Science.gov

Sample records for acquired tamoxifen resistance

  1. A molecular model for the mechanism of acquired tamoxifen resistance in breast cancer

    PubMed Central

    Fan, Ping; Agboke, Fadeke A.; Cunliffe, Heather E.; Ramos, Pilar; Jordan, V. Craig

    2014-01-01

    Purpose: Estrogen (E2)-stimulated growth re-emerges after a c-Src inhibitor blocking E2-induced apoptosis. A resulting cell line, MCF-7:PF, is selected with features of functional estrogen receptor (ER) and over-expression of insulin-like growth factor-1 receptor beta (IGF-1Rβ). We addressed the question of whether the selective ER modulator (SERM), 4-hydroxytamoxifen (4-OHT) or other SERMs could target ER to prevent E2-stimulated growth in MCF-7:PF cells. Methods: Protein levels of receptors and signaling pathways were examined by immunoblotting. Expression of mRNA was measured through real-time RT-PCR. Recruitment of ER or nuclear receptor coactivator 3 (SRC3) to the promoter of ER-target gene was detected by chromatin-immunoprecipitation (ChIP). Results: 4-OHT and other SERMs stimulated cell growth in an ER-dependent manner. However, unlike E2, 4-OHT suppressed classical ER-target genes as does the pure antiestrogen ICI 182,780 (ICI). ChIP assay indicated that 4-OHT did not recruit ER or SRC3 to the promoter of ER-target gene, pS2. Paradoxically, 4-OHT reduced total IGF-1Rβ but increased phosphorylation of IGF-1Rβ. Mechanistic studies revealed that 4-OHT functioned as an agonist to enhance the non-genomic activity of ER and activate focal adhesion molecules to further increase phosphorylation of IGF-1Rβ. Disruption of membrane-associated signaling, IGF-1R and focal adhesion kinase (FAK), completely abolished 4-OHT-stimulated cell growth. Conclusions: This study is the first to recapitulate a cellular model in vitro of acquired tamoxifen resistance developed in athymic mice in vivo. Importantly, it provides a rationale that membrane-associated pathways may be valuable therapeutic targets for tamoxifen resistant patients in clinic. PMID:25204804

  2. Tamoxifen Resistance: Emerging Molecular Targets

    PubMed Central

    Rondón-Lagos, Milena; Villegas, Victoria E.; Rangel, Nelson; Sánchez, Magda Carolina; Zaphiropoulos, Peter G.

    2016-01-01

    17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer. PMID:27548161

  3. Tamoxifen Resistance: Emerging Molecular Targets.

    PubMed

    Rondón-Lagos, Milena; Villegas, Victoria E; Rangel, Nelson; Sánchez, Magda Carolina; Zaphiropoulos, Peter G

    2016-01-01

    17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM's biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein-coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer. PMID:27548161

  4. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan

    PubMed Central

    2012-01-01

    Background Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. Methods CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. Results TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction

  5. Pathways to Tamoxifen Resistance

    PubMed Central

    Riggins, Rebecca B.; Schrecengost, Randy S.; Guerrero, Michael S.; Bouton, Amy H.

    2007-01-01

    Therapies that target the synthesis of estrogen or the function of estrogen receptor(s) have been developed to treat breast cancer. While these approaches have proven to be beneficial to a large number of patients, both de novo and acquired resistance to these drugs is a significant problem. Recent advances in our understanding of the molecular mechanisms that contribute to resistance have provided a means to begin to predict patient responses to these drugs and develop rational approaches for combining therapeutic agents to circumvent or desensitize the resistant phenotype. Here, we review common mechanisms of antiestrogen resistance and discuss the implications for prediction of response and design of effective combinatorial treatments. PMID:17475399

  6. MicroRNA-320a sensitizes tamoxifen-resistant breast cancer cells to tamoxifen by targeting ARPP-19 and ERRγ.

    PubMed

    Lü, Mingrong; Ding, Keshuo; Zhang, Guofeng; Yin, Mianmian; Yao, Guidong; Tian, Hui; Lian, Jie; Liu, Lin; Liang, Meng; Zhu, Tao; Sun, Fei

    2015-01-01

    Tamoxifen represents a major adjuvant therapy to those patients with estrogen receptor-alpha positive breast cancer. However, tamoxifen resistance occurs quite often, either de novo or acquired during treatment. To investigate the role of miR-320a in the development of resistance to tamoxifen, we established tamoxifen-resistant (TamR) models by continually exposing MCF-7 or T47D breast cancer cells to tamoxifen, and identified microRNA(miRNA)-320a as a down-regulated miRNA in tamoxifen resistant cells. Re-expression of miR-320a was sufficient to sensitize TamR cells to tamoxifen by targeting cAMP-regulated phosphoprotein (ARPP-19) and estrogen-related receptor gamma (ERRγ) as well as their downstream effectors, c-Myc and Cyclin D1. Furthermore, progesterone (P4) promoted the expression of miR-320a by repressing c-Myc expression, while estrogen (E2) exerted the opposite effect. These results suggest the potential therapeutic approach for tamoxifen-resistant breast cancer by restorating miR-320a expression or depleting ARPP-19/ERRγ expression. PMID:25736597

  7. MicroRNA-320a sensitizes tamoxifen-resistant breast cancer cells to tamoxifen by targeting ARPP-19 and ERRγ*

    PubMed Central

    Lü, Mingrong; Ding, Keshuo; Zhang, Guofeng; Yin, Mianmian; Yao, Guidong; Tian, Hui; Lian, Jie; Liu, Lin; Liang, Meng; Zhu, Tao; Sun, Fei

    2015-01-01

    Tamoxifen represents a major adjuvant therapy to those patients with estrogen receptor-alpha positive breast cancer. However, tamoxifen resistance occurs quite often, either de novo or acquired during treatment. To investigate the role of miR-320a in the development of resistance to tamoxifen, we established tamoxifen-resistant (TamR) models by continually exposing MCF-7 or T47D breast cancer cells to tamoxifen, and identified microRNA(miRNA)-320a as a down-regulated miRNA in tamoxifen resistant cells. Re-expression of miR-320a was sufficient to sensitize TamR cells to tamoxifen by targeting cAMP-regulated phosphoprotein (ARPP-19) and estrogen-related receptor gamma (ERRγ) as well as their downstream effectors, c-Myc and Cyclin D1. Furthermore, progesterone (P4) promoted the expression of miR-320a by repressing c-Myc expression, while estrogen (E2) exerted the opposite effect. These results suggest the potential therapeutic approach for tamoxifen-resistant breast cancer by restorating miR-320a expression or depleting ARPP-19/ERRγ expression. PMID:25736597

  8. Roles of the ER-α36-EGFR/HER2 positive regulatory loops in tamoxifen resistance.

    PubMed

    Yin, Li; Wang, Zhao-Yi

    2016-07-01

    Tamoxifen provided a successful treatment for ER-positive breast cancer for the past four decades. However, most breast tumors are eventually resistant to tamoxifen therapy. Extensive researches were conducted to understand the molecular mechanisms involved in tamoxifen resistance, and have revealed that multiple signaling molecules and pathways such as EGFR and HER2 are involved in tamoxifen resistance. Currently, the mechanisms by which tamoxifen sensitive breast cancer cells acquire these signaling pathways and develop tamoxifen resistance have not been elucidated. The identification of ER-α36, a variant of ER-α, that is able to mediate agonist activity of tamoxifen provided great insights into the underlying mechanisms of tamoxifen resistance. In this review, we will discuss the biological function and the possible underlying mechanisms of ER-α36 in tamoxifen resistance and specifically illustrate a novel cross-talk mechanism; positive regulatory loops between the ER-α36 and EGFR/HER2 in tamoxifen resistance. The function and the underlying mechanisms of ER-α36 in tamoxifen resistance of the breast cancer stem/progenitor cells will also be discussed. Finally, we will postulate a novel approach to restore tamoxifen sensitivity in tamoxifen resistant breast cancer cells. PMID:26884313

  9. Evaluation of interacellular tamoxifen-induced fluorescence in tamoxifen-resistant human breast adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Bachmann, Nathalie; Barberi-Heyob, Muriel; Gramain, Marie-Pierre; Bour, Corinne; Marchal, Sophie; Parache, Robert M.; Guillemin, Francois H.; Merlin, Jean-Louis

    1997-12-01

    A tamoxifen resistant cell line (MCF7TAM) was established from tamoxifen sensitive MCF-7 human adenocarcinoma cells expressing estrogen receptors. The resistant cell line was found to express estrogen receptors to similar level as the parent cell line but the receptors were found to be altered, having lost their ability to bind estradiol or tamoxifen. The fluorescence of eosin-tamoxifen ionic association was used to investigate intracellular location of tamoxifen in both sensitive and resistant cell lines. Fluorescence emission spectra of eosin, tamoxifen and eosin-tamoxifen complex ((lambda) exc equals 480 nm) were analyzed and showed that maximal fluorescence intensity of the complex ((lambda) em equals 540 nm) was four times higher than that of eosin alone while tamoxifen alone did not emit any fluorescence in this spectral range. In MCF-7 cells, tamoxifen was found to be diffusively located in the cytoplasm and nuclear fluorescence intensity was significantly lower. No difference was observed in fluorescence intensity or location in tamoxifen resistant cells, although it has been previously correlated with clinical responsiveness. Improvement of this fluorescence microscopy methodology appears necessary to provide accurate results taking into account the complexity of tamoxifen resistance molecular pathways.

  10. High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy

    PubMed Central

    Gonzalez-Malerva, Laura; Park, Jaehong; Zou, Lihua; Hu, Yanhui; Moradpour, Zahra; Pearlberg, Joseph; Sawyer, Jacqueline; Stevens, Hallam; Harlow, Ed; LaBaer, Joshua

    2011-01-01

    Resistance to tamoxifen in breast cancer patients is a serious therapeutic problem and major efforts are underway to understand underlying mechanisms. Resistance can be either intrinsic or acquired. We derived a series of subcloned MCF7 cell lines that were either highly sensitive or naturally resistant to tamoxifen and studied the factors that lead to drug resistance. Gene-expression studies revealed a signature of 67 genes that differentially respond to tamoxifen in sensitive vs. resistant subclones, which also predicts disease-free survival in tamoxifen-treated patients. High-throughput cell-based screens, in which >500 human kinases were independently ectopically expressed, identified 31 kinases that conferred drug resistance on sensitive cells. One of these, HSPB8, was also in the expression signature and, by itself, predicted poor clinical outcome in one cohort of patients. Further studies revealed that HSPB8 protected MCF7 cells from tamoxifen and blocked autophagy. Moreover, silencing HSBP8 induced autophagy and caused cell death. Tamoxifen itself induced autophagy in sensitive cells but not in resistant ones, and tamoxifen-resistant cells were sensitive to the induction of autophagy by other drugs. These results may point to an important role for autophagy in the sensitivity to tamoxifen. PMID:21233418

  11. Reprogramming of the ERRα and ERα target gene landscape triggers tamoxifen resistance in breast cancer.

    PubMed

    Thewes, Verena; Simon, Ronald; Schroeter, Petra; Schlotter, Magdalena; Anzeneder, Tobias; Büttner, Reinhard; Benes, Vladimir; Sauter, Guido; Burwinkel, Barbara; Nicholson, Robert I; Sinn, Hans-Peter; Schneeweiss, Andreas; Deuschle, Ulrich; Zapatka, Marc; Heck, Stefanie; Lichter, Peter

    2015-02-15

    Endocrine treatment regimens for breast cancer that target the estrogen receptor-α (ERα) are effective, but acquired resistance remains a limiting drawback. One mechanism of acquired resistance that has been hypothesized is functional substitution of the orphan receptor estrogen-related receptor-α (ERRα) for ERα. To examine this hypothesis, we analyzed ERRα and ERα in recurrent tamoxifen-resistant breast tumors and conducted a genome-wide target gene profiling analysis of MCF-7 breast cancer cell populations that were sensitive or resistant to tamoxifen treatment. This analysis uncovered a global redirection in the target genes controlled by ERα, ERRα, and their coactivator AIB1, defining a novel set of target genes in tamoxifen-resistant cells. Beyond differences in the ERα and ERRα target gene repertoires, both factors were engaged in similar pathobiologic processes relevant to acquired resistance. Functional analyses confirmed a requirement for ERRα in tamoxifen- and fulvestrant-resistant MCF-7 cells, with pharmacologic inhibition of ERRα sufficient to partly restore sensitivity to antiestrogens. In clinical specimens (n = 1041), increased expression of ERRα was associated with enhanced proliferation and aggressive disease parameters, including increased levels of p53 in ERα-positive cases. In addition, increased ERRα expression was linked to reduced overall survival in independent tamoxifen-treated patient cohorts. Taken together, our results suggest that ERα and ERRα cooperate to promote endocrine resistance, and they provide a rationale for the exploration of ERRα as a candidate drug target to treat endocrine-resistant breast cancer. PMID:25643697

  12. Minireview: The Link Between ERα Corepressors and Histone Deacetylases in Tamoxifen Resistance in Breast Cancer.

    PubMed

    Légaré, Stéphanie; Basik, Mark

    2016-09-01

    Approximately 70% of breast cancers express the estrogen receptor (ER)α and are treated with the ERα antagonist, tamoxifen. However, resistance to tamoxifen frequently develops in advanced breast cancer, in part due to a down-regulation of ERα corepressors. Nuclear receptor corepressors function by attenuating hormone responses and have been shown to potentiate tamoxifen action in various biological systems. Recent genomic data on breast cancers has revealed that genetic and/or genomic events target ERα corepressors in the majority of breast tumors, suggesting that the loss of nuclear receptor corepressor activity may represent an important mechanism that contributes to intrinsic and acquired tamoxifen resistance. Here, the biological functions of ERα corepressors are critically reviewed to elucidate their role in modifying endocrine sensitivity in breast cancer. We highlight a mechanism of gene repression common to corepressors previously shown to enhance the antitumorigenic effects of tamoxifen, which involves the recruitment of histone deacetylases (HDACs) to DNA. As an indicator of epigenetic disequilibrium, the loss of ERα corepressors may predispose cancer cells to the cytotoxic effects of HDAC inhibitors, a class of drug that has been shown to effectively reverse tamoxifen resistance in numerous studies. HDAC inhibition thus appears as a promising therapeutic approach that deserves to be further explored as an avenue to restore drug sensitivity in corepressor-deficient and tamoxifen-resistant breast cancers. PMID:27581354

  13. Estrogen receptor mutations in tamoxifen-resistant breast cancer.

    PubMed

    Karnik, P S; Kulkarni, S; Liu, X P; Budd, G T; Bukowski, R M

    1994-01-15

    Clinical resistance to antiestrogens like tamoxifen is a major problem in the treatment of hormone-dependent breast cancers. Since the estrogen receptor plays a central role in mediating the effects of estrogens and antiestrogens, we hypothesized that mutations in the estrogen receptor could be one mechanism by which breast tumors evolve from a hormone-dependent to a hormone-independent phenotype. The eight exons of the estrogen receptor complementary DNA from 20 tamoxifen-resistant and 20 tamoxifen-sensitive tumors were screened by Single Strand Conformation Polymorphism (SSCP), and the variant conformers were sequenced to identify the nucleotide changes. A 42-base pair replacement was found in exon 6 of a tamoxifen-resistant tumor. A single base pair deletion in exon 6 of a tamoxifen-resistant metastatic tumor but not in the primary tumor was detected in another case. If translated, both these mutations could generate truncated receptors with an intact DNA-binding domain and a defective hormone-binding domain that could constitutively activate transcription of previously estrogen-responsive genes. The remaining 18 of 20 tamoxifen-resistant tumors did not contain mutations in any of the 8 exons of the estrogen receptor complementary DNA. These results suggest that mutations in the estrogen receptor occur at a low frequency and do not account for most estrogen-independent, tamoxifen-resistant breast tumors. PMID:8275466

  14. Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth.

    PubMed

    Catalano, Stefania; Giordano, Cinzia; Panza, Salvatore; Chemi, Francesca; Bonofiglio, Daniela; Lanzino, Marilena; Rizza, Pietro; Romeo, Francesco; Fuqua, Suzanne A W; Maggiolini, Marcello; Andò, Sebastiano; Barone, Ines

    2014-07-01

    Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Aromatase inhibitors are effective in women who progressed or recurred on tamoxifen, suggesting a role of local estrogen production by aromatase in driving tamoxifen-resistant phenotype. However, the link between aromatase activity and tamoxifen resistance has not yet been reported. We investigated whether long-term tamoxifen exposure may affect aromatase activity and/or expression, which may then sustain tamoxifen-resistant breast cancer cell growth. We employed MCF-7 breast cancer cells, tamoxifen-resistant MCF-7 cells (MCF-7 TR1 and TR2), SKBR-3 breast cancer cells, cancer-associated fibroblasts (CAFs1 and CAFs2). We used tritiated-water release assay, realtime-RT-PCR, and immunoblotting analysis for evaluating aromatase activity and expression; anchorage-independent assays for growth; reporter-gene, electrophoretic-mobility-shift, and chromatin-immunoprecipitation assays for promoter activity studies. We demonstrated an increased aromatase activity and expression, which supports proliferation in tamoxifen-resistant breast cancer cells. This is mediated by the G-protein-coupled receptor GPR30/GPER, since knocking-down GPER expression or treatment with a GPER antagonist reversed the enhanced aromatase levels induced by long-term tamoxifen exposure. The molecular mechanism was investigated in ER-negative, GPER/aromatase-positive SKBR3 cells, in which tamoxifen acts as a GPER agonist. Tamoxifen treatment increased aromatase promoter activity through an enhanced recruitment of c-fos/c-jun complex to AP-1 responsive elements located within the promoter region. As tamoxifen via GPER induced aromatase expression also in CAFs, this pathway may be involved in promoting aggressive behavior of breast tumors in response to tamoxifen treatment. Blocking estrogen production and/or GPER signaling activation may represent a valid option to overcome tamoxifen-resistance in breast cancers. PMID

  15. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance

    PubMed Central

    Bekele, Raie T.; Venkatraman, Ganesh; Liu, Rong-Zong; Tang, Xiaoyun; Mi, Si; Benesch, Matthew G. K.; Mackey, John R.; Godbout, Roseline; Curtis, Jonathan M.; McMullen, Todd P. W.; Brindley, David N.

    2016-01-01

    Tamoxifen is the accepted therapy for patients with estrogen receptor-α (ERα)-positive breast cancer. However, clinical resistance to tamoxifen, as demonstrated by recurrence or progression on therapy, is frequent and precedes death from metastases. To improve breast cancer treatment it is vital to understand the mechanisms that result in tamoxifen resistance. This study shows that concentrations of tamoxifen and its metabolites, which accumulate in tumors of patients, killed both ERα-positive and ERα-negative breast cancer cells. This depended on oxidative damage and anti-oxidants rescued the cancer cells from tamoxifen-induced apoptosis. Breast cancer cells responded to tamoxifen-induced oxidation by increasing Nrf2 expression and subsequent activation of the anti-oxidant response element (ARE). This increased the transcription of anti-oxidant genes and multidrug resistance transporters. As a result, breast cancer cells are able to destroy or export toxic oxidation products leading to increased survival from tamoxifen-induced oxidative damage. These responses in cancer cells also occur in breast tumors of tamoxifen-treated mice. Additionally, high levels of expression of Nrf2, ABCC1, ABCC3 plus NAD(P)H dehydrogenase quinone-1 in breast tumors of patients at the time of diagnosis were prognostic of poor survival after tamoxifen therapy. Therefore, overcoming tamoxifen-induced activation of the ARE could increase the efficacy of tamoxifen in treating breast cancer. PMID:26883574

  16. Leishmania is not prone to develop resistance to tamoxifen

    PubMed Central

    Coelho, Adriano C.; Trinconi, Cristiana T.; Senra, Luisa; Yokoyama-Yasunaka, Jenicer K.U.; Uliana, Silvia R.B.

    2015-01-01

    Tamoxifen, an antineoplastic agent, is active in vitro and in vivo against the parasitic protozoa Leishmania. As part of our efforts to unravel this drug's mechanisms of action against the parasite and understand how resistance could arise, we tried to select tamoxifen-resistant Leishmania amazonensis. Three different strategies to generate tamoxifen resistant mutants were used: stepwise increase in drug concentration applied to promastigote cultures, chemical mutagenesis followed by drug selection and treatment of infected mice followed by selection of amastigotes. For amastigote selection, we employed a method with direct plating of parasites recovered from lesions into semi-solid media. Tamoxifen resistant parasites were not rescued by any of these methods. Miltefosine was used as a control in selection experiments and both stepwise selection and chemical mutagenesis allowed successful isolation of miltefosine resistant mutants. These findings are consistent with a multi-target mode of action to explain tamoxifen's leishmanicidal properties. Considering that drug resistance is a major concern in anti-parasitic chemotherapy, these findings support the proposition of using tamoxifen as a partner in drug combination schemes for the treatment of leishmaniasis. PMID:26150922

  17. Changes in epidermal growth factor receptor expression and response to ligand associated with acquired tamoxifen resistance or oestrogen independence in the ZR-75-1 human breast cancer cell line.

    PubMed Central

    Long, B.; McKibben, B. M.; Lynch, M.; van den Berg, H. W.

    1992-01-01

    We have examined the expression of receptors for epidermal growth factor (EGFR) by the ZR-75-1 human breast cancer cell line and tamoxifen resistant (ZR-75-9al 8 microM) and oestrogen independent/tamoxifen sensitive (ZR-PR-LT) variants. The parent line expressed a single class of high affinity binding sites (4,340 +/- 460 receptors/cell; Kd 0.23 +/- 0.04 nM). ZR-75-9al 8 microM cells, routinely maintained in medium containing 8 microM tamoxifen, were negative for oestrogen receptor (ER) and progesterone receptor (PGR) and expressed a markedly increased number of EGFR (14,723 +/- 2116 receptors/cell). Receptor affinity was unchanged. Time dependent reversal of the tamoxifen resistant phenotype was accompanied by a return to ER and PGR positivity and a fall in EGFR numbers to parent cell levels. In contrast ZR-PR-LT cells had a greatly reduced EGFR content (803 +/- 161 receptors/cell) accompanying elevated PGR numbers. Pre-treatment of these cells with suramin or mild acid stripping failed to expose receptors which may have been occupied by endogenously produced ligand. Increased proliferation of ZR-75-1 cells treated with EGFR (0.01-10 ng ml-1) was only observed in serum-free medium lacking insulin and oestradiol. Under these conditions untreated cells failed to proliferate. Both variant lines continued to proliferate in serum free medium in the absence or presence of insulin and oestradiol but failed to respond to exogenous EGF. PMID:1616857

  18. Sorafenib and nilotinib resensitize tamoxifen resistant breast cancer cells to tamoxifen treatment via estrogen receptor α.

    PubMed

    Pedersen, Astrid M; Thrane, Susan; Lykkesfeldt, Anne E; Yde, Christina W

    2014-11-01

    Tamoxifen‑resistant breast cancer is a major clinical problem and new treatment strategies are highly warranted. In this study, the multitargeting kinase inhibitors sorafenib and nilotinib were investigated as potential new treatment options for tamoxifen‑resistant breast cancer. The two compounds inhibited cell growth, reduced expression of total estrogen receptor α (ER), Ser118-phosphorylated ER, FOXA1 and AIB1 and resensitized tamoxifen‑resistant cells to tamoxifen. The ER downmodulator fulvestrant exerted strong growth inhibition of tamoxifen‑resistant cells and addition of sorafenib and nilotinib could not further suppress growth, showing that sorafenib and nilotinib exerted growth inhibition via ER. In support of this, estradiol prevented sorafenib and nilotinib mediated growth inhibition. These results demonstrate that sorafenib and nilotinib act via ER and ER-associated proteins, indicating that these kinase inhibitors in combination with tamoxifen may be potential new treatments for tamoxifen‑resistant breast cancer. PMID:25175082

  19. Identification of a Putative Protein Profile Associated with Tamoxifen Therapy Resistance in Breast Cancer*S⃞

    PubMed Central

    Umar, Arzu; Kang, Hyuk; Timmermans, Annemieke M.; Look, Maxime P.; Meijer-van Gelder, Marion E.; den Bakker, Michael A.; Jaitly, Navdeep; Martens, John W. M.; Luider, Theo M.; Foekens, John A.; Paša-Tolić, Ljiljana

    2009-01-01

    Tamoxifen resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that are associated with tamoxifen resistance is a first step toward better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy resistance in breast cancer using nano-LC coupled with FTICR MS. Comparative proteome analysis was performed on ∼5,500 pooled tumor cells (corresponding to ∼550 ng of protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data sets (n = 24 and n = 27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag reference databases. A total of 17,263 unique peptides were identified that corresponded to 2,556 non-redundant proteins identified with ≥2 peptides. 1,713 overlapping proteins between the two data sets were used for further analysis. Comparative proteome analysis revealed 100 putatively differentially abundant proteins between tamoxifen-sensitive and tamoxifen-resistant tumors. The presence and relative abundance for 47 differentially abundant proteins were verified by targeted nano-LC-MS/MS in a selection of unpooled, non-microdissected discovery set tumor tissue extracts. ENPP1, EIF3E, and GNB4 were significantly associated with progression-free survival upon tamoxifen treatment for recurrent disease. Differential abundance of our top discriminating protein, extracellular matrix metalloproteinase inducer, was validated by tissue microarray in an independent patient cohort (n = 156). Extracellular matrix metalloproteinase inducer levels were higher in therapy-resistant

  20. Tamoxifen

    MedlinePlus

    ... the disease due to their age, personal medical history, and family medical history.Tamoxifen is in a class of medications known ... the fetus.tell your doctor if you are breast-feeding. You should not breastfeed during your treatment with ...

  1. Tamoxifen stimulates in vivo growth of drug-resistant estrogen receptor-negative breast cancer.

    PubMed

    Maenpaa, J; Wiebe, V; Koester, S; Wurz, G; Emshoff, V; Seymour, R; Sipila, P; DeGregorio, M

    1993-01-01

    An estrogen receptor-negative, multidrug-resistant MDA-MB-A1 human breast cancer cell line was grown in culture with and without a noninhibitory concentration (0.5 microM) of tamoxifen for 122 days. Tamoxifen-treated and control cells were inoculated into opposite flanks of nine nude mice, where they produced measurable tumors in every case. Six of the animals were treated with tamoxifen at 500 micrograms/day for 22 days. Although no inhibitory nor stimulatory effect of tamoxifen was seen in vitro, tamoxifen had a clear tumor-growth-stimulating effect in mice. The most pronounced stimulatory effects were observed in the cells that had been cultured with tamoxifen. Within 3 weeks of the start of tamoxifen therapy, the cells grown in the presence of tamoxifen produced tumors with a mean size of 380 mm2, whereas the cells not pretreated with tamoxifen had tumors of 220 mm2. In contrast, in mice not receiving tamoxifen, the sizes of the tumors were 190 and 140 mm2, respectively. These preliminary results suggest that prolonged in vitro tamoxifen exposure induces cellular changes that result in tumors that are stimulated to grow faster in mice following tamoxifen treatment. PMID:8339392

  2. Comparison of tamoxifen and letrozole response in mammary preneoplasia of ER and aromatase overexpressing mice defines an immune-associated gene signature linked to tamoxifen resistance.

    PubMed

    Dabydeen, Sarah A; Kang, Keunsoo; Díaz-Cruz, Edgar S; Alamri, Ahmad; Axelrod, Margaret L; Bouker, Kerrie B; Al-Kharboosh, Rawan; Clarke, Robert; Hennighausen, Lothar; Furth, Priscilla A

    2015-01-01

    Response to breast cancer chemoprevention can depend upon host genetic makeup and initiating events leading up to preneoplasia. Increased expression of aromatase and estrogen receptor (ER) is found in conjunction with breast cancer. To investigate response or resistance to endocrine therapy, mice with targeted overexpression of Esr1 or CYP19A1 to mammary epithelial cells were employed, representing two direct pathophysiological interventions in estrogen pathway signaling. Both Esr1 and CYP19A1 overexpressing mice responded to letrozole with reduced hyperplastic alveolar nodule prevalence and decreased mammary epithelial cell proliferation. CYP19A1 overexpressing mice were tamoxifen sensitive but Esr1 overexpressing mice were tamoxifen resistant. Increased ER expression occurred with tamoxifen resistance but no consistent changes in progesterone receptor, pSTAT3, pSTAT5, cyclin D1 or cyclin E levels in association with response or resistance were found. RNA-sequencing (RNA-seq) was employed to seek a transcriptome predictive of tamoxifen resistance using these models and a second tamoxifen-resistant model, BRCA1 deficient/Trp53 haploinsufficient mice. Sixty-eight genes associated with immune system processing were upregulated in tamoxifen-resistant Esr1- and Brca1-deficient mice, whereas genes related to aromatic compound metabolic process were upregulated in tamoxifen-sensitive CYP19A1 mice. Interferon regulatory factor 7 was identified as a key transcription factor regulating these 68 immune processing genes. Two loci encoding novel transcripts with high homology to human immunoglobulin lambda-like polypeptide 1 were uniquely upregulated in the tamoxifen-resistant models. Letrozole proved to be a successful alternative to tamoxifen. Further study of transcriptional changes associated with tamoxifen resistance including immune-related genes could expand our mechanistic understanding and lead to biomarkers predictive of escape or response to endocrine therapies

  3. Differential Response to α-Oxoaldehydes in Tamoxifen Resistant MCF-7 Breast Cancer Cells

    PubMed Central

    Nass, Norbert; Brömme, Hans-Jürgen; Hartig, Roland; Korkmaz, Sevil; Sel, Saadettin; Hirche, Frank; Ward, Aoife; Simm, Andreas; Wiemann, Stefan; Lykkesfeldt, Anne E.; Roessner, Albert; Kalinski, Thomas

    2014-01-01

    Tamoxifen is the standard adjuvant endocrine therapy for estrogen-receptor positive premenopausal breast cancer patients. However, tamoxifen resistance is frequently observed under therapy. A tamoxifen resistant cell line has been generated from the estrogen receptor positive mamma carcinoma cell line MCF-7 and was analyzed for putative differences in the aldehyde defence system and accumulation of advanced glycation end products (AGE). In comparison to wt MCF-7 cells, these tamoxifen resistant cells were more sensitive to the dicarbonyl compounds glyoxal and methylglyoxal and displayed increased caspase activity, p38-MAPK- and IκBα-phosphorylation. However, mRNA accumulation of the aldehyde- and AGE-defence enzymes glyoxalase-1 and -2 (GLO1, GLO2) as well as fructosamine-3-kinase (FN3K) was not significantly altered. Tamoxifen resistant cells contained less free sulfhydryl-groups (glutathione) suggesting that the increased sensitivity towards the dicarbonyls was due to a higher sensitivity towards reactive oxygen species which are associated with dicarbonyl stress. To further analyse, if these data are of more general importance, key experiments were replicated with tamoxifen resistant MCF-7 cell lines from two independent sources. These cell lines were also more sensitive to aldehydes, especially glyoxal, but were different in their cellular signalling responses to the aldehydes. In conclusion, glyoxalases and other aldehyde defence enzymes might represent a promising target for the therapy of tamoxifen resistant breast cancers. PMID:24983248

  4. USP9X downregulation renders breast cancer cells resistant to tamoxifen.

    PubMed

    Oosterkamp, Hendrika M; Hijmans, E Marielle; Brummelkamp, Thijn R; Canisius, Sander; Wessels, Lodewyk F A; Zwart, Wilbert; Bernards, René

    2014-07-15

    Tamoxifen is one of the most widely used endocrine agents for the treatment of estrogen receptor α (ERα)-positive breast cancer. Although effective in most patients, resistance to tamoxifen is a clinically significant problem and the mechanisms responsible remain elusive. To address this problem, we performed a large scale loss-of-function genetic screen in ZR-75-1 luminal breast cancer cells to identify candidate resistance genes. In this manner, we found that loss of function in the deubiquitinase USP9X prevented proliferation arrest by tamoxifen, but not by the ER downregulator fulvestrant. RNAi-mediated attenuation of USP9X was sufficient to stabilize ERα on chromatin in the presence of tamoxifen, causing a global tamoxifen-driven activation of ERα-responsive genes. Using a gene signature defined by their differential expression after USP9X attenuation in the presence of tamoxifen, we were able to define patients with ERα-positive breast cancer experiencing a poor outcome after adjuvant treatment with tamoxifen. The signature was specific in its lack of correlation with survival in patients with breast cancer who did not receive endocrine therapy. Overall, our findings identify a gene signature as a candidate biomarker of response to tamoxifen in breast cancer. PMID:25028367

  5. COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR

    PubMed Central

    Lu, Renquan; Hu, Xiaobo; Zhou, Junmei; Sun, Jiajun; Zhu, Alan Z.; Xu, Xiaofeng; Zheng, Hui; Gao, Xiang; Wang, Xian; Jin, Hongchuan; Zhu, Ping; Guo, Lin

    2016-01-01

    Oestrogen receptor α (ERα) antagonists are used in endocrine therapies for ERα-positive (ERα+) breast cancer patients. Unfortunately the clinical benefit is limited due to intrinsic and acquired drug resistance. Here using integrated genomic and functional studies, we report that amplification and/or overexpression of COPS5 (CSN5/JAB1) confers resistance to tamoxifen. Amplification and overexpression of COPS5, a catalytic subunit of the COP9 complex, is present in about 9% of the ERα+ primary breast cancer and more frequently (86.7%, 26/30) in tamoxifen-refractory tumours. Overexpression of COPS5, through its isopeptidase activity, leads to ubiquitination and proteasome-mediated degradation of NCoR, a key corepressor for ERα and tamoxifen-mediated suppression of ERα target genes. Importantly, COPS5 overexpression causes tamoxifen-resistance in preclinical breast cancer models in vitro and in vivo. We also demonstrate that genetic inhibition of the isopeptidase activity of COPS5 is sufficient to re-sensitize the resistant breast cancer cells to tamoxifen-treatment, offering a potential therapeutic approach for endocrine-resistant breast cancer patients. PMID:27375289

  6. MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers

    PubMed Central

    Mohseni, Morassa; Cidado, Justin; Croessmann, Sarah; Cravero, Karen; Cimino-Mathews, Ashley; Wong, Hong Yuen; Scharpf, Rob; Zabransky, Daniel J.; Abukhdeir, Abde M.; Garay, Joseph P.; Wang, Grace M.; Beaver, Julia A.; Cochran, Rory L.; Blair, Brian G.; Rosen, D. Marc; Erlanger, Bracha; Argani, Pedram; Hurley, Paula J.; Lauring, Josh; Park, Ben Ho

    2014-01-01

    Tamoxifen is effective for treating estrogen receptor-alpha (ER) positive breast cancers. However, few molecular mediators of tamoxifen resistance have been elucidated. Here we describe a previously unidentified gene, MACROD2 that confers tamoxifen resistance and estrogen independent growth. We found MACROD2 is amplified and overexpressed in metastatic tamoxifen-resistant tumors. Transgene overexpression of MACROD2 in breast cancer cell lines results in tamoxifen resistance, whereas RNAi-mediated gene knock down reverses this phenotype. MACROD2 overexpression also leads to estrogen independent growth in xenograft assays. Mechanistically, MACROD2 increases p300 binding to estrogen response elements in a subset of ER regulated genes. Primary breast cancers and matched metastases demonstrate MACROD2 expression can change with disease evolution, and increased expression and amplification of MACROD2 in primary tumors is associated with worse overall survival. These studies establish MACROD2 as a key mediator of estrogen independent growth and tamoxifen resistance, as well as a potential novel target for diagnostics and therapy. PMID:25422431

  7. Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells

    PubMed Central

    Woo, Yu Mi; Shin, Yubin; Lee, Eun Ji; Lee, Sunyoung; Jeong, Seung Hun; Kong, Hyun Kyung; Park, Eun Young; Kim, Hyoung Kyu; Han, Jin; Chang, Minsun; Park, Jong-Hoon

    2015-01-01

    Tamoxifen resistance is often observed in the majority of estrogen receptor–positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9—tamoxifen-resistant human breast cancer cell lines derived from MCF7— are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O2-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer. PMID:26158266

  8. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells.

    PubMed

    Radde, Brandie N; Ivanova, Margarita M; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P; Muluhngwi, Penn; Kalbfleisch, Ted S; Rouchka, Eric C; Hill, Bradford G; Klinge, Carolyn M

    2016-09-10

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. PMID:27515002

  9. MiR-27b is epigenetically downregulated in tamoxifen resistant breast cancer cells due to promoter methylation and regulates tamoxifen sensitivity by targeting HMGB3.

    PubMed

    Li, Xiunan; Wu, Yumei; Liu, Aihui; Tang, Xin

    2016-09-01

    MiR-27b downregulation is significantly associated with tamoxifen resistance in breast cancer cells. However, how it is downregulated in tamoxifen resistant (TamR) breast cancer cells and its downstream regulation were not clear. By performing MSP assay and QRT-PCR analysis with the use of 5-AZA-dC, a DNA methyltransferase inhibitor, we observed that TamR MCF-7 cells had significantly higher levels of methylation in the miR-27b promoter region than tamoxifen sensitive MCF-7 (TamS) cells and demethylation restored miR-27b expression. Re-expression of miR-27b sensitized TamR MCF-7 cells to tamoxifen, inhibited invasion and reversed epithelial-mesenchymal transition (EMT)-like properties. By using bioinformatics analysis and following dual luciferase and western blot analysis, this study confirmed a direct regulation of miR-27b on HMGB3 expression by binding to the 3'UTR. In addition, this study also found that silencing of HMGB3 indeed partially phenocopied the effects of miR-27b in reducing tamoxifen resistance and cell invasion and in reversing EMT-like properties. Therefore, we infer that HMGB3 is a functional target of miR-27b in modulation of tamoxifen resistance and EMT. PMID:27363334

  10. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields

    SciTech Connect

    Girgert, Rainer . E-mail: rainer.girgert@med.uni-goettingen.de; Schimming, Hartmut; Koerner, Wolfgang; Gruendker, Carsten; Hanf, Volker

    2005-11-04

    The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50 Hz electromagnetic fields and IC{sub 50} values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2 {mu}T was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.

  11. Development and characterization of a tamoxifen-resistant breast carcinoma xenograft.

    PubMed

    Naundorf, H; Becker, M; Lykkesfeldt, A E; Elbe, B; Neumann, C; Büttner, B; Fichtner, I

    2000-06-01

    A human tamoxifen-resistant mammary carcinoma, MaCa 3366/TAM, originating from a sensitive parental xenograft 3366 was successfully established by treatment of tumour-bearing nude mice with 1-50 mg kg(-1) tamoxifen for 3 years during routine passaging. Both tumours did not differ significantly in OR- and PR-positivity, however, when compared with the sensitive tumour line, the mean OR content of the TAM-resistant subline is slightly lower. An OR-upregulation following withdrawal of oestradiol treatment was observed in the parental tumours but not in the resistant xenografts. Following long-term treatment with tamoxifen, the histological pattern of the breast carcinoma changed. The more differentiated structures being apparent after treatment with 17beta-oestradiol in the original 3366 tumour were not induced in the resistant line. Tamoxifen failed to induce a tumour growth inhibition in comparison to the tamoxifen-sensitive line. The pure anti-oestrogen, ICI 182 780, revealed cross-resistance. Sequence analysis of the hormone-binding domain of the OR of both lines showed no differences, suggesting that either mutations in other regions of the OR are involved in the TAM-resistance phenotype or that mechanisms outside of this protein induced this phenotype. Oestrogen and anti-oestrogen regulate pS2 and cathepsin D expression in 3366 tumours as in the human breast cancer cell line MCF-7. The resistant 3366/TAM tumours have lost this regulation. The established breast cancer xenografts 3366 and 3366/TAM offer the possibility of investigating mechanisms of anti-oestrogen resistance in an in vivo situation. They can be used to test novel approaches to prevent, or to overcome, this resistance in a clinically related manner. PMID:10839300

  12. A peptide derived from alpha-fetoprotein prevents the growth of estrogen-dependent human breast cancers sensitive and resistant to tamoxifen.

    PubMed

    Bennett, James A; Mesfin, Fassil B; Andersen, Thomas T; Gierthy, John F; Jacobson, Herbert I

    2002-02-19

    An 8-mer peptide (EMTOVNOG) derived from alpha-fetoprotein was compared with tamoxifen for activity against growth of human breast cancer xenografts implanted in immune-deficient mice. Both peptide and tamoxifen prevented growth of estrogen-receptor-positive MCF-7 and T47D human breast cancer xenografts. A subline of MCF-7, made resistant to tamoxifen by a 6-month exposure to this drug in culture, was found to be resistant to tamoxifen in vivo. Peptide completely prevented the xenograft growth of this tamoxifen-resistant subline of MCF-7. Neither peptide nor tamoxifen was effective in slowing the xenograft growth of the estrogen-receptor-negative MDA-MB-231 human breast cancer. A worrisome side effect of tamoxifen is its hypertrophic effect on the uterus. In this study, tamoxifen was shown to stimulate the growth of the immature mouse uterus in vivo, and the peptide significantly inhibited tamoxifen's uterotrophic effect. The mechanism of action of peptide is different from that of tamoxifen in that the peptide does not interfere with the binding of [(3)H]estradiol to the estrogen receptor. In conclusion, alpha-fetoprotein-derived peptide appears to be a novel agent that interferes with the growth of tamoxifen-sensitive as well as tamoxifen-resistant estrogen-receptor-positive human breast cancers; it inhibits the uterotrophic side effect of tamoxifen and, thus, it may be useful in combination with or in place of tamoxifen for treatment of estrogen-receptor-positive human breast cancers. PMID:11830647

  13. Intrinsic and acquired resistance mechanisms in enterococcus

    PubMed Central

    Hollenbeck, Brian L.; Rice, Louis B.

    2012-01-01

    Enterococci have the potential for resistance to virtually all clinically useful antibiotics. Their emergence as important nosocomial pathogens has coincided with increased expression of antimicrobial resistance by members of the genus. The mechanisms underlying antibiotic resistance in enterococci may be intrinsic to the species or acquired through mutation of intrinsic genes or horizontal exchange of genetic material encoding resistance determinants. This paper reviews the antibiotic resistance mechanisms in Enterococcus faecium and Enterococcus faecalis and discusses treatment options. PMID:23076243

  14. Phosphorylated p-70S6K predicts tamoxifen resistance in postmenopausal breast cancer patients randomized between adjuvant tamoxifen versus no systemic treatment

    PubMed Central

    2014-01-01

    Introduction Activation of the phosphatidylinositol-3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) pathways results in anti-estrogen resistance in vitro, but a biomarker with clinical validity to predict intrinsic resistance has not been identified. In metastatic breast cancer patients with previous exposure to endocrine therapy, the addition of a mammalian target of rapamycine (mTOR) inhibitor has been shown to be beneficial. Whether or not patients on adjuvant endocrine treatment might benefit from these drugs is currently unclear. A biomarker that predicts intrinsic resistance could potentially be used as companion diagnostic in this setting. We tested the clinical validity of different downstream-activated proteins in the PI3K and/or MAPK pathways to predict intrinsic tamoxifen resistance in postmenopausal primary breast cancer patients. Methods We recollected primary tumor tissue from patients who participated in a randomized trial of adjuvant tamoxifen (1–3 years) versus observation. After constructing a tissue micro-array, cores from 563 estrogen receptor α positive were immunostained for p-AKT(Thr308), p-AKT(Ser473), p-mTOR, p-p706SK and p-ERK1/2. Cox proportional hazard models for recurrence free interval were used to assess hazard ratios and interactions between these markers and tamoxifen treatment efficacy. Results Interactions were identified between tamoxifen and p-AKT(Thr308), p-mTOR, p-p70S6K and p-ERK1/2. Applying a conservative level of significance, p-p70S6K remained significantly associated with tamoxifen resistance. Patients with p-p70S6K negative tumors derived significant benefit from tamoxifen (HR 0.24, P < 0.0001), while patients whose tumor did express p-p70S6K did not (HR = 1.02, P =0.95), P for interaction 0.004. In systemically untreated breast cancer patients, p-p70S6K was associated with a decreased risk for recurrence. Conclusions Patients whose tumor expresses p-p70S6K, as a marker of downstream PI3K and

  15. Inhibition of β-Catenin to Overcome Endocrine Resistance in Tamoxifen-Resistant Breast Cancer Cell Line

    PubMed Central

    Won, Hye Sung; Lee, Kyung Mee; Oh, Ju Eon; Nam, Eun Mi; Lee, Kyoung Eun

    2016-01-01

    Background The β-catenin signaling is important in cell growth and differentiation and is frequently dysregulated in various cancers. The most well-known mechanism of endocrine resistance is cross-talk between the estrogen receptor (ER) and other growth factor signaling, such as phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway. In the present study, we investigated whether β-catenin could be a potential target to overcome endocrine resistance in breast cancer. Methods We established tamoxifen-resistant (TamR) cell line via long-term exposure of MCF-7 breast cancer cells to gradually increasing concentrations of tamoxifen. The levels of protein expression and mRNA transcripts were determined using western blot analysis and real-time quantitative PCR. The transcriptional activity of β-catenin was measured using luciferase activity assay. Results TamR cells showed a mesenchymal phenotype, and exhibited a relatively decreased expression of ER and increased expression of human epidermal growth factor receptor 2 and the epidermal growth factor receptor. We confirmed that the expression and transcriptional activity of β-catenin were increased in TamR cells compared with control cells. The expression and transcriptional activity of β-catenin were inhibited by β-catenin small-molecule inhibitor, ICG-001 or β-catenin siRNA. The viability of TamR cells, which showed no change after treatment with tamoxifen, was reduced by ICG-001 or β-catenin siRNA. The combination of ICG-001 and mTOR inhibitor, rapamycin, yielded an additive effect on the inhibition of viability in TamR cells. Conclusion These results suggest that β-catenin plays a role in tamoxifen-resistant breast cancer, and the inhibition of β-catenin may be a potential target in tamoxifen-resistant breast cancer. PMID:27196739

  16. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    PubMed

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth. PMID:26681208

  17. Decreased chicken ovalbumin upstream promoter transcription factor II expression in tamoxifen-resistant breast cancer cells.

    PubMed

    Riggs, Krista A; Wickramasinghe, Nalinie S; Cochrum, Renate K; Watts, Mary Beth; Klinge, Carolyn M

    2006-10-15

    Tamoxifen (TAM) is successfully used for the treatment and prevention of breast cancer. However, many patients that are initially TAM responsive develop tumors that are antiestrogen/TAM resistant (TAM-R). The mechanism behind TAM resistance in estrogen receptor alpha (ERalpha)-positive tumors is not understood. The orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor (COUP-TF)-I interacts directly with 4-hydroxytamoxifen (4-OHT)- and estradiol (E(2))-occupied ERalpha, corepressors NCoR and SMRT, and inhibit E(2)-induced gene transcription in breast cancer cells. Here we tested the hypothesis that reduced COUP-TFI and COUP-TFII correlate with TAM resistance. We report for the first time that COUP-TFII, but not COUP-TFI, is reduced in three antiestrogen/TAM-R cell lines derived from TAM-sensitive (TAM-S) MCF-7 human breast cancer cells and in MDA-MB-231 cells compared with MCF-7. ERalpha and ERbeta protein expression was not different between TAM-S and TAM-R cells, but progesterone receptor (PR) was decreased in TAM-R cells. Further, E(2) increased COUP-TFII transcription in MCF-7, but not TAM-R, cells. Importantly, reexpression of COUP-TFII in TAM-S cells to levels comparable to those in MCF-7 was shown to increase 4-OHT-mediated growth inhibition and increased apoptosis. Conversely, knockdown of COUP-TFII in TAM-S MCF-7 cells blocked growth inhibitory activity and increased 4-OHT agonist activity. 4-OHT increased COUP-TFII-ERalpha interaction approximately 2-fold in MCF-7 cells. COUP-TFII expression in TAM-R cells also inhibited 4-OHT-induced endogenous PR and pS2 mRNA expression. These data indicate that reduced COUP-TFII expression correlates with acquired TAM resistance in human breast cancer cell lines and that COUP-TFII plays a role in regulating the growth inhibitory activity of TAM in breast cancer cells. PMID:17047084

  18. Acquired Antibiotic Resistance Genes: An Overview

    PubMed Central

    van Hoek, Angela H. A. M.; Mevius, Dik; Guerra, Beatriz; Mullany, Peter; Roberts, Adam Paul; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria. PMID:22046172

  19. Acquired resistance to immunotherapy and future challenges.

    PubMed

    Restifo, Nicholas P; Smyth, Mark J; Snyder, Alexandra

    2016-02-01

    Advances in immunotherapy have resulted in remarkable clinical responses in some patients. However, one of the biggest challenges in cancer therapeutics is the development of resistant disease and disease progression on or after therapy. Given that many patients have now received various types of immunotherapy, we asked three scientists to give their views on the current evidence for whether acquired resistance to immunotherapy exists in patients and the future challenges posed by immunotherapy. PMID:26822578

  20. Natural and acquired macrolide resistance in mycobacteria.

    PubMed

    Doucet-Populaire, F; Buriánková, K; Weiser, J; Pernodet, J-L

    2002-12-01

    The genus Mycobacterium contains two of the most important human pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, the etiologic agents of tuberculosis and leprosy, respectively. Other mycobacteria are mostly saprophytic organisms, living in soil and water, but some of them can cause opportunistic infections. The increasing incidence of tuberculosis as well as infections with non-tuberculous mycobacteria (NTM) in AIDS patients has renewed interest in molecular mechanisms of drug resistance in these pathogens. Mycobacteria show a high degree of intrinsic resistance to most common antibiotics. For instance, species from the M. tuberculosis complex (MTC) are intrinsically resistant to macrolides. Nevertheless, some semi-synthetic macrolides as the erythromycin derivatives clarithromycin, azithromycin and most recently the ketolides, are active against NTM, particularly Mycobacterium avium, and some of them are widely used for infection treatment. However, shortly after the introduction of these new drugs, resistant strains appeared due to mutations in the macrolide target, the ribosome. The mycobacterial cell wall with its specific composition and structure is considered to be a major factor in promoting the natural resistance of mycobacteria to various antibiotics. However, to explain the difference in macrolide sensitivity between the MTC and NTM, the synergistic contribution of a specific resistance mechanism might be required, in addition to possible differences in cell wall permeability. This mini-review summarizes the current knowledge on the natural and acquired macrolide resistance in mycobacteria, gives an overview of potential mechanisms implicated in the intrinsic resistance and brings recent data concerning a macrolide resistance determinant in the MTC. PMID:12570741

  1. Identification of acquired antimicrobial resistance genes

    PubMed Central

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore; Vestergaard, Martin; Rasmussen, Simon; Lund, Ole; Aarestrup, Frank M.; Larsen, Mette Voldby

    2012-01-01

    Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data. Methods We developed a web-based method, ResFinder that uses BLAST for identification of acquired antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de-novo-sequenced isolates. Results When testing the 1862 GenBank files, the method identified the resistance genes with an ID = 100% (100% identity) to the genes in ResFinder. Agreement between in silico predictions and phenotypic testing was found when the method was further tested on 23 isolates of five different bacterial species, with available phenotypes. Furthermore, ResFinder was evaluated on WGS chromosomes and plasmids of 30 isolates. Seven of these isolates were annotated to have antimicrobial resistance, and in all cases, annotations were compatible with the ResFinder results. Conclusions A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created. ResFinder can be accessed at www.genomicepidemiology.org. ResFinder will continuously be updated as new resistance genes are identified. PMID:22782487

  2. Tetracycline resistance genes acquired at birth.

    PubMed

    Alicea-Serrano, Angela M; Contreras, Mónica; Magris, Magda; Hidalgo, Glida; Dominguez-Bello, Maria G

    2013-06-01

    Newborns acquire their first microbiota at birth. Maternal vaginal or skin bacteria colonize newborns delivered vaginally or by C-section, respectively (Dominguez-Bello et al. 2010 #884). We aimed to determine differences in the presence of four tetracycline (tet) resistance genes, in the microbes of ten newborns and in the mouth and vagina of their mothers, at the time of birth. DNA was amplified by PCR with primers specific for [tet(M), tet(O), tet(Q), and tet(W)]. Maternal vaginas harbored all four tet resistance genes, but most commonly tet(M) and tet(O) (63 and 38 %, respectively). Genes coding for tet resistance differed by birth mode, with 50 % of vaginally delivered babies had tet(M) and tet(O) and 16 and 13 % of infants born by C-section had tet(O) and tet(W), respectively. Newborns acquire antibiotic resistance genes at birth, and the resistance gene profile varies by mode of delivery. PMID:23483141

  3. Signal regulators of systemic acquired resistance

    PubMed Central

    Gao, Qing-Ming; Zhu, Shifeng; Kachroo, Pradeep; Kachroo, Aardra

    2015-01-01

    Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers. PMID:25918514

  4. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen

    SciTech Connect

    Blanquart, Christophe; Karouri, Salah-Eddine; Issad, Tarik

    2009-10-02

    The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.

  5. Amplification of Distant Estrogen Response Elements Deregulates Target Genes Associated with Tamoxifen Resistance in Breast Cancer

    PubMed Central

    Hsu, Pei-Yin; Hsu, Hang-Kai; Lan, Xun; Juan, Liran; Yan, Pearlly S.; Labanowska, Jadwiga; Heerema, Nyla; Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Chen, Yidong; Liu, Yunlong; Li, Lang; Li, Rong; Thompson, Ian M.; Nephew, Kenneth P.; Sharp, Zelton D.; Kirma, Nameer B.; Jin, Victor X.; Huang, Tim H.-M.

    2013-01-01

    SUMMARY A causal role of gene amplification in tumorigenesis is well-known, while amplification of DNA regulatory elements as an oncogenic driver remains unclear. In this study, we integrated next-generation sequencing approaches to map distant estrogen response elements (DEREs) that remotely control transcription of target genes through chromatin proximity. Two densely mapped DERE regions located on chromosomes 17q23 and 20q13 were frequently amplified in ERα-positive luminal breast cancer. These aberrantly amplified DEREs deregulated target gene expression potentially linked to cancer development and tamoxifen resistance. Progressive accumulation of DERE copies was observed in normal breast progenitor cells chronically exposed to estrogenic chemicals. These findings may extend to other DNA regulatory elements, the amplification of which can profoundly alter target transcriptome during tumorigenesis. PMID:23948299

  6. Role of endoplasmic reticulum stress induction by the plant toxin, persin, in overcoming resistance to the apoptotic effects of tamoxifen in human breast cancer cells

    PubMed Central

    McCloy, R A; Shelley, E J; Roberts, C G; Boslem, E; Biden, T J; Nicholson, R I; Gee, J M; Sutherland, R L; Musgrove, E A; Burgess, A; Butt, A J

    2013-01-01

    Background: Persin is a plant toxin that displays synergistic cytotoxicity with tamoxifen in human breast cancer cell lines. Here, we examined the ability of persin to circumvent tamoxifen resistance and delineated the intracellular signalling pathways involved. Methods: The induction of apoptosis in tamoxifen-resistant and -sensitive breast cancer cells was measured by flow cytometry following treatment with persin±tamoxifen. Markers of endoplasmic reticulum stress (ERS) were analysed following treatment, and their causal role in mediating persin-induced apoptosis was determined using chemical inhibitors and RNA interference. Results: Cells that were resistant to an apoptotic concentration of tamoxifen maintained an apoptotic response to persin. Persin-induced apoptosis was associated with an increase in markers of ERS, that is, CHOP expression and XBP-1 splicing and was decreased by CHOP siRNA. The CASP-4 inhibitor Z-YVAD-FMK markedly inhibited persin-induced apoptosis in both tamoxifen-sensitive and -resistant cells. Conclusion: The cytotoxic effects of persin are CASP-4 dependent and mediated by CHOP-dependent and -independent ERS signalling cascades. Increased ERS signalling contributes to persin-induced reversal of tamoxifen resistance. PMID:24178758

  7. Anticancer effect of metformin on estrogen receptor-positive and tamoxifen-resistant breast cancer cell lines.

    PubMed

    Kim, Jinkyoung; Lee, Jiyun; Jang, Soon Young; Kim, Chungyeul; Choi, Yoojin; Kim, Aeree

    2016-05-01

    Acquisition of tamoxifen resistance (TR) during anti-estrogenic therapy using tamoxifen is a major obstacle in the treatment of estrogen receptor (ER)-positive breast cancer. As a biguanide derivative, metformin is commonly used to treat type II diabetes. It has recently emerged as a potential anticancer agent. The objective of the present study was to investigate the anticancer activity of metformin in relation to ERα expression and its signaling pathway in ERα-positive MCF-7 and MDA-MB-361 breast cancer cells as well as TR MCF-7 breast cancer cells. Metformin inhibited both protein and mRNA levels of ERα in the presence or absence of estrogen (E2) in the MCF-7, TR MCF-7 and MDA-MB-361 cells. Metformin repressed E2-inducible estrogen response element (ERE) luciferase activity, protein levels and mRNA levels of E2/ERα-regulated genes [including c-Myc, cyclin D1, progesterone receptor (PR) and pS2] to a greater degree than tamoxifen, resulting in inhibition of cell proliferation of MCF-7, TR MCF-7 and MDA-MB-361 cells. Collectively, our results suggest that one of the anticancer mechanisms of metformin could be attributable to the repression of expression and transcriptional activity of ERα. Metformin may be a good therapeutic agent for treating ERα-positive breast cancer by inhibiting the expression and function of ERα. In addition, metformin may be useful to treat tamoxifen-resistant breast cancer. PMID:26986571

  8. Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance.

    PubMed

    LeBeau, Aaron M; Sevillano, Natalia; King, Mandy L; Duriseti, Sai; Murphy, Stephanie T; Craik, Charles S; Murphy, Laura L; VanBrocklin, Henry F

    2014-01-01

    Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasive imaging probes that identify drug-resistant lesions are urgently needed to aid in the development of novel drugs and the effective utilization of established therapies for breast cancer. The protease receptor urokinase plasminogen activator receptor (uPAR) is a target that can be exploited for non-invasive imaging. The expression of uPAR has been associated with phenotypically aggressive breast cancer and acquired drug-resistance. Acquired drug-resistance was modeled in cell lines from two different breast cancer subtypes, the uPAR negative luminal A subtype and the uPAR positive triple negative subtype cell line MDA-MB-231. MCF-7 cells, cultured to be resistant to tamoxifen (MCF-7 TamR), were found to significantly over-express uPAR compared to the parental cell line. uPAR expression was maintained when resistance was modeled in triple-negative breast cancer by generating doxorubicin and paclitaxel resistant MDA-MB-231 cells (MDA-MB-231 DoxR and MDA-MB-231 TaxR). Using the antagonistic uPAR antibody 2G10, uPAR was imaged in vivo by near-infrared (NIR) optical imaging and (111)In-single photon emission computed tomography (SPECT). Tumor uptake of the (111)In-SPECT probe was high in the three drug-resistant xenografts (> 46 %ID/g) and minimal in uPAR negative xenografts at 72 hours post-injection. This preclinical study demonstrates that uPAR can be targeted for imaging breast cancer models of acquired resistance leading to potential clinical applications. PMID:24505235

  9. Competing endogenous RNA networks of CYP4Z1 and pseudogene CYP4Z2P confer tamoxifen resistance in breast cancer.

    PubMed

    Zheng, Lufeng; Li, Xiaoman; Meng, Xia; Chou, Jinjiang; Hu, Jinhang; Zhang, Feng; Zhang, Zhiting; Xing, Yingying; Liu, Yu; Xi, Tao

    2016-05-15

    Patients with estrogen receptor α (ERα)-positive breast cancer can be treated with endocrine therapy using anti-estrogens such as tamoxifen; nonetheless, patients often develop resistance limiting the success of breast cancer treatment. The potential mechanisms remain elusive. In detail, many miRNAs have been associated with breast cancer tamoxifen resistance, but no studies have addressed the role of miRNA-mediated competitive endogenous RNAs network (ceRNET) in tamoxifen resistance. The ceRNET between CYP4Z1 and pseudogene CYP4Z2P has been revealed to promote breast cancer angiogenesis. However, its function in tamoxifen resistance remains unclear. Here we report CYP4Z1 and CYP4Z2P were downregulated in MCF-7 cells compared with tamoxifen-resistant MCF-7-TamR cells. Enforced upregulation of CYP4Z1- or CYP4Z2P-3'UTR level renders MCF-7 Cells resistant to tamoxifen. We find that overexpression of CYP4Z1- or CYP4Z2P-3'UTR enhances the transcriptional activity of ERα through the activation of ERα phosphorylation. Furthermore, we find that CYP4Z1- and CYP4Z2P-3'UTRs increase ERα activity dependent on cyclin-dependent kinase 3 (CDK3). Reporter gene and western blot assays revealed that CYP4Z1- and CYP4Z2P-3'UTRs act as CDK3 ceRNAs. More importantly, the blocking of CYP4Z1- and CYP4Z2P-3'UTRs reversed tamoxifen resistance in MCF-7-TamR cells. Our data demonstrates that the ceRNET between CYP4Z1 and pseudogene CYP4Z2P acts as a sub-ceRNET to promote CDK3 expression in ER-positive breast cancer and is a potential therapeutic target for treatment of tamoxifen-resistant breast cancer. PMID:26980484

  10. Berberine enhances the anti‑tumor activity of tamoxifen in drug‑sensitive MCF‑7 and drug‑resistant MCF‑7/TAM cells.

    PubMed

    Wen, Chunjie; Wu, Lanxiang; Fu, Lijuan; Zhang, Xue; Zhou, Honghao

    2016-09-01

    Berberine, an isoquinoline alkaloid, has been previously demonstrated to possess anti‑breast cancer properties. Tamoxifen is widely used in the prevention and treatment of estrogen receptor-positive breast cancer. Thus, the aim of the present study was to assess whether berberine enhanced the anticancer effect of tamoxifen, and the underlying mechanism involved in this combined effect in tamoxifen-sensitive (MCF-7) and tamoxifen-resistant (MCF-7/TAM) cells using MTS, flow cytometry and western blot assays. The results indicated that berberine demonstrated dose‑ and time‑dependent anti‑proliferative activity in MCF‑7 and MCF‑7/TAM cells. Furthermore, the combination of berberine and tamoxifen induced cell growth inhibition more effectively than tamoxifen alone. The present study also demonstrated that combinational treatment is more effective in inducing G1 phase arrest and activating apoptosis compared tamoxifen alone, which may be due to upregulation of P21 expression and downregulation of the B‑cell CLL/lymphoma 2(Bcl‑2)/Bcl‑2 associated X protein ratio. The results of the present study suggested that berberine may potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen, which will be useful for anti‑tumor therapy and further research. PMID:27432642

  11. Characterisation of a tamoxifen-resistant variant of the ZR-75-1 human breast cancer cell line (ZR-75-9a1) and ability of the resistant phenotype.

    PubMed Central

    van den Berg, H. W.; Lynch, M.; Martin, J.; Nelson, J.; Dickson, G. R.; Crockard, A. D.

    1989-01-01

    A 6-month exposure of ZR-75-1 human breast cancer cells to tamoxifen (1 microM rising to 2 microM). resulted in a fall in oestrogen receptor (ER) levels from 225 fmol mg protein-1 to 56 fmol mg protein-1 while progesterone receptor (PGR) concentration fell from 63 fmol mg protein-1 to undetectable levels. Sensitivity to the anti-proliferative effects of tamoxifen was unchanged. A further 6 months' exposure to 4 microM tamoxifen resulted in loss of detectable ER and PGR and development of resistance to tamoxifen. Resistant cells, designated ZR-75-9a1, displayed morphological changes consistent with the acquisition of a less well differentiated phenotype. Flow cytometric studies demonstrated that the cell cycle distribution pattern of the resistant variant growing in the presence of 8 microM tamoxifen was identical to that of the untreated parent line, which showed marked accumulation of cells in G0/G1 when exposed to 8 microM tamoxifen. The resistant phenotype was not stable if cells were transferred to complete drug-free medium, but remained stable for at least 3 months in the presence of medium lacking oestrogenic activity. ZR-75-9a1 cells differ from previously reported tamoxifen-resistant variants of the MCF-7 line which retain ER and may prove a valuable model for the study of the development and stability of tamoxifen resistance in human breast cancer. Images Figure 2 Figure 3 Figure 4 PMID:2713239

  12. ERRgamma mediates tamoxifen resistance in novel models of invasive lobular breast cancer.

    PubMed

    Riggins, Rebecca B; Lan, Jennifer P-J; Zhu, Yuelin; Klimach, Uwe; Zwart, Alan; Cavalli, Luciane R; Haddad, Bassem R; Chen, Li; Gong, Ting; Xuan, Jianhua; Ethier, Stephen P; Clarke, Robert

    2008-11-01

    One-third of all estrogen receptor (ER)-positive breast tumors treated with endocrine therapy fail to respond, and the remainder is likely to relapse in the future. Almost all data on endocrine resistance has been obtained in models of invasive ductal carcinoma (IDC). However, invasive lobular carcinomas (ILC) comprise up to 15% of newly diagnosed invasive breast cancers each year and, whereas the incidence of IDC has remained relatively constant during the last 20 years, the prevalence of ILC continues to increase among postmenopausal women. We report a new model of Tamoxifen (TAM)-resistant invasive lobular breast carcinoma cells that provides novel insights into the molecular mechanisms of endocrine resistance. SUM44 cells express ER and are sensitive to the growth inhibitory effects of antiestrogens. Selection for resistance to 4-hydroxytamoxifen led to the development of the SUM44/LCCTam cell line, which exhibits decreased expression of ERalpha and increased expression of the estrogen-related receptor gamma (ERRgamma). Knockdown of ERRgamma in SUM44/LCCTam cells by siRNA restores TAM sensitivity, and overexpression of ERRgamma blocks the growth-inhibitory effects of TAM in SUM44 and MDA-MB-134 VI lobular breast cancer cells. ERRgamma-driven transcription is also increased in SUM44/LCCTam, and inhibition of activator protein 1 (AP1) can restore or enhance TAM sensitivity. These data support a role for ERRgamma/AP1 signaling in the development of TAM resistance and suggest that expression of ERRgamma may be a marker of poor TAM response. PMID:18974135

  13. Circadian and Melatonin Disruption by Exposure to Light at Night Drives Intrinsic Resistance to Tamoxifen Therapy in Breast Cancer

    PubMed Central

    Dauchy, Robert T.; Xiang, Shulin; Mao, Lulu; Brimer, Samantha; Wren, Melissa A.; Yuan, Lin; Anbalagan, Muralidharan; Hauch, Adam; Frasch, Tripp; Rowan, Brian G.; Blask, David E.; Hill, Steven M.

    2014-01-01

    Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to anti-estrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of ERα+ MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speeds the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characters were not produced in animals where circadian rhythms were not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to re-establish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen. PMID:25062775

  14. Induction of methionine adenosyltransferase 2A in tamoxifen-resistant breast cancer cells

    PubMed Central

    Phuong, Nguyen Thi Thuy; Kim, Sang Kyum; Im, Ji Hye; Yang, Jin Won; Choi, Min Chang; Lim, Sung Chul; Lee, Kwang Yeol; Kim, Young-Mi; Yoon, Jeong Hoon; Kang, Keon Wook

    2016-01-01

    We previously showed that S-adenosylmethionine-mediated hypermethylation of the PTEN promoter was important for the growth of tamoxifen-resistant MCF-7 (TAMR-MCF-7) cancer cells. Here, we found that the basal expression level of methionine adenosyltransferase 2A (MAT2A), a critical enzyme for the biosynthesis of S-adenosylmethionine, was up-regulated in TAMR-MCF-7 cells compared with control MCF-7 cells. Moreover, the basal expression level of MAT2A in T47D cells, a TAM-resistant estrogen receptor-positive cell line was higher compared to MCF-7 cells. Immunohistochemistry confirmed that MAT2A expression in TAM-resistant human breast cancer tissues was higher than that in TAM-responsive cases. The promoter region of human MAT2A contains binding sites for nuclear factor-κB, activator protein-1 (AP-1), and NF-E2-related factor 2 (Nrf2), and the activities of these three transcription factors were enhanced in TAMR-MCF-7 cells. Both the protein expression and transcriptional activity of MAT2A in TAMR-MCF-7 cells were potently suppressed by NF-κB inhibition but not by c-Jun/AP-1 or Nrf2 knock-down. Interestingly, the expression levels of microRNA (miR)-146a and -146b were diminished in TAMR-MCF-7 cells, and miR-146b transduction decreased NF-κB-mediated MAT2A expression. miR-146b restored PTEN expression via the suppression of PTEN promoter methylation in TAMR-MCF-7 cells. Additionally, miR-146b overexpression inhibited cell proliferation and reversed chemoresistance to 4-hydroxytamoxifen in TAMR-MCF-7 cells. PMID:26418898

  15. Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance123

    PubMed Central

    Putluri, Nagireddy; Maity, Suman; Kommangani, Ramakrishna; Creighton, Chad J.; Putluri, Vasanta; Chen, Fengju; Nanda, Sarmishta; Bhowmik, Salil Kumar; Terunuma, Atsushi; Dorsey, Tiffany; Nardone, Agostina; Fu, Xiaoyong; Shaw, Chad; Sarkar, Tapasree Roy; Schiff, Rachel; Lydon, John P.; O’Malley, Bert W.; Ambs, Stefan; Das, Gokul M.; Michailidis, George; Sreekumar, Arun

    2014-01-01

    Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2–enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry, linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance. Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression of one key gene, ribonucleotide reductase subunit M2 (RRM2) alone, associated significantly with decreased survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2 were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel approach to overcome tamoxifen resistance in BCa. PMID:25016594

  16. Evolution of acquired resistance to anti-cancer therapy

    PubMed Central

    Foo, Jasmine; Michor, Franziska

    2014-01-01

    Acquired drug resistance is a major limitation for the successful treatment of cancer. Resistance can emerge due to a variety of reasons including host environmental factors as well as genetic or epigenetic alterations in the cancer cells. Evolutionary theory has contributed to the understanding of the dynamics of resistance mutations in a cancer cell population, the risk of resistance pre-existing before the initiation of therapy, the composition of drug cocktails necessary to prevent the emergence of resistance, and optimum drug administration schedules for patient populations at risk of evolving acquired resistance. Here we review recent advances towards elucidating the evolutionary dynamics of acquired drug resistance and outline how evolutionary thinking can contribute to outstanding questions in the field. PMID:24681298

  17. Mechanisms of Gefitinib-mediated reversal of tamoxifen resistance in MCF-7 breast cancer cells by inducing ERα re-expression

    PubMed Central

    Zhang, Xia; Zhang, Bin; Liu, Jie; Liu, Jiwei; Li, Changzheng; Dong, Wei; Fang, Shu; Li, Minmin; Song, Bao; Tang, Bo; Wang, Zhehai; Zhang, Yang

    2015-01-01

    Estrogen receptor (ER)-positive breast cancer patients may turn ER-negative and develop acquired drug resistance, which compromises the efficacy of endocrine therapy. By investigating the phenomenon that gefitinib can re-sensitise tamoxifen (TAM)-resistant MCF-7 breast cancer cells (MCF-7/TAM) to TAM, the present study verified that gefitinib could reverse the acquired drug resistance in endocrine therapy and further explored the underlying mechanism.ERα-negative MCF-7/TAM cells were established. Upon treating the cells with gefitinib, the mRNA and protein levels of ERα and ERβ, as well as the expression of molecules involved in the MAPK pathway, were examined using the RT-PCR and immunocytochemistry. The RT-PCR results showed that the mRNA levels of ERα and ERβ in MCF-7/TAM cells were up-regulated following gefitinib treatment; specifically, ERα was re-expressed, and ERβ expression was up-regulated. The expression of molecules involved in the MAPK pathway, including RAS, MEK1/2, and p-ERK1/2, in MCF-7/TAM cells was significantly up-regulated, compared with MCF-7 cells. After the gefitinib treatment, the expression levels of MEK1/2 and p-ERK1/2 were significantly down-regulated. ERα loss is the primary cause for TAM resistance. Gefitinib reverses TAM resistance primarily by up-regulating the ERα mRNA level and inducing the re-expression of ERα. The MAPK pathway plays a key role in ERα re-expression. PMID:25644501

  18. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Kipiani, Maia; Mirtskhulava, Veriko; Tukvadze, Nestani; Magee, Matthew J.; Blumberg, Henry M.

    2015-01-01

    Rates and risk factors for acquired drug resistance and association with outcomes among patients with multidrug-resistant tuberculosis (MDR TB) are not well defined. In an MDR TB cohort from the country of Georgia, drug susceptibility testing for second-line drugs (SLDs) was performed at baseline and every third month. Acquired resistance was defined as any SLD whose status changed from susceptible at baseline to resistant at follow-up. Among 141 patients, acquired resistance in Mycobacterium tuberculosis was observed in 19 (14%); prevalence was 9.1% for ofloxacin and 9.8% for capreomycin or kanamycin. Baseline cavitary disease and resistance to >6 drugs were associated with acquired resistance. Patients with M. tuberculosis that had acquired resistance were at significantly increased risk for poor treatment outcome compared with patients without these isolates (89% vs. 36%; p<0.01). Acquired resistance occurs commonly among patients with MDR TB and impedes successful treatment outcomes. PMID:25993036

  19. ESR1 mutations as a mechanism for acquired endocrine resistance in breast cancer

    PubMed Central

    Jeselsohn, Rinath; Buchwalter, Gilles; De Angelis, Carmine; Brown, Myles; Schiff, Rachel

    2016-01-01

    Most breast cancers are estrogen receptor α (ER)-positive (+) and are treated with endocrine therapies targeting ER activity. Despite efforts, the mechanisms of the frequent clinical resistance to these therapies remain largely unknown. Several recent parallel studies unveiled gain-of-function recurrent ESR1 mutations in up to 20% of patients with metastatic ER+ disease who all received endocrine therapies, which for more cases included an aromatase inhibitor. These mutations, clustered in a hotspot within the ligand-binding domain (LBD), lead to ligand independent ER activity and tumor growth, partial resistance to tamoxifen and fulvestrant, and potentially increased metastatic capacity. Together, these findings suggest that the ESR1 LBD mutations account for acquired endocrine resistance in a substantial fraction of patients with metastatic disease. The absence of detectable ESR1 mutations in treatment-naïve disease and the correlation with the number of endocrine treatments indicate a clonal expansion of rare mutant clones, selected under the pressure of treatment. New technologies to detect low/ultra rare ESR1 mutations together with tissue and liquid biopsies are required to fully expose their clinical relevance in prognosis and treatment. Pre-clinical and clinical development of rationale-based novel therapeutic strategies to inhibit these mutants has the potential to substantially improve treatment outcomes. PMID:26122181

  20. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  1. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA.

    PubMed

    Murtaza, Muhammed; Dawson, Sarah-Jane; Tsui, Dana W Y; Gale, Davina; Forshew, Tim; Piskorz, Anna M; Parkinson, Christine; Chin, Suet-Feung; Kingsbury, Zoya; Wong, Alvin S C; Marass, Francesco; Humphray, Sean; Hadfield, James; Bentley, David; Chin, Tan Min; Brenton, James D; Caldas, Carlos; Rosenfeld, Nitzan

    2013-05-01

    Cancers acquire resistance to systemic treatment as a result of clonal evolution and selection. Repeat biopsies to study genomic evolution as a result of therapy are difficult, invasive and may be confounded by intra-tumour heterogeneity. Recent studies have shown that genomic alterations in solid cancers can be characterized by massively parallel sequencing of circulating cell-free tumour DNA released from cancer cells into plasma, representing a non-invasive liquid biopsy. Here we report sequencing of cancer exomes in serial plasma samples to track genomic evolution of metastatic cancers in response to therapy. Six patients with advanced breast, ovarian and lung cancers were followed over 1-2 years. For each case, exome sequencing was performed on 2-5 plasma samples (19 in total) spanning multiple courses of treatment, at selected time points when the allele fraction of tumour mutations in plasma was high, allowing improved sensitivity. For two cases, synchronous biopsies were also analysed, confirming genome-wide representation of the tumour genome in plasma. Quantification of allele fractions in plasma identified increased representation of mutant alleles in association with emergence of therapy resistance. These included an activating mutation in PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) following treatment with paclitaxel; a truncating mutation in RB1 (retinoblastoma 1) following treatment with cisplatin; a truncating mutation in MED1 (mediator complex subunit 1) following treatment with tamoxifen and trastuzumab, and following subsequent treatment with lapatinib, a splicing mutation in GAS6 (growth arrest-specific 6) in the same patient; and a resistance-conferring mutation in EGFR (epidermal growth factor receptor; T790M) following treatment with gefitinib. These results establish proof of principle that exome-wide analysis of circulating tumour DNA could complement current invasive biopsy approaches to identify

  2. Annexin-A1 and caldesmon are associated with resistance to tamoxifen in estrogen receptor positive recurrent breast cancer

    PubMed Central

    De Marchi, Tommaso; Timmermans, Anne M.; Smid, Marcel; Look, Maxime P.; Stingl, Christoph; Opdam, Mark; Linn, Sabine C.; Sweep, Fred C. G. J.; Span, Paul N.; Kliffen, Mike; van Deurzen, Carolien H. M.; Luider, Theo M.; Foekens, John A.; Martens, John W.; Umar, Arzu

    2016-01-01

    Tamoxifen therapy resistance constitutes a major cause of death in patients with recurrent estrogen receptor (ER) positive breast cancer. Through high resolution mass spectrometry (MS), we previously generated a 4-protein predictive signature for tamoxifen therapy outcome in recurrent breast cancer. ANXA1 and CALD1, which were not included in the classifier, were however the most differentially expressed proteins. We first evaluated the clinical relevance of these markers in our MS cohort, followed by immunohistochemical (IHC) staining on an independent set of tumors incorporated in a tissue microarray (TMA) and regression analysis in relation to time to progression (TTP), clinical benefit and objective response. In order to assess which mechanisms ANXA1 and CALD1 might been involved in, we performed Ingenuity pathway analysis (IPA) on ANXA1 and CALD1 correlated proteins in our MS cohort. ANXA1 (Hazard ratio [HR] = 1.83; 95% confidence interval [CI]: 1.22–2.75; P = 0.003) and CALD1 (HR = 1.57; 95% CI: 1.04–2.36; P = 0.039) based patient stratification showed significant association to TTP, while IHC staining on TMA showed that both ANXA1 (HR = 1.82; 95% CI: 1.12–3.00; P = 0.016) and CALD1 (HR = 2.29; 95% CI: 1.40–3.75; P = 0.001) expression was associated with shorter TTP independently of traditional predictive factors. Pearson correlation analysis showed that the majority of proteins correlated to ANXA1 also correlated with CALD1. IPA indicated that ANXA1 and CALD1 were associated with ER-downregulation and NFκB signaling. We hereby report that ANXA1 and CALD1 proteins are independent markers for tamoxifen therapy outcome and are associated to fast tumor progression. PMID:26657294

  3. Acquired inducible antimicrobial resistance in Gram-positive bacteria

    PubMed Central

    Chancey, Scott T; Zähner, Dorothea; Stephens, David S

    2012-01-01

    A major contributor to the emergence of antibiotic resistance in Gram-positive bacterial pathogens is the expansion of acquired, inducible genetic elements. Although acquired, inducible antibiotic resistance is not new, the interest in its molecular basis has been accelerated by the widening distribution and often ‘silent’ spread of the elements responsible, the diagnostic challenges of such resistance and the mounting limitations of available agents to treat Gram-positive infections. Acquired, inducible antibiotic resistance elements belong to the accessory genome of a species and are horizontally acquired by transformation/recombination or through the transfer of mobile DNA elements. The two key, but mechanistically very different, induction mechanisms are: ribosome-sensed induction, characteristic of the macrolide–lincosamide–streptogramin B antibiotics and tetracycline resistance, leading to ribosomal modifications or efflux pump activation; and resistance by cell surface-associated sensing of β-lactams (e.g., oxacillin), glycopeptides (e.g., vancomycin) and the polypeptide bacitracin, leading to drug inactivation or resistance due to cell wall alterations. PMID:22913355

  4. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling.

    PubMed

    Scherbakov, Alexander M; Sorokin, Danila V; Tatarskiy, Victor V; Prokhorov, Nikolay S; Semina, Svetlana E; Berstein, Lev M; Krasil'nikov, Mikhail A

    2016-04-01

    Metformin, a biguanide antidiabetic drug, is used to decrease hyperglycemia in patients with type 2 diabetes. Recently, the epidemiological studies revealed the potential of metformin as an anti-tumor drug for several types of cancer, including breast cancer. Anti-tumor metformin action was found to be mediated, at least in part, via activation of adenosine monophosphate-activated protein kinase (AMPK)-intracellular energy sensor, which inhibits the mammalian target of rapamycin (mTOR) and some other signaling pathways. Nevertheless, some patients can be non-sensitive or resistant to metformin action. Here we analyzed the mechanism of the formation of metformin-resistant phenotype in breast cancer cells and its role in estrogen receptor (ER) regulation. The experiments were performed on the ER-positive MCF-7 breast cancer cells and metformin-resistant MCF-7 subline (MCF-7/M) developed due to long-term metformin treatment. The transcriptional activity of NF-κB and ER was measured by the luciferase reporter gene analysis. The protein expression was determined by immunoblotting (Snail1, (phospho)AMPK, (phospho)IκBα, (phospho)mTOR, cyclin D1, (phospho)Akt and ERα) and immunohistochemical analysis (E-cadherin). We have found that: 1) metformin treatment of MCF-7 cells is accompanied with the stimulation of AMPK and inhibition of growth-related proteins including IκBα, NF-κB, cyclin D1 and ERα; 2) long-term metformin treatment lead to the appearance and progression of cross-resistance to metformin and tamoxifen; the resistant cells are characterized with the unaffected AMPK activity, but the irreversible ER suppression and constitutive activation of Akt/Snail1 signaling; 3) Akt/Snail1 signaling is involved into progression of metformin resistance. The results presented may be considered as the first evidence of the progression of cross-resistance to metformin and tamoxifen in breast cancer cells. Importantly, the acquired resistance to both drugs is based on the

  5. CCAR1 5′ UTR as a natural miRancer of miR-1254 overrides tamoxifen resistance

    PubMed Central

    Li, Gaopeng; Wu, Xiaoli; Qian, Wenchang; Cai, Huayong; Sun, Xinbao; Zhang, Weijie; Tan, Sheng; Wu, Zhengsheng; Qian, Pengxu; Ding, Keshuo; Lu, Xuefei; Zhang, Xiao; Yan, Hong; Song, Haifeng; Guang, Shouhong; Wu, Qingfa; Lobie, Peter E; Shan, Ge; Zhu, Tao

    2016-01-01

    MicroRNAs (miRNAs) typically bind to unstructured miRNA-binding sites in target RNAs, leading to a mutual repression of expression. Here, we report that miR-1254 interacts with structured elements in cell cycle and apoptosis regulator 1 (CCAR1) 5′ untranslated region (UTR) and this interaction enhances the stability of both molecules. miR-1254 can also act as a repressor when binding to unstructured sites in its targets. Interestingly, structured miR-1254-targeting sites act as both a functional RNA motif-sensing unit, and an independent RNA functional unit that enhances miR-1254 expression. Artificially designed miRNA enhancers, termed “miRancers”, can stabilize and enhance the activity of miRNAs of interest. We further demonstrate that CCAR1 5′ UTR as a natural miRancer of endogenous miR-1254 re-sensitizes tamoxifen-resistant breast cancer cells to tamoxifen. Thus, our study presents a novel model of miRNA function, wherein highly structured miRancer-like motif-containing RNA fragments or miRancer molecules specifically interact with miRNAs, leading to reciprocal stabilization. PMID:27002217

  6. CCAR1 5' UTR as a natural miRancer of miR-1254 overrides tamoxifen resistance.

    PubMed

    Li, Gaopeng; Wu, Xiaoli; Qian, Wenchang; Cai, Huayong; Sun, Xinbao; Zhang, Weijie; Tan, Sheng; Wu, Zhengsheng; Qian, Pengxu; Ding, Keshuo; Lu, Xuefei; Zhang, Xiao; Yan, Hong; Song, Haifeng; Guang, Shouhong; Wu, Qingfa; Lobie, Peter E; Shan, Ge; Zhu, Tao

    2016-06-01

    MicroRNAs (miRNAs) typically bind to unstructured miRNA-binding sites in target RNAs, leading to a mutual repression of expression. Here, we report that miR-1254 interacts with structured elements in cell cycle and apoptosis regulator 1 (CCAR1) 5' untranslated region (UTR) and this interaction enhances the stability of both molecules. miR-1254 can also act as a repressor when binding to unstructured sites in its targets. Interestingly, structured miR-1254-targeting sites act as both a functional RNA motif-sensing unit, and an independent RNA functional unit that enhances miR-1254 expression. Artificially designed miRNA enhancers, termed "miRancers", can stabilize and enhance the activity of miRNAs of interest. We further demonstrate that CCAR1 5' UTR as a natural miRancer of endogenous miR-1254 re-sensitizes tamoxifen-resistant breast cancer cells to tamoxifen. Thus, our study presents a novel model of miRNA function, wherein highly structured miRancer-like motif-containing RNA fragments or miRancer molecules specifically interact with miRNAs, leading to reciprocal stabilization. PMID:27002217

  7. Acid-degradable Core-shell Nanoparticles for Reversed Tamoxifen-resistance in Breast Cancer by Silencing Manganese Superoxide Dismutase (MnSOD)

    PubMed Central

    Cho, Soo Kyung; Pedram, Ali; Levin, Ellis R.; Kwon, Young Jik

    2013-01-01

    Drug resistance acquired by cancer cells is a significant challenge in the clinic and requires impairing the responsible pathological pathway. Administering chemotherapeutics along with silencing resistance-basis activity using RNA interference (RNAi) is expected to restore the activity of the chemotherapeutic. generate synergistic cancer eradication. This study attempted to reverse tamoxifen (TAM)-resistance in breast cancer by silencing a mitochondrial enzyme, manganese superoxide dismutase (MnSOD), which dismutates TAM-induced reactive oxygen species (ROS) (i.e., superoxide) to less harmful hydrogen peroxide and hampers therapeutic effects. Breast cancer cells were co-treated with TAM and MnSOD siRNA-delivering nanoparticles (NPs) made of a siRNA/poly(amidoamine) (PAMAM) dendriplex core and an acid-degradable polyketal (PK) shell. The (siRNA/PAMAM)-PK NPs were designed for the PK shell to shield siRNA from nucleases, minimize detrimental aggregation in serum, and facilitate cytosolic release of siRNA from endosomal compartments. This method of forming the PK shell around the siRNA/PAMAM core via surface-initiated photo-polymerization enables ease of tuning NPs’ size for readily controlled siRNA release kinetics. The resulting NPs were notably homogenous in size, resistant to aggregation in serum, and invulnerable to heparan sulfate-mediated disassembly, compared to siRNA/PAMAM dendriplexes. Gel electrophoresis and confocal microscopy confirmed efficient siRNA release from the (siRNA/PAMAM)-PK NPs upon stimuli-responsive hydrolysis of the PK shell. Sensitization of TAM-resistant MCF7-BK-TR breast cancer cells with (MnSOD siRNA/PAMAM)-PK NPs restored TAM-induced cellular apoptosis in vitro and significantly suppressed tumor growth in vivo, as confirmed by biochemical assays and histological observations. This study implies that combined gene silencing and chemotherapy is a promising strategy to overcoming a significant challenge in cancer therapy. PMID:24055523

  8. Tamoxifen retinopathy.

    PubMed Central

    McKeown, C A; Swartz, M; Blom, J; Maggiano, J M

    1981-01-01

    A 63-year-old female on long-term, high-dose tamoxifen treatment for metastatic breast cancer developed bilateral intraretinal refractile opacities, lesions at the level of the retinal pigment epithelium, and cystoid macular oedema. Images PMID:7225310

  9. Suppression of the death gene BIK is a critical factor for resistance to tamoxifen in MCF-7 breast cancer cells.

    PubMed

    Viedma-Rodriguez, Rubí; Baiza-Gutman, Luis Arturo; García-Carrancá, Alejandro; Moreno-Fierros, Leticia; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego

    2013-12-01

    Apoptosis is controlled by the BCL-2 family of proteins, which can be divided into three different subclasses based on the conservation of BCL-2 homology domains. BIK is a founding member of the BH3-only pro-apoptotic protein family. BIK is predominantly localized in the endoplasmic reticulum (ER) and induces apoptosis through the mitochondrial pathway by mobilizing calcium from the ER to the mitochondria. In this study, we determined that suppression of the death gene Bik promotes resistance to tamoxifen (TAM) in MCF-7 breast cancer cells. We utilized small interfering (siRNA) to specifically knockdown BIK in MCF-7 cells and studied their response to tamoxifen. The levels of cell apoptosis, the potential mitochondrial membrane (∆Ψ(m)), and the activation of total caspases were analyzed. Western blot analysis was used to determine the expression of some BCL-2 family proteins. Flow cytometry studies revealed an increase in apoptosis level in MCF-7 cells and a 2-fold increase in relative BIK messenger RNA (mRNA) expression at a concentration of 6.0 μM of TAM. BIK silencing, with a specific RNAi, blocked TAM-induced apoptosis in 45 ± 6.78% of cells. Moreover, it decreased mitochondrial membrane potential (Ψm) and total caspase activity, and exhibited low expression of pro-apoptotic proteins BAX, BAK, PUMA and a high expression of BCl-2 and MCL-1. The above suggests resistance to TAM, regulating the intrinsic pathway and indicate that BIK comprises an important factor in the process of apoptosis, which may exert an influence the ER pathway, which regulates mitochondrial integrity. Collectively, our results show that BIK is a central component of the programmed cell death of TAM-induced MCF-7 breast cancer cells. The silencing of BIK gene will be useful for future studies to establish the mechanisms of regulation of resistance to TAM. PMID:24100375

  10. Targets for Combating the Evolution of Acquired Antibiotic Resistance.

    PubMed

    Culyba, Matthew J; Mo, Charlie Y; Kohli, Rahul M

    2015-06-16

    Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. Here, we review recent advances in our understanding of the processes that contribute to the evolution of antibiotic resistance, with a particular focus on hypermutation mediated by the SOS pathway and horizontal gene transfer. We explore the molecular mechanisms involved in acquired resistance and discuss their viability as potential targets. We propose that additional studies into these adaptive mechanisms not only can provide insights into evolution but also can offer a strategy for potentiating our current antibiotic arsenal. PMID:26016604

  11. Targets for Combating the Evolution of Acquired Antibiotic Resistance

    PubMed Central

    2015-01-01

    Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. Here, we review recent advances in our understanding of the processes that contribute to the evolution of antibiotic resistance, with a particular focus on hypermutation mediated by the SOS pathway and horizontal gene transfer. We explore the molecular mechanisms involved in acquired resistance and discuss their viability as potential targets. We propose that additional studies into these adaptive mechanisms not only can provide insights into evolution but also can offer a strategy for potentiating our current antibiotic arsenal. PMID:26016604

  12. Staphylococci in community-acquired infections: Increased resistance to penicillin.

    PubMed

    Hughes, G B; Chidi, C C; Macon, W L

    1976-04-01

    One hundred patients with community-acquired staphylococcal infections of the skin and soft tissues were treated in the Emergency Ward of Cleveland Metropolitan General Hospital from June to October of 1974. Each staphylococcal infection was considered community-acquired if, within two weeks prior to being treated for the first time, the patient had not received antibiotics, had not been hospitalized, and had not been in contact with other recently hospitalized persons. Of 100 community-acquired staphylococcal infections, 85 were resistant to penicillin. Almost no resistance to other tested antibiotics was observed. Unless indicated otherwise by bacteriologic testing, penicillin is a poor drug of choice in those skin and soft tissue infections suspected of harboring staphylococci. PMID:1267491

  13. ERK/MAPK regulates ERRγ expression, transcriptional activity and receptor-mediated tamoxifen resistance in ER+ breast cancer.

    PubMed

    Heckler, Mary M; Thakor, Hemang; Schafer, Cara C; Riggins, Rebecca B

    2014-05-01

    Selective estrogen receptor modulators such as tamoxifen (TAM) significantly improve breast cancer-specific survival for women with estrogen receptor-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of the estrogen receptor; instead, changes in multiple proliferative and/or survival pathways over-ride the inhibitory effects of TAM. Estrogen-related receptor γ (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. This study sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated, and hence affects TAM resistance. mRNA and protein expression/phosphorylation were monitored by RT-PCR and western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus extracellular signal-regulated kinase (ERK) target sites. Cell proliferation and cell-cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. We show that ERRγ protein levels are affected by the activation state of ERK/mitogen-activated protein kinase, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor. PMID:24684682

  14. ERK/MAPK regulates ERRγ expression, transcriptional activity, and receptor-mediated Tamoxifen resistance in ER+ breast cancer

    PubMed Central

    Heckler, Mary Mazzotta; Thakor, Hemang; Schafer, Cara C.; Riggins, Rebecca B.

    2014-01-01

    Background Selective estrogen receptor modulators (SERMs) such as Tamoxifen (TAM) can significantly improve breast cancer-specific survival for women with ER-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of ER; instead, changes in multiple proliferative and/or survival pathways override the inhibitory effects of TAM. Estrogen-related receptor gamma (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. In this study, we sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated and, in turn, affects TAM resistance. Methods mRNA and protein expression/phosphorylation were monitored by RT-PCR and Western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus ERK target sites. Cell proliferation and cell cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. Results We show that ERRγ protein levels are affected by the activation state of ERK/MAPK, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. Conclusions These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor. PMID:24684682

  15. Linking Estrogen-Induced Apoptosis With Decreases in Mortality Following Long-term Adjuvant Tamoxifen Therapy

    PubMed Central

    2014-01-01

    The impressive first results of the Adjuvant Tamoxifen: Longer Against Shorter (ATLAS) and the adjuvant Tamoxifen To offer more (aTTom) trials both demonstrate that 10 years of tamoxifen is superior to five years of treatment. Tamoxifen is a nonsteroidal antiestrogen that blocks estrogen-stimulated tumor growth. Paradoxically, mortality decreases dramatically only in the decade after long-term tamoxifen is stopped. It is proposed that the evolution and clonal selection of micrometastases that acquire tamoxifen resistance now become increasingly vulnerable to endogenous estrogen-induced apoptosis. Laboratory and clinical studies confirm the concept, and supporting clinical evidence from the estrogen-alone trial in the Women’s Health Initiative (WHI), demonstrate that long-term estrogen-deprived women given exogenous physiologic estrogen have a decreased incidence of breast cancer and decreased mortality. It is proposed that a natural process of apoptosis is recruited to execute the long-term survival benefit of stopping ten years of adjuvant tamoxifen, but only after clonal selection of vulnerable breast cancer cells in an estrogen-deprived environment. PMID:25269699

  16. Extensive Drug Resistance Acquired During Treatment of Multidrug-Resistant Tuberculosis

    PubMed Central

    Cegielski, J. Peter; Dalton, Tracy; Yagui, Martin; Wattanaamornkiet, Wanpen; Volchenkov, Grigory V.; Via, Laura E.; Van Der Walt, Martie; Tupasi, Thelma; Smith, Sarah E.; Odendaal, Ronel; Leimane, Vaira; Kvasnovsky, Charlotte; Kuznetsova, Tatiana; Kurbatova, Ekaterina; Kummik, Tiina; Kuksa, Liga; Kliiman, Kai; Kiryanova, Elena V.; Kim, HeeJin; Kim, Chang-ki; Kazennyy, Boris Y.; Jou, Ruwen; Huang, Wei-Lun; Ershova, Julia; Erokhin, Vladislav V.; Diem, Lois; Contreras, Carmen; Cho, Sang Nae; Chernousova, Larisa N.; Chen, Michael P.; Caoili, Janice Campos; Bayona, Jaime; Akksilp, Somsak; Calahuanca, Gloria Yale; Wolfgang, Melanie; Viiklepp, Piret; Vasilieva, Irina A.; Taylor, Allison; Tan, Kathrine; Suarez, Carmen; Sture, Ingrida; Somova, Tatiana; Smirnova, Tatyana G.; Sigman, Erika; Skenders, Girts; Sitti, Wanlaya; Shamputa, Isdore C.; Riekstina, Vija; Pua, Kristine Rose; Therese, M.; Perez, C.; Park, Seungkyu; Norvaisha, Inga; Nemtsova, Evgenia S.; Min, Seonyeong; Metchock, Beverly; Levina, Klavdia; Lei, Yung-Chao; Lee, Jongseok; Larionova, Elena E.; Lancaster, Joey; Jeon, Doosoo; Jave, Oswaldo; Khorosheva, Tatiana; Hwang, Soo Hee; Huang, Angela Song-En; Gler, M. Tarcela; Dravniece, Gunta; Eum, Seokyong; Demikhova, Olga V.; Degtyareva, Irina; Danilovits, Manfred; Cirula, Anda; Cho, Eunjin; Cai, Ying; Brand, Jeanette; Bonilla, Cesar; Barry, Clifton E.; Asencios, Luis; Andreevskaya, Sofia N.; Akksilp, Rattanawadee

    2014-01-01

    Background. Increasing access to drugs for the treatment of multidrug-resistant (MDR) tuberculosis is crucial but could lead to increasing resistance to these same drugs. In 2000, the international Green Light Committee (GLC) initiative began to increase access while attempting to prevent acquired resistance. Methods. To assess the GLC's impact, we followed adults with pulmonary MDR tuberculosis from the start to the end of treatment with monthly sputum cultures, drug susceptibility testing, and genotyping. We compared the frequency and predictors of acquired resistance to second-line drugs (SLDs) in 9 countries that volunteered to participate, 5 countries that met GLC criteria, and 4 countries that did not apply to the GLC. Results. In total, 832 subjects were enrolled. Of those without baseline resistance to specific SLDs, 68 (8.9%) acquired extensively drug-resistant (XDR) tuberculosis, 79 (11.2%) acquired fluoroquinolone (FQ) resistance, and 56 (7.8%) acquired resistance to second-line injectable drugs (SLIs). The relative risk (95% confidence interval [CI]) of acquired resistance was lower at GLC-approved sites: 0.27 (.16–.47) for XDR tuberculosis, 0.28 (.17–.45) for FQ, and 0.15 (.06–.39) to 0.60 (.34–1.05) for 3 different SLIs. The risk increased as the number of potentially effective drugs decreased. Controlling for baseline drug resistance and differences between sites, the odds ratios (95% CIs) were 0.21 (.07–.62) for acquired XDR tuberculosis and 0.23 (.09–.59) for acquired FQ resistance. Conclusions. Treatment of MDR tuberculosis involves substantial risk of acquired resistance to SLDs, increasing as baseline drug resistance increases. The risk was significantly lower in programs documented by the GLC to meet specific standards. PMID:25057101

  17. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties

    PubMed Central

    2013-01-01

    Introduction Development of resistance to tamoxifen is an important clinical issue in the treatment of breast cancer. Tamoxifen resistance may be the result of acquisition of epigenetic regulation within breast cancer cells, such as DNA methylation, resulting in changed mRNA expression of genes pivotal for estrogen-dependent growth. Alternatively, tamoxifen resistance may be due to selection of pre-existing resistant cells, or a combination of the two mechanisms. Methods To evaluate the contribution of these possible tamoxifen resistance mechanisms, we applied modified DNA methylation-specific digital karyotyping (MMSDK) and digital gene expression (DGE) in combination with massive parallel sequencing to analyze a well-established tamoxifen-resistant cell line model (TAMR), consisting of 4 resistant and one parental cell line. Another tamoxifen-resistant cell line model system (LCC1/LCC2) was used to validate the DNA methylation and gene expression results. Results Significant differences were observed in global gene expression and DNA methylation profiles between the parental tamoxifen-sensitive cell line and the 4 tamoxifen-resistant TAMR sublines. The 4 TAMR cell lines exhibited higher methylation levels as well as an inverse relationship between gene expression and DNA methylation in the promoter regions. A panel of genes, including NRIP1, HECA and FIS1, exhibited lower gene expression in resistant vs. parental cells and concurrent increased promoter CGI methylation in resistant vs. parental cell lines. A major part of the methylation, gene expression, and pathway alterations observed in the TAMR model were also present in the LCC1/LCC2 cell line model. More importantly, high expression of SOX2 and alterations of other SOX and E2F gene family members, as well as RB-related pocket protein genes in TAMR highlighted stem cell-associated pathways as being central in the resistant cells and imply that cancer-initiating cells/cancer stem-like cells may be involved in

  18. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition.

    PubMed

    Rathert, Philipp; Roth, Mareike; Neumann, Tobias; Muerdter, Felix; Roe, Jae-Seok; Muhar, Matthias; Deswal, Sumit; Cerny-Reiterer, Sabine; Peter, Barbara; Jude, Julian; Hoffmann, Thomas; Boryń, Łukasz M; Axelsson, Elin; Schweifer, Norbert; Tontsch-Grunt, Ulrike; Dow, Lukas E; Gianni, Davide; Pearson, Mark; Valent, Peter; Stark, Alexander; Kraut, Norbert; Vakoc, Christopher R; Zuber, Johannes

    2015-09-24

    Following the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukaemia (AML), bromodomain and extra terminal protein (BET) inhibitors are being explored as a promising therapeutic avenue in numerous cancers. While clinical trials have reported single-agent activity in advanced haematological malignancies, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukaemia, here we perform a chromatin-focused RNAi screen in a sensitive MLL-AF9;Nras(G12D)-driven AML mouse model, and investigate dynamic transcriptional profiles in sensitive and resistant mouse and human leukaemias. Our screen shows that suppression of the PRC2 complex, contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression does not directly affect the regulation of Brd4-dependent transcripts, but facilitates the remodelling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggers acute MYC repression in human leukaemias regardless of their sensitivity, resistant leukaemias are uniformly characterized by their ability to rapidly restore MYC transcription. This process involves the activation and recruitment of WNT signalling components, which compensate for the loss of BRD4 and drive resistance in various cancer models. Dynamic chromatin immunoprecipitation sequencing and self-transcribing active regulatory region sequencing of enhancer profiles reveal that BET-resistant states are characterized by remodelled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Together, our results identify and validate WNT signalling as a driver and candidate biomarker of primary and acquired BET resistance in leukaemia, and implicate the rewiring of transcriptional programs as an important mechanism promoting

  19. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition

    PubMed Central

    Neumann, Tobias; Muerdter, Felix; Roe, Jae-Seok; Muhar, Matthias; Deswal, Sumit; Cerny-Reiterer, Sabine; Peter, Barbara; Jude, Julian; Hoffmann, Thomas; Boryń, Łukasz M.; Axelsson, Elin; Schweifer, Norbert; Tontsch-Grunt, Ulrike; Dow, Lukas E.; Gianni, Davide; Pearson, Mark; Valent, Peter; Stark, Alexander; Kraut, Norbert; Vakoc, Christopher R.; Zuber, Johannes

    2016-01-01

    Summary Following the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukemia (AML)1,2, BET inhibitors are being explored as promising therapeutic avenue in numerous cancers3–5. While clinical trials have reported single-agent activity in advanced hematologic malignancies6, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukemia, we performed a chromatin-focused RNAi screen in a sensitive MLL/AF9; NrasG12D -driven AML model, and investigated dynamic transcriptional profiles in sensitive and resistant murine and human leukemias. Our screen reveals that suppression of the PRC2 complex, contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression does not directly affect the regulation of Brd4-dependent transcripts, but facilitates the remodeling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggers acute MYC repression in human leukemias regardless of their sensitivity, resistant leukemias are uniformly characterized by their ability to rapidly restore MYC transcription. This process involves the activation and recruitment of WNT signaling components, which compensate for the loss of BRD4 and drive resistance in various cancer models. Dynamic ChIP- and STARR-seq enhancer profiles reveal that BET-resistant states are characterized by remodeled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Together, our results identify and validate WNT signaling as a driver and candidate biomarker of primary and acquired BET resistance in leukemia, and implicate the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies. PMID:26367798

  20. Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Complex

    PubMed Central

    Rubio, Marc; March, Francesca; Garrigó, Montserrat; Moreno, Carmen; Español, Montserrat; Coll, Pere

    2015-01-01

    Purpose Clarithromycin was considered the cornerstone for the treatment of Mycobacterium abscessus complex infections. Genetic resistance mechanisms have been described and many experts propose amikacin as an alternative. Nevertheless, clarithromycin has several advantages; therefore, it is necessary to identify the non-functional erm(41) allele to determine the most suitable treatment. The aims of this study were to characterize the molecular mechanisms of clarithromycin resistance in a collection of Mycobacterium abscessus complex isolates and to verify the relationship between these mechanisms and the antibiogram. Materials and Methods Clinical isolates of M. abscessus complex (n = 22) from 16 patients were identified using four housekeeping genes (rpoB, secA1, sodA and hsp65), and their genetic resistance was characterized by studying erm(41) and rrl genes. Nine strains were recovered from the clinical isolates and subjected to E-test and microdilution clarithromycin susceptibility tests, with readings at 3, 7 and 14 days. Results We classified 11/16 (68.8%) M. abscessus subsp. abscessus, 4/16 (25.0%) M. abscessus subsp. bolletii, and 1/16 (6.3%) M. abscessus subsp. massiliense. T28 erm(41) allele was observed in 8 Mycobacterium abscessus subps. abscessus and 3 Mycobacterium abscessus subsp. bolletii. One strain of M. abscessus subsp. bolletii had an erm(41) gene truncated and was susceptible to clarithromycin. No mutations were observed in rrl gene first isolates. In three patients, follow-up of initial rrl wild-type strains showed acquired resistance. Conclusions Most clinical isolates of M. abscessus complex had inducible resistance to clarithromycin and total absence of constitutive resistance. Our findings showed that the acquisition of resistance mutations in rrl gene was associated with functional and non-functional erm(41) gene. Caution is needed when using erm(41) sequencing alone to identify M. abscessus subspecies. This study reports an acquired

  1. Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells.

    PubMed

    Kim, Jinkyoung; Lee, Jiyun; Kim, Chungyeul; Choi, Jinhyuk; Kim, Aeree

    2016-05-01

    Development of new therapeutic strategies is becoming increasingly important to overcome tamoxifen resistance. Recently, much interest has been focused on anti-tumor effects of metformin commonly used to treat type II diabetes. Increased protein expression and signaling of epidermal growth factor receptor (EGFR) family is a possible mechanism involved in tamoxifen resistance. Since HER2/HER3 heterodimers are able to induce strong downstream signaling and activate various biological responses such as cellular proliferation and growth, we investigated the anti-cancer effect of metformin by inhibition of signaling pathway via downregulation of HER2 and HER3 using tamoxifen-resistant MCF-7 (TR MCF-7) cells. Compared to MCF-7 cells, TR MCF-7 cells showed increased expression of EGFR, HER2, and HER3, and metformin inhibited the expression of these proteins in a dose- and time-dependent manner. Metformin inhibited activation of HER2 (Tyr1248)/HER3 (Tyr1289)/Akt (Ser473) as well as cell proliferation and colony formation by estrogenic promotion in MCF-7 and TR MCF-7 cells. Known as a HER3 ligand, heregulin (HRG)-β1-induced phosphorylation of HER2, HER3 and Akt, and protein interaction of HER2/HER3 and colony formation were inhibited by metformin in both cells. Consistent with the results in the two cell lines, we identified that metformin inhibited HER2/HER3/Akt signaling axis activated by HRG-β1 using the HER2 and HER3-overexpressing breast cancer cell line SK-BR-3. Lastly, lapatinib-induced HER3 upregulation was significantly inhibited by treatment of metformin in HER3 siRNA-transfected TR MCF-7 cells. These data suggest that metformin might overcome tamoxifen resistance through the inhibition of expression and signaling of receptor tyrosine kinase HER2 and HER3. PMID:26581908

  2. Involvement of multiple cellular pathways in regulating resistance to tamoxifen in BIK-suppressed MCF-7 cells.

    PubMed

    Viedma-Rodríguez, Rubí; Ruiz Esparza-Garrido, Ruth; Baiza-Gutman, Luis Arturo; Velázquez-Flores, Miguel Ángel; García-Carrancá, Alejandro; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego

    2015-09-01

    Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate. PMID:25861752

  3. Induction of ErbB-3 Expression by α6β4 Integrin Contributes to Tamoxifen Resistance in ERβ1-Negative Breast Carcinomas

    PubMed Central

    Bon, Giulia; Di Carlo, Selene E.; Fabi, Alessandra; Nisticò, Cecilia; Vici, Patrizia; Melucci, Elisa; Buglioni, Simonetta; Perracchio, Letizia; Sperduti, Isabella; Rosanò, Laura; Sacchi, Ada; Mottolese, Marcella; Falcioni, Rita

    2008-01-01

    Background Tamoxifen is still the most widely used drug in hormone therapy for the treatment of breast cancer. Its benefits in adjuvant treatment are well documented in controlled and randomized clinical studies, which have demonstrated an increase in disease-free intervals of patients with positive hormonal receptors. However, the mechanisms involved in endocrine resistance are not clear. Laboratory and clinical data now indicate that bi-directional molecular cross-talk between nuclear or membrane ER and growth factor receptor pathways may be involved in endocrine resistance. We recently found a functional interaction between α6β4 integrin and ErbB-3 receptor to maintain the PI3K/Akt survival pathway of mammary tumour cells. We sought to improve understanding of this process in order to provide the involvement of both receptors insight into mechanism of Tamoxifen resistance. Methods and Findings Using human breast cancer cell lines displaying different levels of α6β4 and ErbB-3 receptors and a series of 232 breast cancer biopsies from patients submitted to adjuvant Tamoxifen monotherapy for five years, we evaluated the functional interaction between both receptors in relationship to Tamoxifen responsiveness. In mammary carcinoma cells, we evidenced that the α6β4 integrin strongly influence Akt phosphorylation through ErbB-3 protein regulation. Moreover, the ErbB-3 inactivation inhibits Akt phosphorylation, induces apoptosis and inhibits in vitro invasion favouring Tamoxifen responsiveness. The analysis of human tumors revealed a significant relationship between α6β4 and ErbB-3 in P-Akt-positive and ERβ1-negative breast cancers derived from patients with lower disease free survival. Conclusions We provided evidence that a strong relationship occurs between α6β4 and ErbB-3 positivity in ERβ1-negative breast cancers. We also found that the association between ErbB-3 and P-Akt positivity mainly occurs in ERβ1-negative breast cancer derived from patients

  4. Identification of GDC-0810 (ARN-810), an Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) that Demonstrates Robust Activity in Tamoxifen-Resistant Breast Cancer Xenografts.

    PubMed

    Lai, Andiliy; Kahraman, Mehmet; Govek, Steven; Nagasawa, Johnny; Bonnefous, Celine; Julien, Jackie; Douglas, Karensa; Sensintaffar, John; Lu, Nhin; Lee, Kyoung-Jin; Aparicio, Anna; Kaufman, Josh; Qian, Jing; Shao, Gang; Prudente, Rene; Moon, Michael J; Joseph, James D; Darimont, Beatrice; Brigham, Daniel; Grillot, Kate; Heyman, Richard; Rix, Peter J; Hager, Jeffrey H; Smith, Nicholas D

    2015-06-25

    Approximately 80% of breast cancers are estrogen receptor alpha (ER-α) positive, and although women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, resistance often emerges. Although a variety of resistance mechanism may be at play in this state, there is evidence that in many cases the ER still plays a central role, including mutations in the ER leading to constitutively active receptor. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and is active in patients who have progressed on antihormonal agents. However, fulvestrant suffers from poor pharmaceutical properties and must be administered by intramuscular injections that limit the total amount of drug that can be administered and hence lead to the potential for incomplete receptor blockade. We describe the identification and characterization of a series of small-molecule, orally bioavailable SERDs which are potent antagonists and degraders of ER-α and in which the ER-α degrading properties were prospectively optimized. The lead compound 11l (GDC-0810 or ARN-810) demonstrates robust activity in models of tamoxifen-sensitive and tamoxifen-resistant breast cancer, and is currently in clinical trials in women with locally advanced or metastatic estrogen receptor-positive breast cancer. PMID:25879485

  5. Nuclear EGFR Contributes to Acquired Resistance to Cetuximab

    PubMed Central

    Li, Chunrong; Iida, Mari; Dunn, Emily F.; Ghia, Amol J.; Wheeler, Deric L.

    2010-01-01

    Epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase involved in the etiology of several human cancers. Cetuximab is an EGFR blocking-antibody that has been approved for the treatment of patients with cancers of the head and neck (HNSCC) and metastatic colorectal cancer (mCRC). Previous reports have shown that EGFR translocation to the nucleus is associated with cell proliferation. Here we investigated mechanisms of acquired resistance to cetuximab using a model derived from the non-small cell lung cancer line H226. We demonstrated that cetuximab-resistant cells overexpress HER family ligands including epidermal growth factor (EGF), amphiregulin (AR), heparin-binding EGF (HB-EGF) and β-cellulin. Overexpression of these ligands is associated with the nuclear translocation of the EGFR and this process was mediated by the Src family kinases (SFK). Treatment of cetuximab-resistant cells with the SFK inhibitor, dasatinib, resulted in loss of nuclear EGFR, increased membrane expression of the EGFR and re-sensitization to cetuximab. In addition, expression of a nuclear localization sequence tagged EGFR in cetuximab-sensitive cells increased resistance to cetuximab both in vitro and in mouse xenografts. Collectively, these data suggest that nuclear expression of EGFR may be an important molecular determinant of resistance to cetuximab therapy and provides a rationale for investigating nuclear EGFR as a biomarker for cetuximab response. Further, these data suggest a rationale for the design of clinical trials that examine the value of treating patients with cetuximab-resistant tumors with inhibitors of SFKs in combination with cetuximab. PMID:19684613

  6. Nuclear EGFR contributes to acquired resistance to cetuximab.

    PubMed

    Li, C; Iida, M; Dunn, E F; Ghia, A J; Wheeler, D L

    2009-10-29

    Epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase involved in the etiology of several human cancers. Cetuximab is an EGFR-blocking antibody that has been approved for the treatment of patients with head and neck squamous cell carcinoma and metastatic colorectal cancer. Previous reports have shown that EGFR translocation to the nucleus is associated with cell proliferation. Here we investigated mechanisms of acquired resistance to cetuximab using a model derived from the non-small cell lung cancer line H226. We demonstrated that cetuximab-resistant cells overexpress HER family ligands including epidermal growth factor (EGF), amphiregulin, heparin-binding EGF and beta-cellulin. Overexpression of these ligands is associated with the nuclear translocation of the EGFR and this process was mediated by the Src family kinases (SFK). Treatment of cetuximab-resistant cells with the SFK inhibitor, dasatinib, resulted in loss of nuclear EGFR, increased membrane expression of the EGFR and resensitization to cetuximab. In addition, expression of a nuclear localization sequence-tagged EGFR in cetuximab-sensitive cells increased resistance to cetuximab both in vitro and in mouse xenografts. Collectively, these data suggest that nuclear expression of EGFR may be an important molecular determinant of resistance to cetuximab therapy and provides a rationale for investigating nuclear EGFR as a biomarker for cetuximab response. Further, these data suggest a rationale for the design of clinical trials that examine the value of treating patients with cetuximab-resistant tumors with inhibitors of SFKs in combination with cetuximab. PMID:19684613

  7. Expression of a phosphorylated p130Cas substrate domain attenuates the phosphatidylinositol 3-kinase/Akt survival pathway in tamoxifen resistant breast cancer cells

    PubMed Central

    Soni, Shefali; Lin, Bor-Tyh; August, Avery; Nicholson, Robert I.; Kirsch, Kathrin H.

    2009-01-01

    Elevated expression of p130Cas/BCAR1 (breast cancer anti estrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. Specifically, p130Cas signaling has been associated with antiestrogen resistance, for which the mechanism is currently unknown. TAM-R cells, which were established by long-term exposure of estrogen (E2)-dependent MCF-7 cells to tamoxifen, displayed elevated levels of total and activated p130Cas. Here we have investigated the effects of p130Cas inhibition on growth factor signaling in tamoxifen resistance. To inhibit p130Cas, a phosphorylated substrate domain of p130Cas, that acts as a dominant-negative (DN) p130Cas molecule by blocking signal transduction downstream of the p130Cas substrate domain, as well as knockdown by siRNA was employed. Interference with p130Cas signaling/expression induced morphological changes, which were consistent with a more epithelial-like phenotype. The phenotypic reversion was accompanied by reduced migration, attenuation of the ERK and phosphatidylinositol 3-kinase/Akt pathways, and induction of apoptosis. Apoptosis was accompanied by downregulation of the expression of the anti-apoptotic protein Bcl-2. Importantly, these changes re-sensitized TAM-R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest that targeting the product of the BCAR1 gene by a peptide which mimics the phosphorylated substrate domain may provide a new molecular avenue for treatment of antiestrogen resistant breast cancers. PMID:19330798

  8. Community-Acquired Methicillin-Resistant Pyogenic Liver Abscess

    PubMed Central

    Cherian, Joel; Singh, Rahul; Varma, Muralidhar; Vidyasagar, Sudha; Mukhopadhyay, Chiranjay

    2016-01-01

    Pyogenic liver abscesses are rare with an incidence of 0.5% to 0.8% and are mostly due to hepatobiliary causes (40% to 60%). Most are polymicrobial with less than 10% being caused by Staphylococcus aureus. Of these, few are caused by methicillin-resistant Staphylococcus aureus (MRSA) and fewer still by a community-acquired strain. Here we present a case study of a patient with a community-acquired MRSA liver abscess. The patient presented with fever since 1 month and tender hepatomegaly. Blood tests revealed elevated levels of alkaline phosphatase, C-reactive protein, erythrocyte sedimentation rate, and neutrophilic leukocytosis. Blood cultures were sterile. Ultrasound of the abdomen showed multiple abscesses, from which pus was drained and MRSA isolated. Computed tomography of the abdomen did not show any source of infection, and an amebic serology was negative. The patient was started on vancomycin for 2 weeks, following which he became afebrile and was discharged on oral linezolid for 4 more weeks. Normally a liver abscess is treated empirically with ceftriaxone for pyogenic liver abscess and metronidazole for amebic liver abscess. However, if the patient has risk factors for a Staphylococcal infection, it is imperative that antibiotics covering gram-positive organisms be added while waiting for culture reports. PMID:27540556

  9. Signaling by small metabolites in systemic acquired resistance.

    PubMed

    Shah, Jyoti; Chaturvedi, Ratnesh; Chowdhury, Zulkarnain; Venables, Barney; Petros, Robby A

    2014-08-01

    Plants can retain the memory of a prior encounter with a pest. This memory confers upon a plant the ability to subsequently activate defenses more robustly when challenged by a pest. In plants that have retained the memory of a prior, localized, foliar infection by a pathogen, the pathogen-free distal organs develop immunity against subsequent infections by a broad-spectrum of pathogens. The long-term immunity conferred by this mechanism, which is termed systemic acquired resistance (SAR), is inheritable over a few generations. Signaling mediated by the phenolic metabolite salicylic acid (SA) is critical for the manifestation of SAR. Recent studies have described the involvement of additional small metabolites in SAR signaling, including methyl salicylate, the abietane diterpenoid dehydroabietinal, the lysine catabolite pipecolic acid, a glycerol-3-phosphate-dependent factor and the dicarboxylic acid azelaic acid. Many of these metabolites can be systemically transported through the plant and probably facilitate communication by the primary infected tissue with the distal tissues, which is essential for the activation of SAR. Some of these metabolites have been implicated in the SAR-associated rapid activation of defenses in response to subsequent exposure to the pathogen, a mechanism termed priming. Here, we summarize the role of these signaling metabolites in SAR, and the relationship between them and SA signaling in SAR. PMID:24506415

  10. Prolongation of acquired cellular resistance to Listeria monocytogenes

    PubMed Central

    Willers, J. M. N.; Hofhuis, F. M. A.; Meer, C. Vander

    1982-01-01

    Intracutaneous immunization of mice with 105 or 106 viable listeria resulted in acquired cellular resistance (ACR) of short duration (7 days) and in delayed-type hypersensitivity (DH) lasting at least 27 days. The ACR was partially non-specific, as 50% of the mice were also protected against a lethal challenge with Salmonella enteritidis. The specific element of the ACR could be transferred by non-adherent spleen cells from immune mice to normal recipient mice. Such transfer was not possible with adherent spleen cells from immune mice or with spleen cells from normal mice. Two systems of multiple immunizations to extend the period during which mice were protected against a challenge with 50 LD50 listeria were used. In the first system, mice were immunized with 106 viable listeria and subsequently challenged with 50 LD50 (= 107) viable listeria. Mice surviving the challenge were actually boosted at the challenge injection for ACR. In the second system mice were immunized and boosted with 108 killed listeria mixed with the adjuvant dimethyl dioctadecyl ammonium bromide (DDA). In the former system after each booster injection with viable listeria the interval during which the mice were protected doubled and reached a maximum of 31 days. In the latter system all intervals between two booster injections were equally long and never exceeded 28 days. In both systems the existence of immunological memory was suggested. The difference in results obtained after immunization with viable listeria and killed listeria mixed with DDA are discussed. PMID:6809603

  11. Induction of acquired resistance to anti estrogen by reversible mitochondrial DNA depletion in breast cancer cell line

    PubMed Central

    Naito, Akihiro; Carcel-Trullols, Jaime; Xie, Cheng-hui; Evans, Teresa T; Mizumachi, Takatsugu; Higuchi, Masahiro

    2008-01-01

    Although the net benefits of tamoxifen in adjuvant breast cancer therapy have been proven, the recurrence of the cancer in an aggressive and hormone independent form has been highly problematic. We previously demonstrated the important role mitochondrial DNA (mtDNA) plays in hormone-independence in prostate cancer. Here, the role of mtDNA in breast cancer progression was investigated. We established hydroxytamoxifen (4-OHT) resistant HTRMCF by growing MCF-7, a human breast adenocarcinoma cells, in the presence of 4-OHT. HTRMCF was cross-resistant to 4-OHT and ICI182,780 concurrent with the depletion of mtDNA. To further investigate the role of mtDNA depletion, MCF-7 was depleted of mtDNA by treatment with ethidium bromide. MCFρ0 was resistant to both 4-OHT and ICI182,780. Furthermore, cybrid (MCFcyb) prepared by fusion MCFρ0 with platelet to transfer mtDNA showed susceptibility to anti-estrogen. Surprisingly, after withdrawal of 4-OHT for 8 weeks, HTRMCF and their clones became susceptible to both drugs concurrent with a recovery of mtDNA. Herein, our results substantiated the first evidence that the depletion of mtDNA induced by hormone therapy triggers a shift to acquired resistance to hormone therapy in breast cancer. In addition, we showed that mtDNA depletion can be reversed, rendering the cancer cells susceptible to anti-estrogen. The hormone independent phenotype can be reversed should be a step toward more effective treatments for estrogen-responsive breast cancer. PMID:17990320

  12. Adaptive and Acquired Resistance to EGFR Inhibitors Converge on the MAPK Pathway

    PubMed Central

    Ma, Pengfei; Fu, Yujie; Chen, Minjiang; Jing, Ying; Wu, Jie; Li, Ke; Shen, Ying; Gao, Jian-Xin; Wang, Mengzhao; Zhao, Xiaojing; Zhuang, Guanglei

    2016-01-01

    Both adaptive and acquired resistance significantly limits the efficacy of the epidermal growth factor receptor (EGFR) kinase inhibitors. However, the distinct or common mechanisms of adaptive and acquired resistance have not been fully characterized. Here, through systematic modeling of erlotinib resistance in lung cancer, we found that feedback reactivation of MAPK signaling following erlotinib treatment, which was dependent on the MET receptor, contributed to the adaptive resistance of EGFR inhibitors. Interestingly, acquired resistance to erlotinib was also associated with the MAPK pathway activation as a result of CRAF or NRAS amplification. Consequently, combined inhibition of EGFR and MAPK impeded the development of both adaptive and acquired resistance. These observations demonstrate that adaptive and acquired resistance to EGFR inhibitors can converge on the same pathway and credential cotargeting EGFR and MAPK as a promising therapeutic approach in EGFR mutant tumors. PMID:27279914

  13. Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells

    PubMed Central

    Kim, Ji Eun; Rewcastle, Gordon W; Finlay, Graeme J; Baguley, Bruce C

    2011-01-01

    Background Treatment with anti-estrogens or aromatase inhibitors is commonly used for patients with estrogen receptor-positive (ER+) breast cancers; however resistant disease develops almost inevitably, requiring a choice of secondary therapy. One possibility is to use inhibitors of the PI3K/mTOR pathway and several candidate drugs are in development. We examined the in vitro effects of two inhibitors of the PI3K/mTOR pathway on resistant MCF-7 cells. Results The derived sub-lines showed increased resistance to tamoxifen but none exhibited concomitantly increased sensitivity to the PI3K inhibitors. NVP-BEZ235 and GSK2126458 acted mainly by induction of cell cycle arrest, particularly in G1-phase, rather than by induction of apoptosis. The lines varied considerably in their utilization of the AKT, p70S6K and ERK pathways. NVP-BEZ235 and GSK2126458 inhibited AKT signaling but NVP-BEZ235 showed greater effects than GSK2126458 on p70S6K and rpS6 signaling with effects resembling those of rapamycin. Methods We cultured MCF-7 cells for prolonged periods either in the presence of the anti-estrogen tamoxifen (three sub-lines) or in estrogen free medium (two sub-lines) to mimic the effects of clinical treatment. We then analyzed the effects of two dual PI3K/mTOR phosphoinositide-3-kinase inhibitors, NVP-BEZ235 and GSK2126458, on the growth and signaling pathways of these MCF-7 sub-lines. The functional status of the PI3K, mTOR and ERK pathways was analyzed by measuring phosphorylation of AKT, p70S6K, rpS6 and ERK. Conclusion Increased resistance to tamoxifen in these MCF-7 sub-lines is not associated with hypersensitivity to PI3K inhibitors. While both drugs inhibited AKT signaling, NVP-BEZ235 resembled rapamycin in inhibiting the mTOR pathway. PMID:21464613

  14. CRISPR provides acquired resistance against viruses in prokaryotes.

    PubMed

    Barrangou, Rodolphe; Fremaux, Christophe; Deveau, Hélène; Richards, Melissa; Boyaval, Patrick; Moineau, Sylvain; Romero, Dennis A; Horvath, Philippe

    2007-03-23

    Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity. PMID:17379808

  15. Response and Acquired Resistance to Everolimus in Anaplastic Thyroid Cancer

    PubMed Central

    Wagle, Nikhil; Grabiner, Brian C.; Van Allen, Eliezer M.; Amin-Mansour, Ali; Taylor-Weiner, Amaro; Rosenberg, Mara; Gray, Nathanael; Barletta, Justine A.; Guo, Yanan; Swanson, Scott J.; Ruan, Daniel T.; Hanna, Glenn J.; Haddad, Robert I.; Getz, Gad; Kwiatkowski, David J.; Carter, Scott L.; Sabatini, David M.; Jänne, Pasi A.; Garraway, Levi A.; Lorch, Jochen H.

    2015-01-01

    SUMMARY Everolimus, an inhibitor of the mammalian target of rapamycin (mTOR), is effective in treating tumors harboring alterations in the mTOR pathway. Mechanisms of resistance to everolimus remain undefined. Resistance developed in a patient with metastatic anaplastic thyroid carcinoma after an extraordinary 18-month response. Whole-exome sequencing of pretreatment and drug-resistant tumors revealed a nonsense mutation in TSC2, a negative regulator of mTOR, suggesting a mechanism for exquisite sensitivity to everolimus. The resistant tumor also harbored a mutation in MTOR that confers resistance to allosteric mTOR inhibition. The mutation remains sensitive to mTOR kinase inhibitors. PMID:25295501

  16. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro

    PubMed Central

    2014-01-01

    Introduction Upregulation of PI3K/Akt/mTOR signalling in endocrine-resistant breast cancer (BC) has identified mTOR as an attractive target alongside anti-hormones to control resistance. RAD001 (everolimus/Afinitor®), an allosteric mTOR inhibitor, is proving valuable in this setting; however, some patients are inherently refractory or relapse during treatment requiring alternative strategies. Here we evaluate the potential for novel dual mTORC1/2 mTOR kinase inhibitors, exemplified by AZD8055, by comparison with RAD001 in ER + endocrine resistant BC cells. Methods In vitro models of tamoxifen (TamR) or oestrogen deprivation resistance (MCF7-X) were treated with RAD001 or AZD8055 alone or combined with anti-hormone fulvestrant. Endpoints included growth, cell proliferation (Ki67), viability and migration, with PI3K/AKT/mTOR signalling impact monitored by Western blotting. Potential ER cross-talk was investigated by immunocytochemistry and RT-PCR. Results RAD001 was a poor growth inhibitor of MCF7-derived TamR and MCF7-X cells (IC50 ≥1 μM), rapidly inhibiting mTORC1 but not mTORC2/AKT signalling. In contrast AZD8055, which rapidly inhibited both mTORC1 and mTORC2/AKT activity, was a highly effective (P <0.001) growth inhibitor of TamR (IC50 18 nM) and MCF7-X (IC50 24 nM), and of a further T47D-derived tamoxifen resistant model T47D-tamR (IC50 19 nM). AZD8055 significantly (P <0.05) inhibited resistant cell proliferation, increased cell death and reduced migration. Furthermore, dual treatment of TamR or MCF7-X cells with AZD8055 plus fulvestrant provided superior control of resistant growth versus either agent alone (P <0.05). Co-treating with AZD8055 alongside tamoxifen (P <0.01) or oestrogen deprivation (P <0.05) also effectively inhibited endocrine responsive MCF-7 cells. Although AZD8055 inhibited oestrogen receptor (ER) ser167 phosphorylation in TamR and MCF7-X, it had no effect on ER ser118 activity or expression of several ER-regulated genes

  17. Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries.

    PubMed Central

    Okeke, I. N.; Lamikanra, A.; Edelman, R.

    1999-01-01

    In developing countries, acquired bacterial resistance to antimicrobial agents is common in isolates from healthy persons and from persons with community-acquired infections. Complex socioeconomic and behavioral factors associated with antibiotic resistance, particularly regarding diarrheal and respiratory pathogens, in developing tropical countries, include misuse of antibiotics by health professionals, unskilled practitioners, and laypersons; poor drug quality; unhygienic conditions accounting for spread of resistant bacteria; and inadequate surveillance. PMID:10081668

  18. Investigation of elemene-induced reversal of tamoxifen resistance in MCF-7 cells through oestrogen receptor α (ERα) re-expression.

    PubMed

    Zhang, Bin; Zhang, Xia; Tang, Bo; Zheng, Peishi; Zhang, Yang

    2012-11-01

    Endocrine therapy is an important therapeutic approach for the treatment of oestrogen receptor (ER)-positive breast cancer. However, a number of these endocrine therapies can fail when the tumour loses its ER expression during treatment. To date, few studies have explored the potential clinical significance of traditional Chinese medicine in inducing the reversal of resistance to endocrine therapy in breast cancers. We used the ERα-negative MCF7 breast cancer cell line to create a tamoxifen (TAM)-resistant cell line, MCF7/TAM cells. After treating MCF7/TAM cells with ELE to induce the re-expression of ERα, we investigated the role and molecular mechanisms by which elemene (ELE) promotes the reversal of resistance to endocrine therapy. We discovered that treatment with 10 μg/ml ELE restored the sensitivity of MCF7/TAM cells to TAM. RT-PCR analysis revealed that ELE treatment upregulated ERα mRNA levels in MCF7/TAM cells, and immunohistochemistry confirmed the upregulation of ERα expression. Western blot analysis revealed that ELE treatment decreased the protein expression levels of Ras, MEK1/2 and p-ERK1/2 in MCF7/TAM cells. The loss of ERα expression was the primary reason for TAM resistance in MCF7 cells. The ELE-induced reversal of TAM resistance was mediated by the upregulation of ERα mRNA and the re-expression of ERα through the MAPK pathway. PMID:23053650

  19. Association between Mycobacterium tuberculosis Complex Phylogenetic Lineage and Acquired Drug Resistance

    PubMed Central

    Yuen, Courtney M.; Kurbatova, Ekaterina V.; Click, Eleanor S.; Cavanaugh, J. Sean; Cegielski, J. Peter

    2013-01-01

    Background Development of resistance to antituberculosis drugs during treatment (i.e., acquired resistance) can lead to emergence of resistant strains and consequent poor clinical outcomes. However, it is unknown whether Mycobacterium tuberculosis complex species and lineage affects the likelihood of acquired resistance. Methods We analyzed data from the U.S. National Tuberculosis Surveillance System and National Tuberculosis Genotyping Service for tuberculosis cases during 2004–2011 with assigned species and lineage and both initial and final drug susceptibility test results. We determined univariate associations between species and lineage of Mycobacterium tuberculosis complex bacteria and acquired resistance to isoniazid, rifamycins, fluoroquinolones, and second-line injectables. We used Poisson regression with backward elimination to generate multivariable models for acquired resistance to isoniazid and rifamycins. Results M. bovis was independently associated with acquired resistance to isoniazid (adjusted prevalence ratio = 8.46, 95% CI 2.96–24.14) adjusting for HIV status, and with acquired resistance to rifamycins (adjusted prevalence ratio = 4.53, 95% CI 1.29–15.90) adjusting for homelessness, HIV status, initial resistance to isoniazid, site of disease, and administration of therapy. East Asian lineage was associated with acquired resistance to fluoroquinolones (prevalence ratio = 6.10, 95% CI 1.56–23.83). Conclusions We found an association between mycobacterial species and lineage and acquired drug resistance using U.S. surveillance data. Prospective clinical studies are needed to determine the clinical significance of these findings, including whether rapid genotyping of isolates at the outset of treatment may benefit patient management. PMID:24376623

  20. Acquired Multidrug Antifungal Resistance in Candida lusitaniae during Therapy

    PubMed Central

    Asner, Sandra A.; Giulieri, Stefano; Diezi, Manuel; Marchetti, Oscar

    2015-01-01

    Candida lusitaniae is usually susceptible to echinocandins. Beta-1,3-glucan synthase encoded by FKS genes is the target of echinocandins. A few missense mutations in the C. lusitaniae FKS1 hot spot 1 (HS1) have been reported. We report here the rapid emergence of antifungal resistance in C. lusitaniae isolated during therapy with amphotericin B (AMB), caspofungin (CAS), and azoles for treatment of persistent candidemia in an immunocompromised child with severe enterocolitis and visceral adenoviral disease. As documented from restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) analysis, the five C. lusitaniae isolates examined were related to each other. From antifungal susceptibility and molecular analyses, 5 different profiles (P) were obtained. These profiles included the following: profile 1 (P1) (CAS MIC [μg/ml], 0.5; fluconazole [FLC] MIC, 0.25), determined while the patient was being treated with liposomal AMB for 3 months; P2 (FLC MIC [μg/ml], 0.25; CAS MIC, 4), while the patient was being treated with CAS for 2 weeks; P3 (CAS MIC [μg/ml], 0.5; FLC MIC, 32), while the patient was being treated with azoles and CAS initially followed by azoles alone for a week; P4 (CAS MIC [μg/ml], 8; FLC MIC, 8), while the patient was being treated with both drugs for 3 weeks; and P5 (AMB MIC [μg/ml], 0.125; CAS MIC, 8), while the patient was being treated with AMB and FLC for 2 weeks. CAS resistance was associated with resistance not only to micafungin and anidulafungin but also to AMB. Analysis of CAS resistance revealed 3 novel FKS1 mutations in CAS-resistant isolates (S638Y in P2; S631Y in P4; S638P in P5). While S638Y and -P are within HS1, S631Y is in close proximity to this domain but was confirmed to confer candin resistance using a site-directed mutagenesis approach. FLC resistance could be linked with overexpression of major facilitator gene 7 (MFS7) in C. lusitaniae P2 and P4 and was associated with resistance to 5

  1. Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection.

    PubMed

    Howard, Susan Julie; Arendrup, Maiken Cavling

    2011-04-01

    Voriconazole is the recommended agent for invasive aspergillosis, with lipid amphotericin B or caspofungin as second line treatment choices. Being the only agents available in oral formulation, azoles are used in chronic infections and often over longer time periods. In addition to being used in clinical medicine, azoles are employed extensively in agriculture. Azole-resistant Aspergillus has been isolated in azole naïve patients, in azole exposed patients and in the environment. The primary underlying mechanism of resistance is as a result of alterations in the cyp51A target gene, with a variety of mutations found in clinical isolates but just one identified in a environmental strain (a point mutation at codon 98 accompanied by a tandem repeat in the promoter region). Much less is currently known about echinocandin resistance in Aspergillus, in part because susceptibility testing is not routinely performed and because the methods suffer from technical difficulties and suboptimal reproducibility. Clinical breakthrough cases have been reported however, and resistance has been confirmed in vivo. In this paper we review the current knowledge on epidemiology, susceptibility testing and underlying mechanisms involved in azole and echinocandin resistance in Aspergillus. PMID:20795765

  2. Overcoming acquired resistance to kinase inhibition: the cases of EGFR, ALK and BRAF.

    PubMed

    Giroux, Simon

    2013-01-15

    In the past decade, several kinase inhibitors have been approved based on their clinical benefit for cancer patients. Unfortunately, in many cases, patients develop resistance to these agents via secondary mutations and alternative mechanisms. This review will focus on the cases of acquired resistance to EGFR and ALK inhibitors for non-small cell lung cancer patients and BRAF inhibitors for melanoma patients. I will overview the main causes of acquired resistance, and explore the chemical scaffolds as well as combination of drugs, used to tackle these major causes of resistance. PMID:23245516

  3. Managing acquired resistance in EGFR-mutated non-small cell lung cancer.

    PubMed

    Forde, Patrick M; Ettinger, David S

    2015-08-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) deliver high response rates with relatively modest toxicity in patients with advanced EGFR-mutated non-small cell lung cancer. Despite this, nearly all tumors eventually develop resistance to first-line therapy. At present, the only standard treatment option for patients with acquired resistance is cytotoxic chemotherapy. In this article, we review the latest research into methods of targeting acquired resistance to EGFR TKI therapy, including third-generation EGFR TKIs that target the T790M resistance mutation and other novel agents in development. PMID:26351816

  4. Acquired Antibiotic Resistance: Are We Born with It? ▿

    PubMed Central

    Zhang, Lu; Kinkelaar, Daniel; Huang, Ying; Li, Yingli; Li, Xiaojing; Wang, Hua H.

    2011-01-01

    The rapid emergence of antibiotic resistance (AR) is a major public health concern. Recent findings on the prevalence of food-borne antibiotic-resistant (ART) commensal bacteria in ready-to-consume food products suggested that daily food consumption likely serves as a major avenue for dissemination of ART bacteria from the food chain to human hosts. To properly assess the impact of various factors, including the food chain, on AR development in hosts, it is important to determine the baseline of ART bacteria in the human gastrointestinal (GI) tract. We thus examined the gut microbiota of 16 infant subjects, from the newborn stage to 1 year of age, who fed on breast milk and/or infant formula during the early stages of development and had no prior exposure to antibiotics. Predominant bacterial populations resistant to several antibiotics and multiple resistance genes were found in the infant GI tracts within the first week of age. Several ART population transitions were also observed in the absence of antibiotic exposure and dietary changes. Representative AR gene pools including tet(M), ermB, sul2, and blaTEM were detected in infant subjects. Enterococcus spp., Staphylococcus spp., Klebsiella spp., Streptococcus spp., and Escherichia coli/Shigella spp. were among the identified AR gene carriers. ART bacteria were not detected in the infant formula and infant foods examined, but small numbers of skin-associated ART bacteria were found in certain breast milk samples. The data suggest that the early development of AR in the human gut microbiota is independent of infants' exposure to antibiotics but is likely impacted by exposure to maternal and environmental microbes during and after delivery and that the ART population is significantly amplified within the host even in the absence of antibiotic selective pressure. PMID:21821748

  5. Overexpression of Specific CD44 Isoforms Is Associated with Aggressive Cell Features in Acquired Endocrine Resistance

    PubMed Central

    Bellerby, Rebecca; Smith, Chris; Kyme, Sue; Gee, Julia; Günthert, Ursula; Green, Andy; Rakha, Emad; Barrett-Lee, Peter; Hiscox, Stephen

    2016-01-01

    While endocrine therapy is the mainstay of ER+ breast cancer, the clinical effectiveness of these agents is limited by the phenomenon of acquired resistance that is associated with disease relapse and poor prognosis. Our previous studies revealed that acquired resistance is accompanied by a gain in cellular invasion and migration and also that CD44 family proteins are overexpressed in the resistant phenotype. Given the association of CD44 with tumor progression, we hypothesized that its overexpression may act to promote the aggressive behavior of endocrine-resistant breast cancers. Here, we have investigated further the role of two specific CD44 isoforms, CD44v3 and CD44v6, in the endocrine-resistant phenotype. Our data revealed that overexpression of CD44v6, but not CD44v3, in endocrine-sensitive MCF-7 cells resulted in a gain in EGFR signaling, enhanced their endogenous invasive capacity, and attenuated their response to endocrine treatment. Suppression of CD44v6 in endocrine-resistant cell models was associated with a reduction in their invasive capacity. Our data suggest that upregulation of CD44v6 in acquired resistant breast cancer may contribute to a gain in the aggressive phenotype of these cells and loss of endocrine response through transactivation of the EGFR pathway. Future therapeutic targeting of CD44v6 may prove to be an effective strategy alongside EGFR-targeted agents in delaying/preventing acquired resistance in breast cancer. PMID:27379207

  6. Community-Acquired Methicillin-Resistant "Staphylococcus aureus": Considerations for School Nurses

    ERIC Educational Resources Information Center

    Alex, Aniltta; Letizia, MariJo

    2007-01-01

    Methicillin-resistant "Staphylococcus aureus" (MRSA) is a disease-causing organism that has been present in hospital settings since the 1960s. However, a genetically distinct strain of MRSA, called community-acquired methicillin-resistant "Staphylococcus aureus" (CA-MRSA), has emerged in recent years in community settings among healthy…

  7. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer.

    PubMed

    Amato, Katherine R; Wang, Shan; Tan, Li; Hastings, Andrew K; Song, Wenqiang; Lovly, Christine M; Meador, Catherine B; Ye, Fei; Lu, Pengcheng; Balko, Justin M; Colvin, Daniel C; Cates, Justin M; Pao, William; Gray, Nathanael S; Chen, Jin

    2016-01-15

    Despite the success of treating EGFR-mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKI), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI-resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib-resistant tumor cells harboring EGFR(T790M) mutations in vitro and inhibited tumor growth and progression in an inducible EGFR(L858R+T790M)-mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib-resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small-molecule inhibitor ALW-II-41-27 decreased both survival and proliferation of erlotinib-resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third-generation EGFR TKI AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI-resistant, EGFR-mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI-resistant tumors. PMID:26744526

  8. Characterization of a human colorectal carcinoma cell line with acquired resistance to flavopiridol.

    PubMed

    Smith, V; Raynaud, F; Workman, P; Kelland, L R

    2001-11-01

    Flavopiridol is a broad-spectrum inhibitor of cyclin-dependent kinases (cdks) and represents the first in this anticancer class to enter clinical trials. In anticipation of the likelihood that, as with other cancer drugs, acquired resistance may limit the drug's efficacy, an acquired resistance model has been established by in vitro drug exposure of the human colon carcinoma cell line HCT116. This stably resistant line, possessing 8-fold resistance to flavopiridol, showed a lack of cross-resistance to the anticancer agents etoposide, doxorubicin, paclitaxel, topotecan, and cisplatin, and notably to other chemical classes of cdk inhibitors: the aminopurines roscovitine and purvalanol A, 9-nitropaullone, and hymenialdisine. Resistance did not seem to be related to differences in the levels of multidrug resistance drug efflux proteins, P-glycoprotein, and MRP1. Moreover, there were no changes in overall drug accumulation between the resistant and sensitive cell lines. Flavopiridol induced cell cycle arrest, apoptosis, and inhibition of retinoblastoma gene product phosphorylation on serine 780 in both parental and resistant lines, but the latter required 8-fold higher concentrations to achieve these effects. Cyclin E protein levels and cyclin E-associated kinase activity were increased in the resistant line, suggesting that overexpression of cyclin E may be the mechanism of resistance to flavopiridol. However, transfection of cyclin E to increase expression of this protein did not result in an increase in resistance to flavopiridol. Thus, up-regulation of cyclin E alone does not seem to cause resistance to this cdk inhibitor. PMID:11641415

  9. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib

    PubMed Central

    Kwak, Eunice L.; Sordella, Raffaella; Bell, Daphne W.; Godin-Heymann, Nadia; Okimoto, Ross A.; Brannigan, Brian W.; Harris, Patricia L.; Driscoll, David R.; Fidias, Panos; Lynch, Thomas J.; Rabindran, Sridhar K.; McGinnis, John P.; Wissner, Allan; Sharma, Sreenath V.; Isselbacher, Kurt J.; Settleman, Jeffrey; Haber, Daniel A.

    2005-01-01

    Non-small cell lung cancers (NSCLCs) with activating mutations in the kinase domain of the epidermal growth factor receptor (EGFR) demonstrate dramatic, but transient, responses to the reversible tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). Some recurrent tumors have a common secondary mutation in the EGFR kinase domain, T790M, conferring drug resistance, but in other cases the mechanism underlying acquired resistance is unknown. In studying multiple sites of recurrent NSCLCs, we detected T790M in only a small percentage of tumor cells. To identify additional mechanisms of acquired resistance to gefitinib, we used NSCLC cells harboring an activating EGFR mutation to generate multiple resistant clones in vitro. These drug-resistant cells demonstrate continued dependence on EGFR and ERBB2 signaling for their viability and have not acquired secondary EGFR mutations. However, they display increased internalization of ligand-activated EGFR, consistent with altered receptor trafficking. Although gefitinib-resistant clones are cross-resistant to related anilinoquinazolines, they demonstrate sensitivity to a class of irreversible inhibitors of EGFR. These inhibitors also show effective inhibition of signaling by T790M-mutant EGFR and killing of NSCLC cells with the T790M mutation. Both mechanisms of gefitinib resistance are therefore circumvented by irreversible tyrosine kinase inhibitors. Our findings suggest that one of these, HKI-272, may prove highly effective in the treatment of EGFR-mutant NSCLCs, including tumors that have become resistant to gefitinib or erlotinib. PMID:15897464

  10. Erlotinib is a viable treatment for tumors with acquired resistance to cetuximab.

    PubMed

    Brand, Toni M; Dunn, Emily F; Iida, Mari; Myers, Rebecca A; Kostopoulos, Kellie T; Li, Chunrong; Peet, Chimera R; Wheeler, Deric L

    2011-09-01

    The epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase (RTK) and is recognized as a key mediator of tumorigenesis in many human tumors. Currently there are five EGFR inhibitors used in oncology, two monoclonal antibodies (panitumumab, and cetuximab) and three tyrosine kinase inhibitors (erlotinib, gefitinib, and lapatinib). Both strategies of EGFR inhibition have demonstrated clinical successes, however many tumors remain non-responsive or acquire resistance during therapy. To explore potential molecular mechanisms of acquired resistance to cetuximab we previously established a series of cetuximab-resistant clones by chronically exposing the NCI-H226 NSCLC cell line to escalating doses of cetuximab. Cetuximab-resistant clones exhibited a dramatic increase in steady-state expression of EGFR, HER2, and HER3 receptors as well as increased signaling through the MAPK and AKT pathways. RNAi studies demonstrated dependence of cetuximab-resistant clones on the EGFR signaling network. These findings prompted investigation on whether or not cells with acquired resistance to cetuximab would be sensitive to the EGFR targeted TKI erlotinib. In vitro, erlotinib was able to decrease signaling through the EGFR axis, decrease cellular proliferation, and induce apoptosis. To determine if erlotinib could have therapeutic benefit in vivo, we established cetuximab-resistant NCI-H226 mouse xenografts, and subsequently treated them with erlotinib. Mice harboring cetuximab-resistant tumors treated with erlotinib exhibited either a tumor regression or growth delay as compared to vehicle controls. Analysis of the erlotinib treated tumors demonstrated a decrease in cell proliferation and increase rates of apoptosis. The work presented herein suggests that 1) cells with acquired resistance to cetuximab maintain their dependence on EGFR and 2) tumors developing resistance to cetuximab can benefit from subsequent treatment with erlotinib, providing

  11. Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-beta-lactamase determinants in European hospital.

    PubMed

    Lagatolla, Cristina; Tonin, Enrico A; Monti-Bragadin, Carlo; Dolzani, Lucilla; Gombac, Francesca; Bearzi, Claudia; Edalucci, Elisabetta; Gionechetti, Fabrizia; Rossolini, Gian Maria

    2004-03-01

    Acquired metallo-beta-lactamases (MBLs) can confer broad-spectrum beta-lactam resistance (including carbapenems) not reversible by conventional beta-lactamase inhibitors and are emerging resistance determinants of remarkable clinical importance. In 2001, multidrug-resistant Pseudomonas aeruginosa carrying bla(VIM) MBL genes were found to be widespread (approximately 20% of all P. aeruginosa isolates and 70% of the carbapenem-resistant isolates) at Trieste University Hospital. Clonal diversity and heterogeneity of resistance determinants (either bla(VIM-1)-like or bla(VIM-2)-like) were detected among MBL producers. This evidence is the first that acquired MBLs can rapidly emerge and establish a condition of endemicity in certain epidemiologic settings. PMID:15109432

  12. Inhibition of mitochondrial glutaminase activity reverses acquired erlotinib resistance in non-small cell lung cancer

    PubMed Central

    Xie, Caifeng; Jin, Jiangbo; Bao, Xujie; Zhan, Wei-Hua; Han, Tian-Yu; Gan, Mingxi; Zhang, Chengfu; Wang, Jianbin

    2016-01-01

    The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib has been approved based on the clinical benefit in non-small cell lung cancer (NSCLC) patients over the past decade. Unfortunately, cancer cells become resistant to this agent via various mechanisms, and this limits the improvement in patient outcomes. Thus, it is urgent to develop novel agents to overcome erlotinib resistance. Here, we propose a novel strategy to overcome acquired erlotinib resistance in NSCLC by inhibiting glutaminase activity. Compound 968, an inhibitor of the glutaminase C (GAC), when combined with erlotinib potently inhibited the cell proliferation of erlotinib-resistant NSCLC cells HCC827ER and NCI-H1975. The combination of compound 968 and erlotinib not only decreased GAC and EGFR protein expression but also inhibited GAC activity in HCC827ER cells. The growth of erlotinib-resistant cells was glutamine-dependent as proved by GAC gene knocked down and rescue experiment. More importantly, compound 968 combined with erlotinib down-regulated the glutamine and glycolysis metabolism in erlotinib-resistant cells. Taken together, our study provides a valuable approach to overcome acquired erlotinib resistance by blocking glutamine metabolism and suggests that combination of EGFR-TKI and GAC inhibitor maybe a potential treatment strategy for acquired erlotinib-resistant NSCLC. PMID:26575584

  13. Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells

    PubMed Central

    Gaspar, Nathalie; Sharp, Swee Y; Pacey, Simon; Jones, Chris; Walton, Michael; Vassal, Gilles; Eccles, Suzanne; Pearson, Andrew; Workman, Paul

    2009-01-01

    HSP90 inhibitors, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) which is currently in phase II/III clinical trials, are promising new anticancer agents. Here, we explored acquired resistance to HSP90 inhibitors in glioblastoma, a primary brain tumor with poor prognosis. Glioblastoma cells were exposed continuously to increased 17-AAG concentrations. Four 17-AAG-resistant glioblastoma cell lines were generated. High resistance levels with resistance indices (RI=resistant line IC50/parental line IC50) of 20-137 were obtained rapidly (2-8 weeks). After cessation of 17-AAG exposure, RI decreased and then stabilised. Cross-resistance was found with other ansamycin benzoquinones but not with the structurally unrelated HSP90 inhibitors, radicicol, the purine BIIB021 and the resorcinylic pyrazole/isoxazole amide compounds VER-49009, VER-50589, and NVP-AUY922. An inverse correlation between NQO1 expression/activity and 17-AAG IC50 was observed in the resistant lines. The NQO1 inhibitor ES936 abrogated the differential effects of 17-AAG sensitivity between the parental and resistant lines. NQO1 mRNA levels and NQO1 DNA polymorphism analysis indicated different underlying mechanisms: reduced expression and selection of the inactive NQO1*2 polymorphism. Decreased NQO1 expression was also observed in a melanoma line with acquired resistance to 17-AAG. No resistance was generated with VER-50589 and NVP-AUY922. In conclusion, low NQO1 activity is a likely mechanism of acquired resistance to 17-AAG in glioblastoma, melanoma and possibly other tumor types. Such resistance can be overcome with novel HSP90 inhibitors. PMID:19244114

  14. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients

    PubMed Central

    2014-01-01

    Introduction Inhibitors of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway can overcome endocrine resistance in estrogen receptor (ER) α-positive breast cancer, but companion diagnostics indicating PI3K/AKT/mTOR activation and consequently endocrine resistance are lacking. PIK3CA mutations frequently occur in ERα-positive breast cancer and result in PI3K/AKT/mTOR activation in vitro. Nevertheless, the prognostic and treatment-predictive value of these mutations in ERα-positive breast cancer is contradictive. We tested the clinical validity of PIK3CA mutations and other canonic pathway drivers to predict intrinsic resistance to adjuvant tamoxifen. In addition, we tested the association between these drivers and downstream activated proteins. Methods Primary tumors from 563 ERα-positive postmenopausal patients, randomized between adjuvant tamoxifen (1 to 3 years) versus observation were recollected. PIK3CA hotspot mutations in exon 9 and exon 20 were assessed with Sequenom Mass Spectometry. Immunohistochemistry was performed for human epidermal growth factor receptor 2 (HER2), phosphatase and tensin homolog (PTEN), and insulin-like growth factor 1 receptor (IGF-1R). We tested the association between these molecular alterations and downstream activated proteins (like phospho-protein kinase B (p-AKT), phospho-mammalian target of rapamycin (p-mTOR), p-ERK1/2, and p-p70S6K). Recurrence-free interval improvement with tamoxifen versus control was assessed according to the presence or absence of canonic pathway drivers, by using Cox proportional hazard models, including a test for interaction. Results PIK3CA mutations (both exon 9 and exon 20) were associated with low tumor grade. An enrichment of PIK3CA exon 20 mutations was observed in progesterone receptor- positive tumors. PIK3CA exon 20 mutations were not associated with downstream-activated proteins. No significant interaction between PIK3CA mutations or any

  15. Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases.

    PubMed

    Doi, Yohei; Wachino, Jun-Ichi; Arakawa, Yoshichika

    2016-06-01

    Aminoglycoside-producing Actinobacteria are known to protect themselves from their own aminoglycoside metabolites by producing 16S ribosomal RNA methyltransferase (16S-RMTase), which prevents them from binding to the 16S rRNA targets. Ten acquired 16S-RMTases have been reported from gram-negative pathogens. Most of them posttranscriptionally methylate residue G1405 of 16S rRNA resulting in high-level resistance to gentamicin, tobramycin, amikacin, and plazomicin. Strains that produce 16S-RMTase are frequently multidrug-resistant or even extensively drug-resistant. Although the direct clinical impact of high-level aminoglycoside resistance resulting from production of 16S-RMTase is yet to be determined, ongoing spread of this mechanism will further limit treatment options for multidrug-resistant and extensively drug-resistant gram-negative infections. PMID:27208771

  16. A Convenient Cell Culture Model for CML Acquired Resistance Through BCR-ABL Mutations.

    PubMed

    Wang, Zhiqiang; Chen, WenYong

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) are the effective treatments for chronic myeloid leukemia (CML). However, clinical resistance to TKIs that leads to patient relapse remains a challenge. Acquisition of BCR-ABL mutations is crucial in the resistance but the underlying molecular mechanisms are poorly understood. Here we describe a cell culture model for CML acquired resistance in which blast crisis CML cells undergo initial apoptosis upon treatment with therapeutically effective doses of TKIs, but the cells regrow quickly with development of resistance through BCR-ABL mutations. This model mimics the clinical process of acquisition of BCR-ABL mutations and will be an important tool to dissect molecular mechanisms of CML drug resistance and to explore strategies to overcome resistance. PMID:27581146

  17. Genomic Insights into Intrinsic and Acquired Drug Resistance Mechanisms in Achromobacter xylosoxidans

    PubMed Central

    Hu, Yongfei; Zhu, Yuying; Ma, Yanan; Liu, Fei; Lu, Na; Yang, Xi; Luan, Chunguang; Yi, Yong

    2014-01-01

    Achromobacter xylosoxidans is an opportunistic pathogen known to be resistant to a wide range of antibiotics; however, the knowledge about the drug resistance mechanisms is limited. We used a high-throughput sequencing approach to sequence the genomes of the A. xylosoxidans type strain ATCC 27061 and a clinical isolate, A. xylosoxidans X02736, and then we used different bioinformatics tools to analyze the drug resistance genes in these bacteria. We obtained the complete genome sequence for A. xylosoxidans ATCC 27061 and the draft sequence for X02736. We predicted a total of 50 drug resistance-associated genes in the type strain, including 5 genes for β-lactamases and 17 genes for efflux pump systems; these genes are also conserved among other A. xylosoxidans genomes. In the clinical isolate, except for the conserved resistance genes, we also identified several acquired resistance genes carried by a new transposon embedded in a novel integrative and conjugative element. Our study provides new insights into the intrinsic and acquired drug resistance mechanisms in A. xylosoxidans, which will be helpful for better understanding the physiology of A. xylosoxidans and the evolution of antibiotic resistance in this bacterium. PMID:25487802

  18. Acquired antimicrobial resistance in the intestinal microbiota of diverse cat populations.

    PubMed

    Moyaert, H; De Graef, E M; Haesebrouck, F; Decostere, A

    2006-08-01

    The aim of this study was to investigate the prevalence of acquired antimicrobial resistance in the resident intestinal microbiota of cats and to identify significant differences between various cat populations. Escherichia coli, Enterococcus faecalis, E. faecium and Streptococcus canis were isolated as faecal indicator bacteria from rectal swabs of 47 individually owned cats, 47 cattery cats and 18 hospitalised cats, and submitted through antimicrobial sensitivity tests. The results revealed that bacteria isolated from hospitalised and/or cattery cats were more frequently resistant than those from individually owned cats. E. coli isolates from hospitalised cats were particularly resistant to ampicillin, tetracycline and sulfonamide. Both enterococci and streptococci showed high resistance to tetracycline and in somewhat lesser extent to erythromycin and tylosin. Most E. faecium isolates were resistant to lincomycin and penicillin. One E. faecalis as well as one E. faecium isolate from hospitalised cats showed 'high-level resistance' (MIC > 500 microg/ml) against gentamicin, a commonly used antimicrobial agent in case of human enterococcal infections. The results of this research demonstrate that the extent of acquired antimicrobial resistance in the intestinal microbiota of cats depends on the social environment of the investigated population. It is obvious that the flora of healthy cats may act as a reservoir of resistance genes. PMID:16330058

  19. Tamoxifen for breast cancer prevention

    SciTech Connect

    Jordan, V.C.

    1995-02-01

    The case for tamoxifen to be tested as a preventive for breast cancer has merit. Animal studies demonstrate that tamoxifen prevents mammary carcinogenesis and clinical studies now confirm that adjuvant tamoxifen therapy is the only systemic treatment that will prevent contralateral breast cancer. Developing clinical studies confirm the laboratory data that tamoxifen will maintain post-menopausal bone density in the lumbar spine and the neck of the femur; two important skeletal sites for the ultimate prevention of osteoporosis. However, a most important target site-specific effect of tamoxifen is the decrease in low-density lipoprotein cholesterol levels in postmenopausal women. This positive property of tamoxifen may be responsible for the recorded decreases in hospital visits for the treatment of cardiac conditions and the significant decrease in fatal myocardial infarction for women treated with 5 years of adjuvant tamoxifen. These data provide the scientific basis to undertake randomized, placebocontrolled clinical trials to test the worth of tamoxifen to prevent breast cancer.

  20. Kinetics and maintenance of acquired resistance in mice to Listeria monocytogenes.

    PubMed

    Kearns, R J; Hinrichs, D J

    1977-06-01

    In the mouse system, acquired resistance to Listeria monocytogenes can only be demonstrated after immunization with viable microorganisms. A successful state of immunity cannot be elicited with formalin-killed organisms or bacterial cell-derived products. Viable, serologically cross-reactive organisms (not mouse pathogenic) do not induce a state of immunity as measured by acquired resistance. The duration of immunity, once established, is dose independent, and the absolute interval of its existence is not extended by secondary challenge with large numbers of viable organisms. The decline of immunity in actively immunized animals is not altered by antigenic challenge with formalin-killed cells or cell products. This indicates that the cellular requirements for the development of host resistance are similar for induction as well as maintenance. In vitro measurements of cellular immunity by migration inhibition indicate that formalin-killed organisms as well as cell products were recognized by actively sensitized lymphocytes obtained from immune animals. PMID:408273

  1. CIPROFLOXACIN RESISTANCE PATTERN AMONG BACTERIA ISOLATED FROM PATIENTS WITH COMMUNITY-ACQUIRED URINARY TRACT INFECTION

    PubMed Central

    REIS, Ana Carolina Costa; SANTOS, Susana Regia da Silva; de SOUZA, Siane Campos; SALDANHA, Milena Góes; PITANGA, Thassila Nogueira; OLIVEIRA, Ricardo Riccio

    2016-01-01

    SUMMARY Objective: To identify the main bacterial species associated with community-acquired urinary tract infection (UTI) and to assess the pattern of ciprofloxacin susceptibility among bacteria isolated from urine cultures. Methods: We conducted a retrospective study in all the patients with community-acquired UTI seen in Santa Helena Laboratory, Camaçari, Bahia, Brazil during five years (2010-2014). All individuals who had a positive urine culture result were included in this study. Results: A total of 1,641 individuals met the inclusion criteria. Despite the fact that participants were female, we observed a higher rate of resistance to ciprofloxacin in males. The most frequent pathogens identified in urine samples were Escherichia coli, Klebsiella pneumoniae and Staphylococcus saprophyticus. Antimicrobial resistance has been observed mainly for ampicillin, sulfamethoxazole + trimethoprim and ciprofloxacin. Moreover, E. coli has shown the highest rate of ciprofloxacin resistance, reaching 36% of ciprofloxacin resistant strains in 2014. Conclusion: The rate of bacterial resistance to ciprofloxacin observed in the studied population is much higher than expected, prompting the need for rational use of this antibiotic, especially in infections caused by E. coli. Prevention of bacterial resistance can be performed through control measures to limit the spread of resistant microorganisms and a rational use of antimicrobial policy. PMID:27410913

  2. Activation of Alternate Prosurvival Pathways Accounts for Acquired Sunitinib Resistance in U87MG Glioma Xenografts

    PubMed Central

    Lv, Hua; Mazloom, Amin R.; Xu, Huilei; Ma'ayan, Avi; Gallo, James M.

    2012-01-01

    Acquired drug resistance represents a major obstacle to using sunitinib for the treatment of solid tumors. Here, we examined the cellular and molecular alterations in tumors that are associated with acquired brain tumor resistance to sunitinib by using an in vivo model. U87MG tumors obtained from nude mice that received sunitinib (40 mg/kg/day) for 30 days were classified into sunitinib-sensitive and -resistant groups based on tumor volume and underwent targeted gene microarray and protein array analyses. The expression of several angiogenesis-associated genes was significantly modulated in sunitinib-treated tumors compared with those in control tumors (p < 0.05), whereas no significant differences were observed between sunitinib-sensitive and -resistant tumors (p > 0.05). Tumor vasculature based on microvessel density, neurogenin 2 chondroitin sulfate proteoglycan density, and α-smooth muscle actin density was also similar in sunitinib-treatment groups (p > 0.05). The moderate increase in unbound sunitinib tumor-to-plasma area-under-the-curve ratio in sunitinib-resistant mice was accompanied by up-regulated ATP-binding cassette G2 expression in tumor. The most profound difference between the sunitinib-sensitive and -resistant groups was found in the expression of several phosphorylated proteins involved in intracellular signaling. In particular, phospholipase C-γ1 phosphorylation in sunitinib-resistant tumors was up-regulated by 2.6-fold compared with that in sunitinib-sensitive tumors (p < 0.05). In conclusion, acquired sunitinib resistance in U87MG tumors is not associated with revascularization in tumors, but rather with the activation of alternate prosurvival pathways involved in an escape mechanism facilitating tumor growth and possibly insufficient drug uptake in tumor cells caused by an up-regulated membrane efflux transporter. PMID:22869928

  3. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression.

    PubMed

    McMahon, Taegan A; Sears, Brittany F; Venesky, Matthew D; Bessler, Scott M; Brown, Jenise M; Deutsch, Kaitlin; Halstead, Neal T; Lentz, Garrett; Tenouri, Nadia; Young, Suzanne; Civitello, David J; Ortega, Nicole; Fites, J Scott; Reinert, Laura K; Rollins-Smith, Louise A; Raffel, Thomas R; Rohr, Jason R

    2014-07-10

    Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing declines of many taxa, including bats, corals, bees, snakes and amphibians. Currently, there is little evidence that wild animals can acquire resistance to these pathogens. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi and the fact that many animals are capable of learning to avoid natural enemies, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity. PMID:25008531

  4. Clinical Significance of Community- and Healthcare-Acquired Carbapenem-Resistant Enterobacteriaceae Isolates

    PubMed Central

    Tang, Hung-Jen; Hsieh, Cheng-Fang; Chang, Ping-Chin; Chen, Jyh-Jou; Lin, Yu-Hsiu; Lai, Chih-Cheng; Chao, Chien-Ming; Chuang, Yin-Ching

    2016-01-01

    This study was conducted to investigate the clinical significance, manifestations, microbiological characteristics and outcomes of carbapenem-resistant Enterobacteriaceae (CRE) isolates, and compare the clinical features of community- and healthcare-acquired CRE isolates. A total of 78 patients were identified to have CRE. Klebsiella pneumoniae was the most common pathogens (n = 42, 53.8%), followed by Enterobacter cloacae (n = 24, 30.8%), and Escherichia coli (n = 11, 14.1%). Most of the patients acquired CRE from healthcare settings (n = 55, 70.5%), and other cases got CRE from community settings (n = 23, 29.5%). Nine cases (11.5%) were classified as CRE colonization. Among the remaining 69 cases of CRE infections, pneumonia (n = 28, 40.6%) was the most common type of infections, followed by urinary tract infection (n = 24, 34.8%), and intra-abdominal infection (n = 16, 23.2%). The patients acquired CRE from community settings were more likely to be elderly, female, and had more urinary tract infections than from healthcare settings. In contrast, the patients acquired CRE from healthcare settings had more intra-abdominal infections, intra-abdominal surgery, and presence of indwelling device than from community settings. In conclusion, community-acquired CRE are not rare, and their associated clinical presentations are different from healthcare-acquired CRE. PMID:26999356

  5. Characterization of in vivo-acquired resistance to macrolides of Mycoplasma gallisepticum strains isolated from poultry

    PubMed Central

    2011-01-01

    The macrolide class of antibiotics, including tylosin and tilmicosin, is widely used in the veterinary field for prophylaxis and treatment of mycoplasmosis. In vitro susceptibility testing of 50 strains of M. gallisepticum isolated in Israel during the period 1997-2010 revealed that acquired resistance to tylosin as well as to tilmicosin was present in 50% of them. Moreover, 72% (13/18) of the strains isolated from clinical samples since 2006 showed acquired resistance to enrofloxacin, tylosin and tilmicosin. Molecular typing of the field isolates, performed by gene-target sequencing (GTS), detected 13 molecular types (I-XIII). Type II was the predominant type prior to 2006 whereas type X, first detected in 2008, is currently prevalent. All ten type X strains were resistant to both fluoroquinolones and macrolides, suggesting selective pressure leading to clonal dissemination of resistance. However, this was not a unique event since resistant strains with other GTS molecular types were also found. Concurrently, the molecular basis for macrolide resistance in M. gallisepticum was identified. Our results revealed a clear-cut correlation between single point mutations A2058G or A2059G in domain V of the gene encoding 23S rRNA (rrnA, MGA_01) and acquired macrolide resistance in M. gallisepticum. Indeed, all isolates with MIC ≥ 0.63 μg/mL to tylosin and with MIC ≥ 1.25 μg/mL to tilmicosin possess one of these mutations, suggesting an essential role in decreased susceptibility of M. gallisepticum to 16-membered macrolides. PMID:21810258

  6. Characterization of in vivo-acquired resistance to macrolides of Mycoplasma gallisepticum strains isolated from poultry.

    PubMed

    Gerchman, Irena; Levisohn, Sharon; Mikula, Inna; Manso-Silván, Lucía; Lysnyansky, Inna

    2011-01-01

    The macrolide class of antibiotics, including tylosin and tilmicosin, is widely used in the veterinary field for prophylaxis and treatment of mycoplasmosis. In vitro susceptibility testing of 50 strains of M. gallisepticum isolated in Israel during the period 1997-2010 revealed that acquired resistance to tylosin as well as to tilmicosin was present in 50% of them. Moreover, 72% (13/18) of the strains isolated from clinical samples since 2006 showed acquired resistance to enrofloxacin, tylosin and tilmicosin. Molecular typing of the field isolates, performed by gene-target sequencing (GTS), detected 13 molecular types (I-XIII). Type II was the predominant type prior to 2006 whereas type X, first detected in 2008, is currently prevalent. All ten type X strains were resistant to both fluoroquinolones and macrolides, suggesting selective pressure leading to clonal dissemination of resistance. However, this was not a unique event since resistant strains with other GTS molecular types were also found. Concurrently, the molecular basis for macrolide resistance in M. gallisepticum was identified. Our results revealed a clear-cut correlation between single point mutations A2058G or A2059G in domain V of the gene encoding 23S rRNA (rrnA, MGA_01) and acquired macrolide resistance in M. gallisepticum. Indeed, all isolates with MIC ≥ 0.63 μg/mL to tylosin and with MIC ≥ 1.25 μg/mL to tilmicosin possess one of these mutations, suggesting an essential role in decreased susceptibility of M. gallisepticum to 16-membered macrolides. PMID:21810258

  7. Increased Mitochondrial DNA Induces Acquired Docetaxel Resistance in Head and Neck Cancer Cells

    PubMed Central

    Mizumachi, T; Suzuki, S; Naito, A; Carcel-Trullols, J; Evans, TT; Spring, PM; Oridate, N; Furuta, Y; Fukuda, S; Higuchi, M

    2008-01-01

    Docetaxel is one of the most effective chemotherapeutic agents against cancer; nevertheless, some patients develop resistance. Unfortunately, their causes and mechanisms remain unknown. We created docetaxel-resistant DRHEp2 from human laryngeal cancer HEp2 and investigated the roles of mitochondrial DNA (mtDNA) and ROS on docetaxel resistance. DRHEp2 had greatly increased mtDNA content. Reduction of mtDNA content in DRHEp2 by ethidium bromide treatment reduced the resistance. These results indicate the possible roles of mtDNA-coded enzymes in mitochondrial respiratory chain (MRC) in resistant mechanisms. Oligomycin A, an Fo-ATPase inhibitor, eliminated docetaxel resistance in DRHEp2. In contrast, inhibitors of other MRC did not. RNA interference targeted to Fo-ATPase d-subunit restored docetaxel-induced cytotoxicity to DRHEp2. These results indicate the roles of Fo-ATPase for resistant mechanisms. Docetaxel induced ROS generation in HEp2 but not in DRHEp2 and antioxidant pyrrolidine dithiocarbamate eliminated docetaxel-induced cytotoxicity, suggesting roles of ROS in docetaxel-induced cell death. Furthermore, inhibition of Fo-ATPase by Oligomycin A induced docetaxel–mediated ROS generation in DRHEp2. Taken together, DRHEp2 acquired docetaxel resistance through increasing Fo-ATPase, which led to diminish docetaxel-induced ROS generation and subsequently inhibited cell death. In conclusion, mtDNA plays an important role in developing docetaxel resistance through the reduction of ROS generation by regulating Fo-ATPase. PMID:17637738

  8. Inherent and Acquired Resistance to Paclitaxel in Hepatocellular Carcinoma: Molecular Events Involved

    PubMed Central

    Meena, Avtar Singh; Sharma, Aanchal; Kumari, Ratna; Mohammad, Naoshad; Singh, Shivendra Vikram; Bhat, Manoj Kumar

    2013-01-01

    Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and is a major cause of cancer related deaths worldwide. Only 10 to 20% of HCC can be surgically excised. Therefore, chemotherapeutic intervention and treatment is essential for achieving favorable prognosis. However, therapeutic outcome of chemotherapy is generally poor owing to inherent resistance of cancer cells to the treatment or due to development of acquired resistance. To differentiate and delineate the molecular events, we developed drug resistant Hep3B cells (DRC) by treating cells with the increasing concentration of paclitaxel. We also developed a unique single cell clone of Hep3B cells (SCC) by selecting single cell colonies and screening them for resistant phenotype. Interestingly, both DRC and SCC were resistant to paclitaxel in comparison to parental Hep3B cells. We analyzed the contributory factors that may be involved in the development of resistance. As expected, level of P-glycoprotein (P-gp) was elevated in DRC. In addition, Caveolin-1 (Cav-1), Fatty acid synthase (FASN) and Cytochrome P450 (CYP450) protein levels were elevated in DRC whereas in SCC, FASN and CYP450 levels were elevated. Downregulation of these molecules by respective siRNAs and/or by specific pharmacological inhibitors resensitized cells to paclitaxel. Interestingly, these drug resistant cells were also less sensitive to vinblastine, doxorubicin and methotrexate with the exception of cisplatin. Our results suggested that differential levels of P-gp, Cav-1 and FASN play a major role in acquired resistant phenotype whereas FASN level was associated with the presentation of inherent resistant phenotype in HCC. PMID:23613870

  9. PP2A inhibition overcomes acquired resistance to HER2 targeted therapy

    PubMed Central

    2014-01-01

    Background HER2 targeted therapies including trastuzumab and more recently lapatinib have significantly improved the prognosis for HER2 positive breast cancer patients. However, resistance to these agents is a significant clinical problem. Although several mechanisms have been proposed for resistance to trastuzumab, the mechanisms of lapatinib resistance remain largely unknown. In this study we generated new models of acquired resistance to HER2 targeted therapy and investigated mechanisms of resistance using phospho-proteomic profiling. Results Long-term continuous exposure of SKBR3 cells to low dose lapatinib established a cell line, SKBR3-L, which is resistant to both lapatinib and trastuzumab. Phospho-proteomic profiling and immunoblotting revealed significant alterations in phospho-proteins involved in key signaling pathways and molecular events. In particular, phosphorylation of eukaryotic elongation factor 2 (eEF2), which inactivates eEF2, was significantly decreased in SKBR3-L cells compared to the parental SKBR3 cells. SKBR3-L cells exhibited significantly increased activity of protein phosphatase 2A (PP2A), a phosphatase that dephosphorylates eEF2. SKBR3-L cells showed increased sensitivity to PP2A inhibition, with okadaic acid, compared to SKBR3 cells. PP2A inhibition significantly enhanced response to lapatinib in both the SKBR3 and SKBR3-L cells. Furthermore, treatment of SKBR3 parental cells with the PP2A activator, FTY720, decreased sensitivity to lapatinib. The alteration in eEF2 phosphorylation, PP2A activity and sensitivity to okadaic acid were also observed in a second HER2 positive cell line model of acquired lapatinib resistance, HCC1954-L. Conclusions Our data suggests that decreased eEF2 phosphorylation, mediated by increased PP2A activity, contributes to resistance to HER2 inhibition and may provide novel targets for therapeutic intervention in HER2 positive breast cancer which is resistant to HER2 targeted therapies. PMID:24958351

  10. Overcoming acquired BRAF inhibitor resistance in melanoma via targeted inhibition of Hsp90 with ganetespib.

    PubMed

    Acquaviva, Jaime; Smith, Donald L; Jimenez, John-Paul; Zhang, Chaohua; Sequeira, Manuel; He, Suqin; Sang, Jim; Bates, Richard C; Proia, David A

    2014-02-01

    Activating BRAF kinase mutations serve as oncogenic drivers in over half of all melanomas, a feature that has been exploited in the development of new molecularly targeted approaches to treat this disease. Selective BRAF(V600E) inhibitors, such as vemurafenib, typically induce initial, profound tumor regressions within this group of patients; however, durable responses have been hampered by the emergence of drug resistance. Here, we examined the activity of ganetespib, a small-molecule inhibitor of Hsp90, in melanoma lines harboring the BRAF(V600E) mutation. Ganetespib exposure resulted in the loss of mutant BRAF expression and depletion of mitogen-activated protein kinase and AKT signaling, resulting in greater in vitro potency and antitumor efficacy compared with targeted BRAF and MAP-ERK kinase (MEK) inhibitors. Dual targeting of Hsp90 and BRAF(V600E) provided combinatorial benefit in vemurafenib-sensitive melanoma cells in vitro and in vivo. Importantly, ganetespib overcame mechanisms of intrinsic and acquired resistance to vemurafenib, the latter of which was characterized by reactivation of extracellular signal-regulated kinase (ERK) signaling. Continued suppression of BRAF(V600E) by vemurafenib potentiated sensitivity to MEK inhibitors after acquired resistance had been established. Ganetespib treatment reduced, but not abolished, elevations in steady-state ERK activity. Profiling studies revealed that the addition of a MEK inhibitor could completely abrogate ERK reactivation in the resistant phenotype, with ganetespib displaying superior combinatorial activity over vemurafenib. Moreover, ganetespib plus the MEK inhibitor TAK-733 induced tumor regressions in vemurafenib-resistant xenografts. Overall these data highlight the potential of ganetespib as a single-agent or combination treatment in BRAF(V600E)-driven melanoma, particularly as a strategy to overcome acquired resistance to selective BRAF inhibitors. PMID:24398428

  11. [A mathematical model for the chemical control of Aedes aegypti (Diptera: Culicidae) having acquired chemical resistance].

    PubMed

    Restrepo-Alape, Leonardo D; Toro-Zapata, Hernán D; Muñoz-Loaiza, Aníbal

    2010-12-01

    Dengue fever is a common vector-borne disease in tropical and subtropical areas. It is transmitted to humans by the bite of an infected female Aedes mosquito. Since no vaccines are currently available which can protect against infection, disease control relies on controlling the mosquito population. This work was aimed at modelling such mosquito's population dynamics regarding chemical control of the adult population and its acquired resistance to chemicals. The model was analysed by using classical dynamic system theory techniques and mosquito growth threshold was determined as this establishes when a particular population may prosper in the environment or when it is likely to disappear. A suitable chemical control strategy was developed from such threshold. Simulations were made in control and non-control scenarios; this determined the degree of control application effectiveness against different levels of acquired resistance. PMID:22030690

  12. Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C

    PubMed Central

    Applegate, Tanya L; Gaudieri, Silvana; Plauzolles, Anne; Chopra, Abha; Grebely, Jason; Lucas, Michaela; Hellard, Margaret; Luciani, Fabio; Dore, Gregory J; Matthews, Gail V

    2014-01-01

    Background Directly Acting Antivirals (DAAs) are predicted to transform hepatitis C (HCV) therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV positive and negative individuals with recent HCV. Methods The NS3 protease, NS5A and NS5B polymerase genes were amplified from fifty genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing. Results Twelve percent of individuals harboured dominant resistance mutations, while 36% demonstrated non dominant resistant variants below that detectable by bulk sequencing (ie < 20%) but above a threshold of 1%. Resistance variants (< 1%) were observed at most sites associated with DAA resistance from all classes, with the exception of sofosbuvir. Conclusions Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low level mutations to all DAA classes were observed by deep sequencing at the majority of sites, and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. PMID:25105742

  13. A family cluster of tuberculosis cases, including a case of acquired multidrug resistant tuberculosis.

    PubMed

    Holden, Julie; Trachtman, Louis

    2012-01-01

    Although the number of tuberculosis cases in the US is at an all-time low, with progressive declines seen for the past 17 years, many goals in the tuberculosis elimination process remain unrealized. This report describes a cluster of four tuberculosis cases in a family, including one case of acquired multidrug resistant tuberculosis. It also underscores some important issues in tuberculosis control today, including significant disparities in the foreign-born population with multidrug resistant tuberculosis as a looming problem, as well as utilization of therapeutic drug level monitoring in complicated cases. PMID:22533114

  14. Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer.

    PubMed

    Huw, L-Y; O'Brien, C; Pandita, A; Mohan, S; Spoerke, J M; Lu, S; Wang, Y; Hampton, G M; Wilson, T R; Lackner, M R

    2013-01-01

    Agents targeting the PI3K/mTOR signaling axis have shown promise in early-phase clinical trials and are currently being studied in later stages of clinical development in multiple indications. Experience with other targeted agents suggests that clinical responses may be short-lived because of acquired resistance to therapy. Here, we report preclinical modeling of acquired resistance in a HER2-positive, PIK3CA mutant breast cancer cell line, KPL-4. We identified a heretofore-unreported mechanism of resistance, specifically high-level amplification of the mutant allele of PIK3CA, which resulted in a marked upregulation of PI3K signaling, enabling resistant cells to regain proliferative capacity at clinically relevant concentrations of the PI3K inhibitor, GDC-0941. We show that knockdown of the amplified PIK3CA mutant allele in these cells by small interfering RNA restored pathway signaling and sensitivity to PI3K inhibition at levels comparable to parental cells. These novel preclinical findings suggest that, in addition to assessment of other previously reported mechanisms of resistance, evaluation of PI3K copy number variation should be integrated into the exploratory analysis of biopsies obtained at disease progression. PMID:24366379

  15. Physiological and Molecular Characteristics of Elicitin-Induced Systemic Acquired Resistance in Tobacco.

    PubMed Central

    Keller, H.; Blein, J. P.; Bonnet, P.; Ricci, P.

    1996-01-01

    Elicitins are low molecular weight proteins secreted by all Phytophthora species analyzed so far. Application of the purified proteins to tobacco Nicotiana tabacum leads to the induction of resistance to subsequent inoculations with the black shank-causing agent, Phytophthora parasitica var nicotianae. In this paper, we describe the systemic characteristics of elicitin-induced acquired resistance in tobacco. Elicitin application is followed by the rapid translocation of the protein in the plant. The basic elicitin, cryptogein, induces necrosis formation in the leaves, which results from accumulation of the protein in these organs. Necrosis does not seem to be essential for the establishment of systemic acquired resistance (SAR), since resistance induced by the acidic elicitin, capsicein, is not accompanied by the development of visible symptoms on the leaves. Both elicitins trigger the coordinate accumulation of transcripts from nine genes, previously described to be expressed during establishment of SAR. Additionally, elicitin treatment leads to the activation of the multiple response gene str 246. In leaves, transcript accumulation was found to be higher in all cases in response to cryptogein compared to capsicein treatment. These results, along with northern hybridization analysis following infiltration of leaves with cryptogein, indicate that SAR genes appear to be expressed locally, corresponding to necrosis formation as well as systemically during induction of resistance. To our knowledge, elicitins are the only well-characterized, pathogen-derived molecules that trigger SAR in a plant. PMID:12226188

  16. Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab.

    PubMed

    Wheeler, Deric L; Iida, Mari; Kruser, Tim J; Nechrebecki, Meghan M; Dunn, Emily F; Armstrong, Eric A; Huang, Shyhmin; Harari, Paul M

    2009-04-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a major role in oncogenesis. Cetuximab is an EGFR-blocking antibody that is FDA approved for use in patients with metastatic colorectal cancer (mCRC) and head and neck squamous cell carcinoma (HNSCC). Although cetuximab has shown strong clinical benefit for a subset of cancer patients, most become refractory to cetuximab therapy. We reported that cetuximab-resistant NSCLC line NCI-H226 cells have increased steady-state expression and activity of EGFR secondary to altered trafficking/degradation and this increase in EGFR expression and activity lead to hyper-activation of HER3 and down stream signals to survival. We now present data that Src family kinases (SFKs) are highly activated in cetuximab-resistant cells and enhance EGFR activation of HER3 and PI(3)K/Akt. Studies using the Src kinase inhibitor dasatinib decreased HER3 and PI(3)K/Akt activity. In addition, cetuximab-resistant cells were resensitized to cetuximab when treated with dasatinib. These results indicate that SFKs and EGFR cooperate in acquired resistance to cetuximab and suggest a rationale for clinical strategies that investigate combinatorial therapy directed at both the EGFR and SFKs in patients with acquired resistance to cetuximab. PMID:19276677

  17. Bordetella pertussis Acquires Resistance to Complement-Mediated Killing In Vivo

    PubMed Central

    Pishko, Elizabeth J.; Betting, David J.; Hutter, Christina S.; Harvill, Eric T.

    2003-01-01

    In order to initially colonize a host, bacteria must avoid various components of the innate immune system, one of which is complement. The genus Bordetella includes three closely related species that differ in their ability to resist complement-mediated killing. Bordetella parapertussis and Bordetella bronchiseptica resist killing in naïve serum, a characteristic that may aid in efficient respiratory tract colonization and has been attributed to expression of O antigen. Bordetella pertussis lacks O antigen and is sensitive to naïve serum in vitro, yet it also efficiently colonizes the respiratory tract. Based on these observations, we hypothesized that B. pertussis may have an alternate mechanism to resist complement in vivo. While a number of reports on serum sensitivity of the bordetellae have been published, we show here that serum concentration and growth conditions can greatly alter the observed level of sensitivity to complement and that all but one strain of B. pertussis observed were sensitive to some level of naïve serum in vitro, particularly when there was excess complement. However, B. pertussis rapidly acquires increased resistance in vivo to naïve serum that is specific to the alternative pathway. Resistance is not efficiently acquired by B. parapertussis and B. bronchiseptica mutants lacking O antigen. This B. pertussis-specific mechanism of complement resistance does not appear to be dependent on either brkA or other genes expressed specifically in the Bvg+ phase. This in vivo acquisition of alternative pathway resistance suggests that there is a novel O antigen-independent method by which B. pertussis evades complement-mediated killing. PMID:12933835

  18. Bordetella pertussis acquires resistance to complement-mediated killing in vivo.

    PubMed

    Pishko, Elizabeth J; Betting, David J; Hutter, Christina S; Harvill, Eric T

    2003-09-01

    In order to initially colonize a host, bacteria must avoid various components of the innate immune system, one of which is complement. The genus Bordetella includes three closely related species that differ in their ability to resist complement-mediated killing. Bordetella parapertussis and Bordetella bronchiseptica resist killing in naïve serum, a characteristic that may aid in efficient respiratory tract colonization and has been attributed to expression of O antigen. Bordetella pertussis lacks O antigen and is sensitive to naïve serum in vitro, yet it also efficiently colonizes the respiratory tract. Based on these observations, we hypothesized that B. pertussis may have an alternate mechanism to resist complement in vivo. While a number of reports on serum sensitivity of the bordetellae have been published, we show here that serum concentration and growth conditions can greatly alter the observed level of sensitivity to complement and that all but one strain of B. pertussis observed were sensitive to some level of naïve serum in vitro, particularly when there was excess complement. However, B. pertussis rapidly acquires increased resistance in vivo to naïve serum that is specific to the alternative pathway. Resistance is not efficiently acquired by B. parapertussis and B. bronchiseptica mutants lacking O antigen. This B. pertussis-specific mechanism of complement resistance does not appear to be dependent on either brkA or other genes expressed specifically in the Bvg(+) phase. This in vivo acquisition of alternative pathway resistance suggests that there is a novel O antigen-independent method by which B. pertussis evades complement-mediated killing. PMID:12933835

  19. Two novel ALK mutations mediate acquired resistance to the next generation ALK inhibitor alectinib

    PubMed Central

    Katayama, Ryohei; Friboulet, Luc; Koike, Sumie; Lockerman, Elizabeth L.; Khan, Tahsin M.; Gainor, Justin F.; Iafrate, A. John; Takeuchi, Kengo; Taiji, Makoto; Okuno, Yasushi; Fujita, Naoya; Engelman, Jeffrey A.; Shaw, Alice T.

    2014-01-01

    Purpose The first-generation ALK tyrosine kinase inhibitor (TKI) crizotinib is a standard therapy for patients with ALK-rearranged NSCLC. Several next-generation ALK-TKIs have entered the clinic and have shown promising activity in crizotinib-resistant patients. As patients still relapse even on these next-generation ALK-TKIs, we examined mechanisms of resistance to the next-generation ALK-TKI alectinib and potential strategies to overcome this resistance. Experimental Design We established a cell line model of alectinib resistance, and analyzed a resistant tumor specimen from a patient who had relapsed on alectinib. We developed Ba/F3 models harboring alectinib-resistant ALK mutations and evaluated the potency of other next-generation ALK-TKIs in these models. We tested the antitumor activity of the next-generation ALK-TKI ceritinib in the patient with acquired resistance to alectinib. To elucidate structure-activity-relationships of ALK mutations, we performed computational thermodynamic simulation with MP-CAFEE. Results We identified a novel V1180L gatekeeper mutation from the cell line model and a second novel I1171T mutation from the patient who developed resistance to alectinib. Both ALK mutations conferred resistance to alectinib as well as to crizotinib, but were sensitive to ceritinib and other next-generation ALK-TKIs. Treatment of the patient with ceritinib led to a marked response. Thermodynamics simulation suggests that both mutations lead to distinct structural alterations that decrease the binding affinity with alectinib. Conclusions We have identified two novel ALK mutations arising after alectinib exposure which are sensitive to other next generation ALK-TKIs. The ability of ceritinib to overcome alectinib-resistance mutations suggests a potential role for sequential therapy with multiple next-generation ALK-TKIs. PMID:25228534

  20. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression

    PubMed Central

    McMahon, Taegan A.; Sears, Brittany F.; Venesky, Matthew D.; Bessler, Scott M.; Brown, Jenise M.; Deutsch, Kaitlin; Halstead, Neal T.; Lentz, Garrett; Tenouri, Nadia; Young, Suzanne; Civitello, David J.; Ortega, Nicole; Fites, J. Scott; Reinert, Laura K.; Rollins-Smith, Louise A.; Raffel, Thomas R.; Rohr, Jason R.

    2015-01-01

    Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group1, causing declines of many taxa, including bats, corals, bees, snakes and amphibians1–4. Currently, there is little evidence that wild animals can acquire resistance to these pathogens5. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians6. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression7–9 and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi5 and the fact that many animals are capable of learning to avoid natural enemies10, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity. PMID:25008531

  1. Bacteraemia and antibiotic-resistant pathogens in community acquired pneumonia: risk and prognosis.

    PubMed

    Torres, Antoni; Cillóniz, Catia; Ferrer, Miquel; Gabarrús, Albert; Polverino, Eva; Villegas, Santiago; Marco, Francesc; Mensa, Josep; Menéndez, Rosario; Niederman, Michael

    2015-05-01

    The sensitivity of blood cultures in the diagnosis of bacteraemia for community-acquired pneumonia is low. Recommendations, by guidelines, to perform blood cultures are discordant. We aimed to determine the incidence, microbial aetiology, risk factors and outcomes of bacteraemic patients with community-acquired pneumonia, including cases with antibiotic-resistant pathogens (ARP). A prospective, observational study was undertaken on consecutive adult patients admitted to the Hospital Clinic of Barcelona (Barcelona, Spain) with community-acquired pneumonia and blood cultures were obtained. Of the 2892 patients included, bacteraemia was present in 297 (10%) patients; 30 (10%) of whom had ARP (multidrug-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and an extended spectrum of beta-lactamase producing Enterobacteriaceae). In multivariate analyses, pleuritic pain, C-reactive protein ≥21.6 mg·dL(-1) and intensive care unit admissions were independently associated with bacteraemia, while prior antibiotic treatment and pneumococcal vaccine were protective factors. The risk factors for ARP bacteraemia were previous antibiotics and C-reactive protein <22.2 mg·dL(-1), while pleuritic pain was the only protective factor in the multivariate analysis. Bacteraemia (excluding ARP), appropriate empiric treatment, neurological disease, arterial oxygen tension/inspiratory oxygen fraction <250, pneumonia severity index risk classes IV and V, and intensive care unit admission were independently associated with a 30-day hospital mortality in the multivariate analysis. Inappropriate therapy was more frequent in ARP bacteraemia, compared with other bacteraemias (27% versus 3%, respectively, p<0.001). Antibiotic therapy protected against bacteraemia, but increased specifically the risk of bacteraemia from ARP due to the inappropriate coverage of these pathogens. Identifying patients at risk of ARP bacteraemia would help in

  2. Mechanisms of resistance to etoposide and teniposide in acquired resistant human colon and lung carcinoma cell lines.

    PubMed

    Long, B H; Wang, L; Lorico, A; Wang, R C; Brattain, M G; Casazza, A M

    1991-10-01

    Stable acquired resistance to etoposide (VP-16) or teniposide (VM-26) in HCT116 human colon carcinoma cells and A549 human lung adenocarcinoma cells, was previously obtained by weekly 1-h exposures to either drug (B. H. Long, Natl. Cancer Inst. Monogr., 4: 123-127, 1987). The purpose of this study was to identify possible mechanisms of resistance present in these cells by using human mdr1 and topoisomerase II DNA probes, antibodies to these gene products, and P4 phage unknotting assay for topoisomerase II activities. HCT116(VP)35 cells were 9-, 7-, and 6-fold resistant to VP-16, VM-26, and Adriamycin, respectively, and showed no cross-resistance to colchicine and actinomycin D. These cells had no differences in mdr1 gene, mdr1 mRNA, or P-glycoprotein levels but displayed decreased levels of topoisomerase II mRNA and enzyme activity without any alteration of drug sensitivity displayed by the enzyme. HCT116(VM)34 cells were 5-, 7-, and 21-fold resistant to VP-16, VM-26, and Adriamycin; were cross-resistant to colchicine (7-fold) and actinomycin D (18-fold); and possessed a 9-fold increase in mdr1 mRNA and increased P-glycoprotein without evidence of mdr1 gene amplification. No alterations in topoisomerase II gene or mRNA levels, enzyme activity, or drug sensitivity were observed. A549(VP)28 and A549(VM)28 cells were 8-fold resistant to VP-16 and VM-26 and 3-fold resistant to Adriamycin. Both lines were not cross-resistant to colchicine or actinomycin D but were hypersensitive to cis-platinum. No alterations in mdr1 gene, mdr1 mRNA, or P-glycoprotein levels, but lower topoisomerase II mRNA levels and decreased enzyme activities, were observed. Of the four acquired resistant cell lines, resistance is likely related to elevated mdr1 expression in one line and to decreased topoisomerase II expression in the other three lines. PMID:1717144

  3. Acquired-resistance of bevacizumab treatment for radiation brain necrosis: a case report

    PubMed Central

    Sun, Dayong; Bian, Jianliang; Chang, Joe Y.; Yuan, Zhiyong; Wang, Ping

    2016-01-01

    The case study reported on acquired bevacizumab resistance in one patient receiving re-treatment with bevacizumab following radiation brain necrosis progression after bevacizumab was discontinued. This case offers novel and additional insight for bevacizumab treatment. Low-dose bevacizumab is effective for radiation brain necrosis, and radiation brain necrosis may progress after bevacizumab discontinuation, whereas too many cycles of bevacizumab treatment may induce drug-resistance and re-treatment failure following the progression. Therefore, more rational administration for radiation brain necrosis with bevacizumab may include three aspects: short-course treatment, timely discontinuation upon obtaining satisfactory effects (to prevent long-term medication associated resistance) and re-treatment after brain necrosis progression. PMID:26933810

  4. Sym004, a novel EGFR antibody mixture, can overcome acquired resistance to cetuximab.

    PubMed

    Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L

    2013-10-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (Ctx(R)) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for Ctx(R) tumor cells. Sym004 treatment of Ctx(R) clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo Ctx(R) NCI-H226 mouse xenografts and subsequently treated Ctx(R) tumors with Sym004. Sym004 treatment of mice harboring Ctx(R) tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in Ctx(R) tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for Ctx(R) tumors. PMID:24204198

  5. ACE2 overexpression inhibits acquired platinum resistance-induced tumor angiogenesis in NSCLC.

    PubMed

    Cheng, Qijian; Zhou, Ling; Zhou, Jianping; Wan, Huanying; Li, Qingyun; Feng, Yun

    2016-09-01

    Angiotensin II (AngII) is a multifunctional bioactive peptide in the renin-angiotensin system (RAS). Angiotensin-converting enzyme 2 (ACE2) is a newly identified component of RAS. We previously reported that ACE2 overexpression may inhibit cell growth and vascular endothelial growth factor (VEGF) production in vitro and in vivo. In the present study, we investigated the effect of ACE2 on tumor-associated angiogen-esis after the development of acquired platinum resistance in non-small cell lung cancer (NSCLC). Four NSCLC cell lines, A549, LLC, A549-DDP and LLC-DDP, were used in vitro, while A549 and A549-DDP cells were used in vivo. A549-DDP and LLC-DDP cells were newly established at our institution as acquired platinum-resistant sublines by culturing the former parent cells in cisplatin (CDDP)-containing conditioned medium for 6 months. These platinum-resistant cells showed significantly higher angiotensin II type 1 receptor (AT1R), ACE and VEGF production and lower ACE2 expression than their corresponding parent cells. We showed that ACE2 overexpression inhibited the production of VEGF in vitro and in vivo compared to their corresponding parent cells. We also found that ACE2 overexpression reduced the expression of AT1R and ACE. Additionally, we confirmed that ACE2 overexpres-sion inhibited cell growth and VEGF production while simultaneously suppressing ACE and AT1R expression in human lung cancer xenografts. Our findings indicate that ACE2 overexpression may potentially suppress angiogenesis in NSCLC after the development of acquired platinum resistance. PMID:27460845

  6. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials.

    PubMed

    Hernando-Amado, Sara; Blanco, Paula; Alcalde-Rico, Manuel; Corona, Fernando; Reales-Calderón, Jose A; Sánchez, María B; Martínez, José L

    2016-09-01

    Multidrug efflux pumps constitute a group of transporters that are ubiquitously found in any organism. In addition to other functions with relevance for the cell physiology, efflux pumps contribute to the resistance to compounds used for treating different diseases, including resistance to anticancer drugs, antibiotics or antifungal compounds. In the case of antimicrobials, efflux pumps are major players in both intrinsic and acquired resistance to drugs currently in use for the treatment of infectious diseases. One important aspect not fully explored of efflux pumps consists on the identification of effectors able to induce their expression. Indeed, whereas the analysis of clinical isolates have shown that mutants overexpressing these resistance elements are frequently found, less is known on the conditions that may trigger expression of efflux pumps, hence leading to transient induction of resistance in vivo, a situation that is barely detectable using classical susceptibility tests. In the current article we review the structure and mechanisms of regulation of the expression of bacterial and fungal efflux pumps, with a particular focus in those for which a role in clinically relevant resistance has been reported. PMID:27620952

  7. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil

    PubMed Central

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; de Morais, Marcia Maria Camargo; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-01-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosaisolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosaisolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed. PMID:26676375

  8. The changing face of community-acquired methicillin-resistant Staphylococcus aureus.

    PubMed

    Kale, P; Dhawan, B

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of infection, both in hospitalised patients with significant healthcare exposure and in patients without healthcare risk factors. Community-acquired methicillin-resistant S. aureus (CA-MRSA) are known for their rapid community transmission and propensity to cause aggressive skin and soft tissue infections and community-acquired pneumonia. The distinction between the healthcare-associated (HA)-MRSA and CA-MRSA is gradually fading owing to the acquisition of multiple virulence factors and genetic elements. The movement of CA-MRSA strains into the nosocomial setting limits the utility of using clinical risk factors alone to designate community or HA status. Identification of unique genetic characteristics and genotyping are valuable tools for MRSA epidemiological studies. Although the optimum pharmacotherapy for CA-MRSA infections has not been determined, many CA-MRSA strains remain broadly susceptible to several non-β-lactam antibacterial agents. This review aimed at illuminating the characteristic features of CA-MRSA, virulence factors, changing clinical settings and molecular epidemiology, insurgence into the hospital settings and therapy with drug resistance. PMID:27514947

  9. Selinexor is effective in acquired resistance to ibrutinib and synergizes with ibrutinib in chronic lymphocytic leukemia.

    PubMed

    Hing, Zachary A; Mantel, Rose; Beckwith, Kyle A; Guinn, Daphne; Williams, Erich; Smith, Lisa L; Williams, Katie; Johnson, Amy J; Lehman, Amy M; Byrd, John C; Woyach, Jennifer A; Lapalombella, Rosa

    2015-05-14

    Despite the therapeutic efficacy of ibrutinib in chronic lymphocytic leukemia (CLL), complete responses are infrequent, and acquired resistance to Bruton agammaglobulinemia tyrosine kinase (BTK) inhibition is being observed in an increasing number of patients. Combination regimens that increase frequency of complete remissions, accelerate time to remission, and overcome single agent resistance are of considerable interest. We previously showed that the XPO1 inhibitor selinexor is proapoptotic in CLL cells and disrupts B-cell receptor signaling via BTK depletion. Herein we show the combination of selinexor and ibrutinib elicits a synergistic cytotoxic effect in primary CLL cells and increases overall survival compared with ibrutinib alone in a mouse model of CLL. Selinexor is effective in cells isolated from patients with prolonged lymphocytosis following ibrutinib therapy. Finally, selinexor is effective in ibrutinib-refractory mice and in a cell line harboring the BTK C481S mutation. This is the first report describing the combined activity of ibrutinib and selinexor in CLL, which represents a new treatment paradigm and warrants further evaluation in clinical trials of CLL patients including those with acquired ibrutinib resistance. PMID:25838351

  10. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance.

    PubMed

    Stronach, Euan A; Chen, Michelle; Maginn, Elaina N; Agarwal, Roshan; Mills, Gordon B; Wasan, Harpreet; Gabra, Hani

    2011-11-01

    Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors. PMID:22131882

  11. DNA-PK Mediates AKT Activation and Apoptosis Inhibition in Clinically Acquired Platinum Resistance12

    PubMed Central

    Stronach, Euan A; Chen, Michelle; Maginn, Elaina N; Agarwal, Roshan; Mills, Gordon B; Wasan, Harpreet; Gabra, Hani

    2011-01-01

    Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors. PMID:22131882

  12. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy.

    PubMed

    Kim, S-M; Kim, H; Yun, M R; Kang, H N; Pyo, K-H; Park, H J; Lee, J M; Choi, H M; Ellinghaus, P; Ocker, M; Paik, S; Kim, H R; Cho, B C

    2016-01-01

    Aberrant fibroblast growth factor receptor (FGFR) activation/expression is a common feature in lung cancer (LC). In this study, we evaluated the antitumor activity of and the mechanisms underlying acquired resistance to two potent selective FGFR inhibitors, AZD4547 and BAY116387, in LC cell lines. The antitumor activity of AZD4547 and BAY1163877 was screened in 24 LC cell lines, including 5 with FGFR1 amplification. Two cell lines containing FGFR1 amplifications, H1581 and DMS114, were sensitive to FGFR inhibitors (IC50<250 nm). Clones of FGFR1-amplified H1581 cells resistant to AZD4547 or BAY116387 (H1581AR and H1581BR cells, respectively) were established. Receptor tyrosine kinase (RTK) array and immunoblotting analyses showed strong overexpression and activation of Met in H1581AR/BR cells, compared with that in the parental cells. Gene set enrichment analysis against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that cytokine-cytokine receptor interaction pathways were significantly enriched in H1581AR/BR cells, with Met contributing significantly to the core enrichment. Genomic DNA quantitative PCR and fluorescent in situ hybridization analyses showed MET amplification in H1581AR, but not in H1581BR, cells. Met amplification drives acquired resistance to AZD4547 in H1581AR cells by activating ErbB3. Combination treatment with FGFR inhibitors and an anaplastic lymphoma kinase (ALK)/Met inhibitor, crizotinib, or Met-specific short interfering RNA (siRNA) synergistically inhibited cell proliferation in both H1581AR and H1581BR cells. Conversely, ectopic expression of Met in H1581 cells conferred resistance to AZD4547 and BAY1163877. Acquired resistance to FGFR inhibitors not only altered cellular morphology, but also promoted migration and invasion of resistant clones, in part by inducing epithelial-to-mesenchymal transition. Taken together, our data suggest that Met activation is sufficient to bypass dependency on FGFR signaling. Concurrent

  13. Radiation-resistant acquired immunity of vaccinated mice to Schistosoma mansoni

    SciTech Connect

    Aitken, R.; Coulson, P.S.; Dixon, B.; Wilson, R.A.

    1987-11-01

    Vaccination of mice with attenuated cercariae of Schistosoma mansoni induces specific acquired resistance to challenge infection. This resistance is immunologically-mediated, possibly via a delayed-type hypersensitivity. Studies of parasite migration have shown that the protective mechanism operates most effectively in the lungs of vaccinated mice. We have probed the mechanism by exposing mice to 500 rads of gamma radiation before challenge infection. Our results show that the effector mechanism operative against challenge larvae is resistant to radiation. In contrast, classical immune responses are markedly suppressed by the same treatment. While leukocyte populations in the blood fall dramatically after irradiation, numbers of cells recoverable by bronchoalveolar lavage are unaffected. We suggest that vaccination with attenuated cercariae establishes populations of sensitized cells in the lungs which trigger the mechanism of resistance when challenge schistosomula migrate through pulmonary capillary beds. Although the cells may be partially disabled by irradiation, they remain responsive to worm antigens and thereby capable of initiating the elimination mechanism. This hypothesis would explain the radiation resistance of vaccine-induced immunity to S. mansoni.

  14. Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab

    PubMed Central

    Mitsuhashi, Atsushi; Goto, Hisatsugu; Saijo, Atsuro; Trung, Van The; Aono, Yoshinori; Ogino, Hirokazu; Kuramoto, Takuya; Tabata, Sho; Uehara, Hisanori; Izumi, Keisuke; Yoshida, Mitsuteru; Kobayashi, Hiroaki; Takahashi, Hidefusa; Gotoh, Masashi; Kakiuchi, Soji; Hanibuchi, Masaki; Yano, Seiji; Yokomise, Hiroyasu; Sakiyama, Shoji; Nishioka, Yasuhiko

    2015-01-01

    Bevacizumab exerts anti-angiogenic effects in cancer patients by inhibiting vascular endothelial growth factor (VEGF). However, its use is still limited due to the development of resistance to the treatment. Such resistance can be regulated by various factors, although the underlying mechanisms remain incompletely understood. Here we show that bone marrow-derived fibrocyte-like cells, defined as alpha-1 type I collagen-positive and CXCR4-positive cells, contribute to the acquired resistance to bevacizumab. In mouse models of malignant pleural mesothelioma and lung cancer, fibrocyte-like cells mediate the resistance to bevacizumab as the main producer of fibroblast growth factor 2. In clinical specimens of lung cancer, the number of fibrocyte-like cells is significantly increased in bevacizumab-treated tumours, and correlates with the number of treatment cycles, as well as CD31-positive vessels. Our results identify fibrocyte-like cells as a promising cell biomarker and a potential therapeutic target to overcome resistance to anti-VEGF therapy. PMID:26635184

  15. Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab.

    PubMed

    Mitsuhashi, Atsushi; Goto, Hisatsugu; Saijo, Atsuro; Trung, Van The; Aono, Yoshinori; Ogino, Hirokazu; Kuramoto, Takuya; Tabata, Sho; Uehara, Hisanori; Izumi, Keisuke; Yoshida, Mitsuteru; Kobayashi, Hiroaki; Takahashi, Hidefusa; Gotoh, Masashi; Kakiuchi, Soji; Hanibuchi, Masaki; Yano, Seiji; Yokomise, Hiroyasu; Sakiyama, Shoji; Nishioka, Yasuhiko

    2015-01-01

    Bevacizumab exerts anti-angiogenic effects in cancer patients by inhibiting vascular endothelial growth factor (VEGF). However, its use is still limited due to the development of resistance to the treatment. Such resistance can be regulated by various factors, although the underlying mechanisms remain incompletely understood. Here we show that bone marrow-derived fibrocyte-like cells, defined as alpha-1 type I collagen-positive and CXCR4-positive cells, contribute to the acquired resistance to bevacizumab. In mouse models of malignant pleural mesothelioma and lung cancer, fibrocyte-like cells mediate the resistance to bevacizumab as the main producer of fibroblast growth factor 2. In clinical specimens of lung cancer, the number of fibrocyte-like cells is significantly increased in bevacizumab-treated tumours, and correlates with the number of treatment cycles, as well as CD31-positive vessels. Our results identify fibrocyte-like cells as a promising cell biomarker and a potential therapeutic target to overcome resistance to anti-VEGF therapy. PMID:26635184

  16. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance

    NASA Astrophysics Data System (ADS)

    Boehm, Thomas; Folkman, Judah; Browder, Timothy; O'Reilly, Michael S.

    1997-11-01

    Acquired drug resistance is a major problem in the treatment of cancer. Of the more than 500,000 annual deaths from cancer in the United States, many follow the development of resistance to chemotherapy. The emergence of resistance depends in part on the genetic instability, heterogeneity and high mutational rate of tumour cells. In contrast, endothelial cells are genetically stable, homogenous and have a low mutational rate. Therefore, antiangiogenic therapy directed against a tumour's endothelial cells should, in principle, induce little or no drug resistance. Endostatin, a potent angiogenesis inhibitor, was administered to mice bearing Lewis lung carcinoma, T241 fibrosarcoma or B16F10 melanoma. Treatment was stopped when tumours had regressed. Tumours were then allowed to re-grow and endostatin therapy was resumed. After 6, 4 or 2 treatment cycles, respectively, no tumours recurred after discontinuation of therapy. These experiments show that drug resistance does not develop in three tumour types treated with a potent angiogenesis inhibitor. An unexpected finding is that repeated cycles of antiangiogenic therapy are followed by prolonged tumour dormancy without further therapy.

  17. Surveillance for Travel and Domestically Acquired Multidrug-Resistant Human Shigella Infections-Pennsylvania, 2006-2014.

    PubMed

    Li, Yu Lung; Tewari, Deepanker; Yealy, Courtney C; Fardig, David; M'ikanatha, Nkuchia M

    2016-01-01

    Shigellosis is a leading cause of enteric infections in the United States. We compared antimicrobial resistance in Shigella infections related to overseas travel (travel-associated) and in those acquired domestically by analyzing antimicrobial resistance patterns, geographic distributions, and pulsed-field gel electrophoresis (PFGE) patterns. We tested samples (n = 204) from a collection of isolates recovered from patients in Pennsylvania between 2006 and 2014. Isolates were grouped into travel- and non-travel-associated categories. Eighty-one (79.4%) of the Shigella isolates acquired during international travel were resistant to multiple antibiotics compared to 53 (52.1%) of the infections transmitted in domestic settings. A majority (79.4%) of isolates associated with international travel demonstrated resistance to aminoglycosides and tetracyclines, whereas 47 (46.1%) of the infections acquired domestically were resistant to tetracycline. Almost all isolates (92.2%) transmitted in domestic settings were resistant to aminoglycosides, and 5 isolates from adult male patients were resistant to azithromycin, a drug often used for empiric treatment of severe shigellosis. Twenty (19.6%) isolates associated with illnesses acquired during overseas travel in 4 countries were resistant to quinolones. One S. sonnei PFGE pattern was traced to a multidrug-resistant isolate acquired overseas that had caused a multistate outbreak of shigellosis, suggesting global dissemination of a drug-resistant species. Resistance to certain drugs-for example, tetracycline-increased in both overseas- and domestic-acquired infections during the study period. The prevalence of resistance to macrolides (azithromycin) and third-generation cephalosporins (ceftriaxone) was less than 1%; however, efforts to better monitor changes in drug resistance over time combined with increased antimicrobial stewardship are essential at the local, national, and global levels. PMID:27314654

  18. Facet joint septic arthritis due to community acquired methicillin resistant Staphylococcus aureus (MRSA) - A case report.

    PubMed

    Purushothaman, Rajesh; Inassi, Jojo; Marthya, Anwar

    2015-10-01

    Septic arthritis of facet joint (SAFJ) is extremely rare. Only about sixty cases have been reported so far. A single case of SAFJ in a series of 491 cases of spinal infections was first reported by David-Chaussé in 1981. A case report of SAFJ was published by Halpin in 1987. With the growing availability and use of MRI, more and more cases are being reported. The most common organism that causes SAFJ is Staphylococcus aureus. We are reporting a case of SAFJ caused by community acquired, methicillin resistant S aureus (MRSA) successfully treated by Linezolid. PMID:26719620

  19. Systemic loxoscelism in the age of community-acquired methicillin-resistant Staphylococcus aureus.

    PubMed

    Rogers, Karen M; Klotz, Carrie R; Jack, Meg; Seger, Donna

    2011-02-01

    The increase in cases of community-acquired methicillin-resistant Staphylococcus aureus (MRSA), as well as its isolation from the majority of skin and soft tissue abscesses in the emergency department, requires the emergency physician to consider this diagnosis in all skin or soft tissue infections. However, making the diagnosis of MRSA when the wound is actually a cutaneous lesion of a brown recluse spider bite may have untoward consequences. Furthermore, the clinical manifestations of systemic loxoscelism may be misdiagnosed as a systemic staphylococcal infection. We present a patient with systemic loxoscelism who was diagnosed with a systemic infection and received an unnecessary surgical procedure. PMID:20817348

  20. Tamoxifen administration to mice.

    PubMed

    Whitfield, Jonathan; Littlewood, Trevor; Soucek, Laura

    2015-03-01

    The strategy of fusing a protein of interest to a hormone-binding domain (HBD) of a steroid hormone receptor allows fine control of the activity of the fused protein. Such fusion proteins are inactive in the absence of ligand, because they are complexed with a variety of intracellular polypeptides. Upon ligand binding, the receptor is released from its inhibitory complex and the fusion protein becomes functional. In the murine estrogen receptor (ER) fusion system, proteins are fused to the HBD of the ER. The system relies on the use of a mutant ER known as ER(TAM). Compared to the wild-type HBD, ER(TAM) has 1000-fold lower affinity for estrogen, yet remains responsive to activation by the synthetic steroid 4-hydroxytamoxifen (4-OHT). Because 4-OHT is expensive, animals can be treated with the cheaper precursor tamoxifen, which is converted into 4-OHT by a liver enzyme. Here we present an overview of the methods used to deliver tamoxifen to mice. The most used method is intraperitoneal injection, because the amount of administered compound can be better controlled, but delivery by oral gavage is also possible. For short-term and immediate-effect studies or when conversion of tamoxifen by the liver is to be avoided, 4-OHT can be used directly. PMID:25734062

  1. Tamoxifen regulation of sphingolipid metabolism—therapeutic implications

    PubMed Central

    Morad, Samy A F; Cabot, Myles C

    2015-01-01

    Tamoxifen, a triphenylethylene antiestrogen and one of the first-line endocrine therapies used to treat estrogen receptor-positive breast cancer, has a number of interesting, off-target effects, and among these is the inhibition of sphingolipid metabolism. More specifically, tamoxifen inhibits ceramide glycosylation, and enzymatic step that can adventitiously support the influential tumor-suppressor properties of ceramide, the aliphatic backbone of sphingolipids. Additionally, tamoxifen and metabolites N-desmethyltamoxifen and 4-hydroxytamoxifen, have been shown to inhibit ceramide hydrolysis by the enzyme acid ceramidase. This particular intervention slows ceramide destruction and thereby depresses formation of sphingosine 1-phosphate, a mitogenic sphingolipid with cancer growth-promoting properties. As ceramide-centric therapies are becoming appealing clinical interventions in the treatment of cancer, agents like tamoxifen that can retard the generation of mitogenic sphingolipids and buffer ceramide clearance via inhibition of glycosylation, take on new importance. In this review, we present an abridged, lay introduction to sphingolipid metabolism, briefly chronicle tamoxifen’s history in the clinic, examine studies that demonstrate the impact of triphenylethylenes on sphingolipid metabolism in cancer cells, and canvass works relevant to the use of tamoxifen as adjuvant to drive ceramide-centric therapies in cancer treatment. The objective is to inform the readership of what could be a novel, off-label indication of tamoxifen and structurally-related triphenylethylenes, an indication divorced from estrogen receptor status and one with application in drug resistance. PMID:25964209

  2. Resistance to caspase-8 and -9 fragments in a malignant pleural mesothelioma cell line with acquired cisplatin-resistance

    PubMed Central

    Janson, V; Johansson, A; Grankvist, K

    2010-01-01

    Apoptotic cysteine–aspartate proteases (caspases) are essential for the progression and execution of apoptosis, and detection of caspase fragmentation or activity is often used as markers of apoptosis. Cisplatin (cis-diamminedichloroplatinum (II)) is a chemotherapeutic drug that is clinically used for the treatment of solid tumours. We compared a cisplatin-resistant pleural malignant mesothelioma cell line (P31res1.2) with its parental cell line (P31) regarding the consequences of in vitro acquired cisplatin-resistance on basal and cisplatin-induced (equitoxic and equiapoptotic cisplatin concentrations) caspase-3, -8 and -9 fragmentation and proteolytic activity. Acquisition of cisplatin-resistance resulted in basal fragmentation of caspase-8 and -9 without a concomitant increase in proteolytic activity, and there was an increased basal caspase-3/7 activity. Similarly, cisplatin-resistant non-small-cell lung cancer cells, H1299res, had increased caspase-3 and -9 content compared with the parental H1299 cells. In P31 cells, cisplatin exposure resulted in caspase-9-mediated caspase-3/7 activation, but in P31res1.2 cells the cisplatin-induced caspase-3/7 activation occurred before caspase-8 or -9 activation. We therefore concluded that in vitro acquisition of cisplatin-resistance rendered P31res1.2 cells resistant to caspase-8 and caspase-9 fragments and that cisplatin-induced, initiator-caspase independent caspase-3/7 activation was necessary to overcome this resistance. Finally, the results demonstrated that detection of cleaved caspase fragments alone might be insufficient as a marker of caspase activity and ensuing apoptosis induction. PMID:21364680

  3. Risk Factors for Acquired Rifamycin and Isoniazid Resistance: A Systematic Review and Meta-Analysis

    PubMed Central

    Rockwood, Neesha; Abdullahi, Leila H.; Wilkinson, Robert J.; Meintjes, Graeme

    2015-01-01

    Background Studies looking at acquired drug resistance (ADR) are diverse with respect to geographical distribution, HIV co-infection rates, retreatment status and programmatic factors such as regimens administered and directly observed therapy. Our objective was to examine and consolidate evidence from clinical studies of the multifactorial aetiology of acquired rifamycin and/or isoniazid resistance within the scope of a single systematic review. This is important to inform policy and identify key areas for further studies. Methods Case-control and cohort studies and randomised controlled trials that reported ADR as an outcome during antitubercular treatment regimens including a rifamycin and examined the association of at least 1 risk factor were included. Post hoc, we carried out random effects Mantel-Haenszel weighted meta-analyses of the impact of 2 key risk factors 1) HIV and 2) baseline drug resistance on the binary outcome of ADR. Heterogeneity was assessed used I2 statistic. As a secondary outcome, we calculated median cumulative incidence of ADR, weighted by the sample size of the studies. Results Meta-analysis of 15 studies showed increased risk of ADR with baseline mono- or polyresistance (RR 4.85 95% CI 3.26 to 7.23, heterogeneity I2 58%, 95% CI 26 to 76%). Meta-analysis of 8 studies showed that HIV co-infection was associated with increased risk of ADR (RR 3.02, 95% CI 1.28 to 7.11); there was considerable heterogeneity amongst these studies (I2 81%, 95% CI 64 to 90%). Non-adherence, extrapulmonary/disseminated disease and advanced immunosuppression in HIV co-infection were other risk factors noted. The weighted median cumulative incidence of acquired multi drug resistance calculated in 24 studies (assuming whole cohort as denominator, regardless of follow up DST) was 0.1% (5th to 95th percentile 0.07 to 3.2%). Conclusion Baseline drug resistance and HIV co-infection were significant risk factors for ADR. There was a trend of positive association with

  4. Community-acquired methicillin-resistant Staphylococcus aureus in a Malaysian tertiary centre.

    PubMed

    Rashid, Zetti Zainol; Bahari, Norazlah; Othman, Amizah; Jaafar, Roslinda; Mohamed, Nurul Azmawati; Jabbari, Idimaz; Sulong, Anita; Hashim, Rohaidah; Ahmad, Norazah

    2013-01-01

    Abstract. Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is a pathogen recognized to be distinct in both phenotype and genotype from hospital-acquired MRSA. We have identified CA-MRSA cases in Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia, including their antibiotic susceptibility patterns and genotypic characteristics. Cases were identified during January to December 2009 from routine clinical specimens, where culture and antibiotic susceptibility results yielded pauci-resistant MRSA isolates suspected as being CA-MRSA. The patients' clinical data were collected and their specimens were sent for molecular confirmation and analysis. Five cases of CA-MRSA were identified, which had a multi-sensitive pattern on antibiotic susceptibility tests and were resistant to only penicillin and oxacillin. All cases were skin and soft-tissue infections, including diabetic foot with gangrene, infected scalp hematoma, philtrum abscess in a healthcare worker, thrombophlebitis complicated with abscess and infected bedsore. All five cases were confirmed MRSA by detection of mecA. SCCmec typing (ccr and mec complex) revealed SCCmec type IV for all cases except the infected bedsore case. Panton-Valentine leukocidin gene was positive in all isolates. As clinical features among methicillin-sensitive Staphylococcus aureus, CA-MRSA and "nosocomial CA-MRSA" are indistinct, early recognition is necessary in order to initiate appropriate antibiotics and infection control measures. Continual surveillance of pauci-resistant MRSA and molecular analysis are necessary in order to identify emerging strains as well as their epidemiology and transmission, both in the community and in healthcare setting. PMID:23682444

  5. Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620

    SciTech Connect

    Tentes, I.K.; Schmidt, W.M.; Krupitza, G.; Steger, G.G.; Mikulits, W.; Kortsaris, A.; Mader, R.M.

    2010-11-15

    Treatment resistance to antineoplastic drugs represents a major clinical problem. Here, we investigated the long-term stability of acquired resistance to 5-fluorouracil (FU) in an in vitro colon cancer model, using four sub-clones characterised by increasing FU-resistance derived from the cell line SW620. The resistance phenotype was preserved after FU withdrawal for 15 weeks ({approx} 100 cell divisions) independent of the established level of drug resistance and of epigenetic silencing. Remarkably, resistant clones tolerated serum deprivation, adopted a CD133{sup +} CD44{sup -} phenotype, and further exhibited loss of membrane-bound E-cadherin together with predominant nuclear {beta}-catenin localisation. Thus, we provide evidence for a long-term memory of acquired drug resistance, driven by multiple cellular strategies (epithelial-mesenchymal transition and selective propagation of CD133{sup +} cells). These resistance phenomena, in turn, accentuate the malignant phenotype.

  6. Arabidopsis TTR1 causes LRR-dependent lethal systemic necrosis, rather than systemic acquired resistance, to Tobacco ringspot virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristi...

  7. NF-κB drives acquired resistance to a novel mutant-selective EGFR inhibitor

    PubMed Central

    Galvani, Elena; Sun, Jing; Leon, Leticia G.; Sciarrillo, Rocco; Narayan, Ravi S.; Tjin Tham Sjin, Robert; Lee, Kwangho; Ohashi, Kadoaki; Heideman, Daniëlle A.M.; Alfieri, Roberta R.; Heynen, Guus J.; Bernards, René; Smit, Egbert F.; Pao, William; Peters, Godefridus J.; Giovannetti, Elisa

    2015-01-01

    The clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) harbouring activating EGFR mutations is limited by the emergence of acquired resistance, mostly ascribed to the secondary EGFR-T790M mutation. Selective EGFR-T790M inhibitors have been proposed as a new, extremely relevant therapeutic approach. Here, we demonstrate that the novel irreversible EGFR-TKI CNX-2006, a structural analog of CO-1686, currently tested in a phase-1/2 trial, is active against in vitro and in vivo NSCLC models expressing mutant EGFR, with minimal effect on the wild-type receptor. By integration of genetic and functional analyses in isogenic cell pairs we provide evidence of the crucial role played by NF-κB1 in driving CNX-2006 acquired resistance and show that NF-κB activation may replace the oncogenic EGFR signaling in NSCLC when effective and persistent inhibition of the target is achieved in the presence of the T790M mutation. In this context, we demonstrate that the sole, either genetic or pharmacologic, inhibition of NF-κB is sufficient to reduce the viability of cells that adapted to EGFR-TKIs. Overall, our findings support the rational inhibition of members of the NF-κB pathway as a promising therapeutic option for patients who progress after treatment with novel mutant-selective EGFR-TKIs. PMID:26015408

  8. Effects of Sorafenib Dose on Acquired Reversible Resistance and Toxicity in Hepatocellular Carcinoma.

    PubMed

    Kuczynski, Elizabeth A; Lee, Christina R; Man, Shan; Chen, Eric; Kerbel, Robert S

    2015-06-15

    Acquired evasive resistance is a major limitation of hepatocellular carcinoma (HCC) treatment with the tyrosine kinase inhibitor (TKI) sorafenib. Recent findings suggest that resistance to sorafenib may have a reversible phenotype. In addition, loss of responsiveness has been proposed to be due to a gradual decrease in sorafenib plasma levels in patients. Here, the possible mechanisms underlying reversible sorafenib resistance were investigated using a Hep3B-hCG orthotopic human xenograft model of locally advanced HCC. Tissue and plasma sorafenib and metabolite levels, downstream antitumor targets, and toxicity were assessed during standard and dose-escalated sorafenib treatment. Drug levels were found to decline significantly over time in mice treated with 30 mg/kg sorafenib, coinciding with the onset of resistance but a greater magnitude of change was observed in tissues compared with plasma. Skin rash also correlated with drug levels and tended to decrease in severity over time. Drug level changes appeared to be partially tumor dependent involving induction of tumoral CYP3A4 metabolism, with host pretreatment alone unable to generate resistance. Escalation from 30 to 60 mg/kg sorafenib improved antitumor efficacy but worsened survival due to excessive body weight loss. Microvessel density was inhibited by sorafenib treatment but remained suppressed over time and dose increase. In conclusion, tumor CYP3A4 induction by sorafenib is a novel mechanism to account for variability in systemic drug levels; however, declining systemic sorafenib levels may only be a minor resistance mechanism. Escalating the dose may be an effective treatment strategy, provided toxicity can be controlled. PMID:25908587

  9. Macrolide-resistant Mycoplasma pneumoniae in adolescents with community-acquired pneumonia

    PubMed Central

    2012-01-01

    Background Although the prevalence of macrolide-resistant Mycoplasma pneumoniae isolates in Japanese pediatric patients has increased rapidly, there have been no reports concerning macrolide-resistant M. pneumoniae infection in adolescents aged 16 to 19 years old. The purpose of this study was to clarify the prevalence and clinical characteristics of macrolide-resistant M. pneumoniae in adolescent patients with community-acquired pneumonia. Methods A total of 99 cases with M. pneumoniae pneumonia confirmed by polymerase chain reaction (PCR) and culture were analyzed. Forty-five cases were pediatric patients less than 16 years old, 26 cases were 16 to 19-year-old adolescent patients and 28 cases were adult patients. Primers for domain V of 23S rRNA were used and DNA sequences of the PCR products were compared with the sequence of an M. pneumoniae reference strain. Results Thirty of 45 pediatric patients (66%), 12 of 26 adolescent patients (46%) and seven of 28 adult patients (25%) with M. pneumoniae pneumonia were found to be infected with macrolide-resistant M. pneumoniae (MR patients). Although the prevalence of resistant strains was similar in pediatric patients between 2008 and 2011, an increase in the prevalence of resistant strains was observed in adolescent patients. Among 30 pediatric MR patients, 26 had an A-to-G transition at position 2063 (A2063G) and four had an A-to-G transition at position 2064 (A2064G). In 12 adolescent MR patients, 10 showed an A2063G transition and two showed an A2064G transition, and in seven adult MR patients, six showed an A2063G transition and one showed an A2064G transition. Conclusions The prevalence of macrolide-resistant M. pneumoniae is high among adolescent patients as well as pediatric patients less than 16-years old. To prevent outbreaks of M. pneumoniae infection, especially macrolide-resistant M. pneumoniae, in closed populations including among families, in schools and in university students, physicians should pay

  10. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma.

    PubMed

    Zaretsky, Jesse M; Garcia-Diaz, Angel; Shin, Daniel S; Escuin-Ordinas, Helena; Hugo, Willy; Hu-Lieskovan, Siwen; Torrejon, Davis Y; Abril-Rodriguez, Gabriel; Sandoval, Salemiz; Barthly, Lucas; Saco, Justin; Homet Moreno, Blanca; Mezzadra, Riccardo; Chmielowski, Bartosz; Ruchalski, Kathleen; Shintaku, I Peter; Sanchez, Phillip J; Puig-Saus, Cristina; Cherry, Grace; Seja, Elizabeth; Kong, Xiangju; Pang, Jia; Berent-Maoz, Beata; Comin-Anduix, Begoña; Graeber, Thomas G; Tumeh, Paul C; Schumacher, Ton N M; Lo, Roger S; Ribas, Antoni

    2016-09-01

    Background Approximately 75% of objective responses to anti-programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown. Methods We analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti-PD-1 therapy (pembrolizumab) followed by disease progression months to years later. Results Whole-exome sequencing detected clonal selection and outgrowth of the acquired resistant tumors and, in two of the four patients, revealed resistance-associated loss-of-function mutations in the genes encoding interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent with deletion of the wild-type allele. A truncating mutation in the gene encoding the antigen-presenting protein beta-2-microglobulin (B2M) was identified in a third patient. JAK1 and JAK2 truncating mutations resulted in a lack of response to interferon gamma, including insensitivity to its antiproliferative effects on cancer cells. The B2M truncating mutation led to loss of surface expression of major histocompatibility complex class I. Conclusions In this study, acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was associated with defects in the pathways involved in interferon-receptor signaling and in antigen presentation. (Funded by the National Institutes of Health and others.). PMID:27433843

  11. Long-distance communication and signal amplification in systemic acquired resistance.

    PubMed

    Shah, Jyoti; Zeier, Jürgen

    2013-01-01

    Systemic acquired resistance (SAR) is an inducible defense mechanism in plants that confers enhanced resistance against a variety of pathogens. SAR is activated in the uninfected systemic (distal) organs in response to a prior (primary) infection elsewhere in the plant. SAR is associated with the activation of salicylic acid (SA) signaling and the priming of defense responses for robust activation in response to subsequent infections. The activation of SAR requires communication by the primary infected tissues with the distal organs. The vasculature functions as a conduit for the translocation of factors that facilitate long-distance intra-plant communication. In recent years, several metabolites putatively involved in long-distance signaling have been identified. These include the methyl ester of SA (MeSA), the abietane diterpenoid dehydroabietinal (DA), the dicarboxylic acid azelaic acid (AzA), and a glycerol-3-phosphate (G3P)-dependent factor. Long-distance signaling by some of these metabolites also requires the lipid-transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1). The relative contribution of these factors in long-distance signaling is likely influenced by environmental conditions, for example light. In the systemic leaves, the AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1)-dependent production of the lysine catabolite pipecolic acid (Pip), FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) signaling, as well as SA synthesis and downstream signaling are required for the activation of SAR. This review summarizes the involvement and interaction between long-distance SAR signals and details the recently discovered role of Pip in defense amplification and priming that allows plants to acquire immunity at the systemic level. Recent advances in SA signaling and perception are also highlighted. PMID:23440336

  12. Acquired resistance to the 16-membered macrolides tylosin and tilmicosin by Mycoplasma bovis.

    PubMed

    Lerner, Uri; Amram, Eytan; Ayling, Roger D; Mikula, Inna; Gerchman, Irena; Harrus, Shimon; Teff, Dina; Yogev, David; Lysnyansky, Inna

    2014-01-31

    The molecular mechanism of acquired resistance to the 16-membered macrolides tylosin (Ty) and tilmicosin (Tm) was investigated in Mycoplasma bovis field isolates. Sequence analysis of domains II and V of the two 23S rRNA alleles and ribosomal proteins L4 and L22 was performed on 54 M. bovis isolates showing different minimal inhibitory concentrations (MIC). The presence of any one of the point mutations G748A, C752T, A2058G, A2059G or A2059C (Escherichia coli numbering) in one or both alleles of the 23S rRNAs was correlated with decreased susceptibility to Ty (8-1024 μg/ml) and to Tm (32 to >256 μg/ml) in 27/27 and 27/31 M. bovis isolates, respectively. Although a single mutation in domain II or V could be sufficient to cause decreased susceptibility to Ty, our data imply that a combination of mutations in two domains is necessary to achieve higher MICs (≥ 128 μg/ml). The influence of a combination of mutations in two domains II and V on enhancement of resistance to Tm was less clear. In addition, the amino acid (aa) substitution L22-Q90H was found in 24/32 representative M. bovis isolates with different MICs, but no correlation with decreased susceptibility to Ty or Tm was identified. Multiple aa substitutions were also identified in the L4 protein, including at positions 185-186 (positions 64 and 65 in E. coli) which are adjacent to the macrolide-binding site. This is the first description of the molecular mechanism of acquired resistance to the 16-membered macrolides in M. bovis. PMID:24393633

  13. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy

    PubMed Central

    Kong, Xiangju; Hong, Aayoung; Koya, Richard C.; Moriceau, Gatien; Chodon, Thinle; Guo, Rongqing; Johnson, Douglas B.; Dahlman, Kimberly B.; Kelley, Mark C.; Kefford, Richard F.; Chmielowski, Bartosz; Glaspy, John A.; Sosman, Jeffrey A.; van Baren, Nicolas; Long, Georgina V.; Ribas, Antoni; Lo, Roger S.

    2013-01-01

    BRAF inhibitors elicit rapid anti-tumor responses in the majority of patients with V600BRAF mutant melanoma, but acquired drug resistance is almost universal. We sought to identify the core resistance pathways and the extent of tumor heterogeneity during disease progression. We show that MAPK reactivation mechanisms were detected among 70% of disease-progressive tissues, with RAS mutations, mutant BRAF amplification and alternative splicing being most common. We also detected PI3K-PTEN-AKT-upregulating genetic alterations among 22% of progressive melanomas. Distinct molecular lesions, in both core drug escape pathways, were commonly detected concurrently in the same tumor or among multiple tumors from the same patient. Beyond harboring extensively heterogeneous resistance mechanisms, melanoma re-growth emerging from BRAF inhibitor selection displayed branched evolution marked by altered mutational spectra/signatures and increased fitness. Thus, melanoma genomic heterogeneity contributes significantly to BRAF inhibitor treatment failure, implying upfront, co-targeting of two core pathways as an essential strategy for durable responses. PMID:24265155

  14. Methylbenzene-Containing Polyketides from a Streptomyces that Spontaneously Acquired Rifampicin Resistance: Structural Elucidation and Biosynthesis.

    PubMed

    Thong, Wei Li; Shin-Ya, Kazuo; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2016-04-22

    Conventional screening for novel bioactive compounds in actinomycetes often results in the rediscovery of known compounds. In contrast, recent genome sequencing revealed that most of the predicted gene clusters for secondary metabolisms are not expressed under standard cultivation conditions. To explore the potential metabolites produced by these gene clusters, we implemented a cryptic gene activation strategy by screening mutants that acquire resistance to rifampicin. The induction of rifampicin resistance in 11 actinomycete strains generated 164 rifampicin-resistant mutants (rif mutants). The comparison of the metabolic profiles between the rif mutants and their wild-type strains indicated that one mutant (TW-R50-13) overproduced an unidentified metabolite (1). During the isolation and structural elucidation of metabolite 1, an additional metabolite was found; both are unprecedented compounds featuring a C5N unit and a methylbenzene moiety. Of these partial structures, the biosynthesis of the latter has not been reported. A feeding experiment using (13)C-labeled precursors demonstrated that the methylbenzene moiety is most likely synthesized by the action of polyketide synthase. The gene deletion experiments revealed that the genes for the methylbenzene moiety are located at a different locus than the genes for the C5N unit. PMID:26905826

  15. Interconnection between flowering time control and activation of systemic acquired resistance

    PubMed Central

    Banday, Zeeshan Z.; Nandi, Ashis K.

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants. PMID:25852723

  16. Interconnection between flowering time control and activation of systemic acquired resistance.

    PubMed

    Banday, Zeeshan Z; Nandi, Ashis K

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants. PMID:25852723

  17. Acquired Resistance to EGFR Inhibitors Is Associated with a Manifestation of Stem cell–like Properties in Cancer Cells

    PubMed Central

    Shien, Kazuhiko; Toyooka, Shinichi; Yamamoto, Hiromasa; Soh, Junichi; Jida, Masaru; Thu, Kelsie L.; Hashida, Shinsuke; Maki, Yuho; Ichihara, Eiki; Asano, Hiroaki; Tsukuda, Kazunori; Takigawa, Nagio; Kiura, Katsuyuki; Gazdar, Adi F.; Lam, Wan L.; Miyoshi, Shinichiro

    2015-01-01

    Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitor (TKI) is a critical problem in the treatment of lung cancer. Although several mechanisms have been shown to be responsible for acquired resistance, all mechanisms have not been uncovered. In this study, we investigated the molecular and cellular profiles of the acquired resistant cells to EGFR-TKI in EGFR-mutant lung cancers. Four EGFR-mutant cell lines were exposed to gefitinib by stepwise escalation and high-concentration exposure methods, and resistant sublines to gefitinib were established. The molecular profiles and cellular phenotypes of these resistant sublines were characterized. Although previously reported, alterations including secondary EGFR T790M mutation, MET amplification, and appearance of epithelial-to-mesenchymal transition (EMT) features were observed, these 2 drug-exposure methods revealed different resistance mechanisms. The resistant cells with EMT features exhibited downregulation of miRNA-200c by DNA methylation. Furthermore, the HCC827-derived subline characterized by the high-concentration exposure method exhibited not only EMT features but also stem cell–like properties, including aldehyde dehydrogenase isoform 1 (ALDH1A1) overexpression, increase of side-population, and self-renewal capability. Resistant sublines with stem cell–like properties were resistant to conventional chemotherapeutic agents but equally sensitive to histone deacetylase and proteasome inhibitors, compared with their parental cells. ALDH1A1 was upregulated in clinical samples with acquired resistance to gefitinib. In conclusion, our study indicates that the manner of EGFR-TKI exposure influences the mechanism of acquired resistance and the appearance of stem cell–like property with EGFR-TKI treatment. PMID:23542356

  18. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells.

    PubMed

    Shien, Kazuhiko; Toyooka, Shinichi; Yamamoto, Hiromasa; Soh, Junichi; Jida, Masaru; Thu, Kelsie L; Hashida, Shinsuke; Maki, Yuho; Ichihara, Eiki; Asano, Hiroaki; Tsukuda, Kazunori; Takigawa, Nagio; Kiura, Katsuyuki; Gazdar, Adi F; Lam, Wan L; Miyoshi, Shinichiro

    2013-05-15

    Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitor (TKI) is a critical problem in the treatment of lung cancer. Although several mechanisms have been shown to be responsible for acquired resistance, all mechanisms have not been uncovered. In this study, we investigated the molecular and cellular profiles of the acquired resistant cells to EGFR-TKI in EGFR-mutant lung cancers. Four EGFR-mutant cell lines were exposed to gefitinib by stepwise escalation and high-concentration exposure methods, and resistant sublines to gefitinib were established. The molecular profiles and cellular phenotypes of these resistant sublines were characterized. Although previously reported, alterations including secondary EGFR T790M mutation, MET amplification, and appearance of epithelial-to-mesenchymal transition (EMT) features were observed, these 2 drug-exposure methods revealed different resistance mechanisms. The resistant cells with EMT features exhibited downregulation of miRNA-200c by DNA methylation. Furthermore, the HCC827-derived subline characterized by the high-concentration exposure method exhibited not only EMT features but also stem cell-like properties, including aldehyde dehydrogenase isoform 1 (ALDH1A1) overexpression, increase of side-population, and self-renewal capability. Resistant sublines with stem cell-like properties were resistant to conventional chemotherapeutic agents but equally sensitive to histone deacetylase and proteasome inhibitors, compared with their parental cells. ALDH1A1 was upregulated in clinical samples with acquired resistance to gefitinib. In conclusion, our study indicates that the manner of EGFR-TKI exposure influences the mechanism of acquired resistance and the appearance of stem cell-like property with EGFR-TKI treatment. PMID:23542356

  19. Direct pharmacological assessment of clinically acquired models as a strategy to overcome resistance to tyrosine kinase inhibitors

    PubMed Central

    Benes, Cyril H

    2015-01-01

    We have performed a study using cell lines established from biopsies of clinically resistant non-small cell lung cancers with the aim of discovering therapeutic strategies to overcome acquired resistance. Our results indicate that pharmacological assessment of tumor material might efficiently complement genetic profiling in the future path toward personalized medicine. PMID:27308520

  20. Direct pharmacological assessment of clinically acquired models as a strategy to overcome resistance to tyrosine kinase inhibitors.

    PubMed

    Benes, Cyril H

    2015-01-01

    We have performed a study using cell lines established from biopsies of clinically resistant non-small cell lung cancers with the aim of discovering therapeutic strategies to overcome acquired resistance. Our results indicate that pharmacological assessment of tumor material might efficiently complement genetic profiling in the future path toward personalized medicine. PMID:27308520

  1. The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients

    PubMed Central

    Wu, Shang-Gin; Liu, Yi-Nan; Tsai, Meng-Feng; Chang, Yih-Leong; Yu, Chong-Jen; Yang, Pan-Chyr; Yang, James Chih-Hsin; Wen, Yueh-Feng; Shih, Jin-Yuan

    2016-01-01

    Introduction Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are associated with favorable response in EGFR mutant lung cancer. Acquired resistance to reversible EGFR TKIs remains a significant barrier, and acquired EGFR T790M-mutation is the major mechanism. Second-generation irreversible EGFR TKI, afatinib, had also been approved for treating EGFR mutant lung cancer patients, but the mechanism of acquired resistance to afatinib has not been well studied. Results Forty-two patients had tissue specimens taken after acquiring resistance to afatinib. The sensitizing EGFR mutation were all consistent between pre- and post-afatinib tissues. Twenty patients (47.6%) had acquired T790M mutation. T790M rate was not different between first-generation EGFR TKI-naïve patients (50%) and first-generation EGFR TKI-treated patients (46.4%) (p = 0.827). No clinical characteristics or EGFR mutation types were associated with the development of acquired T790M. No other second-site EGFR mutations were detected. There were no small cell or squamous cell lung cancer transformation. Other genetic mutations were not identified in PIK3CA, BRAF, HER2, KRAS, NRAS, MEK1, AKT2, LKB1 and JAK2. Methods Afatinib-prescription record of our department of pharmacy from January 2007 and December 2014 was retrieved. We investigated patients with tissue specimens available after acquiring resistance to afatinib. Enrolled patients should have partial response or durable stable disease of treatment response to afatinib. Various mechanisms of acquired resistance to first-generation EGFR TKIs were evaluated. Histology and cytology were reviewed. EGFR, PIK3CA, BRAF, HER2, KRAS, NRAS, MEK1, AKT2, LKB1 and JAK2 genetic alterations were evaluated by sequencing. Statistical analysis was performed using Chi-square test and Kaplan-Meier method. Conclusions T790M was detected in half of the lung adenocarcinoma after acquiring resistance to afatinib. T790M is still the major acquired

  2. Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib

    PubMed Central

    Hashida, Shinsuke; Yamamoto, Hiromasa; Shien, Kazuhiko; Miyoshi, Yuichiro; Ohtsuka, Tomoaki; Suzawa, Ken; Watanabe, Mototsugu; Maki, Yuho; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Miyoshi, Shinichiro; Toyooka, Shinichi

    2015-01-01

    Afatinib is an irreversible epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) that is known to be effective against the EGFR T790M variant, which accounts for half of the mechanisms of acquired resistance to reversible EGFR-TKIs. However, acquired resistance to afatinib was also observed in clinical use. Thus, elucidating and overcoming the mechanisms of resistance are important issues in the treatment of non-small cell lung cancer. In this study, we established various afatinib-resistant cell lines and investigated the resistance mechanisms. EGFR T790M mutations were not detected using direct sequencing in established resistant cells. Several afatinib-resistant cell lines displayed MET amplification, and these cells were sensitive to the combination of afatinib plus crizotinib. As a further investigation, a cell line that acquired resistance to afatinib plus crizotinib, HCC827-ACR, was established from one of the MET amplified-cell lines. Several afatinib-resistant cell lines including HCC827-ACR displayed epithelial-to-mesenchymal transition (EMT) features and epigenetic silencing of miR-200c, which is a suppresser of EMT. In addition, these cell lines also exhibited overexpression of ALDH1A1 and ABCB1, which are putative stem cell markers, and resistance to docetaxel. In conclusion, we established afatinib-resistant cells and found that MET amplification, EMT, and stem cell-like features are observed in cells with acquired resistance to EGFR-TKIs. This finding may provide clues to overcoming resistance to EGFR-TKIs. PMID:26202045

  3. Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib.

    PubMed

    Hashida, Shinsuke; Yamamoto, Hiromasa; Shien, Kazuhiko; Miyoshi, Yuichiro; Ohtsuka, Tomoaki; Suzawa, Ken; Watanabe, Mototsugu; Maki, Yuho; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Miyoshi, Shinichiro; Toyooka, Shinichi

    2015-10-01

    Afatinib is an irreversible epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) that is known to be effective against the EGFR T790M variant, which accounts for half of the mechanisms of acquired resistance to reversible EGFR-TKIs. However, acquired resistance to afatinib was also observed in clinical use. Thus, elucidating and overcoming the mechanisms of resistance are important issues in the treatment of non-small cell lung cancer. In this study, we established various afatinib-resistant cell lines and investigated the resistance mechanisms. EGFR T790M mutations were not detected using direct sequencing in established resistant cells. Several afatinib-resistant cell lines displayed MET amplification, and these cells were sensitive to the combination of afatinib plus crizotinib. As a further investigation, a cell line that acquired resistance to afatinib plus crizotinib, HCC827-ACR, was established from one of the MET amplified-cell lines. Several afatinib-resistant cell lines including HCC827-ACR displayed epithelial-to-mesenchymal transition (EMT) features and epigenetic silencing of miR-200c, which is a suppresser of EMT. In addition, these cell lines also exhibited overexpression of ALDH1A1 and ABCB1, which are putative stem cell markers, and resistance to docetaxel. In conclusion, we established afatinib-resistant cells and found that MET amplification, EMT, and stem cell-like features are observed in cells with acquired resistance to EGFR-TKIs. This finding may provide clues to overcoming resistance to EGFR-TKIs. PMID:26202045

  4. Impaired acquired resistance of mice to Klebsiella pneumoniae infection induced by acute NO/sub 2/ exposure

    SciTech Connect

    Bouley, G.; Azoulay-Dupuis, E.; Gaudebout, C.

    1985-12-01

    The natural resistance of nonimmunized C57B1/6 mice to an intraperitoneal Klebsiella pneumoniae challenge was not significantly affected by prior continuous exposure to 20 ppm NO/sub 2/ for 4 days. In contrast, the acquired resistance of mice immunized just before and infected just after NO/sub 2/ exposure was seriously impaired. This could not be explained by the loss of appetite (about 30%) observed in NO/sub 2/ treated mice, for neither the natural nor acquired resistance of control air exposure mice given approximately 70% ad libitum food and water were significantly modified.

  5. Community-Acquired Methicillin-Resistant Pyogenic Liver Abscess: A Case Report.

    PubMed

    Cherian, Joel; Singh, Rahul; Varma, Muralidhar; Vidyasagar, Sudha; Mukhopadhyay, Chiranjay

    2016-01-01

    Pyogenic liver abscesses are rare with an incidence of 0.5% to 0.8% and are mostly due to hepatobiliary causes (40% to 60%). Most are polymicrobial with less than 10% being caused by Staphylococcus aureus. Of these, few are caused by methicillin-resistant Staphylococcus aureus (MRSA) and fewer still by a community-acquired strain. Here we present a case study of a patient with a community-acquired MRSA liver abscess. The patient presented with fever since 1 month and tender hepatomegaly. Blood tests revealed elevated levels of alkaline phosphatase, C-reactive protein, erythrocyte sedimentation rate, and neutrophilic leukocytosis. Blood cultures were sterile. Ultrasound of the abdomen showed multiple abscesses, from which pus was drained and MRSA isolated. Computed tomography of the abdomen did not show any source of infection, and an amebic serology was negative. The patient was started on vancomycin for 2 weeks, following which he became afebrile and was discharged on oral linezolid for 4 more weeks. Normally a liver abscess is treated empirically with ceftriaxone for pyogenic liver abscess and metronidazole for amebic liver abscess. However, if the patient has risk factors for a Staphylococcal infection, it is imperative that antibiotics covering gram-positive organisms be added while waiting for culture reports. PMID:27540556

  6. Antibiotic Resistance Pattern of Community Acquired Uropathogens at a Tertiary Care Hospital in Jaipur, Rajasthan

    PubMed Central

    Sood, Smita; Gupta, Ravi

    2012-01-01

    Background: Urinary tract infections (UTIs) are amongst the most common infections described in outpatients setting. Objectives: A study was conducted to evaluate the uropathogenic bacterial flora and its antimicrobial susceptibility profile among patients presenting to the out-patient clinics of a tertiary care hospital at Jaipur, Rajasthan. Materials and Methods: 2012 consecutive urine specimens from symptomatic UTI cases attending to the outpatient clinics were processed in the Microbiology lab. Bacterial isolates obtained were identified using biochemical reactions. Antimicrobial susceptibility testing was performed by the Kirby-Bauer disc diffusion method. Extended spectrum beta lactamase (ESBL) production was determined by the double disk approximation test and the Clinical and Laboratory Standards Institute (formerly NCCLS) confirmatory method. Results: Pathogens were isolated from 346 (17.16%) of the 2012 patients who submitted a urine sample. Escherichia coli was the most frequently isolated community acquired uropathogen accounting for 61.84% of the total isolates. ESBL production was observed in 23.83% of E. coli strains and 8.69% of Klebsiella strains. With the exception of Nitrofurantoin, resistance to agents commonly used as empiric oral treatments for UTI was quite high. Conclusion: The study revealed E. coli as the predominant bacterial pathogen for the community acquired UTIs in Jaipur, Rajasthan. An increasing trend in the production ESBLs among UTI pathogens in the community was noted. Nitrofurantoin should be used as empirical therapy for primary, uncomplicated UTIs. PMID:22529539

  7. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants

    PubMed Central

    El-Shetehy, Mohamed; Wang, Caixia; Shine, M B; Yu, Keshun; Kachroo, Aardra; Kachroo, Pradeep

    2015-01-01

    Systemic acquired resistance (SAR) is a form of broad-spectrum disease resistance that is induced in response to primary infection and that protects uninfected portions of the plant against secondary infections by related or unrelated pathogens. SAR is associated with an increase in chemical signals that operate in a collective manner to confer protection against secondary infections. These include, the phytohormone salicylic acid (SA), glycerol-3-phosphate (G3P), azelaic acid (AzA) and more recently identified signals nitric oxide (NO) and reactive oxygen species (ROS). NO, ROS, AzA and G3P function in the same branch of the SAR pathway, and in parallel to the SA-regulated branch. NO and ROS function upstream of AzA/G3P and different reactive oxygen species functions in an additive manner to mediate chemical cleavage of the C9 double bond on C18 unsaturated fatty acids to generate AzA. The parallel and additive functioning of various chemical signals provides important new insights in the overlapping pathways leading to SAR. PMID:26375184

  8. Acquired Resistance to Clinical Cancer Therapy: A Twist in Physiological Signaling.

    PubMed

    Wicki, Andreas; Mandalà, Mario; Massi, Daniela; Taverna, Daniela; Tang, Huifang; Hemmings, Brian A; Xue, Gongda

    2016-07-01

    Although modern therapeutic strategies have brought significant progress to cancer care in the last 30 years, drug resistance to targeted monotherapies has emerged as a major challenge. Aberrant regulation of multiple physiological signaling pathways indispensable for developmental and metabolic homeostasis, such as hyperactivation of pro-survival signaling axes, loss of suppressive regulations, and impaired functionalities of the immune system, have been extensively investigated aiming to understand the diversity of molecular mechanisms that underlie cancer development and progression. In this review, we intend to discuss the molecular mechanisms of how conventional physiological signal transduction confers to acquired drug resistance in cancer patients. We will particularly focus on protooncogenic receptor kinase inhibition-elicited tumor cell adaptation through two major core downstream signaling cascades, the PI3K/Akt and MAPK pathways. These pathways are crucial for cell growth and differentiation and are frequently hyperactivated during tumorigenesis. In addition, we also emphasize the emerging roles of the deregulated host immune system that may actively promote cancer progression and attenuate immunosurveillance in cancer therapies. Understanding these mechanisms may help to develop more effective therapeutic strategies that are able to keep the tumor in check and even possibly turn cancer into a chronic disease. PMID:27142452

  9. Nasal colonization in children with community acquired methicillin-resistant Staphylococcus aureus

    PubMed Central

    Davoodabadi, Fazlollah; Mobasherizadeh, Sina; Mostafavizadeh, Kamyar; Shojaei, Hasan; Havaei, Seyed Asghar; Koushki, Ali Mehrabi; Moghadasizadeh, Zahra; Meidani, Mohsen; Shirani, Kiana

    2016-01-01

    Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of infections. The changing epidemiology of MRSA became evident in the 1990s when CA-MRSA cases were first reported. Nasal carriage of CA-MRSA is associated with an increased risk for development of infections in various populations. Materials and Methods: Anterior nares culture for the presence of methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA was taken from 345 children attending kindergartens, who didn’t have any known risk factor for MRSA colonization. Also, children demographic variables were recorded. Identification of SA and community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) with standard microbiological test was performed. Finally, the susceptibility of isolated to various antibiotics determined. The data were analyzed with Whonet 5.6 software. Results: Of 345 children, 20 children (5.8%) were colonized with CA-MRSA, 86 children (24.9%) with MSSA and 239 cases (69.3%) didn’t have SA colonization. The highest rate of MSSA and MRSA colonization was obtained at the age of 6 years. The frequency distribution of SA (MSSA and MRSA) colonization prevalence didn’t have any significant differences based on age, gender and the admission time (P > 0.05); but it was significantly different in the urban areas (P < 0.001). The lowest resistance rate of CA-MRSA isolates, with a frequency of 10%, was detected with gentamicin, rifampin, and trimethoprim-sulfamethoxazole. Conclusions: In summary, CA-MRSA colonization was observed in child care centers remarkably. Therefore, by facing various infections due to SA especially in areas of low socio-economic status, it must be considered. Based on antibiogram test, empirical treatment with rifampin, gentamicin and ciprofloxacin is recommended during CA-MRSA infections. PMID:27274501

  10. Origin and Evolution of European Community-Acquired Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Wirth, Thierry; Andersen, Paal S.; Skov, Robert L.; De Grassi, Anna; Simões, Patricia Martins; Tristan, Anne; Petersen, Andreas; Aziz, Maliha; Kiil, Kristoffer; Cirković, Ivana; Udo, Edet E.; del Campo, Rosa; Vuopio-Varkila, Jaana; Ahmad, Norazah; Tokajian, Sima; Peters, Georg; Schaumburg, Frieder; Olsson-Liljequist, Barbro; Givskov, Michael; Driebe, Elizabeth E.; Vigh, Henrik E.; Shittu, Adebayo; Ramdani-Bougessa, Nadjia; Rasigade, Jean-Philippe; Price, Lance B.; Vandenesch, Francois; Larsen, Anders R.; Laurent, Frederic

    2014-01-01

    ABSTRACT Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations. PMID:25161186

  11. Comparative Proteomics Analysis of Phloem Exudates Collected during the Induction of Systemic Acquired Resistance1[OPEN

    PubMed Central

    Wilson, Daniel C.; Dey, Sanjukta; Hauck, Stefanie M.; Vlot, A. Corina; Cameron, Robin K.

    2016-01-01

    Systemic acquired resistance (SAR) is a plant defense response that provides long-lasting, broad-spectrum pathogen resistance to uninfected systemic leaves following an initial localized infection. In Arabidopsis (Arabidopsis thaliana), local infection with virulent or avirulent strains of Pseudomonas syringae pv tomato generates long-distance SAR signals that travel from locally infected to distant leaves through the phloem to establish SAR. In this study, a proteomics approach was used to identify proteins that accumulate in phloem exudates in response to the induction of SAR. To accomplish this, phloem exudates collected from mock-inoculated or SAR-induced leaves of wild-type Columbia-0 plants were subjected to label-free quantitative liquid chromatography-tandem mass spectrometry proteomics. Comparing mock- and SAR-induced phloem exudate proteomes, 16 proteins were enriched in phloem exudates collected from SAR-induced plants, while 46 proteins were suppressed. SAR-related proteins THIOREDOXIN h3, ACYL-COENZYME A-BINDING PROTEIN6, and PATHOGENESIS-RELATED1 were enriched in phloem exudates of SAR-induced plants, demonstrating the strength of this approach and suggesting a role for these proteins in the phloem during SAR. To identify novel components of SAR, transfer DNA mutants of differentially abundant phloem proteins were assayed for SAR competence. This analysis identified a number of new proteins (m-type thioredoxins, major latex protein-like protein, ULTRAVIOLET-B RESISTANCE8 photoreceptor) that contribute to the SAR response. The Arabidopsis SAR phloem proteome is a valuable resource for understanding SAR long-distance signaling and the dynamic nature of the phloem during plant-pathogen interactions. PMID:27208255

  12. Comparative Proteomics Analysis of Phloem Exudates Collected during the Induction of Systemic Acquired Resistance.

    PubMed

    Carella, Philip; Merl-Pham, Juliane; Wilson, Daniel C; Dey, Sanjukta; Hauck, Stefanie M; Vlot, A Corina; Cameron, Robin K

    2016-06-01

    Systemic acquired resistance (SAR) is a plant defense response that provides long-lasting, broad-spectrum pathogen resistance to uninfected systemic leaves following an initial localized infection. In Arabidopsis (Arabidopsis thaliana), local infection with virulent or avirulent strains of Pseudomonas syringae pv tomato generates long-distance SAR signals that travel from locally infected to distant leaves through the phloem to establish SAR In this study, a proteomics approach was used to identify proteins that accumulate in phloem exudates in response to the induction of SAR To accomplish this, phloem exudates collected from mock-inoculated or SAR-induced leaves of wild-type Columbia-0 plants were subjected to label-free quantitative liquid chromatography-tandem mass spectrometry proteomics. Comparing mock- and SAR-induced phloem exudate proteomes, 16 proteins were enriched in phloem exudates collected from SAR-induced plants, while 46 proteins were suppressed. SAR-related proteins THIOREDOXIN h3, ACYL-COENZYME A-BINDING PROTEIN6, and PATHOGENESIS-RELATED1 were enriched in phloem exudates of SAR-induced plants, demonstrating the strength of this approach and suggesting a role for these proteins in the phloem during SAR To identify novel components of SAR, transfer DNA mutants of differentially abundant phloem proteins were assayed for SAR competence. This analysis identified a number of new proteins (m-type thioredoxins, major latex protein-like protein, ULTRAVIOLET-B RESISTANCE8 photoreceptor) that contribute to the SAR response. The Arabidopsis SAR phloem proteome is a valuable resource for understanding SAR long-distance signaling and the dynamic nature of the phloem during plant-pathogen interactions. PMID:27208255

  13. Systemic Acquired Resistance in Moss: Further Evidence for Conserved Defense Mechanisms in Plants

    PubMed Central

    Winter, Peter S.; Bowman, Collin E.; Villani, Philip J.; Dolan, Thomas E.; Hauck, Nathanael R.

    2014-01-01

    Vascular plants possess multiple mechanisms for defending themselves against pathogens. One well-characterized defense mechanism is systemic acquired resistance (SAR). In SAR, a plant detects the presence of a pathogen and transmits a signal throughout the plant, inducing changes in the expression of various pathogenesis-related (PR) genes. Once SAR is established, the plant is capable of mounting rapid responses to subsequent pathogen attacks. SAR has been characterized in numerous angiosperm and gymnosperm species; however, despite several pieces of evidence suggesting SAR may also exist in non-vascular plants6–8, its presence in non-vascular plants has not been conclusively demonstrated, in part due to the lack of an appropriate culture system. Here, we describe and use a novel culture system to demonstrate that the moss species Amblystegium serpens does initiate a SAR-like reaction upon inoculation with Pythium irregulare, a common soil-borne oomycete. Infection of A. serpens gametophores by P. irregulare is characterized by localized cytoplasmic shrinkage within 34 h and chlorosis and necrosis within 7 d of inoculation. Within 24 h of a primary inoculation (induction), moss gametophores grown in culture became highly resistant to infection following subsequent inoculation (challenge) by the same pathogen. This increased resistance was a response to the pathogen itself and not to physical wounding. Treatment with β-1,3 glucan, a structural component of oomycete cell walls, was equally effective at triggering SAR. Our results demonstrate, for the first time, that this important defense mechanism exists in a non-vascular plant, and, together with previous studies, suggest that SAR arose prior to the divergence of vascular and non-vascular plants. In addition, this novel moss – pathogen culture system will be valuable for future characterization of the mechanism of SAR in moss, which is necessary for a better understanding of the evolutionary history of SAR

  14. Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism.

    PubMed

    Zhang, Xibo; Fang, Yue; Jaiseng, Wurentuya; Hu, Lingling; Lu, Yabin; Ma, Yan; Furuyashiki, Tomoyuki

    2015-01-01

    Tamoxifen, a selective estrogen receptor modulator used for managing breast cancer, is known to have antifungal activity. However, its molecular mechanism remains unknown. Using the fission yeast Schizosaccharomyces pombe as a model organism, we have explored the mechanism involved in antifungal action of tamoxifen. Since tamoxifen was shown to inhibit the binding of calmodulin to calcineurin in fungi, we first examined involvement of these molecules and found that overexpression of a catalytic subunit of calcineurin and its constitutively active mutant as well as calmodulin increases tamoxifen sensitivity. Since terbinafine and azoles inhibit enzymes for ergosterol biosynthesis, Erg1 and Erg11, for their antifungal actions, we also examined involvement of these molecules. Overexpression of Erg1 and Erg11 reduced the sensitivity to terbinafine and azoles, respectively, but increased tamoxifen sensitivity, suggesting that ergosterol biosynthesis is differently related to the action of tamoxifen and those of terbinafine and azoles. To elucidate molecules involved in tamoxifen action, we performed a genome-wide screen for altered sensitivity to tamoxifen using a fission yeast gene deletion library, and identified various hypersensitive and resistant mutants to this drug. Notably, these mutants are rarely overlapped with those identified in similar genetic screens with currently used antifungals, suggesting a novel mode of antifungal action. Furthermore, tamoxifen augmented antifungal actions of terbinafine and azoles, suggesting synergetic actions between these drugs. Therefore, our findings suggest that calmodulin-calcineurin pathway and ergosterol biosynthesis are related to antifungal action of tamoxifen, and propose novel targets for antifungal development as well as combined therapy with tamoxifen for fungal diseases. PMID:26628015

  15. Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide.

    PubMed

    Corriden, Ross; Hollands, Andrew; Olson, Joshua; Derieux, Jaclyn; Lopez, Justine; Chang, John T; Gonzalez, David J; Nizet, Victor

    2015-01-01

    Tamoxifen is a selective oestrogen receptor modulator widely used for the treatment of breast cancer. In addition to its activity as an oestrogen receptor agonist/antagonist, tamoxifen also modulates sphingolipid biosynthesis, which has been shown to play an important role in the regulation of neutrophil activity. Here, we find that tamoxifen stimulation enhances several pro-inflammatory pathways in human neutrophils, including chemotaxis, phagocytosis and neutrophil extracellular trap (NET) formation. The enhancement of NET production occurs via a ceramide/PKCζ-mediated pathway, and treatment with synthetic ceramide is sufficient to promote NET formation. Pretreatment of human neutrophils with tamoxifen boosts neutrophil bactericidal capacity against a variety of pathogens in vitro and enhances clearance of the leading human pathogen methicillin-resistant Staphylococcus aureus in vivo. Our results suggest that tamoxifen, and the lipid signalling pathways it modulates, merit further exploration as targets for boosting host innate immune function. PMID:26458291

  16. Tamoxifen Augments the Innate Immune Function of Neutrophils Through Modulation of Intracellular Ceramide

    PubMed Central

    Corriden, Ross; Hollands, Andrew; Olson, Joshua; Derieux, Jaclyn; Lopez, Justine; Chang, John T.; Gonzalez, David J.; Nizet, Victor

    2015-01-01

    Tamoxifen is a selective estrogen receptor modulator widely used for the treatment of breast cancer. In addition to its activity as an estrogen receptor agonist/antagonist, tamoxifen also modulates sphingolipid biosynthesis, which has been shown to play an important role in the regulation of neutrophil activity. Here, we find that tamoxifen stimulation enhances several pro-inflammatory pathways in human neutrophils, including chemotaxis, phagocytosis and neutrophil extracellular trap (NET) formation. The enhancement of NET production occurs via a ceramide/PKCζ-mediated pathway, and treatment with synthetic ceramide is sufficient to promote NET formation. Pretreatment of human neutrophils with tamoxifen boosts neutrophil bactericidal capacity against a variety of pathogens in vitro and enhances clearance of the leading human pathogen methicillin-resistant Staphylococcus aureus in vivo. Our results suggest that tamoxifen, and the lipid signaling pathways it modulates, merit further exploration as targets for boosting host innate immune function. PMID:26458291

  17. Combinatorial Therapy with Tamoxifen And Trifluoperazine Effectively Inhibits Malignant Peripheral Nerve Sheath Tumor Growth by Targeting Complementary Signaling Cascades

    PubMed Central

    Brosius, Stephanie N.; Turk, Amy N.; Byer, Stephanie J.; Longo, Jody Fromm; Kappes, John C.; Roth, Kevin A.; Carroll, Steven L.

    2014-01-01

    Chemotherapeutic agents effective against malignant peripheral nerve sheath tumors (MPNSTs) are urgently needed. We recently found that tamoxifen potently impedes xenograft growth. In vitro, tamoxifen inhibits MPNST proliferation and survival in an estrogen receptor-independent manner; these effects are phenocopied by the calmodulin inhibitor trifluoperazine. The present study was performed to establish the mechanism of action of tamoxifen in vivo and optimize its therapeutic effectiveness. To determine if tamoxifen has estrogen receptor-dependent effects in vivo, we grafted MPNST cells in castrated and ovariectomized mice; xenograft growth was unaffected by reductions in sex hormones. To establish whether tamoxifen and trifluoperazine additively or synergistically impede MPNST growth, mice xenografted with NF1-associated or sporadic MPNST cells were treated with tamoxifen, trifluoperazine, or both drugs for 30 days. Both monotherapies inhibited graft growth by 50%, whereas combinatorial treatment maximally reduced graft mass by 90% and enhanced decreases in proliferation and survival. Kinomic analyses showed that tamoxifen and trifluoperazine have both shared and distinct targets in MPNSTs. Additionally, trifluoperazine prevented tamoxifen-induced increases in serum/glucocorticoid regulated kinase 1, a protein linked to tamoxifen resistance. These findings suggest that combinatorial therapy with tamoxifen and trifluoperazine is effective against MPNSTs because these agents target complementary pathways that are essential for MPNST pathogenesis. PMID:25289889

  18. Evidence for the role of microRNA 374b in acquired cisplatin resistance in pancreatic cancer cells

    PubMed Central

    Schreiber, R; Mezencev, R; Matyunina, L V; McDonald, J F

    2016-01-01

    Recent evidence has implicated microRNAs (miRNAs) as potentially significant players in the acquisition of cancer-drug resistance in pancreatic and other cancers. To evaluate the potential contribution of miRNAs in acquired resistance to cisplatin in pancreatic cancer, we compared levels of more than 2000 human miRNAs in a cisplatin-resistant cell line (BxPC3-R) derived from parental (BxPC3) cells by step-wise exposure to increasing concentrations of the drug over more than 20 passages. The acquired drug resistance was accompanied by significant changes in the expression of 57 miRNAs, of which 23 were downregulated and 34 were upregulated. Employing a hidden Markov model (HMM) algorithm, we identified downregulation of miR-374b as likely being directly involved in acquisition of the drug-resistant phenotype. Consistent with this prediction, ectopic overexpression of miR-374b in the resistant BxPC3-R cells restored cisplatin sensitivity to levels approaching those displayed by the BxPC3 parental cells. The results are consistent with a growing body of evidence implicating miRNAs in acquired cancer-drug resistance and with the potential therapeutic value of these small regulatory RNAs in blocking and/or reversing the process. PMID:27229158

  19. Increased interleukin-6 expression is associated with poor prognosis and acquired cisplatin resistance in head and neck squamous cell carcinoma.

    PubMed

    Gao, Jian; Zhao, Sen; Halstensen, Trond S

    2016-06-01

    Increased expression of interleukin 6 (IL-6) is associated with poor prognosis and chemoresistance in many different carcinomas, but its role in head and neck squamous cell carcinoma (HNSCC) is still unsettled. Analyzing tumorous mRNA expression data from 399 HNSCC patients revealed that high IL-6 expression predicted poor prognosis. Similar tendency was observed in platinum treated patients, suggesting an IL-6 associated cisplatin resistance. IL-6 increase was also found in two in-house acquired cisplatin‑resistant HNSCC cell lines (both basaloid and conventional squamous cell carcinoma) by using microarray analysis. However, although the in-house acquired cisplatin-resistant cell lines had higher basal and markedly increased cisplatin-induced IL-6 expression, IL-6 did not mediate the cisplatin resistance as neither exogenous IL-6 nor IL-6R/gp130 inhibitors affected cisplatin sensitivity. Moreover, the IL-6/STAT3 pathway was impaired in the resistant cell lines, partly due to decreased IL-6R expression. Thus, high IL-6 expression correlated to poor prognosis and acquired cisplatin resistance, but it did not mediate cisplatin resistance in the HNSCC cell lines. PMID:27108527

  20. Evidence for the role of microRNA 374b in acquired cisplatin resistance in pancreatic cancer cells.

    PubMed

    Schreiber, R; Mezencev, R; Matyunina, L V; McDonald, J F

    2016-08-01

    Recent evidence has implicated microRNAs (miRNAs) as potentially significant players in the acquisition of cancer-drug resistance in pancreatic and other cancers. To evaluate the potential contribution of miRNAs in acquired resistance to cisplatin in pancreatic cancer, we compared levels of more than 2000 human miRNAs in a cisplatin-resistant cell line (BxPC3-R) derived from parental (BxPC3) cells by step-wise exposure to increasing concentrations of the drug over more than 20 passages. The acquired drug resistance was accompanied by significant changes in the expression of 57 miRNAs, of which 23 were downregulated and 34 were upregulated. Employing a hidden Markov model (HMM) algorithm, we identified downregulation of miR-374b as likely being directly involved in acquisition of the drug-resistant phenotype. Consistent with this prediction, ectopic overexpression of miR-374b in the resistant BxPC3-R cells restored cisplatin sensitivity to levels approaching those displayed by the BxPC3 parental cells. The results are consistent with a growing body of evidence implicating miRNAs in acquired cancer-drug resistance and with the potential therapeutic value of these small regulatory RNAs in blocking and/or reversing the process. PMID:27229158

  1. Increased interleukin-6 expression is associated with poor prognosis and acquired cisplatin resistance in head and neck squamous cell carcinoma

    PubMed Central

    GAO, JIAN; ZHAO, SEN; HALSTENSEN, TROND S.

    2016-01-01

    Increased expression of interleukin 6 (IL-6) is associated with poor prognosis and chemoresistance in many different carcinomas, but its role in head and neck squamous cell carcinoma (HNSCC) is still unsettled. Analyzing tumorous mRNA expression data from 399 HNSCC patients revealed that high IL-6 expression predicted poor prognosis. Similar tendency was observed in platinum treated patients, suggesting an IL-6 associated cisplatin resistance. IL-6 increase was also found in two in-house acquired cisplatin-resistant HNSCC cell lines (both basaloid and conventional squamous cell carcinoma) by using microarray analysis. However, although the in-house acquired cisplatin-resistant cell lines had higher basal and markedly increased cisplatin-induced IL-6 expression, IL-6 did not mediate the cisplatin resistance as neither exogenous IL-6 nor IL-6R/gp130 inhibitors affected cisplatin sensitivity. Moreover, the IL-6/STAT3 pathway was impaired in the resistant cell lines, partly due to decreased IL-6R expression. Thus, high IL-6 expression correlated to poor prognosis and acquired cisplatin resistance, but it did not mediate cisplatin resistance in the HNSCC cell lines. PMID:27108527

  2. Early Adaptation and Acquired Resistance to CDK4/6 Inhibition in Estrogen Receptor-Positive Breast Cancer.

    PubMed

    Herrera-Abreu, Maria Teresa; Palafox, Marta; Asghar, Uzma; Rivas, Martín A; Cutts, Rosalind J; Garcia-Murillas, Isaac; Pearson, Alex; Guzman, Marta; Rodriguez, Olga; Grueso, Judit; Bellet, Meritxell; Cortés, Javier; Elliott, Richard; Pancholi, Sunil; Baselga, José; Dowsett, Mitch; Martin, Lesley-Ann; Turner, Nicholas C; Serra, Violeta

    2016-04-15

    Small-molecule inhibitors of the CDK4/6 cell-cycle kinases have shown clinical efficacy in estrogen receptor (ER)-positive metastatic breast cancer, although their cytostatic effects are limited by primary and acquired resistance. Here we report that ER-positive breast cancer cells can adapt quickly to CDK4/6 inhibition and evade cytostasis, in part, via noncanonical cyclin D1-CDK2-mediated S-phase entry. This adaptation was prevented by cotreatment with hormone therapies or PI3K inhibitors, which reduced the levels of cyclin D1 (CCND1) and other G1-S cyclins, abolished pRb phosphorylation, and inhibited activation of S-phase transcriptional programs. Combined targeting of both CDK4/6 and PI3K triggered cancer cell apoptosis in vitro and in patient-derived tumor xenograft (PDX) models, resulting in tumor regression and improved disease control. Furthermore, a triple combination of endocrine therapy, CDK4/6, and PI3K inhibition was more effective than paired combinations, provoking rapid tumor regressions in a PDX model. Mechanistic investigations showed that acquired resistance to CDK4/6 inhibition resulted from bypass of cyclin D1-CDK4/6 dependency through selection of CCNE1 amplification or RB1 loss. Notably, although PI3K inhibitors could prevent resistance to CDK4/6 inhibitors, they failed to resensitize cells once resistance had been acquired. However, we found that cells acquiring resistance to CDK4/6 inhibitors due to CCNE1 amplification could be resensitized by targeting CDK2. Overall, our results illustrate convergent mechanisms of early adaptation and acquired resistance to CDK4/6 inhibitors that enable alternate means of S-phase entry, highlighting strategies to prevent the acquisition of therapeutic resistance to these agents. Cancer Res; 76(8); 2301-13. ©2016 AACR. PMID:27020857

  3. BIIB021, a synthetic Hsp90 inhibitor, has broad application against tumors with acquired multidrug resistance.

    PubMed

    Zhang, Hong; Neely, Laura; Lundgren, Karen; Yang, Yong-Ching; Lough, Rachel; Timple, Noel; Burrows, Francis

    2010-03-01

    17-AAG, the first-generation clinical Hsp90 inhibitor, exhibits promising antitumor activity in clinical studies, but is limited by poor solubility and hepatotoxicity. To pursue compounds with better biopharmaceutical properties, we have developed a series of fully synthetic orally bioavailable inhibitors of Hsp90. Here, we report that 17-AAG and other ansamycin derivatives are inactive in P-gp and/or MRP-1 expressing cell lines and sensitivity could be restored by coadministration of P-gp or MRP inhibitors. In contrast, the synthetic Hsp90 inhibitor, BIIB021 was active in these models. Accordingly, BIIB021 was considerably more active than 17-AAG against adrenocortical carcinoma, a tumor that naturally expresses P-gp, both in vitro and in vivo. This efflux pump-mediated resistance is manifested in both cytotoxicity assays and measurements of target inhibition, such as client protein degradation. Other than this, the cytotoxic activity of BIIB021 was also not influenced by loss of NQO1 or Bcl-2 overexpression, molecular lesions that do not prevent client loss but are nonetheless associated with reduced cell killing by 17-AAG. Our results indicate that the activity of 17-AAG and other ansamycins may be curtailed in tumors that have upregulated efflux pumps or antiapoptotic proteins or other genetic alterations. These data indicate that the new generation of synthetic anti-Hsp90 drugs, exemplified by BIIB021 that is currently undergoing Phase II testing, may have broader application against tumors with acquired multidrug resistance or tumors located in organs protected by MDR proteins, such as the adrenal glands, brain and testis. PMID:19676042

  4. Carbapenem-resistant Acinetobacter baumannii acquired before liver transplantation: Impact on recipient outcomes.

    PubMed

    Freire, Maristela Pinheiro; Pierrotti, Ligia Câmera; Oshiro, Isabel Cristina Villela Soares; Bonazzi, Patrícia Rodrigues; Oliveira, Larissa Marques de; Machado, Anna Silva; Van Der Heijden, Inneke Marie; Rossi, Flavia; Costa, Silvia Figueiredo; D'Albuquerque, Luiz Augusto Carneiro; Abdala, Edson

    2016-05-01

    Infection with carbapenem-resistant Acinetobacter baumannii (CRAB) after liver transplantation (LT) is associated with high mortality. This study aimed to identify risk factors for post-LT CRAB infection, as well as to evaluate the impact of pre-LT CRAB acquisition on the incidence of post-LT CRAB infection. This was a prospective cohort study of all patients undergoing LT at our facility between October 2009 and October 2011. Surveillance cultures (SCs) were collected immediately before LT and weekly thereafter, until discharge. We analyzed 196 patients who were submitted to 222 LTs. CRAB was identified in 105 (53.6%); 24 (22.9%) of these patients were found to have acquired CRAB before LT, and 85 (81.0%) tested positive on SCs. Post-LT CRAB infection occurred in 56 (28.6%), the most common site being the surgical wound. Multivariate analysis showed that the risk factors for developing CRAB infection were prolonged cold ischemia, post-LT dialysis, LT due to fulminant hepatitis, and pre-LT CRAB acquisition with pre-LT CRAB acquisition showing a considerable trend toward significance (P = 0.06). Among the recipients with CRAB infection, 60-day mortality was 46.4%, significantly higher than among those without (P < 0.001). Mortality risk factors were post-LT infection with multidrug-resistant bacteria, LT performed because of fulminant hepatitis, retransplantation, prolonged cold ischemia, longer LT surgical time, and pre-LT CRAB acquisition, the last showing a trend toward significance (P = 0.08). In conclusion, pre-LT CRAB acquisition appears to increase the risk of post-LT CRAB infection, which has a negative impact on recipient survival. Liver Transplantation 22 615-626 2016 AASLD. PMID:26684547

  5. Non-Small Cell Lung Cancer Cells Acquire Resistance to the ALK Inhibitor Alectinib by Activating Alternative Receptor Tyrosine Kinases.

    PubMed

    Isozaki, Hideko; Ichihara, Eiki; Takigawa, Nagio; Ohashi, Kadoaki; Ochi, Nobuaki; Yasugi, Masayuki; Ninomiya, Takashi; Yamane, Hiromichi; Hotta, Katsuyuki; Sakai, Katsuya; Matsumoto, Kunio; Hosokawa, Shinobu; Bessho, Akihiro; Sendo, Toshiaki; Tanimoto, Mitsune; Kiura, Katsuyuki

    2016-03-15

    Crizotinib is the standard of care for advanced non-small cell lung cancer (NSCLC) patients harboring the anaplastic lymphoma kinase (ALK) fusion gene, but resistance invariably develops. Unlike crizotinib, alectinib is a selective ALK tyrosine kinase inhibitor (TKI) with more potent antitumor effects and a favorable toxicity profile, even in crizotinib-resistant cases. However, acquired resistance to alectinib, as for other TKIs, remains a limitation of its efficacy. Therefore, we investigated the mechanisms by which human NSCLC cells acquire resistance to alectinib. We established two alectinib-resistant cell lines that did not harbor the secondary ALK mutations frequently occurring in crizotinib-resistant cells. One cell line lost the EML4-ALK fusion gene, but exhibited increased activation of insulin-like growth factor-1 receptor (IGF1R) and human epidermal growth factor receptor 3 (HER3), and overexpressed the HER3 ligand neuregulin 1. Accordingly, pharmacologic inhibition of IGF1R and HER3 signaling overcame resistance to alectinib in this cell line. The second alectinib-resistant cell line displayed stimulated HGF autocrine signaling that promoted MET activation and remained sensitive to crizotinib treatment. Taken together, our findings reveal two novel mechanisms underlying alectinib resistance that are caused by the activation of alternative tyrosine kinase receptors rather than by secondary ALK mutations. These studies may guide the development of comprehensive treatment strategies that take into consideration the various approaches ALK-positive lung tumors use to withstand therapeutic insult. PMID:26719536

  6. Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment.

    PubMed

    Zippelius, Alfred; Schreiner, Jens; Herzig, Petra; Müller, Philipp

    2015-03-01

    CD40 stimulation on antigen-presenting cells (APC) allows direct activation of CD8(+) cytotoxic T cells, independent of CD4⁺ T-cell help. Agonistic anti-CD40 antibodies have been demonstrated to induce beneficial antitumor T-cell responses in mouse models of cancer and early clinical trials. We report here that anti-CD40 treatment induces programmed death ligand-1 (PD-L1) upregulation on tumor-infiltrating monocytes and macrophages, which was strictly dependent on T cells and IFNγ. PD-L1 expression could be counteracted by coadministration of antibodies blocking the PD-1 (programmed death-1)/PD-L1 axis as shown for T cells from tumor models and human donors. The combined treatment was highly synergistic and induced complete tumor rejection in about 50% of mice bearing MC-38 colon and EMT-6 breast tumors. Mechanistically, this was reflected by a strong increase of IFNγ and granzyme-B production in intratumoral CD8⁺ T cells. Concomitant CTLA-4 blockade further improved rejection of established tumors in mice. This study uncovers a novel mechanism of acquired resistance upon agonistic CD40 stimulation and proposes that the concomitant blockade of the PD-1/PD-L1 axis is a viable therapeutic strategy to optimize clinical outcomes. PMID:25623164

  7. Length of stay an important mediator of hospital-acquired methicillin-resistant Staphylococcus aureus.

    PubMed

    Wong, J G; Chen, M I; Win, M K; Ng, P Y; Chow, A

    2016-04-01

    Hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) is becoming increasingly established in Asian hospitals. The primary aim of this study was to decompose the risk factors for HA-MRSA based on conceptual clinical pathways. The secondary aim was to show the amount of effect attributable to antibiotic exposure and total length of stay before outcome (LBO) so that institutions can manage at-risk patients accordingly. A case-control study consisting of 1200 inpatients was conducted in a large tertiary hospital in Singapore between January and December 2006. Results from the generalized structural equation model (GSEM) show that LBO [adjusted odds ratio (aOR) 14·9, 95% confidence interval (CI) 8·7-25·5], prior hospitalization (aOR 6·2, 95% CI 3·3-11·5), and cumulative antibiotic exposure (aOR 3·5, 95% CI 2·3-5·3), directly affected HA-MRSA acquisition. LBO accounted for the majority of the effects due to age (100%), immunosuppression (67%), and surgery (96%), and to a lesser extent for male gender (22%). Our model enabled us to account and quantify effects of intermediaries. LBO was found to be an important mediator of age, immunosuppression and surgery on MRSA infection. Traditional regression approaches will not only give different conclusions but also underestimate the effects. Hospitals should minimize the hospital stay when possible to reduce the risk of MRSA. PMID:26538070

  8. Surveillance of Antibiotic Resistance among Hospital- and Community-Acquired Toxigenic Clostridium difficile Isolates over 5-Year Period in Kuwait

    PubMed Central

    Jamal, Wafaa Y.; Rotimi, Vincent O.

    2016-01-01

    Clostridium difficile infection (CDI) is a leading and an important cause of diarrhea in a healthcare setting especially in industrialized countries. Community-associated CDI appears to add to the burden on healthcare setting problems. The aim of the study was to investigate the antimicrobial resistance of healthcare-associated and community-acquired C. difficile infection over 5 years (2008–2012) in Kuwait. A total of 111 hospital-acquired (HA-CD) and 35 community-acquired Clostridium difficile (CA-CD) clinical isolates from stool of patients with diarrhoea were studied. Antimicrobial susceptibility testing of 15 antimicrobial agents against these pathogens was performed using E test method. There was no evidence of resistance to amoxicillin-clavulanic acid, daptomycin, linezolid, piperacillin-tazobactam, teicoplanin and vancomycin by both HA-CD and CA-CD isolates. Metronidazole had excellent activity against CA-CD but there was a 2.9% resistance rate against HA-CD isolates. Ampicillin, clindamycin, levofloxacin and imipenem resistance rates among the HC-CD vs. CA-CD isolates were 100 vs. 47.4%; 43 vs. 47.4%; 100 vs. 100% and 100 vs. 89%, respectively. An unexpected high rifampicin resistance rate of 15.7% emerged amongst the HA-CD isolates. In conclusion, vancomycin resistance amongst the HA-CD and CA-CD isolates was not encountered in this series but few metronidazole resistant hospital isolates were isolated. High resistance rates of ampicillin, clindamycin, levofloxacin, and imipenem resistance were evident among both CA-CD and HA-CD isolates. Rifampicin resistance is emerging among the HA-CD isolates. PMID:27536994

  9. An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic acquired resistance (SAR) immunizes distal tissues of plants against secondary infections. We report that an acyl carrier protein, ACP4, is essential for perception but not generation of the SAR signal in Arabidopsis. A mutation in acp4 reduces the fatty acid flux, resulting in impaired cut...

  10. Growth response and acquired resistance of Nile tilapia Orechromis niloticus following infection or vaccination with Streptococcus iniae.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth performance and acquired resistance of Nile tilapia, Oreochromis niloticus that survived Streptococcus iniae infection was determined. Tilapia were challenged with three doses of S. iniae (8.8 x 10 to the third power, 8.8 x 10 to the fourth power and 8.8 x 10 to the fifth power CFU fish-1 f...

  11. GROWTH RESPONSE AND ACQUIRED RESISTANCE OF NILE TILAPIA OREOCHROMIS NILOTICUS FOLLOWING INFECTION OR VACCINATION WITH STREPTOCOCCUS INIAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth performance and acquired resistance of Nile tilapia, Oreochromis niloticus (L.) that survived Streptococcus iniae infection was determined. Tilapia were challenged with three doses of S. iniae (8.8 x 10 to the 3rd power, 8.8 x 10 to the 4th power and 8.8 x 10 to the 5th power CFU fish-1 for ...

  12. Saccharin-induced systemic acquired resistance against rust (Phakopsora pachyrhizi) infection in soybean: Effects on growth and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effect of saccharin on the systemic acquired resistance (SAR) response of soybean to the fungus Phakopsora pachyrhizi, the causal agent of soybean rust. Plants were grown hydroponically in half-strength Hoagland’s solution and were challenged with the pathogen 1, 5, 10 and 15 days af...

  13. Growth Response and Acquired Resistance of Nile Tilapia Oreochromis niloticus Following Infection or Vaccination with Streptococcus iniae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth performance and acquired resistance of Nile tilapia, Oreochromis niloticus (L.) that survived Streptococcus iniae infection was determined. Tilapia were challenged with three doses of S. iniae (8.8 x 10 to the 3rd power, 8.8 x 10 to the 4th power and 8.8 x 10 to the 5th power CFU fish-1 for ...

  14. New Real-Time PCR Assays for Detection of Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Group

    PubMed Central

    Shallom, Shamira J.; Moura, Natalia S.; Olivier, Kenneth N.; Sampaio, Elizabeth P.; Holland, Steven M.

    2015-01-01

    Members of the Mycobacterium abscessus group (MAG) cause lung, soft tissue, and disseminated infections. The oral macrolides clarithromycin and azithromycin are commonly used for treatment. MAG can display clarithromycin resistance through the inducible erm(41) gene or via acquired mutations in the rrl (23S rRNA) gene. Strains harboring a truncation or a T28C substitution in erm(41) lose the inducible resistance trait. Phenotypic detection of clarithromycin resistance requires extended incubation (14 days), highlighting the need for faster methods to detect resistance. Two real-time PCR-based assays were developed to assess inducible and acquired clarithromycin resistance and tested on a total of 90 clinical and reference strains. A SYBR green assay was designed to distinguish between a full-length and truncated erm(41) gene by temperature shift in melting curve analysis. Single nucleotide polymorphism (SNP) allele discrimination assays were developed to distinguish T or C at position 28 of erm(41) and 23S rRNA rrl gene mutations at position 2058 and/or 2059. Truncated and full-size erm(41) genes were detected in 21/90 and 69/90 strains, respectively, with 64/69 displaying T at nucleotide position 28 and 5/69 containing C at that position. Fifteen isolates showed rrl mutations conferring clarithromycin resistance, including A2058G (11 isolates), A2058C (3 isolates), and A2059G (1 isolate). Targeted sequencing and phenotypic assessment of resistance concurred with molecular assay results. Interestingly, we also noted cooccurring strains harboring an active erm(41), inactive erm(41), and/or acquired mutational resistance, as well as slowly growing MAG strains and also strains displaying an inducible resistance phenotype within 5 days, long before the recommended 14-day extended incubation. PMID:26269619

  15. Co-option of Liver Vessels and Not Sprouting Angiogenesis Drives Acquired Sorafenib Resistance in Hepatocellular Carcinoma

    PubMed Central

    Kuczynski, Elizabeth A.; Yin, Melissa; Bar-Zion, Avinoam; Lee, Christina R.; Butz, Henriett; Man, Shan; Daley, Frances; Vermeulen, Peter B.; Yousef, George M.; Foster, F. Stuart

    2016-01-01

    Background: The anti-angiogenic Sorafenib is the only approved systemic therapy for advanced hepatocellular carcinoma (HCC). However, acquired resistance limits its efficacy. An emerging theory to explain intrinsic resistance to other anti-angiogenic drugs is ‘vessel co-option,’ ie, the ability of tumors to hijack the existing vasculature in organs such as the lungs or liver, thus limiting the need for sprouting angiogenesis. Vessel co-option has not been evaluated as a potential mechanism for acquired resistance to anti-angiogenic agents. Methods: To study sorafenib resistance mechanisms, we used an orthotopic human HCC model (n = 4-11 per group), where tumor cells are tagged with a secreted protein biomarker to monitor disease burden and response to therapy. Histopathology, vessel perfusion assessed by contrast-enhanced ultrasound, and miRNA sequencing and quantitative real-time polymerase chain reaction were used to monitor changes in tumor biology. Results: While sorafenib initially inhibited angiogenesis and stabilized tumor growth, no angiogenic ‘rebound’ effect was observed during development of resistance unless therapy was stopped. Instead, resistant tumors became more locally infiltrative, which facilitated extensive incorporation of liver parenchyma and the co-option of liver-associated vessels. Up to 75% (±10.9%) of total vessels were provided by vessel co-option in resistant tumors relative to 23.3% (±10.3%) in untreated controls. miRNA sequencing implicated pro-invasive signaling and epithelial-to-mesenchymal-like transition during resistance development while functional imaging further supported a shift from angiogenesis to vessel co-option. Conclusions: This is the first documentation of vessel co-option as a mechanism of acquired resistance to anti-angiogenic therapy and could have important implications including the potential therapeutic benefits of targeting vessel co-option in conjunction with vascular endothelial growth factor

  16. p21-activated kinase group II small compound inhibitor GNE-2861 perturbs estrogen receptor alpha signaling and restores tamoxifen-sensitivity in breast cancer cells

    PubMed Central

    Li, Zhilun; Lorent, Julie; Zhao, Chunyan; Dahlman-Wright, Karin; Strömblad, Staffan

    2015-01-01

    Estrogen receptor alpha (ERα) is highly expressed in most breast cancers. Consequently, ERα modulators, such as tamoxifen, are successful in breast cancer treatment, although tamoxifen resistance is commonly observed. While tamoxifen resistance may be caused by altered ERα signaling, the molecular mechanisms regulating ERα signaling and tamoxifen resistance are not entirely clear. Here, we found that PAK4 expression was consistently correlated to poor patient outcome in endocrine treated and tamoxifen-only treated breast cancer patients. Importantly, while PAK4 overexpression promoted tamoxifen resistance in MCF-7 human breast cancer cells, pharmacological treatment with a group II PAK (PAK4, 5, 6) inhibitor, GNE-2861, sensitized tamoxifen resistant MCF-7/LCC2 breast cancer cells to tamoxifen. Mechanistically, we identified a regulatory positive feedback loop, where ERα bound to the PAK4 gene, thereby promoting PAK4 expression, while PAK4 in turn stabilized the ERα protein, activated ERα transcriptional activity and ERα target gene expression. Further, PAK4 phosphorylated ERα-Ser305, a phosphorylation event needed for the PAK4 activation of ERα-dependent transcription. In conclusion, PAK4 may be a suitable target for perturbing ERα signaling and tamoxifen resistance in breast cancer patients. PMID:26554417

  17. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity.

    PubMed

    Simões, Bruno M; O'Brien, Ciara S; Eyre, Rachel; Silva, Andreia; Yu, Ling; Sarmiento-Castro, Aida; Alférez, Denis G; Spence, Kath; Santiago-Gómez, Angélica; Chemi, Francesca; Acar, Ahmet; Gandhi, Ashu; Howell, Anthony; Brennan, Keith; Rydén, Lisa; Catalano, Stefania; Andó, Sebastiano; Gee, Julia; Ucar, Ahmet; Sims, Andrew H; Marangoni, Elisabetta; Farnie, Gillian; Landberg, Göran; Howell, Sacha J; Clarke, Robert B

    2015-09-29

    Breast cancers (BCs) typically express estrogen receptors (ERs) but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC) activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX) tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers. PMID:26387946

  18. Leucine Supplementation Improves Acquired Growth Hormone Resistance in Rats with Protein-Energy Malnutrition

    PubMed Central

    Wang, Xinying; Zhao, Jie; Wan, Xiao; Zhang, Li; Wu, Chao; Li, Ning; Li, Jieshou

    2015-01-01

    the MC-L and MC-H groups than in the MC-CON group. Conclusion/Significance Our data are the first to demonstrate that long-term supplementation with leucine improved acquired growth hormone resistance in rats with protein-energy malnutrition. Leucine might promote skeletal muscle protein synthesis by regulating downstream anabolic signaling transduction. PMID:25909895

  19. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance.

    PubMed

    Stahl, Elia; Bellwon, Patricia; Huber, Stefan; Schlaeppi, Klaus; Bernsdorff, Friederike; Vallat-Michel, Armelle; Mauch, Felix; Zeier, Jürgen

    2016-05-01

    Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inoculated and distant, non-inoculated leaves. At inoculation sites, camalexin, indol-3-ylmethylamine (I3A), and indole-3-carboxylic acid (ICA) are the major accumulating compounds. Camalexin accumulation is positively affected by MYB122, and the cytochrome P450 genes CYP81F1 and CYP81F2. Local I3A production, by contrast, occurs via indole glucosinolate breakdown by PEN2- dependent and independent pathways. Moreover, exogenous application of the defense hormone salicylic acid stimulates I3A generation at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator pipecolic acid primes plants for enhanced P. syringae-induced activation of distinct branches of indolic metabolism. In uninfected systemic tissue, the metabolic response is more specific and associated with enhanced levels of the indolics I3A, ICA, and indole-3-carbaldehyde (ICC). Systemic indole accumulation fully depends on functional CYP79B2/3, PEN2, and MYB34/51/122, and requires functional SAR signaling. Genetic analyses suggest that systemically elevated indoles are dispensable for SAR and associated systemic increases of salicylic acid. However, soil-grown but not hydroponically -cultivated cyp79b2/3 and pen2 plants, both defective in indolic secondary metabolism, exhibit pre-induced immunity, which abrogates their intrinsic ability to induce SAR. PMID:26802249

  20. Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance.

    PubMed

    Hein, John W; Wolfe, Gordon V; Blee, Kristopher A

    2008-02-01

    Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a beta-glucoronidase (GUS) reporter construct driven by the beta-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon-Weiner, and Simpson's diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages. PMID:17619212

  1. New Fks Hot Spot for Acquired Echinocandin Resistance in Saccharomyces cerevisiae and Its Contribution to Intrinsic Resistance of Scedosporium Species▿

    PubMed Central

    Johnson, Michael E.; Katiyar, Santosh K.; Edlind, Thomas D.

    2011-01-01

    Echinocandins represent a new antifungal group with potent activity against Candida species. These lipopeptides inhibit the synthesis of β-1,3-glucan, the major cell wall polysaccharide. Acquired resistance or reduced echinocandin susceptibility (RES) is rare and associated with mutations in two “hot spot” regions of Fks1 or Fks2, the probable β-1,3-glucan synthases. In contrast, many fungi demonstrate intrinsic RES for reasons that remain unclear. We are using Saccharomyces cerevisiae to understand the basis for RES by modeling echinocandin-Fks interaction. Previously characterized mutations confer cross-RES; we screened for mutations conferring differential RES, implying direct interaction of that Fks residue with a variable echinocandin side chain. One mutant (in an fks1Δ background) exhibited ≥16-fold micafungin and anidulafungin versus caspofungin RES. Sequencing identified a novel Fks2 mutation, W714L/Y715N. Equivalent W695L/Y696N and related W695L/F/C mutations in Fks1 generated by site-directed mutagenesis and the isolation of a W695L-equivalent mutation in Candida glabrata confirmed the role of the new “hot spot 3” in RES. Further mutagenesis expanded hot spot 3 to Fks1 residues 690 to 700, yielding phenotypes ranging from cross-RES to differential hypersusceptibility. Fks1 sequences from intrinsically RES Scedosporium species revealed W695F-equivalent substitutions; Fks1 hybrids expressing Scedosporium prolificans hot spot 3 confirmed that this substitution imparts RES. PMID:21576441

  2. Collateral Chemoresistance to Anti-Microtubule Agents in a Lung Cancer Cell Line with Acquired Resistance to Erlotinib

    PubMed Central

    Mizuuchi, Hiroshi; Suda, Kenichi; Sato, Katsuaki; Tomida, Shuta; Fujita, Yoshihiko; Kobayashi, Yoshihisa; Maehara, Yoshihiko; Sekido, Yoshitaka; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-01-01

    Various alterations underlying acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have been described. Although treatment strategies specific for these mechanisms are under development, cytotoxic agents are currently employed to treat many patients following failure of EGFR-TKIs. However, the effect of TKI resistance on sensitivity to these cytotoxic agents is mostly unclear. This study investigated the sensitivity of erlotinib-resistant tumor cells to five cytotoxic agents using an in vitro EGFR-TKI-resistant model. Four erlotinib-sensitive lung adenocarcinoma cell lines and their resistant derivatives were tested. Of the resistant cell lines, all but one showed a similar sensitivity to the tested drugs as their parental cells. HCC4006ER cells with epithelial mesenchymal transition features acquired resistance to the three microtubule-targeting agents, docetaxel, paclitaxel and vinorelbine, but not to cisplatin and gemcitabine. Gene expression array and immunoblotting demonstrated that ATP-binding cassette subfamily B, member 1 (ABCB1) was up-regulated in HCC4006ER cells. ABCB1 knockdown by siRNA partially restored sensitivity to the anti-microtubule agents but not to erlotinib. Moreover, the histone deacetylase inhibitor entinostat sensitized HCC4006ER cells to anti-microtubule agents through ABCB1 suppression. Our study indicates that sensitivity of tumor cells to cytotoxic agents in general does not change before and after failure of EGFR-TKIs. However, we describe that two different molecular alterations confer acquired resistance to EGFR-TKIs and cytotoxic agents, respectively. This phenomenon should be kept in mind in selection of subsequent therapy after failure of EGFR-TKIs. PMID:25875914

  3. Collateral chemoresistance to anti-microtubule agents in a lung cancer cell line with acquired resistance to erlotinib.

    PubMed

    Mizuuchi, Hiroshi; Suda, Kenichi; Sato, Katsuaki; Tomida, Shuta; Fujita, Yoshihiko; Kobayashi, Yoshihisa; Maehara, Yoshihiko; Sekido, Yoshitaka; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-01-01

    Various alterations underlying acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have been described. Although treatment strategies specific for these mechanisms are under development, cytotoxic agents are currently employed to treat many patients following failure of EGFR-TKIs. However, the effect of TKI resistance on sensitivity to these cytotoxic agents is mostly unclear. This study investigated the sensitivity of erlotinib-resistant tumor cells to five cytotoxic agents using an in vitro EGFR-TKI-resistant model. Four erlotinib-sensitive lung adenocarcinoma cell lines and their resistant derivatives were tested. Of the resistant cell lines, all but one showed a similar sensitivity to the tested drugs as their parental cells. HCC4006ER cells with epithelial mesenchymal transition features acquired resistance to the three microtubule-targeting agents, docetaxel, paclitaxel and vinorelbine, but not to cisplatin and gemcitabine. Gene expression array and immunoblotting demonstrated that ATP-binding cassette subfamily B, member 1 (ABCB1) was up-regulated in HCC4006ER cells. ABCB1 knockdown by siRNA partially restored sensitivity to the anti-microtubule agents but not to erlotinib. Moreover, the histone deacetylase inhibitor entinostat sensitized HCC4006ER cells to anti-microtubule agents through ABCB1 suppression. Our study indicates that sensitivity of tumor cells to cytotoxic agents in general does not change before and after failure of EGFR-TKIs. However, we describe that two different molecular alterations confer acquired resistance to EGFR-TKIs and cytotoxic agents, respectively. This phenomenon should be kept in mind in selection of subsequent therapy after failure of EGFR-TKIs. PMID:25875914

  4. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1

    PubMed Central

    Yecies, Derek; Carlson, Nicole E.; Deng, Jing

    2010-01-01

    ABT-737 is a small-molecule antagonist of BCL-2 currently under evaluation in clinical trials in the oral form of ABT-263. We anticipate that acquired resistance to this promising drug will inevitably arise. To study potential mechanisms of resistance to ABT-737, we derived resistant lines from initially sensitive OCI-Ly1 and SU-DHL-4 lymphoma cell lines via long-term exposure. Resistance was based in the mitochondria and not due to an inability of the drug to bind BCL-2. Resistant cells had increased levels of BFL-1 and/or MCL-1 proteins, which are not targeted by ABT-737. Proapoptotic BIM was displaced from BCL-2 by ABT-737 in both parental and resistant cells, but in resistant cells, BIM was sequestered by the additional BFL-1 and/or MCL-1. Decreasing MCL-1 levels with flavopiridol, PHA 767491, or shRNA restored sensitivity to ABT-737 resistant cells. MCL-1 was up-regulated not by protein stabilization but rather by increased transcript levels. Surprisingly, in addition to stable increases in MCL-1 transcript and protein in resistant cells, there was a dynamic increase within hours after ABT-737 treatment. BFL-1 protein and transcript levels in resistant cells were similarly dynamically up-regulated. This dynamic increase suggests a novel mechanism whereby modulation of antiapoptotic protein function communicates with nuclear transcriptional machinery. PMID:20197552

  5. Mechanisms of Acquired Resistance to ALK Inhibitors and the Rationale for Treating ALK-positive Lung Cancer.

    PubMed

    Isozaki, Hideko; Takigawa, Nagio; Kiura, Katsuyuki

    2015-01-01

    The discovery of an echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene led to improved clinical outcomes in patients with lung cancer after the development of the first ALK-targeting agent, crizotinib. Some second-generation ALK tyrosine kinase inhibitors (TKIs), which might be more potent than crizotinib or effective on crizotinib-resistant patients, have been developed. Although these ALK-TKIs show an excellent response initially, most patients eventually acquire resistance. Therefore, careful consideration of the resistance mechanisms might lead to superior therapeutic strategies. Here, we summarize the history of ALK-TKIs and their underlying resistance mechanisms in both the preclinical and clinical settings. In addition, we discuss potential future treatment strategies in ALK-TKI-naïve and -resistant patients with lung cancer harboring the EML4-ALK fusion gene. PMID:25941796

  6. Mechanisms of Acquired Resistance to ALK Inhibitors and the Rationale for Treating ALK-positive Lung Cancer

    PubMed Central

    Isozaki, Hideko; Takigawa, Nagio; Kiura, Katsuyuki

    2015-01-01

    The discovery of an echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene led to improved clinical outcomes in patients with lung cancer after the development of the first ALK-targeting agent, crizotinib. Some second-generation ALK tyrosine kinase inhibitors (TKIs), which might be more potent than crizotinib or effective on crizotinib-resistant patients, have been developed. Although these ALK-TKIs show an excellent response initially, most patients eventually acquire resistance. Therefore, careful consideration of the resistance mechanisms might lead to superior therapeutic strategies. Here, we summarize the history of ALK-TKIs and their underlying resistance mechanisms in both the preclinical and clinical settings. In addition, we discuss potential future treatment strategies in ALK-TKI-naïve and -resistant patients with lung cancer harboring the EML4-ALK fusion gene. PMID:25941796

  7. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib.

    PubMed

    Giles, Keith M; Kalinowski, Felicity C; Candy, Patrick A; Epis, Michael R; Zhang, Priscilla M; Redfern, Andrew D; Stuart, Lisa M; Goodall, Gregory J; Leedman, Peter J

    2013-11-01

    Elevated expression and activity of the epidermal growth factor receptor (EGFR) is associated with development and progression of head and neck cancer (HNC) and a poor prognosis. Clinical trials with EGFR tyrosine kinase inhibitors (e.g., erlotinib) have been disappointing in HNC. To investigate the mechanisms mediating resistance to these agents, we developed an HNC cell line (HN5-ER) with acquired erlotinib resistance. In contrast to parental HN5 HNC cells, HN5-ER cells exhibited an epithelial-mesenchymal (EMT) phenotype with increased migratory potential, reduced E-cadherin and epithelial-associated microRNAs (miRNA), and elevated vimentin expression. Phosphorylated receptor tyrosine kinase profiling identified Axl activation in HN5-ER cells. Growth and migration of HN5-ER cells were blocked with a specific Axl inhibitor, R428, and R428 resensitized HN5-ER cells to erlotinib. Microarray analysis of HN5-ER cells confirmed the EMT phenotype associated with acquired erlotinib resistance, and identified activation of gene expression associated with cell migration and inflammation pathways. Moreover, increased expression and secretion of interleukin (IL)-6 and IL-8 in HN5-ER cells suggested a role for inflammatory cytokine signaling in EMT and erlotinib resistance. Expression of the tumor suppressor miR-34a was reduced in HN5-ER cells and increasing its expression abrogated Axl expression and reversed erlotinib resistance. Finally, analysis of 302 HNC patients revealed that high tumor Axl mRNA expression was associated with poorer survival (HR = 1.66, P = 0.007). In summary, our results identify Axl as a key mediator of acquired erlotinib resistance in HNC and suggest that therapeutic inhibition of Axl by small molecule drugs or specific miRNAs might overcome anti-EGFR therapy resistance. PMID:24026012

  8. Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain

    PubMed Central

    2005-01-01

    Background Lung adenocarcinomas from patients who respond to the tyrosine kinase inhibitors gefitinib (Iressa) or erlotinib (Tarceva) usually harbor somatic gain-of-function mutations in exons encoding the kinase domain of the epidermal growth factor receptor (EGFR). Despite initial responses, patients eventually progress by unknown mechanisms of “acquired” resistance. Methods and Findings We show that in two of five patients with acquired resistance to gefitinib or erlotinib, progressing tumors contain, in addition to a primary drug-sensitive mutation in EGFR, a secondary mutation in exon 20, which leads to substitution of methionine for threonine at position 790 (T790M) in the kinase domain. Tumor cells from a sixth patient with a drug-sensitive EGFR mutation whose tumor progressed on adjuvant gefitinib after complete resection also contained the T790M mutation. This mutation was not detected in untreated tumor samples. Moreover, no tumors with acquired resistance had KRAS mutations, which have been associated with primary resistance to these drugs. Biochemical analyses of transfected cells and growth inhibition studies with lung cancer cell lines demonstrate that the T790M mutation confers resistance to EGFR mutants usually sensitive to either gefitinib or erlotinib. Interestingly, a mutation analogous to T790M has been observed in other kinases with acquired resistance to another kinase inhibitor, imatinib (Gleevec). Conclusion In patients with tumors bearing gefitinib- or erlotinib-sensitive EGFR mutations, resistant subclones containing an additional EGFR mutation emerge in the presence of drug. This observation should help guide the search for more effective therapy against a specific subset of lung cancers. PMID:15737014

  9. Comparison of local and systemic induction of acquired disease resistance in cucumber plants treated with benzothiadiazoles or salicylic acid.

    PubMed

    Narusaka, Y; Narusaka, M; Horio, T; Ishii, H

    1999-04-01

    The accumulation of chitinase and its involvement in systemic acquired disease resistance was analyzed using acibenzolar-S-methyl and salicylic acid (SA). Resistance against scab (pathogen: Cladosporium cucumerinum) and the accumulation of chitinase were rapidly induced in cucumber plants after treatment with acibenzolar-S-methyl. In contrast, SA protected the plants from C. cucumerinum and the accumulation of chitinase was induced only on the treated leaves. The accumulation of chitinase in response to inoculation with the pathogen was induced more rapidly in cucumber plants previously treated with acibenzolar-S-methyl than in plants pretreated with SA or water. Thus, it appears that a prospective signal(s), that induces systemic resistance, can be transferred from leaves treated with acibenzolar-S-methyl to the untreated upper and lower leaves where systemic resistance is elicited. In contrast, exogenously applied SA is not likely to function as a mobile, systemic resistance-inducing signal, because SA only induces localized acquired resistance. PMID:10394634

  10. Acquisition of a single EZH2 D1 domain mutation confers acquired resistance to EZH2-targeted inhibitors

    PubMed Central

    Baker, Theresa; Nerle, Sujata; Pritchard, Justin; Zhao, Boyang; Rivera, Victor M.

    2015-01-01

    Although targeted therapies have revolutionized cancer treatment, overcoming acquired resistance remains a major clinical challenge. EZH2 inhibitors (EZH2i), EPZ-6438 and GSK126, are currently in the early stages of clinical evaluation and the first encouraging signs of efficacy have recently emerged in the clinic. To anticipate mechanisms of resistance to EZH2i, we used a forward genetic platform combining a mutagenesis screen with next generation sequencing technology and identified a hotspot of secondary mutations in the EZH2 D1 domain (Y111 and I109). Y111D mutation within the WT or A677G EZH2 allele conferred robust resistance to both EPZ-6438 and GSK126, but it only drove a partial resistance within the Y641F allele. EZH2 mutants required histone methyltransferase (HMT) catalytic activity and the polycomb repressive complex 2 (PRC2) components, SUZ12 and EED, to drive drug resistance. Furthermore, D1 domain mutations not only blocked the ability of EZH2i to bind to WT and A677G mutant, but also abrogated drug binding to the Y641F mutant. These data provide the first cellular validation of the mechanistic model underpinning the oncogenic function of WT and mutant EZH2. Importantly, our findings suggest that acquired-resistance to EZH2i may arise in WT and mutant EZH2 patients through a single mutation that remains targetable by second generation EZH2i. PMID:26360609

  11. Benznidazole-Resistance in Trypanosoma cruzi Is a Readily Acquired Trait That Can Arise Independently in a Single Population

    PubMed Central

    Mejia, Ana Maria; Hall, Belinda S.; Taylor, Martin C.; Gómez-Palacio, Andrés; Wilkinson, Shane R.; Triana-Chávez, Omar; Kelly, John M.

    2012-01-01

    Benznidazole is the frontline drug used against Trypanosoma cruzi, the causative agent of Chagas disease. However, treatment failures are often reported. Here, we demonstrate that independently acquired mutations in the gene encoding a mitochondrial nitroreductase (TcNTR) can give rise to distinct drug-resistant clones within a single population. Following selection of benznidazole-resistant parasites, all clones examined had lost one of the chromosomes containing the TcNTR gene. Sequence analysis of the remaining TcNTR allele revealed 3 distinct mutant genes in different resistant clones. Expression studies showed that these mutant proteins were unable to activate benznidazole. This correlated with loss of flavin mononucleotide binding. The drug-resistant phenotype could be reversed by transfection with wild-type TcNTR. These results identify TcNTR as a central player in acquired resistance to benznidazole. They also demonstrate that T. cruzi has a propensity to undergo genetic changes that can lead to drug resistance, a finding that has implications for future therapeutic strategies. PMID:22551809

  12. Characterization of naturally acquired multiple-drug resistance of Yoshida rat ascites hepatoma AH66 cell line.

    PubMed

    Miyamoto, K; Wakabayashi, D; Minamino, T; Nomura, M; Wakusawa, S; Nakamura, S

    1996-01-01

    Characteristics of multiple-drug resistance of rat ascites hepatoma AH66, a cell line induced by dimethylaminoazobenzene and established as a transplantable tumor, were compared with those of AH66F, a drug sensitive line obtained from AH66. The AH66 cell line was resistant to vinblastine, adriamycin, SN-38 an active form of camptothesine, etoposide, and clorambucil by 10-fold or more than the AH66F cell line. The resistance of AH66 cells to vinblastine, adriamycin, and SN-38 was closely related to P-glycoprotein overexpression in the plasma membrane, because the resistance was significantly inhibited by verapamil. AH66 cells contained much glutahione and had a high activity of glutathione S-transferase P-form (GST-P), compared with AH66F cells, and resistance to clorambucil was decreased by treatment with buthionine sulfoximine, an inhibitor of glutathione synthesis. AH66 cells have a similar topoisomerase I activity, but about 6 times lower topoisomerase II activity than AH66F cells. Therefore, the resistance to etoposide and a part of the resistance to adriamycin of AH66 cells seems to depend upon this low topoisomerase II activity. These results, show that the AH66 cell line has high multiple-drug resistance compared with the AH66F cell line, by several mechanisms. Consequently, the AH66 and AH66F cell lines are useful to study naturally acquired multiple-drug resistance of hepatomas. PMID:8702243

  13. A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib.

    PubMed

    Sinnberg, Tobias; Makino, Elena; Krueger, Marcel A; Velic, Ana; Macek, Boris; Rothbauer, Ulrich; Groll, Nicola; Pötz, Oliver; Czemmel, Stefan; Niessner, Heike; Meier, Friedegund; Ikenberg, Kristian; Garbe, Claus; Schittek, Birgit

    2016-06-01

    Acquired resistance to second generation BRAF inhibitors (BRAFis), like vemurafenib is limiting the benefits of long term targeted therapy for patients with malignant melanomas that harbor BRAF V600 mutations. Since many resistance mechanisms have been described, most of them causing a hyperactivation of the MAPK- or PI3K/AKT signaling pathways, one potential strategy to overcome BRAFi resistance in melanoma cells would be to target important common signaling nodes. Known factors that cause secondary resistance include the overexpression of receptor tyrosine kinases (RTKs), alternative splicing of BRAF or the occurrence of novel mutations in MEK1 or NRAS. In this study we show that β-catenin is stabilized and translocated to the nucleus in approximately half of the melanomas that were analyzed and which developed secondary resistance towards BRAFi. We further demonstrate that β-catenin is involved in the mediation of resistance towards vemurafenib in vitro and in vivo. Unexpectedly, β-catenin acts mainly independent of the TCF/LEF dependent canonical Wnt-signaling pathway in resistance development, which partly explains previous contradictory results about the role of β-catenin in melanoma progression and therapy resistance. We further demonstrate that β-catenin interacts with Stat3 after chronic vemurafenib treatment and both together cooperate in the acquisition and maintenance of resistance towards BRAFi. PMID:27428425

  14. Differential involvement of glutathione S-transferase mu 1 and multidrug resistance protein 1 in melanoma acquired resistance to vinca alkaloids.

    PubMed

    Attaoua, Chaker; Vincent, Laure-Anaïs; Abdel Jaoued, Aida; Hadj-Kaddour, Kamel; Baï, Qiang; De Vos, John; Vian, Laurence; Cuq, Pierre

    2015-02-01

    On account of its extreme intrinsic resistance to apoptosis and of its strong ability to become chemoresistant after a primary response to drugs, malignant melanoma (MM) is still a therapeutic challenge. We previously showed that glutathione S-transferase mu 1 (GSTM1) acts in synergy with multidrug resistance protein 1 (MRP1) to protect GSTM1-transfected human CAL1 melanoma cells from toxic effects of vincristine (VCR). Herein, we investigated the role of these proteins in the acquired resistance of CAL1 cells to vinca alkaloids (VAs). Resistant lines were established by continuous exposure (>1 year) of parental CAL1-wt cells to VCR, vindesine (VDS), or vinorelbine (VRB): CAL1R-VCR, CAL1R-VDS, CAL1R-VRB, respectively. All resistant lines displayed more than 10-fold increase in resistance to their selection VA, and specifically expressed GSTM1. Suggesting a direct interaction between this protein and VAs, each VA specifically decreased the GSTM1-mediated glutathione conjugation activity in cell lysates. Curcumin (GSTM1 inhibitor), BSO (glutathione synthesis inhibitor), and MK571 (MRP1 inhibitor) considerably reversed the acquired resistance to VCR and VDS, but not to VRB. Microarray data analysis revealed similar gene expression patterns of CAL1R-VCR and CAL1R-VDS, and a distinct one for CAL1R-VRB. These data suggest a differential involvement of GSTM1 and MRP1 in acquired resistance to VAs. A coordinated expression and activity of GSTM1 and MRP1 is required to protect CAL1 cells from VCR and VDS, while the simple expression of GSTM1 is sufficient, possibly by a direct drug/protein interaction, to confer resistance against VRB. PMID:25283245

  15. Nasopharyngeal carriage of community-acquired, antibiotic-resistant Streptococcus pneumoniae in a Zambian paediatric population.

    PubMed Central

    Woolfson, A.; Huebner, R.; Wasas, A.; Chola, S.; Godfrey-Faussett, P.; Klugman, K.

    1997-01-01

    The emergence of antibiotic-resistant Streptococcus pneumoniae is an international health problem. Apart from South Africa few data on pneumococcal resistance are available for sub-Saharan Africa. This study examines the nasopharyngeal carriage and prevalence of antibiotic resistance in pneumococci isolated from 260 Zambian children aged < 6 years. Pneumococci were isolated from 71.9% of the children; the odds of carrying organisms were twice as high among children < 2 years of age compared with older children. Antibacterial resistance was found in 34.1% of the isolates; resistance to tetracycline, penicillin, sulfamethoxazole + trimethoprim, and chloramphenicol occurred in 23.0%, 14.3%, 12.7%, and 3.9% of the isolates, respectively. Only 4% of the isolates were resistant to three drugs. High-level resistance was found in all isolates resistant to tetracycline; but only intermediate level penicillin resistance was found. A total of 11.1% of the isolates demonstrated intermediate resistance to sulfamethoxazole + trimethoprim. Children aged < 6 months were less likely to carry antibiotic-resistant organisms. Antibiotic resistance in S. pneumoniae appears to be an emerging public health problem in Zambia, and the national policy for the empirical treatment of pneumococcal meningitis and acute respiratory tract infections may need to be re-evaluated. The establishment of ongoing surveillance to monitor trends in pneumococcal resistance should be considered. PMID:9447779

  16. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells.

    PubMed

    Karthik, Govindasamy-Muralidharan; Ma, Ran; Lövrot, John; Kis, Lorand Levente; Lindh, Claes; Blomquist, Lennart; Fredriksson, Irma; Bergh, Jonas; Hartman, Johan

    2015-10-10

    Breast cancer cells with stem cell characteristics (CSC) are a distinct cell population with phenotypic similarities to mammary stem cells. CSCs are important drivers of tumorigenesis and the metastatic process. Tamoxifen is the most widely used hormonal therapy for estrogen receptor (ER) positive cancers. In our study, tamoxifen was effective in reducing proliferation of ER + adherent cancer cells, but not their CSC population. We isolated, expanded and incubated CSC from seven breast cancers with or without tamoxifen. By genome-wide transcriptional analysis we identified tamoxifen-induced transcriptional pathways associated with ribosomal biogenesis and mRNA translation, both regulated by the mTOR-pathway. We observed induction of the key mTOR downstream targets S6K1, S6RP and 4E-BP1 in-patient derived CSCs by tamoxifen on protein level. Using the mTOR inhibitors rapamycin, everolimus and PF-04691502 (a dual PI3K/mTOR inhibitor) and in combination with tamoxifen, significant reduction in mammosphere formation was observed. Hence, we suggest that the CSC population play a significant role during endocrine resistance through activity of the mTOR pathway. In addition, tamoxifen further stimulates the mTOR-pathway but can be antagonized using mTOR-inhibitors. PMID:26208432

  17. Community-Acquired Methicillin-Resistant Staphylococcus aureus: Prevalence and Risk Factors

    PubMed Central

    Beam, Joel W; Buckley, Bernadette

    2006-01-01

    Reference/Citation: Salgado CD, Farr BM, Calfee DP. Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin Infect Dis.20033613113912522744. Clinical Question: What are the prevalence rates and risk factors associated with community-acquired methicillin-resistant Staphylococcus aureus (MRSA)? Data Sources: Studies were identified by searching MEDLINE (January 1966–February 2002) and abstracts from scientific meetings (1996–2001). Reviews of citations and reference lists were performed to identify additional eligible studies. The search terms included Staphylococcus aureus , infection, colonization, methicillin resistance, community-acquired, community-onset, prevalence, frequency, and risk factors. Study Selection: The search was limited to English-language investigations identified from the electronic and manual searches. Studies were divided into 2 groups, as follows: group 1, retrospective or prospective studies that reported the prevalence of community-acquired MRSA (CA-MRSA) among hospital patients who were colonized (presence of bacteria without infection) or infected with MRSA; and group 2, studies that reported the prevalence of MRSA colonization in the community. The studies were evaluated independently by 2 authors, and case reports were excluded. Data Extraction: Data extraction and study quality assessment procedures were not fully explained. The outcome measures for hospital patients were definitions of CA-MRSA used in the study, prevalence of CA-MRSA, sample size, number and type of risk factors assessed, and number of patients with ≥1 health care–associated risk factor. The studies were grouped based on type, retrospective or prospective. The pooled prevalence of CA-MRSA was calculated for each group (retrospective or prospective) and was limited to the prevalence among patients with MRSA. The proportion of patients who reported ≥1 health care–associated risk factor was also

  18. Spread of community-acquired methicillin-resistant Staphylococcus aureus (MRSA) in hospitals in Taipei, Taiwan in 2005, and comparison of its drug resistance with previous hospital-acquired MRSA.

    PubMed

    Takano, Tomomi; Saito, Kohei; Teng, Lee-Jene; Yamamoto, Tatsuo

    2007-01-01

    Panton-Valentine leucocidin (PVL)-positive methicillin-resistant Staphylococcus aureus (PVL+ MRSA) is an emerging pathogen in the community worldwide. The incidence of PVL+ MRSA in Taipei, Taiwan was 23.3% for hospital MRSA. PVL+ MRSA was isolated from both outpatients and inpatients. Some PVL+ (mecA+) strains (36.8%) showed low MIC values (resistance pattern was oxacillin and clindamycin resistance (81%). There was no multidrug resistance over three drugs, in contrast to patient PVL- MRSA with resistance to five drugs as a major resistance pattern. The majority of PVL+ MRSA belonged to multilocus sequence (ST) type 59, while PVL+ MRSA belonged to ST239, ST59 and ST5. The data suggests that although PVL+ CA-MRSA is isolated at a high incidence from hospitals in Taipei, the drug resistance is mostly selected in the community and less prominent compared with previous PVL- hospital-acquired MRSA. PMID:17579274

  19. Hippo pathway effector YAP inhibition restores the sensitivity of EGFR-TKI in lung adenocarcinoma having primary or acquired EGFR-TKI resistance.

    PubMed

    Lee, Jeong Eun; Park, Hee Sun; Lee, Dahye; Yoo, Geon; Kim, Tackhoon; Jeon, Haeyon; Yeo, Min-Kyung; Lee, Choong-Sik; Moon, Jae Young; Jung, Sung Soo; Kim, Ju Ock; Kim, Sun Young; Park, Dong Il; Park, Yeon Hee; Lee, Jae Cheol; Oh, In-Jae; Lim, Dae Sik; Chung, Chaeuk

    2016-05-20

    The efficacy of EGFR-tyrosine kinase inhibitors (TKIs) is significantly limited by various resistance mechanisms to those drugs. The resistance to EGFR-TKI is largely divided by two classes; acquired resistance after EGFR-TKI treatment, and primary resistance marked by cancer cell's dependence on other oncogene, such as KRAS. YAP has emerged as critical oncogene in conferring drug resistance against targeted therapy. In this study, we evaluated the role of YAP in primary and acquired EGFR-TKI resistance using gefitinib-resistant A549 and PC9 cells and their parental cell lines. Our study revealed that EGFR-TKI resistance is associated with enhanced YAP activity. Notably, YAP activation was independent of the Hippo pathway. We confirmed that AXL is a downstream target of YAP that confers EGFR-TKI resistance. And our results showed that YAP can induce ERK activation in lung adenocarcinoma. The combination of YAP inhibition with EGFR-TKI overcomes primary and acquired EGFR-TKI resistance. We also found increased YAP expression in human lung cancer after acquiring EGFR-TKI resistance. Collectively, we suggest a novel EGFR-TKI resistance mechanism involving YAP activation and suggest targeting YAP and EGFR simultaneously may be a breakthrough treatment of primary and acquired EGFR-TKI resistant lung cancer. PMID:27105908

  20. Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen

    PubMed Central

    Loi, Sherene; Haibe-Kains, Benjamin; Desmedt, Christine; Wirapati, Pratyaksha; Lallemand, Françoise; Tutt, Andrew M; Gillet, Cheryl; Ellis, Paul; Ryder, Kenneth; Reid, James F; Daidone, Maria G; Pierotti, Marco A; Berns, Els MJJ; Jansen, Maurice PHM; Foekens, John A; Delorenzi, Mauro; Bontempi, Gianluca; Piccart, Martine J; Sotiriou, Christos

    2008-01-01

    Background Estrogen receptor positive (ER+) breast cancers (BC) are heterogeneous with regard to their clinical behavior and response to therapies. The ER is currently the best predictor of response to the anti-estrogen agent tamoxifen, yet up to 30–40% of ER+BC will relapse despite tamoxifen treatment. New prognostic biomarkers and further biological understanding of tamoxifen resistance are required. We used gene expression profiling to develop an outcome-based predictor using a training set of 255 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. We used clusters of highly correlated genes to develop our predictor to facilitate both signature stability and biological interpretation. Independent validation was performed using 362 tamoxifen-treated ER+ BC samples obtained from multiple institutions and treated with tamoxifen only in the adjuvant and metastatic settings. Results We developed a gene classifier consisting of 181 genes belonging to 13 biological clusters. In the independent set of adjuvantly-treated samples, it was able to define two distinct prognostic groups (HR 2.01 95%CI: 1.29–3.13; p = 0.002). Six of the 13 gene clusters represented pathways involved in cell cycle and proliferation. In 112 metastatic breast cancer patients treated with tamoxifen, one of the classifier components suggesting a cellular inflammatory mechanism was significantly predictive of response. Conclusion We have developed a gene classifier that can predict clinical outcome in tamoxifen-treated ER+ BC patients. Whilst our study emphasizes the important role of proliferation genes in prognosis, our approach proposes other genes and pathways that may elucidate further mechanisms that influence clinical outcome and prediction of response to tamoxifen. PMID:18498629

  1. The Viriato study: update on antimicrobial resistance of microbial pathogens responsible for community-acquired respiratory tract infections in Portugal.

    PubMed

    Melo-Cristino, José; Santos, Letícia; Silva-Costa, Catarina; Friães, Ana; Pinho, Marcos D; Ramirez, Mário

    2010-06-29

    The Viriato study is a prospective, multicentre laboratory-based surveillance study of antimicrobial susceptibility in which 30 microbiology laboratories throughout Portugal are asked to isolate, identify and submit to a central laboratory for testing Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis responsible for community-acquired lower respiratory tract infections and Streptococcus pyogenes from tonsillitis. To monitor changes in antimicrobial resistance patterns of these frequent respiratory pathogens. Susceptibility was determined by disk diffusion (Kirby-Bauer) or using Etest strips following the Clinical and Laboratory Standards Institute guidelines. From 1999 to 2007 over 13 900 isolates were analysed. Among S. pneumoniae penicillin non-susceptibility decreased from 25% in 1999 to 18% in 2007 (p = 0.002) but resistance to macrolides showed a steady increase, reaching 20% in the last 6 years. Resistance to amoxicillin and the quinolones remained stable and very low (1-2%) throughout the study period. Antimicrobial resistance among H. influenzae and M. catarrhalis remained stable. The most significant resistance was to ampicillin, of 10-12% and greater than 80%, respectively, as a result of the production of beta-lactamases. Macrolide resistance among S. pyogenes was stable during 1999-2003 (20-23%) but after 2003 there was a steady decline in resistance, which in 2007 reached 10%. The Viriato surveillance study showed that penicillin remains the most active antimicrobial agent against S. pyogenes causing tonsillitis, and amoxicillin-clavulanate and the quinolones are the most active in vitro simultaneously against S. pneumoniae, H. influenzae and M. catarrhalis responsible for community-acquired lower respiratory tract infections in Portugal. PMID:20590169

  2. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog

    PubMed Central

    Álvarez-Pérez, Sergio; García, Marta E.; Cutuli, María Teresa; Fermín, María Luisa; Daza, María Ángeles; Peláez, Teresa; Blanco, José L.

    2016-01-01

    Multi-azole resistance acquisition by Candida tropicalis after prolonged antifungal therapy in a dog with urinary candidiasis is reported. Pre- and post-azole treatment isolates were clonally related and had identical silent mutations in the ERG11 gene, but the latter displayed increased azole minimum inhibitory concentrations. A novel frameshift mutation in ERG3 was found in some isolates recovered after resistance development, so it appears unlikely that this mutation is responsible for multi-azole resistance. PMID:26949597

  3. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog.

    PubMed

    Álvarez-Pérez, Sergio; García, Marta E; Cutuli, María Teresa; Fermín, María Luisa; Daza, María Ángeles; Peláez, Teresa; Blanco, José L

    2016-03-01

    Multi-azole resistance acquisition by Candida tropicalis after prolonged antifungal therapy in a dog with urinary candidiasis is reported. Pre- and post-azole treatment isolates were clonally related and had identical silent mutations in the ERG11 gene, but the latter displayed increased azole minimum inhibitory concentrations. A novel frameshift mutation in ERG3 was found in some isolates recovered after resistance development, so it appears unlikely that this mutation is responsible for multi-azole resistance. PMID:26949597

  4. Ligand associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3 dependent cancer cells

    PubMed Central

    Wang, Jun; Mikse, Oliver; Liao, Rachel G.; Li, Yvonne; Tan, Li; Janne, Pasi A.; Gray, Nathanael S.; Wong, Kwok-kin; Hammerman, Peter S.

    2014-01-01

    Somatic alterations of Fibroblast Growth Factor Receptors (FGFRs) have been described in a wide range of malignancies. A number of anti-FGFR therapies are currently under investigation in clinical trials for subjects with FGFR gene amplifications, mutations and translocations. Here, we develop cell line models of acquired resistance to FGFR inhibition by exposure of cell lines harboring FGFR3 gene amplification and translocation to the selective FGFR inhibitor BGJ398 and multi-targeted FGFR inhibitor ponatinib. We show that the acquisition of resistance is rapid, reversible and characterized by an epithelial to mesenchymal transition (EMT) and a switch from dependency on FGFR3 to ERBB family members. Acquired resistance was associated with demonstrable changes in gene expression including increased production of ERBB2/3 ligands which were sufficient to drive resistance in the setting of FGFR3 dependency but not dependency on other FGFR family members. These data support the concept that activation of ERBB family members is sufficient to bypass dependency on FGFR3 and suggest that concurrent inhibition of these two pathways may be desirable when targeting FGFR3 dependent cancers. PMID:24909170

  5. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells.

    PubMed

    Wang, J; Mikse, O; Liao, R G; Li, Y; Tan, L; Janne, P A; Gray, N S; Wong, K-k; Hammerman, P S

    2015-04-23

    Somatic alterations of fibroblast growth factor receptors (FGFRs) have been described in a wide range of malignancies. A number of anti-FGFR therapies are currently under investigation in clinical trials for subjects with FGFR gene amplifications, mutations and translocations. Here, we develop cell line models of acquired resistance to FGFR inhibition by exposure of cell lines harboring FGFR3 gene amplification and translocation to the selective FGFR inhibitor BGJ398 and multitargeted FGFR inhibitor ponatinib. We show that the acquisition of resistance is rapid, reversible and characterized by an epithelial to mesenchymal transition and a switch from dependency on FGFR3 to ERBB family members. Acquired resistance was associated with demonstrable changes in gene expression including increased production of ERBB2/3 ligands, which were sufficient to drive resistance in the setting of FGFR3 dependency but not dependency on other FGFR family members. These data support the concept that activation of ERBB family members is sufficient to bypass dependency on FGFR3 and suggest that concurrent inhibition of these two pathways may be desirable when targeting FGFR3-dependent cancers. PMID:24909170

  6. Proteomic Signatures of Acquired Letrozole Resistance in Breast Cancer: Suppressed Estrogen Signaling and Increased Cell Motility and Invasiveness*

    PubMed Central

    Tilghman, Syreeta L.; Townley, Ian; Zhong, Qiu; Carriere, Patrick P.; Zou, Jin; Llopis, Shawn D.; Preyan, Lynez C.; Williams, Christopher C.; Skripnikova, Elena; Bratton, Melyssa R.; Zhang, Qiang; Wang, Guangdi

    2013-01-01

    Aromatase inhibitors, such as letrozole, have become the first-line treatment for postmenopausal women with estrogen-dependent breast cancer. However, acquired resistance remains a major clinical obstacle. Previous studies demonstrated constitutive activation of the MAPK signaling, overexpression of HER2, and down-regulation of aromatase and ERα in letrozole-resistant breast cancer cells. Given the complex signaling network involved in letrozole-refractory breast cancer and the lack of effective treatment for hormone resistance, further investigation of aromatase inhibitor resistance by a novel systems biology approach may reveal previously unconsidered molecular changes that could be utilized as therapeutic targets. This study was undertaken to characterize for the first time global proteomic alterations occurring in a letrozole-resistant cell line. A quantitative proteomic analysis of the whole cell lysates of LTLT-Ca (resistant) versus AC-1 cells (sensitive) was performed to identify significant protein expression changes. A total of 1743 proteins were identified and quantified, of which 411 were significantly up-regulated and 452 significantly down-regulated (p < 0.05, fold change > 1.20). Bioinformatics analysis revealed that acquired letrozole resistance is associated with a hormone-independent, more aggressive phenotype. LTLT-Ca cells exhibited 84% and 138% increase in migration and invasion compared with the control cells. The ROCK inhibitor partially abrogated the enhanced migration and invasion of the letrozole-resistant cells. Flow cytometric analyses also demonstrated an increase in vimentin and twist expression in letrozole-resistance cells, suggesting an onset of epithelial to mesenchymal transition (EMT). Moreover, targeted gene expression arrays confirmed a 28-fold and sixfold up-regulation of EGFR and HER2, respectively, whereas ERα and pS2 were dramatically reduced by 28-fold and 1100-fold, respectively. Taken together, our study revealed global

  7. Multiple transport systems mediate virus-induced acquired resistance to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we report the phenomenon of acquired cross-tolerance to oxidative (UV-C and H2O2) stress in Nicotiana benthamiana plants infected with Potato virus X (PVX) and investigate the functional expression of transport systems in mediating this phenomenon. By combining multiple approaches, we...

  8. Community-acquired pneumonia caused by carbapenem-resistant Streptococcus pneumoniae: re-examining its prevention and treatment

    PubMed Central

    Doi, Asako; Iwata, Kentaro; Takegawa, Hiroshi; Miki, Kanji; Sono, Yumi; Nishioka, Hiroaki; Takeshita, Jumpei; Tomii, Keisuke; Haruta, Tsunekazu

    2014-01-01

    A 73-year-old man with no significant past medical history or any history of health care visits was hospitalized for pneumonia. Sputum culture revealed multidrug-resistant Streptococcus pneumoniae, even to carbapenems. The patient was later treated successfully with levofloxacin. Throat cultures from his two grandchildren revealed S. pneumoniae with the same susceptibility pattern. Analysis for resistant genes revealed gPRSP (pbp1a + pbp2x + pbp2b gene variants) in both the patient and his grandchildren, none of whom had received pneumococcal vaccines of any kind. This case illustrates the importance of the emergence of carbapenem-resistant S. pneumoniae. Non-rational use of carbapenems for community-acquired infections may be counterproductive. This case also highlights the importance of pneumococcal vaccinations in children and the elderly. PMID:24899822

  9. MicroRNA-574-3p, identified by microRNA library-based functional screening, modulates tamoxifen response in breast cancer

    PubMed Central

    Ujihira, T.; Ikeda, K.; Suzuki, T.; Yamaga, R.; Sato, W.; Horie-Inoue, K.; Shigekawa, T.; Osaki, A.; Saeki, T.; Okamoto, K.; Takeda, S.; Inoue, S.

    2015-01-01

    Most primary breast cancers express estrogen receptor α and can be treated via endocrine therapy using anti-estrogens such as tamoxifen; however, acquired endocrine resistance is a critical issue. To identify tamoxifen response-related microRNAs (miRNAs) in breast cancer, MCF-7 cells infected with a lentiviral miRNA library were treated with 4-hydroxytamoxifen (OHT) or vehicle for 4 weeks, and the amounts of individual miRNA precursors that had integrated into the genome were evaluated by microarray. Compared to the vehicle-treated cells, 5 ‘dropout' miRNAs, which were downregulated in OHT-treated cells, and 6 ‘retained' miRNAs, which were upregulated in OHT-treated cells, were identified. Of the dropout miRNAs, we found that miR-574-3p expression was downregulated in clinical breast cancer tissues as compared with their paired adjacent tissues. In addition, anti-miR-574-3p reversed tamoxifen-mediated suppression of MCF-7 cell growth. Clathrin heavy chain (CLTC) was identified as a miR-574-3p target gene by in silico algorithms and luciferase reporter assay using the 3′ untranslated region of CLTC mRNA. Interestingly, loss and gain of miR-574-3p function in MCF-7 cells causes CLTC to be upregulated and downregulated, respectively. These results suggest that functional screening mediated by miRNA libraries can provide new insights into the genes essential for tamoxifen response in breast cancer. PMID:25560734

  10. Recall of acquired cellular resistance in mice by antigens from killed Brucella.

    PubMed

    Halliburton, B L; Hinsdill, R D

    1972-01-01

    Mice infected with Brucella abortus 19 were challenged intravenously with Listeria monocytogenes. Spleen assays to determine the number of viable Listeria cells present revealed that these mice were highly resistant to Listeria when challenged on day 17 of the Brucella infection. Resistance was absent in mice challenged on the 5th day and was declining in mice challenged on the 33rd day. Resistance could not be detected by day 49 of the Brucella infection but could be recalled by the injection of antigens from smooth B. abortus 2308. Thus, extracted antigens appeared to be as effective in recall as the live cells used in earlier studies. Similar injections of extracts from rough B. abortus 45/20, or from B. ovis REO 198, were also effective in recalling resistance; this suggests that the smooth surface agglutinogen may be relatively unimportant in recall. PMID:4632467

  11. Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia.

    PubMed

    García-León, Guillermo; Salgado, Fabiola; Oliveros, Juan Carlos; Sánchez, María Blanca; Martínez, José Luis

    2014-05-01

    To analyse whether the mutation-driven resistance-acquisition potential of a given bacterium might be a function of its intrinsic resistome, quinolones were used as selective agents and Stenotrophomonas maltophilia was chosen as a bacterial model. S. maltophilia has two elements - SmQnr and SmeDEF - that are important in intrinsic resistance to quinolones. Using a battery of mutants in which either or both of these elements had been removed, the apparent mutation frequency for quinolone resistance and the phenotype of the selected mutants were found to be related to the intrinsic resistome and also depended on the concentration of the selector. Most mutants had phenotypes compatible with the overexpression of multidrug efflux pump(s); SmeDEF overexpression was the most common cause of quinolone resistance. Whole genome sequencing showed that mutations of the SmeRv regulator, which result in the overexpression of the efflux pump SmeVWX, are the cause of quinolone resistance in mutants not overexpressing SmeDEF. These results indicate that the development of mutation-driven antibiotic resistance is highly dependent on the intrinsic resistome, which, at least for synthetic antibiotics such as quinolones, did not develop as a response to the presence of antibiotics in the natural ecosystems in which S. maltophilia evolved. PMID:24447641

  12. RACK1 overexpression is linked to acquired imatinib resistance in gastrointestinal stromal tumor

    PubMed Central

    Gao, Xiaodong; Xue, Anwei; Fang, Yong; Shu, Ping; Ling, Jiaqian; Hou, Yingyong; Shen, Kuntang; Qin, Jing; Sun, Yihong; Qin, Xinyu

    2016-01-01

    Although treatment with imatinib, which inhibits KIT and PDGFR, controls advanced disease in about 80% of gastrointestinal stromal tumor (GIST) patients, resistance to imatinib often develops. RACK1 (Receptor for Activated C Kinase 1) is a ribosomal protein that contributes to tumor progression by affecting proliferation, apoptosis, angiogenesis, and migration. Here, we found that c-KIT binds to RACK1 and increases proteasome-mediated RACK1 degradation. Imatinib treatment inhibits c-KIT activity and prevents RACK1 degradation, and RACK1 is upregulated in imatinib-resistant GIST cells compared to non-resistant parental cells. Moreover, Erk and Akt signaling were reactivated by imatinib in resistant GIST cells. RACK1 functioned as a scaffold protein and mediated Erk and Akt reactivation after imatinib treatment, thereby promoting GIST cell survival even in the presence of imatinib. Combined inhibition of KIT and RACK1 inhibited growth in imatinib-resistant GIST cell lines and reduced tumor relapse in GIST xenografts. These findings provide new insight into the role of RACK1 in imatinib resistance in GIST. PMID:26893362

  13. Combine therapy of gefitinib and fulvestrant enhances antitumor effects on NSCLC cell lines with acquired resistance to gefitinib.

    PubMed

    Xu, Ruitong; Shen, Hua; Guo, Renhua; Sun, Jing; Gao, Wen; Shu, Yongqian

    2012-07-01

    Gefitinib, an EGFR receptor tyrosine kinase inhibitor, is approved for clinical use in the treatment of non-small cell lung cancer (NSCLC), but the emergence of mutations resistant to these inhibitors, such as T790M, has become a clinical problem. According to statistics, female patients, the presence of adenocarcinoma or non-smokers experienced a higher response rate. This may be involved in interaction between the estrogen receptor (ER) and the epidermal growth factor receptor (EGFR). To test whether inhibition of the ER signaling pathway affects the antitumor effect of gefitinib, gefitinib and an ER antagonist, fulvestrant, were administered to NSCLC cell lines with acquired resistance to gefitinib. Compared with treatment of either fulvestrant or gefitinib alone, drug combination obviously decreased proliferation of H1976, H1650 and PC-9 cells coming from adenocarcinoma. Rapid activations of EGFR pathway by E2β were observed in H1975 cells with T790M mutation. Additionally, EGFR and ERs expression were down-regulated respectively in response to estrogen and EGF but up-regulated in response to fulvestrant and gefitinib in vitro. These results suggest that there is a functional cross-signaling between the EGFR/ER pathways in NSCLC with acquired resistance to gefitinib, possibly providing rationale for combining gefitinib with anti-estrogen therapy for advanced NSCLC treatment. PMID:22560634

  14. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM

    PubMed Central

    Stojcheva, Nina; Schechtmann, Gennadi; Sass, Steffen; Roth, Patrick; Florea, Ana-Maria; Stefanski, Anja; Stühler, Kai; Wolter, Marietta; Müller, Nikola S.; Theis, Fabian J.; Weller, Michael; Reifenberger, Guido; Happold, Caroline

    2016-01-01

    Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RT→TMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo. PMID:26887050

  15. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM.

    PubMed

    Stojcheva, Nina; Schechtmann, Gennadi; Sass, Steffen; Roth, Patrick; Florea, Ana-Maria; Stefanski, Anja; Stühler, Kai; Wolter, Marietta; Müller, Nikola S; Theis, Fabian J; Weller, Michael; Reifenberger, Guido; Happold, Caroline

    2016-03-15

    Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RT→TMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo. PMID:26887050

  16. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling.

    PubMed

    Zeller, C; Dai, W; Steele, N L; Siddiq, A; Walley, A J; Wilhelm-Benartzi, C S M; Rizzo, S; van der Zee, A; Plumb, J A; Brown, R

    2012-10-18

    Multiple DNA methylation changes in the cancer methylome are associated with the acquisition of drug resistance; however it remains uncertain how many represent critical DNA methylation drivers of chemoresistance. Using isogenic, cisplatin-sensitive/resistant ovarian cancer cell lines and inducing resensitizaton with demethylating agents, we aimed to identify consistent methylation and expression changes associated with chemoresistance. Using genome-wide DNA methylation profiling across 27 578 CpG sites, we identified loci at 4092 genes becoming hypermethylated in chemoresistant A2780/cp70 compared with the parental-sensitive A2780 cell line. Hypermethylation at gene promoter regions is often associated with transcriptional silencing; however, expression of only 245 of these hypermethylated genes becomes downregulated in A2780/cp70 as measured by microarray expression profiling. Treatment of A2780/cp70 with the demethylating agent 2-deoxy-5'-azacytidine induces resensitization to cisplatin and re-expression of 41 of the downregulated genes. A total of 13/41 genes were consistently hypermethylated in further independent cisplatin-resistant A2780 cell derivatives. CpG sites at 9 of the 13 genes (ARHGDIB, ARMCX2, COL1A, FLNA, FLNC, MEST, MLH1, NTS and PSMB9) acquired methylation in ovarian tumours at relapse following chemotherapy or chemoresistant cell lines derived at the time of patient relapse. Furthermore, 5/13 genes (ARMCX2, COL1A1, MDK, MEST and MLH1) acquired methylation in drug-resistant ovarian cancer-sustaining (side population) cells. MLH1 has a direct role in conferring cisplatin sensitivity when reintroduced into cells in vitro. This combined genomics approach has identified further potential key drivers of chemoresistance whose expression is silenced by DNA methylation that should be further evaluated as clinical biomarkers of drug resistance. PMID:22249249

  17. Emergence of Multidrug-Resistant Campylobacter Species Isolates with a Horizontally Acquired rRNA Methylase

    PubMed Central

    Wang, Yang; Zhang, Maojun; Deng, Fengru; Shen, Zhangqi; Wu, Congming; Zhang, Jianzhong

    2014-01-01

    Antibiotic-resistant Campylobacter constitutes a serious threat to public health, and resistance to macrolides is of particular concern, as this class of antibiotics is the drug of choice for clinical therapy of campylobacteriosis. Very recently, a horizontally transferrable macrolide resistance mediated by the rRNA methylase gene erm(B) was reported in a Campylobacter coli isolate, but little is known about the dissemination of erm(B) among Campylobacter isolates and the association of erm(B)-carrying isolates with clinical disease. To address this question and facilitate the control of antibiotic-resistant Campylobacter, we determined the distribution of erm(B) in 1,554 C. coli and Campylobacter jejuni isolates derived from food-producing animals and clinically confirmed human diarrheal cases. The results revealed that 58 of the examined isolates harbored erm(B) and exhibited high-level resistance to macrolides, and most were recent isolates, derived in 2011-2012. In addition, the erm(B)-positive isolates were all resistant to fluoroquinolones, another clinically important antibiotic used for treating campylobacteriosis. The erm(B) gene is found to be associated with chromosomal multidrug resistance genomic islands (MDRGIs) of Gram-positive origin or with plasmids of various sizes. All MDRGIs were transferrable to macrolide-susceptible C. jejuni by natural transformation under laboratory conditions. Molecular typing of the erm(B)-carrying isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) identified diverse genotypes and outbreak-associated diarrheal isolates. Molecular typing also suggested zoonotic transmission of erm(B)-positive Campylobacter. These findings reveal an emerging and alarming trend of dissemination of erm(B) and MDRGIs in Campylobacter and underscore the need for heightened efforts to control their further spread. PMID:24982085

  18. Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater.

    PubMed

    Varela, Ana Rita; Nunes, Olga C; Manaia, Célia M

    2016-01-15

    Members of the genus Aeromonas are recognized carriers of antibiotic resistance in aquatic environments. However, their importance on the spread of resistance from hospital effluents to the environment is poorly understood. Quinolone resistant Aeromonas spp. (n = 112) isolated from hospital effluent (HE) and from raw (RWW) and treated wastewater (TWW) of the receiving urban wastewater treatment plant (UWTP) were characterized. Species identification and genetic intraspecies diversity were assessed based on the 16S rRNA, cpn60 and gyrB genes sequence analysis. The antibiotic resistance phenotypes and genotypes (qnrA, qnrB, qnrC, qnrD, qnrS, qnrVC; qepA; oqxAB; aac(6′)-Ib-cr; blaOXA; incU) were analyzed in function of the origin and taxonomic group. Most isolates belonged to the species Aeromonas caviae and Aeromonas hydrophila (50% and 41%, respectively). The quinolone and the beta-lactamase resistance genes aac(6′)-Ib-cr and blaOXA, including gene blaOXA-101, identified for the first time in Aeromonas spp., were detected in 58% and 56% of the isolates, respectively, with identical prevalence in HE and UWTP wastewater. In contrast, the gene qnrS2 was observed mainly in isolates from the UWTP (51%) and rarely in HE isolates (3%), suggesting that its origin is not the clinical setting. Bacterial groups and genes that allow the identification of major routes of antibiotic resistance dissemination are valuable tools to control this problem. In this study, it was concluded that members of the genus Aeromonas harboring the genes aac(6′)-Ib-cr and blaOXA are relevant tracers of antibiotic resistance dissemination in wastewater habitats, while those yielding the gene qnrS2 allow the traceability from non-clinical sources. PMID:26546762

  19. Identification of novel therapeutic target genes in acquired lapatinib-resistant breast cancer by integrative meta-analysis.

    PubMed

    Lee, Young Seok; Hwang, Sun Goo; Kim, Jin Ki; Park, Tae Hwan; Kim, Young Rae; Myeong, Ho Sung; Choi, Jong Duck; Kwon, Kang; Jang, Cheol Seong; Ro, Young Tae; Noh, Yun Hee; Kim, Sung Young

    2016-02-01

    Acquired resistance to lapatinib is a highly problematic clinical barrier that has to be overcome for a successful cancer treatment. Despite efforts to determine the mechanisms underlying acquired lapatinib resistance (ALR), no definitive genetic factors have been reported to be solely responsible for the acquired resistance in breast cancer. Therefore, we performed a cross-platform meta-analysis of three publically available microarray datasets related to breast cancer with ALR, using the R-based RankProd package. From the meta-analysis, we were able to identify a total of 990 differentially expressed genes (DEGs, 406 upregulated, 584 downregulated) that are potentially associated with ALR. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs showed that "response to organic substance" and "p53 signaling pathway" may be largely involved in ALR process. Of these, many of the top 50 upregulated and downregulated DEGs were found in oncogenesis of various tumors and cancers. For the top 50 DEGs, we constructed the gene coexpression and protein-protein interaction networks from a huge database of well-known molecular interactions. By integrative analysis of two systemic networks, we condensed the total number of DEGs to six common genes (LGALS1, PRSS23, PTRF, FHL2, TOB1, and SOCS2). Furthermore, these genes were confirmed in functional module eigens obtained from the weighted gene correlation network analysis of total DEGs in the microarray datasets ("GSE16179" and "GSE52707"). Our integrative meta-analysis could provide a comprehensive perspective into complex mechanisms underlying ALR in breast cancer and a theoretical support for further chemotherapeutic studies. PMID:26361955

  20. Leiomyomas in patients receiving Tamoxifen.

    PubMed

    Leo, L; Lanza, A; Re, A; Tessarolo, M; Bellino, R; Lauricella, A; Wierdis, T

    1994-01-01

    In literature there have been only 8 cases of unavoidable laparotomy due to uterine leiomyomas performed in patients with breast cancer on Tamoxifen (TAM). Our article describes two cases of rapidly growing leiomyomas in patients treated with TAM: one of these underwent abdominal hysterectomy while the second stopped taking TAM and began therapy with Triptorelin. This therapeutical alternative could be a useful choice. PMID:8070124

  1. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas.

    PubMed

    Quail, Daniela F; Bowman, Robert L; Akkari, Leila; Quick, Marsha L; Schuhmacher, Alberto J; Huse, Jason T; Holland, Eric C; Sutton, James C; Joyce, Johanna A

    2016-05-20

    Macrophages accumulate with glioblastoma multiforme (GBM) progression and can be targeted via inhibition of colony-stimulating factor-1 receptor (CSF-1R) to regress high-grade tumors in animal models of this cancer. However, whether and how resistance emerges in response to sustained CSF-1R blockade is unknown. We show that although overall survival is significantly prolonged, tumors recur in >50% of mice. Gliomas reestablish sensitivity to CSF-1R inhibition upon transplantation, indicating that resistance is tumor microenvironment-driven. Phosphatidylinositol 3-kinase (PI3K) pathway activity was elevated in recurrent GBM, driven by macrophage-derived insulin-like growth factor-1 (IGF-1) and tumor cell IGF-1 receptor (IGF-1R). Combining IGF-1R or PI3K blockade with CSF-1R inhibition in recurrent tumors significantly prolonged overall survival. Our findings thus reveal a potential therapeutic approach for treating resistance to CSF-1R inhibitors. PMID:27199435

  2. Defense Responses in Infected and Elicited Cucumber (Cucumis sativus L.) Hypocotyl Segments Exhibiting Acquired Resistance.

    PubMed Central

    Siegrist, J.; Jeblick, W.; Kauss, H.

    1994-01-01

    Segments from dark-grown cucumber (Cucumis sativus L.) hypocotyls were used to study defense reactions occurring upon fungal infection and induced by elicitors in the same tissue. The segments were rendered resistant to infection by Colletotrichum lagenarium either by growing the seedlings in the presence of dichloroisonicotinic acid (DCIA) or by preincubation of the cut segments with DCIA, salicylic acid (SA), or 5-chlorosalicylic acid (5CSA). This resistance appears to be due mainly to inhibition of fungal penetration into epidermal cells. In the resistant hypocotyl segments, the fungus induced, at the time of attempted penetration, an increased deposition of phenolics, which were visualized by autofluorescence. These phenolics were located mainly in the epidermal cell wall around and in the emerging papillae below appressoria and were quantified either as lignin-like polymers by the thioglycolic acid method or as 4-OH-benzaldehyde, 4-OH-benzoic, or 4-coumaric acid liberated upon treatment with alkali at room temperature. Pretreatment with DCIA, SA, and 5CSA induced little chitinase activity, but this activity greatly increased in resistant tissues upon subsequent infection. These observations indicate that resistance is associated with an improved perception of the pathogen stimulus resulting in the enhanced induction of diverse defense reactions. When the cut segments were pretreated with DCIA, SA, or 5CSA and then split and incubated with chitosan fragments, the deposition of cell wall phenolics was also enhanced. These pretreated and split segments also exhibited an increase in the rapid production of activated oxygen species induced by an elicitor preparation from Phytophthora megasperma f. sp. Glya. Pretreatment of the segments with methyl jasmonate neither induced resistance nor enhanced induction of cell wall phenolics upon fungal infection, although we observed in the corresponding split segments some increase in chitosan-induced cell wall phenolics and

  3. Defense Responses in Infected and Elicited Cucumber (Cucumis sativus L.) Hypocotyl Segments Exhibiting Acquired Resistance.

    PubMed

    Siegrist, J.; Jeblick, W.; Kauss, H.

    1994-08-01

    Segments from dark-grown cucumber (Cucumis sativus L.) hypocotyls were used to study defense reactions occurring upon fungal infection and induced by elicitors in the same tissue. The segments were rendered resistant to infection by Colletotrichum lagenarium either by growing the seedlings in the presence of dichloroisonicotinic acid (DCIA) or by preincubation of the cut segments with DCIA, salicylic acid (SA), or 5-chlorosalicylic acid (5CSA). This resistance appears to be due mainly to inhibition of fungal penetration into epidermal cells. In the resistant hypocotyl segments, the fungus induced, at the time of attempted penetration, an increased deposition of phenolics, which were visualized by autofluorescence. These phenolics were located mainly in the epidermal cell wall around and in the emerging papillae below appressoria and were quantified either as lignin-like polymers by the thioglycolic acid method or as 4-OH-benzaldehyde, 4-OH-benzoic, or 4-coumaric acid liberated upon treatment with alkali at room temperature. Pretreatment with DCIA, SA, and 5CSA induced little chitinase activity, but this activity greatly increased in resistant tissues upon subsequent infection. These observations indicate that resistance is associated with an improved perception of the pathogen stimulus resulting in the enhanced induction of diverse defense reactions. When the cut segments were pretreated with DCIA, SA, or 5CSA and then split and incubated with chitosan fragments, the deposition of cell wall phenolics was also enhanced. These pretreated and split segments also exhibited an increase in the rapid production of activated oxygen species induced by an elicitor preparation from Phytophthora megasperma f. sp. Glya. Pretreatment of the segments with methyl jasmonate neither induced resistance nor enhanced induction of cell wall phenolics upon fungal infection, although we observed in the corresponding split segments some increase in chitosan-induced cell wall phenolics and

  4. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder. PMID:22736441

  5. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    PubMed Central

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  6. Acquired resistance to Giardia muris in X-linked immunodeficient mice.

    PubMed Central

    Skea, D L; Underdown, B J

    1991-01-01

    A previous study from this laboratory (D. P. Snider, D. Skea, and B. J. Underdown, Infect. Immun. 56:2838-2842, 1988) indicated that immunodeficient mice expressing the xid gene develop prolonged infections with Giardia muris, unlike immunocompetent mice, which eliminate the intestinal protozoan parasite in 8 to 10 weeks. In this study, CBA/N (xid) and CBA/Ca mice were infected with G. muris cysts and at various times following this primary infection were cured by treatment with metronidazole. In contrast to the marked differences in the ability of xid and normal mice to eliminate a primary infection, mice of both strains were resistant to a secondary challenge of G. muris cysts. These data imply that the mechanism(s) responsible for elimination of a primary infection is not identical to those required to resist a secondary challenge infection. Splenocytes from immunocompetent CBA/Ca mice (but not immunodeficient CBA/N mice) could transfer the ability to eliminate a primary G. muris infection to irradiated mice of either strain. In contrast, splenocytes from previously infected CBA/Ca mice could not transfer resistance to a challenge infection, further supporting the hypothesis that there are differences between mechanisms required to eliminate a primary infection and those necessary to resist a second challenge infection. PMID:2019439

  7. Antimicrobial activity of tigecycline against community-acquired methicillin-resistant Staphylococcus aureus isolates recovered from North American medical centers.

    PubMed

    Mendes, Rodrigo E; Sader, Helio S; Deshpande, Lalitagauri; Jones, Ronald N

    2008-04-01

    A total of 1989 community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) were susceptibility tested by broth microdilution. Pulsed-field gel electrophoresis, SCCmec type, and polymerase chain reaction for Panton-Valentine leukocidin (PVL) genes were also performed. The overall tigecycline susceptibility rate was 98.2%. Glycopeptides, quinupristin/dalfopristin, linezolid, and chloramphenicol were also active against this collection (< or =0.7% resistant). The vast majority (70.8%) of the CA-MRSA was SCCmec type IV, from which 88.4% belonged to the USA300-0114 clone and 94.7% were PVL positive. Tigecycline showed in vitro activity comparable with other highly active parenteral agents and represents an option for treating complicated infections caused by CA-MRSA. PMID:18068326

  8. Synthesis of novel 1,8-acridinediones derivatives: Investigation of MDR reversibility on breast cancer cell lines T47D and tamoxifen-resistant T47D.

    PubMed

    Moallem, S A; Dehghani, N; Mehri, S; Shahsavand, Sh; Alibolandi, M; Hadizadeh, F

    2015-01-01

    Multi drug resistance (MDR) is a serious obstacle in the management of breast cancer. Therefore, overcoming MDR using novel anticancer agents is a top priority for medicinal chemists. It was found that dihydropyridines lacking calcium antagonistic activity (e.g acridinediones) possess MDR modifier potency. In this study, the capability of four novel acridine-1,8-diones derivatives 3a-d were evaluated as MDR reversing agents. In addition, the relationship between structural properties and biological effects of synthesized compounds was discussed. In vitro cytotoxicity of acridine-1,8-diones 3a-d derivatives in combination with doxorubicin (DOX) on T47D and tomoxifen-resistant T47D (TAMR-6) breast cancer cell lines were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Drug resistant index (DRI), which is equal to the ratio of IC50 in drug-resistant cells over IC50 in drug-sensitive cells, was calculated for each substance. Flowcytometry experiments were also implemented to distinguish cells undergoing apoptosis from those undergoing necrosis. The results from MTT and flowcytometry experiments indicated that 1 nM 3c derivative along with DOX significantly (P<0.05) increased the DOX cytotoxicity in T47D and TAMR-6 breast cancer cell lines. Synthesized compounds 3a and 3b also at concentrations of 1 nM with DOX significantly increased the cytotoxicity of DOX on T47D and TAMR-6 breast cancer cell lines. Meanwhile, 3d derivative with DOX did not exhibit good synergistic effect on cytotoxic activity of DOX, and slightly increased DOX cytotoxicity in both cell lines. Our results proposed that 3c may be an attractive lead compound for further development as a chemotherapeutic agent for MDR breast cancer therapy in combination with routine chemotherapeutic agents such as DOX. PMID:26600848

  9. An Oral Formulation of YK-4-279: Preclinical Efficacy and Acquired Resistance Patterns in Ewing Sarcoma.

    PubMed

    Lamhamedi-Cherradi, Salah-Eddine; Menegaz, Brian A; Ramamoorthy, Vandhana; Aiyer, Ramani A; Maywald, Rebecca L; Buford, Adrianna S; Doolittle, Dannette K; Culotta, Kirk S; O'Dorisio, James E; Ludwig, Joseph A

    2015-07-01

    Ewing sarcoma is a transcription factor-mediated pediatric bone tumor caused by a chromosomal translocation of the EWSR1 gene and one of several genes in the ETS family of transcription factors, typically FLI1 or ERG. Full activity of the resulting oncogenic fusion protein occurs only after binding RNA helicase A (RHA), and novel biologically targeted small molecules designed to interfere with that interaction have shown early promise in the preclinical setting. Herein, we demonstrate marked preclinical antineoplastic activity of an orally bioavailable formulation of YK-4-279 and identify mechanisms of acquired chemotherapy resistance that may be exploited to induce collateral sensitivity. Daily enteral administration of YK-4-279 led to significant delay in Ewing sarcoma tumor growth within a murine model. In advance of anticipated early-phase human clinical trials, we investigated both de novo and acquired mechanism(s) by which Ewing sarcoma cells evade YK-4-279-mediated cell death. Drug-resistant clones, formed by chronic in vitro exposure to steadily increased levels of YK-4-279, overexpressed c-Kit, cyclin D1, pStat3(Y705), and PKC isoforms. Interestingly, cross-resistance to imatinib and enzastaurin (selective inhibitors of c-Kit and PKC-β, respectively), was observed and the use of YK-4-279 with enzastaurin in vitro led to marked drug synergy, suggesting a potential role for combination therapies in the future. By advancing an oral formulation of YK-4-279 and identifying prominent mechanisms of resistance, this preclinical research takes us one step closer to a shared goal of curing adolescents and young adults afflicted by Ewing sarcoma. PMID:25964201

  10. Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan.

    PubMed

    Takano, Tomomi; Higuchi, Wataru; Zaraket, Hassan; Otsuka, Taketo; Baranovich, Tatiana; Enany, Shymaa; Saito, Kohei; Isobe, Hirokazu; Dohmae, Soshi; Ozaki, Kyoko; Takano, Misao; Iwao, Yasuhisa; Shibuya, Michiko; Okubo, Takeshi; Yabe, Shizuka; Shi, Da; Reva, Ivan; Teng, Lee-Jene; Yamamoto, Tatsuo

    2008-03-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) strains, which often produce Panton-Valentine leucocidin (PVL), are increasingly noted worldwide. In this study, we examined 42 MRSA strains (25 PVL-positive [PVL+] strains and 17 PVL-negative [PVL(-)] strains) isolated in Taiwan for their molecular characteristics. The PVL+ MRSA strains included CA-MRSA strains with multilocus sequence type (ST) 59 (major PVL+ MRSA in Taiwan), its variants, and worldwide CA-MRSA ST30 strains. The PVL(-) MRSA strains included the pandemic Hungarian MRSA ST239 strain, the Hungarian MRSA ST239 variant, MRSA ST59 (largely hospital-acquired MRSA strains) and its variants, the pandemic New York/Japan MRSA ST5 strain (Japanese type), and the MRSA ST8 strain. The major PVL+ CA-MRSA ST59 strain possessed a tetracycline resistance-conferring (tetK positive) penicillinase plasmid and a drug resistance gene cluster (a possible composite transposon) for multidrug resistance. Moreover, it carried a novel staphylococcal cassette chromosome mec (SCCmec) with two distinct ccrC genes (ccrC2-C8). This SCCmec (previously named SCCmec type V(T)) was tentatively designated SCCmec type VII. Sequencing of the PVL genes revealed the polymorphisms, and the PVL+ CA-MRSA ST59 strain possessed the ST59-specific PVL gene sequence. The data suggest that a significant amount of clonal spread is occurring in Taiwan and that the major PVL+ CA-MRSA ST59 Taiwan strain exhibits unique genetic characteristics, such as a novel SCCmec type and an ST59-specific PVL gene sequence. PMID:18086843

  11. A novel acquired ALK F1245C mutation confers resistance to crizotinib in ALK-positive NSCLC but is sensitive to ceritinib.

    PubMed

    Kodityal, Sandeep; Elvin, Julia A; Squillace, Rachel; Agarwal, Nikita; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J; Ou, Sai-Hong Ignatius

    2016-02-01

    The emergence of acquired anaplastic lymphoma kinase (ALK) resistant mutations is a common molecular mechanism underpinning disease progression during crizotinib treatment of ALK-positive (ALK+) non-small cell lung cancer (NSCLC) patients. Identifying acquired resistance mutations in ALK is paramount for tailoring future therapy with second generation ALK inhibitors and beyond. Comprehensive genomic profiling using hybrid-capture next generation sequencing has been successful in identifying acquired ALK resistance mutations. Here we described the emergence of an ALK F1245C mutation in an advanced ALK+ NSCLC patient (EML4-ALK variant 3a/b) who developed slow disease progression after a durable response to crizotinib. The patient was eventually switched to ceritinib with on-going clinical response. This is the first patient report that ALK F1245C is an acquired resistance mutation to crizotinib that can be overcome by ceritinib. PMID:26775591

  12. Influence of infection of cotton by Rotylenchulus Reniformis and Meloidogyne Incognita on the production of enzymes involved in systemic acquired resistance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic acquired resistance (SAR), which results in enhanced defense mechanisms in plants, can be elicited by virulent and avirulent strains of pathogens including nematodes. Recent studies of nematode reproduction strongly suggest that Meloidogyne incognita and Rotylenchulus reniformis induce SAR ...

  13. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    SciTech Connect

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  14. Altered radiation responses of breast cancer cells resistant to hormonal therapy

    PubMed Central

    Luzhna, Lidiya; Lykkesfeldt, Anne E.; Kovalchuk, Olga

    2015-01-01

    Endocrine therapy agents (the selective estrogen receptor (ER) modulators such as tamoxifen or the selective ER down-regulators such as ICI 182,780) are key treatment regimens for hormone receptor-positive breast cancers. While these drugs are very effective in controlling ER-positive breast cancer, many tumors that initially respond well to treatment often acquire drug resistance, which is a major clinical problem. In clinical practice, hormonal therapy agents are commonly used in combination or sequence with radiation therapy. Tamoxifen treatment and radiotherapy improve both local tumor control and patient survival. However, tamoxifen treatment may render cancer cells less responsive to radiation therapy. Only a handful of data exist on the effects of radiation on cells resistant to hormonal therapy agents. These scarce data show that cells that were resistant to tamoxifen were also resistant to radiation. Yet, the existence and mechanisms of cross-resistance to endocrine therapy and radiation therapy need to be established. Here, we for the first time examined and compared radiation responses of MCF-7 breast adenocarcinoma cells (MCF-7/S0.5) and two antiestrogen resistant cell lines derived from MCF-7/S0.5: the tamoxifen resistant MCF-7/TAMR-1 and ICI 182,780 resistant MCF-7/182R-6 cell lines. Specifically, we analyzed the radiation-induced changes in the expression of genes involved in DNA damage, apoptosis, and cell cycle regulation. We found that the tamoxifen-resistant cell line in contrast to the parental and ICI 182,780-resistant cell lines displayed a significantly less radiation-induced decrease in the expression of genes involved in DNA repair. Furthermore, we show that MCF-7/TAMR-1 and MCF-7/182R-6 cells were less susceptible to radiation-induced apoptosis as compared to the parental line. These data indicate that tamoxifen-resistant breast cancer cells have a reduced sensitivity to radiation treatment. The current study may therefore serve as a

  15. In Vitro Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms.

    PubMed

    Arendrup, Maiken Cavling; Jensen, Rasmus Hare; Cuenca-Estrella, Manuel

    2016-01-01

    ASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity against Aspergillus and Candida glabrata. We compared its in vitro activity against wild-type and azole-resistant A. fumigatus and A. terreus isolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-type A. fumigatus isolates, 24 A. fumigatus isolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), and A. terreus isolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50 values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) against A. fumigatus CYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistant A. fumigatus isolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active against A. terreus CYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayed in vitro activity against A. fumigatus and A. terreus isolates which was independent of the presence or absence of azole target gene resistance mutations in A. fumigatus. The findings are promising at a time when azole-resistant A. fumigatus

  16. Acquired Activated Protein C Resistance, Thrombophilia and Adverse Pregnancy Outcomes: A Study Performed in an Irish Cohort of Pregnant Women

    PubMed Central

    Sedano-Balbás, Sara; Lyons, Mark; Cleary, Brendan; Murray, Margaret; Gaffney, Geraldine; Maher, Majella

    2011-01-01

    The combination of thrombophilia and pregnancy increases the risk of thrombosis and the potential for adverse outcomes during pregnancy. The most significant common inherited risk factor for thrombophilia is activated protein C resistance (APCR), a poor anticoagulant response of APC in haemostasis, which is mainly caused by an inherited single-nucleotide polymorphism (SNP), factor V G1691A (FV Leiden) (FVL), referred as inherited APCR. Changes in the levels of coagulation factors: FV, FVIII, and FIX, and anticoagulant factors: protein S (PS) and protein C (PC) can alter APC function causing acquired APCR. Prothrombin G20210A and methylenetetrahydrofolate reductase (MTHFR) C677T are prothrombotic SNPs which in association with APCR can also increase the risk of thrombosis amongst Caucasians. In this study, a correlation between an acquired APCR phenotype and increased levels of factors V, VIII, and IX was demonstrated. Thrombophilic mutations amongst our acquired APCR pregnant women cohort are relatively common but do not appear to exert a severe undue adverse effect on pregnancy. PMID:21869933

  17. Community-acquired multidrug-resistant Gram-negative bacterial infective endocarditis

    PubMed Central

    Naha, Sowjanya; Naha, Kushal; Acharya, Vasudev; Hande, H Manjunath; Vivek, G

    2014-01-01

    We describe two cases of bacterial endocarditis secondary to multidrug-resistant Gram-negative organisms. In both cases, the diagnosis was made in accordance with the modified Duke's criteria and confirmed by histopathological analysis. Furthermore, in both instances there were no identifiable sources of bacteraemia and no history of contact with hospital or other medical services prior to the onset of symptoms. The patients were managed in similar fashion with prolonged broad-spectrum antibiotic therapy and surgical intervention and made complete recoveries. These cases highlight Gram-negative organisms as potential agents for endocarditis, as well as expose the dissemination of such multidrug-resistant bacteria into the community. The application of an integrated medical and surgical approach and therapeutic dilemmas encountered in managing these cases are described. PMID:25096655

  18. MM-151 overcomes acquired resistance to cetuximab and panitumumab in colorectal cancers harboring EGFR extracellular domain mutations.

    PubMed

    Arena, Sabrina; Siravegna, Giulia; Mussolin, Benedetta; Kearns, Jeffrey D; Wolf, Beni B; Misale, Sandra; Lazzari, Luca; Bertotti, Andrea; Trusolino, Livio; Adjei, Alex A; Montagut, Clara; Di Nicolantonio, Federica; Nering, Rachel; Bardelli, Alberto

    2016-02-01

    The anti-epidermal growth factor receptor (EGFR) antibodies cetuximab and panitumumab are used to treat RAS wild-type colorectal cancers (CRCs), but their efficacy is limited by the emergence of acquired drug resistance. After EGFR blockade, about 20% of CRCs develop mutations in the EGFR extracellular domain (ECD) that impair antibody binding and are associated with clinical relapse. We hypothesized that EGFR ECD-resistant variants could be targeted by the recently developed oligoclonal antibody MM-151 that binds multiple regions of the EGFR ECD. MM-151 inhibits EGFR signaling and cell growth in preclinical models, including patient-derived cells carrying mutant EGFR. Upon MM-151 treatment, EGFR ECD mutations decline in circulating cell-free tumor DNA (ctDNA) of CRC patients who previously developed resistance to EGFR blockade. These data provide molecular rationale for the clinical use of MM-151 in patients who become resistant to cetuximab or panitumumab as a result of EGFR ECD mutations. PMID:26843189

  19. Let-7 modulates acquired resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of MDR1

    PubMed Central

    Boyerinas, Benjamin; Park, Sun-Mi; Murmann, Andrea E.; Gwin, Katja; Montag, Anton G.; Zillardt, Marion R.; Hua, You-Jia; Lengyel, Ernst; Peter, Marcus E.

    2011-01-01

    Summary Ovarian cancer patients frequently develop resistance to chemotherapy regiments utilizing Taxol and carboplatin. One of the resistance factors that protects cancer cells from Taxol-based therapy is multi-drug resistance 1 (MDR1). micro(mi)RNAs are small noncoding RNAs that negatively regulate protein expression. Members of the let-7 family of miRNAs are downregulated in many human cancers, and low let-7 expression has been correlated with resistance to microtubule targeting drugs (Taxanes), although little is known that would explain this activity. We now provide evidence that, while let-7 is not a universal sensitizer of cancer cells to Taxanes, it affects acquired resistance of cells to this class of drugs by targeting IMP-1, resulting in de-stabilization of the mRNA of MDR1. Introducing let-7g into ADR-RES cells expressing both IMP-1 and MDR1 reduced expression of both proteins rendering the cells more sensitive to treatment with either Taxol or vinblastine without affecting the sensitivity of the cells to carboplatin, a non-MDR1 substrate. This effect could be reversed by reintroducing IMP-1 into let-7g high/MDR1 low cells causing MDR1 to again become stabilized. Consistently, many relapsed ovarian cancer patients tested before and after chemotherapy were found to downregulate let-7 and to co-upregulate IMP-1 and MDR1, and the increase in the expression levels of both proteins after chemotherapy negatively correlated with disease-free time before recurrence. Our data point at IMP-1 and MDR1 as indicators for response to therapy, and at IMP-1 as a novel therapeutic target for overcoming multidrug resistance of ovarian cancer. PMID:21618519

  20. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen

    PubMed Central

    Mendes-Pereira, Ana M.; Sims, David; Dexter, Tim; Fenwick, Kerry; Assiotis, Ioannis; Kozarewa, Iwanka; Mitsopoulos, Costas; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J.; Ashworth, Alan

    2012-01-01

    Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,487 genes on the cellular response to tamoxifen. This screen, along with subsequent validation experiments, identifies a compendium of genes whose silencing causes tamoxifen resistance (including BAP1, CLPP, GPRC5D, NAE1, NF1, NIPBL, NSD1, RAD21, RARG, SMC3, and UBA3) and also a set of genes whose silencing causes sensitivity to this endocrine agent (C10orf72, C15orf55/NUT, EDF1, ING5, KRAS, NOC3L, PPP1R15B, RRAS2, TMPRSS2, and TPM4). Multiple individual genes, including NF1, a regulator of RAS signaling, also correlate with clinical outcome after tamoxifen treatment. PMID:21482774

  1. Postmenopausal tamoxifen treatment and endometrial pathology.

    PubMed

    Cohen, I; Altaras, M M; Shapira, J; Tepper, R; Beyth, Y

    1994-12-01

    Tamoxifen is widely used as adjuvant therapy for postmenopausal breast cancer patients with positive estrogen receptors. Data on a possible association of endometrial pathologies with tamoxifen treatment have been accumulating. In this review, we examine the current literature and include our own experience with this occurrence. We recommend close supervision of these patients. PMID:7885659

  2. Estimating Trends in the Proportion of Transmitted and Acquired HIV Drug Resistance in a Long Term Observational Cohort in Germany

    PubMed Central

    Schmidt, Daniel; Kollan, Christian; Fätkenheuer, Gerd; Schülter, Eugen; Stellbrink, Hans-Jürgen; Noah, Christian; Jensen, Björn-Erik Ole; Stoll, Matthias; Bogner, Johannes R.; Eberle, Josef; Meixenberger, Karolin; Kücherer, Claudia; Hamouda, Osamah; Bartmeyer, Barbara

    2014-01-01

    Objective We assessed trends in the proportion of transmitted (TDR) and acquired (ADR) HIV drug resistance and associated mutations between 2001 and 2011 in the German ClinSurv-HIV Drug Resistance Study. Method The German ClinSurv-HIV Drug Resistance Study is a subset of the German ClinSurv-HIV Cohort. For the ClinSurv-HIV Drug Resistance Study all available sequences isolated from patients in five study centres of the long term observational ClinSurv-HIV Cohort were included. TDR was estimated using the first viral sequence of antiretroviral treatment (ART) naïve patients. One HIV sequence/patient/year of ART experienced patients was considered to estimate the proportion of ADR. Trends in the proportion of HIV drug resistance were calculated by logistic regression. Results 9,528 patients were included into the analysis. HIV-sequences of antiretroviral naïve and treatment experienced patients were available from 34% (3,267/9,528) of patients. The proportion of TDR over time was stable at 10.4% (95% CI 9.1–11.8; p for trend = 0.6; 2001–2011). The proportion of ADR among all treated patients was 16%, whereas it was high among those with available HIV genotypic resistance test (64%; 1,310/2,049 sequences; 95% CI 62–66) but declined significantly over time (OR 0.8; 95% CI 0.77–0.83; p for trend<0.001; 2001–2011). Viral load monitoring subsequent to resistance testing was performed in the majority of treated patients (96%) and most of them (67%) were treated successfully. Conclusions The proportion of TDR was stable in this study population. ADR declined significantly over time. This decline might have been influenced by broader resistance testing, resistance test guided therapy and the availability of more therapeutic options and not by a decline in the proportion of TDR within the study population. PMID:25148412

  3. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata

    NASA Technical Reports Server (NTRS)

    Stewart, Patricia W.; Chapes, Stephen K.

    2003-01-01

    Genetics plays a substantial role in host resistance in many host-parasite interactions. We examined the prevalence of naturally acquired infection with Syphacia obvelata in a number of mouse strains housed in a non-barrier facility. These mice, which included cross-bred and congenic, inbred strains on various genetic backgrounds, differ in the loci for the immune function genes--major histocompatibility complex class II (MHCII), toll-like receptor 4 (Tlr4), and solute carrier family 11, member 1 (Slc11a1)--which allowed comparisons of the impact of these genes on resistance to pinworm infection. Male and female mice of various ages were sampled over an 18-month period; infection was determined by use of the cellophane tape test. Results indicated that mice that were MHCII+/+ had a significantly lower prevalence of infection than did mice that were MHCII-/-. Differences were not seen between male and female mice. Although MHCII+/+ mice had an age-associated decrease in infection prevalence, such decrease was not seen in MHCII-/- mice. In contrast, infection prevalence in mice with the normal Tlr4 gene (Tlr4(LPS-n/LPS-n)) gene did not differ significantly compared with that in mice that were homozygous for either the point mutation (Tlr4(LPS-d/LPS-d)) or deletion (Tlr4(LPS-del/LPS-del)) of that gene. Likewise, the presence (Sle11a1r/r) or absence (Slc11a1s/s) of functional alleles for Slc11a1 had no effect on the prevalence of infection with S. obvelata. In conclusion, presence of MHCII, but not Tlr4 or Slc11a1 significantly influences prevalence of naturally acquired infection with S. obvelata. These data justify further comprehensive analyses of the immune components that are involved in pinworm resistance.

  4. Drug Efflux Transporters Are Overexpressed in Short-Term Tamoxifen-Induced MCF7 Breast Cancer Cells.

    PubMed

    Krisnamurti, Desak Gede Budi; Louisa, Melva; Anggraeni, Erlia; Wanandi, Septelia Inawati

    2016-01-01

    Tamoxifen is the first line drug used in the treatment of estrogen receptor-positive (ER+) breast cancer. The development of multidrug resistance (MDR) to tamoxifen remains a major challenge in the treatment of cancer. One of the mechanisms related to MDR is decrease of drug influx via overexpression of drug efflux transporters such as P-glycoprotein (P-gp/MDR1), multidrug resistance associated protein (MRP), or BCRP (breast cancer resistance protein). We aimed to investigate whether the sensitivity of tamoxifen to the cells is maintained through the short period and whether the expressions of several drug efflux transporters have been upregulated. We exposed MCF7 breast cancer cells with tamoxifen 1 μM for 10 passages (MCF7 (T)). The result showed that MCF7 began to lose their sensitivity to tamoxifen from the second passage. MCF7 (T) also showed a significant increase in all transporters examined compared with MCF7 parent cells. The result also showed a significant increase of CC50 in MCF7 (T) compared to that in MCF7 (97.54 μM and 3.04 μM, resp.). In conclusion, we suggest that the expression of several drug efflux transporters such as P-glycoprotein, MRP2, and BCRP might be used and further studied as a marker in the development of tamoxifen resistance. PMID:26981116

  5. Drug Efflux Transporters Are Overexpressed in Short-Term Tamoxifen-Induced MCF7 Breast Cancer Cells

    PubMed Central

    Krisnamurti, Desak Gede Budi; Louisa, Melva; Anggraeni, Erlia; Wanandi, Septelia Inawati

    2016-01-01

    Tamoxifen is the first line drug used in the treatment of estrogen receptor-positive (ER+) breast cancer. The development of multidrug resistance (MDR) to tamoxifen remains a major challenge in the treatment of cancer. One of the mechanisms related to MDR is decrease of drug influx via overexpression of drug efflux transporters such as P-glycoprotein (P-gp/MDR1), multidrug resistance associated protein (MRP), or BCRP (breast cancer resistance protein). We aimed to investigate whether the sensitivity of tamoxifen to the cells is maintained through the short period and whether the expressions of several drug efflux transporters have been upregulated. We exposed MCF7 breast cancer cells with tamoxifen 1 μM for 10 passages (MCF7 (T)). The result showed that MCF7 began to lose their sensitivity to tamoxifen from the second passage. MCF7 (T) also showed a significant increase in all transporters examined compared with MCF7 parent cells. The result also showed a significant increase of CC50 in MCF7 (T) compared to that in MCF7 (97.54 μM and 3.04 μM, resp.). In conclusion, we suggest that the expression of several drug efflux transporters such as P-glycoprotein, MRP2, and BCRP might be used and further studied as a marker in the development of tamoxifen resistance. PMID:26981116

  6. Alectinib: a novel second generation anaplastic lymphoma kinase (ALK) inhibitor for overcoming clinically-acquired resistance

    PubMed Central

    Song, Zilan; Wang, Meining; Zhang, Ao

    2015-01-01

    The development of inhibitors for the tyrosine anaplastic lymphoma kinase (ALK) has advanced rapidly, driven by biology and medicinal chemistry. The first generation ALK inhibitor crizotinib was granted US FDA approval with only four years of preclinical and clinical testing. Although this drug offers significant clinical benefit to the ALK-positive patients, resistance has been developed through a variety of mechanisms. In addition to ceritinib, alectinib is another second-generation ALK inhibitor launched in 2014 in Japan. This drug has a unique chemical structure bearing a 5H-benzo[b]carbazol-11(6H)-one structural scaffold with an IC50 value of 1.9 nmol/L, and is highly potent against ALK bearing the gatekeeper mutation L1196M with an IC50 of 1.56 nmol/L. In the clinic, alectinib is highly efficacious in treatment of ALK-positive non-small cell lung cancer (NSCLC), and retains potency to combat crizotinib-resistant ALK mutations L1196M, F1174L, R1275Q and C1156Y. PMID:26579422

  7. Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes

    PubMed Central

    Hendrickx, Sarah; Eberhardt, Eline; Garcia-Hernandez, Raquel; Lachaud, Laurence; Cotton, James; Sanders, Mandy; Cuypers, Bart; Imamura, Hideo; Dujardin, Jean-Claude; Delputte, Peter; Cos, Paul; Caljon, Guy; Gamarro, Francisco; Castanys, Santiago

    2016-01-01

    During the last decade miltefosine (MIL) has been used as first-line treatment for visceral leishmaniasis in endemic areas with antimonial resistance, but a decline in clinical effectiveness is now being reported. While only two MIL-resistant Leishmania infantum strains from HIV co-infected patients have been documented, phenotypic MIL-resistance for L. donovani has not yet been identified in the laboratory. Hence, a better understanding of the factors contributing to increased MIL-treatment failure is necessary. Given the paucity of defined MIL-resistant L. donovani clinical isolates, this study used an experimental amastigote-selected MIL-resistant L. infantum isolate (LEM3323). In-depth exploration of the MIL-resistant phenotype was performed by coupling genomic with phenotypic data to gain insight into gene function and the mutant phenotype. A naturally MIL-resistant L. infantum clinical isolate (LEM5159) was included to compare both datasets. Phenotypically, resistance was evaluated by determining intracellular amastigote susceptibility in vitro and actual MIL-uptake. Genomic analysis provided supportive evidence that the resistance selection model on intracellular amastigotes can be a good proxy for the in vivo field situation since both resistant strains showed mutations in the same inward transporter system responsible for the acquired MIL-resistant phenotype. In line with previous literature findings in promastigotes, our data confirm a defective import machinery through inactivation of the LiMT/LiRos3 protein complex as the main mechanism for MIL-resistance also in intracellular amastigotes. Whole genome sequencing analysis of LEM3323 revealed a 2 base pair deletion in the LiMT gene that led to the formation an early stop codon and a truncation of the LiMT protein. Interestingly, LEM5159 revealed mutations in both the LiMT and LiRos3 genes, resulting in an aberrant expression of the LiMT protein. To verify that these mutations were indeed accountable for

  8. Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes.

    PubMed

    Mondelaers, Annelies; Sanchez-Cañete, Maria P; Hendrickx, Sarah; Eberhardt, Eline; Garcia-Hernandez, Raquel; Lachaud, Laurence; Cotton, James; Sanders, Mandy; Cuypers, Bart; Imamura, Hideo; Dujardin, Jean-Claude; Delputte, Peter; Cos, Paul; Caljon, Guy; Gamarro, Francisco; Castanys, Santiago; Maes, Louis

    2016-01-01

    During the last decade miltefosine (MIL) has been used as first-line treatment for visceral leishmaniasis in endemic areas with antimonial resistance, but a decline in clinical effectiveness is now being reported. While only two MIL-resistant Leishmania infantum strains from HIV co-infected patients have been documented, phenotypic MIL-resistance for L. donovani has not yet been identified in the laboratory. Hence, a better understanding of the factors contributing to increased MIL-treatment failure is necessary. Given the paucity of defined MIL-resistant L. donovani clinical isolates, this study used an experimental amastigote-selected MIL-resistant L. infantum isolate (LEM3323). In-depth exploration of the MIL-resistant phenotype was performed by coupling genomic with phenotypic data to gain insight into gene function and the mutant phenotype. A naturally MIL-resistant L. infantum clinical isolate (LEM5159) was included to compare both datasets. Phenotypically, resistance was evaluated by determining intracellular amastigote susceptibility in vitro and actual MIL-uptake. Genomic analysis provided supportive evidence that the resistance selection model on intracellular amastigotes can be a good proxy for the in vivo field situation since both resistant strains showed mutations in the same inward transporter system responsible for the acquired MIL-resistant phenotype. In line with previous literature findings in promastigotes, our data confirm a defective import machinery through inactivation of the LiMT/LiRos3 protein complex as the main mechanism for MIL-resistance also in intracellular amastigotes. Whole genome sequencing analysis of LEM3323 revealed a 2 base pair deletion in the LiMT gene that led to the formation an early stop codon and a truncation of the LiMT protein. Interestingly, LEM5159 revealed mutations in both the LiMT and LiRos3 genes, resulting in an aberrant expression of the LiMT protein. To verify that these mutations were indeed accountable for

  9. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma.

    PubMed

    Gray, Elin S; Rizos, Helen; Reid, Anna L; Boyd, Suzanah C; Pereira, Michelle R; Lo, Johnny; Tembe, Varsha; Freeman, James; Lee, Jenny H J; Scolyer, Richard A; Siew, Kelvin; Lomma, Chris; Cooper, Adam; Khattak, Muhammad A; Meniawy, Tarek M; Long, Georgina V; Carlino, Matteo S; Millward, Michael; Ziman, Melanie

    2015-12-01

    Repeat tumor biopsies to study genomic changes during therapy are difficult, invasive and data are confounded by tumoral heterogeneity. The analysis of circulating tumor DNA (ctDNA) can provide a non-invasive approach to assess prognosis and the genetic evolution of tumors in response to therapy. Mutation-specific droplet digital PCR was used to measure plasma concentrations of oncogenic BRAF and NRAS variants in 48 patients with advanced metastatic melanoma prior to treatment with targeted therapies (vemurafenib, dabrafenib or dabrafenib/trametinib combination) or immunotherapies (ipilimumab, nivolumab or pembrolizumab). Baseline ctDNA levels were evaluated relative to treatment response and progression-free survival (PFS). Tumor-associated ctDNA was detected in the plasma of 35/48 (73%) patients prior to treatment and lower ctDNA levels at this time point were significantly associated with response to treatment and prolonged PFS, irrespective of therapy type. Levels of ctDNA decreased significantly in patients treated with MAPK inhibitors (p < 0.001) in accordance with response to therapy, but this was not apparent in patients receiving immunotherapies. We show that circulating NRAS mutations, known to confer resistance to BRAF inhibitors, were detected in 3 of 7 (43%) patients progressing on kinase inhibitor therapy. Significantly, ctDNA rebound and circulating mutant NRAS preceded radiological detection of progressive disease. Our data demonstrate that ctDNA is a useful biomarker of response to kinase inhibitor therapy and can be used to monitor tumor evolution and detect the early appearance of resistance effectors. PMID:26524482

  10. Molecular Characterization of Acquired Enrofloxacin Resistance in Mycoplasma synoviae Field Isolates

    PubMed Central

    Gerchman, I.; Mikula, I.; Gobbo, F.; Catania, S.; Levisohn, S.

    2013-01-01

    The in vitro activity of enrofloxacin against 73 Mycoplasma synoviae field strains isolated in Israel and Europe was determined by broth microdilution. Decreased susceptibility to enrofloxacin was identified in 59% of strains, with the MICs ranging from 1 to >16 μg/ml. The estimated MIC50 and MIC90 values for enrofloxacin were 2 and 8 μg/ml, respectively. Moreover, this study showed that 92% of recent Israeli field isolates (2009 to 2011) of M. synoviae have MICs of ≥2 μg/ml to enrofloxacin. Comparison of the quinolone resistance-determining regions (QRDRs) in M. synoviae isolates revealed a clear correlation between the presence of one of the amino acid substitutions Asp79-Asn, Thr80-Ala/Ile, Ser81-Pro, and Asp84-Asn/Tyr/His of the ParC QRDR and decreased susceptibility to enrofloxacin (MIC, ≥1 μg/ml). Amino acid substitutions at positions GyrA 87, GyrB 401/402, and ParE 420/454 were also identified, but there was no clear-cut correlation with susceptibility to enrofloxacin. Comparison of vlhA molecular profiles revealed the presence of 9 different genotypes in the Israeli M. synoviae field isolates and 10 genotypes in the European isolates; only one vlhA genotype (type 4) was identified in both cohorts. Based on results of vlhA molecular typing, several mechanisms for emergence and dissemination of Israeli enrofloxacin-resistant M. synoviae isolates are suggested. PMID:23612192

  11. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma

    PubMed Central

    Gray, Elin S.; Rizos, Helen; Reid, Anna L.; Boyd, Suzanah C.; Pereira, Michelle R.; Lo, Johnny; Tembe, Varsha; Freeman, James; Lee, Jenny H.J.; Scolyer, Richard A.; Siew, Kelvin; Lomma, Chris; Cooper, Adam; Khattak, Muhammad A.; Meniawy, Tarek M.; Long, Georgina V.; Carlino, Matteo S.; Millward, Michael; Ziman, Melanie

    2015-01-01

    Repeat tumor biopsies to study genomic changes during therapy are difficult, invasive and data are confounded by tumoral heterogeneity. The analysis of circulating tumor DNA (ctDNA) can provide a non-invasive approach to assess prognosis and the genetic evolution of tumors in response to therapy. Mutation-specific droplet digital PCR was used to measure plasma concentrations of oncogenic BRAF and NRAS variants in 48 patients with advanced metastatic melanoma prior to treatment with targeted therapies (vemurafenib, dabrafenib or dabrafenib/trametinib combination) or immunotherapies (ipilimumab, nivolumab or pembrolizumab). Baseline ctDNA levels were evaluated relative to treatment response and progression-free survival (PFS). Tumor-associated ctDNA was detected in the plasma of 35/48 (73%) patients prior to treatment and lower ctDNA levels at this time point were significantly associated with response to treatment and prolonged PFS, irrespective of therapy type. Levels of ctDNA decreased significantly in patients treated with MAPK inhibitors (p < 0.001) in accordance with response to therapy, but this was not apparent in patients receiving immunotherapies. We show that circulating NRAS mutations, known to confer resistance to BRAF inhibitors, were detected in 3 of 7 (43%) patients progressing on kinase inhibitor therapy. Significantly, ctDNA rebound and circulating mutant NRAS preceded radiological detection of progressive disease. Our data demonstrate that ctDNA is a useful biomarker of response to kinase inhibitor therapy and can be used to monitor tumor evolution and detect the early appearance of resistance effectors. PMID:26524482

  12. Benzoylsalicylic acid isolated from seed coats of Givotia rottleriformis induces systemic acquired resistance in tobacco and Arabidopsis.

    PubMed

    Kamatham, Samuel; Neela, Kishore Babu; Pasupulati, Anil Kumar; Pallu, Reddanna; Singh, Surya Satyanarayana; Gudipalli, Padmaja

    2016-06-01

    Systemic acquired resistance (SAR), a whole plant defense response to a broad spectrum of pathogens, is characterized by a coordinated expression of a large number of defense genes. Plants synthesize a variety of secondary metabolites to protect themselves from the invading microbial pathogens. Several studies have shown that salicylic acid (SA) is a key endogenous component of local and systemic disease resistance in plants. Although SA is a critical signal for SAR, accumulation of endogenous SA levels alone is insufficient to establish SAR. Here, we have identified a new acyl derivative of SA, the benzoylsalicylic acid (BzSA) also known as 2-(benzoyloxy) benzoic acid from the seed coats of Givotia rottleriformis and investigated its role in inducing SAR in tobacco and Arabidopsis. Interestingly, exogenous BzSA treatment induced the expression of NPR1 (Non-expressor of pathogenesis-related gene-1) and pathogenesis related (PR) genes. BzSA enhanced the expression of hypersensitivity related (HSR), mitogen activated protein kinase (MAPK) and WRKY genes in tobacco. Moreover, Arabidopsis NahG plants that were treated with BzSA showed enhanced resistance to tobacco mosaic virus (TMV) as evidenced by reduced leaf necrosis and TMV-coat protein levels in systemic leaves. We, therefore, conclude that BzSA, hitherto unknown natural plant product, is a new SAR inducer in plants. PMID:26988727

  13. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma.

    PubMed

    Noll, Elisa M; Eisen, Christian; Stenzinger, Albrecht; Espinet, Elisa; Muckenhuber, Alexander; Klein, Corinna; Vogel, Vanessa; Klaus, Bernd; Nadler, Wiebke; Rösli, Christoph; Lutz, Christian; Kulke, Michael; Engelhardt, Jan; Zickgraf, Franziska M; Espinosa, Octavio; Schlesner, Matthias; Jiang, Xiaoqi; Kopp-Schneider, Annette; Neuhaus, Peter; Bahra, Marcus; Sinn, Bruno V; Eils, Roland; Giese, Nathalia A; Hackert, Thilo; Strobel, Oliver; Werner, Jens; Büchler, Markus W; Weichert, Wilko; Trumpp, Andreas; Sprick, Martin R

    2016-03-01

    Although subtypes of pancreatic ductal adenocarcinoma (PDAC) have been described, this malignancy is clinically still treated as a single disease. Here we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers--HNF1A and KRT81--that enable stratification of tumors into different subtypes by using immunohistochemistry. Individuals with tumors of these subtypes showed substantial differences in overall survival, and their tumors differed in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and it is highly expressed in several additional malignancies. These findings designate CYP3A5 as a predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance. PMID:26855150

  14. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma

    PubMed Central

    Noll, Elisa M.; Eisen, Christian; Stenzinger, Albrecht; Espinet, Elisa; Muckenhuber, Alexander; Klein, Corinna; Vogel, Vanessa; Klaus, Bernd; Nadler, Wiebke; Rösli, Christoph; Lutz, Christian; Kulke, Michael; Engelhardt, Jan; Zickgraf, Franziska M.; Espinosa, Octavio; Schlesner, Matthias; Jiang, Xiaoqi; Kopp-Schneider, Annette; Neuhaus, Peter; Bahra, Marcus; Sinn, Bruno V.; Eils, Roland; Giese, Nathalia A.; Hackert, Thilo; Strobel, Oliver; Werner, Jens; Büchler, Markus W.; Weichert, Wilko; Trumpp, Andreas; Sprick, Martin R.

    2016-01-01

    Although subtypes of pancreatic ductal adenocarcinoma (PDAC) were described, this malignancy is clinically still treated as a single disease. Here, we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers—HNF1A and KRT81—that enable stratification of tumors into different subtypes by immunohistochemistry. Individuals bearing tumors of these subtypes show significant differences in overall survival and their tumors differ in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or shRNA-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4 alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and is highly expressed in several additional malignancies. These findings designate CYP3A5 as predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance. PMID:26855150

  15. Plasmodesmata-located protein overexpression negatively impacts the manifestation of systemic acquired resistance and the long-distance movement of Defective in Induced Resistance1 in Arabidopsis.

    PubMed

    Carella, P; Isaacs, M; Cameron, R K

    2015-03-01

    Systemic acquired resistance (SAR) is a plant defence response that provides immunity to distant uninfected leaves after an initial localised infection. The lipid transfer protein (LTP) Defective in Induced Resistance1 (DIR1) is an essential component of SAR that moves from induced to distant leaves following a SAR-inducing local infection. To understand how DIR1 is transported to distant leaves during SAR, we analysed DIR1 movement in transgenic Arabidopsis lines with reduced cell-to-cell movement caused by the overexpression of Plasmodesmata-Located Proteins PDLP1 and PDLP5. These PDLP-overexpressing lines were defective for SAR, and DIR1 antibody signals were not observed in phloem sap-enriched petiole exudates collected from distant leaves. Our data support the idea that cell-to-cell movement of DIR1 through plasmodesmata is important during long-distance SAR signalling in Arabidopsis. PMID:25296648

  16. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1.

    PubMed

    Ohashi, Kadoaki; Sequist, Lecia V; Arcila, Maria E; Moran, Teresa; Chmielecki, Juliann; Lin, Ya-Lun; Pan, Yumei; Wang, Lu; de Stanchina, Elisa; Shien, Kazuhiko; Aoe, Keisuke; Toyooka, Shinichi; Kiura, Katsuyuki; Fernandez-Cuesta, Lynnette; Fidias, Panos; Yang, James Chih-Hsin; Miller, Vincent A; Riely, Gregory J; Kris, Mark G; Engelman, Jeffrey A; Vnencak-Jones, Cindy L; Dias-Santagata, Dora; Ladanyi, Marc; Pao, William

    2012-07-31

    Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR-mutant lung cancers. Here, we modeled disease progression using EGFR-mutant human tumor cell lines. Although five of six models displayed alterations already found in humans, one harbored an unexpected secondary NRAS Q61K mutation; resistant cells were sensitive to concurrent EGFR and MEK inhibition but to neither alone. Prompted by this finding and because RAS/RAF/MEK mutations are known mediators of acquired resistance in other solid tumors (colon cancers, gastrointestinal stromal tumors, and melanomas) responsive to targeted therapies, we analyzed the frequency of secondary KRAS/NRAS/BRAF/MEK1 gene mutations in the largest collection to date of lung cancers with acquired resistance to EGFR TKIs. No recurrent NRAS, KRAS, or MEK1 mutations were found in 212, 195, or 146 patient samples, respectively, but 2 of 195 (1%) were found to have mutations in BRAF (G469A and V600E). Ectopic expression of mutant NRAS or BRAF in drug-sensitive EGFR-mutant cells conferred resistance to EGFR TKIs that was overcome by addition of a MEK inhibitor. Collectively, these positive and negative results provide deeper insight into mechanisms of acquired resistance to EGFR TKIs in lung cancer and inform ongoing clinical trials designed to overcome resistance. In the context of emerging knowledge about mechanisms of acquired resistance to targeted therapies in various cancers, our data highlight the notion that, even though solid tumors share common signaling cascades, mediators of acquired resistance must be elucidated for each disease separately in the context of treatment. PMID:22773810

  17. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant.

    PubMed

    Goldson, Stephen L; Tomasetto, Federico

    2016-01-01

    Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990's. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect on

  18. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant

    PubMed Central

    Goldson, Stephen L.; Tomasetto, Federico

    2016-01-01

    Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990’s. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect

  19. Inhibition of Casein Kinase 1 Alpha Prevents Acquired Drug Resistance to Erlotinib in EGFR-Mutant Non-Small Cell Lung Cancer.

    PubMed

    Lantermann, Alexandra B; Chen, Dongshu; McCutcheon, Kaitlin; Hoffman, Greg; Frias, Elizabeth; Ruddy, David; Rakiec, Daniel; Korn, Joshua; McAllister, Gregory; Stegmeier, Frank; Meyer, Matthew J; Sharma, Sreenath V

    2015-11-15

    Patients with lung tumors harboring activating mutations in the EGF receptor (EGFR) show good initial treatment responses to the EGFR tyrosine kinase inhibitors (TKI) erlotinib or gefitinib. However, acquired resistance invariably develops. Applying a focused shRNA screening approach to identify genes whose knockdown can prevent and/or overcome acquired resistance to erlotinib in several EGFR-mutant non-small cell lung cancer (NSCLC) cell lines, we identified casein kinase 1 α (CSNK1A1, CK1α). We found that CK1α suppression inhibits the NF-κB prosurvival signaling pathway. Furthermore, downregulation of NF-κB signaling by approaches independent of CK1α knockdown can also attenuate acquired erlotinib resistance, supporting a role for activated NF-κB signaling in conferring acquired drug resistance. Importantly, CK1α suppression prevented erlotinib resistance in an HCC827 xenograft model in vivo. Our findings suggest that patients with EGFR-mutant NSCLC might benefit from a combination of EGFR TKIs and CK1α inhibition to prevent acquired drug resistance and to prolong disease-free survival. PMID:26490646

  20. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy

    PubMed Central

    Sotillo, Elena; Barrett, David M.; Black, Kathryn L; Bagashev, Asen; Oldridge, Derek; Wu, Glendon; Sussman, Robyn; Lanauze, Claudia; Ruella, Marco; Gazzara, Matthew R.; Martinez, Nicole M.; Harrington, Colleen T.; Chung, Elaine Y.; Perazzelli, Jessica; Hofmann, Ted J.; Maude, Shannon L.; Raman, Pichai; Barrera, Alejandro; Gill, Saar; Lacey, Simon F.; Melenhorst, Jan J.; Allman, David; Jacoby, Elad; Fry, Terry; Mackall, Crystal; Barash, Yoseph; Lynch, Kristen W.; Maris, John M.; Grupp, Stephan A.; Thomas-Tikhonenko, Andrei

    2015-01-01

    The CD19 antigen, expressed on most B-cell acute lymphoblastic leukemias (B-ALL), can be targeted with chimeric antigen receptor–armed T cells (CART-19), but relapses with epitope loss occur in 10% to 20% of pediatric responders. We detected hemizygous deletions spanning the CD19 locus and de novo frameshift and missense mutations in exon 2 of CD19 in some relapse samples. However, we also discovered alternatively spliced CD19 mRNA species, including one lacking exon 2. Pull-down/siRNA experiments identified SRSF3 as a splicing factor involved in exon 2 retention, and its levels were lower in relapsed B-ALL. Using genome editing, we demonstrated that exon 2 skipping bypasses exon 2 mutations in B-ALL cells and allows expression of the N-terminally truncated CD19 variant, which fails to trigger killing by CART-19 but partly rescues defects associated with CD19 loss. Thus, this mechanism of resistance is based on a combination of deleterious mutations and ensuing selection for alternatively spliced RNA isoforms. Significance CART-19 yield 70% response rates in patients with B-ALL, but also produce escape variants. We discovered that the underlying mechanism is the selection for preexisting alternatively spliced CD19 isoforms with the compromised CART-19 epitope. This mechanism suggests a possibility of targeting alternative CD19 ectodomains, which could improve survival of patients with B-cell neoplasms. PMID:26516065

  1. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

    PubMed

    Chang, Yi-Hsuan; Yan, Hao-Zhi; Liou, Ruey-Fen

    2015-02-01

    The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response. PMID:24965864

  2. A Case of Acute Pyogenic Sacroiliitis and Bacteremia Caused by Community-Acquired Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Kim, Suyoung; Lee, Kang Lock; Baek, Hae Lim; Jang, Seung Jun; Moon, Song Mi

    2013-01-01

    Pyogenic sacroiliitis is a rare osteoarticular infection, occurring most frequently in children and young adults. Diagnosis of the disease is challenging because of a general lack of awareness of the disease and its nonspecific signs and symptoms. Staphylococcus aureus is the most common causative bacteria in pyogenic sacroiliitis. Methicillin-resistant S. aureus (MRSA) has typically been considered a hospital-associated pathogen; however, community-acquired (CA)-MRSA infections are becoming increasingly common in Korea. We report the first domestic case of acute pyogenic sacroiliitis with abscess and bacteremia caused by CA-MRSA. The pathogen carried the type IV-A staphylococcal cassette chromosome mec (SCCmec) without the Panton-Valentine leukocidin (PVL) gene, and was identified as sequence type (ST) 72 by multilocus sequence typing. PMID:24475359

  3. Lemierre Syndrome Secondary to Community-Acquired Methicillin-Resistant Staphylococcus Aureus Infection Associated with Cavernous Sinus Thromboses

    PubMed Central

    Stauffer, Craig; Josiah, Anne F.; Fortes, Manuel; Menaker, Jay; Cole, John W.

    2012-01-01

    Background Lemierre’s Syndrome (LS) is a highly aggressive rare disease process with a predilection for young, healthy adolescents. Often beginning with a primary cervicofacial infection, LS rapidly progresses to thrombophlebitis of the cerebral vasculature, metastatic infection, and septicemia. Untreated LS can be rapidly fatal. Thrombus within the cerebral vasculature can have devastating neurological effects. Advances in antibacterial therapy have resulted in a global decline in the incidence of LS, and clinicians may not consider LS early in the disease process. While the mortality of LS has declined, the morbidity associated with the disease has increased, particularly the neurological sequelae. Objectives This report will provide readers with a better understanding of the etiology, clinical presentation, evaluation methods, and appropriate treatment of LS. Case Report We present an atypical case of LS secondary to community-acquired methicillin-resistant Staphylococcus aureus (MRSA) infection progressing to bilateral cavernous sinus and ophthalmic vein thromboses with resultant binocular vision loss secondary to optic nerve and retinal ischemia. Conclusion This case highlights the importance of early recognition of LS in the setting of a community-acquired MRSA infection as the unifying condition in a young patient with multiple acute neurologic impairments. PMID:22989693

  4. Differential Distribution and Expression of Panton-Valentine Leucocidin among Community-Acquired Methicillin-Resistant Staphylococcus aureus Strains

    PubMed Central

    Saïd-Salim, Battouli; Mathema, Barun; Braughton, Kevin; Davis, Stacy; Sinsimer, Daniel; Eisner, William; Likhoshvay, Yekaterina; DeLeo, Frank R.; Kreiswirth, Barry N.

    2005-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging threat worldwide. CA-MRSA strains differ from hospital-acquired MRSA strains in their antibiotic susceptibilities and genetic backgrounds. Using several genotyping methods, we clearly define CA-MRSA at the genetic level and demonstrate that the prototypic CA-MRSA strain, MW2, has spread as a homogeneous clonal strain family that is distinct from other CA-MRSA strains. The Panton-Valentine leucocidin (PVL)-encoding genes, lukF and lukS, are prevalent among CA-MRSA strains and have previously been associated with CA-MRSA infections. To better elucidate the role of PVL in the pathogenesis of CA-MRSA, we first analyzed the distribution and expression of PVL among different CA-MRSA strains. Our data demonstrate that PVL genes are differentially distributed among CA-MRSA strains and, when they are present, are always transcribed, albeit with strain-to-strain variability of transcript levels. To directly test whether PVL is critical for the pathogenesis of CA-MRSA, we evaluated the lysis of human polymorphonuclear leukocytes (PMNs) during phagocytic interaction with PVL-positive and PVL-negative CA-MRSA strains. Unexpectedly, there was no correlation between PVL expression and PMN lysis, suggesting that additional virulence factors underlie leukotoxicity and, thus, the pathogenesis of CA-MRSA. PMID:16000462

  5. GLP-1 responses are heritable and blunted in acquired obesity with high liver fat and insulin resistance.

    PubMed

    Matikainen, Niina; Bogl, Leonie H; Hakkarainen, Antti; Lundbom, Jesper; Lundbom, Nina; Kaprio, Jaakko; Rissanen, Aila; Holst, Jens J; Pietiläinen, Kirsi H

    2014-01-01

    OBJECTIVE Impaired incretin response represents an early and uniform defect in type 2 diabetes, but the contributions of genes and the environment are poorly characterized. RESEARCH DESIGN AND METHODS We studied 35 monozygotic (MZ) and 75 dizygotic (DZ) twin pairs (discordant and concordant for obesity) to determine the heritability of glucagon-like peptide 1 (GLP-1) responses to an oral glucose tolerance test (OGTT) and the influence of acquired obesity to GLP-1, glucose-dependent insulinotropic peptide (GIP), and peptide YY (PYY) during OGTT or meal test. RESULTS The heritability of GLP-1 area under the curve was 67% (95% CI 45-80). Cotwins from weight-concordant MZ and DZ pairs and weight-discordant MZ pairs but concordant for liver fat content demonstrated similar glucose, insulin, and incretin profiles after the OGTT and meal tests. In contrast, higher insulin responses and blunted 60-min GLP-1 responses during the OGTT were observed in the heavier as compared with leaner MZ cotwins discordant for BMI, liver fat, and insulin sensitivity. Blunted GLP-1 response to OGTT was observed in heavier as compared with leaner DZ cotwins discordant for obesity and insulin sensitivity. CONCLUSIONS Whereas the GLP-1 response to the OGTT is heritable, an acquired unhealthy pattern of obesity characterized by liver fat accumulation and insulin resistance is closely related to impaired GLP-1 response in young adults. PMID:23990519

  6. Low inducible expression of p21Cip1 confers resistance to paclitaxel in BRAF mutant melanoma cells with acquired resistance to BRAF inhibitor.

    PubMed

    Jang, Gun-Hee; Kim, Na-Yeon; Lee, Michael

    2015-08-01

    The therapeutic efficacy of oncogenic BRAF inhibitor is limited by the onset of acquired resistance. In this study, we investigated the potential therapeutic effects of the mitotic inhibitor paclitaxel on three melanoma cell lines with differing sensitivity to the BRAF inhibitor. Of the two BRAF inhibitor-resistant cell lines, A375P/Mdr cells harboring the BRAF V600E mutant were resistant and the wild-type BRAF SK-MEL-2 cells were sensitive to paclitaxel. In particular, paclitaxel caused the growth inhibition of SK-MEL-2 cells to a much greater extent than it caused growth inhibition of A375P cells. Paclitaxel exhibited no significant effect on the phosphorylation of MEK-ERK in any cell lines tested, regardless of both the BRAF mutation and the drug resistance, implying that paclitaxel activity is independent of MEK-ERK inhibition. In A375P cells, paclitaxel treatment resulted in a marked emergence of apoptotic cells after mitotic arrest, concomitant with a remarkable induction of p21(Cip1). However, paclitaxel only moderately increased the levels of p21(Cip1) in A375P/Mdr cells, which exhibited a strong resistance to paclitaxel. The p21(Cip1) overexpression partially conferred paclitaxel sensitivity to A375P/Mdr cells. Interestingly, we found an extremely low background expression level of p21(Cip1) in SK-MEL-2 cells lacking normal p53 function, which caused much greater G2/M arrest than that seen in A375P cells. Taken together, these results suggest that paclitaxel may be an effective anticancer agent through regulating the expression of p21(Cip1) for the treatment of BRAF mutant melanoma cells resistant to BRAF inhibitors. PMID:25912549

  7. Increased thymidylate synthase in L1210 cells possessing acquired resistance to N10-propargyl-5,8-dideazafolic acid (CB3717): development, characterization, and cross-resistance studies

    SciTech Connect

    Jackman, A.L.; Alison, D.L.; Calvert, A.H.; Harrap, K.R.

    1986-06-01

    The properties are described of a mutant L1210 cell line (L1210:C15) with acquired resistance (greater than 200-fold) to the thymidylate synthase (TS) inhibitor N10-propargyl-5,8-dideazafolic acid. TS was overproduced 45-fold and was accompanied by a small increase in the activity of dihydrofolate reductase (2.6-fold). Both the level of resistance and enzyme activities were maintained in drug-free medium (greater than 300 generations). Failure of N10-propargyl-5,8-dideazafolic acid to suppress the (/sup 3/H)-2'-deoxyuridine incorporation into the acid-precipitable material of the resistant line supported the evidence that TS overproduction was the mechanism of resistance; consequently the L1210:C15 cells were largely cross-resistant to another (but weaker) TS inhibitor, 5,8-dideazafolic acid. Minimal cross-resistance was observed to the dihydrofolate reductase inhibitors methotrexate and 5-methyl-5,8-dideazaaminopterin (5- and 2-fold, respectively). L1210 and L1210:C15 cells were, however, equally sensitive to 5-fluorodeoxyuridine (FdUrd), an unexpected finding since a metabolite, 5-fluorodeoxyuridine monophosphate, is a potent TS inhibitor; however, this cytotoxicity against the L1210:C15 cells was antagonized by coincubation with 5 microM folinic acid although folinic acid potentiated the cytotoxicity of FdUrd to the N10-propargyl-5,8-dideazafolic acid-sensitive L1210 line. Thymidine was much less effective as a FdUrd protecting agent in the L1210:C15 when compared with the L1210 cells; however, a combination of thymidine plus hypoxanthine was without any additional effect (compared with thymidine alone) against the sensitive line but effectively protected L1210:C15 cells.

  8. Metabolomic analysis reveals the relationship between AZI1 and sugar signaling in systemic acquired resistance of Arabidopsis.

    PubMed

    Wang, Xiao-Yan; Li, Dian-Zhen; Li, Qi; Ma, Yan-Qin; Yao, Jing-Wen; Huang, Xuan; Xu, Zi-Qin

    2016-10-01

    The function of AZI1 in systemic acquired resistance of Arabidopsis was confirmed by investigation of the phenotypic features of wild-type Col-0, AZI1 T-DNA knockout and AZI1 overexpressing plants after infection with virulent and avirulent Pseudomonas syringae. Real-time quantitative PCR and Northern blotting analyses showed that the transcript abundances of PR genes increased significantly in local and systemic leaves of wild-type Col-0 and AZI1 overexpressing plants challenged with avirulent P. syringae, whereas the mRNA accumulation of PR genes was obviously attenuated in local and systemic leaves of AZI1 T-DNA knockout plants after localized infiltration with avirulent Psm avrRpm1. The changes of metabolomic profiles in distal leaves of three types of materials infected with avirulent P. syringae were determined by (1)H NMR spectrometry and data mining showed that the soluble carbonhydrates might function as signal substances in the systemic immunity of Arabidopsis. At the same time, the expression of the sugar signaling genes in local and distal leaves after infection of avirulent P. syringae was compared. As a result, it was found that the transcript abundances of sugar signaling genes, including SUS1, SUS2, SUS3, SUS6, SUT1, HXK1, HXK2, SNRK1.2, ERD6, TPS1, TOR, SNRK1.1, SNRK1.3 and bZIP11, were obviously changed in distal leaves of different materials with the modulated AZI1 activities, indicating sugar-related genes are involved in regulation of the systemic immunity mediated by AZI1. These results also illustrated that the immune system associated with sugar molecules probably was an important part of the systemic acquired resistance in Arabidopsis. PMID:27337039

  9. Acute haematogenous community-acquired methicillin-resistant Staphylococcus aureus osteomyelitis in an adult: Case report and review of literature

    PubMed Central

    2012-01-01

    Background Methicillin-resistant Staphylococcus aureus (MRSA) has of late emerged as a cause of community-acquired infections among immunocompetent adults without risk factors. Skin and soft tissue infections represent the majority of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) clinical presentations, whilst invasive and life-threatening illness like necrotizing pneumonia, necrotizing fasciitis, pyomyositis, osteomyelitis and sepsis syndrome are less common. Although more widely described in the pediatric age group, the occurrence of CA-MRSA osteomyelitis in adults is an uncommonly reported entity. Case presentation We describe an invasive CA-MRSA infection in a 28 year-old previously healthy male, manifesting with bacteraemia, osteomyelitis of femur, pyomyositis and septic arthritis of the knee. Initially a preliminary diagnosis of osteosarcoma was suggested by imaging studies and patient underwent a bone biopsy. MRSA was subsequently isolated from blood cultures taken on day of admission, bone, tissue and pus cultures. Incision and drainage of abscess was performed and patient was treated with vancomycin, with fusidic acid added later. It took 6 months for the inflammatory markers to normalize, warranting 6-months of anti-MRSA therapy. Patient was a fervent deer hunter and we speculate that he acquired this infection from extensive direct contact with deer. Molecular characterization of this isolate showed that it belonged to multilocus sequence type (MLST) ST30 and exhibited the staphylococcal chromosome cassette mec (SCCmec) type IV, staphylococcus protein A (spa) type t019, accessory gene regulator (agr) type III and dru type dt10m. This strain harbored Panton-Valentine leukocidin (pvl) genes together with 3 other virulent genes; sei (enterotoxin), hlg (hemolysin) and fnbA (fibronectin binding protein). Conclusion This case study alerts physicians that beyond the most commonly encountered skin and soft tissue infections, pvl

  10. Tamoxifen Treatment of Breast Cancer Cells: Impact on Hedgehog/GLI1 Signaling.

    PubMed

    Villegas, Victoria E; Rondón-Lagos, Milena; Annaratone, Laura; Castellano, Isabella; Grismaldo, Adriana; Sapino, Anna; Zaphiropoulos, Peter G

    2016-01-01

    The selective estrogen receptor (ER) modulator tamoxifen (TAM) has become the standard therapy for the treatment of ER+ breast cancer patients. Despite the obvious benefits of TAM, a proportion of patients acquire resistance to treatment, and this is a significant clinical problem. Consequently, the identification of possible mechanisms involved in TAM-resistance should help the development of new therapeutic targets. In this study, we present in vitro data using a panel of different breast cancer cell lines and demonstrate the modulatory effect of TAM on cellular proliferation and expression of Hedgehog signaling components, including the terminal effector of the pathway, the transcription factor GLI1. A variable pattern of expression following TAM administration was observed, reflecting the distinctive properties of the ER+ and ER- cell lines analyzed. Remarkably, the TAM-induced increase in the proliferation of the ER+ ZR-75-1 and BT474 cells parallels a sustained upregulation of GLI1 expression and its translocation to the nucleus. These findings, implicating a TAM-GLI1 signaling cross-talk, could ultimately be exploited not only as a means for novel prognostication markers but also in efforts to effectively target breast cancer subtypes. PMID:26927093

  11. Tamoxifen Treatment of Breast Cancer Cells: Impact on Hedgehog/GLI1 Signaling

    PubMed Central

    Villegas, Victoria E.; Rondón-Lagos, Milena; Annaratone, Laura; Castellano, Isabella; Grismaldo, Adriana; Sapino, Anna; Zaphiropoulos, Peter G.

    2016-01-01

    The selective estrogen receptor (ER) modulator tamoxifen (TAM) has become the standard therapy for the treatment of ER+ breast cancer patients. Despite the obvious benefits of TAM, a proportion of patients acquire resistance to treatment, and this is a significant clinical problem. Consequently, the identification of possible mechanisms involved in TAM-resistance should help the development of new therapeutic targets. In this study, we present in vitro data using a panel of different breast cancer cell lines and demonstrate the modulatory effect of TAM on cellular proliferation and expression of Hedgehog signaling components, including the terminal effector of the pathway, the transcription factor GLI1. A variable pattern of expression following TAM administration was observed, reflecting the distinctive properties of the ER+ and ER− cell lines analyzed. Remarkably, the TAM-induced increase in the proliferation of the ER+ ZR-75-1 and BT474 cells parallels a sustained upregulation of GLI1 expression and its translocation to the nucleus. These findings, implicating a TAM-GLI1 signaling cross-talk, could ultimately be exploited not only as a means for novel prognostication markers but also in efforts to effectively target breast cancer subtypes. PMID:26927093

  12. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer.

    PubMed

    Gao, Dong-Yu; Lin, Ts-Ting; Sung, Yun-Chieh; Liu, Ya Chi; Chiang, Wen-Hsuan; Chang, Chih-Chun; Liu, Jia-Yu; Chen, Yunching

    2015-10-01

    Sorafenib, a multikinase inhibitor, has been used as an anti-angiogenic agent against highly vascular hepatocellular carcinoma (HCC) - yet associated with only moderate therapeutic effect and the high incidence of HCC recurrence. We have shown intratumoral hypoxia induced by sorafenib activated C-X-C receptor type 4 (CXCR4)/stromal-derived factor 1α (SDF1α) axis, resulting in polarization toward a tumor-promoting microenvironment and resistance to anti-angiogenic therapy in HCC. Herein, we formulated sorafenib in CXCR4-targeted lipid-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with a CXCR4 antagonist, AMD3100 to systemically deliver sorafenib into HCC and sensitize HCC to sorafenib treatment. We demonstrated that CXCR4-targeted NPs efficiently delivered sorafenib into HCCs and human umbilical vein endothelial cells (HUVECs) to achieve cytotoxicity and anti-angiogenic effect in vitro and in vivo. Despite the increased expression of SDF1α upon the persistent hypoxia induced by sorafenib-loaded CXCR4-targeted NPs, AMD3100 attached to the NPs can block CXCR4/SDF1α, leading to the reduced infiltration of tumor-associated macrophages, enhanced anti-angiogenic effect, a delay in tumor progression and increased overall survival in the orthotopic HCC model compared with other control groups. In conclusion, our results highlight the clinical potential of CXCR4-targeted NPs for delivering sorafenib and overcoming acquired drug resistance in liver cancer. PMID:26218745

  13. Potential therapeutic drug target identification in Community Acquired-Methicillin Resistant Staphylococcus aureus (CA-MRSA) using computational analysis

    PubMed Central

    Yadav, Pramod Kumar; Singh, Gurmit; Singh, Satendra; Gautam, Budhayash; Saad, Esmaiel IF

    2012-01-01

    The emergence of multidrug-resistant strain of community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strain has highlighted the urgent need for the alternative and effective therapeutic approach to combat the menace of this nosocomial pathogen. In the present work novel potential therapeutic drug targets have been identified through the metabolic pathways analysis. All the gene products involved in different metabolic pathways of CA-MRSA in KEGG database were searched against the proteome of Homo sapiens using the BLASTp program and the threshold of E-value was set to as 0.001. After database searching, 152 putative targets were identified. Among all 152 putative targets, 39 genes encoding for putative targets were identified as the essential genes from the DEG database which are indispensable for the survival of CA-MRSA. After extensive literature review, 7 targets were identified as potential therapeutic drug target. These targets are Fructose-bisphosphate aldolase, Phosphoglyceromutase, Purine nucleoside phosphorylase, Uridylate kinase, Tryptophan synthase subunit beta, Acetate kinase and UDP-N-acetylglucosamine 1-carboxyvinyltransferase. Except Uridylate kinase all the identified targets were involved in more than one metabolic pathways of CA-MRSA which underlines the importance of drug targets. These potential therapeutic drug targets can be exploited for the discovery of novel inhibitors for CA-MRSA using the structure based drug design (SBDD) strategy. PMID:23055607

  14. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer

    PubMed Central

    Yoshida, Takeshi; Song, Lanxi; Bai, Yun; Kinose, Fumi; Li, Jiannong; Ohaegbulam, Kim C.; Muñoz-Antonia, Teresita; Qu, Xiaotao; Eschrich, Steven; Uramoto, Hidetaka; Tanaka, Fumihiro; Nasarre, Patrick; Gemmill, Robert M.; Roche, Joëlle; Drabkin, Harry A.; Haura, Eric B.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors. PMID:26789630

  15. High-dose tamoxifen as an enhancer of etoposide cytotoxicity. Clinical effects and in vitro assessment in p-glycoprotein expressing cell lines.

    PubMed Central

    Stuart, N. S.; Philip, P.; Harris, A. L.; Tonkin, K.; Houlbrook, S.; Kirk, J.; Lien, E. A.; Carmichael, J.

    1992-01-01

    Twenty-six patients with relapsed or drug-resistant cancer were treated with a combination of oral etoposide (300 mg day-1 for 3 days) and high-dose oral tamoxifen as a potential modulator of drug resistance (480 or 720 mg day-1 for 6 days beginning 3 days before etoposide). One patient with relapsed high-grade lymphoma and one with adenocarcinoma of unknown primary site has a partial response. Toxicity consisting of nausea, vomiting and subjective dizziness, unsteadiness of gait and malaise occurred during tamoxifen treatment. Serum levels of tamoxifen averaged 3-3.5 microM on day 4 of all courses of treatment at both 480 and 720 mg day-1. N-desmethyltamoxifen levels were lower than tamoxifen during the first course (2 microM) but increased to equal tamoxifen levels during the second course. Didesmethyltamoxifen levels remained below 1 microM. In vitro, both tamoxifen and the standard modulator of multidrug resistance, verapamil, produced minor enhancement of etoposide cytotoxicity in the MCF-7 wt cell line but produced no enhancement with any other cell line. High, intermittent doses of tamoxifen can be given with acceptable toxicity and produce serum levels that have been shown to modulate drug resistance in vitro. In vitro, however, such levels have no significant effect on etoposide cytotoxicity towards a range of wild-type and MDR cell lines. PMID:1358168

  16. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid.

    PubMed

    Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E; Schwab, Wilfried; Vlot, A Corina

    2014-11-01

    Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation. PMID:25114016

  17. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid

    PubMed Central

    Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E.; Schwab, Wilfried; Vlot, A. Corina

    2014-01-01

    Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation. PMID:25114016

  18. Tunable-combinatorial Mechanisms of Acquired Resistance Limit the Efficacy of BRAF/MEK Co-targeting but Result in Melanoma Drug Addiction

    PubMed Central

    Moriceau, Gatien; Hugo, Willy; Hong, Aayoung; Shi, Hubing; Kong, Xiangju; Yu, Clarissa C.; Koya, Richard C.; Samatar, Ahmed A.; Khanlou, Negar; Braun, Jonathan; Ruchalski, Kathleen; Seifert, Heike; Larkin, James; Dahlman, Kimberly B.; Johnson, Douglas B.; Algazi, Alain; Sosman, Jeffrey A.; Ribas, Antoni; Lo, Roger S.

    2014-01-01

    SUMMARY Combined BRAF and MEK targeted therapy improves upon BRAF inhibitor (BRAFi) therapy but is still beset by acquired resistance. We show that melanomas acquire resistance to combined BRAF and MEK inhibition by augmenting or combining mechanisms of single-agent BRAFi resistance. These double-drug resistance-associated genetic configurations significantly altered molecular interactions underlying MAPK pathway reactivation. V600EBRAF, expressed at supra-physiological levels because of V600EBRAF ultra-amplification, dimerized with and activated CRAF. In addition, MEK mutants enhanced interaction with over-expressed V600EBRAF via a regulatory interface at R662 of V600EBRAF. Importantly, melanoma cell lines selected for resistance to BRAFi+MEKi, but not those to BRAFi alone, displayed robust drug addiction, providing a potentially exploitable therapeutic opportunity. PMID:25600339

  19. Targeting glucosylceramide synthase induction of cell surface globotriaosylceramide (Gb3) in acquired cisplatin-resistance of lung cancer and malignant pleural mesothelioma cells

    SciTech Connect

    Tyler, Andreas; Johansson, Anders; Karlsson, Terese; Gudey, Shyam Kumar; Brännström, Thomas; Grankvist, Kjell; Behnam-Motlagh, Parviz

    2015-08-01

    Background: Acquired resistance to cisplatin treatment is a caveat when treating patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Ceramide increases in response to chemotherapy, leading to proliferation arrest and apoptosis. However, a tumour stress activation of glucosylceramide synthase (GCS) follows to eliminate ceramide by formation of glycosphingolipids (GSLs) such as globotriaosylceramide (Gb3), the functional receptor of verotoxin-1. Ceramide elimination enhances cell proliferation and apoptosis blockade, thus stimulating tumor progression. GSLs transactivate multidrug resistance 1/P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) expression which further prevents ceramide accumulation and stimulates drug efflux. We investigated the expression of Gb3, MDR1 and MRP1 in NSCLC and MPM cells with acquired cisplatin resistance, and if GCS activity or MDR1 pump inhibitors would reduce their expression and reverse cisplatin-resistance. Methods: Cell surface expression of Gb3, MDR1 and MRP1 and intracellular expression of MDR1 and MRP1 was analyzed by flow cytometry and confocal microscopy on P31 MPM and H1299 NSCLC cells and subline cells with acquired cisplatin resistance. The effect of GCS inhibitor PPMP and MDR1 pump inhibitor cyclosporin A for 72 h on expression and cisplatin cytotoxicity was tested. Results: The cisplatin-resistant cells expressed increased cell surface Gb3. Cell surface Gb3 expression of resistant cells was annihilated by PPMP whereas cyclosporin A decreased Gb3 and MDR1 expression in H1299 cells. No decrease of MDR1 by PPMP was noted in using flow cytometry, whereas a decrease of MDR1 in H1299 and H1299res was indicated with confocal microscopy. No certain co-localization of Gb3 and MDR1 was noted. PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. Conclusions: Cell surface Gb3 expression is a likely tumour biomarker for acquired cisplatin

  20. Prior Adjuvant Tamoxifen Treatment in Breast Cancer Is Linked to Increased AIB1 and HER2 Expression in Metachronous Contralateral Breast Cancer

    PubMed Central

    Alkner, Sara; Bendahl, Pär-Ola; Ehinger, Anna; Lövgren, Kristina; Rydén, Lisa; Fernö, Mårten

    2016-01-01

    Aim The estrogen receptor coactivator Amplified in Breast Cancer 1 (AIB1) has been associated with an improved response to adjuvant tamoxifen in breast cancer, but also with endocrine treatment resistance. We hereby use metachronous contralateral breast cancer (CBC) developed despite prior adjuvant tamoxifen for the first tumor as an “in vivo”-model for tamoxifen resistance. AIB1-expression in the presumable resistant (CBC after prior tamoxifen) and naïve setting (CBC without prior tamoxifen) is compared and correlated to prognosis after CBC. Methods From a well-defined population-based cohort of CBC-patients we have constructed a unique tissue-microarray including >700 patients. Results CBC developed after adjuvant tamoxifen more often had a HER2-positive/triple negative-subtype and a high AIB1-expression (37% vs. 23%, p = 0.009), than if no prior endocrine treatment had been administered. In patients with an estrogen receptor (ER) positive CBC, a high AIB1-expression correlated to an inferior prognosis. However, these patients seemed to respond to tamoxifen, but only if endocrine therapy had not been administered for BC1. Conclusions Metachronous CBC developed after prior endocrine treatment has a decreased ER-expression and an increased HER2-expression. This is consistent with endocrine treatment escape mechanisms previously suggested, and indicates metachronous CBC to be a putative model for studies of treatment resistance “in vivo”. The increased AIB1-expression in CBC developed after prior tamoxifen suggests a role of AIB1 in endocrine treatment resistance. In addition, we found indications that the response to tamoxifen in CBC with a high AIB1-expression seem to differ depending on previous exposure to this drug. A different function for AIB1 in the tamoxifen treatment naïve vs. resistant setting is suggested, and may explain previously conflicting results where a high AIB1-expression has been correlated to both a good response to adjuvant

  1. Community-acquired necrotizing pneumonia caused by methicillin-resistant Staphylococcus aureus ST30-SCCmecIVc-spat019-PVL positive in San Antonio de Areco, Argentina.

    PubMed

    Fernandez, Silvina; Murzicato, Sofía; Sandoval, Orlando; Fernández-Canigia, Liliana; Mollerach, Marta

    2015-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus is the first cause of skin and soft tissue infections, but can also produce severe diseases such as bacteremia, osteomyelitis and necrotizing pneumonia. Some S. aureus lineages have been described in cases of necrotizing pneumonia worldwide, usually in young, previously healthy patients. In this work, we describe a fatal case of necrotizing pneumonia due to community-acquired methicillin-resistant S. aureus clone ST30-SCCmecIVc-spat019-PVL positive in an immunocompetent adult patient. PMID:25681265

  2. Tamoxifen

    MedlinePlus

    ... carcinoma in situ (DCIS; a type of breast cancer that does not spread outside of the milk duct where it forms) and who have been treated with surgery and radiation. It is used to reduce the risk of breast cancer in women who are at high risk for ...

  3. Oncogene swap as a novel mechanism of acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitor in lung cancer.

    PubMed

    Mizuuchi, Hiroshi; Suda, Kenichi; Murakami, Isao; Sakai, Kazuko; Sato, Katsuaki; Kobayashi, Yoshihisa; Shimoji, Masaki; Chiba, Masato; Sesumi, Yuichi; Tomizawa, Kenji; Takemoto, Toshiki; Sekido, Yoshitaka; Nishio, Kazuto; Mitsudomi, Tetsuya

    2016-04-01

    Mutant selective epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as rociletinib and AZD9291, are effective for tumors with T790M secondary mutation that become refractory to first-generation EGFR-TKI. However, acquired resistance to these prospective drugs is anticipated considering the high adaptability of cancer cells and the mechanisms remain largely obscure. Here, CNX-2006 (tool compound of rociletinib) resistant sublines were established by chronic exposure of HCC827EPR cells harboring exon 19 deletion and T790M to CNX-2006. Through the analyses of these resistant subclones, we identified two resistant mechanisms accompanied by MET amplification. One was bypass signaling by MET amplification in addition to T790M, which was inhibited by the combination of CNX-2006 and MET-TKI. Another was loss of amplified EGFR mutant allele including T790M while acquiring MET amplification. Interestingly, MET-TKI alone was able to overcome this resistance, suggesting that oncogenic dependence completely shifted from EGFR to MET. We propose describing this phenomenon as an "oncogene swap." Furthermore, we analyzed multiple lesions from a patient who died of acquired resistance to gefitinib, then found a clinical example of an oncogene swap in which the EGFR mutation was lost and a MET gene copy was gained. In conclusion, an "oncogene swap" from EGFR to MET is a novel resistant mechanism to the EGFR-TKI. This novel mechanism should be considered in order to avoid futile inhibition of the original oncogene. PMID:26845230

  4. Tamoxifen enhances the differentiation-inducing and growth-inhibitory effects of all-trans retinoic acid in acute promyelocytic leukemia cells.

    PubMed

    Adachi, Koji; Honma, Yoshio; Miyake, Takaaki; Kawakami, Koshi; Takahashi, Tsutomu; Suzumiya, Junji

    2016-03-01

    All-trans retinoic acid (ATRA) is valuable in differentiation therapy for acute promyelocytic leukemia (APL). However, ATRA has had limited success as a single agent, due to the development of resistance. We found that tamoxifen effectively enhanced the differentiation-inducing effect of ATRA. Tamoxifen alone inhibited the proliferation of myeloid leukemia cell lines while only slightly increasing morphologic differentiation. Tamoxifen effectively enhanced the growth-inhibiting actions of various differentiation-inducing agents. ATRA in the presence of tamoxifen increased NBT reduction and the expression of CD11b in HL-60 cells more effectively than ATRA alone. Tamoxifen also enhanced the differentiation induced by the other inducers tested. ATRA induced the differentiation of APL cell lines NB4 and HT93 and APL cells in primary culture, and this differentiation was also enhanced by tamoxifen. Tamoxifen is one of the most widely used drugs for the treatment of cancer and has few side effects. The combination of ATRA and tamoxifen might be considered for the treatment of APL patients in whom it can be difficult to apply arsenic trioxide or anthracyclines. PMID:26797574

  5. Tamoxifen-induced hypertriglyceridemia causing acute pancreatitis.

    PubMed

    Singh, Hemant Kumar; Prasad, Mahendranath S; Kandasamy, Arun K; Dharanipragada, Kadambari

    2016-01-01

    Tamoxifen has both antagonistic and agonistic tissue-specific actions. It can have a paradoxical estrogenic effect on lipid metabolism resulting in elevated triglyceride and chylomicron levels. This can cause life-threatening complications like acute pancreatitis. To our knowledge, very few cases of tamoxifen-induced pancreatitis have been reported in the literature. We report a case of severe hypertriglyceridemia and acute pancreatitis following tamoxifen use. A 50-year-old diabetic lady was on tamoxifen (20mg/day) hormonal therapy for breast cancer. Within 3 months of starting therapy, she developed hypertriglyceridemia and acute pancreatitis. Laboratory values include: Serum amylase 778 IU/L, total cholesterol 785 mg/dL, triglycerides 4568 mg/dL and high-density lipoproteins (HDL) 12 mg/dL. Tamoxifen was substituted with letrozole and atorvastatin started. There was a prompt reversal of the adverse effects. Effects on lipid profile must be considered while initiating tamoxifen in predisposed individuals as the consequences are life threatening. PMID:27127396

  6. Tamoxifen-induced hypertriglyceridemia causing acute pancreatitis

    PubMed Central

    Singh, Hemant Kumar; Prasad, Mahendranath S.; Kandasamy, Arun K.; Dharanipragada, Kadambari

    2016-01-01

    Tamoxifen has both antagonistic and agonistic tissue-specific actions. It can have a paradoxical estrogenic effect on lipid metabolism resulting in elevated triglyceride and chylomicron levels. This can cause life-threatening complications like acute pancreatitis. To our knowledge, very few cases of tamoxifen-induced pancreatitis have been reported in the literature. We report a case of severe hypertriglyceridemia and acute pancreatitis following tamoxifen use. A 50-year-old diabetic lady was on tamoxifen (20mg/day) hormonal therapy for breast cancer. Within 3 months of starting therapy, she developed hypertriglyceridemia and acute pancreatitis. Laboratory values include: Serum amylase 778 IU/L, total cholesterol 785 mg/dL, triglycerides 4568 mg/dL and high-density lipoproteins (HDL) 12 mg/dL. Tamoxifen was substituted with letrozole and atorvastatin started. There was a prompt reversal of the adverse effects. Effects on lipid profile must be considered while initiating tamoxifen in predisposed individuals as the consequences are life threatening. PMID:27127396

  7. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M.

    PubMed

    Thress, Kenneth S; Paweletz, Cloud P; Felip, Enriqueta; Cho, Byoung Chul; Stetson, Daniel; Dougherty, Brian; Lai, Zhongwu; Markovets, Aleksandra; Vivancos, Ana; Kuang, Yanan; Ercan, Dalia; Matthews, Sarah E; Cantarini, Mireille; Barrett, J Carl; Jänne, Pasi A; Oxnard, Geoffrey R

    2015-06-01

    Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for the T790M mutation before treatment, but upon developing AZD9291 resistance three molecular subtypes emerged: six cases acquired the C797S mutation, five cases maintained the T790M mutation but did not acquire the C797S mutation and four cases lost the T790M mutation despite the presence of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies that are able to overcome resistance mediated by the EGFR C797S mutation. PMID:25939061

  8. Acquired EGFR C797S mediates resistance to AZD9291 in advanced non-small cell lung cancer harboring EGFR T790M

    PubMed Central

    Thress, Kenneth S.; Paweletz, Cloud P.; Felip, Enriqueta; Cho, Byoung Chul; Stetson, Daniel; Dougherty, Brian; Lai, Zhongwu; Markovets, Aleksandra; Vivancos, Ana; Kuang, Yanan; Ercan, Dalia; Matthews, Sarah; Cantarini, Mireille; Barrett, J. Carl; Jänne, Pasi A.; Oxnard, Geoffrey R.

    2015-01-01

    Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for T790M prior to treatment, but at resistance three molecular subtypes emerged: 6 cases acquired the C797S mutation, 5 cases maintained the T790M mutation but did not acquire the C797S mutation, and 4 cases lost the T790M mutation despite detecting of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies able to overcome resistance mediated by EGFR C797S. PMID:25939061

  9. Comparative genomics of community-acquired ST59 methicillin-resistant Staphylococcus aureus in Taiwan: novel mobile resistance structures with IS1216V.

    PubMed

    Hung, Wei-Chun; Takano, Tomomi; Higuchi, Wataru; Iwao, Yasuhisa; Khokhlova, Olga; Teng, Lee-Jene; Yamamoto, Tatsuo

    2012-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) with ST59/SCCmecV and Panton-Valentine leukocidin gene is a major community-acquired MRSA (CA-MRSA) lineage in Taiwan and has been multidrug-resistant since its initial isolation. In this study, we studied the acquisition mechanism of multidrug resistance in an ST59 CA-MRSA strain (PM1) by comparative genomics. PM1's non-β-lactam resistance was encoded by two unique genetic traits. One was a 21,832-bp composite mobile element structure (MES(PM1)), which was flanked by direct repeats of enterococcal IS1216V and was inserted into the chromosomal sasK gene; the target sequence (att) was 8 bp long and was duplicated at both ends of MES(PM1). MES(PM1) consisted of two regions: the 5'-end side 12.4-kb region carrying Tn551 (with ermB) and Tn5405-like (with aph[3']-IIIa and aadE), similar to an Enterococcus faecalis plasmid, and the 3'-end side 6,587-bp region (MES(cat)) that carries cat and is flanked by inverted repeats of IS1216V. MES(cat) possessed att duplication at both ends and additional two copies of IS1216V inside. MES(PM1) represents the first enterococcal IS1216V-mediated composite transposon emerged in MRSA. IS1216V-mediated deletion likely occurred in IS1216V-rich MES(PM1), resulting in distinct resistance patterns in PM1-derivative strains. Another structure was a 6,025-bp tet-carrying element (MES(tet)) on a 25,961-bp novel mosaic penicillinase plasmid (pPM1); MES(tet) was flanked by direct repeats of IS431, but with no target sequence repeats. Moreover, the PM1 genome was deficient in a copy of the restriction and modification genes (hsdM and hsdS), which might have contributed to the acquisition of enterococcal multidrug resistance. PMID:23071689

  10. Clinical features and molecular characteristics of invasive community-acquired methicillin-resistant Staphylococcus aureus infections in Taiwanese children.

    PubMed

    Chen, Chih-Jung; Su, Lin-Hui; Chiu, Cheng-Hsun; Lin, Tzou-Yien; Wong, Kin-Sun; Chen, Yi-Ywan M; Huang, Yhu-Chering

    2007-11-01

    Highly virulent community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) has been associated with morbidity and mortality in various countries of the world. We characterized the clinical and molecular features of pediatric invasive CA-MRSA infections in Taiwan. Between July 2000 and June 2005, 31 previously healthy children with invasive CA-MRSA infections were identified from 423 children with community-onset methicillin-resistant S. aureus infections. The medical records were reviewed. The clinical isolates, if available, were collected for molecular characterization. Sixteen (51.6%) patients were male, and the mean age was 5.7 years. Adolescents accounted for 9 (29%) cases. Eighteen children had bone and/or joint infections, 14 had deep-seated soft tissue infections, 11 had pneumonia, and 2 had central nervous system infections. Multiorgan involvement was identified in 8 of 20 bacteremic cases. Twenty-two patients (71%) required surgical interventions. The mean hospital stay was 27.4 days. All of the 15 available isolates were classified as sequence type (ST) 59 or its single locus variant and belonged to 2 previously reported community-associated clones containing staphylococcal cassette chromosome mec (SCCmec) type IV or type V(T) in Taiwan. Most of the isolates were multiresistant to clindamycin (94%) and erythromycin (97%). Eleven (73.3%) isolates carried pvl genes, and the strains harboring pvl genes were significantly associated with lung involvement. In conclusion, invasive CA-MRSA infections in pediatric population were not limited to young children. Surgical interventions were often required, and a prolonged course of antibiotic therapy was needed. A multiresistant CA-MRSA clone characterized as ST59 was identified from these children in Taiwan. PMID:17662565

  11. Lack of acquired resistance in dogs to successive infestations of Rhipicephalus sanguineus ticks from Brazil and Argentina.

    PubMed

    Évora, Patricia Martinez; Sanches, Gustavo Seron; Jusi, Márcia Mariza Gomes; Alves, Lucas Bocchini Rodrigues; Machado, Rosangela Zacarias; Bechara, Gervásio Henrique

    2015-09-01

    Comparative studies between brown dog tick Rhipicephalus sanguineus populations from Brazil (Jaboticabal, São Paulo) and Argentina (Rafaela, Santa Fé) showed significant biological, morphological and genetic differences between them. This work aimed to study, in a comparative way, the acquisition of resistance in domestic dogs to R. sanguineus from Jaboticabal and Rafaela, after successive and controlled infestations. Ticks were kept in a BOD incubator under controlled conditions (27 °C, 80 % relative humidity, 12-h photoperiod). Ten dogs, Dachshund breed, males and females, 6 months old, short- or long-haired, without prior contact with ticks, were used as hosts. They were distributed into two experimental groups composed of five animals each: G1 infested with ten adult couples of R. sanguineus (Jaboticabal) per animal, and G2 infested with ten adult couples of R. sanguineus (Rafaela) per animal. Ticks' biological parameters and titration of antibodies from the dogs' sera by ELISA test were used for comparison between the strains. Results of the biological parameters showed that the dogs did not acquire immunity to either of the R. sanguineus strains after repeated infestations. The ELISA test showed low antibody titers in sera of dogs from G2, in successive infestations, and higher antibody responses post second and third infestations in G1. It also demonstrated cross-reactivity between sera of dogs infested with R. sanguineus (Jaboticabal) and antigens from R. sanguineus (Rafaela) and vice versa. We conclude that Dachshund dogs did not develop resistance against neither Jaboticabal nor Rafaela strains of R. sanguineus. PMID:26063405

  12. Demography and Intercontinental Spread of the USA300 Community-Acquired Methicillin-Resistant Staphylococcus aureus Lineage

    PubMed Central

    Glaser, Philippe; Martins-Simões, Patrícia; Villain, Adrien; Barbier, Maxime; Tristan, Anne; Bouchier, Christiane; Ma, Laurence; Bes, Michele; Laurent, Frederic; Guillemot, Didier; Wirth, Thierry

    2016-01-01

    ABSTRACT Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized worldwide during the 1990s; in less than a decade, several genetically distinct CA-MRSA lineages carrying Panton-Valentine leukocidin genes have emerged on every continent. Most notably, in the United States, the sequence type 18-IV (ST8-IV) clone known as USA300 has become highly prevalent, outcompeting methicillin-susceptible S. aureus (MSSA) and other MRSA strains in both community and hospital settings. CA-MRSA bacteria are much less prevalent in Europe, where the European ST80-IV European CA-MRSA clone, USA300 CA-MRSA strains, and other lineages, such as ST22-IV, coexist. The question that arises is whether the USA300 CA-MRSA present in Europe (i) was imported once or on very few occasions, followed by a broad geographic spread, anticipating an increased prevalence in the future, or (ii) derived from multiple importations with limited spreading success. In the present study, we applied whole-genome sequencing to a collection of French USA300 CA-MRSA strains responsible for sporadic cases and micro-outbreaks over the past decade and United States ST8 MSSA and MRSA isolates. Genome-wide phylogenetic analysis demonstrated that the population structure of the French isolates is the product of multiple introductions dating back to the onset of the USA300 CA-MRSA clone in North America. Coalescent-based demography of the USA300 lineage shows that a strong expansion occurred during the 1990s concomitant with the acquisition of the arginine catabolic mobile element and antibiotic resistance, followed by a sharp decline initiated around 2008, reminiscent of the rise-and-fall pattern previously observed in the ST80 lineage. A future expansion of the USA300 lineage in Europe is therefore very unlikely. PMID:26884428

  13. Comparing the epidemiology of hospital-acquired methicillin-resistant Staphylococcus aureus clone groups in Alberta, Canada.

    PubMed

    Bruzzese, S; Bush, K; Leal, J; Kim, J; Vickers, D M; Rusk, A; Fathima, S; Li, V; Chui, L; Louie, M; Henderson, E

    2016-07-01

    Patients with methicillin-resistant Staphylococcus aureus (MRSA) clones, which were traditionally seen in the community setting (USA400/CMRSA7 and USA300/CMRSA10), are often identified as hospital-acquired (HA) infections using Infection Prevention and Control (IPC) surveillance definitions. This study examined the demographics and healthcare risk factors of patients with HA-MRSA to help understand if community MRSA clones are from a source internal or external to the hospital setting. Despite USA300/CMRSA10 being the predominant clone in Alberta, hospital clones (USA100/CMRSA2) still dominated in the acute care setting. In the Alberta hospitalized population, patients with USA400/CMRSA7 and USA300/CMRSA10 clones were significantly younger, had fewer comorbidities, and a greater proportion had none or ambulatory care-only healthcare exposure. These findings suggest that there are two distinct populations of HA-MRSA patients, and the patients with USA400/CMRSA7 and USA300/CMRSA10 clones identified in hospital more greatly resemble patients affected by those clones in the community. It is possible that epidemiological assessment overidentifies HA acquisition of MRSA in patients unscreened for MRSA on admission to acute care. PMID:26947456

  14. Antagonistic Interaction between Systemic Acquired Resistance and the Abscisic Acid–Mediated Abiotic Stress Response in Arabidopsis[W

    PubMed Central

    Yasuda, Michiko; Ishikawa, Atsushi; Jikumaru, Yusuke; Seki, Motoaki; Umezawa, Taishi; Asami, Tadao; Maruyama-Nakashita, Akiko; Kudo, Toshiaki; Shinozaki, Kazuo; Yoshida, Shigeo; Nakashita, Hideo

    2008-01-01

    Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is effective against a broad range of pathogens. SAR development in dicotyledonous plants, such as tobacco (Nicotiana tabacum) and Arabidopsis thaliana, is mediated by salicylic acid (SA). Here, using two types of SAR-inducing chemicals, 1,2-benzisothiazol-3(2H)-one1,1-dioxide and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester, which act upstream and downstream of SA in the SAR signaling pathway, respectively, we show that treatment with abscisic acid (ABA) suppresses the induction of SAR in Arabidopsis. In an analysis using several mutants in combination with these chemicals, treatment with ABA suppressed SAR induction by inhibiting the pathway both upstream and downstream of SA, independently of the jasmonic acid/ethylene-mediated signaling pathway. Suppression of SAR induction by the NaCl-activated environmental stress response proved to be ABA dependent. Conversely, the activation of SAR suppressed the expression of ABA biosynthesis–related and ABA-responsive genes, in which the NPR1 protein or signaling downstream of NPR1 appears to contribute. Therefore, our data have revealed that antagonistic crosstalk occurs at multiple steps between the SA-mediated signaling of SAR induction and the ABA-mediated signaling of environmental stress responses. PMID:18586869

  15. Systemic Induction of the Small Antibacterial Compound in the Leaf Exudate During Benzothiadiazole-elicited Systemic Acquired Resistance in Pepper.

    PubMed

    Lee, Boyoung; Park, Yong-Soon; Yi, Hwe-Su; Ryu, Choong-Min

    2013-09-01

    Plants protect themselves from diverse potential pathogens by induction of the immune systems such as systemic acquired resistance (SAR). Most bacterial plant pathogens thrive in the intercellular space (apoplast) of plant tissues and cause symptoms. The apoplastic leaf exudate (LE) is believed to contain nutrients to provide food resource for phytopathogenic bacteria to survive and to bring harmful phytocompounds to protect plants against bacterial pathogens. In this study, we employed the pepper-Xanthomonas axonopodis system to assess whether apoplastic fluid from LE in pepper affects the fitness of X. axonopodis during the induction of SAR. The LE was extracted from pepper leaves 7 days after soil drench-application of a chemical trigger, benzothiadiazole (BTH). Elicitation of plant immunity was confirmed by significant up-regulation of four genes, CaPR1, CaPR4, CaPR9, and CaCHI2, by BTH treatment. Bacterial fitness was evaluated by measuring growth rate during cultivation with LE from BTH- or water-treated leaves. LE from BTH-treatment significantly inhibited bacterial growth when compared to that from the water-treated control. The antibacterial activity of LE from BTH-treated samples was not affected by heating at 100°C for 30 min. Although the antibacterial molecules were not precisely identified, the data suggest that small (less than 5 kDa), heat-stable compound(s) that are present in BTH-induced LE directly attenuate bacterial growth during the elicitation of plant immunity. PMID:25288963

  16. A Case Series of Acquired Drug Resistance-Associated Mutations in Human Immunodeficiency Virus-Infected Children: An Emerging Public Health Concern in Rural Africa

    PubMed Central

    Gamell, Anna; Muri, Lukas; Ntamatungiro, Alex; Nyogea, Daniel; Luwanda, Lameck B.; Hatz, Christoph; Battegay, Manuel; Felger, Ingrid; Tanner, Marcel; Klimkait, Thomas; Letang, Emilio

    2016-01-01

    The acquisition of drug-resistance mutations among African children living with in human immunodeficiency virus on antiretroviral treatment has been scarcely reported. This threatens the overall success of antiretroviral programs and the clinical outcomes of children in care. We present a well characterized series of children from rural Tanzania with acquired drug-resistance mutations to contribute to the better understanding of this emerging public health concern. PMID:26807427

  17. Acquired resistance to HSP90 inhibitor 17-AAG and increased metastatic potential are associated with MUC1 expression in colon carcinoma cells.

    PubMed

    Liu, Xin; Ban, Li-Li; Luo, Gang; Li, Zhi-Yao; Li, Yun-Feng; Zhou, Yong-Chun; Wang, Xi-Cai; Jin, Cong-Guo; Ye, Jia-Gui; Ma, Ding-Ding; Xie, Qing; Huang, You-Guang

    2016-06-01

    Heat shock protein 90 (HSP90) is a molecular chaperone required for the stability and function of many proteins. The chaperoning of oncoproteins by HSP90 enhances the survival, growth, and invasive potential of cancer cells. HSP90 inhibitors are promising new anticancer agents, in which the benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin (17-AAG) is currently in clinical evaluation. However, the implications of acquired resistance to this class of drug remain largely unexplored. In the present study, we have generated isogenic human colon cancer cell lines that are resistant to 17-AAG by continued culturing in the compound. Cross-resistance was found with another HSP90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin. The resistant cells showed obvious morphology changes with a metastatic phenotype and significant increases in migration and adhesion to collagens. Western blotting analysis of epithelial-mesenchymal transition molecular markers found that expression of E-cadherin downregulated, whereas expression of N-cadherin and β-catenin upregulated in the resistant cells. Mucin 1 (MUC1) has been reported to mediate metastasis as well as chemical resistance in many cancers. Here, we found that MUC1 expression was significantly elevated in the acquired drug resistance cells. 17-AAG treatment could decrease MUC1 more in parental cells than in acquired 17-AAG-resistant cells. Further study found that knockdown of MUC1 expression by small interfering RNA could obviously re-sensitize the resistant cells to 17-AAG treatment, and decrease the cell migration and adhesion. These were coupled with a downregulation in N-cadherin and β-catenin. The results indicate that HSP90 inhibitor therapies in colon carcinomas could generate resistance and increase metastatic potential that might mediated by upregulation of MUC1 expression. Findings from this study further our understanding of the potential clinical effects of HSP90-directed therapies in

  18. IKK phosphorylation of NF-κB at serine 536 contributes to acquired cisplatin resistance in head and neck squamous cell cancer

    PubMed Central

    Li, Zhipeng; Yang, Zejia; Lapidus, Rena G; Liu, Xuefeng; Cullen, Kevin J; Dan, Han C

    2015-01-01

    Current treatment methods for advanced head and neck squamous cell carcinoma (HNSCC) include surgery, radiation therapy and chemotherapy. For recurrent and metastatic HNSCC, cisplatin is the most common treatment option, but most of patients will eventually develop cisplatin resistance. Therefore, it is imperative to define the mechanisms involved in cisplatin resistance and find novel therapeutic strategies to overcome this deadly disease. In order to determine the role of nuclear factor-kappa B (NF-κB) in contributing to acquired cisplatin resistance in HNSCC, the expression and activity of NF-κB and its upstream kinases, IKKα and IKKβ, were evaluated and compared in three pairs of cisplatin sensitive and resistant HNSCC cell lines, including a pair of patient derived HNSCC cell line. The experiments revealed that NF-κB p65 activity was elevated in cisplatin resistant HNSCC cells compared to that in their parent cells. Importantly, the phosphorylation of NF-κB p65 at serine 536 and the phosphorylation of IKKα and IKKβ at their activation loops were dramatically elevated in the resistant cell lines. Furthermore, knockdown of NF-κB or overexpression of p65-S536 alanine (p65-S536A) mutant sensitizes resistant cells to cisplatin. Additionally, the novel IKKβ inhibitor CmpdA has been shown to consistently block the phosphorylation of NF-κB at serine 536 while also dramatically improving the efficacy of cisplatin in inhibition of cell proliferation and induction of apoptosis in the cisplatin resistant cancer cells. These results indicated that IKK/NF-κB plays a pivotal role in controlling acquired cisplatin resistance and that targeting the IKK/NF-κB signaling pathway may provide a possible therapeutic method to overcome the acquired resistance to cisplatin in HNSCC. PMID:26693062

  19. 14-3-3σ regulation of and interaction with YAP1 in acquired gemcitabine resistance via promoting ribonucleotide reductase expression

    PubMed Central

    Qin, Li; Dong, Zizheng; Zhang, Jian-Ting

    2016-01-01

    Gemcitabine is an important anticancer therapeutics approved for treatment of several human cancers including locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). Its clinical effectiveness, however, is hindered by existence of intrinsic and development of acquired resistances. Previously, it was found that 14-3-3σ expression associates with poor clinical outcome of PDAC patients. It was also found that 14-3-3σ expression is up-regulated in gemcitabine resistant PDAC cells and contributes to the acquired gemcitabine resistance. In this study, we investigated the molecular mechanism of 14-3-3σ function in gemcitabine resistance and found that 14-3-3σ up-regulates YAP1 expression and then binds to YAP1 to inhibit gemcitabine-induced caspase 8 activation and apoptosis. 14-3-3σ association with YAP1 up-regulates the expression of ribonucleotide reductase M1 and M2, which may mediate 14-3-3σ/YAP1 function in the acquired gemcitabine resistance. These findings suggest a possible role of YAP1 signaling in gemcitabine resistance. PMID:26894857

  20. miR-200c/Bmi1 axis and epithelial–mesenchymal transition contribute to acquired resistance to BRAF inhibitor treatment

    PubMed Central

    Liu, Shujing; Tetzlaff, Michael T.; Wang, Tao; Yang, Ruifeng; Xie, Lin; Zhang, Gao; Krepler, Clemens; Xiao, Min; Beqiri, Marilda; Xu, Wei; Karakousis, Giorgos; Schuchter, Lynn; Amaravadi, Ravi K.; Xu, Weiting; Wei, Zhi; Herlyn, Meenhard; Yao, Yuan; Zhang, Litao; Wang, Yingjie; Zhang, Lin; Xu, Xiaowei

    2015-01-01

    Summary Resistance to BRAF inhibitors (BRAFi) is one of the major challenges for targeted therapies for BRAF-mutant melanomas. However, little is known about the role of microRNAs in conferring BRAFi resistance. Herein, we demonstrate that miR-200c expression is significantly reduced whereas miR-200c target genes including Bmi1, Zeb2, Tubb3, ABCG5, and MDR1 are significantly increased in melanomas that acquired BRAFi resistance compared to pretreatment tumor biopsies. Similar changes were observed in BRAFi-resistant melanoma cell lines. Overexpression of miR-200c or knock-down of Bmi1 in resistant melanoma cells restores their sensitivities to BRAFi, leading to deactivation of the PI3K/AKT and MAPK signaling cascades, and acquisition of epithelial– mesenchymal transition-like phenotypes, including upregulation of E-cadherin, downregulation of N-cadherin, and ABCG5 and MDR1 expression. Conversely, knock-down of miR-200c or overexpression of Bmi1 in BRAFi-sensitive melanoma cells activates the PI3K/AKT and MAPK pathways, upregulates N-cadherin, ABCG5, and MDR1 expression, and downregulates E-cadherin expression, leading to BRAFi resistance. Together, our data identify miR-200c as a critical signaling node in BRAFi-resistant melanomas impacting the MAPK and PI3K/AKT pathways, suggesting miR-200c as a potential therapeutic target for overcoming acquired BRAFi resistance. PMID:25903073

  1. HLA class I downregulation is associated with enhanced NK-cell killing of melanoma cells with acquired drug resistance to BRAF inhibitors.

    PubMed

    Sottile, Rosa; Pangigadde, Pradeepa N; Tan, Thomas; Anichini, Andrea; Sabbatino, Francesco; Trecroci, Francesca; Favoino, Elvira; Orgiano, Laura; Roberts, James; Ferrone, Soldano; Kärre, Klas; Colucci, Francesco; Carbone, Ennio

    2016-02-01

    The frequent development of drug resistance to targeted therapies in cancer patients has stimulated interest in strategies counteracting resistance. Combining immunotherapies with targeted therapies is one such strategy. In this context, we asked whether human NK cells can target melanoma cells that have acquired resistance to selective inhibitors targeting activating mutants of the B-Raf kinase (BRAF inhibitors, BRAFi). We generated drug-resistant cell variants in vitro from human BRAF-mutant melanoma cell lines MEL-HO, COLO-38, SK-MEL-37, 1520 and from primary melanoma cells freshly isolated from two patients. All drug-resistant cell variants remained susceptible to lysis by IL-2-activated NK cells; and two BRAFi-resistant lines (BRAFi-R) became significantly more susceptible to NK-cell lysis than their parental lines. This was associated with significant HLA class I antigen downregulation and PD-L1 upregulation on the drug-resistant lines. Although blocking HLA class I enhanced the extent of lysis of both BRAFi-R and parental cells to NK-cell-mediated lysis, antibody-mediated inhibition of PD1-PD-L1 interactions had no detectable effect. HLA class I antigen expression on BRAFi-R melanoma variants thus appears to play a major role in their susceptibility to NK-cell cytotoxicity. These findings suggest that NK-cell-based immunotherapy may be a viable approach to treat melanoma patients with acquired resistance to BRAF inhibitors. PMID:26564811

  2. HLA class I downregulation is associated with enhanced NK‐cell killing of melanoma cells with acquired drug resistance to BRAF inhibitors

    PubMed Central

    Sottile, Rosa; Pangigadde, Pradeepa N.; Tan, Thomas; Anichini, Andrea; Sabbatino, Francesco; Trecroci, Francesca; Favoino, Elvira; Orgiano, Laura; Roberts, James; Ferrone, Soldano; Kärre, Klas; Colucci, Francesco

    2015-01-01

    The frequent development of drug resistance to targeted therapies in cancer patients has stimulated interest in strategies counteracting resistance. Combining immunotherapies with targeted therapies is one such strategy. In this context, we asked whether human NK cells can target melanoma cells that have acquired resistance to selective inhibitors targeting activating mutants of the B‐Raf kinase (BRAF inhibitors, BRAFi). We generated drug‐resistant cell variants in vitro from human BRAF‐mutant melanoma cell lines MEL‐HO, COLO‐38, SK‐MEL‐37, 1520 and from primary melanoma cells freshly isolated from two patients. All drug‐resistant cell variants remained susceptible to lysis by IL‐2‐activated NK cells; and two BRAFi‐resistant lines (BRAFi‐R) became significantly more susceptible to NK‐cell lysis than their parental lines. This was associated with significant HLA class I antigen downregulation and PD‐L1 upregulation on the drug‐resistant lines. Although blocking HLA class I enhanced the extent of lysis of both BRAFi‐R and parental cells to NK‐cell‐mediated lysis, antibody‐mediated inhibition of PD1–PD‐L1 interactions had no detectable effect. HLA class I antigen expression on BRAFi‐R melanoma variants thus appears to play a major role in their susceptibility to NK‐cell cytotoxicity. These findings suggest that NK‐cell‐based immunotherapy may be a viable approach to treat melanoma patients with acquired resistance to BRAF inhibitors. PMID:26564811

  3. The vitamin D receptor and inducible nitric oxide synthase associated pathways in the development of acquired resistance to Cooperia oncophora infection in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cooperia oncophora is an economically important gastrointestinal nematode in ruminants. Acquired resistance to Cooperia oncophora infection in cattle develops rapidly resulting from prior infections. Naïve cattle, when given a primary infection of high-dose infective L3 larvae, develop a strong immu...

  4. Therapeutic drug monitoring of tamoxifen using LC-MS/MS.

    PubMed

    Tchu, Simone M; Lynch, Kara L; Wu, Alan H B

    2012-01-01

    Tamoxifen is a selective estrogen receptor modulator (SERM) that is used widely in the treatment of estrogen receptor positive breast cancer (ER+). Therapeutic monitoring of tamoxifen, and its metabolites N-desmethyltamoxifen (NDTam) and 4-hydroxy-N-desmethyltamoxifen (endoxifen), may be clinically useful for guiding treatment decisions. Two significant barriers to tamoxifen efficacy are: (1) variability in conversion of tamoxifen into the potent antiestrogenic metabolite, endoxifen, and (2) poor compliance and adherence to tamoxifen therapy. Therapeutic monitoring can be used to address both of these issues. Low levels of endoxifen indicate either poor compliance or poor metabolism of tamoxifen. Low tamoxifen levels would suggest poor compliance while a low ratio of endoxifen to NDTam would be indicative of poor metabolism. Solid phase extraction of patient serum followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) detection enables rapid, accurate, detection of tamoxifen, N-desmethyltamoxifen, and endoxifen. PMID:22767121

  5. MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780.

    PubMed

    Brünner, N; Frandsen, T L; Holst-Hansen, C; Bei, M; Thompson, E W; Wakeling, A E; Lippman, M E; Clarke, R

    1993-07-15

    The development of resistance to the antiestrogen tamoxifen occurs in a high percentage of initially responsive patients. We have developed a new model in which to investigate acquired resistance to triphenylethylenes. A stepwise in vitro selection of the hormone-independent human breast cancer variant MCF-7/LCC1 against 4-hydroxytamoxifen produced a stable resistant population designated MCF7/LCC2. MCF7/LCC2 cells retain levels of estrogen receptor expression comparable to the parental MCF7/LCC1 and MCF-7 cells. Progesterone receptor expression remains estrogen inducible in MCF7/LCC2 cells, although to levels significantly lower than observed in MCF-7 and MCF7/LCC1 cells. MCF7/LCC2 cells form tumors in ovariectomized nude mice without estrogen supplementation, and these tumors are tamoxifen resistant but can be estrogen stimulated. Significantly, MCF7/LCC2 cells have retained sensitivity to the steroidal antiestrogen ICI 182,780. These data suggest that some breast cancer patients who acquire resistance to tamoxifen may not develop cross-resistance to treatment with steroidal antiestrogens. PMID:8324732

  6. A Novel Plant Sesquiterpene Lactone Derivative, DETD-35, Suppresses BRAFV600E Mutant Melanoma Growth and Overcomes Acquired Vemurafenib Resistance in Mice.

    PubMed

    Feng, Jia-Hua; Nakagawa-Goto, Kyoko; Lee, Kuo-Hsiung; Shyur, Lie-Fen

    2016-06-01

    Acquired resistance to vemurafenib develops through reactivation of RAF/MEK/ERK signaling or bypass mechanisms. Recent combination therapies such as a MEK inhibitor combined with vemurafenib show improvement in major clinical end points, but the percentage of patients with adverse toxic events is higher than with vemurafenib monotherapy and most patients ultimately relapse. Therefore, there is an urgent need to develop new antimelanoma drugs and/or adjuvant agents for vemurafenib therapy. In this study, we created a novel semiorganically modified derivative, DETD-35, from deoxyelephantopin (DET), a plant sesquiterpene lactone demonstrated as an anti-inflammatory and anti-mammary tumor agent. Our results show that DETD-35 inhibited proliferation of a panel of melanoma cell lines, including acquired vemurafenib resistance A375 cells (A375-R) established in this study, with superior activities to DET and no cytotoxicity to normal melanocytes. DETD-35 suppressed tumor growth and reduced tumor mass as effectively as vemurafenib in A375 xenograft study. Furthermore, DETD-35 also reduced tumor growth in both acquired (A375-R) and intrinsic (A2058) vemurafenib resistance xenograft models, where vemurafenib showed no antitumor activity. Notably, the combination of DETD-35 and vemurafenib exhibited the most significant effects in both in vitro and in vivo xenograft studies due to synergism of the compound and the drug. Mechanistic studies suggested that DETD-35 overcame acquired vemurafenib resistance at least in part through deregulating MEK-ERK, Akt, and STAT3 signaling pathways and promoting apoptosis of cancer cells. Overall, our results suggest that DETD-35 may be useful as a therapeutic or adjuvant agent against BRAF(V600E) mutant and acquired vemurafenib resistance melanoma. Mol Cancer Ther; 15(6); 1163-76. ©2016 AACR. PMID:27048951

  7. Clinical approaches to treat patients with non-small cell lung cancer and epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance.

    PubMed

    Tartarone, Alfredo; Lerose, Rosa

    2015-10-01

    The discovery of epidermal growth factor receptor activating mutations (EGFR Mut+) has determined a paradigm shift in the treatment of non-small cell lung cancer (NSCLC). In several phase III studies, patients with NSCLC EGFR Mut+ achieved a significantly better progression-free survival when treated with a first- (gefitinib, erlotinib) or second-generation (afatinib) EGFR tyrosine kinase inhibitor (TKI) compared with standard chemotherapy. However, despite these impressive results, most patients with NSCLC EGFR Mut+ develop acquired resistance to TKIs. This review will discuss both the mechanisms of resistance to TKIs and the therapeutic strategies to overcome resistance, including emerging data on third-generation TKIs. PMID:26016841

  8. The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections.

    PubMed

    Warnke, Patrick H; Becker, Stephan T; Podschun, Rainer; Sivananthan, Sureshan; Springer, Ingo N; Russo, Paul A J; Wiltfang, Joerg; Fickenscher, Helmut; Sherry, Eugene

    2009-10-01

    Hospital-acquired infections and antibiotic-resistant bacteria continue to be major health concerns worldwide. Particularly problematic is methicillin-resistant Staphylococcus aureus (MRSA) and its ability to cause severe soft tissue, bone or implant infections. First used by the Australian Aborigines, Tea tree oil and Eucalyptus oil (and several other essential oils) have each demonstrated promising efficacy against several bacteria and have been used clinically against multi-resistant strains. Several common and hospital-acquired bacterial and yeast isolates (6 Staphylococcus strains including MRSA, 4 Streptococcus strains and 3 Candida strains including Candida krusei) were tested for their susceptibility for Eucalyptus, Tea tree, Thyme white, Lavender, Lemon, Lemongrass, Cinnamon, Grapefruit, Clove Bud, Sandalwood, Peppermint, Kunzea and Sage oil with the agar diffusion test. Olive oil, Paraffin oil, Ethanol (70%), Povidone iodine, Chlorhexidine and hydrogen peroxide (H(2)O(2)) served as controls. Large prevailing effective zones of inhibition were observed for Thyme white, Lemon, Lemongrass and Cinnamon oil. The other oils also showed considerable efficacy. Remarkably, almost all tested oils demonstrated efficacy against hospital-acquired isolates and reference strains, whereas Olive and Paraffin oil from the control group produced no inhibition. As proven in vitro, essential oils represent a cheap and effective antiseptic topical treatment option even for antibiotic-resistant strains as MRSA and antimycotic-resistant Candida species. PMID:19473851

  9. Small cell lung cancer transformation and T790M mutation: complimentary roles in acquired resistance to kinase inhibitors in lung cancer

    PubMed Central

    Suda, Kenichi; Murakami, Isao; Sakai, Kazuko; Mizuuchi, Hiroshi; Shimizu, Shigeki; Sato, Katsuaki; Tomizawa, Kenji; Tomida, Shuta; Yatabe, Yasushi; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-01-01

    Lung cancers often harbour a mutation in the epidermal growth factor receptor (EGFR) gene. Because proliferation and survival of lung cancers with EGFR mutation solely depend on aberrant signalling from the mutated EGFR, these tumours often show dramatic responses to EGFR tyrosine kinase inhibitors (TKIs). However, acquiring resistance to these drugs is almost inevitable, thus a better understanding of the underlying resistance mechanisms is critical. Small cell lung cancer (SCLC) transformation is a relatively rare acquired resistance mechanism that has lately attracted considerable attention. In the present study, through an in-depth analysis of multiple EGFR-TKI refractory lesions obtained from an autopsy case, we observed a complementary relationship between SCLC transformation and EGFR T790M secondary mutation (resistance mutation). We also identified analogies and differences in genetic aberration between a TKI-refractory lesion with SCLC transformation and one with EGFR T790M mutation. In particular, target sequencing revealed a TP53 P151S mutation in all pre- and post-treatment lesions. PTEN M264I mutation was identified only in a TKI-refractory lesion with SCLC transformation, while PIK3CA and RB1 mutations were identified only in pre-treatment primary tumour samples. These results provide the groundwork for understanding acquired resistance to EGFR-TKIs via SCLC transformation. PMID:26400668

  10. Small cell lung cancer transformation and T790M mutation: complimentary roles in acquired resistance to kinase inhibitors in lung cancer.

    PubMed

    Suda, Kenichi; Murakami, Isao; Sakai, Kazuko; Mizuuchi, Hiroshi; Shimizu, Shigeki; Sato, Katsuaki; Tomizawa, Kenji; Tomida, Shuta; Yatabe, Yasushi; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-01-01

    Lung cancers often harbour a mutation in the epidermal growth factor receptor (EGFR) gene. Because proliferation and survival of lung cancers with EGFR mutation solely depend on aberrant signalling from the mutated EGFR, these tumours often show dramatic responses to EGFR tyrosine kinase inhibitors (TKIs). However, acquiring resistance to these drugs is almost inevitable, thus a better understanding of the underlying resistance mechanisms is critical. Small cell lung cancer (SCLC) transformation is a relatively rare acquired resistance mechanism that has lately attracted considerable attention. In the present study, through an in-depth analysis of multiple EGFR-TKI refractory lesions obtained from an autopsy case, we observed a complementary relationship between SCLC transformation and EGFR T790M secondary mutation (resistance mutation). We also identified analogies and differences in genetic aberration between a TKI-refractory lesion with SCLC transformation and one with EGFR T790M mutation. In particular, target sequencing revealed a TP53 P151S mutation in all pre- and post-treatment lesions. PTEN M264I mutation was identified only in a TKI-refractory lesion with SCLC transformation, while PIK3CA and RB1 mutations were identified only in pre-treatment primary tumour samples. These results provide the groundwork for understanding acquired resistance to EGFR-TKIs via SCLC transformation. PMID:26400668

  11. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense.

    PubMed

    Wu, Yuanli; Yi, Ganjun; Peng, Xinxiang; Huang, Bingzhi; Liu, Ee; Zhang, Jianjun

    2013-07-15

    Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00-2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 μg g⁻¹ FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR. PMID:23702248

  12. Arabidopsis TTR1 causes LRR-dependent lethal systemic necrosis, rather than systemic acquired resistance, to Tobacco ringspot virus.

    PubMed

    Nam, Moon; Koh, Serry; Kim, Sung Uk; Domier, Leslie L; Jeon, Jae Heung; Kim, Hong Gi; Lee, Su-Heon; Bent, Andrew F; Moon, Jae Sun

    2011-11-01

    Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristic of incompatible reactions. Neither viral replication nor the systemic movement of TRSV was restricted in tolerant or sensitive Arabidopsis ecotypes; therefore, the LSN phenotype shown in the sensitive ecotypes might not be due to viral accumulation. In the present study, we identified the Est TTR1 gene (tolerance to Tobacco ringspot virus 1) encoding a TIR-NBS-LRR protein that controls the ecotype-dependent tolerant/sensitive phenotypes by a map-based cloning method. The tolerant Col-0 ecotype Arabidopsis transformed with the sensitive Est TTR1 allele developed an LSN phenotype upon TRSV infection, suggesting that the Est TTR1 allele is dominant over the tolerant ttr1 allele of Col-0. Multiple sequence alignments of 10 tolerant ecotypes from those of eight sensitive ecotypes showed that 10 LRR amino acid polymorphisms were consistently distributed across the TTR1/ttr1 alleles. Site-directed mutagenesis of these amino acids in the LRR region revealed that two sites, L956S and K1124Q, completely abolished the LSN phenotype. VIGS study revealed that TTR1 is dependent on SGT1, rather than EDS1. The LSN phenotype by TTR1 was shown to be transferred to Nicotiana benthamiana, demonstrating functional conservation of TTR1 across plant families, which are involved in SGT-dependent defense responses, rather than EDS1-dependent signaling pathways. PMID:22057987

  13. Arabidopsis TTR1 Causes LRR-Dependent Lethal Systemic Necrosis, rather than Systemic Acquired Resistance, to Tobacco Ringspot Virus

    PubMed Central

    Nam, Moon; Koh, Serry; Kim, Sung Uk; Domier, Leslie L.; Jeon, Jae Heung; Kim, Hong Gi; Lee, Su-Heon; Bent, Andrew F.; Moon, Jae Sun

    2011-01-01

    Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristic of incompatible reactions. Neither viral replication nor the systemic movement of TRSV was restricted in tolerant or sensitive Arabidopsis ecotypes; therefore, the LSN phenotype shown in the sensitive ecotypes might not be due to viral accumulation. In the present study, we identified the Est TTR1 gene (tolerance to Tobacco ringspot virus 1) encoding a TIR-NBS-LRR protein that controls the ecotype-dependent tolerant/sensitive phenotypes by a map-based cloning method. The tolerant Col-0 ecotype Arabidopsis transformed with the sensitive Est TTR1 allele developed an LSN phenotype upon TRSV infection, suggesting that the Est TTR1 allele is dominant over the tolerant ttr1 allele of Col-0. Multiple sequence alignments of 10 tolerant ecotypes from those of eight sensitive ecotypes showed that 10 LRR amino acid polymorphisms were consistently distributed across the TTR1/ttr1 alleles. Site-directed mutagenesis of these amino acids in the LRR region revealed that two sites, L956S and K1124Q, completely abolished the LSN phenotype. VIGS study revealed that TTR1 is dependent on SGT1, rather than EDS1. The LSN phenotype by TTR1 was shown to be transferred to Nicotiana benthamiana, demonstrating functional conservation of TTR1 across plant families, which are involved in SGT-dependent defense responses, rather than EDS1-dependent signaling pathways. PMID:22057987

  14. Increased CD271 expression by the NF-kB pathway promotes melanoma cell survival and drives acquired resistance to BRAF inhibitor vemurafenib

    PubMed Central

    Lehraiki, Abdelali; Cerezo, Michael; Rouaud, Florian; Abbe, Patricia; Allegra, Marilyne; Kluza, Jerome; Marchetti, Philippe; Imbert, Veronique; Cheli, Yann; Bertolotto, Corine; Ballotti, Robert; Rocchi, Stéphane

    2015-01-01

    Specific BRAFV600E inhibitors (BRAFi) are highly effective in the treatment of melanoma. However, acquired drug resistances invariably develop after the initial response. Therefore, the identification of new mechanisms of acquired resistance gives important clues towards the development of therapies that could elicit long lasting responses. Here we report that CD271 confers resistance to BRAFi in melanoma cells. The expression of CD271 is increased by BRAFi through a stimulation of tumor necrosis factor-alpha (TNFα) secretion that leads to NF-κB signaling pathway activation. CD271 is upregulated in a subset of BRAFi-resistant melanoma cells. The inhibition of TNFα/NF-κB pathway and CD271 silencing restore the BRAFi sensitivity of resistant melanoma cells. Finally, increase of CD271 expression is validated in BRAFi-resistant xenografts tumors and also in tumors from the patients who relapsed under BRAFi. In summary, these results reveal a novel TNFα/NF-κB/CD271 axis whose activation contributes to the acquisition of resistance to BRAFi and therefore may represent a novel therapeutic target to improve the efficacy of therapy in melanoma.

  15. Acquired resistance to EGFR tyrosine kinase inhibitors alters the metabolism of human head and neck squamous carcinoma cells and xenograft tumours

    PubMed Central

    Beloueche-Babari, M; Box, C; Arunan, V; Parkes, H G; Valenti, M; De Haven Brandon, A; Jackson, L E; Eccles, S A; Leach, M O

    2015-01-01

    Background: Acquired resistance to molecularly targeted therapeutics is a key challenge in personalised cancer medicine, highlighting the need for identifying the underlying mechanisms and early biomarkers of relapse, in order to guide subsequent patient management. Methods: Here we use human head and neck squamous cell carcinoma (HNSCC) models and nuclear magnetic resonance (NMR) spectroscopy to assess the metabolic changes that follow acquired resistance to EGFR tyrosine kinase inhibitors (TKIs), and which could serve as potential metabolic biomarkers of drug resistance. Results: Comparison of NMR metabolite profiles obtained from control (CALS) and EGFR TKI-resistant (CALR) cells grown as 2D monolayers, 3D spheroids or xenograft tumours in athymic mice revealed a number of differences between the sensitive and drug-resistant models. In particular, we observed elevated levels of glycerophosphocholine (GPC) in CALR relative to CALS monolayers, spheroids and tumours, independent of the growth rate or environment. In addition, there was an increase in alanine, aspartate and creatine+phosphocreatine in resistant spheroids and xenografts, and increased levels of lactate, branched-chain amino acids and a fall in phosphoethanolamine only in xenografts. The xenograft lactate build-up was associated with an increased expression of the glucose transporter GLUT-1, whereas the rise in GPC was attributed to inhibition of GPC phosphodiesterase. Reduced glycerophosphocholine (GPC) and phosphocholine were observed in a second HNSCC model probably indicative of a different drug resistance mechanism. Conclusions: Our studies reveal metabolic signatures associated not only with acquired EGFR TKI resistance but also growth pattern, microenvironment and contributing mechanisms in HNSCC models. These findings warrant further investigation as metabolic biomarkers of disease relapse in the clinic. PMID:25742484

  16. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    PubMed

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  17. Acquired resistance to mutant-selective EGFR inhibitor AZD9291 is associated with increased dependence on RAS signaling in preclinical models

    PubMed Central

    Eberlein, Catherine A.; Stetson, Daniel; Markovets, Aleksandra A.; Al-Kadhimi, Katherine J.; Lai, Zhongwu; Fisher, Paul R.; Meador, Catherine B.; Spitzler, Paula; Ichihara, Eiki; Ross, Sarah J.; Ahdesmaki, Miika J.; Ahmed, Ambar; Ratcliffe, Laura E.; Christey O’Brien, Elizabeth L.; Barnes, Claire H.; Brown, Henry; Smith, Paul D.; Dry, Jonathan R.; Beran, Garry; Thress, Kenneth S.; Dougherty, Brian; Pao, William; Cross, Darren A. E.

    2015-01-01

    Resistance to targeted EGFR inhibitors is likely to develop in EGFR mutant lung cancers. Early identification of innate or acquired resistance mechanisms to these agents is essential to direct development of future therapies. We describe the detection of heterogeneous mechanisms of resistance within populations of EGFR mutant cells (PC9 and/or NCI-H1975) with acquired resistance to current and newly developed EGFR TKIs including AZD9291. We report the detection of NRAS mutations, including a novel E63K mutation, and a gain of copy number of WT NRAS or WT KRAS in cell populations resistant to gefitinib, afatinib, WZ4002 or AZD9291. Compared to parental cells, a number of resistant cell populations were more sensitive to inhibition by the MEK inhibitor selumetinib (AZD6244; ARRY-142886) when treated in combination with the originating EGFR inhibitor. In vitro, a combination of AZD9291 with selumetinib prevented emergence of resistance in PC9 cells and delayed resistance in NCI-H1975 cells. In vivo, concomitant dosing of AZD9291 with selumetinib caused regression of AZD9291-resistant tumours in an EGFRm/T790M transgenic model. Our data support the use of a combination of AZD9291 with a MEK inhibitor to delay or prevent resistance to AZD9291 in EGFRm and/or EGFRm/T790M tumours. Further, these findings suggest that NRAS modifications in tumour samples from patients who have progressed on current or EGFR inhibitors in development may support subsequent treatment with a combination of EGFR and MEK inhibition. PMID:25870145

  18. Acquired Resistance to the Mutant-Selective EGFR Inhibitor AZD9291 Is Associated with Increased Dependence on RAS Signaling in Preclinical Models.

    PubMed

    Eberlein, Catherine A; Stetson, Daniel; Markovets, Aleksandra A; Al-Kadhimi, Katherine J; Lai, Zhongwu; Fisher, Paul R; Meador, Catherine B; Spitzler, Paula; Ichihara, Eiki; Ross, Sarah J; Ahdesmaki, Miika J; Ahmed, Ambar; Ratcliffe, Laura E; O'Brien, Elizabeth L Christey; Barnes, Claire H; Brown, Henry; Smith, Paul D; Dry, Jonathan R; Beran, Garry; Thress, Kenneth S; Dougherty, Brian; Pao, William; Cross, Darren A E

    2015-06-15

    Resistance to targeted EGFR inhibitors is likely to develop in EGFR-mutant lung cancers. Early identification of innate or acquired resistance mechanisms to these agents is essential to direct development of future therapies. We describe the detection of heterogeneous mechanisms of resistance within populations of EGFR-mutant cells (PC9 and/or NCI-H1975) with acquired resistance to current and newly developed EGFR tyrosine kinase inhibitors, including AZD9291. We report the detection of NRAS mutations, including a novel E63K mutation, and a gain of copy number of WT NRAS or WT KRAS in cell populations resistant to gefitinib, afatinib, WZ4002, or AZD9291. Compared with parental cells, a number of resistant cell populations were more sensitive to inhibition by the MEK inhibitor selumetinib (AZD6244; ARRY-142886) when treated in combination with the originating EGFR inhibitor. In vitro, a combination of AZD9291 with selumetinib prevented emergence of resistance in PC9 cells and delayed resistance in NCI-H1975 cells. In vivo, concomitant dosing of AZD9291 with selumetinib caused regression of AZD9291-resistant tumors in an EGFRm/T790M transgenic model. Our data support the use of a combination of AZD9291 with a MEK inhibitor to delay or prevent resistance to AZD9291 in EGFRm and/or EGFRm/T790M tumors. Furthermore, these findings suggest that NRAS modifications in tumor samples from patients who have progressed on current or EGFR inhibitors in development may support subsequent treatment with a combination of EGFR and MEK inhibition. PMID:25870145

  19. Acquired Resistance in Barley (The Resistance Mechanism Induced by 2,6-Dichloroisonicotinic Acid Is a Phenocopy of a Genetically Based Mechanism Governing Race-Specific Powdery Mildew Resistance).

    PubMed Central

    Kogel, K. H.; Beckhove, U.; Dreschers, J.; Munch, S.; Romme, Y.

    1994-01-01

    Treatment of susceptible barley (Hordeum vulgare) seedlings with 2,6-dichloroisonicotinic acid (DCINA) induces disease resistance against the powdery mildew fungus (Erysiphe graminis f. sp. hordei). A cytological analysis of the interaction reveals the hypersensitive cell collapse in attacked, short epidermal cells, along with the accumulation of fluorescent material in papillae, that appear at the time of fungal arrest. The cell-type-specific hypersensitive reaction occurs prior to formation of haustoria, reminiscent of the mechanism identified in genetically resistant barley plants containing the functionally active Mlg gene (R. Gorg, K. Hollricher, P. Schulze-Lefert [1993] Plant J 3: 857-866). This observation indicates that the mechanism of DCINA-induced resistance is a phenocopy of the mechanism governed by the Mlg locus. The onset of acquired resistance correlates with high-level transcript accumulation of barley defense-related genes encoding pathogenesis-related protein-1, peroxidase, and chitinase but not [beta]-1,3-glucanase. Subcellular localization of peroxidase activity shows an increase in enzyme activity in the epidermal cell layer and in the intercellular fluids of barley leaves. Four out of more than 10 identified extracellular isozymes are induced by DCINA. The epidermal cell layer contains a major constitutively formed isozyme, together with two isozymes specifically induced by DCINA. The data support the hypothesis that host cell death and high-level accumulation of defense-related gene transcripts are not only commonly controlled in certain types of race-specific resistance (A. Freialdenhoven, B. Scherag, K. Hollricher, D.B. Collinge, H. Thordal-Christensen, P. Schulze-Lefert [1994] Plant Cell 6: 983-994) but also in acquired resistance, which confers protection to a broad spectrum of different pathogens. PMID:12232407

  20. [Tamoxifen and cervico-vaginal cytology].

    PubMed

    Ayoubi, J M; Monrozies, X; Ayoubi, F; Charasson, T; Reme, J M

    1994-04-01

    The impact of tamoxifen on the genital tract was assessed by cervico-vaginal cytology. Fifty two post-menopausal patients treated with tamoxifen for breast cancer were regularly monitored, with a pre-treatment reference smear showing a profoundly menopausal status, followed by an anual smear. Smears returned to a functional status in 44% of patients after 2 to 5 years treatment. The agonist effect of tamoxifen appears to be beyond any doubt, and responsible for certain adverse reactions. This should not bring into question the usefulness of the drug, but indicates the need for regular monitoring and, in the presence of a functional smear, further investigation by vaginal ultrasonography is essential in order to evaluate the status of the endometrium. PMID:8036383

  1. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lijue; She, Xiaodong; Wang, Tao; He, Li; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-08-01

    Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The

  2. Mortality among tuberculosis patients with acquired resistance to second-line anti-tuberculosis drugs — United States, 1993–2008

    PubMed Central

    Ershova, Julia V.; Kurbatova, Ekaterina V.; Moonan, Patrick K.; Cegielski, J. Peter

    2016-01-01

    Background Resistance to second-line anti-tuberculosis drugs (SLD) severely compromises treatment options of drug-resistant tuberculosis (TB). We assessed the association between acquisition of resistance (AR) to second-line injectable drugs (SLI) or fluoroquinolones (FQ) and mortality among TB cases confirmed by positive culture results with available initial and final drug susceptibility test (DST) results. Methods We analyzed data from U.S. National TB Surveillance System, 1993–2008. Acquired resistance was defined as drug susceptibility at initial DST but resistance to the same drug at final DST. We compared survival with Kaplan-Meier curves and analyzed the association between AR and mortality using a univariate extended Cox proportional hazards model adjusted for age. Results Of 2,329 cases with both initial and final DST to SLI, 49 (2.1%) acquired resistance; 13/49 (26.5%) had treatment terminated by death versus 222 (10.0%) of those without AR to SLI (P<0.001). Of 1,187 cases with both initial and final DST to FQ, 32 (2.8%) acquired resistance; 12/32 (37.5%) had treatment terminated by death versus 121 (10.9%) of those without AR to FQ (P=0.001). Controlling for age, mortality was significantly greater among cases with AR to SLD than among cases without AR (adjusted hazard ratio (aHR)[SLI], 2.8; 95% confidence interval (CI),1.4–5.4; aHR[FQ], 1.9; 95% CI,1.0–3.5). MDR TB at treatment initiation, positive HIV status, and extrapulmonary disease were also significantly associated with mortality. Conclusion Mortality was significantly greater among TB cases with AR to SLD. Providers should consider AR to SLD early in treatment, monitor DST results, and avoid premature deaths. PMID:24846639

  3. JAK2-related pathway induces acquired erlotinib resistance in lung cancer cells harboring an epidermal growth factor receptor-activating mutation.

    PubMed

    Harada, Daijiro; Takigawa, Nagio; Ochi, Nobuaki; Ninomiya, Takashi; Yasugi, Masayuki; Kubo, Toshio; Takeda, Hiromasa; Ichihara, Eiki; Ohashi, Kadoaki; Takata, Saburo; Tanimoto, Mitsune; Kiura, Katsuyuki

    2012-10-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, such as gefitinib and erlotinib, are effective for non-small cell lung cancer with activating EGFR mutations. However, even in patients with an initial dramatic response to such a drug, acquired resistance develops after 6-12 months. A secondary mutation of T790M in EGFR and amplification of the MET gene account for this resistance; however, the mechanism(s) of approximately 30% of acquired resistance cases remain unknown. We established an erlotinib-resistant lung cancer cell line named PC-9/ER3 that harbors an EGFR mutation after continuously exposing PC-9 cells to erlotinib. PC-9/ER3 cells were 136-fold more resistant to erlotinib than the parental cells. Although the PC-9/ER3 cells did not carry the T790M mutation or MET amplification and had similar levels of phosphorylated (p) STAT3, pJAK2 increased in the resistant cells. It was found in the present study that 3-12 h of exposure to erlotinib in both cell lines did not affect pJAK2 expression, but did result in increased pSTAT3 expression. pAkt in PC-9/ER3 cells was less suppressed than in PC-9 cells, although pEGFR and pMAPK were markedly suppressed in both cell lines. The combined treatment of erlotinib plus a JAK2 inhibitor (JSI-124) suppressed pAkt in PC-9/ER3 cells. Similarly, the combination of erlotinib plus JSI-124 or siRNA against JAK2 restored sensitivity to erlotinib in PC-9/ER3 cells. The combination of erlotinib plus JSI-124 was also effective for reducing PC-9/ER3 tumors in a murine xenograft model. Our results suggest that the activation of JAK2 partially accounts for acquired erlotinib resistance. PMID:22712764

  4. Integrated genomic approaches identify upregulation of SCRN1 as a novel mechanism associated with acquired resistance to erlotinib in PC9 cells harboring oncogenic EGFR mutation

    PubMed Central

    Kim, Nayoung; Cho, Ahye; Watanabe, Hideo; Choi, Yoon-La; Aziz, Meraj; Kassner, Michelle; Joung, Je-Gun; Park, Angela KJ; Francis, Joshua M.; Bae, Joon Seol; Ahn, Soo-min; Kim, Kyoung-Mee; Park, Joon Oh; Park, Woong-Yang; Ahn, Myung-Ju; Park, Keunchil; Koo, Jaehyung; Yin, Hongwei Holly; Cho, Jeonghee

    2016-01-01

    Therapies targeting the tyrosine kinase activity of Epidermal Growth Factor Receptor (EGFR) have been proven to be effective in treating a subset of non-small cell lung cancer (NSCLC) patients harboring activating EGFR mutations. Inevitably these patients develop resistance to the EGFR-targeted tyrosine kinase inhibitors (TKIs). Here, we performed integrated genomic analyses using an in vitro system to uncover alternative genomic mechanisms responsible for acquired resistance to EGFR-TKIs. Specifically, we identified 80 genes whose expression is significantly increased in the erlotinib-resistant clones. RNAi-based systematic synthetic lethal screening of these candidate genes revealed that suppression of one upregulated transcript, SCRN1, a secernin family member, restores sensitivity to erlotinib by enhancing inhibition of PI3K/AKT signaling pathway. Furthermore, immunohistochemical analysis revealed increased levels of SCRN1 in 5 of 11 lung tumor specimens from EGFR-TKIs resistant patients. Taken together, we propose that upregulation of SCRN1 is an additional mechanism associated with acquired resistance to EGFR-TKIs and that its suppression serves as a novel therapeutic strategy to overcome drug resistance in these patients. PMID:26883194

  5. Curcumin mediates oxaliplatin-acquired resistance reversion in colorectal cancer cell lines through modulation of CXC-Chemokine/NF-κB signalling pathway

    PubMed Central

    Ruiz de Porras, Vicenç; Bystrup, Sara; Martínez-Cardús, Anna; Pluvinet, Raquel; Sumoy, Lauro; Howells, Lynne; James, Mark I.; Iwuji, Chinenye; Manzano, José Luis; Layos, Laura; Bugés, Cristina; Abad, Albert; Martínez-Balibrea, Eva

    2016-01-01

    Resistance to oxaliplatin (OXA) is a complex process affecting the outcomes of metastatic colorectal cancer (CRC) patients treated with this drug. De-regulation of the NF-κB signalling pathway has been proposed as an important mechanism involved in this phenomenon. Here, we show that NF-κB was hyperactivated in in vitro models of OXA-acquired resistance but was attenuated by the addition of Curcumin, a non-toxic NF-κB inhibitor. The concomitant combination of Curcumin + OXA was more effective and synergistic in cell lines with acquired resistance to OXA, leading to the reversion of their resistant phenotype, through the inhibition of the NF-κB signalling cascade. Transcriptomic profiling revealed the up-regulation of three NF-κB-regulated CXC-chemokines, CXCL8, CXCL1 and CXCL2, in the resistant cells that were more efficiently down-regulated after OXA + Curcumin treatment as compared to the sensitive cells. Moreover, CXCL8 and CXCL1 gene silencing made resistant cells more sensitive to OXA through the inhibition of the Akt/NF-κB pathway. High expression of CXCL1 in FFPE samples from explant cultures of CRC patients-derived liver metastases was associated with response to OXA + Curcumin. In conclusion, we suggest that combination of OXA + Curcumin could be an effective treatment, for which CXCL1 could be used as a predictive marker, in CRC patients. PMID:27091625

  6. The insulin-like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Sato, Katsuaki; Takemoto, Toshiki; Iwasaki, Takuya; Mitsudomi, Tetsuya

    2014-08-15

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy often provides a dramatic response in lung cancer patients with EGFR mutations. In addition, moderate clinical efficacy of the EGFR-TKI, erlotinib, has been shown in lung cancer patients with the wild-type EGFR. Numerous molecular mechanisms that cause acquired resistance to EGFR-TKIs have been identified in lung cancers with the EGFR mutations; however, few have been reported in lung cancers with the wild-type EGFR. We used H358 lung adenocarcinoma cells lacking EGFR mutations that showed modest sensitivity to erlotinib. The H358 cells acquired resistance to erlotinib via chronic exposure to the drug. The H358 erlotinib-resistant (ER) cells do not have a secondary EGFR mutation, neither MET gene amplification nor PTEN downregulation; these have been identified in lung cancers with the EGFR mutations. From comprehensive screening of receptor tyrosine kinase phosphorylation, we observed increased phosphorylation of insulin-like growth factor 1 receptor (IGF1R) in H358ER cells compared with parental H358 cells. H358ER cells responded to combined therapy with erlotinib and NVP-AEW541, an IGF1R-TKI. Our results indicate that IGF1R activation is a molecular mechanism that confers acquired resistance to erlotinib in lung cancers with the wild-type EGFR. PMID:24458568

  7. Cloning and expression analysis of cDNAs corresponding to genes activated in cucumber showing systemic acquired resistance after BTH treatment

    PubMed Central

    Bovie, Catherine; Ongena, Marc; Thonart, Philippe; Dommes, Jacques

    2004-01-01

    Background Infection of plants by necrotizing pathogens can lead to the rapid and localized induction of a complex set of defense responses resulting in a restriction of pathogen growth and spread. Subsequently, an increase of plant resistance against a broad spectrum of pathogens is observed systemically. This plant immunity is known as Systemic Acquired Resistance. To identify components of the transduction pathway, we cloned and analysed the expression pattern of several mRNAs accumulating in cucumber plants after induction of Systemic Acquired Resistance. Results We tested on cucumber different compounds known to induce systemic acquired resistance. Among these, BTH (benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester) proved to be very effective. mRNA RT-PCR differential display was used to identify mRNA sequences induced 24 hours after the application of 10 μM BTH to cucumber plants. A cDNA library constructed from cucumber plants sprayed with 10 μM BTH was screened to get corresponding full length cDNAs. Among the identified cDNAs were those coding for a putative ras-related GTP-binding protein, a putative beta-1,4-N-Acetylglucosaminyltranferase III and a putative pathogenesis related protein. The time course of accumulation of the three corresponding mRNAs was analysed by northern blotting in plants treated by BTH or in plants infected by Colletotrichum lagenarium. Conclusions The mRNA RT-PCR differential display technique allowed the identification of three genes possibly involved in Systemic Acquired Resistance in cucumber. Pathogenesis-related proteins are known to be involved in plant defence against pathogens. GTP-binding protein and N-acetylglucosaminyltranferase III have been reported to be components of signal transduction pathways in mammals and plants. PMID:15331019

  8. Vibrational study of tamoxifen citrate polymorphism

    NASA Astrophysics Data System (ADS)

    Gamberini, M. C.; Baraldi, C.; Tinti, A.; Palazzoli, F.; Ferioli, V.

    2007-09-01

    The trans isomer of ( Z)-2-[ p-(1,2-diphenyl-butenyl)phenoxy]- N, N-dimethyletylamine (tamoxifen) is well known for its endocrine activity as an antiestrogenic agent. Its citrate salt, a widely used pharmaceutical agent, appears in three main polymorphic forms, two of which are well known (I and II) and another form not yet well evidenced. A vibrational study has been conducted for identifying the two known polymorphic forms of tamoxifen citrate (I and II) and for characterising the other form (form III) examined in this study. Other techniques for the characterization of the different polymorphs, such as XRDP, have been used.

  9. Targeting AKT with the allosteric AKT inhibitor MK-2206 in non-small cell lung cancer cells with acquired resistance to cetuximab.

    PubMed

    Iida, Mari; Brand, Toni M; Campbell, David A; Starr, Megan M; Luthar, Neha; Traynor, Anne M; Wheeler, Deric L

    2013-06-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for use in oncology. Despite clinical success the majority of patients do not respond to cetuximab and those who initially respond frequently acquire resistance. To understand how tumor cells acquire resistance to cetuximab we developed a model of resistance using the non-small cell lung cancer line NCI-H226. We found that cetuximab-resistant (Ctx (R) ) clones manifested strong activation of EGFR, PI3K/AKT and MAPK. To investigate the role of AKT signaling in cetuximab resistance we analyzed the activation of the AKT pathway effector molecules using a human AKT phospho-antibody array. Strong activation was observed in Ctx (R) clones for several key AKT substrates including c-jun, GSK3β, eIF4E, rpS6, IKKα, IRS-1 and Raf1. Inhibition of AKT signaling by siAKT1/2 or by the allosteric AKT inhibitor MK-2206 resulted in robust inhibition of cell proliferation in all Ctx (R) clones. Moreover, the combinational treatment of cetuximab and MK-2206 resulted in further decreases in proliferation than either drug alone. This combinatorial treatment resulted in decreased activity of both AKT and MAPK thus highlighting the importance of simultaneous pathway inhibition to maximally affect the growth of Ctx (R) cells. Collectively, our findings demonstrate that AKT activation is an important pathway in acquired resistance to cetuximab and suggests that combinatorial therapy directed at both the AKT and EGFR/MAPK pathways may be beneficial in this setting. PMID:23760490

  10. Targeting AKT with the allosteric AKT inhibitor MK-2206 in non-small cell lung cancer cells with acquired resistance to cetuximab

    PubMed Central

    Iida, Mari; Brand, Toni M.; Campbell, David A.; Starr, Megan M.; Luthar, Neha; Traynor, Anne M.; Wheeler, Deric L.

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for use in oncology. Despite clinical success the majority of patients do not respond to cetuximab and those who initially respond frequently acquire resistance. To understand how tumor cells acquire resistance to cetuximab we developed a model of resistance using the non-small cell lung cancer line NCI-H226. We found that cetuximab-resistant (CtxR) clones manifested strong activation of EGFR, PI3K/AKT and MAPK. To investigate the role of AKT signaling in cetuximab resistance we analyzed the activation of the AKT pathway effector molecules using a human AKT phospho-antibody array. Strong activation was observed in CtxR clones for several key AKT substrates including c-jun, GSK3β, eIF4E, rpS6, IKKα, IRS-1 and Raf1. Inhibition of AKT signaling by siAKT1/2 or by the allosteric AKT inhibitor MK-2206 resulted in robust inhibition of cell proliferation in all CtxR clones. Moreover, the combinational treatment of cetuximab and MK-2206 resulted in further decreases in proliferation than either drug alone. This combinatorial treatment resulted in decreased activity of both AKT and MAPK thus highlighting the importance of simultaneous pathway inhibition to maximally affect the growth of CtxR cells. Collectively, our findings demonstrate that AKT activation is an important pathway in acquired resistance to cetuximab and suggests that combinatorial therapy directed at both the AKT and EGFR/MAPK pathways may be beneficial in this setting. PMID:23760490

  11. Combination treatment of tamoxifen with risperidone in breast cancer.

    PubMed

    Yeh, Wei-Lan; Lin, Hui-Yi; Wu, Hung-Ming; Chen, Dar-Ren

    2014-01-01

    Tamoxifen has long been used and still is the most commonly used endocrine therapy for treatment of both early and advanced estrogen receptor-positive breast cancer in pre- and post-menopause women. Tamoxifen exerts its cytotoxic effect primarily through cytostasis which is associated with the accumulation of cells in the G0/G1 phase of the cell cycle. Apoptotic activity can also be exerted by tamoxifen which involves cleavage of caspase 9, caspase 7, caspase 3, and poly-ADP-ribose polymerase (PARP). Down-regulation of anti-apoptotic proteins Bcl-2 and Bcl-xL and up-regulation of pro-apoptotic proteins Bax and Bak have also been observed. In addition, stress response protein of GRP 94 and GRP 78 have also been induced by tamoxifen in our study. However, side effects occur during tamoxifen treatment in breast cancer patients. Researching into combination regimen of tamoxifen and drug(s) that relieves tamoxifen-induced hot flushes is important, because drug interactions may decrease tamoxifen efficacy. Risperidone has been shown to be effective in reducing or eliminating hot flushes on women with hormonal variations. In this present study, we demonstrated that combination of tamoxifen with risperidone did not interfered tamoxifen-induced cytotoxic effects in both in vitro and in vivo models, while fluoxetine abrogated the effects of tamoxifen. This is the first paper suggesting the possibility of combination treatment of tamoxifen with risperidone in breast cancer patients, providing a conceivable resolution of tamoxifen-induced side effects without interfering the efficacy of tamoxifen against breast cancer. PMID:24886861

  12. Lack of dissemination of acquired resistance to β-lactams in small wild mammals around an isolated village in the Amazonian forest.

    PubMed

    Grall, Nathalie; Barraud, Olivier; Wieder, Ingrid; Hua, Anna; Perrier, Marion; Babosan, Ana; Gaschet, Margaux; Clermont, Olivier; Denamur, Erick; Catzeflis, François; Decré, Dominique; Ploy, Marie-Cécile; Andremont, Antoine

    2015-10-01

    In this study, we quantitatively evaluated the spread of resistance to β-lactams and of integrons in small rodents and marsupials living at various distances from a point of antibiotic's use. Rectal swabs from 114 animals were collected in Trois-Sauts, an isolated village in French Guiana, and along a 3 km transect heading through the non-anthropized primary forest. Prevalence of ticarcillin-resistant enterobacteria was 36% (41/114). Klebsiella spp., naturally resistant to ticarcillin, were found in 31.1% (23/73) of animals from the village and in an equal ratio of 31.7% (13/41) of animals trapped along the transect. By contrast Escherichia coli with acquired resistance to ticarcillin were found in 13.7% (10/73) of animals from the village and in only 2.4% (1/41) of those from the transect (600 m from the village). There was a huge diversity of E. coli and Klebsiella pneumoniae strains with very unique and infrequent sequence types. The overall prevalence of class 1 integrons carriage was 19.3% (22/114) homogenously distributed between animals from the village and the transect, which suggests a co-selection by a non-antibiotic environmental factor. Our results indicate that the anthropogenic acquired antibiotic resistance did not disseminate in the wild far from the point of selective pressure. PMID:25858231

  13. Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation

    PubMed Central

    Liu, Ta-Ming; Woyach, Jennifer A.; Zhong, Yiming; Lozanski, Arletta; Lozanski, Gerard; Dong, Shuai; Strattan, Ethan; Lehman, Amy; Zhang, Xiaoli; Jones, Jeffrey A.; Flynn, Joseph; Andritsos, Leslie A.; Maddocks, Kami; Jaglowski, Samantha M.; Blum, Kristie A.; Byrd, John C.; Dubovsky, Jason A.

    2015-01-01

    Ibrutinib has significantly improved the outcome of patients with relapsed chronic lymphocytic leukemia (CLL). Recent reports attribute ibrutinib resistance to acquired mutations in Bruton agammaglobulinemia tyrosine kinase (BTK), the target of ibrutinib, as well as the immediate downstream effector phospholipase C, γ2 (PLCG2). Although the C481S mutation found in BTK has been shown to disable ibrutinib’s capacity to irreversibly bind this primary target, the detailed mechanisms of mutations in PLCG2 have yet to be established. Herein, we characterize the enhanced signaling competence, BTK independence, and surface immunoglobulin dependence of the PLCG2 mutation at R665W, which has been documented in ibrutinib-resistant CLL. Our data demonstrate that this missense alteration elicits BTK-independent activation after B-cell receptor engagement, implying the formation of a novel BTK-bypass pathway. Consistent with previous results, PLCG2R665W confers hypermorphic induction of downstream signaling events. Our studies reveal that proximal kinases SYK and LYN are critical for the activation of mutant PLCG2 and that therapeutics targeting SYK and LYN can combat molecular resistance in cell line models and primary CLL cells from ibrutinib-resistant patients. Altogether, our results engender a molecular understanding of the identified aberration at PLCG2 and explore its functional dependency on BTK, SYK, and LYN, suggesting alternative strategies to combat acquired ibrutinib resistance. PMID:25972157

  14. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR mutant lung cancer: Distinct natural history of patients with tumors harboring the T790M mutation

    PubMed Central

    Oxnard, Geoffrey R.; Arcila, Maria E.; Sima, Camelia S.; Riely, Gregory J.; Chmielecki, Juliann; Kris, Mark G.; Pao, William; Ladanyi, Marc; Miller, Vincent A.

    2010-01-01

    Purpose Patients with EGFR-mutant lung adenocarcinoma develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) after a median of 10–16 months. In half of these cases a second EGFR mutation, T790M, underlies acquired resistance. We undertook this study to examine the clinical course of patients harboring the T790M mutation following progression on TKI. Experimental design EGFR-mutant lung cancer patients with acquired resistance to EGFR TKIs were identified as part of a prospective re-biopsy protocol where post-progression tumor specimens were collected for molecular analysis. Post-progression survival and characteristics of disease progression were compared in patients with and without T790M. Results We identified T790M in the initial re-biopsy specimens from 58/93 patients (62%, 95% confidence interval 52%–72%). T790M was more common in biopsies of lung/pleura tissue and lymph nodes than in more distant sites (p=0.014). Median post-progression survival was 16 months (interquartile range 9–29 months); patients with T790M had a significantly longer post-progression survival (p=0.036). Patients without T790M more often progressed in a previously uninvolved organ system (p=0.014) and exhibited a poorer performance status at time of progression (p=0.007). Conclusions Among patients with acquired resistance to EGFR TKIs, the presence of T790M defines a clinical subset with a relatively favorable prognosis and more indolent progression. Knowledge of T790M status is therefore important for the clinical care of these patients as well as for the optimal design and interpretation of clinical trials in this setting. PMID:21135146

  15. TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance in multiple myeloma through NF-кβ inhibition.

    PubMed

    Raninga, Prahlad V; Di Trapani, Giovanna; Vuckovic, Slavica; Tonissen, Kathryn F

    2016-02-16

    Multiple myeloma (MM) is a B-cell malignancy characterized by an accumulation of abnormal clonal plasma cells in the bone marrow. Introduction of the proteasome-inhibitor bortezomib has improved MM prognosis and survival; however hypoxia-induced or acquired bortezomib resistance remains a clinical problem. This study highlighted the role of thioredoxin reductase 1 (TrxR1) in the hypoxia-induced and acquired bortezomib resistance in MM. Higher TrxR1 gene expression correlated with high-risk disease, adverse overall survival, and poor prognosis in myeloma patients. We demonstrated that hypoxia induced bortezomib resistance in myeloma cells and increased TrxR1 protein levels. Inhibition of TrxR1 using auranofin overcame hypoxia-induced bortezomib resistance and restored the sensitivity of hypoxic-myeloma cells to bortezomib. Hypoxia increased NF-кβ subunit p65 nuclear protein levels and TrxR1 inhibition decreased hypoxia-induced NF-кβ p65 protein levels in the nucleus and reduced the expression of NF-кβ-regulated genes. In addition, higher TrxR1 protein levels were observed in bortezomib-resistant myeloma cells compared to the naïve cells, and its inhibition using either auranofin or TrxR1-specific siRNAs reversed bortezomib resistance. TrxR1 inhibition reduced p65 mRNA and protein expression in bortezomib-resistant myeloma cells, and also decreased the expression of NF-кβ-regulated anti-apoptotic and proliferative genes. Thus, TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance by inhibiting the NF-кβ signaling pathway. Our findings demonstrate that elevated TrxR1 levels correlate with the acquisition of bortezomib resistance in MM. We propose considering TrxR1-inhibiting drugs, such as auranofin, either for single agent or combination therapy to circumvent bortezomib-resistance and improve survival outcomes of MM patients. PMID:26743692

  16. Perinatal induction of Cre recombination with tamoxifen.

    PubMed

    Lizen, Benoit; Claus, Melissa; Jeannotte, Lucie; Rijli, Filippo M; Gofflot, Françoise

    2015-12-01

    Temporal control of site-specific recombination is commonly achieved by using a tamoxifen-inducible form of Cre or Flp recombinases. Although powerful protocols of induction have been developed for gene inactivation at adult stages or during embryonic development, induction of recombination at late gestational or early postnatal stages is still difficult to achieve. In this context, using the ubiquitous CMV-CreER(T2) transgenic mice, we have tested and validated two procedures to achieve recombination just before and just after birth. The efficiency of recombination was evaluated in the brain, which is known to be more problematic to target. For the late gestation treatment with tamoxifen, different protocols of complementary administration of progesterone and estrogen were tested. However, delayed delivery and/or mortality of pups due to difficult delivery were always observed. To circumvent this problem, pups were collected from tamoxifen-treated pregnant dams by caesarian section at E18.5 and given to foster mothers. For postnatal treatment, different dosages of tamoxifen were administered by intragastric injection to the pups during 3 or 4 days after birth. The efficiency of these treatments was analyzed at P7 using a transgenic reporter line. They were also validated with the Hoxa5 conditional allele. In conclusion, we have developed efficient procedures that allow achieving efficient recombination of floxed alleles at perinatal stages. These protocols will allow investigating the late/adult functions of many developmental genes, whose characterization has been so far restricted to embryonic development. PMID:26395370

  17. Acquired resistance to rechallenge injury in rats recovered from subclinical renal damage with uranyl acetate-Importance of proliferative activity of tubular cells

    SciTech Connect

    Sun, Yuan; Fujigaki, Yoshihide; Sakakima, Masanori; Hishida, Akira

    2010-02-15

    Animals recovered from acute renal failure are resistant to subsequent insult. We investigated whether rats recovered from mild proximal tubule (PT) injury without renal dysfunction (subclinical renal damage) acquire the same resistance. Rats 14 days after recovering from subclinical renal damage, which was induced by 0.2 mg/kg of uranyl acetate (UA) (sub-toxic dose), were rechallenged with 4 mg/kg of UA (nephrotoxic dose). Fate of PT cells and renal function were examined in response to nephrotoxic dose of UA. All divided cells after sub-toxic dose of UA insult were labeled with bromodeoxyuridine (BrdU) for 14 days then the number of PT cells with or without BrdU-labeling was counted following nephrotoxic dose of UA insult. Rats recovered from subclinical renal damage gained resistance to nephrotoxic dose of UA with reduced renal dysfunction, less severity of peak damage (necrotic and TUNEL+ apoptotic cells) and accelerated PT cell proliferation, but with earlier peak of PT damage. The decrease in number of PT cells in the early phase of rechallenge injury with nephrotoxic UA was more in rats pretreated with sub-toxic dose of UA than vehicle pretreated rats. The exaggerated loss of PT cells was mainly caused by the exaggerated loss of BrdU+ divided cells. In contrast, accelerated cell proliferation in rats recovered from sub-toxic dose of UA was observed mainly in BrdU- non-divided cells. The findings suggest that rats recovered from subclinical renal damage showed partial acquired resistance to nephrotoxic insult. Accelerated recovery with increased proliferative activity of non-divided PT cells after subclinical renal damage may mainly contribute to acquired resistance.

  18. Acquired resistance of pancreatic cancer cells to treatment with gemcitabine and HER-inhibitors is accompanied by increased sensitivity to STAT3 inhibition

    PubMed Central

    IOANNOU, NIKOLAOS; SEDDON, ALAN M.; DALGLEISH, ANGUS; MACKINTOSH, DAVID; SOLCA, FLAVIO; MODJTAHEDI, HELMOUT

    2016-01-01

    Drug-resistance is a major contributing factor for the poor prognosis in patients with pancreatic cancer. We have shown previously that the irreversible ErbB family blocker afatinib, is more effective than the reversible EGFR tyrosine kinase inhibitor erlotinib in inhibiting the growth of human pancreatic cancer cells. The aim of this study was to develop human pancreatic cancer cell (BxPc3) variants with acquired resistance to treatment with gemcitabine, afatinib, or erlotinib, and to investigate the molecular changes that accompany the acquisition of a drug-resistant phenotype. We also investigated the therapeutic potential of various agents in the treatment of such drug-resistant variants. Three variant forms of BxPc3 cells with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) were developed following treatment with increasing doses of such drugs. The expression level, mutational and phosphorylation status of various growth factor receptors and downstream cell signaling molecules were determined by FACS, human phopsho-RTK array, and western blot analysis while the sulforhodamine B assay was used for determining the effect of various agents on the growth of such tumours. We found that all three BxPc3 variants with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) also become less sensitive to treatment with the two other agents. Acquisition of resistance to these agents was accompanied by upregulation of p-c-MET, p-STAT3, CD44, increased autocrine production of EGFR ligand amphiregulin and differential activation status of EGFR tyrosine residues as well as downregulation of total and p-SRC. Of all therapeutic interventions examined, including the addition of an anti-EGFR antibody ICR62, an anti-CD44 monoclonal antibody, and of STAT3 or c-MET inhibitors, only treatment with the STAT3 inhibitor Stattic produced a higher growth inhibitory effect in all three drug-resistant variants

  19. Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions: potential role of STATs, cyclinD1, BAD, and Bcl-XL.

    PubMed

    Gagarin, Dmitry; Yang, Zhaoqing; Butler, Jason; Wimmer, Monika; Du, Baoheng; Cahan, Patrick; McCaffrey, Timothy A

    2005-09-01

    Current theories suggest that atherosclerosis, plaque rupture, stroke, and restenosis after angioplasty may involve defective apoptotic mechanisms in vascular cells. Prior work has demonstrated that cells from human atherosclerotic lesions, and cells from the aorta of aged rats, exhibit functional resistance to apoptosis induced by TGF-beta and glucocorticoids. The present studies demonstrate that human lesion-derived cells (LDC) are also resistant to apoptosis induced by fas ligation compared to cells derived from the adjacent media, and that in vitro expansion of LDC causes acquired resistance to apoptosis. Microarray profiling of fas-resistant versus sensitive cells identified a set of genes including STATs, caspase 1, cyclin D1, Bcl-xL, VDAC2, and BAD. The STAT proteins have been implicated in resistance to apoptosis, potentially via their ability to modulate caspase 1 (ICE), Bcl-xL, and cyclin D1 expression. Western blot analysis of sensitive and resistant LDC clonal lines confirmed increases in cyclin D1, STAT6, Bcl-xL, and BAD, with decreased expression of caspase 1. Thus, transcript profiling has identified a potential pathway of apoptotic regulation in subsets of lesion cells. The resistant phenotype may contribute to plaque stability and excessive vascular repair, while sensitive cells may be involved in plaque rupture and infarction. The data suggests both genetic interventions and novel small-molecule inhibitors that may be effective modulators of apoptosis in atherosclerosis, angina, and in-stent restenosis. PMID:16005468

  20. Potential of L-Buthionine Sulfoximine to Enhance the Apoptotic Action of Estradiol to Reverse Acquired Antihormonal Resistance in Metastatic Breast Cancer

    PubMed Central

    Lewis-Wambi, Joan S; Swaby, Ramona; Kim, Helen; Jordan, V. Craig

    2010-01-01

    L-buthionine sulfoximine (BSO) is a potent inhibitor of glutathione biosynthesis and studies have shown that it is capable of enhancing the apoptotic effects of several chemotherapeutic agents. Previous studies have shown that long term antihormonal therapy leads to acquired drug resistance and that estrogen, which is normally a survival signal, is a potent apoptotic agent in these resistant cells. Interestingly, we have developed an antihormone resistant breast cancer cell line, MCF-7:2A, which is resistant to estrogen-induced apoptosis but has elevated levels of glutathione. In the present study, we examined whether BSO is capable of sensitizing antihormone resistant MCF-7:2A cells to estrogen-induced apoptosis. Our results showed that treatment of MCF-7:2A cells with 1 nM E2 plus 100 μM BSO combination for 1 week reduced the growth of these cells by almost 80-90% whereas the individual treatments had no significant effect on growth. TUNEL and DAPI staining showed that the inhibitory effect of the combination treatment was due to apoptosis. Our data indicates that glutathione participates in retarding apoptosis in antihormone-resistant human breast cancer cells and that depletion of this molecule by BSO may be critical in predisposing resistant cells to estrogen-induced apoptosis. PMID:19167492

  1. Tailored Tamoxifen Treatment for Breast Cancer Patients: A Perspective.

    PubMed

    Jager, Nynke G L; Linn, Sabine C; Schellens, Jan H M; Beijnen, Jos H

    2015-08-01

    Tamoxifen, an endocrine agent, is widely used in the treatment of estrogen receptor-positive breast cancer. It has greatly reduced disease recurrence and mortality rates of breast cancer patients, however, not all patients benefit from tamoxifen treatment because in approximately 25% to 30% of the patients the disease recurs. Many researchers have sought to find factors associated with endocrine treatment outcome in the past years, however, this quest has not been finished. In this article, we focus on a factor that might influence outcome of tamoxifen treatment: interpatient variability in tamoxifen pharmacokinetics. In recent years it has become clear that tamoxifen undergoes extensive metabolism and that some of the formed metabolites are much more pharmacologically active than tamoxifen itself. Despite the wide interpatient variability in tamoxifen pharmacokinetics and pharmacodynamics, all patients receive a standard dose of 20 mg tamoxifen per day. Different approaches can be pursued to individualize tamoxifen dosing: genotyping, phenotyping, and therapeutic drug monitoring. Therapeutic drug monitoring seems to be the most direct and promising approach, however, further clinical research is warranted to establish the added value of individual dosing in tamoxifen treatment optimization. PMID:25997856

  2. Tamoxifen Induces Apoptosis of Leishmania major Promastigotes in Vitro

    PubMed Central

    Doroodgar, Masoud; Delavari, Mahdi; Doroodgar, Moein; Abbasi, Ali; Taherian, Ali Akbar; Doroodgar, Abbas

    2016-01-01

    Tamoxifen is an antagonist of the estrogen receptor and currently used for the treatment of breast cancer. The current treatment of cutaneous leishmaniasis with pentavalent antimony compounds is not satisfactory. Therefore, in this study, due to its antileishmanial activity, effects of tamoxifen on the growth of promastigotes and amastigotes of Leishmania major Iranian strain were evaluated in vitro. Promastigotes and amastigotes were treated with different concentrations (1, 5, 10, 20, and 50 μg/ml) and time periods (24, 48, and 72 hr) of tamoxifen. After tamoxifen treatment, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 biphenyl tetrazolium bromide assay) was used to determine the percentage of live parasites and Graph Pad Prism software to calculate IC50. Flow cytometry was applied to investigate the induction of tamoxifen-induced apoptosis in promastigotes. The half maximal inhibitory concentration (IC50) of tamoxifen on promastigotes was 2.6 μg/ml after 24 hr treatment. Flow cytometry analysis showed that tamoxifen induced early and late apoptosis in Leishmania promastigotes. While after 48 hr in control group the apoptosis was 2.0%, the 50 µg/L concentration of tamoxifen increased it to 59.7%. Based on the in vitro antileishmanial effect, tamoxifen might be used for leishmaniasis treatment; however, further researches on in vivo effects of tamoxifen in animal models are needed. PMID:26951973

  3. EGFR-Mediated Reactivation of MAPK Signaling Induces Acquired Resistance to GSK2118436 in BRAF V600E-Mutant NSCLC Cell Lines.

    PubMed

    Kim, Sung-Moo; Kim, Hwan; Jang, Kang Won; Kim, Min Hwan; Sohn, Jinyoung; Yun, Mi Ran; Kang, Han Na; Kang, Chan Woo; Kim, Hye Ryun; Lim, Sun Min; Moon, Yong Wha; Kim, Joo Hang; Paik, Soonmyung; Cho, Byoung Chul

    2016-07-01

    Although treatment of BRAF V600E-mutant non-small cell lung cancer (NSCLC(V600E)) with GSK2118436 has shown an encouraging efficacy, most patients develop resistance. To investigate the mechanisms of acquired resistance to GSK2118436 in NSCLC(V600E), we established GSK2118436-resistant (GSR) cells by exposing MV522 NSCLC(V600E) to increasing GSK2118436 concentrations. GSR cells displayed activated EGFR-RAS-CRAF signaling with upregulated EGFR ligands and sustained activation of ERK1/2, but not MEK1/2, in the presence of GSK2118436. Treatment of GSR cells with GSK2118436 enhanced EGFR-mediated RAS activity, leading to the formation of BRAF-CRAF dimers and transactivation of CRAF. Interestingly, sustained activation of ERK1/2 was partly dependent on receptor-interacting protein kinase-2 (RIP2) activity, but not on MEK1/2 activity. Combined BRAF and EGFR inhibition blocked reactivation of ERK signaling and improved efficacy in vitro and in vivo Our findings support the evaluation of combined BRAF and EGFR inhibition in NSCLC(V600E) with acquired resistance to BRAF inhibitors. Mol Cancer Ther; 15(7); 1627-36. ©2016 AACR. PMID:27196768

  4. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced cell-specific drug transporters with acquired cisplatin resistance in cisplatin sensitive cancer cells.

    PubMed

    Gotovdorj, Tuvshinjargal; Lee, Eunil; Lim, Yongchul; Cha, Eun Jeong; Kwon, Daeho; Hong, Eunyoung; Kim, YunJeong; Oh, Min-Yeong

    2014-09-01

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can induce drug transporter genes such as the ATP-binding cassette G member 2 (ABCG2), which contributes to multidrug resistance. We investigated the effect of TCDD pretreatment on drug transporters induction from cancer cells of various origins. Cell viabilities after treatment of cisplatin were measured to evaluate acquiring cisplatin resistance by TCDD. Acquring cisplatin resistance was found only in cisplatin senstivie cancer cells including gastric SNU601, colon LS180, brain CRT-MG and lymphoma Jurkat cells which showed a significant increase in cell viability after combined treatment with TCDD and cisplatin. High increase of ABCG2 gene expression was found in SNU601 and LS180 cells with a mild increase in the expression of the ABCC3, ABCC5,and SLC29A2 genes in SNU601 cells, and of major vault protein (MVP) in LS180 cells. The AhR inhibitor kaempferol suppressed the upregulation of ABCG2 expression and reversed the TCDD-induced increase in cell viability in LS180 cells. However, in CRT-MG cells, other transporter genes including ABCC1, ABCC5, ABCA3, ABCA2, ABCB4, ABCG1, and SLC29A1 were up-regulated. These findings suggested the acquiring cisplatin resistance by TCDD associated with cancer cell-type-specific induction of drug transporters. PMID:25246735

  5. Tamoxifen in men: a review of adverse events.

    PubMed

    Wibowo, E; Pollock, P A; Hollis, N; Wassersug, R J

    2016-09-01

    Tamoxifen is an off-label option to treat men for breast cancer, infertility, and idiopathic gynecomastia. Lately, tamoxifen has been proposed as a treatment to prevent gynecomastia in prostate cancer patients receiving antiandrogen therapy. We reviewed the adverse events (AEs) reported in studies of men prescribed tamoxifen for these conditions to better understand its side-effect profile. We searched PubMed for randomized controlled trials (RCTs) that included safety data of tamoxifen treatment in men with prostate cancer, breast cancer, infertility, and idiopathic gynecomastia. Non-RCTs were also reviewed. The results demonstrate that the AE profile in tamoxifen-treated male populations varied. Excluding breast events, gastrointestinal, and cardiovascular problems were the most commonly reported AEs in prostate cancer patients, whereas more psychiatric disorders were reported in male breast cancer patients. Few AEs have been documented in men receiving tamoxifen for infertility and idiopathic gynecomastia. Less than 5% of men withdrew from tamoxifen therapy because of toxicity. This suggests that for most men, tamoxifen is well-tolerated. Of those who discontinued tamoxifen, the majority were male breast cancer patients, and cardiovascular events were the most common reason for stopping tamoxifen treatment. Unfortunately, in many cases, the reasons for withdrawing tamoxifen were unspecified. Based on the available evidence, tamoxifen's AE profile appears to vary depending upon which male population is treated. Also, the frequency at which AEs occur varies - less AEs in men with infertility and idiopathic gynecomastia compared to men with prostate cancer or breast cancer. Long-term studies that rigorously document the side-effect profile of tamoxifen in men are lacking. PMID:27152880

  6. FDG-PET is a good biomarker of both early response and acquired resistance in BRAFV600 mutant melanomas treated with vemurafenib and the MEK inhibitor GDC-0973

    PubMed Central

    2012-01-01

    Background The BRAF inhibitor, vemurafenib, has recently been approved for the treatment of metastatic melanoma in patients harboring BRAFV600 mutations. Currently, dual BRAF and MEK inhibition are ongoing in clinical trials with the goal of overcoming the acquired resistance that has unfortunately developed in some vemurafenib patients. FDG-PET measures of metabolic activity are increasingly employed as a pharmacodynamic biomarker for guiding single-agent or combination therapies by gauging initial drug response and monitoring disease progression. However, since tumors are inherently heterogeneous, investigating the effects of BRAF and MEK inhibition on FDG uptake in a panel of different melanomas could help interpret imaging outcomes. Methods 18 F-FDG uptake was measured in vitro in cells with wild-type and mutant (V600) BRAF, and in melanoma cells with an acquired resistance to vemurafenib. We treated the cells with vemurafenib alone or in combination with MEK inhibitor GDC-0973. PET imaging was used in mice to measure FDG uptake in A375 melanoma xenografts and in A375 R1, a vemurafenib-resistant derivative. Histological and biochemical studies of glucose transporters, the MAPK and glycolytic pathways were also undertaken. Results We demonstrate that vemurafenib is equally effective at reducing FDG uptake in cell lines harboring either heterozygous or homozygous BRAFV600 but ineffective in cells with acquired resistance or having WT BRAF status. However, combination with GDC-0973 results in a highly significant increase of efficacy and inhibition of FDG uptake across all twenty lines. Drug-induced changes in FDG uptake were associated with altered levels of membrane GLUT-1, and cell lines harboring RAS mutations displayed enhanced FDG uptake upon exposure to vemurafenib. Interestingly, we found that vemurafenib treatment in mice bearing drug-resistant A375 xenografts also induced increased FDG tumor uptake, accompanied by increases in Hif-1α, Sp1 and Ksr

  7. Systematic identification of signaling pathways with potential to confer anticancer drug resistance.

    PubMed

    Martz, Colin A; Ottina, Kathleen A; Singleton, Katherine R; Jasper, Jeff S; Wardell, Suzanne E; Peraza-Penton, Ashley; Anderson, Grace R; Winter, Peter S; Wang, Tim; Alley, Holly M; Kwong, Lawrence N; Cooper, Zachary A; Tetzlaff, Michael; Chen, Pei-Ling; Rathmell, Jeffrey C; Flaherty, Keith T; Wargo, Jennifer A; McDonnell, Donald P; Sabatini, David M; Wood, Kris C

    2014-12-23

    Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)-mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF(V600E) melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts. PMID:25538079

  8. Systematic identification of signaling pathways with potential to confer anticancer drug resistance

    PubMed Central

    Martz, Colin A.; Ottina, Kathleen A.; Singleton, Katherine R.; Jasper, Jeff S.; Wardell, Suzanne E.; Peraza-Penton, Ashley; Anderson, Grace R.; Winter, Peter S.; Wang, Tim; Alley, Holly M.; Kwong, Lawrence N.; Cooper, Zachary A.; Tetzlaff, Michael; Chen, Pei-Ling; Rathmell, Jeffrey C.; Flaherty, Keith T.; Wargo, Jennifer A.; McDonnell, Donald P.; Sabatini, David M.; Wood, Kris C.

    2015-01-01

    Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant cDNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS– MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)–mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially-passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAFV600E melanoma cells in culture, and the abundance of Notch1 pathway markers were increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts. PMID:25538079

  9. Superior in vitro activity of carbapenems over anti-methicillin-resistant Staphylococcus aureus (MRSA) and some related antimicrobial agents for community-acquired MRSA but not for hospital-acquired MRSA.

    PubMed

    Takano, Tomomi; Higuchi, Wataru; Yamamoto, Tatsuo

    2009-02-01

    Eighty-eight strains of Panton-Valentine leukocidin (PVL)-positive and -negative community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) and 152 strains of hospital-acquired MRSA (HA-MRSA) were examined for susceptibility to carbapenems, oxacillin, and other antimicrobial agents. CA-MRSA strains were more susceptible to carbapenems (MIC(90), 1-4 microg/ml) than HA-MRSA strains (MIC(90), 32-64 microg/ml). Among the carbapenems examined, CA-MRSA strains were most susceptible to imipenem (MIC(50), 0.12 microg/ml; MIC(90), 1 microg/ml). A similar tendency was observed with oxacillin, but less markedly (MIC(90): 32 microg/ml for CA-MRSA and > or =256 microg/ml for HA-MRSA). This difference was also observed between CA-MRSA and HA-MRSA in susceptibility levels to cephems, erythromycin, clindamycin, and levofloxacin, but not to ampicillin, vancomycin, teicoplanin, linezolid, and arbekacin. The data indicate that, in terms of MIC(50) or MIC(90) values, CA-MRSA is 64-256 times more susceptible to imipenem than HA-MRSA, and for CA-MRSA, some carbapenems, e.g., imipenem, show better in vitro activity than anti-MRSA or some related agents. PMID:19280303

  10. Chemical Proteomics Uncovers EPHA2 as a Mechanism of Acquired Resistance to Small Molecule EGFR Kinase Inhibition.

    PubMed

    Koch, Heiner; Busto, M Estela Del Castillo; Kramer, Karl; Médard, Guillaume; Kuster, Bernhard

    2015-06-01

    Tyrosine kinase inhibitors (TKIs) have become an important therapeutic option for treating several forms of cancer. Gefitinib, an inhibitor of the epidermal growth factor receptor (EGFR), is in clinical use for treating non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. However, despite high initial response rates, many patients develop resistance to gefitinib. The molecular mechanisms of TKI resistance often remain unclear. Here, we describe a chemical proteomic approach comprising kinase affinity purification (kinobeads) and quantitative mass spectrometry for the identification of kinase inhibitor resistance mechanisms in cancer cells. We identified the previously described amplification of MET and found EPHA2 to be more than 10-fold overexpressed (p < 0.001) in gefitinib-resistant HCC827 cells suggesting a potential role in developing resistance. siRNA-mediated EPHA2 knock-down or treating cells with the multikinase inhibitor dasatinib restored sensitivity to gefitinib. Of all dasatinib targets, EPHA2 exhibited the most drastic effect (p < 0.001). In addition, EPHA2 knockdown or ephrin-A1 treatment of resistant cells decreased FAK phosphorylation and cell migration. These findings confirm EPHA2 as an actionable drug target, provide a rational basis for drug combination approaches, and indicate that chemical proteomics is broadly applicable for the discovery of kinase inhibitor resistance. PMID:25963923

  11. National and Regional Assessment of Antimicrobial Resistance among Community-Acquired Respiratory Tract Pathogens Identified in a 2005-2006 U.S. Faropenem Surveillance Study▿

    PubMed Central

    Critchley, Ian A.; Brown, Steven D.; Traczewski, Maria M.; Tillotson, Glenn S.; Janjic, Nebojsa

    2007-01-01

    Surveillance studies conducted in the United States over the last decade have revealed increasing resistance among community-acquired respiratory pathogens, especially Streptococcus pneumoniae, that may limit future options for empirical therapy. The objective of this study was to assess the scope and magnitude of the problem at the national and regional levels during the 2005-2006 respiratory season (the season when community-acquired respiratory pathogens are prevalent) in the United States. Also, since faropenem is an oral penem being developed for the treatment of community-acquired respiratory tract infections, another study objective was to provide baseline data to benchmark changes in the susceptibility of U.S. respiratory pathogens to the drug in the future. The in vitro activities of faropenem and other agents were determined against 1,543 S. pneumoniae isolates, 978 Haemophilus influenzae isolates, and 489 Moraxella catarrhalis isolates collected from 104 U.S. laboratories across six geographic regions during the 2005-2006 respiratory season. Among S. pneumoniae isolates, the rates of resistance to penicillin, amoxicillin-clavulanate, and cefdinir were 16, 6.4, and 19.2%, respectively. The least effective agents were trimethoprim-sulfamethoxazole (SXT) and azithromycin, with resistance rates of 23.5 and 34%, respectively. Penicillin resistance rates for S. pneumoniae varied by region (from 8.7 to 22.5%), as did multidrug resistance rates for S. pneumoniae (from 8.8 to 24.9%). Resistance to β-lactams, azithromycin, and SXT was higher among S. pneumoniae isolates from children than those from adults. β-Lactamase production rates among H. influenzae and M. catarrhalis isolates were 27.4 and 91.6%, respectively. Faropenem MICs at which 90% of isolates are inhibited were 0.5 μg/ml for S. pneumoniae, 1 μg/ml for H. influenzae, and 0.5 μg/ml for M. catarrhalis, suggesting that faropenem shows promise as a treatment option for respiratory infections caused

  12. National and regional assessment of antimicrobial resistance among community-acquired respiratory tract pathogens identified in a 2005-2006 U.S. Faropenem surveillance study.

    PubMed

    Critchley, Ian A; Brown, Steven D; Traczewski, Maria M; Tillotson, Glenn S; Janjic, Nebojsa

    2007-12-01

    Surveillance studies conducted in the United States over the last decade have revealed increasing resistance among community-acquired respiratory pathogens, especially Streptococcus pneumoniae, that may limit future options for empirical therapy. The objective of this study was to assess the scope and magnitude of the problem at the national and regional levels during the 2005-2006 respiratory season (the season when community-acquired respiratory pathogens are prevalent) in the United States. Also, since faropenem is an oral penem being developed for the treatment of community-acquired respiratory tract infections, another study objective was to provide baseline data to benchmark changes in the susceptibility of U.S. respiratory pathogens to the drug in the future. The in vitro activities of faropenem and other agents were determined against 1,543 S. pneumoniae isolates, 978 Haemophilus influenzae isolates, and 489 Moraxella catarrhalis isolates collected from 104 U.S. laboratories across six geographic regions during the 2005-2006 respiratory season. Among S. pneumoniae isolates, the rates of resistance to penicillin, amoxicillin-clavulanate, and cefdinir were 16, 6.4, and 19.2%, respectively. The least effective agents were trimethoprim-sulfamethoxazole (SXT) and azithromycin, with resistance rates of 23.5 and 34%, respectively. Penicillin resistance rates for S. pneumoniae varied by region (from 8.7 to 22.5%), as did multidrug resistance rates for S. pneumoniae (from 8.8 to 24.9%). Resistance to beta-lactams, azithromycin, and SXT was higher among S. pneumoniae isolates from children than those from adults. beta-Lactamase production rates among H. influenzae and M. catarrhalis isolates were 27.4 and 91.6%, respectively. Faropenem MICs at which 90% of isolates are inhibited were 0.5 mug/ml for S. pneumoniae, 1 mug/ml for H. influenzae, and 0.5 mug/ml for M. catarrhalis, suggesting that faropenem shows promise as a treatment option for respiratory infections

  13. Pharmacogenomics toward personalized tamoxifen therapy for breast cancer.

    PubMed

    Zembutsu, Hitoshi

    2015-01-01

    Tamoxifen has been used not only for the treatment or prevention of recurrence in patients with estrogen receptor positive breast cancers but also for recurrent breast cancer. Because CYP2D6 is known to be an important enzyme responsible for the generation of the potent tamoxifen metabolite, 'endoxifen', lots of studies reported that genetic variation which reduced its enzyme activity were associated with poor clinical outcome of breast cancer patients treated with tamoxifen. However, there are some discrepant reports questioning the association between CYP2D6 genotype and clinical outcome after tamoxifen therapy. Dose-adjustment study of tamoxifen based on CYP2D6 genotypes provides the evidence that dose adjustment is useful for the patients carrying reduced or null allele of CYP2D6 to maintain the effective endoxifen level. This review describes critical issues in pharmacogenomic studies as well as summarizes the results of the association of CYP2D6 genotype with tamoxifen efficacy. PMID:25712191

  14. Modulation of Cell Metabolic Pathways and Oxidative Stress Signaling Contribute to Acquired Melphalan Resistance in Multiple Myeloma Cells

    PubMed Central

    Zub, Kamila Anna; de Sousa, Mirta Mittelstedt Leal; Sarno, Antonio; Sharma, Animesh; Demirovic, Aida; Rao, Shalini; Young, Clifford; Aas, Per Arne; Ericsson, Ida; Sundan, Anders; Jensen, Ole Nørregaard; Slupphaug, Geir

    2015-01-01

    Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70–80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance. PMID:25769101

  15. The impact of methicillin- and aminoglycoside-resistant Staphylococcus aureus on the pattern of hospital-acquired infection in an acute hospital.

    PubMed

    Meers, P D; Leong, K Y

    1990-10-01

    Infections due to methicillin- and aminoglycoside-resistant Staphylococcus aureus (MARSA) appeared in a new teaching hospital shortly after it opened. The effect this had on the pattern of hospital-acquired infections in the four years that followed is described. No control measures were applied and MARSA became endemic. New infections appeared at a rate of about four for each 1000 patients discharged. It established itself at different levels of incidence in various specialist units, patients under intensive care being most severely affected. MARSA was implicated in half of all hospital-acquired infections due to S. aureus but it was not more pathogenic than its more sensitive counterpart. It had little impact on the life of the hospital. PMID:1979573

  16. The bioavailability of Tamoplex (tamoxifen). Part 1. A pilot study.

    PubMed

    McVie, J G; Simonetti, G P; Stevenson, D; Briggs, R J; Guelen, P J; de Vos, D

    1986-08-01

    Tamoxifen and N-desmethyltamoxifen plasma concentrations were found to be similar after a first single dose and during two months therapy with Tamoplex or Nolvadex in groups of 6 and 8 patients, respectively. Single dose absorption results in 10 healthy male volunteers demonstrated bioequivalence of Tamoplex and Nolvadex 10 mg tablets. A large interindividual variation in tamoxifen absorption data was observed, probably related to the dominating metabolic clearance of tamoxifen. PMID:3747644

  17. The effect of tamoxifen on the genital tract

    PubMed Central

    Ascher, Susan M.

    2008-01-01

    Abstract Tamoxifen is a selective estrogen receptor modulator (SERM) that is widely used in the treatment of patients with breast cancer and for chemoprophylaxis in high risk women. Tamoxifen results in a spectrum of abnormalities involving the genital tract, the most significant being an increased incidence of endometrial cancer and uterine sarcoma. This article reviews the effects of tamoxifen on the genital tract and the strengths and weaknesses of various imaging modalities for evaluating the endometrium. PMID:18603495

  18. Role of OXA-23 and AdeABC efflux pump for acquiring carbapenem resistance in an Acinetobacter baumannii strain carrying the blaOXA-66 gene.

    PubMed

    Lee, Yangsoon; Yum, Jong Hwa; Kim, Chang-Ki; Yong, Dongeun; Jeon, Eun Hee; Jeong, Seok Hoon; Ahn, Jee Young; Lee, Kyungwon

    2010-01-01

    This study was performed to determine the mechanisms for acquiring carbapenem resistance in six clinical isolates of Acinetobacter baumannii. All isolates showed similar SmaI-macrorestriction patterns with less than 3 band differences by PFGE. The isolates showed a high level resistance (>32 mg/L) to both imipenem and meropenem by Etest. Phe-Arg-beta-naphthylamide lowered the MICs of carbapenems. Real-time PCR experiments showed that expression levels of the adeB gene in the six A. baumannii isolates were 10- to 40-times higher than those of imipenem-susceptible strains. Direct sequencing of PCR products showed that all isolates carried the bla(OXA-23) gene, which was preceded by ISAba1. The bla(OXA-23) probe hybridized with approximately 500-kb I-CeuI chromosomal fragments, but not with a plasmid. These findings suggest that overexpression of the AdeABC efflux pump as well as chromosome-borne OXA-23 may play a role in acquiring carbapenem resistance in our A. baumannii isolates. PMID:20124329

  19. Reciprocal positive regulation between Cx26 and PI3K/Akt pathway confers acquired gefitinib resistance in NSCLC cells via GJIC-independent induction of EMT

    PubMed Central

    Yang, J; Qin, G; Luo, M; Chen, J; Zhang, Q; Li, L; Pan, L; Qin, S

    2015-01-01

    Gefitinib efficiency in non-small-cell lung cancer (NSCLC) therapy is limited due to development of drug resistance. The molecular mechanisms of gefitinib resistance remain still unclear. In this study, we first found that connexin 26 (Cx26) is the predominant Cx isoform expressed in various NSCLC cell lines. Then, two gefitinib-resistant (GR) NSCLC cell lines, HCC827 GR and PC9 GR, from their parental cells were established. In these GR cells, the results showed that gefitinib resistance correlated with changes in cellular EMT phenotypes and upregulation of Cx26. Cx26 was detected to be accumulated in the cytoplasm and failed to establish functional gap-junctional intercellular communication (GJIC) either in GR cells or their parental cells. Ectopic expression of GJIC-deficient chimeric Cx26 was sufficient to induce EMT and gefitinib insensitivity in HCC827 and PC9 cells, while knockdown of Cx26 reversed EMT and gefitinib resistance in their GR cells both in vitro and in vivo. Furthermore, Cx26 overexpression could activate PI3K/Akt signaling in these cells. Cx26-mediated EMT and gefitinib resistance were significantly blocked by inhibition of PI3K/Akt pathway. Specifically, inhibition of the constitutive activation of PI3K/Akt pathway substantially suppressed Cx26 expression, and Cx26 was confirmed to functionally interplay with PI3K/Akt signaling to promote EMT and gefitinib resistance in NSCLC cells. In conclusion, the reciprocal positive regulation between Cx26 and PI3K/Akt signaling contributes to acquired gefitinib resistance in NSCLC cells by promoting EMT via a GJIC-independent manner. PMID:26203858

  20. Influence of Infection of Cotton by Rotylenchulus Reniformis and Meloidogyne Incognita on the Production of Enzymes Involved in Systemic Acquired Resistance

    PubMed Central

    Aryal, Sudarshan K.; Davis, Richard F.; Stevenson, Katherine L.; Timper, Patricia; Ji, Pingsheng

    2011-01-01

    Systemic acquired resistance (SAR), which results in enhanced defense mechanisms in plants, can be elicited by virulent and avirulent strains of pathogens including nematodes. Recent studies of nematode reproduction strongly suggest that Meloidogyne incognita and Rotylenchulus reniformis induce SAR in cotton, but biochemical evidence of SAR was lacking. Our objective was to determine whether infection of cotton by M. incognita and R. reniformis increases the levels of P-peroxidase, G-peroxidase, and catalase enzymes which are involved in induced resistance. A series of greenhouse trials was conducted; each trial included six replications of four treatments applied to one of three cotton genotypes in a randomized complete block design. The four treatments were cotton plants inoculated with i) R. reniformis, ii) M. incognita, iii) BTH (Actigard), and iv) a nontreated control. Experiments were conducted on cotton genotypes DP 0935 B2RF (susceptible to both nematodes), LONREN-1 (resistant to R. reniformis), and M-120 RNR (resistant to M. incognita), and the level of P-peroxidase, G-peroxidase, and catalase activity was measured before and 2, 4, 6, 10, and 14 d after treatment application. In all cotton genotypes, activities of all three enzymes were higher (P ≤ 0.05) in leaves of plants infected with M. incognita and R. reniformis than in the leaves of control plants, except that M. incognita did not increase catalase activity on LONREN-1. Increased enzyme activity was usually apparent 6 d after treatment. This study documents that infection of cotton by M. incognita or R. reniformis increases the activity of the enzymes involved in systemic acquired resistance; thereby providing biochemical evidence to substantiate previous reports of nematode-induced SAR in cotton. PMID:23431029

  1. Detection of New Methicillin-Resistant Staphylococcus aureus Clones Containing the Toxic Shock Syndrome Toxin 1 Gene Responsible for Hospital- and Community-Acquired Infections in France

    PubMed Central

    Durand, Geraldine; Bes, Michèle; Meugnier, Helene; Enright, Mark C.; Forey, Françoise; Liassine, Nadia; Wenger, Aline; Kikuchi, Ken; Lina, Gerard; Vandenesch, François; Etienne, Jerome

    2006-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) clones harboring the toxic shock syndrome toxin 1 (tst) gene have been detected in France and in Switzerland since 2002. During a passive survey conducted between 2002 and 2003, we collected 103 tst-positive S. aureus isolates from 42 towns in France, of which 27 were resistant to methicillin. The tst-positive MRSA belonged to two clones: a major clone comprising 25 isolates of sequence type (ST) 5 and agr group 2 and a minor clone comprising two isolates of ST30 and agr3. The tst-positive MRSA clones were associated with both hospital-acquired (12 cases) and community-acquired (8 cases) infections. The MRSA clones were mainly isolated from children (overall median age, 3 years). They caused a variety of clinical syndromes, including toxic shock syndrome and suppurative infections. Both clones were found to harbor a type IV staphylococcal chromosomal cassette mec (SCCmec) and to have similar antibiotic resistance profiles (usually resistant to oxacillin, kanamycin, and tobramycin and with intermediate resistance to fusidic acid). The origin of these clones is unclear. The tst-positive agr2 MRSA clone has the same sequence type (ST5) of two pandemic nosocomial MRSA clones, namely, the Pediatric clone and the New York/Japan clone. These findings suggest that all these clones are phylogenetically related. The pulsotype of the tst-positive MRSA clones differed from that of methicillin-sensitive S. aureus (MSSA) clones by a single band involving the SCCmec element. These findings suggest that the tst-positive MRSA clones may have emerged from their respective MSSA counterparts. PMID:16517865

  2. Cross-platform meta-analysis of multiple gene expression profiles identifies novel expression signatures in acquired anthracycline-resistant breast cancer.

    PubMed

    Lee, Young Seok; Ryu, Seung Won; Bae, Se Jong; Park, Tae Hwan; Kwon, Kang; Noh, Yun Hee; Kim, Sung Young

    2015-04-01

    Anthracyclines are among the most effective and commonly used chemotherapeutic agents. However, the development of acquired anthracycline resistance is a major limitation to their clinical application. The aim of the present study was to identify differentially expressed genes (DEGs) and biological processes associated with the acquisition of anthracycline resistance in human breast cancer cells. We performed a meta-analysis of publically available microarray datasets containing data on stepwise-selected, anthracycline‑resistant breast cancer cell lines using the RankProd package in R. Additionally, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to analyze GO term enrichment and pathways, respectively. A protein-protein interaction (PPI) network was also generated using Cytoscape software. The meta-analysis yielded 413 DEGs related to anthracycline resistance in human breast cancer cells, and 374 of these were not involved in individual DEGs. GO analyses showed the 413 genes were enriched with terms such as 'response to steroid metabolic process', 'chemical stimulus', 'external stimulus', 'hormone stimulus', 'multicellular organismal process', and 'system development'. Pathway analysis revealed significant pathways including steroid hormone biosynthesis, cytokine-cytokine receptor interaction, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and arachidonic acid metabolism. The PPI network indicated that proteins encoded by TRIM29, VTN, CCNA1, and karyopherin α 5 (KPNA5) participated in a significant number of interactions. In conclusion, our meta-analysis provides a comprehensive view of gene expression patterns associated with acquired resistance to anthracycline in breast cancer cells, and constitutes the basis for additional functional studies. PMID:25695524

  3. The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression.

    PubMed

    Li, Xiaozun; Yang, Dong-Lei; Sun, Li; Li, Qun; Mao, Bizeng; He, Zuhua

    2016-09-01

    Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression. PMID:27378815

  4. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells.

    PubMed

    Firtina Karagonlar, Zeynep; Koc, Dogukan; Iscan, Evin; Erdal, Esra; Atabey, Neşe

    2016-04-01

    Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Limitations in HCC treatment result due to poor prognosis and resistance against traditional radiotherapy and chemotherapies. The multikinase inhibitor sorafenib is the only FDA approved drug available for advanced HCC patients, and development of second-line treatment options for patients who cannot tolerate or develop resistance to sorafenib is an urgent medical need. In this study, we established sorafenib-resistant cells from Huh7 and Mahlavu cell lines by long-term sorafenib exposure. Sorafenib-resistant HCC cells acquired spindle-shape morphology, upregulated mesenchymal markers, and showed significant increase in both migration and invasion abilities compared to their parental counterparts. Moreover, after long-term sorafenib treatment, HCC cells showed induction of hepatocyte growth factor (HGF) synthesis and secretion along with increased levels of c-Met kinase and its active phosphorylated form, indicating autocrine activation of HGF/c-Met signaling. Importantly, the combined treatment of the resistant cells with c-Met kinase inhibitor SU11274 and HGF neutralizing antibody significantly reversed the increased invasion ability of the cells. The combined treatment also significantly augmented sorafenib-induced apoptosis, suggesting restoration of sorafenib sensitivity. These results describe, for the first time, compensatory upregulation of HGF synthesis leading to autocrine activation of HGF/c-Met signaling as a novel cellular strategy in the acquisition of sorafenib resistance. Therefore, we suggest that combinatorial therapeutic strategies with HGF and c-Met inhibitors comprise promising candidates for overcoming sorafenib resistance. PMID:26790028

  5. [3rd generation's TKI in lung cancer non-small cell EGFR-mutated having acquired a secondary T790M resistance].

    PubMed

    Brosseau, Solenn; Viala, Marie; Varga, Andréa; Planchard, David; Besse, Benjamin; Soria, Jean-Charles

    2015-09-01

    Activating EGFR mutations discovery and efficacy of 1st generation tyrosine kinase inhibitors (TKI), such as erlotinib or gefitinib, inaugurated the beginning of personalized medicine in the treatment of EGFR-mutated non-small cell lung cancer (NSCLC). However, all patients showed a tumor progression of 10 to 16 months after the onset of TKI therapy related to molecular resistance mechanisms as T790M mutation. Till now, patients suffering from EGFR-mutated NSCLC with acquired resistance have conventional treatment options. Two new 3rd generations' TKI, AZD9291 and rociletinib, are currently being studied in phases 1-3 studies. Preliminary results show relevant therapeutic properties in patients with T790M mutated-EGFR NSCLC. This review aims to highlight these new molecules, their effectiveness and their clinical toxicities in the treatment of advanced stages of NSCLC expressing the T790M mutation. PMID:26235419

  6. Epidemiology, clinical manifestations, and treatment options for skin and soft tissue infection caused by community-acquired methicillin-resistant Staphylococcus aureus

    PubMed Central

    Farley, Jason E.

    2009-01-01

    Purpose: This article reviews the evolving epidemiology of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) and the appropriate outpatient management of CA-MRSA skin and soft tissue infection. Further, the paper will provide the basis upon which an individualized patient educational plan may be developed. Data Sources: To complete this review, a search of English language publications was conducted through Medline and CINAHL databases (1966–2006). Conclusions: The epidemiology of CA-MRSA is becoming increasingly complex. Research that addresses the impact of this organism in high-risk populations and within families is urgently needed. Implications for Practice: Nurse practitioners must remain informed of the epidemiology of common and emerging drug-resistant organisms in their patient populations. PMID:18271763

  7. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats.

    PubMed

    de la Torre Valdovinos, Braniff; Duenas Jimenez, Judith Marcela; Estrada, Ismael Jimenez; Banuelos Pineda, Jacinto; Franco Rodriguez, Nancy Elizabeth; Lopez Ruiz, Jose Roberto; Osuna Carrasco, Laura Paulina; Candanedo Arellano, Ahiezer; Duenas Jimenez, Sergio Horacio

    2016-01-01

    We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI), in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD) of the pendulum-like movements (PLM) during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats. PMID:27006979

  8. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats

    PubMed Central

    de la Torre Valdovinos, Braniff; Duenas Jimenez, Judith Marcela; Estrada, Ismael Jimenez; Banuelos Pineda, Jacinto; Franco Rodriguez, Nancy Elizabeth; Lopez Ruiz, Jose Roberto; Osuna Carrasco, Laura Paulina; Candanedo Arellano, Ahiezer; Duenas Jimenez, Sergio Horacio

    2016-01-01

    We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI), in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD) of the pendulum-like movements (PLM) during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats. PMID:27006979

  9. Acquired resistance to decitabine and cross-resistance to gemcitabine during the long-term treatment of human HCT116 colorectal cancer cells with decitabine

    PubMed Central

    HOSOKAWA, MIKA; SAITO, MAI; NAKANO, AIKO; IWASHITA, SAKURA; ISHIZAKA, AYANO; UEDA, KUMIKO; IWAKAWA, SEIGO

    2015-01-01

    The aim of the present study was to determine the effects of long-term exposure of decitabine (DAC) to HCT116 colorectal cancer (CRC) cells on the acquisition of resistance to DAC as well as cross-resistance to anticancer drugs used for CRC or other epigenetic modifiers. In the present study, DAC-resistant HCT116 CRC cells were established through long-term treatment with increasing concentrations of DAC (10 to 540 nM); and the cross-resistance to other drugs was subsequently examined. DAC-resistant HCT116 cells were obtained following a 104-day treatment with DAC, including DAC-free intervals. The results demonstrated that the IC50 value of DAC was increased ~100-fold in DAC-resistant HCT116 cells. Messenger (m)RNA expression of secreted frizzed-related protein 1 (SFRP1), which is regulated by DNA methylation, was not detected in DAC-resistant cells; however, SFRP1 mRNA was present in HCT116 cells treated with DAC for 52 days. DNA methyltransferase 1 (DNMT1) protein levels were slightly decreased until day 81 and then returned to control levels in DAC-resistant cells. Further experiments using DAC-resistant HCT116 cells revealed that these cells exhibited cross-resistance to gemcitabine (Gem); however, cross-resistance was not observed for other DNMT inhibitors (azacitidine and zebularine), histone deacetylase inhibitors (trichostatin A, vorinostat and valproic acid) or anticancer drugs for CRC (5-fluorouracil, irinotecan and oxaliplatin). Furthermore, the protein expression levels of cytidine deaminase (CDA) were increased, while those of deoxycytidine kinase (dCK) were decreased in DAC-resistant HCT116 cells; by contrast, the mRNA expression levels for these proteins were not significantly altered. In conclusion, the results of the present study indicated that the long-term treatment of HCT116 cells with DAC led to the acquisition of resistance to both DAC and Gem. In addition, these results may be partly attributed to changes in CDA and/or dCK, which are

  10. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors

    NASA Astrophysics Data System (ADS)

    Wei, Yuming; Poon, Daniel C.; Fei, Rong; Lam, Amy S. M.; Au-Yeung, Steve C. F.; To, Kenneth K. W.

    2016-05-01

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted.

  11. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors

    PubMed Central

    Wei, Yuming; Poon, Daniel C.; Fei, Rong; Lam, Amy S. M.; Au-Yeung, Steve C. F.; To, Kenneth K. W.

    2016-01-01

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted. PMID:27150583

  12. Comparative Genomics of Vancomycin-Resistant Staphylococcus aureus Strains and Their Positions within the Clade Most Commonly Associated with Methicillin-Resistant S. aureus Hospital-Acquired Infection in the United States

    PubMed Central

    Kos, Veronica N.; Desjardins, Christopher A.; Griggs, Allison; Cerqueira, Gustavo; Van Tonder, Andries; Holden, Matthew T. G.; Godfrey, Paul; Palmer, Kelli L.; Bodi, Kip; Mongodin, Emmanuel F.; Wortman, Jennifer; Feldgarden, Michael; Lawley, Trevor; Gill, Steven R.; Haas, Brian J.; Birren, Bruce; Gilmore, Michael S.

    2012-01-01

    ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S. aureus (VRSA) infection in the United States—all CC5 strains. To understand this genetic background and what distinguishes it from other lineages, we generated and analyzed high-quality draft genome sequences for all available VRSA strains. Sequence comparisons show unambiguously that each strain independently acquired Tn1546 and that all VRSA strains last shared a common ancestor over 50 years ago, well before the occurrence of vancomycin resistance in this species. In contrast to existing hypotheses on what predisposes this lineage to acquire Tn1546, the barrier posed by restriction systems appears to be intact in most VRSA strains. However, VRSA (and other CC5) strains were found to possess a constellation of traits that appears to be optimized for proliferation in precisely the types of polymicrobic infection where transfer could occur. They lack a bacteriocin operon that would be predicted to limit the occurrence of non-CC5 strains in mixed infection and harbor a cluster of unique superantigens and lipoproteins to confound host immunity. A frameshift in dprA, which in other microbes influences uptake of foreign DNA, may also make this lineage conducive to foreign DNA acquisition. PMID:22617140

  13. mTOR Inhibitors Control the Growth of EGFR Mutant Lung Cancer Even after Acquiring Resistance by HGF

    PubMed Central

    Ishikawa, Daisuke; Takeuchi, Shinji; Nakagawa, Takayuki; Sano, Takako; Nakade, Junya; Nanjo, Shigeki; Yamada, Tadaaki; Ebi, Hiromichi; Zhao, Lu; Yasumoto, Kazuo; Nakamura, Takahiro; Matsumoto, Kunio; Kagamu, Hiroshi; Yoshizawa, Hirohisa; Yano, Seiji

    2013-01-01

    Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), gefitinib and erlotinib, is a critical problem in the treatment of EGFR mutant lung cancer. Several mechanisms, including bypass signaling by hepatocyte growth factor (HGF)-triggered Met activation, are implicated as mediators of resistance. The mammalian target of rapamycin (mTOR), is a downstream conduit of EGFR and MET signaling, and is thus considered a therapeutically attractive target in the treatment of various types of cancers. The purpose of this study was to examine whether 2 clinically approved mTOR inhibitors, temsirolimus and everolimus, overcome HGF-dependent resistance to EGFR-TKIs in EGFR mutant lung cancer cells. Both temsirolimus and everolimus inhibited the phosphorylation of p70S6K and 4E-BP1, which are downstream targets of the mTOR pathway, and reduced the viability of EGFR mutant lung cancer cells, PC-9, and HCC827, even in the presence of HGF in vitro. In a xenograft model, temsirolimus suppressed the growth of PC-9 cells overexpressing the HGF-gene; this was associated with suppression of the mTOR signaling pathway and tumor angiogenesis. In contrast, erlotinib did not suppress this signaling pathway or tumor growth. Multiple mechanisms, including the inhibition of vascular endothelial growth factor production by tumor cells and suppression of endothelial cell viability, contribute to the anti-angiogenic effect of temsirolimus. These findings indicate that mTOR inhibitors may be useful for controlling HGF-triggered EGFR-TKI resistance in EGFR mutant lung cancer, and they provide the rationale for clinical trials of mTOR inhibitors in patients stratified by EGFR mutation and HGF expression status. PMID:23690929

  14. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway.

    PubMed

    Niu, Dongdong; Wang, Xiujuan; Wang, Yanru; Song, Xiaoou; Wang, Jiansheng; Guo, Jianhua; Zhao, Hongwei

    2016-01-01

    Induced resistance responses play a potent role in plant defense system against pathogen attack. Bacillus cereus AR156 is a plant growth promoting rhizobacterium (PGPR) that installs induced systemic resistance (ISR) to Pseudomonas syringae pv. tomato (Pst) in Arabidopsis. Here, we show that AR156 leaf infiltration enhances disease resistance in Arabidopsis through the activation of a systemic acquired resistance (SAR). PR1 protein expression and reactive oxygen species (ROS) burst are strongly induced in plants treated with AR156 and inoculated with Pst than that in plants inoculated with Pst only. Moreover, AR156 can trigger SAR in jar1 or ein2 mutants, but not in the NahG transgenic and NPR1 mutant plants. Our results indicate that AR156-induced SAR depends on SA-signaling pathway and NPR1, but not JA and ET. Also, AR156-treated plants are able to rapidly activate MAPK signaling and FRK1 gene expression, which are involved in pathogen associated molecular pattern (PAMP)-triggered immunity (PTI). Altogether, our results indicate that AR156 can induce SAR by the SA-signaling pathways in an NPR1-dependent manner and involves multiple PTI components. PMID:26616055

  15. Antimicrobial susceptibility patterns of community- and hospital-acquired methicillin-resistant Staphylococcus aureus from United States Hospitals: results from the AWARE Ceftaroline Surveillance Program (2012-2014).

    PubMed

    Sader, Helio S; Mendes, Rodrigo E; Jones, Ronald N; Flamm, Robert K

    2016-09-01

    Among 8437 methicillin-resistant Staphylococcus aureus (MRSA) isolates collected from 143 medical centers in the United States (2012-2014), 7116 and 1321 were reported as community-acquired (CA) and hospital-acquired (HA) MRSA, respectively. CA-/HA-MRSA were most often isolated from patients with skin and skin structure infections (SSSI; 68.4/26.9%), pneumonia (13.7/49.0%) and bacteremia (10.0/17.7%). Overall, susceptibility rates were generally lower among HA-MRSA compared to CA-MRSA strains, especially for clindamycin (44.6 vs. 66.1%) and levofloxacin (21.4 vs. 35.5%). Also, susceptibility rates were lower for these two compounds among isolates from pneumonia compared to SSSI and bacteremia. Ceftaroline was broadly active against 98.0% of CA-MRSA and 94.3% of HA-MRSA (MIC50/90, 1μg/mL for both; no resistant isolate) overall, with little variation among infection type subsets. PMID:27394637

  16. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced NSCLC patients with acquired EGFR-TKI resistance.

    PubMed

    Zheng, D; Ye, X; Zhang, M Z; Sun, Y; Wang, J Y; Ni, J; Zhang, H P; Zhang, L; Luo, J; Zhang, J; Tang, L; Su, B; Chen, G; Zhu, G; Gu, Y; Xu, J F

    2016-01-01

    EGFR T790M mutation occurs in half of non-small cell lung cancer (NSCLC) patients with acquired EGFR-TKI (TKI) resistance, based on tumor re-biopsies using an invasive clinical procedure. Here, we dynamically monitored T790M mutation in circulating tumor DNA (ctDNA) using serial plasma samples from NSCLC patients receiving TKI through Droplet Digital PCR (ddPCR) method and the associations between overall survival (OS) starting from initial TKI treatment and the T790M ctDNA status detected in plasma were analyzed. Among 318 patients, 117 who acquired TKI resistance were eligible for the analysis. T790M ctDNA was detected in the plasma of 55/117 (47%) patients. Almost half of the T790M ctDNA positive patients were identified at a median time of 2.2 months prior to clinically progressive disease (PD). Furthermore, within the patients receiving TKI treatment at 2(nd) line or later, the T790M ctDNA positive group had significantly shorter OS than the negative group (median OS: 26.9 months versus NA, P = 0.0489). Our study demonstrates the feasibility of monitoring EGFR mutation dynamics in serial plasma samples from NSCLC patients receiving TKI therapy. T790M ctDNA can be detected in plasma before and after PD as a poor prognostic factor. PMID:26867973

  17. What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC)

    PubMed Central

    Drilon, A.; Li, G.; Dogan, S.; Gounder, M.; Shen, R.; Arcila, M.; Wang, L.; Hyman, D. M.; Hechtman, J.; Wei, G.; Cam, N. R.; Christiansen, J.; Luo, D.; Maneval, E. C.; Bauer, T.; Patel, M.; Liu, S. V.; Ou, S. H. I.; Farago, A.; Shaw, A.; Shoemaker, R. F.; Lim, J.; Hornby, Z.; Multani, P.; Ladanyi, M.; Berger, M.; Katabi, N.; Ghossein, R.; Ho, A. L.

    2016-01-01

    Background Mammary analogue secretory carcinoma (MASC) is a recently described pathologic entity. We report the case of a patient with an initial diagnosis of salivary acinic cell carcinoma later reclassified as MASC after next-generation sequencing revealed an ETV6-NTRK3 fusion. Patients and methods This alteration was targeted with the pan-Trk inhibitor entrectinib (Ignyta), which possesses potent in vitro activity against cell lines containing various NTRK1/2/3 fusions. Results A dramatic and durable response was achieved with entrectinib in this patient, followed by acquired resistance that correlated with the appearance of a novel NTRK3 G623R mutation. Structural modeling predicts that this alteration sterically interferes with drug binding, correlating to decreased sensitivity to drug inhibition observed in cell-based assays. Conclusions This first report of clinical activity with TrkC inhibition and the development of acquired resistance in an NTRK3-rearranged cancer emphasize the utility of comprehensive molecular profiling and targeted therapy for rare malignancies (NCT02097810). PMID:26884591

  18. Humoral immunity in experimental syphilis. II. The relationship of neutralizing factors in immune serum to acquired resistance.

    PubMed

    Bishop, N H; Miller, J N

    1976-07-01

    Evidence for a humoral mechanism in immunity to experimental syphilis was provided by the demonstration of immune rabbit serum factor(s) capable of inactivating virulent Treponema pallidum, Nichols strain, in an in vitro-in vivo neutralization test. After intratesticular infection, rabbits were bled periodically and their resistance to reinfection was determined by challenge with T. pallidum. The results of challenge showed that resistance to reinfection begins to develop by 11 days after infection, becomes complete by 3 months, and persists for at least 2 years. In the neutralization test, a mixture of treponemal suspension and serum from the infected animals was incubated anaerobically at 34 degrees C and the virulence of the treponemes was determined by intradermal inoculation into normal rabbits. Complete inactivation of treponemes by immune serum required heat-stable and heat-labile (56 degrees C, 30 min) serum components and 16 hr of incubation, and was accelerated by pre-incubation of the treponemes for 4 hr with nonimmune serum but not by 100 mug/ml of added lysozyme. Serum-neutralizing activity, first demonstrable 1 month postinfection, was quantitated by a neutralizing endpoint (NEP). A relatively close quantitative correlation was shown between the development of resistance to symptomatic reinfection and the appearance and persistence of both TPI antibody and neutralizing serum factor(s). The nature of the serum factor(s), the mechanism of treponemal inactivation, and the application of the test in assessing the immune status are discussed. PMID:778262

  19. The novel ATP-competitive MEK/Aurora kinase inhibitor BI-847325 overcomes acquired BRAF inhibitor resistance through suppression of Mcl-1 and MEK expression

    PubMed Central

    Phadke, Manali S.; Sini, Patrizia; Smalley, Keiran S. M.

    2015-01-01

    Resistance to BRAF inhibitors is a major clinical problem. Here we evaluate BI-847325, an ATP-competitive inhibitor of MEK and Aurora kinases, in treatment-naïve and drug-resistant BRAF-mutant melanoma models. BI-847325 potently inhibited growth and survival of melanoma cell lines that were both BRAF inhibitor naïve and resistant in 2D culture, 3D cell culture conditions and in colony formation assays. Western blot studies showed BI-847325 to reduce expression of phospho-ERK and phospho-histone 3 in multiple models of vemurafenib resistance. Mechanistically, BI-847325 decreased the expression of MEK and Mcl-1 while increasing the expression of the pro-apoptotic protein BIM. Strong suppression of MEK expression was observed after 48 h of treatment, with no recovery following >72 h of washout. siRNA mediated knockdown of Mcl-1 enhanced the effects of BI-847325, whereas Mcl-1 overexpression reversed this in both 2D cell culture and 3D spheroid melanoma models. In vivo, once weekly BI-847325 (70 mg/kg) led to durable regression of BRAF-inhibitor naive xenografts with no regrowth seen (>65 days of treatment). In contrast, treatment with the vemurafenib analog PLX4720 was associated with tumor relapse at >30 days. BI-847325 also suppressed the long-term growth of xenografts with acquired PLX4720 resistance. Analysis of tumor samples revealed BI-847325 to induce apoptosis associated with suppression of phospho-ERK, total MEK, phospho-Histone3 and Mcl-1 expression. Our studies indicate that BI-847325 is effective in overcoming BRAF inhibitor resistance and has long-term inhibitory effects upon BRAF-mutant melanoma in vivo, through a mechanism associated with the decreased expression of both MEK and Mcl-1. PMID:25873592

  20. Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model

    PubMed Central

    2011-01-01

    Background Cancer is a proliferation disease affecting a genetically unstable cell population, in which molecular alterations can be somatically inherited by genetic, epigenetic or extragenetic transmission processes, leading to a cooperation of neoplastic cells within tumoural tissue. The efflux protein P-glycoprotein (P-gp) is overexpressed in many cancer cells and has known capacity to confer multidrug resistance to cytotoxic therapies. Recently, cell-to-cell P-gp transfers have been shown. Herein, we combine experimental evidence and a mathematical model to examine the consequences of an intercellular P-gp trafficking in the extragenetic transfer of multidrug resistance from resistant to sensitive cell subpopulations. Methodology and Principal Findings We report cell-to-cell transfers of functional P-gp in co-cultures of a P-gp overexpressing human breast cancer MCF-7 cell variant, selected for its resistance towards doxorubicin, with the parental sensitive cell line. We found that P-gp as well as efflux activity distribution are progressively reorganized over time in co-cultures analyzed by flow cytometry. A mathematical model based on a Boltzmann type integro-partial differential equation structured by a continuum variable corresponding to P-gp activity describes the cell populations in co-culture. The mathematical model elucidates the population elements in the experimental data, specifically, the initial proportions, the proliferative growth rates, and the transfer rates of P-gp in the sensitive and resistant subpopulations. Conclusions We confirmed cell-to-cell transfer of functional P-gp. The transfer process depends on the gradient of P-gp expression in the donor-recipient cell interactions, as they evolve over time. Extragenetically acquired drug resistance is an additional aptitude of neoplastic cells which has implications in the diagnostic value of P-gp expression and in the design of chemotherapy regimens. Reviewers This article was reviewed by

  1. The Novel ATP-Competitive MEK/Aurora Kinase Inhibitor BI-847325 Overcomes Acquired BRAF Inhibitor Resistance through Suppression of Mcl-1 and MEK Expression.

    PubMed

    Phadke, Manali S; Sini, Patrizia; Smalley, Keiran S M

    2015-06-01

    Resistance to BRAF inhibitors is a major clinical problem. Here, we evaluate BI-847325, an ATP-competitive inhibitor of MEK and Aurora kinases, in treatment-naïve and drug-resistant BRAF-mutant melanoma models. BI-847325 potently inhibited growth and survival of melanoma cell lines that were both BRAF inhibitor naïve and resistant in 2D culture, 3D cell culture conditions, and in colony formation assays. Western blot studies showed BI-847325 to reduce expression of phospho-ERK and phospho-histone 3 in multiple models of vemurafenib resistance. Mechanistically, BI-847325 decreased the expression of MEK and Mcl-1 while increasing the expression of the proapoptotic protein BIM. Strong suppression of MEK expression was observed after 48 hours of treatment, with no recovery following >72 hours of washout. siRNA-mediated knockdown of Mcl-1 enhanced the effects of BI-847325, whereas Mcl-1 overexpression reversed this in both 2D cell culture and 3D spheroid melanoma models. In vivo, once weekly BI-847325 (70 mg/kg) led to durable regression of BRAF-inhibitor naïve xenografts with no regrowth seen (>65 days of treatment). In contrast, treatment with the vemurafenib analog PLX4720 was associated with tumor relapse at >30 days. BI-847325 also suppressed the long-term growth of xenografts with acquired PLX4720 resistance. Analysis of tumor samples revealed BI-847325 to induce apoptosis associated with suppression of phospho-ERK, total MEK, phospho-Histone3, and Mcl-1 expression. Our studies indicate that BI-847325 is effective in overcoming BRAF inhibitor resistance and has long-term inhibitory effects upon BRAF-mutant melanoma in vivo, through a mechanism associated with the decreased expression of both MEK and Mcl-1. PMID:25873592

  2. The Effect of Infection Control Nurses on the Occurrence of Pseudomonas aeruginosa Healthcare-Acquired Infection and Multidrug-Resistant Strains in Critically-Ill Children

    PubMed Central

    Xu, Wei; He, Linxi; Liu, Chunfeng; Rong, Jian; Shi, Yongyan; Song, Wenliang; Zhang, Tao; Wang, Lijie

    2015-01-01

    Background Healthcare-acquired Pseudomonas aeruginosa (P. aeruginosa) infections in the Pediatric Intensive Care Unit (PICU), which have a high incidence, increase treatment costs and mortality, and seriously threaten the safety of critically ill children. It is essential to seek convenient and effective methods to control and prevent healthcare-acquired infections (HAIs). This research was conducted to study the effect of infection control nurses on the occurrence of P. aeruginosa HAIs and multi-drug resistance (MDR) strains in PICU. Methods The clinical data was divided into two groups, with the age ranging from 1 month to 14 years. One group of the critically ill patients(N = 3,722) was admitted to PICU from 2007 to 2010, without the management of infection control nurses. The other group of the critically ill patients (N = 3,943) was admitted to PICU from 2011 to 2013, with the management of infection control nurses. Compare the mortality, morbidity and the incidence of acquired P. aeruginosa infections to evaluate the effect of infection control nurses. Results After implementation of the post of infection control nurses, the patient's overall mortality fell from 4.81% to 3.73%. Among the patients with endotracheal intubation more than 48 hours, the incidence of endotracheal intubation-related pneumonia decreased from 44.6% to 34.32%. The mortality of patients with endotracheal intubation decreased from 16.96% to 10.17%, and the morbidity of HAIs with P. aeruginosa decreased from 1.89% to 1.07%. The mutual different rate (MDR) dropped from 67.95% to 44.23%. There were remarkable differences in these rates between the two groups (p<0.05). Conclusion Implementing the post of infection control nurses is associated with effectively reducing the HAI rate, especially the incidence and morbidity of P. aeruginosa HAIs, reducing PICU mortality, improving P. aeruginosa drug resistance. PMID:26630032

  3. Exemestane Following Tamoxifen Reduces Breast Cancer Recurrences and Prolongs Survival

    Cancer.gov

    Postmenopausal women with early-stage hormone receptor-positive breast cancer had delayed disease recurrence and longer survival after taking 2-3 years of tamoxifen followed by exemestane for a total of 5 years compared to taking tamoxifen for 5 years.

  4. Estradiol and tamoxifen interaction at receptor sites at 37 C.

    PubMed

    Fishman, J H

    1983-09-01

    Mature rat uterine cytosol was pretreated with dextran-coated charcoal at 0 C for 2 h. This renders the subsequently formed estradiol-receptor complex thermostable at 37 C and also uncovers antiestrogen binding sites, possibly by removing an endogenous ligand. A sharp distinction is found between tamoxifen and estradiol as receptor ligands in pretreated cytosols in that tamoxifen will inhibit estradiol binding, on incubation at 37 C, only if dithiothreitol (DTT) had been included in the pretreatment solution. The presence of tamoxifen as the sole ligand in cytosol pretreated in the presence of DTT does not protect the estradiol receptor from thermal inactivation and following 37 C incubation tamoxifen is found bound exclusively to antiestrogen binding sites. Incubating the cytosol at 37 C with an equimolar mixture of estradiol and tamoxifen results in a very large increase in receptor-bound estradiol. This effect is attributed to the presence of tamoxifen complexed with antiestrogen sites. Tamoxifen in such equimolar ligand mixture binds to antiestrogen sites and is excluded from receptor sites by the estradiol, whose affinity for these sites is much greater than that of tamoxifen. PMID:6191968

  5. MC32 tumor cells acquire Ag-specific CTL resistance through the loss of CEA in a colon cancer model

    PubMed Central

    Lee, Sang-Yeul; Sin, Jeong-Im

    2015-01-01

    We previously reported that MC32 cells resist carcinoembryonic antigen (CEA) DNA vaccination by losing their antigen presentation to Ag-specific CTLs in the context of MHC class I antigens in a colon cancer therapeutic model. In this study, we selected 2 tumor cells, MC32-S2–2 and MC32-S4–2, which have the ability to form tumors in CEA DNA vaccine-immunized mice. Wild type MC32 cells grew significantly less in CEA-immunized mice (with Ag-specific CTL lytic activity) than in control mice (with no Ag-specific CTL lytic activity). However, MC32-S2–2 and MC32-S4–2 cells grew at a similar rate in both control and CEA-immunized mice, confirming their resistant status against CEA DNA vaccination. MC32-S2–2 and MC32-S4–2 cells were not susceptible to lysis by CEA-specific CD8+ T cells. Moreover, when MC32-S2–2 and MC32-S4–2 cells were used as stimulating agents of CEA-specific immune cells for IFN-γ production, these cells failed to stimulate the induction of Ag-specific IFN-γ, suggesting a loss of tumor cell recognition by Ag-specific immune cells. However, MC32-S2–2 and MC32-S4–2 cells expressed MHC class I antigens in a manner similar to that of wild type MC32 cells. Finally, Western blot assay confirmed that in MC32-S2–2 and MC32-S4–2 cells, CEA expression remained absent but mouse CEA was expressed. Taken together, these data show that MC32 cells may also be able to achieve resistance to CEA-specific CTLs by antigen loss in this model. PMID:25902414

  6. Elevated Cellular PD1/PD-L1 Expression Confers Acquired Resistance to Cisplatin in Small Cell Lung Cancer Cells.

    PubMed

    Yan, Fei; Pang, Jiuxia; Peng, Yong; Molina, Julian R; Yang, Ping; Liu, Shujun

    2016-01-01

    Although small cell lung cancer (SCLC) is highly responsive to chemotherapies (e.g., cisplatin-etoposide doublet), virtually almost all responsive SCLC patients experience disease recurrence characterized by drug resistance. The mechanisms underlying cisplatin resistance remain elusive. Here we report that cell-intrinsic expression of PD1 and PD-L1, two immune checkpoints, is required for sustained expansion of SCLC cells under cisplatin selection. Indeed, PD1 and PD-L1 were expressed at a higher level in lung cancer cell lines, tumor tissues, and importantly, in SCLC cells resistant to cisplatin (H69R, H82R), when compared to respective controls. Genetic abrogation of PD1 and PD-L1 in H69R and H82R cells decreased their proliferation rate, and restored their sensitivity to cisplatin. Mechanistically, PD-L1 upregulation in H69R and H82R cells was attributed to the overexpression of DNA methyltransferase 1 (DNMT1) or receptor tyrosine kinase KIT, as knockdown of DNMT1 or KIT in H69R and H82R cells led to PD-L1 downregulation. Consequently, combined knockdown of PD-L1 with KIT or DNMT1 resulted in more pronounced inhibition of H69R and H82R cell growth. Thus, cell intrinsic PD1/PD-L1 signaling may be a predictor for poor efficacy of cisplatin treatment, and targeting the cellular PD1/PD-L1 axis may improve chemosensitization of aggressive SCLC. PMID:27610620

  7. Trends towards lower antimicrobial susceptibility and characterization of acquired resistance among clinical isolates of Brachyspira hyodysenteriae in Spain.

    PubMed

    Hidalgo, Álvaro; Carvajal, Ana; Vester, Birte; Pringle, Märit; Naharro, Germán; Rubio, Pedro

    2011-07-01

    The antimicrobial susceptibility of clinical isolates of Brachyspira hyodysenteriae in Spain was monitored, and the underlying molecular mechanisms of resistance were investigated. MICs of tylosin, tiamulin, valnemulin, lincomycin, and tylvalosin were determined for 87 B. hyodysenteriae isolates recovered from 2008 to 2009 by broth dilution. Domain V of the 23S rRNA gene and the ribosomal protein L3 gene were sequenced in 20 isolates for which the tiamulin MIC was ≥ 4 μg/ml, presenting decreased susceptibility, and in 18 tiamulin-susceptible isolates (MIC ≤ 0.125 μg/ml), and all isolates were typed by multiple-locus variable-number tandem repeats analysis. A comparison with antimicrobial susceptibility data from 2000 to 2007 showed an increase in pleuromutilin resistance over time, doubling the number of isolates with decreased susceptibility to tiamulin. No alteration in susceptibility was detected for lincomycin, and the MIC of tylosin remained high (MIC(50) > 128 μg/ml). The decreased susceptibility to tylosin and lincomycin can be explained by mutations at position A2058 of the 23S rRNA gene (Escherichia coli numbering). A2058T was the predominant mutation, but A2058G also was found together with a change of the neighboring base pair at positions 2057 to 2611. The role of additional point mutations in the vicinity of the peptidyl transferase center and mutations in the L3 at amino acids 148 and 149 and their possible involvement in antimicrobial susceptibility are considered. An association between G2032A and high levels of tiamulin and lincomycin MICs was found, suggesting an increasing importance of this mutation in antimicrobial resistance of clinical isolates of B. hyodysenteriae. PMID:21555771

  8. Tamoxifen Action in ER-Negative Breast Cancer

    PubMed Central

    Manna, Subrata; Holz, Marina K.

    2016-01-01

    Breast cancer is a highly heterogeneous disease. Tamoxifen is a selective estrogen receptor (ER) modulator and is mainly indicated for the treatment of breast cancer in postmenopausal women and postsurgery neoadjuvant therapy in ER-positive breast cancers. Interestingly, 5–10% of the ER-negative breast cancers have also shown sensitivity to tamoxifen treatment. The involvement of molecular markers and/or signaling pathways independent of ER signaling has been implicated in tamoxifen sensitivity in the ER-negative subgroup. Studies reveal that variation in the expression of estrogen-related receptor alpha, ER subtype beta, tumor microenvironment, and epigenetics affects tamoxifen sensitivity. This review discusses the background of the research on the action of tamoxifen that may inspire future studies to explore effective therapeutic strategies for the treatment of ER-negative and triple-negative breast cancers, the latter being an aggressive disease with worse clinical outcome. PMID:26989346

  9. Modification of sphingolipid metabolism by tamoxifen and N-desmethyltamoxifen in acute myelogenous leukemia – Impact on enzyme activity and response to cytotoxics

    PubMed Central

    Morad, Samy A. F.; Tan, Su-Fern; Feith, David J.; Kester, Mark; Claxton, David F.; Loughran, Thomas P.; Barth, Brian M.; Fox, Todd E.; Cabot, Myles C.

    2015-01-01

    The triphenylethylene antiestrogen, tamoxifen, can be an effective inhibitor of sphingolipid metabolism. This off-target activity makes tamoxifen an interesting ancillary for boosting the apoptosis-inducing properties of ceramide, a sphingolipid with valuable tumor censoring activity. Here we show for the first time that tamoxifen and metabolite, N –desmethyltamoxifen (DMT) block ceramide glycosylation and inhibit ceramide hydrolysis (by acid ceramidase, AC) in human acute myelogenous leukemia (AML) cell lines and in AML cells derived from patients. Tamoxifen (1-10 μM) inhibition of AC in AML cells was accompanied by decreases in AC protein expression. Tamoxifen also depressed expression and activity of sphingosine kinase 1 (SphK1), the enzyme catalyzing production of mitogenic sphingosine 1-phosphate (S1-P). Results from mass spectroscopy showed that tamoxifen and DMT, i ) increased the levels of endogenous C16:0- and C24:1 ceramide molecular species, ii) nearly totally halted production of respective glucosylceramide (GC) molecular species, iii ) drastically reduced levels of sphingosine ( to 9% of control), and iv ) reduced levels of S1-P by 85%, in vincristine-resistant HL-60/VCR cells. Co-administration of tamoxifen with either N-(4-hydroxyphenyl)retinamide (4-HPR), a ceramide-generating retinoid, or a cell-deliverable form of ceramide, C6-ceramide, resulted in marked decreases in HL-60/VCR cell viability that far exceeded single agent potency. Combination treatments resulted in synergistic apoptotic cell death as gauged by increased Annexin V binding and DNA fragmentation and activation of caspase-3. These results show the versatility of adjuvant triphenylethylene with ceramide-centric therapies for magnifying therapeutic potential in AML. Such drug regimens could serve as effective strategies, even in the multidrug resistant setting. PMID:25769964

  10. Effects of Pharmacogenetics on the Pharmacokinetics and Pharmacodynamics of Tamoxifen.

    PubMed

    de Vries Schultink, Aurelia H M; Zwart, Wilbert; Linn, Sabine C; Beijnen, Jos H; Huitema, Alwin D R

    2015-08-01

    The antiestrogenic drug tamoxifen is widely used in the treatment of estrogen receptor-α-positive breast cancer and substantially decreases recurrence and mortality rates. However, high interindividual variability in response is observed, calling for a personalized approach to tamoxifen treatment. Tamoxifen is bioactivated by cytochrome P450 (CYP) enzymes such as CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4/5, resulting in the formation of active metabolites, including 4-hydroxy-tamoxifen and endoxifen. Therefore, polymorphisms in the genes encoding these enzymes are proposed to influence tamoxifen and active tamoxifen metabolites in the serum and consequently affect patient response rates. To tailor tamoxifen treatment, multiple studies have been performed to clarify the influence of polymorphisms on its pharmacokinetics and pharmacodynamics. Nevertheless, personalized treatment of tamoxifen based on genotyping has not yet met consensus. This article critically reviews the published data on the effect of various genetic polymorphisms on the pharmacokinetics and pharmacodynamics of tamoxifen, and reviews the clinical implications of its findings. For each CYP enzyme, the influence of polymorphisms on pharmacokinetic and pharmacodynamic outcome measures is described throughout this review. No clear effects on pharmacokinetics and pharmacodynamics were seen for various polymorphisms in the CYP encoding genes CYP2B6, CYP2C9, CYP2C19 and CYP3A4/5. For CYP2D6, there was a clear gene-exposure effect that was able to partially explain the interindividual variability in plasma concentrations of the pharmacologically most active metabolite endoxifen; however, a clear exposure-response effect remained controversial. These controversial findings and the partial contribution of genotype in explaining interindividual variability in plasma concentrations of, in particular, endoxifen, imply that tailored tamoxifen treatment may not be fully realized through pharmacogenetics of

  11. Continuous administration of bevacizumab plus capecitabine, even after acquired resistance to bevacizumab, restored anti-angiogenic and antitumor effect in a human colorectal cancer xenograft model.

    PubMed

    Iwai, Toshiki; Sugimoto, MasamichI; Harada, Suguru; Yorozu, Keigo; Kurasawa, Mitsue; Yamamoto, Kaname

    2016-08-01

    Vascular endothelial growth factor (VEGF)-neutralizing therapy with bevacizumab has become increasingly important for treating colorectal cancer. It was demonstrated that second-line chemotherapy together with bevacizumab after disease progression (PD) on first-line therapy including bevacizumab showed clinical benefits in metastatic colorectal and breast cancers (ML18147 trial, TANIA trial). One of the rationales for these trials was that the refractoriness to first-line therapy is caused by resistance to not so much bevacizumab as to the chemotherapeutic agents. Nevertheless, resistance to bevacizumab cannot be ruled out because VEGF-independent angiogenesis has been reported to be a mechanism of resistance to anti-VEGF therapy. In this study, we used a xenograft model with the human colon cancer HT-29 cells to investigate the mechanisms underlying the effect of continued administration of bevacizumab plus capecitabine even after resistance to bevacizumab was acquired. The combination of capecitabine plus bevacizumab exhibited significantly stronger antitumor and anti-angiogenic activities than did monotherapy with either agent. Capecitabine treatment significantly increased the intratumoral VEGF level compared with the control group; however, the combination with bevacizumab neutralized the VEGF. Among angiogenic factors other than VEGF, intratumoral galectin-3, which reportedly promotes angiogenesis both dependent on, and independently of VEGF, was significantly decreased in the capecitabine group and the combination group compared with the control group. In an in vitro experiment, 5-fluorouracil (5-FU), an active metabolite of capecitabine, inhibited galectin-3 production by HT-29 cells. These results suggested that capecitabine has a dual mode of action: namely, inhibition of tumor cell growth and inhibition of galectin-3 production by tumor cells. Thus, capecitabine and bevacizumab may work in a mutually complementary manner in tumor angiogenesis inhibition

  12. Continuous administration of bevacizumab plus capecitabine, even after acquired resistance to bevacizumab, restored anti-angiogenic and antitumor effect in a human colorectal cancer xenograft model

    PubMed Central

    Iwai, Toshiki; Sugimoto, Masamichi; Harada, Suguru; Yorozu, Keigo; Kurasawa, Mitsue; Yamamoto, Kaname

    2016-01-01

    Vascular endothelial growth factor (VEGF)-neutralizing therapy with bevacizumab has become increasingly important for treating colorectal cancer. It was demonstrated that second-line chemotherapy together with bevacizumab after disease progression (PD) on first-line therapy including bevacizumab showed clinical benefits in metastatic colorectal and breast cancers (ML18147 trial, TANIA trial). One of the rationales for these trials was that the refractoriness to first-line therapy is caused by