane tape test. Results indicated that mice that were MHCII+/+ had a significantly lower prevalence of infection than did mice that were MHCII-/-. Differences were not seen between male and female mice. Although MHCII+/+ mice had an age-associated decrease in infection prevalence, such decrease was not seen in MHCII-/- mice. In contrast, infection prevalence in mice with the normal Tlr4 gene (Tlr4(LPS-n/LPS-n)) gene did not differ significantly compared with that in mice that were homozygous for either the point mutation (Tlr4(LPS-d/LPS-d)) or deletion (Tlr4(LPS-del/LPS-del)) of that gene. Likewise, the presence (Sle11a1r/r) or absence (Slc11a1s/s) of functional alleles for Slc11a1 had no effect on the prevalence of infection with S. obvelata. In conclusion, presence of MHCII, but not Tlr4 or Slc11a1 significantly influences prevalence of naturally acquired infection with S. obvelata. These data justify further comprehensive analyses of the immune components that are involved in pinworm resistance.

  15. Acquired resistance to innate immune clearance promotes Klebsiella pneumoniae ST258 pulmonary infection

    PubMed Central

    Ahn, Danielle; Peñaloza, Hernán; Wang, Zheng; Wickersham, Matthew; Parker, Dane; Patel, Purvi; Koller, Antonius; Chen, Emily I.; Bueno, Susan M.; Uhlemann, Anne-Catrin; Prince, Alice

    2016-01-01

    Adaptive changes in the genome of a locally predominant clinical isolate of the multidrug-resistant Klebsiella pneumoniae ST258 (KP35) were identified and help to explain the selection of this strain as a successful pulmonary pathogen. The acquisition of 4 new ortholog groups, including an arginine transporter, enabled KP35 to outcompete related ST258 strains lacking these genes. KP35 infection elicited a monocytic response, dominated by Ly6Chi monocytic myeloid-derived suppressor cells that lacked phagocytic capabilities, expressed IL-10, arginase, and antiinflammatory surface markers. In comparison with other K. pneumoniae strains, KP35 induced global changes in the phagocytic response identified with proteomics, including evasion of Ca2+ and calpain activation necessary for phagocytic killing, confirmed in functional studies with neutrophils. This comprehensive analysis of an ST258 K. pneumoniae isolate reveals ongoing genetic adaptation to host microenvironments and innate immune clearance mechanisms that complements its repertoire of antimicrobial resistance genes and facilitates persistence in the lung. PMID:27777978

  16. Electric stimulations mediated beta lactam resistance reversal and correlation with growth dynamics of community acquired methicillin resistant Staphylococcus aureus.

    PubMed

    Kainthola, Anup; Uniyal, Akshat; Srivastava, Nidhi; Bhatt, Ajay B

    2015-08-01

    The community associated methicillin resistant Staphylococcus aureus (CA-MRSA) is a serious issue of public health. Here, we conducted an experimental approach to determine: (i) the optimal significant stimulation range of electrical current for effective checking of CA-MRSA growth; (ii) the effect of electrical stimulations on methicillin susceptibility and possible beta lactam resistance reversal; and (iii) the variation in the level of ATP as function of exposure to electric current. An 8 chambered electrical system was developed for DC flow in control and test sets, with and without drug (oxacillin 4 mg/ml). Measurement of growth by CFU/ml and spectrometry, susceptibility and ATP levels were calculated and interpreted. Linear pattern in reduction of ATP was observed with respect to the intensity of electric current (EC) and an enhanced inhibitory effect was explicit with 1000 microampere (μA) with 30 min exposure. At 4000 μA exposure to DC at 180 min and in combination of drug (μA+D), the growth of CA-MRSA was substantially checked to 0.23 absorbance in comparison to current without drug and the effect of DC electrical current to the culture showed that 10 μA, 100 μA and 4000 μA current exposure in combination of oxacillin (μA+D), markedly reduced the CFU to an average of 256.4. ATP level was linearly reduced with exposure to EC.

  17. Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes

    PubMed Central

    Hendrickx, Sarah; Eberhardt, Eline; Garcia-Hernandez, Raquel; Lachaud, Laurence; Cotton, James; Sanders, Mandy; Cuypers, Bart; Imamura, Hideo; Dujardin, Jean-Claude; Delputte, Peter; Cos, Paul; Caljon, Guy; Gamarro, Francisco; Castanys, Santiago

    2016-01-01

    During the last decade miltefosine (MIL) has been used as first-line treatment for visceral leishmaniasis in endemic areas with antimonial resistance, but a decline in clinical effectiveness is now being reported. While only two MIL-resistant Leishmania infantum strains from HIV co-infected patients have been documented, phenotypic MIL-resistance for L. donovani has not yet been identified in the laboratory. Hence, a better understanding of the factors contributing to increased MIL-treatment failure is necessary. Given the paucity of defined MIL-resistant L. donovani clinical isolates, this study used an experimental amastigote-selected MIL-resistant L. infantum isolate (LEM3323). In-depth exploration of the MIL-resistant phenotype was performed by coupling genomic with phenotypic data to gain insight into gene function and the mutant phenotype. A naturally MIL-resistant L. infantum clinical isolate (LEM5159) was included to compare both datasets. Phenotypically, resistance was evaluated by determining intracellular amastigote susceptibility in vitro and actual MIL-uptake. Genomic analysis provided supportive evidence that the resistance selection model on intracellular amastigotes can be a good proxy for the in vivo field situation since both resistant strains showed mutations in the same inward transporter system responsible for the acquired MIL-resistant phenotype. In line with previous literature findings in promastigotes, our data confirm a defective import machinery through inactivation of the LiMT/LiRos3 protein complex as the main mechanism for MIL-resistance also in intracellular amastigotes. Whole genome sequencing analysis of LEM3323 revealed a 2 base pair deletion in the LiMT gene that led to the formation an early stop codon and a truncation of the LiMT protein. Interestingly, LEM5159 revealed mutations in both the LiMT and LiRos3 genes, resulting in an aberrant expression of the LiMT protein. To verify that these mutations were indeed accountable for

  18. Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes.

    PubMed

    Mondelaers, Annelies; Sanchez-Cañete, Maria P; Hendrickx, Sarah; Eberhardt, Eline; Garcia-Hernandez, Raquel; Lachaud, Laurence; Cotton, James; Sanders, Mandy; Cuypers, Bart; Imamura, Hideo; Dujardin, Jean-Claude; Delputte, Peter; Cos, Paul; Caljon, Guy; Gamarro, Francisco; Castanys, Santiago; Maes, Louis

    2016-01-01

    During the last decade miltefosine (MIL) has been used as first-line treatment for visceral leishmaniasis in endemic areas with antimonial resistance, but a decline in clinical effectiveness is now being reported. While only two MIL-resistant Leishmania infantum strains from HIV co-infected patients have been documented, phenotypic MIL-resistance for L. donovani has not yet been identified in the laboratory. Hence, a better understanding of the factors contributing to increased MIL-treatment failure is necessary. Given the paucity of defined MIL-resistant L. donovani clinical isolates, this study used an experimental amastigote-selected MIL-resistant L. infantum isolate (LEM3323). In-depth exploration of the MIL-resistant phenotype was performed by coupling genomic with phenotypic data to gain insight into gene function and the mutant phenotype. A naturally MIL-resistant L. infantum clinical isolate (LEM5159) was included to compare both datasets. Phenotypically, resistance was evaluated by determining intracellular amastigote susceptibility in vitro and actual MIL-uptake. Genomic analysis provided supportive evidence that the resistance selection model on intracellular amastigotes can be a good proxy for the in vivo field situation since both resistant strains showed mutations in the same inward transporter system responsible for the acquired MIL-resistant phenotype. In line with previous literature findings in promastigotes, our data confirm a defective import machinery through inactivation of the LiMT/LiRos3 protein complex as the main mechanism for MIL-resistance also in intracellular amastigotes. Whole genome sequencing analysis of LEM3323 revealed a 2 base pair deletion in the LiMT gene that led to the formation an early stop codon and a truncation of the LiMT protein. Interestingly, LEM5159 revealed mutations in both the LiMT and LiRos3 genes, resulting in an aberrant expression of the LiMT protein. To verify that these mutations were indeed accountable for

  19. Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation.

    PubMed

    Sun, He; Lang, Zhihong; Zhu, Li; Huang, Dafang

    2012-10-01

    The advantages of gene 'stacking' or 'pyramiding' are obvious in genetically modified (GM) crops, and several different multi-transgene-stacking methods are available. Using linker peptides for multiple gene transformation is considered to be a good method to meet a variety of needs. In our experiment, the Bt cry1Ah gene, which encodes the insect-resistance protein, and the mG ( 2 ) -epsps gene, which encodes the glyphosate-tolerance protein, were connected by a 2A or LP4/2A linker. Linker 2A is a peptide from the foot-and-mouth disease virus (FMDV) that has self-cleavage activity. LP4 is a peptide from Raphanus sativus seeds that has a recognition site and is cleaved by a protease. LP4/2A is a hybrid peptide that contains the first 9 amino acids of LP4 and 20 amino acids from 2A. We used the linker peptide to construct four coordinated expression vectors: pHAG, pHLAG, pGAH and pGLAH. Two single gene expression vectors, pSAh and pSmG(2), were used as controls. The six expression vectors and the pCAMBIA2301 vector were transferred into tobacco by Agrobacterium tumefaciens-mediated transformation, and 529 transformants were obtained. Molecular detection and bioassay detection data demonstrated that the transgenic tobaccos possessed good pest resistance and glyphosate tolerance. The two genes in the fusion vector were expressed simultaneously. The plants with the genes linked by the LP4/2A peptide showed better pest resistance and glyphosate tolerance than the plants with the genes linked by 2A. The expression level of the two genes linked by LP4/2A was not significantly different from the single gene vector. Key message The expression level of the two genes linked by LP4/2A was higher than those linked by 2A and was not significantly different from the single gene vector.

  20. Multiple myeloma acquires resistance to EGFR inhibitor via induction of pentose phosphate pathway.

    PubMed

    Chen, Yan; Huang, Ruibin; Ding, Jianghua; Ji, Dexiang; Song, Bing; Yuan, Liya; Chang, Hong; Chen, Guoan

    2015-04-20

    Multiple myeloma (MM) was characterized by frequent mutations in KRAS/NRAS/BRAF within the EGFR pathway that could induce resistance to EGFR inhibitors. We here report that EGFR inhibition solely exhibited moderate inhibition in KRAS/NRAS/BRAF wildtype (triple-WT) MM cells, whilst had no effect in myeloma cells with any of the mutated genes. The moderate inhibitory effect was conferred by induction of pentose phosphate pathway (PPP) when cells were treated with Gefitinib, the EGFR inhibitor. Combination of Gefitinib with PPP inhibitor 6AN effected synergistically in triple-WT cells. The inhibition could be restored by addition of NADPH. Dual EGFR/ERBB2 inhibitor Afatinib also exhibited similar effects. Further genetic silencing of EGFR, ERBB2 and mTOR indicated that major effect conferred by ERBB2 was via convergence to EGFR pathway in MM. Our results contributed to the individualized targeted therapy with EGFR inhibitors in MM.

  1. Molecular Characterization of Acquired Enrofloxacin Resistance in Mycoplasma synoviae Field Isolates

    PubMed Central

    Gerchman, I.; Mikula, I.; Gobbo, F.; Catania, S.; Levisohn, S.

    2013-01-01

    The in vitro activity of enrofloxacin against 73 Mycoplasma synoviae field strains isolated in Israel and Europe was determined by broth microdilution. Decreased susceptibility to enrofloxacin was identified in 59% of strains, with the MICs ranging from 1 to >16 μg/ml. The estimated MIC50 and MIC90 values for enrofloxacin were 2 and 8 μg/ml, respectively. Moreover, this study showed that 92% of recent Israeli field isolates (2009 to 2011) of M. synoviae have MICs of ≥2 μg/ml to enrofloxacin. Comparison of the quinolone resistance-determining regions (QRDRs) in M. synoviae isolates revealed a clear correlation between the presence of one of the amino acid substitutions Asp79-Asn, Thr80-Ala/Ile, Ser81-Pro, and Asp84-Asn/Tyr/His of the ParC QRDR and decreased susceptibility to enrofloxacin (MIC, ≥1 μg/ml). Amino acid substitutions at positions GyrA 87, GyrB 401/402, and ParE 420/454 were also identified, but there was no clear-cut correlation with susceptibility to enrofloxacin. Comparison of vlhA molecular profiles revealed the presence of 9 different genotypes in the Israeli M. synoviae field isolates and 10 genotypes in the European isolates; only one vlhA genotype (type 4) was identified in both cohorts. Based on results of vlhA molecular typing, several mechanisms for emergence and dissemination of Israeli enrofloxacin-resistant M. synoviae isolates are suggested. PMID:23612192

  2. Acquired resistance to combination treatment through loss of synergy with MEK and PI3K inhibitors in colorectal cancer

    PubMed Central

    Bhattacharya, Bhaskar; Low, Sarah Hong Hui; Chong, Mei Ling; Chia, Dilys; Koh, King Xin; Sapari, Nur Sabrina; Kaye, Stanley; Hung, Huynh; Benoukraf, Touati; Soong, Richie

    2016-01-01

    Historically, understanding of acquired resistance (AQR) to combination treatment has been based on knowledge of resistance to its component agents. To test whether an altered drug interaction could be an additional factor in AQR to combination treatment, models of AQR to combination and single agent MEK and PI3K inhibitor treatment were generated. Combination indices indicated combination treatment of PI3K and MEK inhibitors remained synergistic in cells with AQR to single agent but not combination AQR cells. Differences were also observed between the models in cellular phenotypes, pathway signaling and drug cross-resistance. Genomics implicated TGFB2-EDN1 overexpression as candidate determinants in models of AQR to combination treatment. Supplementation of endothelin in parental cells converted synergism to antagonism. Silencing of TGFB2 or EDN1 in cells with AQR conferred synergy between PI3K and MEK inhibitor. These results highlight that AQR to combination treatment may develop through alternative mechanisms to those of single agent treatment, including a change in drug interaction. PMID:27081080

  3. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma

    PubMed Central

    Noll, Elisa M.; Eisen, Christian; Stenzinger, Albrecht; Espinet, Elisa; Muckenhuber, Alexander; Klein, Corinna; Vogel, Vanessa; Klaus, Bernd; Nadler, Wiebke; Rösli, Christoph; Lutz, Christian; Kulke, Michael; Engelhardt, Jan; Zickgraf, Franziska M.; Espinosa, Octavio; Schlesner, Matthias; Jiang, Xiaoqi; Kopp-Schneider, Annette; Neuhaus, Peter; Bahra, Marcus; Sinn, Bruno V.; Eils, Roland; Giese, Nathalia A.; Hackert, Thilo; Strobel, Oliver; Werner, Jens; Büchler, Markus W.; Weichert, Wilko; Trumpp, Andreas; Sprick, Martin R.

    2016-01-01

    Although subtypes of pancreatic ductal adenocarcinoma (PDAC) were described, this malignancy is clinically still treated as a single disease. Here, we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers—HNF1A and KRT81—that enable stratification of tumors into different subtypes by immunohistochemistry. Individuals bearing tumors of these subtypes show significant differences in overall survival and their tumors differ in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or shRNA-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4 alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and is highly expressed in several additional malignancies. These findings designate CYP3A5 as predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance. PMID:26855150

  4. Hospital-Acquired Methicillin-resistant Staphylococcus aureus Bacteremia Related to Medicare Antibiotic Prescriptions: A State-Level Analysis

    PubMed Central

    Sumida, Wesley K; Taira, Deborah A; Davis, James W; Seto, Todd B

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) results in almost half of all deaths caused by antibiotic resistant organisms. Current evidence suggests that MRSA infections are associated with antibiotic use. This study examined state-level data to determine whether outpatient antibiotic use was associated with hospital-acquired MRSA (HA-MRSA) infections. The 2013 Centers for Disease Control and Prevention (CDC) Healthcare-Associated Infections Progress Report was used to obtain HA-MRSA infection rates. Data on the number of antibiotic prescriptions with activity towards methicillin-sensitive Staphylococcus aureus (MSSA) at the state level were obtained from the 2013 Medicare Provider Utilization and Payment Data: Part D Prescriber Public Use File. Pearson's correlation coefficient was used to analyze the relationship between the number of antibiotic prescriptions and HA-MRSA infection rates. The average number of HA-MRSA infections was 0.026 per 1000 persons with the highest rates concentrated in Southeastern and Northeastern states. The average number of outpatient prescriptions per capita was 0.74 with the highest rates in Southeastern states. A significant correlation (ρ = 0.64, P <.001) between infections and prescriptions was observed, even after adjusting for non-reporting hospitals. This association provides evidence of the importance of appropriate antibiotic prescribing. Prescriber and heat map data may be useful for targeting antimicrobial stewardship programs in an effort to manage appropriate antibiotic use to help stop antibiotic resistance. PMID:27738564

  5. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma.

    PubMed

    Noll, Elisa M; Eisen, Christian; Stenzinger, Albrecht; Espinet, Elisa; Muckenhuber, Alexander; Klein, Corinna; Vogel, Vanessa; Klaus, Bernd; Nadler, Wiebke; Rösli, Christoph; Lutz, Christian; Kulke, Michael; Engelhardt, Jan; Zickgraf, Franziska M; Espinosa, Octavio; Schlesner, Matthias; Jiang, Xiaoqi; Kopp-Schneider, Annette; Neuhaus, Peter; Bahra, Marcus; Sinn, Bruno V; Eils, Roland; Giese, Nathalia A; Hackert, Thilo; Strobel, Oliver; Werner, Jens; Büchler, Markus W; Weichert, Wilko; Trumpp, Andreas; Sprick, Martin R

    2016-03-01

    Although subtypes of pancreatic ductal adenocarcinoma (PDAC) have been described, this malignancy is clinically still treated as a single disease. Here we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers--HNF1A and KRT81--that enable stratification of tumors into different subtypes by using immunohistochemistry. Individuals with tumors of these subtypes showed substantial differences in overall survival, and their tumors differed in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and it is highly expressed in several additional malignancies. These findings designate CYP3A5 as a predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance. PMID:26855150

  6. Draft Genome Sequence of a Pathogenic O86:H25 Sequence Type 57 Escherichia coli Strain Isolated from Poultry and Carrying 12 Acquired Antibiotic Resistance Genes.

    PubMed

    Jones-Dias, Daniela; Manageiro, Vera; Sampaio, Daniel Ataíde; Vieira, Luís; Caniça, Manuela

    2015-01-01

    Escherichia coli is a commensal bacterium that is frequently associated with multidrug-resistant zoonotic and foodborne infections. Here, we report the 5.6-Mbp draft genome sequence of an E. coli recovered from poultry, which encodes multiple acquired antibiotic resistance determinants, virulence factors, pathogenicity determinants, and mobile genetic elements. PMID:26404585

  7. Draft Genome Sequence of Extremely Drug-Resistant Pseudomonas aeruginosa (ST357) Strain CMC_VB_PA_B22862 Isolated from a Community-Acquired Bloodstream Infection

    PubMed Central

    Pragasam, Agila Kumari; Yesurajan, Francis; Doss C, George Priya; George, Biju; Devanga Ragupathi, Naveen Kumar; Walia, Kamini

    2016-01-01

    Extremely drug-resistant Pseudomonas aeruginosa strains causing severe infections have become a serious concern across the world. Here, we report draft genome sequence of P. aeruginosa with an extremely drug-resistant profile isolated from a patient with community-acquired bloodstream infection in India. PMID:27795257

  8. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant

    PubMed Central

    Goldson, Stephen L.; Tomasetto, Federico

    2016-01-01

    Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990’s. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect

  9. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant.

    PubMed

    Goldson, Stephen L; Tomasetto, Federico

    2016-01-01

    Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990's. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect on

  10. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant

    PubMed Central

    Goldson, Stephen L.; Tomasetto, Federico

    2016-01-01

    Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990’s. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect

  11. Surveillance of hospital-acquired methicillin-resistant Staphylococcus aureus in South Australia.

    PubMed

    Cooper, Celia; Ochota, Meredith A

    2003-01-01

    In September 2001, the South Australian state-wide methicillin-resistant Staphylococcus aureus (MRSA) surveillance system was expanded to include three surveillance indicators namely: estimated MRSA burden, MRSA morbidity and estimated MRSA acquisition. The last two indicator rates have been stratified into intensive care unit (ICU) versus non-ICU. Between September 2001 and March 2002, state-wide MRSA burden rates (prevalence) ranged from 27.5 to 39.8 per 10,000 occupied bed days (OBDs). Acquisition rates ranged from 28.2 to 69.0 per 10,000 OBDs (ICU) and 6.3 to 10.1 per 10,000 OBDs (non-ICU). Morbidity rates ranged from 12.9 to 43.1 per 10,000 OBDs (ICU) and 3.0 to 5.0 per 10,000 OBDs (non-ICU). In association with the changes to surveillance indicators, a new monthly surveillance report was developed. Assuring confidentiality to individual contributing hospitals has been a major consideration in the development of the data collection system. Individual contributors have access only to their own indicator rates and pooled state-wide indicator rates. Contributing institutions are urged to use great caution if wishing to compare their own rates with state-wide rates. In particular, contributors are asked to take inter-institutional differences in MRSA burden and casemix complexity into account when making such comparisons.

  12. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

    PubMed

    Chang, Yi-Hsuan; Yan, Hao-Zhi; Liou, Ruey-Fen

    2015-02-01

    The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response.

  13. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy

    PubMed Central

    Sotillo, Elena; Barrett, David M.; Black, Kathryn L; Bagashev, Asen; Oldridge, Derek; Wu, Glendon; Sussman, Robyn; Lanauze, Claudia; Ruella, Marco; Gazzara, Matthew R.; Martinez, Nicole M.; Harrington, Colleen T.; Chung, Elaine Y.; Perazzelli, Jessica; Hofmann, Ted J.; Maude, Shannon L.; Raman, Pichai; Barrera, Alejandro; Gill, Saar; Lacey, Simon F.; Melenhorst, Jan J.; Allman, David; Jacoby, Elad; Fry, Terry; Mackall, Crystal; Barash, Yoseph; Lynch, Kristen W.; Maris, John M.; Grupp, Stephan A.; Thomas-Tikhonenko, Andrei

    2015-01-01

    The CD19 antigen, expressed on most B-cell acute lymphoblastic leukemias (B-ALL), can be targeted with chimeric antigen receptor–armed T cells (CART-19), but relapses with epitope loss occur in 10% to 20% of pediatric responders. We detected hemizygous deletions spanning the CD19 locus and de novo frameshift and missense mutations in exon 2 of CD19 in some relapse samples. However, we also discovered alternatively spliced CD19 mRNA species, including one lacking exon 2. Pull-down/siRNA experiments identified SRSF3 as a splicing factor involved in exon 2 retention, and its levels were lower in relapsed B-ALL. Using genome editing, we demonstrated that exon 2 skipping bypasses exon 2 mutations in B-ALL cells and allows expression of the N-terminally truncated CD19 variant, which fails to trigger killing by CART-19 but partly rescues defects associated with CD19 loss. Thus, this mechanism of resistance is based on a combination of deleterious mutations and ensuing selection for alternatively spliced RNA isoforms. Significance CART-19 yield 70% response rates in patients with B-ALL, but also produce escape variants. We discovered that the underlying mechanism is the selection for preexisting alternatively spliced CD19 isoforms with the compromised CART-19 epitope. This mechanism suggests a possibility of targeting alternative CD19 ectodomains, which could improve survival of patients with B-cell neoplasms. PMID:26516065

  14. Staphylococcal enterotoxin B toxic shock syndrome induced by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA).

    PubMed

    Kashiwada, Takeru; Kikuchi, Ken; Abe, Shinji; Kato, Hidehito; Hayashi, Hiroki; Morimoto, Taisuke; Kamio, Koichiro; Usuki, Jiro; Takeda, Shinhiro; Tanaka, Keiji; Imanishi, Ken'ichi; Yagi, Junji; Azuma, Arata; Gemma, Akihiko

    2012-01-01

    We herein report a case of toxic shock syndrome (TSS) associated with the 2009 pandemic H1N1 (pH1N1) influenza virus and a community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infection in a 16-year-old Vietnamese girl. Staphylococcal enterotoxin B (SEB) was detected in the patient's serum, and the level of anti-SEB antibodies was found to be elevated. A flow cytometric analysis showed evidence of activated SEB-reactive Vβ3+ and Vβ12+ T cells. These data suggest that the CA-MRSA-induced activation of SEB-reactive T cells may cause TSS in patients with pH1N1 virus infection. Moreover, this is the first report describing immunological confirmation of SEB contributing directly to TSS in a patient fulfilling the diagnostic criteria of TSS.

  15. Metabolomic analysis reveals the relationship between AZI1 and sugar signaling in systemic acquired resistance of Arabidopsis.

    PubMed

    Wang, Xiao-Yan; Li, Dian-Zhen; Li, Qi; Ma, Yan-Qin; Yao, Jing-Wen; Huang, Xuan; Xu, Zi-Qin

    2016-10-01

    The function of AZI1 in systemic acquired resistance of Arabidopsis was confirmed by investigation of the phenotypic features of wild-type Col-0, AZI1 T-DNA knockout and AZI1 overexpressing plants after infection with virulent and avirulent Pseudomonas syringae. Real-time quantitative PCR and Northern blotting analyses showed that the transcript abundances of PR genes increased significantly in local and systemic leaves of wild-type Col-0 and AZI1 overexpressing plants challenged with avirulent P. syringae, whereas the mRNA accumulation of PR genes was obviously attenuated in local and systemic leaves of AZI1 T-DNA knockout plants after localized infiltration with avirulent Psm avrRpm1. The changes of metabolomic profiles in distal leaves of three types of materials infected with avirulent P. syringae were determined by (1)H NMR spectrometry and data mining showed that the soluble carbonhydrates might function as signal substances in the systemic immunity of Arabidopsis. At the same time, the expression of the sugar signaling genes in local and distal leaves after infection of avirulent P. syringae was compared. As a result, it was found that the transcript abundances of sugar signaling genes, including SUS1, SUS2, SUS3, SUS6, SUT1, HXK1, HXK2, SNRK1.2, ERD6, TPS1, TOR, SNRK1.1, SNRK1.3 and bZIP11, were obviously changed in distal leaves of different materials with the modulated AZI1 activities, indicating sugar-related genes are involved in regulation of the systemic immunity mediated by AZI1. These results also illustrated that the immune system associated with sugar molecules probably was an important part of the systemic acquired resistance in Arabidopsis.

  16. Increased thymidylate synthase in L1210 cells possessing acquired resistance to N10-propargyl-5,8-dideazafolic acid (CB3717): development, characterization, and cross-resistance studies

    SciTech Connect

    Jackman, A.L.; Alison, D.L.; Calvert, A.H.; Harrap, K.R.

    1986-06-01

    The properties are described of a mutant L1210 cell line (L1210:C15) with acquired resistance (greater than 200-fold) to the thymidylate synthase (TS) inhibitor N10-propargyl-5,8-dideazafolic acid. TS was overproduced 45-fold and was accompanied by a small increase in the activity of dihydrofolate reductase (2.6-fold). Both the level of resistance and enzyme activities were maintained in drug-free medium (greater than 300 generations). Failure of N10-propargyl-5,8-dideazafolic acid to suppress the (/sup 3/H)-2'-deoxyuridine incorporation into the acid-precipitable material of the resistant line supported the evidence that TS overproduction was the mechanism of resistance; consequently the L1210:C15 cells were largely cross-resistant to another (but weaker) TS inhibitor, 5,8-dideazafolic acid. Minimal cross-resistance was observed to the dihydrofolate reductase inhibitors methotrexate and 5-methyl-5,8-dideazaaminopterin (5- and 2-fold, respectively). L1210 and L1210:C15 cells were, however, equally sensitive to 5-fluorodeoxyuridine (FdUrd), an unexpected finding since a metabolite, 5-fluorodeoxyuridine monophosphate, is a potent TS inhibitor; however, this cytotoxicity against the L1210:C15 cells was antagonized by coincubation with 5 microM folinic acid although folinic acid potentiated the cytotoxicity of FdUrd to the N10-propargyl-5,8-dideazafolic acid-sensitive L1210 line. Thymidine was much less effective as a FdUrd protecting agent in the L1210:C15 when compared with the L1210 cells; however, a combination of thymidine plus hypoxanthine was without any additional effect (compared with thymidine alone) against the sensitive line but effectively protected L1210:C15 cells.

  17. Acute haematogenous community-acquired methicillin-resistant Staphylococcus aureus osteomyelitis in an adult: Case report and review of literature

    PubMed Central

    2012-01-01

    Background Methicillin-resistant Staphylococcus aureus (MRSA) has of late emerged as a cause of community-acquired infections among immunocompetent adults without risk factors. Skin and soft tissue infections represent the majority of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) clinical presentations, whilst invasive and life-threatening illness like necrotizing pneumonia, necrotizing fasciitis, pyomyositis, osteomyelitis and sepsis syndrome are less common. Although more widely described in the pediatric age group, the occurrence of CA-MRSA osteomyelitis in adults is an uncommonly reported entity. Case presentation We describe an invasive CA-MRSA infection in a 28 year-old previously healthy male, manifesting with bacteraemia, osteomyelitis of femur, pyomyositis and septic arthritis of the knee. Initially a preliminary diagnosis of osteosarcoma was suggested by imaging studies and patient underwent a bone biopsy. MRSA was subsequently isolated from blood cultures taken on day of admission, bone, tissue and pus cultures. Incision and drainage of abscess was performed and patient was treated with vancomycin, with fusidic acid added later. It took 6 months for the inflammatory markers to normalize, warranting 6-months of anti-MRSA therapy. Patient was a fervent deer hunter and we speculate that he acquired this infection from extensive direct contact with deer. Molecular characterization of this isolate showed that it belonged to multilocus sequence type (MLST) ST30 and exhibited the staphylococcal chromosome cassette mec (SCCmec) type IV, staphylococcus protein A (spa) type t019, accessory gene regulator (agr) type III and dru type dt10m. This strain harbored Panton-Valentine leukocidin (pvl) genes together with 3 other virulent genes; sei (enterotoxin), hlg (hemolysin) and fnbA (fibronectin binding protein). Conclusion This case study alerts physicians that beyond the most commonly encountered skin and soft tissue infections, pvl

  18. Tamoxifen Treatment of Breast Cancer Cells: Impact on Hedgehog/GLI1 Signaling.

    PubMed

    Villegas, Victoria E; Rondón-Lagos, Milena; Annaratone, Laura; Castellano, Isabella; Grismaldo, Adriana; Sapino, Anna; Zaphiropoulos, Peter G

    2016-01-01

    The selective estrogen receptor (ER) modulator tamoxifen (TAM) has become the standard therapy for the treatment of ER+ breast cancer patients. Despite the obvious benefits of TAM, a proportion of patients acquire resistance to treatment, and this is a significant clinical problem. Consequently, the identification of possible mechanisms involved in TAM-resistance should help the development of new therapeutic targets. In this study, we present in vitro data using a panel of different breast cancer cell lines and demonstrate the modulatory effect of TAM on cellular proliferation and expression of Hedgehog signaling components, including the terminal effector of the pathway, the transcription factor GLI1. A variable pattern of expression following TAM administration was observed, reflecting the distinctive properties of the ER+ and ER- cell lines analyzed. Remarkably, the TAM-induced increase in the proliferation of the ER+ ZR-75-1 and BT474 cells parallels a sustained upregulation of GLI1 expression and its translocation to the nucleus. These findings, implicating a TAM-GLI1 signaling cross-talk, could ultimately be exploited not only as a means for novel prognostication markers but also in efforts to effectively target breast cancer subtypes. PMID:26927093

  19. Lack of acquired resistance in dogs to successive infestations of Rhipicephalus sanguineus ticks from Brazil and Argentina.

    PubMed

    Évora, Patricia Martinez; Sanches, Gustavo Seron; Jusi, Márcia Mariza Gomes; Alves, Lucas Bocchini Rodrigues; Machado, Rosangela Zacarias; Bechara, Gervásio Henrique

    2015-09-01

    Comparative studies between brown dog tick Rhipicephalus sanguineus populations from Brazil (Jaboticabal, São Paulo) and Argentina (Rafaela, Santa Fé) showed significant biological, morphological and genetic differences between them. This work aimed to study, in a comparative way, the acquisition of resistance in domestic dogs to R. sanguineus from Jaboticabal and Rafaela, after successive and controlled infestations. Ticks were kept in a BOD incubator under controlled conditions (27 °C, 80 % relative humidity, 12-h photoperiod). Ten dogs, Dachshund breed, males and females, 6 months old, short- or long-haired, without prior contact with ticks, were used as hosts. They were distributed into two experimental groups composed of five animals each: G1 infested with ten adult couples of R. sanguineus (Jaboticabal) per animal, and G2 infested with ten adult couples of R. sanguineus (Rafaela) per animal. Ticks' biological parameters and titration of antibodies from the dogs' sera by ELISA test were used for comparison between the strains. Results of the biological parameters showed that the dogs did not acquire immunity to either of the R. sanguineus strains after repeated infestations. The ELISA test showed low antibody titers in sera of dogs from G2, in successive infestations, and higher antibody responses post second and third infestations in G1. It also demonstrated cross-reactivity between sera of dogs infested with R. sanguineus (Jaboticabal) and antigens from R. sanguineus (Rafaela) and vice versa. We conclude that Dachshund dogs did not develop resistance against neither Jaboticabal nor Rafaela strains of R. sanguineus.

  20. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer.

    PubMed

    Gao, Dong-Yu; Lin, Ts-Ting; Sung, Yun-Chieh; Liu, Ya Chi; Chiang, Wen-Hsuan; Chang, Chih-Chun; Liu, Jia-Yu; Chen, Yunching

    2015-10-01

    Sorafenib, a multikinase inhibitor, has been used as an anti-angiogenic agent against highly vascular hepatocellular carcinoma (HCC) - yet associated with only moderate therapeutic effect and the high incidence of HCC recurrence. We have shown intratumoral hypoxia induced by sorafenib activated C-X-C receptor type 4 (CXCR4)/stromal-derived factor 1α (SDF1α) axis, resulting in polarization toward a tumor-promoting microenvironment and resistance to anti-angiogenic therapy in HCC. Herein, we formulated sorafenib in CXCR4-targeted lipid-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with a CXCR4 antagonist, AMD3100 to systemically deliver sorafenib into HCC and sensitize HCC to sorafenib treatment. We demonstrated that CXCR4-targeted NPs efficiently delivered sorafenib into HCCs and human umbilical vein endothelial cells (HUVECs) to achieve cytotoxicity and anti-angiogenic effect in vitro and in vivo. Despite the increased expression of SDF1α upon the persistent hypoxia induced by sorafenib-loaded CXCR4-targeted NPs, AMD3100 attached to the NPs can block CXCR4/SDF1α, leading to the reduced infiltration of tumor-associated macrophages, enhanced anti-angiogenic effect, a delay in tumor progression and increased overall survival in the orthotopic HCC model compared with other control groups. In conclusion, our results highlight the clinical potential of CXCR4-targeted NPs for delivering sorafenib and overcoming acquired drug resistance in liver cancer.

  1. Potential therapeutic drug target identification in Community Acquired-Methicillin Resistant Staphylococcus aureus (CA-MRSA) using computational analysis.

    PubMed

    Yadav, Pramod Kumar; Singh, Gurmit; Singh, Satendra; Gautam, Budhayash; Saad, Esmaiel If

    2012-01-01

    The emergence of multidrug-resistant strain of community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strain has highlighted the urgent need for the alternative and effective therapeutic approach to combat the menace of this nosocomial pathogen. In the present work novel potential therapeutic drug targets have been identified through the metabolic pathways analysis. All the gene products involved in different metabolic pathways of CA-MRSA in KEGG database were searched against the proteome of Homo sapiens using the BLASTp program and the threshold of E-value was set to as 0.001. After database searching, 152 putative targets were identified. Among all 152 putative targets, 39 genes encoding for putative targets were identified as the essential genes from the DEG database which are indispensable for the survival of CA-MRSA. After extensive literature review, 7 targets were identified as potential therapeutic drug target. These targets are Fructose-bisphosphate aldolase, Phosphoglyceromutase, Purine nucleoside phosphorylase, Uridylate kinase, Tryptophan synthase subunit beta, Acetate kinase and UDP-N-acetylglucosamine 1-carboxyvinyltransferase. Except Uridylate kinase all the identified targets were involved in more than one metabolic pathways of CA-MRSA which underlines the importance of drug targets. These potential therapeutic drug targets can be exploited for the discovery of novel inhibitors for CA-MRSA using the structure based drug design (SBDD) strategy.

  2. Structural insights into selective agonist actions of tamoxifen on human Estrogen Receptor alpha

    PubMed Central

    Chakraborty, Sandipan; Biswas, P. K.

    2014-01-01

    Tamoxifen, an anti-estrogenic ligand in breast tissues and being used as a first-line treatment in ER-positive breast cancers, is found to develop resistance followed by resumption of growth of the tumor in about 30% of cases. Whether tamoxifen starts assisting in proliferation in such cases or there exists any ligand-independent pathways to transcription is not fully understood; also, no ERα mutants have been detected so far which could lead to tamoxifen resistance. Performing in-silico conformational analysis of ERα ligand binding domain, in the absence and presence of selective agonist (Diethylstilbestrol; DES), antagonist (Faslodex; ICI), and SERM (4-hydroxy tamoxifen; 4-OHT) ligands, we elucidated ligand-responsive structural modulations of ERα-LBD dimer in their agonist and antagonist complexes and address the issue of “tamoxifen resistance”. We found DES and ICI to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also leads to a stable structure in agonist conformation. However, the binding of 4-OHT to antagonist structure is found to lead to a flexible conformation allowing the protein visiting conformations populated by agonists as are evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein is found to exhibit a diminished size of the co-repressor binding pocket at LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at LBD provide crucial structural insights into tamoxifen-resistance complementing our existing understanding. PMID:25060147

  3. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction.

    PubMed

    Moriceau, Gatien; Hugo, Willy; Hong, Aayoung; Shi, Hubing; Kong, Xiangju; Yu, Clarissa C; Koya, Richard C; Samatar, Ahmed A; Khanlou, Negar; Braun, Jonathan; Ruchalski, Kathleen; Seifert, Heike; Larkin, James; Dahlman, Kimberly B; Johnson, Douglas B; Algazi, Alain; Sosman, Jeffrey A; Ribas, Antoni; Lo, Roger S

    2015-02-01

    Combined BRAF- and MEK-targeted therapy improves upon BRAF inhibitor (BRAFi) therapy but is still beset by acquired resistance. We show that melanomas acquire resistance to combined BRAF and MEK inhibition by augmenting or combining mechanisms of single-agent BRAFi resistance. These double-drug resistance-associated genetic configurations significantly altered molecular interactions underlying MAPK pathway reactivation. (V600E)BRAF, expressed at supraphysiological levels because of (V600E)BRAF ultra-amplification, dimerized with and activated CRAF. In addition, MEK mutants enhanced interaction with overexpressed (V600E)BRAF via a regulatory interface at R662 of (V600E)BRAF. Importantly, melanoma cell lines selected for resistance to BRAFi+MEKi, but not those to BRAFi alone, displayed robust drug addiction, providing a potentially exploitable therapeutic opportunity.

  4. Tunable-combinatorial Mechanisms of Acquired Resistance Limit the Efficacy of BRAF/MEK Co-targeting but Result in Melanoma Drug Addiction

    PubMed Central

    Moriceau, Gatien; Hugo, Willy; Hong, Aayoung; Shi, Hubing; Kong, Xiangju; Yu, Clarissa C.; Koya, Richard C.; Samatar, Ahmed A.; Khanlou, Negar; Braun, Jonathan; Ruchalski, Kathleen; Seifert, Heike; Larkin, James; Dahlman, Kimberly B.; Johnson, Douglas B.; Algazi, Alain; Sosman, Jeffrey A.; Ribas, Antoni; Lo, Roger S.

    2014-01-01

    SUMMARY Combined BRAF and MEK targeted therapy improves upon BRAF inhibitor (BRAFi) therapy but is still beset by acquired resistance. We show that melanomas acquire resistance to combined BRAF and MEK inhibition by augmenting or combining mechanisms of single-agent BRAFi resistance. These double-drug resistance-associated genetic configurations significantly altered molecular interactions underlying MAPK pathway reactivation. V600EBRAF, expressed at supra-physiological levels because of V600EBRAF ultra-amplification, dimerized with and activated CRAF. In addition, MEK mutants enhanced interaction with over-expressed V600EBRAF via a regulatory interface at R662 of V600EBRAF. Importantly, melanoma cell lines selected for resistance to BRAFi+MEKi, but not those to BRAFi alone, displayed robust drug addiction, providing a potentially exploitable therapeutic opportunity. PMID:25600339

  5. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid.

    PubMed

    Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E; Schwab, Wilfried; Vlot, A Corina

    2014-11-01

    Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation.

  6. Prior Adjuvant Tamoxifen Treatment in Breast Cancer Is Linked to Increased AIB1 and HER2 Expression in Metachronous Contralateral Breast Cancer

    PubMed Central

    Alkner, Sara; Bendahl, Pär-Ola; Ehinger, Anna; Lövgren, Kristina; Rydén, Lisa; Fernö, Mårten

    2016-01-01

    Aim The estrogen receptor coactivator Amplified in Breast Cancer 1 (AIB1) has been associated with an improved response to adjuvant tamoxifen in breast cancer, but also with endocrine treatment resistance. We hereby use metachronous contralateral breast cancer (CBC) developed despite prior adjuvant tamoxifen for the first tumor as an “in vivo”-model for tamoxifen resistance. AIB1-expression in the presumable resistant (CBC after prior tamoxifen) and naïve setting (CBC without prior tamoxifen) is compared and correlated to prognosis after CBC. Methods From a well-defined population-based cohort of CBC-patients we have constructed a unique tissue-microarray including >700 patients. Results CBC developed after adjuvant tamoxifen more often had a HER2-positive/triple negative-subtype and a high AIB1-expression (37% vs. 23%, p = 0.009), than if no prior endocrine treatment had been administered. In patients with an estrogen receptor (ER) positive CBC, a high AIB1-expression correlated to an inferior prognosis. However, these patients seemed to respond to tamoxifen, but only if endocrine therapy had not been administered for BC1. Conclusions Metachronous CBC developed after prior endocrine treatment has a decreased ER-expression and an increased HER2-expression. This is consistent with endocrine treatment escape mechanisms previously suggested, and indicates metachronous CBC to be a putative model for studies of treatment resistance “in vivo”. The increased AIB1-expression in CBC developed after prior tamoxifen suggests a role of AIB1 in endocrine treatment resistance. In addition, we found indications that the response to tamoxifen in CBC with a high AIB1-expression seem to differ depending on previous exposure to this drug. A different function for AIB1 in the tamoxifen treatment naïve vs. resistant setting is suggested, and may explain previously conflicting results where a high AIB1-expression has been correlated to both a good response to adjuvant

  7. Targeting glucosylceramide synthase induction of cell surface globotriaosylceramide (Gb3) in acquired cisplatin-resistance of lung cancer and malignant pleural mesothelioma cells

    SciTech Connect

    Tyler, Andreas; Johansson, Anders; Karlsson, Terese; Gudey, Shyam Kumar; Brännström, Thomas; Grankvist, Kjell; Behnam-Motlagh, Parviz

    2015-08-01

    Background: Acquired resistance to cisplatin treatment is a caveat when treating patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Ceramide increases in response to chemotherapy, leading to proliferation arrest and apoptosis. However, a tumour stress activation of glucosylceramide synthase (GCS) follows to eliminate ceramide by formation of glycosphingolipids (GSLs) such as globotriaosylceramide (Gb3), the functional receptor of verotoxin-1. Ceramide elimination enhances cell proliferation and apoptosis blockade, thus stimulating tumor progression. GSLs transactivate multidrug resistance 1/P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) expression which further prevents ceramide accumulation and stimulates drug efflux. We investigated the expression of Gb3, MDR1 and MRP1 in NSCLC and MPM cells with acquired cisplatin resistance, and if GCS activity or MDR1 pump inhibitors would reduce their expression and reverse cisplatin-resistance. Methods: Cell surface expression of Gb3, MDR1 and MRP1 and intracellular expression of MDR1 and MRP1 was analyzed by flow cytometry and confocal microscopy on P31 MPM and H1299 NSCLC cells and subline cells with acquired cisplatin resistance. The effect of GCS inhibitor PPMP and MDR1 pump inhibitor cyclosporin A for 72 h on expression and cisplatin cytotoxicity was tested. Results: The cisplatin-resistant cells expressed increased cell surface Gb3. Cell surface Gb3 expression of resistant cells was annihilated by PPMP whereas cyclosporin A decreased Gb3 and MDR1 expression in H1299 cells. No decrease of MDR1 by PPMP was noted in using flow cytometry, whereas a decrease of MDR1 in H1299 and H1299res was indicated with confocal microscopy. No certain co-localization of Gb3 and MDR1 was noted. PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. Conclusions: Cell surface Gb3 expression is a likely tumour biomarker for acquired cisplatin

  8. A Typical Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clone Is Widespread in the Community in the Gaza Strip

    PubMed Central

    Biber, Asaf; Abuelaish, Izeldeen; Rahav, Galia; Raz, Meir; Cohen, Liran; Valinsky, Lea; Taran, Dianna; Goral, Aviva; Elhamdany, Abedalla; Regev-Yochay, Gili

    2012-01-01

    Epidemiological data on community acquired methicillin-resistant-Staphylococcus aureus (CA-MRSA) carriage and infection in the Middle-East region is scarce with only few reports in the Israeli and Palestinian populations. As part of a Palestinian-Israeli collaborative research, we have conducted a cross-sectional survey of nasal S. aureus carriage in healthy children and their parents throughout the Gaza strip. Isolates were characterized for antibiotic susceptibility, mec gene presence, PFGE, spa type, SCCmec-type, presence of PVL genes and multi-locus-sequence-type (MLST). S. aureus was carried by 28.4% of the 379 screened children-parents pairs. MRSA was detected in 45% of S. aureus isolates, that is, in 12% of the study population. A single ST22-MRSA-IVa, spa t223, PVL-gene negative strain was detected in 64% of MRSA isolates. This strain is typically susceptible to all non-β-lactam antibiotics tested. The only predictor for MRSA carriage in children was having an MRSA carrier-parent (OR = 25.5, P = 0.0004). Carriage of the Gaza strain was not associated with prior hospitalization. The Gaza strain was closely related genetically to a local MSSA spa t223 strain and less so to EMRSA15, one of the pandemic hospital-acquired-MRSA clones, scarcely reported in the community. The rapid spread in the community may be due to population determinants or due to yet unknown advantageous features of this particular strain. PMID:22916171

  9. Community-acquired necrotizing pneumonia caused by methicillin-resistant Staphylococcus aureus ST30-SCCmecIVc-spat019-PVL positive in San Antonio de Areco, Argentina.

    PubMed

    Fernandez, Silvina; Murzicato, Sofía; Sandoval, Orlando; Fernández-Canigia, Liliana; Mollerach, Marta

    2015-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus is the first cause of skin and soft tissue infections, but can also produce severe diseases such as bacteremia, osteomyelitis and necrotizing pneumonia. Some S. aureus lineages have been described in cases of necrotizing pneumonia worldwide, usually in young, previously healthy patients. In this work, we describe a fatal case of necrotizing pneumonia due to community-acquired methicillin-resistant S. aureus clone ST30-SCCmecIVc-spat019-PVL positive in an immunocompetent adult patient. PMID:25681265

  10. Community-acquired necrotizing pneumonia caused by methicillin-resistant Staphylococcus aureus ST30-SCCmecIVc-spat019-PVL positive in San Antonio de Areco, Argentina.

    PubMed

    Fernandez, Silvina; Murzicato, Sofía; Sandoval, Orlando; Fernández-Canigia, Liliana; Mollerach, Marta

    2015-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus is the first cause of skin and soft tissue infections, but can also produce severe diseases such as bacteremia, osteomyelitis and necrotizing pneumonia. Some S. aureus lineages have been described in cases of necrotizing pneumonia worldwide, usually in young, previously healthy patients. In this work, we describe a fatal case of necrotizing pneumonia due to community-acquired methicillin-resistant S. aureus clone ST30-SCCmecIVc-spat019-PVL positive in an immunocompetent adult patient.

  11. Breast cancer chemoprevention: beyond tamoxifen

    PubMed Central

    Fabian, Carol J

    2001-01-01

    A large number of new potential chemoprevention agents are available that target molecular abnormalities found in estrogen receptor (ER)-negative and/or ER-positive precancerous breast tissue and have side effect profiles that differ from tamoxifen. Classes of agents currently undergoing evaluation in clinical prevention trials or those for which testing is planned in the near future include new selective ER modulators, aromatase inactivators/inhibitors, gonadotrophin-releasing hormone agonists, monoterpenes, isoflavones, retinoids, rexinoids, vitamin D derivatives, and inhibitors of tyrosine kinase, cyclooxygenase-2, and polyamine synthesis. New clinical testing models will use morphological and molecular biomarkers to select candidates at highest short-term risk, to predict the response to a particular class of agent, and to assess the response in phase II prevention trials. If validated, morphological and molecular markers could eventually replace cancer incidence as an indicator of efficacy in future phase III trials. PMID:11250754

  12. Tamoxifen-induced hypertriglyceridemia causing acute pancreatitis.

    PubMed

    Singh, Hemant Kumar; Prasad, Mahendranath S; Kandasamy, Arun K; Dharanipragada, Kadambari

    2016-01-01

    Tamoxifen has both antagonistic and agonistic tissue-specific actions. It can have a paradoxical estrogenic effect on lipid metabolism resulting in elevated triglyceride and chylomicron levels. This can cause life-threatening complications like acute pancreatitis. To our knowledge, very few cases of tamoxifen-induced pancreatitis have been reported in the literature. We report a case of severe hypertriglyceridemia and acute pancreatitis following tamoxifen use. A 50-year-old diabetic lady was on tamoxifen (20mg/day) hormonal therapy for breast cancer. Within 3 months of starting therapy, she developed hypertriglyceridemia and acute pancreatitis. Laboratory values include: Serum amylase 778 IU/L, total cholesterol 785 mg/dL, triglycerides 4568 mg/dL and high-density lipoproteins (HDL) 12 mg/dL. Tamoxifen was substituted with letrozole and atorvastatin started. There was a prompt reversal of the adverse effects. Effects on lipid profile must be considered while initiating tamoxifen in predisposed individuals as the consequences are life threatening. PMID:27127396

  13. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M.

    PubMed

    Thress, Kenneth S; Paweletz, Cloud P; Felip, Enriqueta; Cho, Byoung Chul; Stetson, Daniel; Dougherty, Brian; Lai, Zhongwu; Markovets, Aleksandra; Vivancos, Ana; Kuang, Yanan; Ercan, Dalia; Matthews, Sarah E; Cantarini, Mireille; Barrett, J Carl; Jänne, Pasi A; Oxnard, Geoffrey R

    2015-06-01

    Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for the T790M mutation before treatment, but upon developing AZD9291 resistance three molecular subtypes emerged: six cases acquired the C797S mutation, five cases maintained the T790M mutation but did not acquire the C797S mutation and four cases lost the T790M mutation despite the presence of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies that are able to overcome resistance mediated by the EGFR C797S mutation.

  14. Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: a prospective multicentre cohort study in the era of antimicrobial resistance.

    PubMed

    Horcajada, J P; Shaw, E; Padilla, B; Pintado, V; Calbo, E; Benito, N; Gamallo, R; Gozalo, M; Rodríguez-Baño, J

    2013-10-01

    The clinical and microbiological characteristics of community-onset healthcare-associated (HCA) bacteraemia of urinary source are not well defined. We conducted a prospective cohort study at eight tertiary-care hospitals in Spain, from October 2010 to June 2011. All consecutive adult patients hospitalized with bacteraemic urinary tract infection (BUTI) were included. HCA-BUTI episodes were compared with community-acquired (CA) and hospital-acquired (HA) BUTI. A logistic regression analysis was performed to identify 30-day mortality risk factors. We included 667 episodes of BUTI (246 HCA, 279 CA and 142 HA). Differences between HCA-BUTI and CA-BUTI were female gender (40% vs 69%, p <0.001), McCabe score II-III (48% vs 14%, p <0.001), Pitt score ≥2 (40% vs 31%, p 0.03), isolation of extended spectrum β-lactamase-producing Enterobacteriaciae (13% vs 5%, p <0.001), median hospital stay (9 vs 7 days, p 0.03), inappropriate empirical antimicrobial therapy (21% vs 13%, p 0.02) and mortality (11.4% vs 3.9%, p 0.001). Pseudomonas aeruginosa was more frequently isolated in HA-BUTI (16%) than in HCA-BUTI (4%, p <0.001). Independent factors for mortality were age (OR 1.04; 95% CI 1.01-1.07), McCabe score II-III (OR 3.2; 95% CI 1.8-5.5), Pitt score ≥2 (OR 3.2 (1.8-5.5) and HA-BUTI OR 3.4 (1.2-9.0)). Patients with HCA-BUTI are a specific group with significant clinical and microbiological differences from patients with CA-BUTI, and some similarities with patients with HA-BUTI. Mortality was associated with patient condition, the severity of infection and hospital acquisition.

  15. Clinical features and molecular characteristics of invasive community-acquired methicillin-resistant Staphylococcus aureus infections in Taiwanese children.

    PubMed

    Chen, Chih-Jung; Su, Lin-Hui; Chiu, Cheng-Hsun; Lin, Tzou-Yien; Wong, Kin-Sun; Chen, Yi-Ywan M; Huang, Yhu-Chering

    2007-11-01

    Highly virulent community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) has been associated with morbidity and mortality in various countries of the world. We characterized the clinical and molecular features of pediatric invasive CA-MRSA infections in Taiwan. Between July 2000 and June 2005, 31 previously healthy children with invasive CA-MRSA infections were identified from 423 children with community-onset methicillin-resistant S. aureus infections. The medical records were reviewed. The clinical isolates, if available, were collected for molecular characterization. Sixteen (51.6%) patients were male, and the mean age was 5.7 years. Adolescents accounted for 9 (29%) cases. Eighteen children had bone and/or joint infections, 14 had deep-seated soft tissue infections, 11 had pneumonia, and 2 had central nervous system infections. Multiorgan involvement was identified in 8 of 20 bacteremic cases. Twenty-two patients (71%) required surgical interventions. The mean hospital stay was 27.4 days. All of the 15 available isolates were classified as sequence type (ST) 59 or its single locus variant and belonged to 2 previously reported community-associated clones containing staphylococcal cassette chromosome mec (SCCmec) type IV or type V(T) in Taiwan. Most of the isolates were multiresistant to clindamycin (94%) and erythromycin (97%). Eleven (73.3%) isolates carried pvl genes, and the strains harboring pvl genes were significantly associated with lung involvement. In conclusion, invasive CA-MRSA infections in pediatric population were not limited to young children. Surgical interventions were often required, and a prolonged course of antibiotic therapy was needed. A multiresistant CA-MRSA clone characterized as ST59 was identified from these children in Taiwan. PMID:17662565

  16. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia*,**

    PubMed Central

    Seligman, Renato; Ramos-Lima, Luis Francisco; Oliveira, Vivian do Amaral; Sanvicente, Carina; Sartori, Juliana; Pacheco, Elyara Fiorin

    2013-01-01

    OBJECTIVE: To identify risk factors for the development of hospital-acquired pneumonia (HAP) caused by multidrug-resistant (MDR) bacteria in non-ventilated patients. METHODS: This was a retrospective observational cohort study conducted over a three-year period at a tertiary-care teaching hospital. We included only non-ventilated patients diagnosed with HAP and presenting with positive bacterial cultures. Categorical variables were compared with chi-square test. Logistic regression analysis was used to determine risk factors for HAP caused by MDR bacteria. RESULTS: Of the 140 patients diagnosed with HAP, 59 (42.1%) were infected with MDR strains. Among the patients infected with methicillin-resistant Staphylococcus aureus and those infected with methicillin-susceptible S. aureus, mortality was 45.9% and 50.0%, respectively (p = 0.763). Among the patients infected with MDR and those infected with non-MDR gram-negative bacilli, mortality was 45.8% and 38.3%, respectively (p = 0.527). Univariate analysis identified the following risk factors for infection with MDR bacteria: COPD; congestive heart failure; chronic renal failure; dialysis; urinary catheterization; extrapulmonary infection; and use of antimicrobial therapy within the last 10 days before the diagnosis of HAP. Multivariate analysis showed that the use of antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria (OR = 3.45; 95% CI: 1.56-7.61; p = 0.002). CONCLUSIONS: In this single-center study, the use of broad-spectrum antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria in non-ventilated patients with HAP. PMID:23857697

  17. Demography and Intercontinental Spread of the USA300 Community-Acquired Methicillin-Resistant Staphylococcus aureus Lineage

    PubMed Central

    Glaser, Philippe; Martins-Simões, Patrícia; Villain, Adrien; Barbier, Maxime; Tristan, Anne; Bouchier, Christiane; Ma, Laurence; Bes, Michele; Laurent, Frederic; Guillemot, Didier; Wirth, Thierry

    2016-01-01

    ABSTRACT Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized worldwide during the 1990s; in less than a decade, several genetically distinct CA-MRSA lineages carrying Panton-Valentine leukocidin genes have emerged on every continent. Most notably, in the United States, the sequence type 18-IV (ST8-IV) clone known as USA300 has become highly prevalent, outcompeting methicillin-susceptible S. aureus (MSSA) and other MRSA strains in both community and hospital settings. CA-MRSA bacteria are much less prevalent in Europe, where the European ST80-IV European CA-MRSA clone, USA300 CA-MRSA strains, and other lineages, such as ST22-IV, coexist. The question that arises is whether the USA300 CA-MRSA present in Europe (i) was imported once or on very few occasions, followed by a broad geographic spread, anticipating an increased prevalence in the future, or (ii) derived from multiple importations with limited spreading success. In the present study, we applied whole-genome sequencing to a collection of French USA300 CA-MRSA strains responsible for sporadic cases and micro-outbreaks over the past decade and United States ST8 MSSA and MRSA isolates. Genome-wide phylogenetic analysis demonstrated that the population structure of the French isolates is the product of multiple introductions dating back to the onset of the USA300 CA-MRSA clone in North America. Coalescent-based demography of the USA300 lineage shows that a strong expansion occurred during the 1990s concomitant with the acquisition of the arginine catabolic mobile element and antibiotic resistance, followed by a sharp decline initiated around 2008, reminiscent of the rise-and-fall pattern previously observed in the ST80 lineage. A future expansion of the USA300 lineage in Europe is therefore very unlikely. PMID:26884428

  18. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens.

    PubMed

    Anand, Ajith; Uppalapati, Srinivasa Rao; Ryu, Choong-Min; Allen, Stacy N; Kang, Li; Tang, Yuhong; Mysore, Kirankumar S

    2008-02-01

    We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole-genome microarrays, we characterized the direct effects of SA on bacterial gene expression and showed that SA inhibits induction of virulence (vir) genes and the repABC operon, and differentially regulates the expression of many other sets of genes. Using virus-induced gene silencing, we further demonstrate that plant genes involved in SA biosynthesis and signaling are important determinants for Agrobacterium infectivity on plants. Silencing of ICS (isochorismate synthase), NPR1 (nonexpresser of pathogenesis-related gene 1), and SABP2 (SA-binding protein 2) in N. benthamiana enhanced Agrobacterium infection. Moreover, plants treated with benzo-(1,2,3)-thiadiazole-7-carbothioic acid, a potent inducer of SAR, showed reduced disease symptoms. Our data suggest that SA and SAR both play a major role in retarding Agrobacterium infectivity. PMID:18156296

  19. Systemic Induction of the Small Antibacterial Compound in the Leaf Exudate During Benzothiadiazole-elicited Systemic Acquired Resistance in Pepper.

    PubMed

    Lee, Boyoung; Park, Yong-Soon; Yi, Hwe-Su; Ryu, Choong-Min

    2013-09-01

    Plants protect themselves from diverse potential pathogens by induction of the immune systems such as systemic acquired resistance (SAR). Most bacterial plant pathogens thrive in the intercellular space (apoplast) of plant tissues and cause symptoms. The apoplastic leaf exudate (LE) is believed to contain nutrients to provide food resource for phytopathogenic bacteria to survive and to bring harmful phytocompounds to protect plants against bacterial pathogens. In this study, we employed the pepper-Xanthomonas axonopodis system to assess whether apoplastic fluid from LE in pepper affects the fitness of X. axonopodis during the induction of SAR. The LE was extracted from pepper leaves 7 days after soil drench-application of a chemical trigger, benzothiadiazole (BTH). Elicitation of plant immunity was confirmed by significant up-regulation of four genes, CaPR1, CaPR4, CaPR9, and CaCHI2, by BTH treatment. Bacterial fitness was evaluated by measuring growth rate during cultivation with LE from BTH- or water-treated leaves. LE from BTH-treatment significantly inhibited bacterial growth when compared to that from the water-treated control. The antibacterial activity of LE from BTH-treated samples was not affected by heating at 100°C for 30 min. Although the antibacterial molecules were not precisely identified, the data suggest that small (less than 5 kDa), heat-stable compound(s) that are present in BTH-induced LE directly attenuate bacterial growth during the elicitation of plant immunity. PMID:25288963

  20. [Multicenter study in southern South America of the in vitro activity of telithromycin in strains with defined resistance phenotypes isolated from community-acquired respiratory infections].

    PubMed

    Casellas, J M; Visser, M; Mac Dougall, N; Coco, B; Tomé, G; Gliosca, L

    2001-09-01

    Telithromycin was the first ketolide to be approved in Europe and is in the approval process in the United States. It is structurally related to the macrolides; it has a keto group in the C3 position rather than cladinose. A carbamate group is also present at C11-C12. As a result, it has a reduced induction of the MLSB resistance mechanism (erm gene), it is not affected by the flux mechanism (mef gene), it has higher stability at low pH and has increased intrinsic activity compared with clarithromycin and azithromycin. Phase III studies have shown telithromycin to be effective in the treatment of community-acquired upper and lower respiratory tract infections. Its long half-life allows for oral once-daily dosing. From a pharmacokinetic point of view, its activity has been shown to be AUC(24h)/MIC dependent. It is active against bacteria involved in atypical pneumonia. The aim of our study was to determine the activity of telithromycin in isolates with defined resistance phenotypes obtained from community-acquired respiratory tract infections. Twelve centers in Argentina, Chile, Paraguay and Uruguay participated in the study. Each center collected three strains of the following species and resistance patterns: S. pyogenes, S. pneumoniae with resistance or intermediate resistance to oxacillin, erythromycin-resistant S. pneumoniae, clindamycin-resistant S. pneumoniae, oxacillin-susceptible S. aureus, erythromycin-resistant S. aureus, ampicillin-susceptible and -resistant M. catarrhalis and H. influenzae. Agar diffusion susceptibility tests with NeoSensitabs tablets (Rosco, Denmark) were carried out at each center. Isolates were sent to the coordinating center, where MICs were determined using agar microdilution and the Seppala test was used to determine the resistance mechanism to macrolides. The 327 isolates received were susceptible to telithromycin. Eighty percent of the erythromycin-resistant S. pneumoniae isolates were likely resistant due to a flux mechanism

  1. Acquired Resistance to EGFR Kinase Inhibitors Associated with a Novel T854A Mutation in a Patient with EGFR-Mutant Lung Adenocarcinoma

    PubMed Central

    Bean, James; Riely, Gregory J.; Balak, Marissa; Marks, Jenifer L.; Ladanyi, Marc; Miller, Vincent A.; Pao, William

    2008-01-01

    Purpose Somatic mutations in the tyrosine kinase domain of EGFR are associated with sensitivity of lung adenocarcinomas to the EGFR tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib. Acquired drug resistance is frequently associated with a secondary somatic mutation that leads to substitution of methionine for threonine at position 790 (T790M). We aimed to identify additional second-site alterations associated with acquired resistance. Experimental Design Tumor samples were obtained from 48 patients with acquired resistance. Tumor cell DNA was analyzed for EGFR kinase domain mutations. Molecular analyses were then performed to characterize biological properties of a novel mutant EGFR allele. Results A previously unreported mutation in exon 21 of EGFR, which leads to substitution of alanine for threonine at position 854 (T854A), was identified in one patient with a drug-sensitive EGFR L858R-mutant lung adenocarcinoma after long-term treatment with TKIs. The T854A mutation was not detected in a pretreatment tumor sample. Crystal structure analyses of EGFR suggest that the T854 side chain is within contact distance of gefitinib and erlotinib. Surrogate kinase assays demonstrate that the EGFR T854A mutation abrogates inhibition of tyrosine phosphorylation by erlotinib. Such resistance appears to be overcome by a new irreversible dual EGFR/HER2 inhibitor, BIBW 2992. Conclusions The T854A mutation is the second reported second-site acquired resistance mutation that is within contact distance of gefitinib and erlotinib. These data suggest that acquired resistance to ATP-mimetic EGFR kinase inhibitors may often be associated with amino acid substitutions that alter drug contact residues in the EGFR ATP-binding pocket. PMID:19010870

  2. Multifocal pelvic abscesses and osteomyelitis from community-acquired methicillin-resistant Staphylococcus aureus in a 17-year-old basketball player.

    PubMed

    Okubo, Takeshi; Yabe, Shizuka; Otsuka, Taketo; Takizawa, Yoko; Takano, Tomomi; Dohmae, Soshi; Higuchi, Wataru; Tsukada, Hiroki; Gejyo, Fumitake; Uchiyama, Makoto; Yamamoto, Tatsuo

    2008-03-01

    A 17-year-old female basketball player suffered from cutaneous abscesses, which complicated into a systemic progression to osteomyelitis and simultaneous iliopsoas and piriformis abscesses, adjacent to the sacroiliac joint. The causative agent was community-acquired methicillin-resistant Staphylococcus aureus with multilocus sequence type 30, spa19, and SCCmecIVc. The clinical importance of this genotype is discussed.

  3. Tamoxifen OK for Breast Cancer Patients without Uterine Abnormalities

    MedlinePlus

    ... gov/news/fullstory_161118.html Tamoxifen OK for Breast Cancer Patients Without Uterine Abnormalities: Study Pretreatment ultrasounds may ... 2016 (HealthDay News) -- For most women, taking the breast cancer drug tamoxifen doesn't increase their risk of ...

  4. Therapeutic drug monitoring of tamoxifen using LC-MS/MS.

    PubMed

    Tchu, Simone M; Lynch, Kara L; Wu, Alan H B

    2012-01-01

    Tamoxifen is a selective estrogen receptor modulator (SERM) that is used widely in the treatment of estrogen receptor positive breast cancer (ER+). Therapeutic monitoring of tamoxifen, and its metabolites N-desmethyltamoxifen (NDTam) and 4-hydroxy-N-desmethyltamoxifen (endoxifen), may be clinically useful for guiding treatment decisions. Two significant barriers to tamoxifen efficacy are: (1) variability in conversion of tamoxifen into the potent antiestrogenic metabolite, endoxifen, and (2) poor compliance and adherence to tamoxifen therapy. Therapeutic monitoring can be used to address both of these issues. Low levels of endoxifen indicate either poor compliance or poor metabolism of tamoxifen. Low tamoxifen levels would suggest poor compliance while a low ratio of endoxifen to NDTam would be indicative of poor metabolism. Solid phase extraction of patient serum followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) detection enables rapid, accurate, detection of tamoxifen, N-desmethyltamoxifen, and endoxifen. PMID:22767121

  5. Small cell lung cancer transformation and T790M mutation: complimentary roles in acquired resistance to kinase inhibitors in lung cancer.

    PubMed

    Suda, Kenichi; Murakami, Isao; Sakai, Kazuko; Mizuuchi, Hiroshi; Shimizu, Shigeki; Sato, Katsuaki; Tomizawa, Kenji; Tomida, Shuta; Yatabe, Yasushi; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-09-24

    Lung cancers often harbour a mutation in the epidermal growth factor receptor (EGFR) gene. Because proliferation and survival of lung cancers with EGFR mutation solely depend on aberrant signalling from the mutated EGFR, these tumours often show dramatic responses to EGFR tyrosine kinase inhibitors (TKIs). However, acquiring resistance to these drugs is almost inevitable, thus a better understanding of the underlying resistance mechanisms is critical. Small cell lung cancer (SCLC) transformation is a relatively rare acquired resistance mechanism that has lately attracted considerable attention. In the present study, through an in-depth analysis of multiple EGFR-TKI refractory lesions obtained from an autopsy case, we observed a complementary relationship between SCLC transformation and EGFR T790M secondary mutation (resistance mutation). We also identified analogies and differences in genetic aberration between a TKI-refractory lesion with SCLC transformation and one with EGFR T790M mutation. In particular, target sequencing revealed a TP53 P151S mutation in all pre- and post-treatment lesions. PTEN M264I mutation was identified only in a TKI-refractory lesion with SCLC transformation, while PIK3CA and RB1 mutations were identified only in pre-treatment primary tumour samples. These results provide the groundwork for understanding acquired resistance to EGFR-TKIs via SCLC transformation.

  6. The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections.

    PubMed

    Warnke, Patrick H; Becker, Stephan T; Podschun, Rainer; Sivananthan, Sureshan; Springer, Ingo N; Russo, Paul A J; Wiltfang, Joerg; Fickenscher, Helmut; Sherry, Eugene

    2009-10-01

    Hospital-acquired infections and antibiotic-resistant bacteria continue to be major health concerns worldwide. Particularly problematic is methicillin-resistant Staphylococcus aureus (MRSA) and its ability to cause severe soft tissue, bone or implant infections. First used by the Australian Aborigines, Tea tree oil and Eucalyptus oil (and several other essential oils) have each demonstrated promising efficacy against several bacteria and have been used clinically against multi-resistant strains. Several common and hospital-acquired bacterial and yeast isolates (6 Staphylococcus strains including MRSA, 4 Streptococcus strains and 3 Candida strains including Candida krusei) were tested for their susceptibility for Eucalyptus, Tea tree, Thyme white, Lavender, Lemon, Lemongrass, Cinnamon, Grapefruit, Clove Bud, Sandalwood, Peppermint, Kunzea and Sage oil with the agar diffusion test. Olive oil, Paraffin oil, Ethanol (70%), Povidone iodine, Chlorhexidine and hydrogen peroxide (H(2)O(2)) served as controls. Large prevailing effective zones of inhibition were observed for Thyme white, Lemon, Lemongrass and Cinnamon oil. The other oils also showed considerable efficacy. Remarkably, almost all tested oils demonstrated efficacy against hospital-acquired isolates and reference strains, whereas Olive and Paraffin oil from the control group produced no inhibition. As proven in vitro, essential oils represent a cheap and effective antiseptic topical treatment option even for antibiotic-resistant strains as MRSA and antimycotic-resistant Candida species. PMID:19473851

  7. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease.

    PubMed

    Yang, Li; Hu, Chunhua; Li, Na; Zhang, Jiayin; Yan, Jiawen; Deng, Ziniu

    2011-01-01

    The COOH terminal of pthA encoding three nuclear localizing signals (NLS) was amplified by polymerase chain reaction (PCR) from the plasmid of Xanthomonas axonopodis pv. citri, the pathogen of citrus canker disease. Then the sense and antisense strands of the nls were cloned into pBI121 vector. pthA-nls driven by the CaMV35 s promoter was transferred into sweet orange via Agrobacterium -mediated transformation. Successful integration was confirmed by PCR and Southern blotting, and 12 sense-nls (nls (+)) and 9 antisense-nls (nls (-)) transgenic clones were obtained. The expression of nls fragment was analyzed by RT-PCR, Real time q-PCR and Western blotting, in which the specific NLS protein was detected only in nls (+) transgenic clones. In an in vitro assay, when pin-puncture inoculation was performed with 2.5 × 10(7) cfu/ml of bacterial solution, the nls (+) transgenic clones showed no typical lesion development, while typical symptoms were observed in the wild types and the nls (-) transgenic clones. In vivo assay results indicated that the nls (+) transgenic clones showed less disease incidence, in comparison with the wild types and the nls (-) transgenic clones, when pin-puncture inoculation was performed with 10(4)-10(5) cfu/ml. The minimum disease incidence was 23.3% for 'Sucarri' sweet orange and 33.3% for 'Bingtang' sweet orange. When 10(4)-10(7) cfu/ml of pathogen was spray inoculated, the nls (+) transgenic clones did not show any symptom, and even the concentration raised to 10(9) cfu/ml, the disease incidence was 20-80%, while the wild types and the nls (-) transgenic clones had 100% disease development with whatever concentration of inoculum. Two transgenic clones were confirmed to be resistant to citrus canker disease in the repeated inoculation. The results suggested that the transformation of nls sense strands may offer an effective way to acquire resistance to citrus canker disease.

  8. Arabidopsis TTR1 causes LRR-dependent lethal systemic necrosis, rather than systemic acquired resistance, to Tobacco ringspot virus.

    PubMed

    Nam, Moon; Koh, Serry; Kim, Sung Uk; Domier, Leslie L; Jeon, Jae Heung; Kim, Hong Gi; Lee, Su-Heon; Bent, Andrew F; Moon, Jae Sun

    2011-11-01

    Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristic of incompatible reactions. Neither viral replication nor the systemic movement of TRSV was restricted in tolerant or sensitive Arabidopsis ecotypes; therefore, the LSN phenotype shown in the sensitive ecotypes might not be due to viral accumulation. In the present study, we identified the Est TTR1 gene (tolerance to Tobacco ringspot virus 1) encoding a TIR-NBS-LRR protein that controls the ecotype-dependent tolerant/sensitive phenotypes by a map-based cloning method. The tolerant Col-0 ecotype Arabidopsis transformed with the sensitive Est TTR1 allele developed an LSN phenotype upon TRSV infection, suggesting that the Est TTR1 allele is dominant over the tolerant ttr1 allele of Col-0. Multiple sequence alignments of 10 tolerant ecotypes from those of eight sensitive ecotypes showed that 10 LRR amino acid polymorphisms were consistently distributed across the TTR1/ttr1 alleles. Site-directed mutagenesis of these amino acids in the LRR region revealed that two sites, L956S and K1124Q, completely abolished the LSN phenotype. VIGS study revealed that TTR1 is dependent on SGT1, rather than EDS1. The LSN phenotype by TTR1 was shown to be transferred to Nicotiana benthamiana, demonstrating functional conservation of TTR1 across plant families, which are involved in SGT-dependent defense responses, rather than EDS1-dependent signaling pathways.

  9. Arabidopsis TTR1 causes LRR-dependent lethal systemic necrosis, rather than systemic acquired resistance, to Tobacco ringspot virus.

    PubMed

    Nam, Moon; Koh, Serry; Kim, Sung Uk; Domier, Leslie L; Jeon, Jae Heung; Kim, Hong Gi; Lee, Su-Heon; Bent, Andrew F; Moon, Jae Sun

    2011-11-01

    Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristic of incompatible reactions. Neither viral replication nor the systemic movement of TRSV was restricted in tolerant or sensitive Arabidopsis ecotypes; therefore, the LSN phenotype shown in the sensitive ecotypes might not be due to viral accumulation. In the present study, we identified the Est TTR1 gene (tolerance to Tobacco ringspot virus 1) encoding a TIR-NBS-LRR protein that controls the ecotype-dependent tolerant/sensitive phenotypes by a map-based cloning method. The tolerant Col-0 ecotype Arabidopsis transformed with the sensitive Est TTR1 allele developed an LSN phenotype upon TRSV infection, suggesting that the Est TTR1 allele is dominant over the tolerant ttr1 allele of Col-0. Multiple sequence alignments of 10 tolerant ecotypes from those of eight sensitive ecotypes showed that 10 LRR amino acid polymorphisms were consistently distributed across the TTR1/ttr1 alleles. Site-directed mutagenesis of these amino acids in the LRR region revealed that two sites, L956S and K1124Q, completely abolished the LSN phenotype. VIGS study revealed that TTR1 is dependent on SGT1, rather than EDS1. The LSN phenotype by TTR1 was shown to be transferred to Nicotiana benthamiana, demonstrating functional conservation of TTR1 across plant families, which are involved in SGT-dependent defense responses, rather than EDS1-dependent signaling pathways. PMID:22057987

  10. Arabidopsis TTR1 Causes LRR-Dependent Lethal Systemic Necrosis, rather than Systemic Acquired Resistance, to Tobacco Ringspot Virus

    PubMed Central

    Nam, Moon; Koh, Serry; Kim, Sung Uk; Domier, Leslie L.; Jeon, Jae Heung; Kim, Hong Gi; Lee, Su-Heon; Bent, Andrew F.; Moon, Jae Sun

    2011-01-01

    Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristic of incompatible reactions. Neither viral replication nor the systemic movement of TRSV was restricted in tolerant or sensitive Arabidopsis ecotypes; therefore, the LSN phenotype shown in the sensitive ecotypes might not be due to viral accumulation. In the present study, we identified the Est TTR1 gene (tolerance to Tobacco ringspot virus 1) encoding a TIR-NBS-LRR protein that controls the ecotype-dependent tolerant/sensitive phenotypes by a map-based cloning method. The tolerant Col-0 ecotype Arabidopsis transformed with the sensitive Est TTR1 allele developed an LSN phenotype upon TRSV infection, suggesting that the Est TTR1 allele is dominant over the tolerant ttr1 allele of Col-0. Multiple sequence alignments of 10 tolerant ecotypes from those of eight sensitive ecotypes showed that 10 LRR amino acid polymorphisms were consistently distributed across the TTR1/ttr1 alleles. Site-directed mutagenesis of these amino acids in the LRR region revealed that two sites, L956S and K1124Q, completely abolished the LSN phenotype. VIGS study revealed that TTR1 is dependent on SGT1, rather than EDS1. The LSN phenotype by TTR1 was shown to be transferred to Nicotiana benthamiana, demonstrating functional conservation of TTR1 across plant families, which are involved in SGT-dependent defense responses, rather than EDS1-dependent signaling pathways. PMID:22057987

  11. Induction of the Staphylococcal Proteolytic Cascade by Antimicrobial Fatty Acids in Community Acquired Methicillin Resistant Staphylococcus aureus

    PubMed Central

    Arsic, Benjamin; Zhu, Yue; Heinrichs, David E.; McGavin, Martin J.

    2012-01-01

    Community acquired methicillin resistant Staphylococcus aureus (CA-MRSA), and the USA300 strain of CA-MRSA in particular, are known for their rapid community transmission, and propensity to cause aggressive skin and soft tissue infections. To assess factors that contribute to these hallmark traits of CA-MRSA, we evaluated how growth of USA300 and production of secreted virulence factors was influenced on exposure to physiologic levels of unsaturated free fatty acids that would be encountered on the skin or anterior nares, which represent the first sites of contact with healthy human hosts. There was a sharp threshold between sub-inhibitory and inhibitory concentrations, such that 100 µM sapienic acid (C16∶1) and linoleic acid (C18∶1) were sufficient to prevent growth after 24 h incubation, while 25 µM allowed unrestricted growth, and 50 µM caused an approximate 10–12 h lag, followed by unimpeded exponential growth. Conversely, saturated palmitic or stearic acids did not affect growth at 100 µM. Although growth was not affected by 25 µM sapienic or linoleic acid, these and other unsaturated C16 and C18 fatty acids, but not their saturated counterparts, promoted robust production of secreted proteases comprising the Staphylococcal proteolytic cascade. This trait was also manifested to varying degrees in other CA-MRSA, and in genetically diverse methicillin susceptible S. aureus strains. Therefore, induction of the Staphylococcal proteolytic cascade by unsaturated fatty acids is another feature that should now be evaluated as a potential contributing factor in the aggressive nature of skin and soft tissue infections caused by USA300, and as a general virulence mechanism of S. aureus. PMID:23029337

  12. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    PubMed

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy.

  13. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study

    PubMed Central

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  14. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    PubMed

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  15. Tumor-specific HMG-CoA reductase expression in primary premenopausal breast cancer predicts response to tamoxifen

    PubMed Central

    2011-01-01

    Introduction We previously reported an association between tumor-specific 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) expression and a good prognosis in breast cancer. Here, the predictive value of HMG-CoAR expression in relation to tamoxifen response was examined. Methods HMG-CoAR protein and RNA expression was analyzed in a cell line model of tamoxifen resistance using western blotting and PCR. HMG-CoAR mRNA expression was examined in 155 tamoxifen-treated breast tumors obtained from a previously published gene expression study (Cohort I). HMG-CoAR protein expression was examined in 422 stage II premenopausal breast cancer patients, who had previously participated in a randomized control trial comparing 2 years of tamoxifen with no systemic adjuvant treatment (Cohort II). Kaplan-Meier analysis and Cox proportional hazards modeling were used to estimate the risk of recurrence-free survival (RFS) and the effect of HMG-CoAR expression on tamoxifen response. Results HMG-CoAR protein and RNA expression were decreased in tamoxifen-resistant MCF7-LCC9 cells compared with their tamoxifen-sensitive parental cell line. HMG-CoAR mRNA expression was decreased in tumors that recurred following tamoxifen treatment (P < 0.001) and was an independent predictor of RFS in Cohort I (hazard ratio = 0.63, P = 0.009). In Cohort II, adjuvant tamoxifen increased RFS in HMG-CoAR-positive tumors (P = 0.008). Multivariate Cox regression analysis demonstrated that HMG-CoAR was an independent predictor of improved RFS in Cohort II (hazard ratio = 0.67, P = 0.010), and subset analysis revealed that this was maintained in estrogen receptor (ER)-positive patients (hazard ratio = 0.65, P = 0.029). Multivariate interaction analysis demonstrated a difference in tamoxifen efficacy relative to HMG-CoAR expression (P = 0.05). Analysis of tamoxifen response revealed that patients with ER-positive/HMG-CoAR tumors had a significant response to tamoxifen (P = 0.010) as well as patients

  16. P-glycoprotein (ABCB1) transports the primary active tamoxifen metabolites endoxifen and 4-hydroxytamoxifen and restricts their brain penetration.

    PubMed

    Iusuf, Dilek; Teunissen, Sebastiaan F; Wagenaar, Els; Rosing, Hilde; Beijnen, Jos H; Schinkel, Alfred H

    2011-06-01

    P-glycoprotein (P-gp, ABCB1) is a highly efficient drug efflux pump expressed in brain, liver, and small intestine, but also in tumor cells, that affects pharmacokinetics and confers therapy resistance for many anticancer drugs. The aim of this study was to investigate the impact of P-gp on tamoxifen and its primary active metabolites, 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen. We used in vitro transport assays and Abcb1a/1b(-/-) mice to investigate the impact of P-gp on the oral availability and brain penetration of tamoxifen and its metabolites. Systemic exposure of tamoxifen and its metabolites after oral administration of tamoxifen (50 mg/kg) was not changed in the absence of P-gp. However, brain accumulation of tamoxifen, 4-hydroxytamoxifen, and N-desmethyltamoxifen were modestly, but significantly (1.5- to 2-fold), increased. Endoxifen, however, displayed a 9-fold higher brain penetration at 4 h after administration. Endoxifen was transported by P-gp in vitro. Upon direct oral administration of endoxifen (20 mg/kg), systemic exposure was slightly decreased in Abcb1a/1b(-/-) mice, but brain accumulation of endoxifen was dramatically increased (up to 23-fold at 4 h after administration). Shortly after high-dose intravenous administration (5 or 20 mg/kg), endoxifen brain accumulation was increased only 2-fold in Abcb1a/1b(-/-) mice compared with wild-type mice, suggesting a partial saturation of P-gp at the blood-brain barrier. Endoxifen, the clinically most relevant metabolite of tamoxifen, is a P-gp substrate in vitro and in vivo, where P-gp limits its brain penetration. P-gp might thus be relevant for tamoxifen/endoxifen resistance of P-gp-positive breast cancer and tumors positioned behind a functional blood-brain barrier. PMID:21378205

  17. [Tamoxifen and cervico-vaginal cytology].

    PubMed

    Ayoubi, J M; Monrozies, X; Ayoubi, F; Charasson, T; Reme, J M

    1994-04-01

    The impact of tamoxifen on the genital tract was assessed by cervico-vaginal cytology. Fifty two post-menopausal patients treated with tamoxifen for breast cancer were regularly monitored, with a pre-treatment reference smear showing a profoundly menopausal status, followed by an anual smear. Smears returned to a functional status in 44% of patients after 2 to 5 years treatment. The agonist effect of tamoxifen appears to be beyond any doubt, and responsible for certain adverse reactions. This should not bring into question the usefulness of the drug, but indicates the need for regular monitoring and, in the presence of a functional smear, further investigation by vaginal ultrasonography is essential in order to evaluate the status of the endometrium. PMID:8036383

  18. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lijue; She, Xiaodong; Wang, Tao; He, Li; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-08-01

    Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The

  19. The insulin-like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Sato, Katsuaki; Takemoto, Toshiki; Iwasaki, Takuya; Mitsudomi, Tetsuya

    2014-08-15

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy often provides a dramatic response in lung cancer patients with EGFR mutations. In addition, moderate clinical efficacy of the EGFR-TKI, erlotinib, has been shown in lung cancer patients with the wild-type EGFR. Numerous molecular mechanisms that cause acquired resistance to EGFR-TKIs have been identified in lung cancers with the EGFR mutations; however, few have been reported in lung cancers with the wild-type EGFR. We used H358 lung adenocarcinoma cells lacking EGFR mutations that showed modest sensitivity to erlotinib. The H358 cells acquired resistance to erlotinib via chronic exposure to the drug. The H358 erlotinib-resistant (ER) cells do not have a secondary EGFR mutation, neither MET gene amplification nor PTEN downregulation; these have been identified in lung cancers with the EGFR mutations. From comprehensive screening of receptor tyrosine kinase phosphorylation, we observed increased phosphorylation of insulin-like growth factor 1 receptor (IGF1R) in H358ER cells compared with parental H358 cells. H358ER cells responded to combined therapy with erlotinib and NVP-AEW541, an IGF1R-TKI. Our results indicate that IGF1R activation is a molecular mechanism that confers acquired resistance to erlotinib in lung cancers with the wild-type EGFR.

  20. Curcumin mediates oxaliplatin-acquired resistance reversion in colorectal cancer cell lines through modulation of CXC-Chemokine/NF-κB signalling pathway

    PubMed Central

    Ruiz de Porras, Vicenç; Bystrup, Sara; Martínez-Cardús, Anna; Pluvinet, Raquel; Sumoy, Lauro; Howells, Lynne; James, Mark I.; Iwuji, Chinenye; Manzano, José Luis; Layos, Laura; Bugés, Cristina; Abad, Albert; Martínez-Balibrea, Eva

    2016-01-01

    Resistance to oxaliplatin (OXA) is a complex process affecting the outcomes of metastatic colorectal cancer (CRC) patients treated with this drug. De-regulation of the NF-κB signalling pathway has been proposed as an important mechanism involved in this phenomenon. Here, we show that NF-κB was hyperactivated in in vitro models of OXA-acquired resistance but was attenuated by the addition of Curcumin, a non-toxic NF-κB inhibitor. The concomitant combination of Curcumin + OXA was more effective and synergistic in cell lines with acquired resistance to OXA, leading to the reversion of their resistant phenotype, through the inhibition of the NF-κB signalling cascade. Transcriptomic profiling revealed the up-regulation of three NF-κB-regulated CXC-chemokines, CXCL8, CXCL1 and CXCL2, in the resistant cells that were more efficiently down-regulated after OXA + Curcumin treatment as compared to the sensitive cells. Moreover, CXCL8 and CXCL1 gene silencing made resistant cells more sensitive to OXA through the inhibition of the Akt/NF-κB pathway. High expression of CXCL1 in FFPE samples from explant cultures of CRC patients-derived liver metastases was associated with response to OXA + Curcumin. In conclusion, we suggest that combination of OXA + Curcumin could be an effective treatment, for which CXCL1 could be used as a predictive marker, in CRC patients. PMID:27091625

  1. Integrated genomic approaches identify upregulation of SCRN1 as a novel mechanism associated with acquired resistance to erlotinib in PC9 cells harboring oncogenic EGFR mutation

    PubMed Central

    Kim, Nayoung; Cho, Ahye; Watanabe, Hideo; Choi, Yoon-La; Aziz, Meraj; Kassner, Michelle; Joung, Je-Gun; Park, Angela KJ; Francis, Joshua M.; Bae, Joon Seol; Ahn, Soo-min; Kim, Kyoung-Mee; Park, Joon Oh; Park, Woong-Yang; Ahn, Myung-Ju; Park, Keunchil; Koo, Jaehyung; Yin, Hongwei Holly; Cho, Jeonghee

    2016-01-01

    Therapies targeting the tyrosine kinase activity of Epidermal Growth Factor Receptor (EGFR) have been proven to be effective in treating a subset of non-small cell lung cancer (NSCLC) patients harboring activating EGFR mutations. Inevitably these patients develop resistance to the EGFR-targeted tyrosine kinase inhibitors (TKIs). Here, we performed integrated genomic analyses using an in vitro system to uncover alternative genomic mechanisms responsible for acquired resistance to EGFR-TKIs. Specifically, we identified 80 genes whose expression is significantly increased in the erlotinib-resistant clones. RNAi-based systematic synthetic lethal screening of these candidate genes revealed that suppression of one upregulated transcript, SCRN1, a secernin family member, restores sensitivity to erlotinib by enhancing inhibition of PI3K/AKT signaling pathway. Furthermore, immunohistochemical analysis revealed increased levels of SCRN1 in 5 of 11 lung tumor specimens from EGFR-TKIs resistant patients. Taken together, we propose that upregulation of SCRN1 is an additional mechanism associated with acquired resistance to EGFR-TKIs and that its suppression serves as a novel therapeutic strategy to overcome drug resistance in these patients. PMID:26883194

  2. Vibrational study of tamoxifen citrate polymorphism

    NASA Astrophysics Data System (ADS)

    Gamberini, M. C.; Baraldi, C.; Tinti, A.; Palazzoli, F.; Ferioli, V.

    2007-09-01

    The trans isomer of ( Z)-2-[ p-(1,2-diphenyl-butenyl)phenoxy]- N, N-dimethyletylamine (tamoxifen) is well known for its endocrine activity as an antiestrogenic agent. Its citrate salt, a widely used pharmaceutical agent, appears in three main polymorphic forms, two of which are well known (I and II) and another form not yet well evidenced. A vibrational study has been conducted for identifying the two known polymorphic forms of tamoxifen citrate (I and II) and for characterising the other form (form III) examined in this study. Other techniques for the characterization of the different polymorphs, such as XRDP, have been used.

  3. ERα-XPO1 Cross Talk Controls Tamoxifen Sensitivity in Tumors by Altering ERK5 Cellular Localization

    PubMed Central

    Wrobel, Kinga; Zhao, Yiru Chen; Kulkoyluoglu, Eylem; Chen, Karen Lee Ann; Hieronymi, Kadriye; Holloway, Jamie; Li, Sarah; Ray, Tania; Ray, Partha Sarathi; Landesman, Yosef; Lipka, Alexander Edward; Smith, Rebecca Lee

    2016-01-01

    Most breast cancer deaths occur in women with recurrent, estrogen receptor (ER)-α(+), metastatic tumors. There is a critical need for therapeutic approaches that include novel, targetable mechanism-based strategies by which ERα (+) tumors can be resensitized to endocrine therapies. The objective of this study was to validate a group of nuclear transport genes as potential biomarkers to predict the risk of endocrine therapy failure and to evaluate the inhibition of XPO1, one of these genes as a novel means to enhance the effectiveness of endocrine therapies. Using advanced statistical methods, we found that expression levels of several of nuclear transport genes including XPO1 were associated with poor survival and predicted recurrence of tamoxifen-treated breast tumors in human breast cancer gene expression data sets. In mechanistic studies we showed that the expression of XPO1 determined the cellular localization of the key signaling proteins and the response to tamoxifen. We demonstrated that combined targeting of XPO1 and ERα in several tamoxifen-resistant cell lines and tumor xenografts with the XPO1 inhibitor, Selinexor, and tamoxifen restored tamoxifen sensitivity and prevented recurrence in vivo. The nuclear transport pathways have not previously been implicated in the development of endocrine resistance, and given the need for better strategies for selecting patients to receive endocrine modulatory reagents and improving therapy response of relapsed ERα(+) tumors, our findings show great promise for uncovering the role these pathways play in reducing cancer recurrences. PMID:27533791

  4. Molecular characterization of anastrozole resistance in breast cancer: pivotal role of the Akt/mTOR pathway in the emergence of de novo or acquired resistance and importance of combining the allosteric Akt inhibitor MK-2206 with an aromatase inhibitor.

    PubMed

    Vilquin, Paul; Villedieu, Marie; Grisard, Evelyne; Ben Larbi, Sabrina; Ghayad, Sandra E; Heudel, Pierre-Etienne; Bachelot, Thomas; Corbo, Laura; Treilleux, Isabelle; Vendrell, Julie A; Cohen, Pascale A

    2013-10-01

    Acquisition of resistance to aromatase inhibitors (AIs) remains a major drawback in the treatment of estrogen receptor alpha (ERα)-positive breast cancers. The Res-Ana cells, a new model of acquired resistance to anastrozole, were established by long-term exposure of aromatase-overexpressing MCF-7 cells to this drug. These resistant cells developed ER-independent mechanisms of resistance and decreased sensitivity to the AI letrozole or to ERα antagonists. They also displayed a constitutive activation of the PI3K/Akt/mTOR pathway and a deregulated expression of several ErbB receptors. An observed increase in the phospho-Akt/Akt ratio between primary and matched recurrent breast tumors of patients who relapsed under anastrozole adjuvant therapy also argued for a pivotal role of the Akt pathway in acquired resistance to anastrozole. Ectopic overexpression of constitutively active Akt1 in control cells was sufficient to induce de novo resistance to anastrozole. Strikingly, combining anastrozole with the highly selective and allosteric Akt inhibitor MK-2206 or with the mTOR inhibitor rapamycin increased sensitivity to this AI in the control cells and was sufficient to overcome resistance and restore sensitivity to endocrine therapy in the resistant cells. Our findings lead to us proposing a model of anastrozole-acquired resistance based on the selection of cancer-initiating-like cells possessing self-renewing properties, intrinsic resistance to anastrozole and sensitivity to MK-2206. Altogether, our work demonstrated that the Akt/mTOR pathway plays a key role in resistance to anastrozole and that combining anastrozole with Akt/mTOR pathway inhibitors represents a promising strategy in the clinical management of hormone-dependent breast cancer patients.

  5. The Role of PIK3CA Mutations among Lung Adenocarcinoma Patients with Primary and Acquired Resistance to EGFR Tyrosine Kinase Inhibition

    PubMed Central

    Wu, Shang-Gin; Chang, Yih-Leong; Yu, Chong-Jen; Yang, Pan-Chyr; Shih, Jin-Yuan

    2016-01-01

    To understand the impact of PIK3CA mutations on clinical characteristics and treatment response to epidermal growth factor tyrosine kinase inhibitors (EGFR TKIs) of lung adenocarcinoma, we examined PIK3CA and EGFR mutations in lung adenocarcinoma patients, and analyzed their clinical outcomes. Surgically excised tumor, bronchoscopy biopsy/brushing specimens and pleural effusions were prospectively collected from 1029 patients. PIK3CA and EGFR mutations were analyzed by RT-PCR and direct sequencing. In EGFR TKI-nave specimens, PIK3CA mutation rate was 1.8% (14/760). Twelve patients had coexisting PIK3CA and EGFR mutations. Among the 344 EGFR TKI-treated EGFR mutant patients, there was no significant difference in treatment response (p = 0.476) and progression-free survival (p = 0.401) of EGFR TKI between PIK3CA mutation-positive and negative patients. The PIK3CA mutation rate in lung adenocarcinoma with acquired resistance to EGFR TKI is not higher than that in EGFR TKI-naïve tissue specimens (2.9% (6/207) vs. 1.8%; p = 0.344). Of the 74 patients with paired specimens (TKI-naïve and acquired resistance to TKIs) only one patient (1.4%) developed acquired PIK3CA (E545K) mutation, and he also had acquired EGFR (T790M) mutation. In conclusion, PIK3CA mutation may not be associated with primary resistance to EGFR TKI among lung adenocarcinoma patients. Acquired PIK3CA mutation related to EGFR TKI treatment is rare. PMID:27734950

  6. Potential Therapeutic Benefit of Combining Gefitinib and Tamoxifen for Treating Advanced Lung Adenocarcinoma

    PubMed Central

    Chiu, Kuo-Liang; Chen, Tzu-Sheng; Chang, Shang-Miao; Yang, Shu-Yun; Chen, Li-Hsiou; Ni, Yung-Lun

    2015-01-01

    Introduction. Epidermal growth factor receptor (EGFR) mutations are known as oncogene driver mutations and with EGFR mutations exhibit good response to the EGFR tyrosine kinase inhibitor Gefitinib. Some studies have shown that activation of estrogen and estrogen receptor α or β (ERα/β) promote adenocarcinoma. We evaluated the relationship between the two receptors and the potential therapeutic benefit with Gefitinib and Tamoxifen. Methods. We assessed the association between EGFR mutations as well as ERα/β expression/location and overall survival in a cohort of 55 patients with LAC from a single hospital. PC9 (EGFR exon 19 deletion mutant; Gefitinib-vulnerable cells) and A549 (EGFR wild type; Gefitinib-resistant cells) cancer cells were used to evaluate the in vitro therapeutic benefits of combining Gefitinib and Tamoxifen. Results. We found that the cytosolic but not the nuclear expression of ERβ was associated with better OS in LAC tumors but not associated with EGFR mutation. The in vitro study showed that combined Gefitinib and Tamoxifen resulted in increased apoptosis and cytosolic expression of ERβ. In addition, combining both medications resulted in reduced cell growth and increased the cytotoxic effect of Gefitinib. Conclusion. Tamoxifen enhanced advanced LAC cytotoxic effect induced by Gefitinib by arresting ERβ in cytosol. PMID:25692143

  7. CYP2D6 Genotyping and Tamoxifen: An Unfinished Story in the Quest for Personalized Medicine

    PubMed Central

    de Souza, Jonas A.; Olopade, Olufunmilayo I.

    2011-01-01

    The philosophy behind personalized medicine is that each patient has a unique biologic profile that should guide the choice of therapy, resulting in an improved treatment outcome, ideally with reduced toxicity. Thus, there has been increasing interest in identifying genetic variations that are predictive of a drug’s efficacy or toxicity. Although it is one of the most effective drugs for treating breast cancer, tamoxifen is not effective in all estrogen receptor (ER)-positive breast cancer patients, and it is frequently associated with side effects, such as hot flashes. Relative resistance to tamoxifen treatment may be a result, in part, from impaired drug activation by cytochrome P450 2D6 (CYP2D6). Indeed, recent studies have identified allelic variations in CYP2D6 to be an important determinant of tamoxifen’s activity (and toxicity). This article will summarize the current information regarding the influence of the major genotypes and CYP2D6 inhibitors on tamoxifen metabolism, with a focus on its clinical utility and the current level of evidence for CYP2D6 genotyping of patients who are candidates for tamoxifen treatment. PMID:21421116

  8. Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation

    PubMed Central

    Liu, Ta-Ming; Woyach, Jennifer A.; Zhong, Yiming; Lozanski, Arletta; Lozanski, Gerard; Dong, Shuai; Strattan, Ethan; Lehman, Amy; Zhang, Xiaoli; Jones, Jeffrey A.; Flynn, Joseph; Andritsos, Leslie A.; Maddocks, Kami; Jaglowski, Samantha M.; Blum, Kristie A.; Byrd, John C.; Dubovsky, Jason A.

    2015-01-01

    Ibrutinib has significantly improved the outcome of patients with relapsed chronic lymphocytic leukemia (CLL). Recent reports attribute ibrutinib resistance to acquired mutations in Bruton agammaglobulinemia tyrosine kinase (BTK), the target of ibrutinib, as well as the immediate downstream effector phospholipase C, γ2 (PLCG2). Although the C481S mutation found in BTK has been shown to disable ibrutinib’s capacity to irreversibly bind this primary target, the detailed mechanisms of mutations in PLCG2 have yet to be established. Herein, we characterize the enhanced signaling competence, BTK independence, and surface immunoglobulin dependence of the PLCG2 mutation at R665W, which has been documented in ibrutinib-resistant CLL. Our data demonstrate that this missense alteration elicits BTK-independent activation after B-cell receptor engagement, implying the formation of a novel BTK-bypass pathway. Consistent with previous results, PLCG2R665W confers hypermorphic induction of downstream signaling events. Our studies reveal that proximal kinases SYK and LYN are critical for the activation of mutant PLCG2 and that therapeutics targeting SYK and LYN can combat molecular resistance in cell line models and primary CLL cells from ibrutinib-resistant patients. Altogether, our results engender a molecular understanding of the identified aberration at PLCG2 and explore its functional dependency on BTK, SYK, and LYN, suggesting alternative strategies to combat acquired ibrutinib resistance. PMID:25972157

  9. Multiplicity of acquired cross-resistance in paclitaxel-resistant cancer cells is associated with feedback control of TUBB3 via FOXO3a-mediated ABCB1 regulation

    PubMed Central

    Aldonza, Mark Borris D.; Hong, Ji-Young; Alinsug, Malona V.; Song, Jayoung; Lee, Sang Kook

    2016-01-01

    Acquired drug resistance is a primary obstacle for effective cancer therapy. The correlation of point mutations in class III β-tubulin (TUBB3) and the prominent overexpression of ATP-binding cassette P-glycoprotein (ABCB1), a multidrug resistance gene, have been protruding mechanisms of resistance to microtubule disruptors such as paclitaxel (PTX) for many cancers. However, the precise underlying mechanism of the rapid onset of cross-resistance to an array of structurally and functionally unrelated drugs in PTX-resistant cancers has been poorly understood. We determined that our established PTX-resistant cancer cells display ABCB1/ABCC1-associated cross-resistance to chemically different drugs such as 5-fluorouracil, docetaxel, and cisplatin. We found that feedback activation of TUBB3 can be triggered through the FOXO3a-dependent regulation of ABCB1, which resulted in the accentuation of induced PTX resistance and encouraged multiplicity in acquired cross-resistance. FOXO3a-directed regulation of P-glycoprotein (P-gp) function suggests that control of ABCB1 involves methylation-dependent activation. Consistently, transcriptional overexpression or downregulation of FOXO3a directs inhibitor-controlled protease-degradation of TUBB3. The functional PI3K/Akt signaling is tightly responsive to FOXO3a activation alongside doxorubicin treatment, which directs FOXO3a arginine hypermethylation. In addition, we found that secretome factors from PTX-resistant cancer cells with acquired cross-resistance support a P-gp-dependent association in multidrug resistance (MDR) development, which assisted the FOXO3a-mediated control of TUBB3 feedback. The direct silencing of TUBB3 reverses induced multiple cross-resistance, reduces drug-resistant tumor mass, and suppresses the impaired microtubule stability status of PTX-resistant cells with transient cross-resistance. These findings highlight the control of the TUBB3 response to ABCB1 genetic suppressors as a mechanism to reverse the

  10. Multidrug-resistant North American pulsotype 2 Clostridium difficile was the predominant toxigenic hospital-acquired strain in the province of Manitoba, Canada, in 2006-2007.

    PubMed

    Karlowsky, James A; Zhanel, George G; Hammond, Greg W; Rubinstein, Ethan; Wylie, John; Du, Tim; Mulvey, Michael R; Alfa, Michelle J

    2012-05-01

    The objective of the current study was to determine whether the antimicrobial susceptibility profile or genotype of hospital-acquired isolates of Clostridium difficile differed from isolates causing community-acquired disease. Five hundred diarrhoeal stool samples (one >2 ml sample per patient) from patients across Manitoba, Canada, in 2006-2007 that were reported as C. difficile toxin positive were cultured, resulting in 432 isolates of toxin-positive C. difficile for analysis. Of these 432 isolates, acquisition status could be determined for 235 (54.4%); 182 (77.4%) isolates were hospital acquired and 53 (22.6%) were community acquired. North American pulsotype (NAP) designations based on SmaI PFGE could be defined for 52.3% of the 432 isolates, with NAP2 (n=122) being the most common. Ninety-one per cent (71/78) of NAP2 isolates were recovered from patients with hospital-acquired C. difficile disease. Other NAP types and isolates with non-NAP-type PFGE patterns were less frequently associated with hospital-acquired disease. Community-acquired disease (35.3% of isolates) was associated with a wide variety of NAP types. NAP2 isolates were homogeneous (85.5% had SmaI PFGE pattern 0003) and demonstrated low susceptibility to moxifloxacin (6.6%) and clindamycin (1.6%) compared with non-NAP2 isolates (64.1-93.2% moxifloxacin susceptible; 14.1-28.2% clindamycin susceptible). All isolates of C. difficile in Manitoba were susceptible to metronidazole, piperacillin-tazobactam, amoxicillin-clavulanate and meropenem. NAP2 isolates of toxigenic C. difficile were approximately three times more common than NAP1 isolates (28.2 vs 9.1%) in Manitoba in 2006-2007, and these isolates demonstrated high levels of clonality and multidrug resistance, and were associated with hospital acquisition. PMID:22301615

  11. Perinatal induction of Cre recombination with tamoxifen.

    PubMed

    Lizen, Benoit; Claus, Melissa; Jeannotte, Lucie; Rijli, Filippo M; Gofflot, Françoise

    2015-12-01

    Temporal control of site-specific recombination is commonly achieved by using a tamoxifen-inducible form of Cre or Flp recombinases. Although powerful protocols of induction have been developed for gene inactivation at adult stages or during embryonic development, induction of recombination at late gestational or early postnatal stages is still difficult to achieve. In this context, using the ubiquitous CMV-CreER(T2) transgenic mice, we have tested and validated two procedures to achieve recombination just before and just after birth. The efficiency of recombination was evaluated in the brain, which is known to be more problematic to target. For the late gestation treatment with tamoxifen, different protocols of complementary administration of progesterone and estrogen were tested. However, delayed delivery and/or mortality of pups due to difficult delivery were always observed. To circumvent this problem, pups were collected from tamoxifen-treated pregnant dams by caesarian section at E18.5 and given to foster mothers. For postnatal treatment, different dosages of tamoxifen were administered by intragastric injection to the pups during 3 or 4 days after birth. The efficiency of these treatments was analyzed at P7 using a transgenic reporter line. They were also validated with the Hoxa5 conditional allele. In conclusion, we have developed efficient procedures that allow achieving efficient recombination of floxed alleles at perinatal stages. These protocols will allow investigating the late/adult functions of many developmental genes, whose characterization has been so far restricted to embryonic development. PMID:26395370

  12. Acquired resistance of pancreatic cancer cells to treatment with gemcitabine and HER-inhibitors is accompanied by increased sensitivity to STAT3 inhibition

    PubMed Central

    IOANNOU, NIKOLAOS; SEDDON, ALAN M.; DALGLEISH, ANGUS; MACKINTOSH, DAVID; SOLCA, FLAVIO; MODJTAHEDI, HELMOUT

    2016-01-01

    Drug-resistance is a major contributing factor for the poor prognosis in patients with pancreatic cancer. We have shown previously that the irreversible ErbB family blocker afatinib, is more effective than the reversible EGFR tyrosine kinase inhibitor erlotinib in inhibiting the growth of human pancreatic cancer cells. The aim of this study was to develop human pancreatic cancer cell (BxPc3) variants with acquired resistance to treatment with gemcitabine, afatinib, or erlotinib, and to investigate the molecular changes that accompany the acquisition of a drug-resistant phenotype. We also investigated the therapeutic potential of various agents in the treatment of such drug-resistant variants. Three variant forms of BxPc3 cells with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) were developed following treatment with increasing doses of such drugs. The expression level, mutational and phosphorylation status of various growth factor receptors and downstream cell signaling molecules were determined by FACS, human phopsho-RTK array, and western blot analysis while the sulforhodamine B assay was used for determining the effect of various agents on the growth of such tumours. We found that all three BxPc3 variants with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) also become less sensitive to treatment with the two other agents. Acquisition of resistance to these agents was accompanied by upregulation of p-c-MET, p-STAT3, CD44, increased autocrine production of EGFR ligand amphiregulin and differential activation status of EGFR tyrosine residues as well as downregulation of total and p-SRC. Of all therapeutic interventions examined, including the addition of an anti-EGFR antibody ICR62, an anti-CD44 monoclonal antibody, and of STAT3 or c-MET inhibitors, only treatment with the STAT3 inhibitor Stattic produced a higher growth inhibitory effect in all three drug-resistant variants

  13. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia.

    PubMed

    Ko, Tun Kiat; Chin, Hui San; Chuah, Charles T H; Huang, John W J; Ng, King-Pan; Khaw, Seong Lin; Huang, David C S; Ong, S Tiong

    2016-01-19

    Both germline polymorphisms and tumor-specific genetic alterations can determine the response of a cancer to a given therapy. We previously reported a germline deletion polymorphism in the BIM gene that was sufficient to mediate intrinsic resistance to tyrosine kinase inhibitors (TKI) in chronic myeloid leukemia (CML), as well as other cancers [1]. The deletion polymorphism favored the generation of BIM splice forms lacking the pro-apoptotic BH3 domain, conferring a relative resistance to the TKI imatinib (IM). However, CML patients with the BIM deletion polymorphism developed both partial and complete IM resistance. To understand the mechanisms underlying the latter, we grew CML cells either with or without the BIM deletion polymorphism in increasing IM concentrations. Under these conditions, the BIM deletion polymorphism enhanced the emergence of populations with complete IM resistance, mimicking the situation in patients. Importantly, the combined use of TKIs with the BH3 mimetic ABT-737 overcame the BCR-ABL1-dependent and -independent resistance mechanisms found in these cells. Our results illustrate the interplay between germline and acquired genetic factors in confering TKI resistance, and suggest a therapeutic strategy for patients with complete TKI resistance associated with the BIM deletion polymorphism.

  14. Systematic identification of signaling pathways with potential to confer anticancer drug resistance.

    PubMed

    Martz, Colin A; Ottina, Kathleen A; Singleton, Katherine R; Jasper, Jeff S; Wardell, Suzanne E; Peraza-Penton, Ashley; Anderson, Grace R; Winter, Peter S; Wang, Tim; Alley, Holly M; Kwong, Lawrence N; Cooper, Zachary A; Tetzlaff, Michael; Chen, Pei-Ling; Rathmell, Jeffrey C; Flaherty, Keith T; Wargo, Jennifer A; McDonnell, Donald P; Sabatini, David M; Wood, Kris C

    2014-12-23

    Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)-mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF(V600E) melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts. PMID:25538079

  15. Tamoxifen Induces Apoptosis of Leishmania major Promastigotes in Vitro

    PubMed Central

    Doroodgar, Masoud; Delavari, Mahdi; Doroodgar, Moein; Abbasi, Ali; Taherian, Ali Akbar; Doroodgar, Abbas

    2016-01-01

    Tamoxifen is an antagonist of the estrogen receptor and currently used for the treatment of breast cancer. The current treatment of cutaneous leishmaniasis with pentavalent antimony compounds is not satisfactory. Therefore, in this study, due to its antileishmanial activity, effects of tamoxifen on the growth of promastigotes and amastigotes of Leishmania major Iranian strain were evaluated in vitro. Promastigotes and amastigotes were treated with different concentrations (1, 5, 10, 20, and 50 μg/ml) and time periods (24, 48, and 72 hr) of tamoxifen. After tamoxifen treatment, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 biphenyl tetrazolium bromide assay) was used to determine the percentage of live parasites and Graph Pad Prism software to calculate IC50. Flow cytometry was applied to investigate the induction of tamoxifen-induced apoptosis in promastigotes. The half maximal inhibitory concentration (IC50) of tamoxifen on promastigotes was 2.6 μg/ml after 24 hr treatment. Flow cytometry analysis showed that tamoxifen induced early and late apoptosis in Leishmania promastigotes. While after 48 hr in control group the apoptosis was 2.0%, the 50 µg/L concentration of tamoxifen increased it to 59.7%. Based on the in vitro antileishmanial effect, tamoxifen might be used for leishmaniasis treatment; however, further researches on in vivo effects of tamoxifen in animal models are needed. PMID:26951973

  16. Evolution of amoxicillin/clavulanate in the treatment of adults with acute bacterial rhinosinusitis and community-acquired pneumonia in response to antimicrobial-resistance patterns.

    PubMed

    File, Thomas M; Benninger, Michael S; Jacobs, Michael R

    2004-06-01

    Current treatment guidelines for community-acquired respiratory tract infections no longer depend solely on the characteristics of the patient and the clinical syndrome, but on those of the offending pathogen, including presence and level of antimicrobial resistance. The most common respiratory tract pathogens known to cause acute bacterial rhinosinusitis (ABRS) and community-acquired pneumonia (CAP) include Streptococcus pneumoniae and Haemophilus influenzae. The prevalence of antimicrobial resistance, especially b-lactum and macrolide resistance, among S pneumoniae and H influenzae has increased dramatically during the past 2 decades, diminishing the activity of many older antimicrobials against resistant organisms. A pharmacokinetically enhanced formulation of amoxicillin/clavulanate has been developed to fulfill the need for an oral b-lactam antimicrobial that achieves a greater time that the serum drug concentration exceeds the minimum inhibitory concentration (T > MIC) of antimicrobials against pathogens than conventional formulations to improve activity against S pneumoniae with reduced susceptibility to penicillin. The b-lactamase inhibitor clavulanate allows for coverage of b-lactamase-producing pathogens, such as H influenzae and M catarrhalis. This article reviews the rationale for, and evolution of, oral amoxicillin clavulanate for ABRS and CAP

  17. Low Incidence of HIV-1C Acquired Drug Resistance 10 Years after Roll-Out of Antiretroviral Therapy in Ethiopia: A Prospective Cohort Study.

    PubMed

    Mulu, Andargachew; Maier, Melanie; Liebert, Uwe Gerd

    2015-01-01

    The emergence of HIV-1 drug resistance mutations has mainly been linked to the duration and composition of antiretroviral treatment (ART), as well as the level of adherence. This study reports the incidence and pattern of acquired antiretroviral drug resistance mutations and long-term outcomes of ART in a prospective cohort from Northwest Ethiopia. Two hundred and twenty HIV-1C infected treatment naïve patients were enrolled and 127 were followed-up for up to 38 months on ART. ART initiation and patients' monitoring was based on the WHO clinical and immunological parameters. HIV viral RNA measurement and drug resistance genotyping were done at baseline (N = 160) and after a median time of 30 (IQR, 27-38) months on ART (N = 127). Viral suppression rate (HIV RNA levels ≤ 400 copies/ml) after a median time of 30 months on ART was found to be 88.2% (112/127), which is in the range for HIV drug resistance prevention suggested by WHO. Of those 15 patients with viral load >400 copies/ml, six harboured one or more drug resistant associated mutations in the reverse transcriptase (RT) region. Observed NRTIs resistance associated mutations were the lamivudine-induced mutation M184V (n = 4) and tenofovir associated mutation K65R (n = 1). The NNRTIs resistance associated mutations were K103N (n = 2), V106M, Y181S, Y188L, V90I, K101E and G190A (n = 1 each). Thymidine analogue mutations and major drug resistance mutations in the protease (PR) region were not detected. Most of the patients (13/15) with virologic failure and accumulated drug resistance mutations had not met the WHO clinical and/or immunological failure criteria and continued the failing regimen. The incidence and pattern of acquired antiretroviral drug resistance mutations is lower and less complex than previous reports from sub Saharan Africa countries. Nevertheless, the data suggest the need for virological monitoring and resistance testing for early detection of failure. Moreover, adherence reinforcement will

  18. FDG-PET is a good biomarker of both early response and acquired resistance in BRAFV600 mutant melanomas treated with vemurafenib and the MEK inhibitor GDC-0973

    PubMed Central

    2012-01-01

    Background The BRAF inhibitor, vemurafenib, has recently been approved for the treatment of metastatic melanoma in patients harboring BRAFV600 mutations. Currently, dual BRAF and MEK inhibition are ongoing in clinical trials with the goal of overcoming the acquired resistance that has unfortunately developed in some vemurafenib patients. FDG-PET measures of metabolic activity are increasingly employed as a pharmacodynamic biomarker for guiding single-agent or combination therapies by gauging initial drug response and monitoring disease progression. However, since tumors are inherently heterogeneous, investigating the effects of BRAF and MEK inhibition on FDG uptake in a panel of different melanomas could help interpret imaging outcomes. Methods 18 F-FDG uptake was measured in vitro in cells with wild-type and mutant (V600) BRAF, and in melanoma cells with an acquired resistance to vemurafenib. We treated the cells with vemurafenib alone or in combination with MEK inhibitor GDC-0973. PET imaging was used in mice to measure FDG uptake in A375 melanoma xenografts and in A375 R1, a vemurafenib-resistant derivative. Histological and biochemical studies of glucose transporters, the MAPK and glycolytic pathways were also undertaken. Results We demonstrate that vemurafenib is equally effective at reducing FDG uptake in cell lines harboring either heterozygous or homozygous BRAFV600 but ineffective in cells with acquired resistance or having WT BRAF status. However, combination with GDC-0973 results in a highly significant increase of efficacy and inhibition of FDG uptake across all twenty lines. Drug-induced changes in FDG uptake were associated with altered levels of membrane GLUT-1, and cell lines harboring RAS mutations displayed enhanced FDG uptake upon exposure to vemurafenib. Interestingly, we found that vemurafenib treatment in mice bearing drug-resistant A375 xenografts also induced increased FDG tumor uptake, accompanied by increases in Hif-1α, Sp1 and Ksr

  19. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane.

    PubMed

    Hole, Stine; Pedersen, Astrid M; Hansen, Susanne K; Lundqvist, Johan; Yde, Christina W; Lykkesfeldt, Anne E

    2015-04-01

    Aromatase inhibitor (AI) treatment is first-line systemic treatment for the majority of postmenopausal breast cancer patients with estrogen receptor (ER)-positive primary tumor. Although many patients benefit from treatment, some will develop resistance, and models mimicking acquired resistance will be valuable tools to unravel the resistance mechanisms and to find new treatments and biomarkers. Cell culture models for acquired resistance to the three clinically relevant AIs letrozole, anastrozole and exemestane were developed by selection and expansion of colonies of MCF-7 breast cancer cells surviving long-term AI treatment under conditions where endogenous aromatase-mediated conversion of androgen to estrogen was required for growth. Four cell lines resistant to each of the AIs were established and characterized. Maintenance of ER expression and function was a general finding, but ER loss was seen in one of twelve cell lines. HER receptor expression was increased, in particular EGFR expression in letrozole-resistant cell lines. The AI-resistant cell lines had acquired ability to grow without aromatase-mediated conversion of testosterone to estradiol, but upon withdrawal of AI treatment, testosterone induced minor growth stimulation. Letrozole, exemestane and tamoxifen were able to abrogate the testosterone stimulation but could not reduce growth to below the level in standard growth medium with AI, demonstrating cross-resistance between letrozole, exemestane and tamoxifen. In contrast, fulvestrant totally blocked growth of the AI resistant cell lines both after withdrawal of AI and with AI treatment. These data show that ER is the main driver of growth of the AI-resistant cell lines and indicate ligand-independent activation of ER. Fulvestrant is an efficient treatment option for these AI-resistant breast cancer cells, and the cell lines will be useful tools to disclose the underlying molecular mechanism for resistance to the different AIs.

  20. New findings on primary and acquired resistance to anti-EGFR therapy in metastatic colorectal cancer: do all roads lead to RAS?

    PubMed

    Bronte, Giuseppe; Silvestris, Nicola; Castiglia, Marta; Galvano, Antonio; Passiglia, Francesco; Sortino, Giovanni; Cicero, Giuseppe; Rolfo, Christian; Peeters, Marc; Bazan, Viviana; Fanale, Daniele; Giordano, Antonio; Russo, Antonio

    2015-09-22

    Anti-epidermal growth factor receptor therapy with the monoclonal antibodies cetuximab and panitumumab is the main targeted treatment to combine with standard chemotherapy for metastatic colorectal cancer. Many clinical studies have shown the benefit of the addition of these agents for patients without mutations in the EGFR pathway. Many biomarkers, including KRAS and NRAS mutations, BRAF mutations, PIK3CA mutations, PTEN loss, AREG and EREG expression, and HER-2 amplification have already been identified to select responders to anti-EGFR agents. Among these alterations KRAS and NRAS mutations are currently recognized as the best predictive factors for primary resistance. Liquid biopsy, which helps to isolate circulating tumor DNA, is an innovative method to study both primary and acquired resistance to anti-EGFR monoclonal antibodies. However, high-sensitivity techniques should be used to enable the identification of a wide set of gene mutations related to resistance.

  1. New findings on primary and acquired resistance to anti-EGFR therapy in metastatic colorectal cancer: do all roads lead to RAS?

    PubMed Central

    Castiglia, Marta; Galvano, Antonio; Passiglia, Francesco; Sortino, Giovanni; Cicero, Giuseppe; Rolfo, Christian; Peeters, Marc; Bazan, Viviana; Fanale, Daniele; Giordano, Antonio; Russo, Antonio

    2015-01-01

    Anti-epidermal growth factor receptor therapy with the monoclonal antibodies cetuximab and panitumumab is the main targeted treatment to combine with standard chemotherapy for metastatic colorectal cancer. Many clinical studies have shown the benefit of the addition of these agents for patients without mutations in the EGFR pathway. Many biomarkers, including KRAS and NRAS mutations, BRAF mutations, PIK3CA mutations, PTEN loss, AREG and EREG expression, and HER-2 amplification have already been identified to select responders to anti-EGFR agents. Among these alterations KRAS and NRAS mutations are currently recognized as the best predictive factors for primary resistance. Liquid biopsy, which helps to isolate circulating tumor DNA, is an innovative method to study both primary and acquired resistance to anti-EGFR monoclonal antibodies. However, high-sensitivity techniques should be used to enable the identification of a wide set of gene mutations related to resistance. PMID:26318427

  2. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance.

    PubMed

    Zhang, Yuelin; Tessaro, Mark J; Lassner, Michael; Li, Xin

    2003-11-01

    Arabidopsis nonexpresser of pathogenesis-related (PR) genes (NPR1) is the sole positive regulator that has been shown to be essential for the induction of systemic acquired resistance. In npr1 mutant plants, salicylic acid (SA)-mediated PR gene expression and pathogen resistance are abolished completely. NPR1 has been shown to interact with three closely related TGA transcription factors-TGA2, TGA5, and TGA6-in yeast two-hybrid assays. To elucidate the biological functions of these three TGA transcription factors, we analyzed single and combined deletion knockout mutants of TGA2, TGA5, and TGA6 for SA-induced PR gene expression and pathogen resistance. Induction of PR gene expression and pathogen resistance by the SA analog 2,6-dichloroisonicotinic acid (INA) was blocked in tga6-1 tga2-1 tga5-1 but not in tga6-1 or tga2-1 tga5-1 plants. Loss of INA-induced resistance to Peronospora parasitica Noco2 cosegregated with the tga6-1 mutation in progeny of multiple lines that were heterozygous for tga6-1 and homozygous for tga2-1 tga5-1 and could be complemented by genomic clones of wild-type TGA2 or TGA5, indicating that TGA2, TGA5, and TGA6 encode redundant and essential functions in the positive regulation of systemic acquired resistance. In addition, tga6-1 tga2-1 tga5-1 plants had reduced tolerance to high levels of SA and accumulated higher basal levels of PR-1 under noninducing conditions, suggesting that these TGA factors also are important for SA tolerance and the negative regulation of the basal expression of PR-1. PMID:14576289

  3. National and Regional Assessment of Antimicrobial Resistance among Community-Acquired Respiratory Tract Pathogens Identified in a 2005-2006 U.S. Faropenem Surveillance Study▿

    PubMed Central

    Critchley, Ian A.; Brown, Steven D.; Traczewski, Maria M.; Tillotson, Glenn S.; Janjic, Nebojsa

    2007-01-01

    Surveillance studies conducted in the United States over the last decade have revealed increasing resistance among community-acquired respiratory pathogens, especially Streptococcus pneumoniae, that may limit future options for empirical therapy. The objective of this study was to assess the scope and magnitude of the problem at the national and regional levels during the 2005-2006 respiratory season (the season when community-acquired respiratory pathogens are prevalent) in the United States. Also, since faropenem is an oral penem being developed for the treatment of community-acquired respiratory tract infections, another study objective was to provide baseline data to benchmark changes in the susceptibility of U.S. respiratory pathogens to the drug in the future. The in vitro activities of faropenem and other agents were determined against 1,543 S. pneumoniae isolates, 978 Haemophilus influenzae isolates, and 489 Moraxella catarrhalis isolates collected from 104 U.S. laboratories across six geographic regions during the 2005-2006 respiratory season. Among S. pneumoniae isolates, the rates of resistance to penicillin, amoxicillin-clavulanate, and cefdinir were 16, 6.4, and 19.2%, respectively. The least effective agents were trimethoprim-sulfamethoxazole (SXT) and azithromycin, with resistance rates of 23.5 and 34%, respectively. Penicillin resistance rates for S. pneumoniae varied by region (from 8.7 to 22.5%), as did multidrug resistance rates for S. pneumoniae (from 8.8 to 24.9%). Resistance to β-lactams, azithromycin, and SXT was higher among S. pneumoniae isolates from children than those from adults. β-Lactamase production rates among H. influenzae and M. catarrhalis isolates were 27.4 and 91.6%, respectively. Faropenem MICs at which 90% of isolates are inhibited were 0.5 μg/ml for S. pneumoniae, 1 μg/ml for H. influenzae, and 0.5 μg/ml for M. catarrhalis, suggesting that faropenem shows promise as a treatment option for respiratory infections caused

  4. National and regional assessment of antimicrobial resistance among community-acquired respiratory tract pathogens identified in a 2005-2006 U.S. Faropenem surveillance study.

    PubMed

    Critchley, Ian A; Brown, Steven D; Traczewski, Maria M; Tillotson, Glenn S; Janjic, Nebojsa

    2007-12-01

    Surveillance studies conducted in the United States over the last decade have revealed increasing resistance among community-acquired respiratory pathogens, especially Streptococcus pneumoniae, that may limit future options for empirical therapy. The objective of this study was to assess the scope and magnitude of the problem at the national and regional levels during the 2005-2006 respiratory season (the season when community-acquired respiratory pathogens are prevalent) in the United States. Also, since faropenem is an oral penem being developed for the treatment of community-acquired respiratory tract infections, another study objective was to provide baseline data to benchmark changes in the susceptibility of U.S. respiratory pathogens to the drug in the future. The in vitro activities of faropenem and other agents were determined against 1,543 S. pneumoniae isolates, 978 Haemophilus influenzae isolates, and 489 Moraxella catarrhalis isolates collected from 104 U.S. laboratories across six geographic regions during the 2005-2006 respiratory season. Among S. pneumoniae isolates, the rates of resistance to penicillin, amoxicillin-clavulanate, and cefdinir were 16, 6.4, and 19.2%, respectively. The least effective agents were trimethoprim-sulfamethoxazole (SXT) and azithromycin, with resistance rates of 23.5 and 34%, respectively. Penicillin resistance rates for S. pneumoniae varied by region (from 8.7 to 22.5%), as did multidrug resistance rates for S. pneumoniae (from 8.8 to 24.9%). Resistance to beta-lactams, azithromycin, and SXT was higher among S. pneumoniae isolates from children than those from adults. beta-Lactamase production rates among H. influenzae and M. catarrhalis isolates were 27.4 and 91.6%, respectively. Faropenem MICs at which 90% of isolates are inhibited were 0.5 mug/ml for S. pneumoniae, 1 mug/ml for H. influenzae, and 0.5 mug/ml for M. catarrhalis, suggesting that faropenem shows promise as a treatment option for respiratory infections

  5. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells.

    PubMed

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio; Sharma, Animesh; Demirovic, Aida; Rao, Shalini; Young, Clifford; Aas, Per Arne; Ericsson, Ida; Sundan, Anders; Jensen, Ole Nørregaard; Slupphaug, Geir

    2015-01-01

    Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70-80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance.

  6. Acquired resistance of Listeria monocytogenes in and escaped from liver parenchymal cells to gentamicin is caused by being coated with their plasma membrane.

    PubMed

    Kaneko, Masakazu; Emoto, Yoshiko; Emoto, Masashi

    2014-03-01

    After systemic infection, a majority of Listeria monocytogenes invade liver parenchymal cells (LPC), replicate therein and spread to neighboring cells, suggesting that 3 different types of L. monocytogenes exist in the liver: L. monocytogenes being unable to invade LPC, residing in LPC, and escaped from infected LPC. Although listeriolysin O (LLO) participates in escape of L. monocytogenes from macrophages and L. monocytogenes is susceptible to gentamicin (Gm), it remains elusive whether LLO participates in invasion/escape of L. monocytogenes into/from LPC, and whether L. monocytogenes in/escaped from LPC are susceptible to Gm. In the present study, we examined whether LLO is involved in invasion/escape of L. monocytogenes into/from LPC and whether L. monocytogenes in/escaped from LPC are susceptible to Gm. Invasion/escape of L. monocytogenes were found in LPC lines regardless of LLO expression, and L. monocytogenes in/escaped from LPC lines showed resistance to Gm. L. monocytogenes escaped from LPC lines were coated with their plasma membrane and the acquired resistance to Gm was abrogated by saponin. Our results indicate that invasion/escape of L. monocytogenes into/from LPC occur independently of LLO, and suggest that the acquired resistance of L. monocytogenes in/escaped from LPC to Gm is caused by being coated with their plasma membrane.

  7. Reciprocal positive regulation between Cx26 and PI3K/Akt pathway confers acquired gefitinib resistance in NSCLC cells via GJIC-independent induction of EMT

    PubMed Central

    Yang, J; Qin, G; Luo, M; Chen, J; Zhang, Q; Li, L; Pan, L; Qin, S

    2015-01-01

    Gefitinib efficiency in non-small-cell lung cancer (NSCLC) therapy is limited due to development of drug resistance. The molecular mechanisms of gefitinib resistance remain still unclear. In this study, we first found that connexin 26 (Cx26) is the predominant Cx isoform expressed in various NSCLC cell lines. Then, two gefitinib-resistant (GR) NSCLC cell lines, HCC827 GR and PC9 GR, from their parental cells were established. In these GR cells, the results showed that gefitinib resistance correlated with changes in cellular EMT phenotypes and upregulation of Cx26. Cx26 was detected to be accumulated in the cytoplasm and failed to establish functional gap-junctional intercellular communication (GJIC) either in GR cells or their parental cells. Ectopic expression of GJIC-deficient chimeric Cx26 was sufficient to induce EMT and gefitinib insensitivity in HCC827 and PC9 cells, while knockdown of Cx26 reversed EMT and gefitinib resistance in their GR cells both in vitro and in vivo. Furthermore, Cx26 overexpression could activate PI3K/Akt signaling in these cells. Cx26-mediated EMT and gefitinib resistance were significantly blocked by inhibition of PI3K/Akt pathway. Specifically, inhibition of the constitutive activation of PI3K/Akt pathway substantially suppressed Cx26 expression, and Cx26 was confirmed to functionally interplay with PI3K/Akt signaling to promote EMT and gefitinib resistance in NSCLC cells. In conclusion, the reciprocal positive regulation between Cx26 and PI3K/Akt signaling contributes to acquired gefitinib resistance in NSCLC cells by promoting EMT via a GJIC-independent manner. PMID:26203858

  8. The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression.

    PubMed

    Li, Xiaozun; Yang, Dong-Lei; Sun, Li; Li, Qun; Mao, Bizeng; He, Zuhua

    2016-09-01

    Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression. PMID:27378815

  9. The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression1[OPEN

    PubMed Central

    2016-01-01

    Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae. However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression. PMID:27378815

  10. Chemotherapy With Erlotinib or Chemotherapy Alone in Advanced Non-Small Cell Lung Cancer With Acquired Resistance to EGFR Tyrosine Kinase Inhibitors

    PubMed Central

    Oxnard, Geoffrey R.; Digumarthy, Subba; Muzikansky, Alona; Jackman, David M.; Lennes, Inga T.; Sequist, Lecia V.

    2013-01-01

    Purpose. Epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer has an oncogene-addicted biology that confers sensitivity to EGFR tyrosine kinase inhibitors (TKIs). Published data suggest that EGFR addiction persists after development of TKI acquired resistance, leading many clinicians to continue TKI with subsequent chemotherapy; however, this strategy has not been formally evaluated. Methods. We retrospectively reviewed an institutional database to identify patients with advanced EGFR mutation with acquired resistance who subsequently received chemotherapy. Patients were classified as receiving chemotherapy with continued erlotinib or chemotherapy alone. We assessed differences in outcomes between the two strategies. Results. Seventy-eight patients were included, 34 treated with chemotherapy and erlotinib and 44 treated with chemotherapy alone. Objective response rate was evaluable in 57 patients and was 41% for those treated with chemotherapy and erlotinib and 18% for those treated with chemotherapy alone. After adjusting for chemotherapy regimen and length of initial TKI course, the odds ratio for the response rate was 0.20 (95% confidence interval: 0.05–0.78; p = .02) favoring treatment with chemotherapy and erlotinib. The median progression-free survival was 4.4 months on chemotherapy and erlotinib and 4.2 months on chemotherapy alone (adjusted hazard ratio = 0.79; 95% confidence interval: 0.48–1.29; p = .34). There was no difference in overall survival. Conclusion. This is the first study, to our knowledge, to demonstrate that continuation of EGFR TKI with chemotherapy in patients with acquired resistance improves outcomes compared with chemotherapy alone. We observed an improved response rate but no difference in progression-free survival or overall survival. A larger prospective clinical trial is needed to evaluate this promising strategy further. PMID:24072220

  11. Spread of community-acquired meticillin-resistant Staphylococcus aureus skin and soft-tissue infection within a family: implications for antibiotic therapy and prevention.

    PubMed

    Amir, N H; Rossney, A S; Veale, J; O'Connor, M; Fitzpatrick, F; Humphreys, H

    2010-04-01

    Outbreaks or clusters of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA) within families have been reported. We describe a family cluster of CA-MRSA skin and soft-tissue infection where CA-MRSA was suspected because of recurrent infections which failed to respond to flucloxacillin. While the prevalence of CA-MRSA is low worldwide, CA-MRSA should be considered in certain circumstances depending on clinical presentation and risk assessment. Surveillance cultures of family contacts of patients with MRSA should be considered to help establish the prevalence of CA-MRSA and to inform the optimal choice of empiric antibiotic treatment.

  12. Heterologous Expression and Functional Characterization of the Exogenously Acquired Aminoglycoside Resistance Methyltransferases RmtD, RmtD2, and RmtG

    PubMed Central

    Corrêa, Laís L.; Witek, Marta A.; Zelinskaya, Natalia; Picão, Renata C.

    2015-01-01

    The exogenously acquired 16S rRNA methyltransferases RmtD, RmtD2, and RmtG were cloned and heterologously expressed in Escherichia coli, and the recombinant proteins were purified to near homogeneity. Each methyltransferase conferred an aminoglycoside resistance profile consistent with m7G1405 modification, and this activity was confirmed by in vitro 30S methylation assays. Analyses of protein structure and interaction with S-adenosyl-l-methionine suggest that the molecular mechanisms of substrate recognition and catalysis are conserved across the 16S rRNA (m7G1405) methyltransferase family. PMID:26552988

  13. Low expression of Abelson interactor-1 is linked to acquired drug resistance in Bcr-Abl-induced leukemia.

    PubMed

    Chorzalska, A; Salloum, I; Shafqat, H; Khan, S; Marjon, P; Treaba, D; Schorl, C; Morgan, J; Bryke, C R; Falanga, V; Zhao, T C; Reagan, J; Winer, E; Olszewski, A J; Al-Homsi, A S; Kouttab, N; Dubielecka, P M

    2014-11-01

    The basis for persistence of leukemic stem cells in the bone marrow microenvironment remains poorly understood. We present evidence that signaling cross-talk between α4 integrin and Abelson interactor-1 (Abi-1) is involved in the acquisition of an anchorage-dependent phenotype and drug resistance in Bcr-Abl-positive leukemia cells. Comparison of Abi-1 (ABI-1) and α4 integrin (ITGA4) gene expression in relapsing Bcr-Abl-positive CD34+progenitor cells demonstrated a reduction in Abi-1 and an increase in α4 integrin mRNA in the absence of Bcr-Abl mutations. This inverse correlation between Abi-1 and α4 integrin expression, as well as linkage to elevated phospho-Akt and phospho-Erk signaling, was confirmed in imatinib mesylate -resistant leukemic cells. These results indicate that the α4-Abi-1 signaling pathway may mediate acquisition of the drug-resistant phenotype of leukemic cells.

  14. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells.

    PubMed

    Firtina Karagonlar, Zeynep; Koc, Dogukan; Iscan, Evin; Erdal, Esra; Atabey, Neşe

    2016-04-01

    Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Limitations in HCC treatment result due to poor prognosis and resistance against traditional radiotherapy and chemotherapies. The multikinase inhibitor sorafenib is the only FDA approved drug available for advanced HCC patients, and development of second-line treatment options for patients who cannot tolerate or develop resistance to sorafenib is an urgent medical need. In this study, we established sorafenib-resistant cells from Huh7 and Mahlavu cell lines by long-term sorafenib exposure. Sorafenib-resistant HCC cells acquired spindle-shape morphology, upregulated mesenchymal markers, and showed significant increase in both migration and invasion abilities compared to their parental counterparts. Moreover, after long-term sorafenib treatment, HCC cells showed induction of hepatocyte growth factor (HGF) synthesis and secretion along with increased levels of c-Met kinase and its active phosphorylated form, indicating autocrine activation of HGF/c-Met signaling. Importantly, the combined treatment of the resistant cells with c-Met kinase inhibitor SU11274 and HGF neutralizing antibody significantly reversed the increased invasion ability of the cells. The combined treatment also significantly augmented sorafenib-induced apoptosis, suggesting restoration of sorafenib sensitivity. These results describe, for the first time, compensatory upregulation of HGF synthesis leading to autocrine activation of HGF/c-Met signaling as a novel cellular strategy in the acquisition of sorafenib resistance. Therefore, we suggest that combinatorial therapeutic strategies with HGF and c-Met inhibitors comprise promising candidates for overcoming sorafenib resistance. PMID:26790028

  15. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats

    PubMed Central

    de la Torre Valdovinos, Braniff; Duenas Jimenez, Judith Marcela; Estrada, Ismael Jimenez; Banuelos Pineda, Jacinto; Franco Rodriguez, Nancy Elizabeth; Lopez Ruiz, Jose Roberto; Osuna Carrasco, Laura Paulina; Candanedo Arellano, Ahiezer; Duenas Jimenez, Sergio Horacio

    2016-01-01

    We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI), in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD) of the pendulum-like movements (PLM) during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats. PMID:27006979

  16. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats.

    PubMed

    de la Torre Valdovinos, Braniff; Duenas Jimenez, Judith Marcela; Estrada, Ismael Jimenez; Banuelos Pineda, Jacinto; Franco Rodriguez, Nancy Elizabeth; Lopez Ruiz, Jose Roberto; Osuna Carrasco, Laura Paulina; Candanedo Arellano, Ahiezer; Duenas Jimenez, Sergio Horacio

    2016-01-01

    We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI), in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD) of the pendulum-like movements (PLM) during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats. PMID:27006979

  17. Disruption of an Enterococcus faecium Species-Specific Gene, a Homologue of Acquired Macrolide Resistance Genes of Staphylococci, Is Associated with an Increase in Macrolide Susceptibility

    PubMed Central

    Singh, Kavindra V.; Malathum, Kumthorn; Murray, Barbara E.

    2001-01-01

    The complete sequence (1,479 nucleotides) of msrC, part of which was recently reported by others using a different strain, was determined. This gene was found in 233 of 233 isolates of Enterococcus faecium but in none of 265 other enterococci. Disruption of msrC was associated with a two- to eightfold decrease in MICs of erythromycin azithromycin, tylosin, and quinupristin, suggesting that it may explain in part the apparent greater intrinsic resistance to macrolides of isolates of E. faecium relative to many streptococci. This endogenous, species-specific gene of E. faecium is 53% identical to msr(A), suggesting that it may be a remote progenitor of the acquired macrolide resistance gene found in some isolates of staphylococci. PMID:11120975

  18. Emergence of resistance to fluconazole as a cause of failure during treatment of histoplasmosis in patients with acquired immunodeficiency disease syndrome.

    PubMed

    Wheat, L J; Connolly, P; Smedema, M; Brizendine, E; Hafner, R

    2001-12-01

    In sequential clinical trials of treatment for histoplasmosis in patients with acquired immunodeficiency syndrome, therapy with fluconazole failed in a higher proportion of patients than did therapy with itraconazole. To determine the cause for failure with fluconazole, antifungal susceptibility testing that used modified National Committee on Clinical Laboratory Standards procedures was performed on all baseline and failure isolates. Failure occurred more frequently in patients with baseline isolates with fluconazole minimum inhibitory concentrations (MICs) > or =5 microg/mL versus lower MICs; 29% versus 3%, respectively. There was at least a 4-fold increase in fluconazole MIC in the isolates from 10 (59%) of 17 patients for whom paired pretreatment and failure or relapse isolates were available. Cross-resistance to itraconazole was not seen. In conclusion, fluconazole is less active than itraconazole for Histoplasma capsulatum and induces resistance during therapy, which accounted for treatment failure in some patients.

  19. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: a new era begins.

    PubMed

    Remon, J; Morán, T; Majem, M; Reguart, N; Dalmau, E; Márquez-Medina, D; Lianes, P

    2014-02-01

    The discovery of mutated oncogenes has opened up a new era for the development of more effective treatments for non-small cell lung cancer patients (NSCLC) harbouring EGFR mutations. However, patients with EGFR-activating mutation ultimately develop acquired resistance (AR). Several studies have identified some of the mechanisms involved in the development of AR to EGFR tyrosine kinase inhibitors (TKI) that can be potential therapeutic strategies, although in up to 30% of cases, the underlying mechanism of AR are still unexplained. In this review we aim to summarize the main mechanisms of AR to EGFR TKI and some clinical strategies that can be used in the daily clinical practice to overcome this resistance and try to prolong the outcomes in this subgroup of patients.

  20. Rapid Detection of Acquired and Inducible Clarithromycin Resistance in Mycobacterium abscessus Group by a Simple Real-Time PCR Assay.

    PubMed

    Luo, Robert F; Curry, Cheyenne; Taylor, Nathan; Budvytiene, Indre; Banaei, Niaz

    2015-07-01

    By targeting the erm(41) and rrl genes in the Mycobacterium abscessus group, a multiplex real-time PCR assay for clarithromycin resistance showed 95% (38/40) concordance with nucleic acid testing and 95% (37/39) concordance with phenotypic testing. This assay provides a simple and rapid alternative to extended incubation or erm(41) sequencing. PMID:25903572

  1. Familial clustering of Taenia solium cysticercosis in the rural pigs of Mexico: hints of genetic determinants in innate and acquired resistance to infection.

    PubMed

    Sciutto, E; Martínez, J J; Huerta, M; Avila, R; Fragoso, G; Villalobos, N; de Aluja, A; Larralde, C

    2003-10-20

    In two rural villages of the state of Puebla, Mexico, where Taenia solium pig cysticercosis is highly endemic, 120 pairs of young out-bred piglets were used to assay what proved to be an effective synthetic peptide vaccine against naturally acquired cysticercosis. Because the piglets used were all sired by one of three distinct studs in many different out-bred sows, the prevalence and intensity of infection, as well as degree of protection conferred by the vaccine, could be related to each of the three stud families (A-C). The highest prevalence was found in the C family (25%), whilst the prevalence of B and A families were 21.6 and 4.4%, respectively. Familial clustering of cases was even more conspicuous in vaccinated pigs than in not-vaccinated ones: seven of the nine cysticercosis cases that occurred in the vaccinated group belonged to the C family (7/26) and two to the B family (2/23), whilst the vaccine rendered the A family totally resistant (0/71). Parasite numbers were also higher in the C family in both nai;ve and vaccinated pigs. Familial clustering of cases and of large parasite numbers in naive and vaccinated pigs hint to the relevance of their genetic background in their innate and acquired resistance to cysticercosis.

  2. What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC)

    PubMed Central

    Drilon, A.; Li, G.; Dogan, S.; Gounder, M.; Shen, R.; Arcila, M.; Wang, L.; Hyman, D. M.; Hechtman, J.; Wei, G.; Cam, N. R.; Christiansen, J.; Luo, D.; Maneval, E. C.; Bauer, T.; Patel, M.; Liu, S. V.; Ou, S. H. I.; Farago, A.; Shaw, A.; Shoemaker, R. F.; Lim, J.; Hornby, Z.; Multani, P.; Ladanyi, M.; Berger, M.; Katabi, N.; Ghossein, R.; Ho, A. L.

    2016-01-01

    Background Mammary analogue secretory carcinoma (MASC) is a recently described pathologic entity. We report the case of a patient with an initial diagnosis of salivary acinic cell carcinoma later reclassified as MASC after next-generation sequencing revealed an ETV6-NTRK3 fusion. Patients and methods This alteration was targeted with the pan-Trk inhibitor entrectinib (Ignyta), which possesses potent in vitro activity against cell lines containing various NTRK1/2/3 fusions. Results A dramatic and durable response was achieved with entrectinib in this patient, followed by acquired resistance that correlated with the appearance of a novel NTRK3 G623R mutation. Structural modeling predicts that this alteration sterically interferes with drug binding, correlating to decreased sensitivity to drug inhibition observed in cell-based assays. Conclusions This first report of clinical activity with TrkC inhibition and the development of acquired resistance in an NTRK3-rearranged cancer emphasize the utility of comprehensive molecular profiling and targeted therapy for rare malignancies (NCT02097810). PMID:26884591

  3. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors

    NASA Astrophysics Data System (ADS)

    Wei, Yuming; Poon, Daniel C.; Fei, Rong; Lam, Amy S. M.; Au-Yeung, Steve C. F.; To, Kenneth K. W.

    2016-05-01

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted.

  4. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors.

    PubMed

    Wei, Yuming; Poon, Daniel C; Fei, Rong; Lam, Amy S M; Au-Yeung, Steve C F; To, Kenneth K W

    2016-05-06

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted.

  5. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors

    PubMed Central

    Wei, Yuming; Poon, Daniel C.; Fei, Rong; Lam, Amy S. M.; Au-Yeung, Steve C. F.; To, Kenneth K. W.

    2016-01-01

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted. PMID:27150583

  6. Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsis using DIR1:GUS and DIR1:EGFP reporters

    PubMed Central

    2011-01-01

    Background Systemic Acquired Resistance (SAR) is an induced resistance response to pathogens, characterized by the translocation of a long-distance signal from induced leaves to distant tissues to prime them for increased resistance to future infection. DEFECTIVE in INDUCED RESISTANCE 1 (DIR1) has been hypothesized to chaperone a small signaling molecule to distant tissues during SAR in Arabidopsis. Results DIR1 promoter:DIR1-GUS/dir1-1 lines were constructed to examine DIR1 expression. DIR1 is expressed in seedlings, flowers and ubiquitously in untreated or mock-inoculated mature leaf cells, including phloem sieve elements and companion cells. Inoculation of leaves with SAR-inducing avirulent or virulent Pseudomonas syringae pv tomato (Pst) resulted in Type III Secretion System-dependent suppression of DIR1 expression in leaf cells. Transient expression of fluorescent fusion proteins in tobacco and intercellular washing fluid experiments indicated that DIR1's ER signal sequence targets it for secretion to the cell wall. However, DIR1 expressed without a signal sequence rescued the dir1-1 SAR defect, suggesting that a cytosolic pool of DIR1 is important for the SAR response. Conclusions Although expression of DIR1 decreases during SAR induction, the protein localizes to all living cell types of the vasculature, including companion cells and sieve elements, and therefore DIR1 is well situated to participate in long-distance signaling during SAR. PMID:21896186

  7. Prostate cancer bone metastases acquire resistance to androgen deprivation via WNT5A-mediated BMP-6 induction

    PubMed Central

    Lee, G T; Kang, D I; Ha, Y-S; Jung, Y S; Chung, J; Min, K; Kim, T H; Moon, K H; Chung, J M; Lee, D H; Kim, W-J; Kim, I Y

    2014-01-01

    Background: Androgen ablation is the first-line therapy for patients with metastatic prostate cancer (CaP). However, castration resistance will eventually emerge. In the present study, we have investigated the role of bone morphogenetic protein-6 (BMP-6) in the development of castration-resistant prostate cancer (CRPC) in the context of bone metastases. Methods: We initially investigated the clinical course of 158 men with advanced CaP who were treated with primary androgen deprivation therapy. To elucidate the underlying mechanism of CRPC in the context of bone metastases, we examined the impact of bone stromal cells on CaP in the absence of androgens using a co-culture model. Results: In the 158 patients, we found that the median time to prostate-specific antigen progression was significantly shorter when bone metastases were present (14 months (95% CI, 10.2–17.8 months) vs 57 months (95% CI, 19.4–94.6 months)). These results suggest that bone–tumour interactions may accelerate castration resistance. Consistent with this hypothesis, in vitro co-cultures demonstrated that CaP cells proliferated under an androgen-depleted condition when incubated with bone stromal cells. Mechanistically, gene expression analysis using quantitative polymerase chain reaction arrays showed a dramatic induction of BMP-6 by CaP cell lines in the presence of bone stromal cells. Further studies revealed that WNT5A derived from bone stromal cells induced the expression of BMP-6 by CaP cells; BMP-6 in turn stimulated cellular proliferation of CaP cells in an androgen-deprived media via a physical interaction between Smad5 and β-catenin. Intracellularly, WNT5A increased BMP-6 expression via protein kinase C/NF-κB pathway in CaP cell lines. Conclusions: These observations suggest that bone–CaP interaction leads to castration resistance via WNT5A/BMP-6 loop. PMID:24518599

  8. Elevated Cellular PD1/PD-L1 Expression Confers Acquired Resistance to Cisplatin in Small Cell Lung Cancer Cells.

    PubMed

    Yan, Fei; Pang, Jiuxia; Peng, Yong; Molina, Julian R; Yang, Ping; Liu, Shujun

    2016-01-01

    Although small cell lung cancer (SCLC) is highly responsive to chemotherapies (e.g., cisplatin-etoposide doublet), virtually almost all responsive SCLC patients experience disease recurrence characterized by drug resistance. The mechanisms underlying cisplatin resistance remain elusive. Here we report that cell-intrinsic expression of PD1 and PD-L1, two immune checkpoints, is required for sustained expansion of SCLC cells under cisplatin selection. Indeed, PD1 and PD-L1 were expressed at a higher level in lung cancer cell lines, tumor tissues, and importantly, in SCLC cells resistant to cisplatin (H69R, H82R), when compared to respective controls. Genetic abrogation of PD1 and PD-L1 in H69R and H82R cells decreased their proliferation rate, and restored their sensitivity to cisplatin. Mechanistically, PD-L1 upregulation in H69R and H82R cells was attributed to the overexpression of DNA methyltransferase 1 (DNMT1) or receptor tyrosine kinase KIT, as knockdown of DNMT1 or KIT in H69R and H82R cells led to PD-L1 downregulation. Consequently, combined knockdown of PD-L1 with KIT or DNMT1 resulted in more pronounced inhibition of H69R and H82R cell growth. Thus, cell intrinsic PD1/PD-L1 signaling may be a predictor for poor efficacy of cisplatin treatment, and targeting the cellular PD1/PD-L1 axis may improve chemosensitization of aggressive SCLC.

  9. Neisseria gonorrhoeae acquire a new principal outer-membrane protein when transformed to resistance to serum bactericidal activity.

    PubMed Central

    Hildebrandt, J F; Mayer, L W; Wang, S P; Buchanan, T M

    1978-01-01

    Resistance to the complement-dependent bactericidal activity of normal human serum is found in nearly all Neisseria gonorrhoeae strains causing disseminated gonococcal infection. Transformation of serum-sensitive gonococcal strain NRL 7189 to serum resistance using deoxyribonucleic acid from three separate disseminated-infection gonococci was accompanied by simultaneous structural and antigenic changes in the principal outer-membrane protein (POMP) of the transformants. In each of 10 separate transformations, there was a reduction in subunit molecular weight of the POMP from that in the recipient (39,000) to that in the deoxyribonucleic acid donors (36,500). Also, in each instance the POMP antigenic type, as measured by enzyme-linked immunosorbent assay, converted from that of the recipient to an antigenic type common to each DGI donor strain. This conversion of POMP antigen was reflected in part by changes in the surface fluorescence of the transformed gonococci to the microimmunofluorescence pattern of the donor strains. These results suggested that serum resistance of gonococci is related to the possession of a POMP of characteristic subunit molecular weight and antigenicity. Images PMID:78895

  10. Fisetin, a dietary bioflavonoid, reverses acquired Cisplatin-resistance of lung adenocarcinoma cells through MAPK/Survivin/Caspase pathway

    PubMed Central

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Cisplatin has been a key chemotherapy drug for treatment of non-small cell lung cancer (NSCLC) for decades. However, the efficacy of Cisplatin is usually reduced by the occurrence of drug-resistance of cancer cells. Fisetin is a flavonol naturally found in many fruits and vegetables, which has been reported to suppress cell proliferation and induce apoptosis in various cancers. In this study, we aimed to investigate whether Fisetin was capable of enhancing cytotoxicity of Cisplatin in Cisplatin-resistant NSCLC cells, and explore the possible signaling pathways involved. Cisplatin-resistant NSCLC cells, A549-CR, was established by repeated subculturing of A549 cells with increasing Cisplatin. Proliferation ability was assessed by MTT analysis and apoptosis was detected by flow cytometry. The results showed that Fisetin effectively increased sensitivity of A549-CR cells to Cisplatin, possibly mediated by inhibiting aberrant activation of MAPK signaling pathways. This increases the possibility of Fisetin as a promising agent for lung cancer therapy. PMID:26692948

  11. The Effect of Infection Control Nurses on the Occurrence of Pseudomonas aeruginosa Healthcare-Acquired Infection and Multidrug-Resistant Strains in Critically-Ill Children

    PubMed Central

    Xu, Wei; He, Linxi; Liu, Chunfeng; Rong, Jian; Shi, Yongyan; Song, Wenliang; Zhang, Tao; Wang, Lijie

    2015-01-01

    Background Healthcare-acquired Pseudomonas aeruginosa (P. aeruginosa) infections in the Pediatric Intensive Care Unit (PICU), which have a high incidence, increase treatment costs and mortality, and seriously threaten the safety of critically ill children. It is essential to seek convenient and effective methods to control and prevent healthcare-acquired infections (HAIs). This research was conducted to study the effect of infection control nurses on the occurrence of P. aeruginosa HAIs and multi-drug resistance (MDR) strains in PICU. Methods The clinical data was divided into two groups, with the age ranging from 1 month to 14 years. One group of the critically ill patients(N = 3,722) was admitted to PICU from 2007 to 2010, without the management of infection control nurses. The other group of the critically ill patients (N = 3,943) was admitted to PICU from 2011 to 2013, with the management of infection control nurses. Compare the mortality, morbidity and the incidence of acquired P. aeruginosa infections to evaluate the effect of infection control nurses. Results After implementation of the post of infection control nurses, the patient's overall mortality fell from 4.81% to 3.73%. Among the patients with endotracheal intubation more than 48 hours, the incidence of endotracheal intubation-related pneumonia decreased from 44.6% to 34.32%. The mortality of patients with endotracheal intubation decreased from 16.96% to 10.17%, and the morbidity of HAIs with P. aeruginosa decreased from 1.89% to 1.07%. The mutual different rate (MDR) dropped from 67.95% to 44.23%. There were remarkable differences in these rates between the two groups (p<0.05). Conclusion Implementing the post of infection control nurses is associated with effectively reducing the HAI rate, especially the incidence and morbidity of P. aeruginosa HAIs, reducing PICU mortality, improving P. aeruginosa drug resistance. PMID:26630032

  12. Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance.

    PubMed

    Breitenbach, Heiko H; Wenig, Marion; Wittek, Finni; Jordá, Lucia; Maldonado-Alconada, Ana M; Sarioglu, Hakan; Colby, Thomas; Knappe, Claudia; Bichlmeier, Marlies; Pabst, Elisabeth; Mackey, David; Parker, Jane E; Vlot, A Corina

    2014-04-22

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance.

  13. Rapid detection of the epidermal growth factor receptor mutation in non-small-cell lung cancer for analysis of acquired resistance using molecular beacons.

    PubMed

    Oh, Young-Hee; Kim, Youngwook; Kim, Young-Pil; Seo, Soo-Won; Mitsudomi, Tetsuya; Ahn, Myung-Ju; Park, Keunchil; Kim, Hak-Sung

    2010-09-01

    A secondary mutation (T790M) in epidermal growth factor receptor (EGFR) is a hallmark of acquired resistance to EGFR inhibitors used to treat non-small-cell lung cancer (NSCLC). Therefore, identifying the T790M mutation is crucial to guide treatment decisions. Given that DNA sequencing methods are time-consuming and insensitive, we developed and investigated the feasibility of using molecular beacons for the detection of the T790M mutation in EGFR. A molecular beacon complementary to the region of the secondary EGFR mutation (T790M) was designed and used in NSCLC samples bearing drug-sensitive and -resistant EGFR mutations. For a rapid and simple assay, we attempted to use the molecular beacon with real-time PCR and in situ fluorescence imaging. The ability of the designed molecular beacon to specifically detect the T790M mutation of EGFR was tested for samples from two patients with drug resistance and compared with conventional DNA sequencing methods. The molecular beacon successfully detected the T790M mutation in patient samples with drug resistance. The sensitivity of the molecular beacon, which detected as little as 2% of genomic DNA from the drug-resistant cells (H1975), was much higher than direct sequencing. Furthermore, in situ fluorescence imaging with the molecular beacon gave rise to a distinguishable signal for the T790M mutation in drug-resistant cells. The molecular beacon-based approach enabled rapid and sensitive detection of the EGFR mutation (T790M) in NSCLC with in situ fluorescence imaging, which can be directed to determine various treatment options in patients with cancer.

  14. Exemestane Following Tamoxifen Reduces Breast Cancer Recurrences and Prolongs Survival

    Cancer.gov

    Postmenopausal women with early-stage hormone receptor-positive breast cancer had delayed disease recurrence and longer survival after taking 2-3 years of tamoxifen followed by exemestane for a total of 5 years compared to taking tamoxifen for 5 years.

  15. Elevated Cellular PD1/PD-L1 Expression Confers Acquired Resistance to Cisplatin in Small Cell Lung Cancer Cells

    PubMed Central

    Yan, Fei; Pang, Jiuxia; Peng, Yong; Molina, Julian R.; Yang, Ping; Liu, Shujun

    2016-01-01

    Although small cell lung cancer (SCLC) is highly responsive to chemotherapies (e.g., cisplatin-etoposide doublet), virtually almost all responsive SCLC patients experience disease recurrence characterized by drug resistance. The mechanisms underlying cisplatin resistance remain elusive. Here we report that cell-intrinsic expression of PD1 and PD-L1, two immune checkpoints, is required for sustained expansion of SCLC cells under cisplatin selection. Indeed, PD1 and PD-L1 were expressed at a higher level in lung cancer cell lines, tumor tissues, and importantly, in SCLC cells resistant to cisplatin (H69R, H82R), when compared to respective controls. Genetic abrogation of PD1 and PD-L1 in H69R and H82R cells decreased their proliferation rate, and restored their sensitivity to cisplatin. Mechanistically, PD-L1 upregulation in H69R and H82R cells was attributed to the overexpression of DNA methyltransferase 1 (DNMT1) or receptor tyrosine kinase KIT, as knockdown of DNMT1 or KIT in H69R and H82R cells led to PD-L1 downregulation. Consequently, combined knockdown of PD-L1 with KIT or DNMT1 resulted in more pronounced inhibition of H69R and H82R cell growth. Thus, cell intrinsic PD1/PD-L1 signaling may be a predictor for poor efficacy of cisplatin treatment, and targeting the cellular PD1/PD-L1 axis may improve chemosensitization of aggressive SCLC. PMID:27610620

  16. Trends towards lower antimicrobial susceptibility and characterization of acquired resistance among clinical isolates of Brachyspira hyodysenteriae in Spain.

    PubMed

    Hidalgo, Álvaro; Carvajal, Ana; Vester, Birte; Pringle, Märit; Naharro, Germán; Rubio, Pedro

    2011-07-01

    The antimicrobial susceptibility of clinical isolates of Brachyspira hyodysenteriae in Spain was monitored, and the underlying molecular mechanisms of resistance were investigated. MICs of tylosin, tiamulin, valnemulin, lincomycin, and tylvalosin were determined for 87 B. hyodysenteriae isolates recovered from 2008 to 2009 by broth dilution. Domain V of the 23S rRNA gene and the ribosomal protein L3 gene were sequenced in 20 isolates for which the tiamulin MIC was ≥ 4 μg/ml, presenting decreased susceptibility, and in 18 tiamulin-susceptible isolates (MIC ≤ 0.125 μg/ml), and all isolates were typed by multiple-locus variable-number tandem repeats analysis. A comparison with antimicrobial susceptibility data from 2000 to 2007 showed an increase in pleuromutilin resistance over time, doubling the number of isolates with decreased susceptibility to tiamulin. No alteration in susceptibility was detected for lincomycin, and the MIC of tylosin remained high (MIC(50) > 128 μg/ml). The decreased susceptibility to tylosin and lincomycin can be explained by mutations at position A2058 of the 23S rRNA gene (Escherichia coli numbering). A2058T was the predominant mutation, but A2058G also was found together with a change of the neighboring base pair at positions 2057 to 2611. The role of additional point mutations in the vicinity of the peptidyl transferase center and mutations in the L3 at amino acids 148 and 149 and their possible involvement in antimicrobial susceptibility are considered. An association between G2032A and high levels of tiamulin and lincomycin MICs was found, suggesting an increasing importance of this mutation in antimicrobial resistance of clinical isolates of B. hyodysenteriae. PMID:21555771

  17. Elevated Cellular PD1/PD-L1 Expression Confers Acquired Resistance to Cisplatin in Small Cell Lung Cancer Cells.

    PubMed

    Yan, Fei; Pang, Jiuxia; Peng, Yong; Molina, Julian R; Yang, Ping; Liu, Shujun

    2016-01-01

    Although small cell lung cancer (SCLC) is highly responsive to chemotherapies (e.g., cisplatin-etoposide doublet), virtually almost all responsive SCLC patients experience disease recurrence characterized by drug resistance. The mechanisms underlying cisplatin resistance remain elusive. Here we report that cell-intrinsic expression of PD1 and PD-L1, two immune checkpoints, is required for sustained expansion of SCLC cells under cisplatin selection. Indeed, PD1 and PD-L1 were expressed at a higher level in lung cancer cell lines, tumor tissues, and importantly, in SCLC cells resistant to cisplatin (H69R, H82R), when compared to respective controls. Genetic abrogation of PD1 and PD-L1 in H69R and H82R cells decreased their proliferation rate, and restored their sensitivity to cisplatin. Mechanistically, PD-L1 upregulation in H69R and H82R cells was attributed to the overexpression of DNA methyltransferase 1 (DNMT1) or receptor tyrosine kinase KIT, as knockdown of DNMT1 or KIT in H69R and H82R cells led to PD-L1 downregulation. Consequently, combined knockdown of PD-L1 with KIT or DNMT1 resulted in more pronounced inhibition of H69R and H82R cell growth. Thus, cell intrinsic PD1/PD-L1 signaling may be a predictor for poor efficacy of cisplatin treatment, and targeting the cellular PD1/PD-L1 axis may improve chemosensitization of aggressive SCLC. PMID:27610620

  18. Anti-thrombotic effects of selective estrogen receptor modulator tamoxifen.

    PubMed

    Nayak, Manasa K; Singh, Sunil K; Roy, Arnab; Prakash, Vivek; Kumar, Anand; Dash, Debabrata

    2011-10-01

    Tamoxifen is a known anti-cancer drug and established estrogen receptor modulator. Few clinical studies have earlier implicated the drug in thrombotic complications attributable to lower anti-thrombin and protein S levels in plasma. However, action of tamoxifen on platelet signalling machinery has not been elucidated in detail. In the present report we show that tamoxifen is endowed with significant inhibitory property against human platelet aggregation. From a series of in vivo and in vitro studies tamoxifen was found to inhibit almost all platelet functions, prolong tail bleeding time in mouse and profoundly prevent thrombus formation at injured arterial wall in mice, as well as on collagen matrix perfused with platelet-rich plasma under arterial shear against the vehicle dimethylsulfoxide (DMSO). These findings strongly suggest that tamoxifen significantly downregulates platelet responses and holds potential as a promising anti-platelet/anti-thrombotic agent. PMID:21866300

  19. Anti-thrombotic effects of selective estrogen receptor modulator tamoxifen.

    PubMed

    Nayak, Manasa K; Singh, Sunil K; Roy, Arnab; Prakash, Vivek; Kumar, Anand; Dash, Debabrata

    2011-10-01

    Tamoxifen is a known anti-cancer drug and established estrogen receptor modulator. Few clinical studies have earlier implicated the drug in thrombotic complications attributable to lower anti-thrombin and protein S levels in plasma. However, action of tamoxifen on platelet signalling machinery has not been elucidated in detail. In the present report we show that tamoxifen is endowed with significant inhibitory property against human platelet aggregation. From a series of in vivo and in vitro studies tamoxifen was found to inhibit almost all platelet functions, prolong tail bleeding time in mouse and profoundly prevent thrombus formation at injured arterial wall in mice, as well as on collagen matrix perfused with platelet-rich plasma under arterial shear against the vehicle dimethylsulfoxide (DMSO). These findings strongly suggest that tamoxifen significantly downregulates platelet responses and holds potential as a promising anti-platelet/anti-thrombotic agent.

  20. Tamoxifen Action in ER-Negative Breast Cancer

    PubMed Central

    Manna, Subrata; Holz, Marina K.

    2016-01-01

    Breast cancer is a highly heterogeneous disease. Tamoxifen is a selective estrogen receptor (ER) modulator and is mainly indicated for the treatment of breast cancer in postmenopausal women and postsurgery neoadjuvant therapy in ER-positive breast cancers. Interestingly, 5–10% of the ER-negative breast cancers have also shown sensitivity to tamoxifen treatment. The involvement of molecular markers and/or signaling pathways independent of ER signaling has been implicated in tamoxifen sensitivity in the ER-negative subgroup. Studies reveal that variation in the expression of estrogen-related receptor alpha, ER subtype beta, tumor microenvironment, and epigenetics affects tamoxifen sensitivity. This review discusses the background of the research on the action of tamoxifen that may inspire future studies to explore effective therapeutic strategies for the treatment of ER-negative and triple-negative breast cancers, the latter being an aggressive disease with worse clinical outcome. PMID:26989346

  1. Continuous administration of bevacizumab plus capecitabine, even after acquired resistance to bevacizumab, restored anti-angiogenic and antitumor effect in a human colorectal cancer xenograft model

    PubMed Central

    Iwai, Toshiki; Sugimoto, Masamichi; Harada, Suguru; Yorozu, Keigo; Kurasawa, Mitsue; Yamamoto, Kaname

    2016-01-01

    Vascular endothelial growth factor (VEGF)-neutralizing therapy with bevacizumab has become increasingly important for treating colorectal cancer. It was demonstrated that second-line chemotherapy together with bevacizumab after disease progression (PD) on first-line therapy including bevacizumab showed clinical benefits in metastatic colorectal and breast cancers (ML18147 trial, TANIA trial). One of the rationales for these trials was that the refractoriness to first-line therapy is caused by resistance to not so much bevacizumab as to the chemotherapeutic agents. Nevertheless, resistance to bevacizumab cannot be ruled out because VEGF-independent angiogenesis has been reported to be a mechanism of resistance to anti-VEGF therapy. In this study, we used a xenograft model with the human colon cancer HT-29 cells to investigate the mechanisms underlying the effect of continued administration of bevacizumab plus capecitabine even after resistance to bevacizumab was acquired. The combination of capecitabine plus bevacizumab exhibited significantly stronger antitumor and anti-angiogenic activities than did monotherapy with either agent. Capecitabine treatment significantly increased the intratumoral VEGF level compared with the control group; however, the combination with bevacizumab neutralized the VEGF. Among angiogenic factors other than VEGF, intratumoral galectin-3, which reportedly promotes angiogenesis both dependent on, and independently of VEGF, was significantly decreased in the capecitabine group and the combination group compared with the control group. In an in vitro experiment, 5-fluorouracil (5-FU), an active metabolite of capecitabine, inhibited galectin-3 production by HT-29 cells. These results suggested that capecitabine has a dual mode of action: namely, inhibition of tumor cell growth and inhibition of galectin-3 production by tumor cells. Thus, capecitabine and bevacizumab may work in a mutually complementary manner in tumor angiogenesis inhibition

  2. BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1

    PubMed Central

    Drost, Rinske; Dhillon, Kiranjit K.; van der Gulden, Hanneke; van der Heijden, Ingrid; Brandsma, Inger; Cruz, Cristina; Chondronasiou, Dafni; Castroviejo-Bermejo, Marta; van der Burg, Eline; Wientjens, Ellen; Pieterse, Mark; Klijn, Christiaan; Klarenbeek, Sjoerd; Loayza-Puch, Fabricio; Elkon, Ran; van Deemter, Liesbeth; Rottenberg, Sven; van de Ven, Marieke; Dekkers, Dick H.W.; Demmers, Jeroen A.A.; Agami, Reuven; Balmaña, Judith; Taniguchi, Toshiyasu; Bouwman, Peter

    2016-01-01

    Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain–less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients. PMID:27454287

  3. Arabidopsis Auxin Mutants Are Compromised in Systemic Acquired Resistance and Exhibit Aberrant Accumulation of Various Indolic Compounds1[W][OA

    PubMed Central

    Truman, William M.; Bennett, Mark H.; Turnbull, Colin G.N.; Grant, Murray R.

    2010-01-01

    Systemic acquired resistance is a widespread phenomenon in the plant kingdom that confers heightened and often enduring immunity to a range of diverse pathogens. Systemic immunity develops through activation of plant disease resistance protein signaling networks following local infection with an incompatible pathogen. The accumulation of the phytohormone salicylic acid in systemically responding tissues occurs within days after a local immunizing infection and is essential for systemic resistance. However, our knowledge of the signaling components underpinning signal perception and the establishment of systemic immunity are rudimentary. Previously, we showed that an early and transient increase in jasmonic acid in distal responding tissues was central to effective establishment of systemic immunity. Based upon predicted transcriptional networks induced in naive Arabidopsis (Arabidopsis thaliana) leaves following avirulent Pseudomonas syringae challenge, we show that a variety of auxin mutants compromise the establishment of systemic immunity. Linking together transcriptional and targeted metabolite studies, our data provide compelling evidence for a role of indole-derived compounds, but not auxin itself, in the establishment and maintenance of systemic immunity. PMID:20081042

  4. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors

    PubMed Central

    Zhang, Yaxi; Xu, Shaohua; Ding, Pingtao; Wang, Dongmei; Cheng, Yu Ti; He, Jing; Gao, Minghui; Xu, Fang; Li, Yan; Zhu, Zhaohai; Li, Xin; Zhang, Yuelin

    2010-01-01

    Salicylic acid (SA) is a defense hormone required for both local and systemic acquired resistance (SAR) in plants. Pathogen infections induce SA synthesis through up-regulating the expression of Isochorismate Synthase 1 (ICS1), which encodes a key enzyme in SA production. Here we report that both SAR Deficient 1 (SARD1) and CBP60g are key regulators for ICS1 induction and SA synthesis. Whereas knocking out SARD1 compromises basal resistance and SAR, overexpression of SARD1 constitutively activates defense responses. In the sard1-1 cbp60g-1 double mutant, pathogen-induced ICS1 up-regulation and SA synthesis are blocked in both local and systemic leaves, resulting in compromised basal resistance and loss of SAR. Electrophoretic mobility shift assays showed that SARD1 and CBP60g represent a plant-specific family of DNA-binding proteins. Both proteins are recruited to the promoter of ICS1 in response to pathogen infections, suggesting that they control SA synthesis by regulating ICS1 at the transcriptional level. PMID:20921422

  5. Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells

    SciTech Connect

    Yu, Hong-Nu; Noh, Eun-Mi; Lee, Young-Rae; Roh, Si-Gyun; Song, Eun-Kyung; Han, Myung-Kwan; Lee, Yong-Chul; Shim, In Kyong; Lee, Seung Jin; Jung, Sung Hoo; Kim, Jong-Suk Youn, Hyun Jo

    2008-12-05

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands have been identified as a potential source of therapy for human cancers. However, PPAR{gamma} ligands have a limitation for breast cancer therapy, since estrogen receptor {alpha} (ER{sub {alpha}}) negatively interferes with PPAR{gamma} signaling in breast cancer cells. Here we show that ER{sub {alpha}} inhihits PPAR{gamma} transactivity and ER{sub {alpha}}-mediated inhibition of PPAR{gamma} transactivity is blocked by tamoxifen, an estrogen receptor blocker. The activation of ER{sub {alpha}} with 17-{beta}-estradiol blocked PPRE transactivity induced by troglitazone, a PPAR{gamma} ligand, indicating the resistance of ER{sub {alpha}}-positive breast cancer cells to troglitazone. Indeed, troglitazone inhibited the growth of ER{sub {alpha}}-negative MDA-MB-231 cells more than that of ER{sub {alpha}}-positive MCF-7 cells. Combination of troglitazone with tamoxifen led to a marked increase in growth inhibition of ER{sub {alpha}}-positive MCF-7 cells compared to either agent alone. Our data indicates that troglitazone enhances the growth inhibitory activity of tamoxifen in ER{sub {alpha}}-positive MCF-7 cells.

  6. Acquired lymphangiectasis.

    PubMed

    Celis, A V; Gaughf, C N; Sangueza, O P; Gourdin, F W

    1999-01-01

    Acquired lymphangiectasis is a dilatation of lymphatic vessels that can result as a complication of surgical intervention and radiation therapy for malignancy. Acquired lymphangiectasis shares clinical and histologic features with the congenital lesion, lymphangioma circumscriptum. Diagnosis and treatment of these vesiculo-bullous lesions is important because they may be associated with pain, chronic drainage, and cellulitis. We describe two patients who had these lesions after treatment for cancer and review the pertinent literature. Although a number of treatment options are available, we have found CO2 laser ablation particularly effective. PMID:9932832

  7. Invasive Community-Acquired Methicillin-Resistant Staphylococcus aureus in a Japanese Girl with Disseminating Multiple Organ Infection: A Case Report and Review of Japanese Pediatric Cases

    PubMed Central

    Yonezawa, Ryuta; Kuwana, Tsukasa; Kawamura, Kengo; Inamo, Yasuji

    2015-01-01

    Pediatric invasive community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infection is very serious and occasionally fatal. This infectious disease is still a relatively rare and unfamiliar infectious disease in Japan. We report a positive outcome in a 23-month-old Japanese girl with meningitis, osteomyelitis, fasciitis, necrotizing pneumonia, urinary tract infection, and bacteremia due to CA-MRSA treated with linezolid. PCR testing of the CA-MRSA strain was positive for PVL and staphylococcal enterotoxin b and negative for ACME. SCC mec was type IVa. This case underscores the selection of effective combinations of antimicrobial agents for its treatment. We need to be aware of invasive CA-MRSA infection, which rapidly progresses with a serious clinical course, because the incidence of the disease may be increasing in Japan. PMID:26819794

  8. Recurrence of pelvic abscess from Panton-Valentine leukocidin-positive community-acquired ST30 methicillin-resistant Staphylococcus aureus.

    PubMed

    Isobe, Hirokazu; Miyasaka, Dai; Ito, Tomoyuki; Takano, Tomomi; Nishiyama, Akihito; Iwao, Yasuhisa; Khokhlova, Olga E; Okubo, Takeshi; Endo, Naoto; Yamamoto, Tatsuo

    2013-02-01

    A 17-year-old female patient (a basketball player) suffered from recurrent pelvic abscesses from methicillin-resistant Staphylococcus aureus (MRSA). The first episode, from strain NN12, occurred in October 2004. Her cutaneous abscesses complicated into systemic progression to osteomyelitis and multifocal pelvic abscesses, adjacent to the sacroiliac joint. The second episode, abscesses at tissues adjacent to the sacroiliac joint from strain NN31A, occurred late in February 2005. The third episode, from strain NN31B, occurred on July 30, 2005, repeating the second episode. Three MRSA strains were identical in terms of genotypes (belonging to Panton-Valentine leukocidin [PVL]-positive ST30 community-acquired MRSA, CA-MRSA), pulsed-field gel electrophoresis patterns, and peptide cytolysin gene (psmα) expression levels. The three MRSA strains exhibited superior THP-1 cell invasion ability over hospital-acquired MRSA (New York/Japan clone). The data suggest that PVL-positive ST30 CA-MRSA, with high levels of cell invasion and peptide cytolysins, causes recurrence of pelvic abscesses in a healthy adolescent.

  9. Hospital Acquired Pneumonia Due to Achromobacter spp. in a Geriatric Ward in China: Clinical Characteristic, Genome Variability, Biofilm Production, Antibiotic Resistance and Integron in Isolated Strains

    PubMed Central

    Liu, Chao; Pan, Fei; Guo, Jun; Yan, Weifeng; Jin, Yi; Liu, Changting; Qin, Long; Fang, Xiangqun

    2016-01-01

    Background: Hospital-acquired pneumonia (HAP) due to Achromobacter has become a substantial concern in recent years. However, HAP due to Achromobacter in the elderly is rare. Methods: A retrospective analysis was performed on 15 elderly patients with HAP due to Achromobacter spp., in which the sequence types (STs), integrons, biofilm production and antibiotic resistance of the Achromobacter spp. were examined. Results: The mean age of the 15 elderly patients was 88.8 ± 5.4 years. All patients had at least three underlying diseases and catheters. Clinical outcomes improved in 10 of the 15 patients after antibiotic and/or mechanical ventilation treatment, but three patients had chronic infections lasting more than 1 year. The mortality rate was 33.3% (5/15). All strains were resistant to aminoglycosides, aztreonam, nitrofurantoin, and third- and fourth-generation cephalosporins (except ceftazidime and cefoperazone). Six new STs were detected. The most frequent ST was ST306. ST5 was identified in two separate buildings of the hospital. ST313 showed higher MIC in cephalosporins, quinolones and carbapenems, which should be more closely considered in clinical practice. All strains produced biofilm and had integron I and blaOXA-114-like. The main type was blaOXA-114q. The variable region of integron I was different among strains, and the resistance gene of the aminoglycosides was most commonly inserted in integron I. Additionally, blaPSE-1 was first reported in this isolate. Conclusion: Achromobacter spp. infection often occurs in severely ill elders with underlying diseases. The variable region of integrons differs, suggesting that Achromobacter spp. is a reservoir of various resistance genes. PMID:27242678

  10. Acquired resistance of Nocardia brasiliensis to clavulanic acid related to a change in beta-lactamase following therapy with amoxicillin-clavulanic acid.

    PubMed Central

    Steingrube, V A; Wallace, R J; Brown, B A; Pang, Y; Zeluff, B; Steele, L C; Zhang, Y

    1991-01-01

    Previous studies have demonstrated that Nocardia brasiliensis is susceptible to amoxicillin-clavulanic acid and that its beta-lactamases are inhibited in vitro by clavulanic acid. A cardiac transplant patient with disseminated infection caused by N. brasiliensis was treated with this drug combination with good response, but relapsed while still on therapy. The relapse isolate was found to be identical to the initial isolate by using genomic DNA restriction fragment patterns obtained by pulsed field gel electrophoresis, but it was resistant to amoxicillin-clavulanic acid. On isoelectric focusing, the beta-lactamase from the relapse isolate exhibited a shift in the isoelectric point (pI) of its major band from 5.10 to 5.04 compared with the enzyme from the pretreatment isolate. As determined by using values of the amount of beta-lactamase inhibitor necessary to give 50 +/- 5% inhibition of beta-lactamase-mediated hydrolysis of 50 microM nitrocefin, the beta-lactamase of the relapse isolate was also 200-fold more resistant than the enzyme from the pretreatment isolate to clavulanic acid and was more resistant to sulbactam, tazobactam, cloxacillin, and imipenem. The beta-lactamase of the relapse isolate exhibited a 10-fold decrease in hydrolytic activity for cephaloridine and other hydrolyzable cephalosporins compared with that for nitrocefin. Acquired resistance to amoxicillin-clavulanic acid in this isolate of N. brasiliensis appears to have resulted from a mutational change affecting the inhibitor and active site(s) in the beta-lactamase. Images PMID:2039203

  11. Chromosomal integration of a cephalosporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to beta-lactams.

    PubMed

    Mammeri, Hedi; Poirel, Laurent; Mangeney, Nicole; Nordmann, Patrice

    2003-05-01

    Clinical Oligella urethralis isolate COH-1, which was uncommonly resistant to penicillins and narrow-spectrum cephalosporins, was recovered from a 55-year-old patient with a urinary tract infection. Shotgun cloning into Escherichia coli and expression experiments gave recombinant clones expressing either an AmpC beta-lactamase-type phenotype of resistance or a carbenicillin-hydrolyzing beta-lactamase-type phenotype of resistance. The AmpC beta-lactamase identified (ABA-1), which had a pI value of 8.2, had 98% amino acid identity with a chromosomally encoded cephalosporinase of Acinetobacter baumannii. A 820-bp insertion sequence element, ISOur1, belonging to the IS6 family of insertion sequence elements, was identified immediately upstream of bla(ABA-1), providing a -35 promoter sequence and likely giving rise to a hybrid promoter region. The carbenicillin-hydrolyzing beta-lactamase identified (CARB-8), which had a pI value of 6.4, differed from CARB-5 by two amino acid substitutions. Hybridization of CeuI fragment I-restricted DNA fragments of O. urethralis COH-1 with bla(ABA-1)-, bla(CARB-8)-, and 16S rRNA-specific probes indicated the chromosomal integration of the beta-lactamase genes. PCR and hybridization experiments failed to detect bla(CARB-8)- and bla(ABA-1)-like genes in three O. urethralis reference strains, indicating that the beta-lactamase genes identified were the source of acquired resistance in O. urethralis COH-1. This is one of the few examples of the interspecies transfer and the chromosomal integration of a gene encoding a naturally occurring beta-lactamase.

  12. High prevalence of hospital-acquired infections caused by gram-negative carbapenem resistant strains in Vietnamese pediatric ICUs: A multi-centre point prevalence survey.

    PubMed

    Le, Ngai Kien; Hf, Wertheim; Vu, Phu Dinh; Khu, Dung Thi Khanh; Le, Hai Thanh; Hoang, Bich Thi Ngoc; Vo, Vu Thanh; Lam, Yen Minh; Vu, Dung Tien Viet; Nguyen, Thu Hoai; Thai, Tung Quang; Nilsson, Lennart E; Rydell, Ulf; Nguyen, Kinh Van; Nadjm, Behzad; Clarkson, Louise; Hanberger, Håkan; Larsson, Mattias

    2016-07-01

    There is scarce information regarding hospital-acquired infections (HAIs) among children in resource-constrained settings. This study aims to measure prevalence of HAIs in Vietnamese pediatric hospitals.Monthly point prevalence surveys (PPSs) in 6 pediatric intensive care units (ICUs) in 3 referral hospitals during 1 year.A total of 1363 cases (1143 children) were surveyed, 59.9% male, average age 11 months. Admission sources were: other hospital 49.3%, current hospital 36.5%, and community 15.3%. Reasons for admission were: infectious disease (66%), noninfectious (20.8%), and surgery/trauma (11.3%). Intubation rate was 47.8%, central venous catheter 29.4%, peripheral venous catheter 86.2%, urinary catheter 14.6%, and hemodialysis/filtration 1.7%. HAI was diagnosed in 33.1% of the cases: pneumonia (52.2%), septicemia (26.4%), surgical site infection (2%), and necrotizing enterocolitis (2%). Significant risk factors for HAI included age under 7 months, intubation and infection at admission. Microbiological findings were reported in 212 cases (43%) with 276 isolates: 50 Klebsiella pneumoniae, 46 Pseudomonas aeruginosa, and 39 Acinetobacter baumannii, with carbapenem resistance detected in 55%, 71%, and 65%, respectively. Staphylococcus aureus was cultured in 18 cases, with 81% methicillin-resistant Staphylococcus aureus. Most children (87.6%) received antibiotics, with an average of 1.6 antibiotics per case. Colistin was administered to 96 patients, 93% with HAI and 49% with culture confirmed carbapenem resistance.The high prevalence of HAI with carbapenem resistant gram-negative strains and common treatment with broad-spectrum antibiotics and colistin suggests that interventions are needed to prevent HAI and to optimize antibiotic use. PMID:27399106

  13. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    SciTech Connect

    Aravindan, Natarajan; Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen; Natarajan, Mohan

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  14. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile

    PubMed Central

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cuyàs, Elisabet; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A

    2014-01-01

    Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like “dirty” drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a “global” targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C

  15. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile.

    PubMed

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cuyàs, Elisabet; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A

    2014-01-01

    Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like "dirty" drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a "global" targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G 2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA

  16. Tamoxifen: catalyst for the change to targeted therapy

    PubMed Central

    Jordan, V. Craig

    2008-01-01

    In the early 1970’s, a failed postcoital contraceptive, ICI 46,474, was reinvented as tamoxifen, the first targeted therapy for breast cancer. A cluster of papers published in the European Journal of Cancer described the idea of targeting tamoxifen to patients with oestrogen receptor positive tumours, and proposed the strategic value of using long-term tamoxifen therapy in an adjuvant setting with a consideration of the antitumour properties of the hydroxylated metabolites of tamoxifen. At the time, these laboratory results were slow to be embraced by the clinical community. Today, it is estimated that hundreds of thousands of breast cancer patients are alive today because of targeted long-term adjuvant tamoxifen therapy. Additionally, the first laboratory studies for the use of tamoxifen as a chemopreventive were published. Eventually, the worth of tamoxifen was tested as a chemopreventive and the drug is now known to have an excellent risk benefit ratio in high risk premenopausal women. Overall, the rigorous investigation of the pharmacology of tamoxifen facilitated tamoxifen’s ubiquitous use for the targeted treatment of breast cancer, chemoprevention and pioneered the exploration of selective estrogen receptor modulators (SERMs). This new concept subsequently heralded the development of raloxifene, a failed breast cancer drug, for the prevention of osteoporosis and breast cancer without the troublesome side effect of endometrial cancer noted in postmenopausal women who take tamoxifen. Currently, the pharmaceutical industry is exploiting the SERM concept for all members of the nuclear receptor superfamily so that medicines can now be developed for diseases once thought impossible. PMID:18068350

  17. Suitability of tamoxifen-induced mutagenesis for behavioral phenotyping.

    PubMed

    Vogt, M A; Chourbaji, S; Brandwein, C; Dormann, C; Sprengel, R; Gass, P

    2008-05-01

    Tamoxifen-induced mutagenesis via the so-called CreER(T2) fusion enzyme is a key technology for the inducible gene knockout in the adult murine brain. However, it requires a subchronic transient treatment with high doses of the non-selective estrogen receptor antagonist tamoxifen. It has been shown earlier that acute tamoxifen treatment causes behavioral alterations, while the long-term behavioral effects of tamoxifen in mice are so far unknown. Therefore C57BL/6 male mice, a common strain used for targeted mutagenesis and behavioral analyses, were subjected to a tamoxifen treatment protocol as used for inducible mutagenesis in vivo, and analyzed for effects on general behavior (locomotion, exploration), emotional behavior (anxiety, depression) and on learning and memory after a drug-free interval period of 4 weeks. The results demonstrate that a test for depression-like behavior, i.e. the Forced Swim Test, is affected even more than 4 weeks after tamoxifen treatment. In contrast, in all other tests, tamoxifen treated mice showed unaltered behaviors, indicating that the currently established 5-day protocol of tamoxifen treatment (40 mg/kg bid) for inducible mutagenesis has no or little effects on the behavior of C57BL/6 male mice after a latency period of 4 weeks. These results are important for all studies using tamoxifen-induced mutagenesis since this protocol obviously does not evoke alterations in general behaviors such as locomotion, exploration or anxiety-like behaviors, which might confound more complex behavioral analyses, nor does it affect standard tests for learning and memory, such as Morris Water Maze, contextual and cued Fear Conditioning and T-Maze learning.

  18. Determination of Acquired Resistance Profiles of Pseudomonas aeruginosa Isolates and Characterization of an Effective Bacteriocin-Like Inhibitory Substance (BLIS) Against These Isolates

    PubMed Central

    Shokri, Dariush; Rabbani Khorasgani, Mohammad; Zaghian, Saeideh; Fatemi, Seyed Masih; Mohkam, Milad; Ghasemi, Younes; Taheri-Kafrani, Asghar

    2016-01-01

    Background The emergence of pan-drug resistant strains (PDR) of Pseudomonas aeruginosa has led to renewed efforts to identify alternative agents, such as bacteriocins and bacteriocin-like inhibitory substances (BLISs). Objectives The aims of this study were to determine the acquired resistance profiles of multidrug-resistant (MDR), extensively drug-resistant (XDR), and PDR P. aeruginosa isolates based on the revised definitions of the CDC and ECDC and to screen and characterize effective BLISs against these isolates. Patients and Materials In a cross-sectional study, 96 P. aeruginosa strains were isolated during a 12-month period. The resistance profiles of these isolates were determined as MDR, XDR, and PDR, and the data were analyzed using WHONET5.6 software. A BLIS against the P. aeruginosa strains was characterized based on its physicochemical properties, size, growth curves, and production profiles. Results Among the 96 isolates of P. aeruginosa, 2 (2.1%), 94 (97.9%), and 63 (65.6%) were non-MDR, MDR, and XDR, respectively, and 1 (1.1%) was PDR. The most effective antibiotics against these isolates were polymyxins and fosfomycin. A BLIS isolated from the P. aeruginosa DSH22 strain had potent activity against 92 (95.8%) of the 96 isolates. The BLIS was heat stable, (up to 100°C for 10 min), UV stable, and active within a pH range of 3 - 9. The activity of BLIS disappeared when treated with trypsin, proteinase K, and pepsin, indicating its proteinous nature. Based on its size (25 kDa), the BLIS may belong to the large colicin-like bacteriocin family. BLIS production started in the midexponential phase of growth, and the maximum level (2700 AU/mL) occurred in the late-stationary phase after 25 hours of incubation at 30°C. Conclusions This BLIS with broad-spectrum activity may be a potential agent for the treatment or control of drug-resistant strains of P. aeruginosa infection. PMID:27800131

  19. Acquired resistance to acetaminophen hepatotoxicity is associated with induction of multidrug resistance-associated protein 4 (Mrp4) in proliferating hepatocytes.

    PubMed

    Aleksunes, Lauren M; Campion, Sarah N; Goedken, Michael J; Manautou, José E

    2008-08-01

    Treatment with hepatotoxicants such as acetaminophen (APAP) causes resistance to a second, higher dose of the same toxicant (autoprotection). APAP induces hepatic mRNA and protein levels of the multidrug resistance-associated proteins (Mrp) transporters in mice and humans. Basolateral efflux transporters Mrp3 and Mrp4 are the most significantly induced. We hypothesized that upregulation of Mrp3 and Mrp4 is one mechanism by which hepatocytes become resistant to a subsequent higher dose of APAP by limiting accumulation of xeno-, endobiotics, and byproducts of hepatocellular injury. The purpose of this study was to evaluate Mrp3 and Mrp4 expression in proliferating hepatocytes in a mouse model of APAP autoprotection. Plasma and livers were collected from male C57BL/6J mice treated with APAP 400 mg/kg for determination of hepatotoxicity and protein expression. Maximal Mrp3 and Mrp4 induction occurred 48 h after APAP. Mrp4 upregulation occurred selectively in proliferating hepatocytes. Additional groups of APAP-pretreated mice were challenged 48 h later with a second, higher dose of APAP. APAP-pretreated mice had reduced hepatotoxicity after APAP challenge compared to those pretreated with vehicle. A more rapid recovery of glutathione (GSH) in APAP-pretreated mice corresponded with increases in GSH synthetic enzymes. Interestingly, mice pretreated and challenged with APAP had dramatic increases in Mrp4 expression as well as enhanced hepatocyte proliferation. Inhibition of hepatocyte replication with colchicine not only restored sensitivity of APAP-pretreated mice to injury, but also blocked Mrp4 induction. Mrp4 overexpression may be one phenotypic property of proliferating hepatocytes that protects against subsequent hepatotoxicant exposure by mechanisms that are presently unknown. PMID:18468992

  20. The Arabidopsis Mediator Complex Subunit16 Positively Regulates Salicylate-Mediated Systemic Acquired Resistance and Jasmonate/Ethylene-Induced Defense Pathways[W

    PubMed Central

    Zhang, Xudong; Wang, Chenggang; Zhang, Yanping; Sun, Yijun; Mou, Zhonglin

    2012-01-01

    Systemic acquired resistance (SAR) is a long-lasting plant immunity against a broad spectrum of pathogens. Biological induction of SAR requires the signal molecule salicylic acid (SA) and involves profound transcriptional changes that are largely controlled by the transcription coactivator NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1). However, it is unclear how SAR signals are transduced from the NPR1 signaling node to the general transcription machinery. Here, we report that the Arabidopsis thaliana Mediator subunit16 (MED16) is an essential positive regulator of SAR. Mutations in MED16 reduced NPR1 protein levels and completely compromised biological induction of SAR. These mutations also significantly suppressed SA-induced defense responses, altered the transcriptional changes induced by the avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst) DC3000/avrRpt2, and rendered plants susceptible to both Pst DC3000/avrRpt2 and Pst DC3000. In addition, mutations in MED16 blocked the induction of several jasmonic acid (JA)/ethylene (ET)–responsive genes and compromised resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. The Mediator complex acts as a bridge between specific transcriptional activators and the RNA polymerase II transcription machinery; therefore, our data suggest that MED16 may be a signaling component in the gap between the NPR1 signaling node and the general transcription machinery and may relay signals from both the SA and the JA/ET pathways. PMID:23064320

  1. Increasing antimicrobial resistance in Escherichia coli isolates from community-acquired urinary tract infections during 1998-2003 in Manisa, Turkey.

    PubMed

    Kurutepe, Semra; Surucuoglu, Suheyla; Sezgin, Cenk; Gazi, Horu; Gulay, Mehmet; Ozbakkaloglu, Beril

    2005-06-01

    Urinary tract infections are among the most common infections with an increasing resistance to antimicrobials. The aim of this study was to determine the change in antimicrobial susceptibility of Escherichia coli isolates from patients with community-acquired urinary tract infection (UTI) for the years 1998 through 2003 and to suggest that the current empirical antibiotic therapy used for these patients is inappropriate. During the study period, 7,335 community urine samples of which 1,203 (16.4%) grew bacterial isolates were analyzed. Among the total of 1,203 isolates, 880 (73.2%) were E. coli. The range of resistance of E. coli to ampicillin was 47.8 to 64.6% and that to trimethoprim-sulfamethoxazole was 37.1 to 44.6% during the study period. The susceptibility pattern of E. coli to nitrofurantoin and cefuroxime did not vary significantly over the 6-year period. There was a significant increase in the susceptibility of E. coli to ciprofloxacin (11.3 - 26.7%), amoxicillin-clavulanate (18.4 - 29.2%) and gentamicin (7.0 - 25.6%) (P < 0.05). Empirical initial treatment with ampicillin and trimethoprim-sulfamethoxazole was thus inadequate in approximately half of UTI cases in our region.

  2. Incidence of community-acquired methicillin-resistant Staphylococcus aureus carrying Pantone-Valentine leucocidin gene at a referral hospital in United Arab Emirates.

    PubMed

    Dash, Nihar; Panigrahi, Debadatta; Al Zarouni, Mansour; Yassin, Faten; Al-Shamsi, Moza

    2014-04-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging pathogen in hospitalized patients worldwide. The present study was undertaken to identify CA-MRSA in hospitalized patients in a 350-bed tertiary care hospital in Sharjah, UAE over a 2-year period from January 2011 to December 2012. CA-MRSA was defined based on identification within first 48 h of admission in the hospital. Staphylococcal cassette chromosome (SCC) mec typing of the CA-MRSA isolates was carried out by multiplex polymerase chain reaction (PCR). Detection of PVL and mecA genes was done by PCR using the GenoType(®) MRSA test system (Hain Lifescience). Patient's clinical data and antimicrobial susceptibility pattern of the CA-MRSA isolates were also evaluated. Fifty seven of the 187 MRSA isolates were identified as CA-MRSA. All the CA-MRSA strains in our study belonged to SCCmecIV type and were positive for both PVL and mecA genes. The patients with CA-MRSA infections were young (median age, 32 years) and the majority of infections involved the skin and soft tissue (36%). Antimicrobial susceptibility pattern of the CA-MRSA isolates showed a better susceptibility profile to the non-beta-lactam antimicrobials with the exception of ciprofloxacin having 28% resistance. This study evidently strengthens the recent observation of an increase in CA-MRSA emergence among hospitalized patients in the UAE. PMID:23919760

  3. Brush and Spray: A High-Throughput Systemic Acquired Resistance Assay Suitable for Large-Scale Genetic Screening1[W][OA

    PubMed Central

    Jing, Beibei; Xu, Shaohua; Xu, Mo; Li, Yan; Li, Shuxin; Ding, Jinmei; Zhang, Yuelin

    2011-01-01

    Systemic acquired resistance (SAR) is a defense mechanism induced in the distal parts of plants after primary infection. It confers long-lasting protection against a broad spectrum of microbial pathogens. Lack of high-throughput assays has hampered the forward genetic analysis of SAR. Here, we report the development of an easy and efficient assay for SAR and its application in a forward genetic screen for SAR-deficient mutants in Arabidopsis (Arabidopsis thaliana). Using the new assay for SAR, we identified six flavin-dependent monooxygenase1, four AGD2-like defense response protein1, three salicylic acid induction-deficient2, one phytoalexin deficient4, and one avrPphB-susceptible3 alleles as well as a gain-of-function mutant of CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR3 designated camta3-3D. Like transgenic plants overexpressing CAMTA3, camta3-3D mutant plants exhibit compromised SAR and enhanced susceptibility to virulent pathogens, suggesting that CAMTA3 is a critical regulator of both basal resistance and SAR. PMID:21900483

  4. Acquired hyperpigmentations*

    PubMed Central

    Cestari, Tania Ferreira; Dantas, Lia Pinheiro; Boza, Juliana Catucci

    2014-01-01

    Cutaneous hyperpigmentations are frequent complaints, motivating around 8.5% of all dermatological consultations in our country. They can be congenital, with different patterns of inheritance, or acquired in consequence of skin problems, systemic diseases or secondary to environmental factors. The vast majority of them are linked to alterations on the pigment melanin, induced by different mechanisms. This review will focus on the major acquired hyperpigmentations associated with increased melanin, reviewing their mechanisms of action and possible preventive measures. Particularly prominent aspects of diagnosis and therapy will be emphasized, with focus on melasma, post-inflammatory hyperpigmentation, periorbital pigmentation, dermatosis papulosa nigra, phytophotodermatoses, flagellate dermatosis, erythema dyschromicum perstans, cervical poikiloderma (Poikiloderma of Civatte), acanthosis nigricans, cutaneous amyloidosis and reticulated confluent dermatitis PMID:24626644

  5. Initial use of one or two antibiotics for critically ill patients with community-acquired pneumonia: impact on survival and bacterial resistance

    PubMed Central

    2013-01-01

    Introduction Several guidelines recommend initial empirical treatment with two antibiotics instead of one to decrease mortality in community-acquired pneumonia (CAP) requiring intensive-care-unit (ICU) admission. We compared the impact on 60-day mortality of using one or two antibiotics. We also compared the rates of nosocomial pneumonia and multidrug-resistant bacteria. Methods This is an observational cohort study of 956 immunocompetent patients with CAP admitted to ICUs in France and entered into a prospective database between 1997 and 2010. Patients with chronic obstructive pulmonary disease were excluded. Multivariate analysis adjusted for disease severity, gender, and co-morbidities was used to compare the impact on 60-day mortality of receiving adequate initial antibiotics and of receiving one versus two initial antibiotics. Results Initial adequate antibiotic therapy was significantly associated with better survival (subdistribution hazard ratio (sHR), 0.63; 95% confidence interval (95% CI), 0.42 to 0.94; P = 0.02); this effect was strongest in patients with Streptococcus pneumonia CAP (sHR, 0.05; 95% CI, 0.005 to 0.46; p = 0.001) or septic shock (sHR: 0.62; 95% CI 0.38 to 1.00; p = 0.05). Dual therapy was associated with a higher frequency of initial adequate antibiotic therapy. However, no difference in 60-day mortality was found between monotherapy (β-lactam) and either of the two dual-therapy groups (β-lactam plus macrolide or fluoroquinolone). The rates of nosocomial pneumonia and multidrug-resistant bacteria were not significantly different across these three groups. Conclusions Initial adequate antibiotic therapy markedly decreased 60-day mortality. Dual therapy improved the likelihood of initial adequate therapy but did not predict decreased 60-day mortality. Dual therapy did not increase the risk of nosocomial pneumonia or multidrug-resistant bacteria. PMID:24200097

  6. Molecular modeling, dynamics studies and virtual screening of Fructose 1, 6 biphosphate aldolase-II in community acquired- methicillin resistant Staphylococcus aureus (CA-MRSA).

    PubMed

    Yadav, Pramod Kumar; Singh, Gurmit; Gautam, Budhayash; Singh, Satendra; Yadav, Madhu; Srivastav, Upasana; Singh, Brijendra

    2013-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) has recently emerged as a nosocomial pathogen to the community which commonly causes skin and soft-tissue infections (SSTIs). This strain (MW2) has now become resistant to the most of the beta-lactam antibiotics; therefore it is the urgent need to identify the novel drug targets. Recently fructose 1,6 biphosphate aldolase-II (FBA) has been identified as potential drug target in CA-MRSA. The FBA catalyses the retro-ketolic cleavage of fructose-1,6-bisphosphate (FBP) to yield dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) in glycolytic pathway. In the present research work the 3D structure of FBA was predicted using the homology modeling method followed by validation. The molecular dynamics simulation (MDS) of the predicted model was carried out using the 2000 ps time scale and 1000000 steps. The MDS results suggest that the modeled structure is stable. The predicted model of FBA was used for virtual screening against the NCI diversity subset-II ligand databases which contain 1364 compounds. Based on the docking energy scores, it was found that top four ligands i.e. ZINC01690699, ZINC13154304, ZINC29590257 and ZINC29590259 were having lower energy scores which reveal higher binding affinity towards the active site of FBA. These ligands might act as potent inhibitors for the FBA so that the menace of antimicrobial resistance in CA-MRSA can be conquered. However, pharmacological studies are required to confirm the inhibitory activity of these ligands against the FBA in CA-MRSA.

  7. Tracking Cefoperazone/Sulbactam Resistance Development In vivo in A. baumannii Isolated from a Patient with Hospital-Acquired Pneumonia by Whole-Genome Sequencing

    PubMed Central

    Liu, Xiaofen; Zheng, Huajun; Zhang, Weipeng; Shen, Zhen; Zhao, Miao; Chen, Yuancheng; Sun, Li; Shi, Jun; Zhang, Jing

    2016-01-01

    Cefoperazone/sulbactam has been shown to be efficacious for the treatment of infections caused by Acinetobacter baumannii; however, the mechanism underlying resistance to this synergistic combination is not well understood. In the present study, two A. baumannii isolates, AB1845 and AB2092, were isolated from a patient with hospital-acquired pneumonia before and after 20 days of cefoperazone/sulbactam therapy (2:1, 3 g every 8 h with a 1-h infusion). The minimum inhibitory concentration (MIC) of cefoperazone/sulbactam for AB1845 and AB2092 was 16/8 and 128/64 mg/L, respectively. Blood samples were collected on day 4 of the treatment to determine the concentration of cefoperazone and sulbactam. The pharmacokinetic/pharmacodynamic (PK/PD) indices (%T>MIC) were calculated to evaluate the dosage regimen and resistance development. The results showed that %T>MIC of cefoperazone and sulbactam was 100% and 34.5% for AB1845, and 0% and 0% for AB2092, respectively. Although there was no available PK/PD target for sulbactam, it was proposed that sulbactam should be administered at higher doses or for prolonged infusion times to achieve better efficacy. To investigate the mechanism of A. baumannii resistance to the cefoperazone/sulbactam combination in vivo, whole-genome sequencing of these two isolates was further performed. The sequencing results showed that 97.6% of the genome sequences were identical and 33 non-synonymous mutations were detected between AB1845 and AB2092. The only difference of these two isolates was showed in sequencing coverage comparison. There was a 6-kb amplified DNA fragment which was three times higher in AB2092, compared with AB1845. The amplified DNA fragment containing the blaOXA-23 gene on transposon Tn2009. Further quantitative real-time PCR results demonstrated that gene expression at the mRNA level of blaOXA-23 was >5 times higher in AB2092 than in AB1845. These results suggested that the blaOXA-23 gene had higher expression level in AB2092

  8. Tracking Cefoperazone/Sulbactam Resistance Development In vivo in A. baumannii Isolated from a Patient with Hospital-Acquired Pneumonia by Whole-Genome Sequencing.

    PubMed

    Liu, Xiaofen; Zheng, Huajun; Zhang, Weipeng; Shen, Zhen; Zhao, Miao; Chen, Yuancheng; Sun, Li; Shi, Jun; Zhang, Jing

    2016-01-01

    Cefoperazone/sulbactam has been shown to be efficacious for the treatment of infections caused by Acinetobacter baumannii; however, the mechanism underlying resistance to this synergistic combination is not well understood. In the present study, two A. baumannii isolates, AB1845 and AB2092, were isolated from a patient with hospital-acquired pneumonia before and after 20 days of cefoperazone/sulbactam therapy (2:1, 3 g every 8 h with a 1-h infusion). The minimum inhibitory concentration (MIC) of cefoperazone/sulbactam for AB1845 and AB2092 was 16/8 and 128/64 mg/L, respectively. Blood samples were collected on day 4 of the treatment to determine the concentration of cefoperazone and sulbactam. The pharmacokinetic/pharmacodynamic (PK/PD) indices (%T>MIC) were calculated to evaluate the dosage regimen and resistance development. The results showed that %T>MIC of cefoperazone and sulbactam was 100% and 34.5% for AB1845, and 0% and 0% for AB2092, respectively. Although there was no available PK/PD target for sulbactam, it was proposed that sulbactam should be administered at higher doses or for prolonged infusion times to achieve better efficacy. To investigate the mechanism of A. baumannii resistance to the cefoperazone/sulbactam combination in vivo, whole-genome sequencing of these two isolates was further performed. The sequencing results showed that 97.6% of the genome sequences were identical and 33 non-synonymous mutations were detected between AB1845 and AB2092. The only difference of these two isolates was showed in sequencing coverage comparison. There was a 6-kb amplified DNA fragment which was three times higher in AB2092, compared with AB1845. The amplified DNA fragment containing the bla OXA-23 gene on transposon Tn2009. Further quantitative real-time PCR results demonstrated that gene expression at the mRNA level of bla OXA-23 was >5 times higher in AB2092 than in AB1845. These results suggested that the bla OXA-23 gene had higher expression level in AB

  9. Tracking Cefoperazone/Sulbactam Resistance Development In vivo in A. baumannii Isolated from a Patient with Hospital-Acquired Pneumonia by Whole-Genome Sequencing

    PubMed Central

    Liu, Xiaofen; Zheng, Huajun; Zhang, Weipeng; Shen, Zhen; Zhao, Miao; Chen, Yuancheng; Sun, Li; Shi, Jun; Zhang, Jing

    2016-01-01

    Cefoperazone/sulbactam has been shown to be efficacious for the treatment of infections caused by Acinetobacter baumannii; however, the mechanism underlying resistance to this synergistic combination is not well understood. In the present study, two A. baumannii isolates, AB1845 and AB2092, were isolated from a patient with hospital-acquired pneumonia before and after 20 days of cefoperazone/sulbactam therapy (2:1, 3 g every 8 h with a 1-h infusion). The minimum inhibitory concentration (MIC) of cefoperazone/sulbactam for AB1845 and AB2092 was 16/8 and 128/64 mg/L, respectively. Blood samples were collected on day 4 of the treatment to determine the concentration of cefoperazone and sulbactam. The pharmacokinetic/pharmacodynamic (PK/PD) indices (%T>MIC) were calculated to evaluate the dosage regimen and resistance development. The results showed that %T>MIC of cefoperazone and sulbactam was 100% and 34.5% for AB1845, and 0% and 0% for AB2092, respectively. Although there was no available PK/PD target for sulbactam, it was proposed that sulbactam should be administered at higher doses or for prolonged infusion times to achieve better efficacy. To investigate the mechanism of A. baumannii resistance to the cefoperazone/sulbactam combination in vivo, whole-genome sequencing of these two isolates was further performed. The sequencing results showed that 97.6% of the genome sequences were identical and 33 non-synonymous mutations were detected between AB1845 and AB2092. The only difference of these two isolates was showed in sequencing coverage comparison. There was a 6-kb amplified DNA fragment which was three times higher in AB2092, compared with AB1845. The amplified DNA fragment containing the blaOXA-23 gene on transposon Tn2009. Further quantitative real-time PCR results demonstrated that gene expression at the mRNA level of blaOXA-23 was >5 times higher in AB2092 than in AB1845. These results suggested that the blaOXA-23 gene had higher expression level in AB2092

  10. Travel to Asia and traveller's diarrhoea with antibiotic treatment are independent risk factors for acquiring ciprofloxacin-resistant and extended spectrum β-lactamase-producing Enterobacteriaceae-a prospective cohort study.

    PubMed

    Reuland, E A; Sonder, G J B; Stolte, I; Al Naiemi, N; Koek, A; Linde, G B; van de Laar, T J W; Vandenbroucke-Grauls, C M J E; van Dam, A P

    2016-08-01

    Travel to (sub)tropical countries is a well-known risk factor for acquiring resistant bacterial strains, which is especially of significance for travellers from countries with low resistance rates. In this study we investigated the rate of and risk factors for travel-related acquisition of extended spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E), ciprofloxacin-resistant Enterobacteriaceae (CIPR-E) and carbapenem-resistant Enterobacteriaceae. Data before and after travel were collected from 445 participants. Swabs were cultured with an enrichment broth and sub-cultured on selective agar plates for ESBL detection, and on plates with a ciprofloxacin disc. ESBL production was confirmed with the double-disc synergy test. Species identification and susceptibility testing were performed with the Vitek-2 system. All isolates were subjected to ertapenem Etest. ESBL and carbapenemase genes were characterized by PCR and sequencing. Twenty-seven out of 445 travellers (6.1%) already had ESBL-producing strains and 45 of 445 (10.1%) travellers had strains resistant to ciprofloxacin before travel. Ninety-eight out of 418 (23.4%) travellers acquired ESBL-E and 130 of 400 (32.5%) travellers acquired a ciprofloxacin-resistant strain. Of the 98 ESBL-E, predominantly Escherichia coli and predominantly blaCTX-M-15, 56% (55/98) were resistant to gentamicin, ciprofloxacin and co-trimoxazole. Multivariate analysis showed that Asia was a high-risk area for ESBL-E as well as CIPR-E acquisition. Travellers with diarrhoea combined with antimicrobial use were significantly at higher risk for acquisition of resistant strains. Only one carbapenemase-producing isolate was acquired, isolated from a participant after visiting Egypt. In conclusion, travelling to Asia and diarrhoea combined with antimicrobial use are important risk factors for acquiring ESBL-E and CIPR-E. PMID:27223840

  11. Secretory prostate apoptosis response (Par)-4 sensitizes multicellular spheroids (MCS) of glioblastoma multiforme cells to tamoxifen-induced cell death

    PubMed Central

    Jagtap, Jayashree C.; Parveen, D.; Shah, Reecha D.; Desai, Aarti; Bhosale, Dipali; Chugh, Ashish; Ranade, Deepak; Karnik, Swapnil; Khedkar, Bhushan; Mathur, Aaishwarya; Natesh, Kumar; Chandrika, Goparaju; Shastry, Padma

    2014-01-01

    Glioblastoma multiforme (GBM) is the most malignant form of brain tumor and is associated with resistance to conventional therapy and poor patient survival. Prostate apoptosis response (Par)-4, a tumor suppressor, is expressed as both an intracellular and secretory/extracellular protein. Though secretory Par-4 induces apoptosis in cancer cells, its potential in drug-resistant tumors remains to be fully explored. Multicellular spheroids (MCS) of cancer cells often acquire multi-drug resistance and serve as ideal experimental models. We investigated the role of Par-4 in Tamoxifen (TAM)-induced cell death in MCS of human cell lines and primary cultures of GBM tumors. TCGA and REMBRANT data analysis revealed that low levels of Par-4 correlated with low survival period (21.85 ± 19.30 days) in GBM but not in astrocytomas (59.13 ± 47.26 days) and oligodendrogliomas (58.04 ± 59.80 days) suggesting low PAWR expression as a predictive risk factor in GBM. Consistently, MCS of human cell lines and primary cultures displayed low Par-4 expression, high level of chemo-resistance genes and were resistant to TAM-induced cytotoxicity. In monolayer cells, TAM-induced cytotoxicity was associated with enhanced expression of Par-4 and was alleviated by silencing of Par-4 using specific siRNA. TAM effectively induced secretory Par-4 in conditioned medium (CM) of cells cultured as monolayer but not in MCS. Moreover, MCS were rendered sensitive to TAM-induced cell death by exposure to conditioned medium (CM)-containing Par-4 (derived from TAM-treated monolayer cells). Also TAM reduced the expression of Akt and PKCζ in GBM cells cultured as monolayer but not in MCS. Importantly, combination of TAM with inhibitors to PI3K inhibitor (LY294002) or PKCζ resulted in secretion of Par-4 and cell death in MCS. Since membrane GRP78 is overexpressed in most cancer cells but not normal cells, and secretory Par-4 induces apoptosis by binding to membrane GRP78, secretory Par-4 is an

  12. CYP17 polymorphism as a risk factor of tamoxifen-induced hepatic steatosis in breast cancer patients.

    PubMed

    Ohnishi, Takenao; Ogawa, Yasuhiro; Saibara, Toshiji; Nishioka, Akihito; Kariya, Shinji; Fukumoto, Mitsutaka; Onishi, Saburo; Yoshida, Shoji

    2005-03-01

    Oral administration of tamoxifen, an endocrine therapy for breast cancer, often induces hepatic steatosis (THS, tamoxifen-induced hepatic steatosis) as a complication, which can progress to non-alcoholic steatohepatitis (NASH). The development of this complication is strongly associated with three clinical risk factors; specifically, insulin resistance, central obesity, and hypertriglyceridemia, however a genetic predisposition to THS has yet to be investigated. The aim of this study is to determine whether genetic polymorphism of the P450c17alpha enzyme coded for by the CYP17 gene, responsible for regulating serum estrogen, has an association with THS. After obtaining informed consent from 180 eligible breast cancer patients treated with tamoxifen, DNA was collected and analyzed by restriction fragment length polymorphism assay and classified into alleles defined as A1 and A2. The absence or presence and extent of THS was evaluated by calculating the liver/spleen (L/S) ratio based on Hounsfield units with a CT scanner. Administration of tamoxifen led to THS (L/S ratio <0.9) in 57 (31.7%) of 180 patients while the remaining 123 (68.3%) patients did not develop THS. A significant difference in the distribution of CYP17 genotypes was observed between patients who developed THS and those who did not (P=0.021). A significantly higher frequency of the A2 allele was seen in the THS group (odds ratio, 1.90; 95% confidence interval, 1.21-2.99). Our study provides the first evidence that CYP17 polymorphism participates in the development of THS, and sheds light on the genetic causes of this side effect and genetic differences between tamoxifen-treated individuals.

  13. Ten Years of Tamoxifen Reduces Breast Cancer Recurrences, Improves Survival

    MedlinePlus

    ... Cancer Screening Research Ten Years of Tamoxifen Reduces Breast Cancer Recurrences, Improves Survival For some women with breast ... took it for 5 years. (See the table.) Breast Cancer Recurrence and Death 5 to 14 Years after ...

  14. Tamoxifen and depression: drug interactions in breast cancer.

    PubMed

    McMichael, Katherine S; Adams, Katie; Breden Crouse, Ericka L

    2013-09-01

    This case describes a 76-year-old African-American female with a history of depression, breast cancer, and hypothyroidism admitted to the inpatient geriatric psychiatry unit for an electroconvulsive therapy (ECT) evaluation. She had one previous episode of depression, which began after a lumpectomy in 2007. Her home medication regimen included tamoxifen 20 mg daily. This case highlights the incidence of depression in persons with breast cancer, examines the controversy of tamoxifen-induced depression, and evaluates antidepressant considerations regarding potentially efficacy-reducing cytochrome P450 2D6 drug interactions with tamoxifen. The pharmacy team played an active role in educating the medical team regarding tamoxifen drug interactions. After many discussions, the patient was ultimately treated with mirtazapine 15 mg at bedtime, in addition to ECT. PMID:24007891

  15. More Evidence Tamoxifen, Other Meds Help Limit Breast Cancer's Spread

    MedlinePlus

    ... html More Evidence Tamoxifen, Other Meds Help Limit Breast Cancer's Spread 6-year study finds follow-up therapy ... class of drugs called aromatase inhibitors does cut breast cancer patients' risk of developing cancer in their other ...

  16. Ten Years of Tamoxifen Reduces Breast Cancer Recurrences, Improves Survival

    Cancer.gov

    Taking adjuvant tamoxifen for 10 years after primary treatment leads to a greater reduction in breast cancer recurrences and deaths than taking the drug for only 5 years, according to the results of a large international clinical trial.

  17. Individualized Tamoxifen Dose Escalation: Confirmation of Feasibility, Question of Utility.

    PubMed

    Hertz, Daniel L; Rae, James M

    2016-07-01

    Tamoxifen may require metabolic activation to endoxifen for efficacy in treating hormone receptor-positive breast cancer. Dose escalation in patients with low endoxifen concentrations could enhance treatment efficacy. This approach is clinically feasible, and successfully increases endoxifen concentrations; however, it is unknown whether patients benefit from individualized tamoxifen dose escalation. Clin Cancer Res; 22(13); 3121-3. ©2016 AACRSee related article by Fox et al., p. 3164.

  18. Individualized Tamoxifen Dose Escalation: Confirmation of Feasibility, Question of Utility.

    PubMed

    Hertz, Daniel L; Rae, James M

    2016-07-01

    Tamoxifen may require metabolic activation to endoxifen for efficacy in treating hormone receptor-positive breast cancer. Dose escalation in patients with low endoxifen concentrations could enhance treatment efficacy. This approach is clinically feasible, and successfully increases endoxifen concentrations; however, it is unknown whether patients benefit from individualized tamoxifen dose escalation. Clin Cancer Res; 22(13); 3121-3. ©2016 AACRSee related article by Fox et al., p. 3164. PMID:27012810

  19. Tamoxifen experimental carcinogenicity studies: Implications for human effects

    SciTech Connect

    Williams, G.M.

    1995-02-01

    Tamoxifen is an effective antiestrogen in the treatment of breast cancer and is considered highly safe. In recent years, several trials have been initiated in women to evaluate its potential for the prevention of breast cancer. Such long-term administration of a medication to healthy people requires a substantial degree of safety. This review examines experimental carcinogenicity and mechanistic studies on tamoxifen and the implications for human effects. 25 refs.

  20. Integrin β1-mediated acquired gefitinib resistance in non-small cell lung cancer cells occurs via the phosphoinositide 3-kinase-dependent pathway

    PubMed Central

    DENG, QIN-FANG; SU, BO; ZHAO, YIN-MIN; TANG, LIANG; ZHANG, JIE; ZHOU, CAI-CUN

    2016-01-01

    The present study aimed to explore the role of integrin β1 and the relevant signaling pathways in acquired gefitinib resistance in non-small cell lung cancer (NSCLC). The inhibitory effects of gefitinib, with or without LY294002, on cellular proliferation were evaluated by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were analyzed by flow cytometry, while western blotting was used to evaluate the expression of EGFR, phosphorylated (phospho)-EGFR, protein kinase B (Akt), phospho-Akt, extracellular signal-regulated kinase (Erk) and phospho-Erk. The gene expression profiles of PC9 and PC9/G cells were determined by DNA microarray. Integrin β1 was knocked down in PC9/G cells by transiently transfected short interfering RNA (siRNA). A scrambled siRNA sequence was used as a control. Apoptosis of transfected cells was determined by Annexin V-ph