Science.gov

Sample records for acquired ultrasound images

  1. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  2. Transvaginal ultrasound (image)

    MedlinePlus

    Transvaginal ultrasound is a method of imaging the genital tract in females. A hand held probe is inserted directly ... vaginal cavity to scan the pelvic structures, while ultrasound pictures are viewed on a monitor. The test ...

  3. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  4. Vascular ultrasound for atherosclerosis imaging

    PubMed Central

    de Korte, Chris L.; Hansen, Hendrik H. G.; van der Steen, Anton F. W.

    2011-01-01

    Cardiovascular disease is a leading cause of death in the Western world. Therefore, detection and quantification of atherosclerotic disease is of paramount importance to monitor treatment and possible prevention of acute events. Vascular ultrasound is an excellent technique to assess the geometry of vessel walls and plaques. The high temporal as well as spatial resolution allows quantification of luminal area and plaque size and volume. While carotid arteries can be imaged non-invasively, scanning of coronary arteries requires invasive intravascular catheters. Both techniques have already demonstrated their clinical applicability. Using linear array technology, detection of disease as well as monitoring of pharmaceutical treatment in carotid arteries are feasible. Data acquired with intravascular ultrasound catheters have proved to be especially beneficial in understanding the development of atherosclerotic disease in coronary arteries. With the introduction of vascular elastography not only the geometry of plaques but also the risk for rupture of plaques might be identified. These so-called vulnerable plaques are frequently not flow-limiting and rupture of these plaques is responsible for the majority of cerebral and cardiac ischaemic events. Intravascular ultrasound elastography studies have demonstrated a high correlation between high strain and vulnerable plaque features, both ex vivo and in vivo. Additionally, pharmaceutical intervention could be monitored using this technique. Non-invasive vascular elastography has recently been developed for carotid applications by using compound scanning. Validation and initial clinical evaluation is currently being performed. Since abundance of vasa vasorum (VV) is correlated with vulnerable plaque development, quantification of VV might be a unique tool to even prevent this from happening. Using ultrasound contrast agents, it has been demonstrated that VV can be identified and quantified. Although far from routine

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  6. [Ultrasound imaging in laryngology].

    PubMed

    Zajkowski, Piotr; Białek, Ewa J

    2007-01-01

    Modern ultrasound with high resolution transducers, and sensitive power Doppler and color Doppler modes, and other options, such as panoramic and 3D imaging, allows for detailed imaging of many anatomical structures and pathologic lesions of the head and neck. Only the structures situated in the sonographic acoustic shadow: behind bones, calcified cartilages, stones, and behind organs containing gas (f.e. trachea and larynx) can not be visualized. Ultrasound is widely regarded as the first imaging method in the diseases of the thyroid, salivary glands (parotid gland, submandibular gland and sublingual gland), lymph nodes, muscles, soft tissues of the head and neck, and as an valuable adjunct in some laryngeal pathologies. Real time ultrasound examination allows for dynamic assessment of organs and lesions, lets the examiner check the susceptibility of tumors for pressure, which is inaccessible in other imaging methods. Tumors and congenital lesions, inflammation, abscesses, abnormal lymph nodes, cysts, muscle hypertrophy and posttraumatic conditions may be well evaluated with ultrasound. However, most neck tumors (f.e. in the thyroid, salivary glands, and soft tisses) as well as equivocal lymph nodes demand fine needle aspiration biopsy to determine their benign or malignant nature. This paper presents application of ultrasound examination in the head and neck area including limitations of ultrasound diagnostics in many clinical cases. Data taken from Polish and foreign literature and author's experience are included in this paper.

  7. Clinical Evaluation of Spatial Accuracy of a Fusion Imaging Technique Combining Previously Acquired Computed Tomography and Real-Time Ultrasound for Imaging of Liver Metastases

    SciTech Connect

    Hakime, Antoine Deschamps, Frederic; Garcia Marques de Carvalho, Enio; Teriitehau, Christophe; Auperin, Anne; De Baere, Thierry

    2011-04-15

    Purpose: This study was designed to evaluate the spatial accuracy of matching volumetric computed tomography (CT) data of hepatic metastases with real-time ultrasound (US) using a fusion imaging system (VNav) according to different clinical settings. Methods: Twenty-four patients with one hepatic tumor identified on enhanced CT and US were prospectively enrolled. A set of three landmarks markers was chosen on CT and US for image registration. US and CT images were then superimposed using the fusion imaging display mode. The difference in spatial location between the tumor visible on the CT and the US on the overlay images (reviewer no. 1, comment no. 2) was measured in the lateral, anterior-posterior, and vertical axis. The maximum difference (Dmax) was evaluated for different predictive factors.CT performed 1-30 days before registration versus immediately before. Use of general anesthesia for CT and US versus no anesthesia.Anatomic landmarks versus landmarks that include at least one nonanatomic structure, such as a cyst or a calcificationResultsOverall, Dmax was 11.53 {+-} 8.38 mm. Dmax was 6.55 {+-} 7.31 mm with CT performed immediately before VNav versus 17.4 {+-} 5.18 with CT performed 1-30 days before (p < 0.0001). Dmax was 7.05 {+-} 6.95 under general anesthesia and 16.81 {+-} 6.77 without anesthesia (p < 0.0015). Landmarks including at least one nonanatomic structure increase Dmax of 5.2 mm (p < 0.0001). The lowest Dmax (1.9 {+-} 1.4 mm) was obtained when CT and VNav were performed under general anesthesia, one immediately after the other. Conclusions: VNav is accurate when adequate clinical setup is carefully selected. Only under these conditions (reviewer no. 2), liver tumors not identified on US can be accurately targeted for biopsy or radiofrequency ablation using fusion imaging.

  8. Ultrasound imaging during pregnancy.

    PubMed

    Gold, R B

    1984-01-01

    Review by a panel of experts convened by the National Institute of Health (NIH) and the Federal Food and Drug Administration (FDA) resulted in a recommendation for diagnostic ultrasound imaging in about 1/3 of pregnancies only when medically indicated but not routinely. Ultrasound technology, 1st developed for use in submarine warfare sonar devices, is widely used by physicians because of its clinical significance and because it allows seeing intrauterine structures without exposing the fetus to dangerous radiation. Its most important uses include estimating the gestational age for patients with uncertain clinical dates, evaluating fetal growth, determining the cause of vaginal bleeding, determining fetal presentation, identifying multiple gestation, supplementing amniocentesis or other special procedures, diagnosing, confirming fetal death and locating intrauterine devices. Recently, many physicians have been advocating routine ultrasound screening of all pregnancies but this is an issue of concern among leading physicians and the NIH. The panel stressed the urgent need for additional research on the safety and efficacy of the procedure. Many studies that found adverse reactions associated with ultrasound use in humans suffer from sever methodological flaws. The panel recommended ultrasound not to be used for routine screening. Some studies indicate that no clear benefit from routine screening results. The panel's recommendations were criticized for unnecessarily restricting ultrasound use and for inappropriately sanctioning widespread use of the technology. Human Life International, an anti-abortion organization, opposed using ultrasound to detect fetal abnormalities, contending that this would promote abortion. Some abortion opponents, however, believe ultrasound would cause bonding between the mother and the fetus and discourage abortion. The panel underscored the importance of the skill and training of ultrasound examiners. In regard to informed consent, the

  9. Cardiac 4D Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    D'hooge, Jan

    Volumetric cardiac ultrasound imaging has steadily evolved over the last 20 years from an electrocardiography (ECC) gated imaging technique to a true real-time imaging modality. Although the clinical use of echocardiography is still to a large extent based on conventional 2D ultrasound imaging it can be anticipated that the further developments in image quality, data visualization and interaction and image quantification of three-dimensional cardiac ultrasound will gradually make volumetric ultrasound the modality of choice. In this chapter, an overview is given of the technological developments that allow for volumetric imaging of the beating heart by ultrasound.

  10. Imaging By Ultrasound

    PubMed Central

    Kidney, Maria R.

    1986-01-01

    Imaging by ultrasound has dramatically changed the investigation and management of many clinical problems. It is useful in many different parts of the body. In this brief discussion, the following topics are considered: hepatic lesions, bleeding in early pregnancy, gynecological pathology (adnexal lesions), aortic aneurysms, thyroid nodules and scrotal masses. The usefulness of duplex carotid sonography, which combines ultrasonic imaging and Doppler studies, is also discussed. Other topics (gallstones, biliary obstruction, renal calculi, hydronephrosis) are discussed in the appropriate sections. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:21267202

  11. New ultrasound image display with extended field of view

    NASA Astrophysics Data System (ADS)

    Tirumalai, Arun P.; Weng, Lee; Grassmann, Alexander; Li, Ming; Marquis, Steve; Sutcliffe, Pat; Gustafson, David; Kim, Jin; Basoglu, Chris; Winter, Thomas C.; Kim, Yongmin

    1997-05-01

    The narrow fields of view obtained from real-time ultrasound transducers, especially with linear array transducers, allow focused evaluation of a specific site but often without any anatomic reference. To allow medical ultrasound imaging to be used in more diverse clinical settings, we have created a new acquisition and display process that allows extended field of view (XFOV) imaging. To produce an XFOV image, extended acoustic slices are obtained by maneuvering the transducer along the body surface or inside. As the images are acquired, they are correlated, aligned, and spliced together into a long composite view, all without the use of a position sensor. This computationally intensive process involves image registration, geometric image transformation, panoramic image construction, and image display. The XFOV process executes in real-time on our programmable ultrasound processing subsystem, the programmable ultrasound image processor, which fits within an existing ultrasound system and supports native ultrasound signal and image processing.

  12. Cardiological Ultrasound Imaging.

    PubMed

    Thijssen, Johan M; de Korte, Chris L

    2014-01-01

    This review paper is intended for the interested outsider of the field of echocardiography and it presents a short introduction into the numerous ultrasound (US) methods and techniques for anatomical and functional diagnosis of the heart. The basic techniques are generally used for some times already, as there are one dimensional (1D) M(otion) mode, the real time 2D B(rightness) mode technique and the various Doppler measurement techniques and imaging modes. The M-mode technique shows the movements of the tissue in a 1D B-mode display vs. time. The 2D B-mode images are showing the heart contractions and dilations in real time, thus making this technique the basic tool for detecting anatomical disturbances and myocardial (localized) abnormal functioning. Improved image quality is achieved by Second Harmonic Imaging and myocardial perfusion can be quantified using Contrast Agent Imaging. Doppler techniques were introduced in the fifties of last century and used for blood flow velocity measurement. Continuous wave (CW) Doppler has the advantage of allowing measurement of high velocities, as may occur in vascular or valvular stenosis and insufficiency. The exact location of the major Doppler signal received cannot be estimated making this technique ambiguous in some clinical problems. Single gated Pulse Wave (PW) Doppler velocity measurement delivers exact location of the measurement position by using an interactively positioned time (=depth) gate in which the velocity is being measured. The disadvantage of this technique is the relatively low maximum velocity that can be measured. Multigate PW Doppler techniques can be used for the assessment of a velocity profile over the vessel cross section. A more sophisticated use of this technique is the combination with 2D B-mode imaging in the color Doppler mode, called "color flow mapping", in which the multigate Doppler signal is color coded and shown in 2D format overlayed in the conventional 2D B mode image. In the past

  13. Ultrasound image guidance of cardiac interventions

    NASA Astrophysics Data System (ADS)

    Peters, Terry M.; Pace, Danielle F.; Lang, Pencilla; Guiraudon, Gérard M.; Jones, Douglas L.; Linte, Cristian A.

    2011-03-01

    Surgical procedures often have the unfortunate side-effect of causing the patient significant trauma while accessing the target site. Indeed, in some cases the trauma inflicted on the patient during access to the target greatly exceeds that caused by performing the therapy. Heart disease has traditionally been treated surgically using open chest techniques with the patient being placed "on pump" - i.e. their circulation being maintained by a cardio-pulmonary bypass or "heart-lung" machine. Recently, techniques have been developed for performing minimally invasive interventions on the heart, obviating the formerly invasive procedures. These new approaches rely on pre-operative images, combined with real-time images acquired during the procedure. Our approach is to register intra-operative images to the patient, and use a navigation system that combines intra-operative ultrasound with virtual models of instrumentation that has been introduced into the chamber through the heart wall. This paper illustrates the problems associated with traditional ultrasound guidance, and reviews the state of the art in real-time 3D cardiac ultrasound technology. In addition, it discusses the implementation of an image-guided intervention platform that integrates real-time ultrasound with a virtual reality environment, bringing together the pre-operative anatomy derived from MRI or CT, representations of tracked instrumentation inside the heart chamber, and the intra-operatively acquired ultrasound images.

  14. Pencil beam all-optical ultrasound imaging

    PubMed Central

    Alles, Erwin J.; Noimark, Sacha; Zhang, Edward; Beard, Paul C.; Desjardins, Adrien E.

    2016-01-01

    A miniature, directional fibre-optic acoustic source is presented that employs geometrical focussing to generate a nearly-collimated acoustic pencil beam. When paired with a fibre-optic acoustic detector, an all-optical ultrasound probe with an outer diameter of 2.5 mm is obtained that acquires a pulse-echo image line at each probe position without the need for image reconstruction. B-mode images can be acquired by translating the probe and concatenating the image lines, and artefacts resulting from probe positioning uncertainty are shown to be significantly lower than those observed for conventional synthetic aperture scanning of a non-directional acoustic source. The high image quality obtained for excised vascular tissue suggests that the all-optical ultrasound probe is ideally suited for in vivo, interventional applications. PMID:27699130

  15. Pencil beam all-optical ultrasound imaging

    PubMed Central

    Alles, Erwin J.; Noimark, Sacha; Zhang, Edward; Beard, Paul C.; Desjardins, Adrien E.

    2016-01-01

    A miniature, directional fibre-optic acoustic source is presented that employs geometrical focussing to generate a nearly-collimated acoustic pencil beam. When paired with a fibre-optic acoustic detector, an all-optical ultrasound probe with an outer diameter of 2.5 mm is obtained that acquires a pulse-echo image line at each probe position without the need for image reconstruction. B-mode images can be acquired by translating the probe and concatenating the image lines, and artefacts resulting from probe positioning uncertainty are shown to be significantly lower than those observed for conventional synthetic aperture scanning of a non-directional acoustic source. The high image quality obtained for excised vascular tissue suggests that the all-optical ultrasound probe is ideally suited for in vivo, interventional applications.

  16. An image registration based ultrasound probe calibration

    NASA Astrophysics Data System (ADS)

    Li, Xin; Kumar, Dinesh; Sarkar, Saradwata; Narayanan, Ram

    2012-02-01

    Reconstructed 3D ultrasound of prostate gland finds application in several medical areas such as image guided biopsy, therapy planning and dose delivery. In our application, we use an end-fire probe rotated about its axis to acquire a sequence of rotational slices to reconstruct 3D TRUS (Transrectal Ultrasound) image. The image acquisition system consists of an ultrasound transducer situated on a cradle directly attached to a rotational sensor. However, due to system tolerances, axis of probe does not align exactly with the designed axis of rotation resulting in artifacts in the 3D reconstructed ultrasound volume. We present a rigid registration based automatic probe calibration approach. The method uses a sequence of phantom images, each pair acquired at angular separation of 180 degrees and registers corresponding image pairs to compute the deviation from designed axis. A modified shadow removal algorithm is applied for preprocessing. An attribute vector is constructed from image intensity and a speckle-insensitive information-theoretic feature. We compare registration between the presented method and expert-corrected images in 16 prostate phantom scans. Images were acquired at multiple resolutions, and different misalignment settings from two ultrasound machines. Screenshots from 3D reconstruction are shown before and after misalignment correction. Registration parameters from automatic and manual correction were found to be in good agreement. Average absolute differences of translation and rotation between automatic and manual methods were 0.27 mm and 0.65 degree, respectively. The registration parameters also showed lower variability for automatic registration (pooled standard deviation σtranslation = 0.50 mm, σrotation = 0.52 degree) compared to the manual approach (pooled standard deviation σtranslation = 0.62 mm, σrotation = 0.78 degree).

  17. Reflections on ultrasound image analysis.

    PubMed

    Alison Noble, J

    2016-10-01

    Ultrasound (US) image analysis has advanced considerably in twenty years. Progress in ultrasound image analysis has always been fundamental to the advancement of image-guided interventions research due to the real-time acquisition capability of ultrasound and this has remained true over the two decades. But in quantitative ultrasound image analysis - which takes US images and turns them into more meaningful clinical information - thinking has perhaps more fundamentally changed. From roots as a poor cousin to Computed Tomography (CT) and Magnetic Resonance (MR) image analysis, both of which have richer anatomical definition and thus were better suited to the earlier eras of medical image analysis which were dominated by model-based methods, ultrasound image analysis has now entered an exciting new era, assisted by advances in machine learning and the growing clinical and commercial interest in employing low-cost portable ultrasound devices outside traditional hospital-based clinical settings. This short article provides a perspective on this change, and highlights some challenges ahead and potential opportunities in ultrasound image analysis which may both have high impact on healthcare delivery worldwide in the future but may also, perhaps, take the subject further away from CT and MR image analysis research with time. PMID:27503078

  18. Reflections on ultrasound image analysis.

    PubMed

    Alison Noble, J

    2016-10-01

    Ultrasound (US) image analysis has advanced considerably in twenty years. Progress in ultrasound image analysis has always been fundamental to the advancement of image-guided interventions research due to the real-time acquisition capability of ultrasound and this has remained true over the two decades. But in quantitative ultrasound image analysis - which takes US images and turns them into more meaningful clinical information - thinking has perhaps more fundamentally changed. From roots as a poor cousin to Computed Tomography (CT) and Magnetic Resonance (MR) image analysis, both of which have richer anatomical definition and thus were better suited to the earlier eras of medical image analysis which were dominated by model-based methods, ultrasound image analysis has now entered an exciting new era, assisted by advances in machine learning and the growing clinical and commercial interest in employing low-cost portable ultrasound devices outside traditional hospital-based clinical settings. This short article provides a perspective on this change, and highlights some challenges ahead and potential opportunities in ultrasound image analysis which may both have high impact on healthcare delivery worldwide in the future but may also, perhaps, take the subject further away from CT and MR image analysis research with time.

  19. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  20. [Ultrasound imaging of coronary artery].

    PubMed

    Fuse, Shigeto

    2014-09-01

    Coronary arterial anatomy and the terminology were reviewed. There is a specific portion of coronary artery aneurysm in Kawasaki disease. To investigate coronary arterial lesion, ultrasound imaging is useful because of non-invasive, high special and time resolu tion method. I explained the patient posture, the approaching method to the coronary arter ies, ultrasound setting, measurement of coronary arterial diameter and diastolic measurement.

  1. Ultrasound in pregnancy (image)

    MedlinePlus

    The ultrasound has become a standard procedure used during pregnancy. It can demonstrate fetal growth and can detect increasing ... abnormalities, hydrocephalus, anencephaly, club feet, and other ... does not produce ionizing radiation and is considered ...

  2. General Ultrasound Imaging

    MedlinePlus

    ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of ...

  3. OSPACS: Ultrasound image management system

    PubMed Central

    Stott, Will; Ryan, Andy; Jacobs, Ian J; Menon, Usha; Bessant, Conrad; Jones, Christopher

    2008-01-01

    Background Ultrasound scanning uses the medical imaging format, DICOM, for electronically storing the images and data associated with a particular scan. Large health care facilities typically use a picture archiving and communication system (PACS) for storing and retrieving such images. However, these systems are usually not suitable for managing large collections of anonymized ultrasound images gathered during a clinical screening trial. Results We have developed a system enabling the accurate archiving and management of ultrasound images gathered during a clinical screening trial. It is based upon a Windows application utilizing an open-source DICOM image viewer and a relational database. The system automates the bulk import of DICOM files from removable media by cross-validating the patient information against an external database, anonymizing the data as well as the image, and then storing the contents of the file as a field in a database record. These image records may then be retrieved from the database and presented in a tree-view control so that the user can select particular images for display in a DICOM viewer or export them to external media. Conclusion This system provides error-free automation of ultrasound image archiving and management, suitable for use in a clinical trial. An open-source project has been established to promote continued development of the system. PMID:18570637

  4. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    SciTech Connect

    Morimoto, A.K.; Bow, W.J.; Strong, D.S.

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  5. Tissue harmonic synthetic aperture ultrasound imaging.

    PubMed

    Hemmsen, Martin Christian; Rasmussen, Joachim Hee; Jensen, Jørgen Arendt

    2014-10-01

    Synthetic aperture sequential beamforming (SASB) and tissue harmonic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a comparative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined with THI improves the image quality compared to DRF-THI. The major benefit of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for offline evaluation. The acquisition was made interleaved between methods, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technology 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and penetration. In vivo scans were also performed for a visual comparison. The spatial resolution for SASB-THI is on average 19% better than DRI-THI, and the investigation of penetration showed equally good signal-to-noise ratio. In vivo B-mode scans were made and compared. The comparison showed that SASB-THI reduces the artifact and noise interference and improves image contrast and spatial resolution.

  6. Respiratory motion compensation algorithm of ultrasound hepatic perfusion data acquired in free-breathing

    NASA Astrophysics Data System (ADS)

    Wu, Kaizhi; Zhang, Xuming; Chen, Guangxie; Weng, Fei; Ding, Mingyue

    2013-10-01

    Images acquired in free breathing using contrast enhanced ultrasound exhibit a periodic motion that needs to be compensated for if a further accurate quantification of the hepatic perfusion analysis is to be executed. In this work, we present an algorithm to compensate the respiratory motion by effectively combining the PCA (Principal Component Analysis) method and block matching method. The respiratory kinetics of the ultrasound hepatic perfusion image sequences was firstly extracted using the PCA method. Then, the optimal phase of the obtained respiratory kinetics was detected after normalizing the motion amplitude and determining the image subsequences of the original image sequences. The image subsequences were registered by the block matching method using cross-correlation as the similarity. Finally, the motion-compensated contrast images can be acquired by using the position mapping and the algorithm was evaluated by comparing the TICs extracted from the original image sequences and compensated image subsequences. Quantitative comparisons demonstrated that the average fitting error estimated of ROIs (region of interest) was reduced from 10.9278 +/- 6.2756 to 5.1644 +/- 3.3431 after compensating.

  7. Two-dimensional ultrasound image matching system for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zaim, Amjad; Keck, Rick W.; Selman, Steven H.; Jankun, Jerzy

    2001-05-01

    Two-dimensional (2D) ultrasound imaging is commonly used for diagnosis in a variety of medical fields. However, there are several drawbacks of conventional 2D-ultrasound imaging. These include prostate or transducer movement that produces sets of different images that are difficult to interpret. Also during patient's reexamination correspondence between sets of images before reexamination and after is difficult to establish. This can be described as a problem of correlation between two sets of images: the first created before distortion or examination, the second one after. We propose a method to register 2D ultrasound volumes based on external markers introduced in the prostate. The metal balls are inserted in the prostate at three distinct locations in the prostate. These appear as bright dots in the ultrasound field, serve as reference points, are then outlined through a user-interactive program from two sets of images. Then, the computer program rotates and translates till they match respectively, and displays the mapped points with their corresponding location. Based on this idea we developed an image-guided system for PDT that require high-precision placement of implants. In the planning stage, the system performs an automatic acquisition of 2D transrectal ultrasound images that will ultimately be used to construct the treatment plan. At the time of the therapy, new sets of ultrasound images are acquired and a match is established between the virtual world and the patient's real world with the aid of manually introduced markers and image matching algorithms.

  8. Ultrasound Research Interface - Cancer Imaging Program

    Cancer.gov

    The ultrasound research interface permits extensive instrument parameter control of a commercially available scanner that allows access to, and export of, the beam-formed signal data while simultaneously displaying the ultrasound system-processed data as a clinical image.

  9. Ultrasound technologies for biomaterials fabrication and imaging.

    PubMed

    Dalecki, Diane; Hocking, Denise C

    2015-03-01

    Ultrasound is emerging as a powerful tool for developing biomaterials for regenerative medicine. Ultrasound technologies are finding wide-ranging, innovative applications for controlling the fabrication of bioengineered scaffolds, as well as for imaging and quantitatively monitoring the properties of engineered constructs both during fabrication processes and post-implantation. This review provides an overview of the biomedical applications of ultrasound for imaging and therapy, a tutorial of the physical mechanisms through which ultrasound can interact with biomaterials, and examples of how ultrasound technologies are being developed and applied for biomaterials fabrication processes, non-invasive imaging, and quantitative characterization of bioengineered scaffolds in vitro and in vivo.

  10. Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation.

    PubMed

    Zhang, Haichong K; Cheng, Alexis; Bottenus, Nick; Guo, Xiaoyu; Trahey, Gregg E; Boctor, Emad M

    2016-04-01

    Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA-called synthetic tracked aperture ultrasound (STRATUS) imaging-by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality. PMID:27088108

  11. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  12. Three-dimensional ultrasound imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Fenster, Aaron; Downey, Donal B.

    1999-05-01

    Ultrasonography, a widely used imaging modality for the diagnosis and staging of many diseases, is an important cost- effective technique, however, technical improvements are necessary to realize its full potential. Two-dimensional viewing of 3D anatomy, using conventional ultrasonography, limits our ability to quantify and visualize most diseases, causing, in part, the reported variability in diagnosis and ultrasound guided therapy and surgery. This occurs because conventional ultrasound images are 2D, yet the anatomy is 3D; hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to operator variability and incorrect diagnoses. In addition, the 2D ultrasound image represents a single thin plane at some arbitrary angle in the body. It is difficult to localize and reproduce the image plane subsequently, making conventional ultrasonography unsatisfactory for follow-up studies and for monitoring therapy. Our efforts have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that can acquire B-mode, color Doppler and power Doppler images. An inexpensive desktop computer is used to reconstruct the information in 3D, and then is also used for interactive viewing of the 3D images. We have used 3D ultrasound images for the diagnosis of prostate cancer, carotid disease, breast cancer and liver disease and for applications in obstetrics and gynecology. In addition, we have also used 3D ultrasonography for image-guided minimally invasive therapeutic applications of the prostate such as cryotherapy and brachytherapy.

  13. Three-dimensional ultrasound imaging of the vasculature.

    PubMed

    Fenster, A; Lee, D; Sherebrin, S; Rankin, R; Downey, D

    1998-02-01

    With conventional ultrasonography, the diagnostician must view a series of two-dimensional images in order to form a mental impression of the three-dimensional anatomy, an efficient and time consuming practice prone to operator variability, which may cause variable or even incorrect diagnoses. Also, a conventional two-dimensional ultrasound image represents a thin slice of the patients anatomy at a single location and orientation, which is difficult to reproduce at a later time. These factors make conventional ultrasonography non-optimal for prospective or follow-up studies. Our efforts have focused on overcoming these deficiencies by developing three-dimensional ultrasound imaging techniques that are capable of acquiring B-mode, colour Doppler and power Doppler images of the vasculature, by using a conventional ultrasound system to acquire a series of two-dimensional images and then mathematically reconstructing them into a single three-dimensional image, which may then be viewed interactively on an inexpensive desktop computer. We report here on two approaches: (1) free-hand scanning, in which a magnetic positioning device is attached to the ultrasound transducer to record the position and orientation of each two-dimensional image needed for the three-dimensional image reconstruction; and (2) mechanical scanning, in which a motor-driven assembly is used to translate the transducer linearly across the neck, yielding a set of uniformly-spaced parallel two-dimensional images.

  14. Multispectral photoacoustic imaging of nerves with a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.

    2014-03-01

    Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.

  15. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  16. Ultrasound imaging in research and clinical medicine.

    PubMed

    Schellpfeffer, Michael A

    2013-06-01

    The use of ultrasound imaging in clinical obstetrics continues to grow at an almost exponential rate. Ultrasound imaging in developmental biology has only begun to be used to enhance the traditional methodologies to study the developing embryo/fetus. The various modalities of ultrasound imaging are reviewed as they apply to current uses in clinical obstetrics and developmental biologic research. New modalities are also discussed in both clinical obstetrics and developmental biologic research as well as the current limitations of ultrasound imaging faced in both of these fields. PMID:23897593

  17. A New High Frequency Ultrasound Skin Imaging System: Imaging Properties and Clinical in Vivo Results

    NASA Astrophysics Data System (ADS)

    Vogt, M.; Scharenberg, R.; Moussa, G.; Sand, M.; Hoffmann, K.; Altmeyer, P.; Ermert, H.

    In this paper, a new high frequency ultrasound (HFUS) system for high-resolution skin imaging is presented. For imaging, mechanical scans are performed with spherically focused single element transducers. Two separate applicators with different transducers are utilized to fulfill the different requirements for imaging the skin with 20MHz ultrasound and for lower range high resolution imaging of the uppermost skin layers with HFUS in the 100MHz range. Clinical images were acquired in the imaging lab of the Dermatological University Hospital. Imaging results of wound healing process and skin lesion nevus investigations are presented

  18. Detecting breast microcalcifications using super-resolution ultrasound imaging: a clinical study

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Labyed, Yassin; Hanson, Kenneth; Sandoval, Daniel; Pohl, Jennifer; Williamson, Michael

    2013-03-01

    Imaging breast microcalcifications is crucial for early detection and diagnosis of breast cancer. It is challenging for current clinical ultrasound to image breast microcalcifications. However, new imaging techniques using data acquired with a synthetic-aperture ultrasound system have the potential to significantly improve ultrasound imaging. We recently developed a super-resolution ultrasound imaging method termed the phase-coherent multiple-signal classification (PC-MUSIC). This signal subspace method accounts for the phase response of transducer elements to improve image resolution. In this paper, we investigate the clinical feasibility of our super-resolution ultrasound imaging method for detecting breast microcalcifications. We use our custom-built, real-time synthetic-aperture ultrasound system to acquire breast ultrasound data for 40 patients whose mammograms show the presence of breast microcalcifications. We apply our super-resolution ultrasound imaging method to the patient data, and produce clear images of breast calcifications. Our super-resolution ultrasound PC-MUSIC imaging with synthetic-aperture ultrasound data can provide a new imaging modality for detecting breast microcalcifications in clinic without using ionizing radiation.

  19. Handheld ultrasound array imaging device

    NASA Astrophysics Data System (ADS)

    Hwang, Juin-Jet; Quistgaard, Jens

    1999-06-01

    A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.

  20. Methodology for three-dimensional reconstruction of the tongue surface from ultrasound images

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Sonies, Barbara C.

    1995-05-01

    A three-dimensional ultrasound imaging system was developed for studying tongue configurations during speech and swallowing. A sequence of two-dimensional ultrasound B- mode images was acquired by moving the ultrasound transducer under the subject's chin. A six-degree-of-freedom electromagnetic position sensor was used in order to determine the spatial position and orientation of the ultrasound transducer during the scanning. Registration of image slices was achieved by using a time code generator to synchronize ultrasound images with the spatial information. Techniques were developed for 3D reconstruction of the tongue surface from multi-planar ultrasound scans using both commercial software and NIH- developed programs for PC and Macintosh computers. The system demonstrated its potential to quickly acquire and reconstruct 3D tongue images, and to assist speech pathologists and radiologists in speech and swallowing disorder diagnosis.

  1. Lung ultrasound in the diagnosis and monitoring of community acquired pneumonia in children.

    PubMed

    Urbankowska, Emilia; Krenke, Katarzyna; Drobczyński, Łukasz; Korczyński, Piotr; Urbankowski, Tomasz; Krawiec, Marta; Kraj, Grażyna; Brzewski, Michał; Kulus, Marek

    2015-09-01

    Lung ultrasound (LUS) is as an easily accessible, radiation-free imaging technique that might be used as a diagnostic tool in community-acquired pneumonia (CAP). The aim of the study was to evaluate the usefulness and accuracy of LUS in the diagnosis and monitoring of childhood CAP. One hundred six consecutive children aged between 1 and 213 (median 52.5) months referred to the hospital with suspicion of CAP were enrolled. All patients underwent LUS on the day of admission, followed by chest radiograph (CXR). Lung ultrasound was also performed in 25 children between 5th-7th and 31 children between 10th-14th day after admission. Radiographic signs of pneumonia were demonstrated in 76 children, while lung ultrasound revealed pulmonary abnormalities consistent with pneumonia in 71 children. LUS gave false negative results in 5 patients with parahilar pulmonary infiltrates demonstrated by CXR. Almost perfect overall agreement between LUS and CXR was found in terms of pneumonia diagnosis (Cohen kappa coefficient of 0.89). The diagnostic performance of LUS in demonstration of lung involvement was as follows: sensitivity of 93.4%, specificity of 100%, positive predictive value of 100%, negative predictive value of 85.7% and accuracy of 95.3%. Our study showed that LUS is a sensitive and highly specific diagnostic method in children with CAP. Therefore, LUS may be considered as the first imaging test in children with suspicion of CAP. A diagnostic algorithm of CAP which includes LUS should be validated in prospective studies. Lung ultrasound can also be used to follow-up resolution of pneumonic lesions.

  2. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  3. Linear tracking for 3-D medical ultrasound imaging.

    PubMed

    Huang, Qing-Hua; Yang, Zhao; Hu, Wei; Jin, Lian-Wen; Wei, Gang; Li, Xuelong

    2013-12-01

    As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs. PMID:23757592

  4. Thermal Field Imaging Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Andereck, D.; Rahal, S.; Fife, S.

    2000-01-01

    is then possible to find the average temperature at different locations along the chamber, thereby determining the temperature profile along the system. (In the future we will construct an array of transducers. This will give us the capability to determine the temperature profile much more rapidly than at present, an important consideration if time-dependent phenomena are to be studied.) To validate our procedure we introduced encapsulated liquid crystal particles into glycerol. The liquid crystal particles' color varies depending on the temperature of the fluid. A photograph of the fluid through transparent sidewalls therefore gives a picture of the temperature field of the convecting fluid, independent of our ultrasound imaging. A representative result is shown in the Figure 1, which reveals a very satisfying correspondence between the two techniques. Therefore we have a great deal of confidence that the ultrasound imaging approach is indeed measuring the actual temperature profile of the fluid. The technique has also been applied to convecting liquid metal flows, and representative data will be presented from those experiments as well.

  5. In vivo thermal ablation monitoring using ultrasound echo decorrelation imaging.

    PubMed

    Subramanian, Swetha; Rudich, Steven M; Alqadah, Amel; Karunakaran, Chandra Priya; Rao, Marepalli B; Mast, T Douglas

    2014-01-01

    Previous work indicated that ultrasound echo decorrelation imaging can track and quantify changes in echo signals to predict thermal damage during in vitro radiofrequency ablation (RFA). In the in vivo studies reported here, the feasibility of using echo decorrelation imaging as a treatment monitoring tool was assessed. RFA was performed on normal swine liver (N = 5), and ultrasound ablation using image-ablate arrays was performed on rabbit liver implanted with VX2 tumors (N = 2). Echo decorrelation and integrated backscatter were computed from Hilbert transformed pulse-echo data acquired during RFA and ultrasound ablation treatments. Receiver operating characteristic (ROC) curves were employed to assess the ability of echo decorrelation imaging and integrated backscatter to predict ablation. Area under the ROC curves (AUROC) was determined for RFA and ultrasound ablation using echo decorrelation imaging. Ablation was predicted more accurately using echo decorrelation imaging (AUROC = 0.832 and 0.776 for RFA and ultrasound ablation, respectively) than using integrated backscatter (AUROC = 0.734 and 0.494). PMID:24239361

  6. Passive imaging with pulsed ultrasound insonations.

    PubMed

    Haworth, Kevin J; Mast, T Douglas; Radhakrishnan, Kirthi; Burgess, Mark T; Kopechek, Jonathan A; Huang, Shao-Ling; McPherson, David D; Holland, Christy K

    2012-07-01

    Previously, passive cavitation imaging has been described in the context of continuous-wave high-intensity focused ultrasound thermal ablation. However, the technique has potential use as a feedback mechanism for pulsed-wave therapies, such as ultrasound-mediated drug delivery. In this paper, results of experiments and simulations are reported to demonstrate the feasibility of passive cavitation imaging using pulsed ultrasound insonations and how the images depend on pulsed ultrasound parameters. The passive cavitation images were formed from channel data that was beamformed in the frequency domain. Experiments were performed in an invitro flow phantom with an experimental echo contrast agent, echogenic liposomes, as cavitation nuclei. It was found that the pulse duration and envelope have minimal impact on the image resolution achieved. The passive cavitation image amplitude scales linearly with the cavitation emission energy. Cavitation images for both stable and inertial cavitation can be obtained from the same received data set.

  7. Image-guided endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Zang, Xiaonan; Cheirsilp, Ronnarit; Byrnes, Patrick; Kuhlengel, Trevor; Bascom, Rebecca; Toth, Jennifer

    2016-03-01

    Endobronchial ultrasound (EBUS) is now recommended as a standard procedure for in vivo verification of extraluminal diagnostic sites during cancer-staging bronchoscopy. Yet, physicians vary considerably in their skills at using EBUS effectively. Regarding existing bronchoscopy guidance systems, studies have shown their effectiveness in the lung-cancer management process. With such a system, a patient's X-ray computed tomography (CT) scan is used to plan a procedure to regions of interest (ROIs). This plan is then used during follow-on guided bronchoscopy. Recent clinical guidelines for lung cancer, however, also dictate using positron emission tomography (PET) imaging for identifying suspicious ROIs and aiding in the cancer-staging process. While researchers have attempted to use guided bronchoscopy systems in tandem with PET imaging and EBUS, no true EBUS-centric guidance system exists. We now propose a full multimodal image-based methodology for guiding EBUS. The complete methodology involves two components: 1) a procedure planning protocol that gives bronchoscope movements appropriate for live EBUS positioning; and 2) a guidance strategy and associated system graphical user interface (GUI) designed for image-guided EBUS. We present results demonstrating the operation of the system.

  8. Simultaneous three-dimensional laser-ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wurzinger, Gerhild; Nuster, Robert; Schmitner, Nicole; Gratt, Sibylle; Paltauf, Günther

    2013-06-01

    A purely optical setup for simultaneous photoacoustic (PA) and laser-ultrasound (US) tomography is presented. It is shown that combined imaging can be achieved by using the same laser pulse for photoacoustic generation and for launching a broadband ultrasound pulse from an optically absorbing target. Detection of the laser-generated plane waves that have been scattered at the imaging object and of the photoacoustic signals emitted from the sample is done interferometrically. This way data for PA and US imaging are acquired within one single measurement. Distinction between the signals is possible due to their different times of flight. After data separation, image reconstruction is done using standard back-projection algorithms. The resolution of the setup was estimated and images of a zebra fish are shown, demonstrating the complementary information of the two imaging modalities.

  9. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue.

    PubMed

    Rangraz, Parisa; Behnam, Hamid; Tavakkoli, Jahan

    2014-01-01

    High-intensity focused ultrasound induces focalized tissue coagulation by increasing the tissue temperature in a tight focal region. Several methods have been proposed to monitor high-intensity focused ultrasound-induced thermal lesions. Currently, ultrasound imaging techniques that are clinically used for monitoring high-intensity focused ultrasound treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation, and elastography-based methods. On the contrary, the efficacy of two-dimensional Nakagami parametric imaging based on the distribution of the ultrasound backscattered signals to quantify properties of soft tissue has recently been evaluated. In this study, ultrasound radio frequency echo signals from ex vivo tissue samples were acquired before and after high-intensity focused ultrasound exposures and then their Nakagami parameter and scaling parameter of Nakagami distribution were estimated. These parameters were used to detect high-intensity focused ultrasound-induced thermal lesions. Also, the effects of changing the acoustic power of the high-intensity focused ultrasound transducer on the Nakagami parameters were studied. The results obtained suggest that the Nakagami distribution's scaling and Nakagami parameters can effectively be used to detect high-intensity focused ultrasound-induced thermal lesions in tissue ex vivo. These parameters can also be used to understand the degree of change in tissue caused by high-intensity focused ultrasound exposures, which could be interpreted as a measure of degree of variability in scatterer concentration in various parts of the high-intensity focused ultrasound lesion. PMID:24264647

  10. A new architecture for fast ultrasound imaging

    SciTech Connect

    Cruza, J. F.; Camacho, J.; Moreno, J. M.; Medina, L.

    2014-02-18

    Some ultrasound imaging applications require high frame rate, for example 3D imaging and automated inspections of large components. Being the signal-processing throughput of the system the main bottleneck, parallel beamforming is required to achieve hundreds to thousands of images per second. Simultaneous A-scan line beamforming in all active channels is required to reach the intended high frame rate. To this purpose, a new parallel beamforming architecture that exploits the currently available processing resources available in state-of-the-art FPGAs is proposed. The work aims to get the optimal resource usage, high scalability and flexibility for different applications. To achieve these goals, the basic beamforming function is reformulated to be adapted to the DSP-cell architecture of state-of-the-art FPGAs. This allows performing simultaneous dynamic focusing on multiple A-scan lines. Some realistic examples are analyzed, evaluating resource requirements and maximum operating frequency. For example, a 128-channel system, with 128 scan lines and acquiring at 20 MSPS, can be built with 4 mid-range FPGAs, achieving up to 18000 frames per second, just limited by the maximum PRF. The gold standard Synthetic Transmit Aperture method (also called Total Focusing Method) can be carried out in real time at a processing rate of 140 high-resolution images per second (16 cm depth on steel)

  11. Acquired portosystemic collaterals: anatomy and imaging*

    PubMed Central

    Leite, Andréa Farias de Melo; Mota Jr., Américo; Chagas-Neto, Francisco Abaeté; Teixeira, Sara Reis; Elias Junior, Jorge; Muglia, Valdair Francisco

    2016-01-01

    Portosystemic shunts are enlarged vessels that form collateral pathological pathways between the splanchnic circulation and the systemic circulation. Although their causes are multifactorial, portosystemic shunts all have one mechanism in common-increased portal venous pressure, which diverts the blood flow from the gastrointestinal tract to the systemic circulation. Congenital and acquired collateral pathways have both been described in the literature. The aim of this pictorial essay was to discuss the distinct anatomic and imaging features of portosystemic shunts, as well as to provide a robust method of differentiating between acquired portosystemic shunts and similar pathologies, through the use of illustrations and schematic drawings. Imaging of portosystemic shunts provides subclinical markers of increased portal venous pressure. Therefore, radiologists play a crucial role in the identification of portosystemic shunts. Early detection of portosystemic shunts can allow ample time to perform endovascular shunt operations, which can relieve portal hypertension and prevent acute or chronic complications in at-risk patient populations. PMID:27777479

  12. Simulating cardiac ultrasound image based on MR diffusion tensor imaging

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Lu, Guolan; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Purpose: Cardiac ultrasound simulation can have important applications in the design of ultrasound systems, understanding the interaction effect between ultrasound and tissue and setting the ground truth for validating quantification methods. Current ultrasound simulation methods fail to simulate the myocardial intensity anisotropies. New simulation methods are needed in order to simulate realistic ultrasound images of the heart. Methods: The proposed cardiac ultrasound image simulation method is based on diffusion tensor imaging (DTI) data of the heart. The method utilizes both the cardiac geometry and the fiber orientation information to simulate the anisotropic intensities in B-mode ultrasound images. Before the simulation procedure, the geometry and fiber orientations of the heart are obtained from high-resolution structural MRI and DTI data, respectively. The simulation includes two important steps. First, the backscatter coefficients of the point scatterers inside the myocardium are processed according to the fiber orientations using an anisotropic model. Second, the cardiac ultrasound images are simulated with anisotropic myocardial intensities. The proposed method was also compared with two other nonanisotropic intensity methods using 50 B-mode ultrasound image volumes of five different rat hearts. The simulated images were also compared with the ultrasound images of a diseased rat heart in vivo. A new segmental evaluation method is proposed to validate the simulation results. The average relative errors (AREs) of five parameters, i.e., mean intensity, Rayleigh distribution parameter σ, and first, second, and third quartiles, were utilized as the evaluation metrics. The simulated images were quantitatively compared with real ultrasound images in both ex vivo and in vivo experiments. Results: The proposed ultrasound image simulation method can realistically simulate cardiac ultrasound images of the heart using high-resolution MR-DTI data. The AREs of their

  13. Quantitative ultrasound images generated by a PE-CMOS sensor array: scatter modeling and image restoration

    NASA Astrophysics Data System (ADS)

    Liu, Chu-Chuan; Lo, Shih-Chung Ben; Freedman, Matthew T.; Lasser, Marvin E.; Lasser, Bob; Kula, John; Wang, Yue Joseph

    2007-03-01

    In the projection geometry, the detected ultrasound energy through a soft-tissue is mainly attributed to the attenuated primary intensity and the scatter intensity. In order to extract ultrasound image of attenuated primary beam out of the detected raw data, the scatter component must be carefully quantified for restoring the original image. In this study, we have designed a set of apparatus to modeling the ultrasound scattering in soft-tissue. The employed ultrasound imaging device was a C-Scan (projection) prototype using a 4th generation PE-CMOS sensor array (model I400, by Imperium Inc., Silver Spring, MD) as the detector. Right after the plane wave ultrasound transmitting through a soft-tissue mimicking material (Zerdine, by CIRS Inc., Norfolk, VA), a ring aperture is used to collimate the signal before reaching the acoustic lens and the PE-CMOS sensor. Three sets of collimated ring images were acquired and analyzed to obtain the scattering components as a function of the off-center distance. Several pathological specimens and breast phantoms consisting of simulated breast tissue with masses, cysts and microcalcifications were imaged by the same C-Scan imaging prototype. The restoration of these ultrasound images were performed by using a standard deconvolution computation. Our study indicated that the resultant images show shaper edges and detailed features as compared to their unprocessed counterparts.

  14. Ultrasound, normal fetus- ventricles of brain (image)

    MedlinePlus

    ... of brain ventricles. Ventricles are spaces in the brain that are filled with fluid. In this early ultrasound, the ventricles can be seen as light lines extending through the skull, seen in the upper right side of the image.

  15. High resolution ultrasound and photoacoustic imaging of single cells

    PubMed Central

    Strohm, Eric M.; Moore, Michael J.; Kolios, Michael C.

    2016-01-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level. PMID:27114911

  16. High resolution ultrasound and photoacoustic imaging of single cells.

    PubMed

    Strohm, Eric M; Moore, Michael J; Kolios, Michael C

    2016-03-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  17. Composite ultrasound imaging apparatus and method

    DOEpatents

    Morimoto, Alan K.; Bow, Jr., Wallace J.; Strong, David Scott; Dickey, Fred M.

    1998-01-01

    An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image.

  18. Composite ultrasound imaging apparatus and method

    DOEpatents

    Morimoto, A.K.; Bow, W.J. Jr.; Strong, D.S.; Dickey, F.M.

    1998-09-15

    An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image. 37 figs.

  19. Ultrasound strain imaging for quantification of tissue function: cardiovascular applications

    NASA Astrophysics Data System (ADS)

    de Korte, Chris L.; Lopata, Richard G. P.; Hansen, Hendrik H. G.

    2013-03-01

    With ultrasound imaging, the motion and deformation of tissue can be measured. Tissue can be deformed by applying a force on it and the resulting deformation is a function of its mechanical properties. Quantification of this resulting tissue deformation to assess the mechanical properties of tissue is called elastography. If the tissue under interrogation is actively deforming, the deformation is directly related to its function and quantification of this deformation is normally referred as `strain imaging'. Elastography can be used for atherosclerotic plaques characterization, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. We developed radio frequency (RF) based ultrasound methods to assess the deformation at higher resolution and with higher accuracy than commercial methods using conventional image data (Tissue Doppler Imaging and 2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so 1D. We further extended this method to multiple directions and further improved precision by using compounding of data acquired at multiple beam steered angles. In arteries, the presence of vulnerable plaques may lead to acute events like stroke and myocardial infarction. Consequently, timely detection of these plaques is of great diagnostic value. Non-invasive ultrasound strain compounding is currently being evaluated as a diagnostic tool to identify the vulnerability of plaques. In the heart, we determined the strain locally and at high resolution resulting in a local assessment in contrary to conventional global functional parameters like cardiac output or shortening fraction.

  20. Advances in Molecular Imaging with Ultrasound

    PubMed Central

    Gessner, Ryan; Dayton, Paul A.

    2010-01-01

    Ultrasound imaging has long demonstrated utility in the study and measurement of anatomic features and noninvasive observation of blood flow. Within the last decade, advances in molecular biology and contrast agents have allowed researchers to use ultrasound to detect changes in the expression of molecular markers on the vascular endothelium and other intravascular targets. This new technology, referred to as ultrasonic molecular imaging, is still in its infancy. However, in preclinical studies, ultrasonic molecular imaging has shown promise in assessing angiogenesis, inflammation, and thrombus. In this review, we discuss recent advances in microbubble-type contrast agent development, ultrasound technology, and signal processing strategies that have the potential to substantially improve the capabilities and utility of ultrasonic molecular imaging. PMID:20487678

  1. 3D Prostate Segmentation of Ultrasound Images Combining Longitudinal Image Registration and Machine Learning

    PubMed Central

    Yang, Xiaofeng; Fei, Baowei

    2012-01-01

    We developed a three-dimensional (3D) segmentation method for transrectal ultrasound (TRUS) images, which is based on longitudinal image registration and machine learning. Using longitudinal images of each individual patient, we register previously acquired images to the new images of the same subject. Three orthogonal Gabor filter banks were used to extract texture features from each registered image. Patient-specific Gabor features from the registered images are used to train kernel support vector machines (KSVMs) and then to segment the newly acquired prostate image. The segmentation method was tested in TRUS data from five patients. The average surface distance between our and manual segmentation is 1.18 ± 0.31 mm, indicating that our automatic segmentation method based on longitudinal image registration is feasible for segmenting the prostate in TRUS images. PMID:24027622

  2. Respiration correction by clustering in ultrasound images

    NASA Astrophysics Data System (ADS)

    Wu, Kaizhi; Chen, Xi; Ding, Mingyue; Sang, Nong

    2016-03-01

    Respiratory motion is a challenging factor for image acquisition, image-guided procedures and perfusion quantification using contrast-enhanced ultrasound in the abdominal and thoracic region. In order to reduce the influence of respiratory motion, respiratory correction methods were investigated. In this paper we propose a novel, cluster-based respiratory correction method. In the proposed method, we assign the image frames of the corresponding respiratory phase using spectral clustering firstly. And then, we achieve the images correction automatically by finding a cluster in which points are close to each other. Unlike the traditional gating method, we don't need to estimate the breathing cycle accurate. It is because images are similar at the corresponding respiratory phase, and they are close in high-dimensional space. The proposed method is tested on simulation image sequence and real ultrasound image sequence. The experimental results show the effectiveness of our proposed method in quantitative and qualitative.

  3. Ultrasound image-based respiratory motion tracking

    NASA Astrophysics Data System (ADS)

    Hwang, Youngkyoo; Kim, Jung-Bae; Kim, Yong Sun; Bang, Won-Chul; Kim, James D. K.; Kim, ChangYeong

    2012-03-01

    Respiratory motion tracking has been issues for MR/CT imaging and noninvasive surgery such as HIFU and radiotherapy treatment when we apply these imaging or therapy technologies to moving organs such as liver, kidney or pancreas. Currently, some bulky and burdensome devices are placed externally on skin to estimate respiratory motion of an organ. It estimates organ motion indirectly using skin motion, not directly using organ itself. In this paper, we propose a system that measures directly the motion of organ itself only using ultrasound image. Our system has automatically selected a window in image sequences, called feature window, which is able to measure respiratory motion robustly even to noisy ultrasound images. The organ's displacement on each ultrasound image has been directly calculated through the feature window. It is very convenient to use since it exploits a conventional ultrasound probe. In this paper, we show that our proposed method can robustly extract respiratory motion signal with regardless of reference frame. It is superior to other image based method such as Mutual Information (MI) or Correlation Coefficient (CC). They are sensitive to what the reference frame is selected. Furthermore, our proposed method gives us clear information of the phase of respiratory cycle such as during inspiration or expiration and so on since it calculate not similarity measurement like MI or CC but actual organ's displacement.

  4. Obtaining a palatal trace for ultrasound images

    NASA Astrophysics Data System (ADS)

    Epstein, Melissa A.; Stone, Maureen; Pouplier, Marianne; Parthasarathy, Vijay

    2001-05-01

    This paper presents methods for collection and display of the palate with ultrasound, for use as a reference for tongue movements. Ultrasound does not usually capture structures other than the tongue, because the air above the tongue in the vocal tract reflects the ultrasound beam back to the transducer. However, when the tongue touches the palate, the ultrasound beam is transmitted through the soft tissue until it reaches and is reflected by the palatine bone. The tongue touches the palate during swallowing and some speech sounds. The palate contour can be traced from these images. The paper presents a corpus of speech and swallowing tasks that can be used to create a full palatal trace. The corpus is tested on a subject for whom it is easy to collect palatal images and a subject for whom it is difficult to collect palatal images. The availability of a palate will enhance our ability for data quantification from ultrasound images. In combination with tongue contours, the palate contour allows the computation of linguistically important measures, such as the constriction degree, area functions, and L2 norms. [Work supported by NIH RO1-DC01758 and T32-DE07309.

  5. Discrete echo signal modeling of ultrasound imaging systems

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Zhang, Cishen

    2008-03-01

    In this paper, a discrete model representing the pulse-tissue interaction in the medical ultrasound scanning and imaging process is developed. The model is based on discretizing the acoustical wave equation and is in terms of convolution between the input ultrasound pulses and the tissue mass density variation. Such a model can provide a useful means for ultrasound echo signal processing and imaging. Most existing models used for ultrasound imaging are based on frequency domain transform. A disadvantage of the frequency domain transform is that it is only applicable to shift-invariant models. Thus it has ignored the shift-variant nature of the original acoustic wave equation where the tissue compressibility and mass density distributions are spatial-variant factors. The discretized frequency domain model also obscures the compressibility and mass density representations of the tissue, which may mislead the physical understanding and interpretation of the image obtained. Moreover, only the classical frequency domain filtering methods have been applied to the frequency domain model for acquiring some tissue information from the scattered echo signals. These methods are non-parametric and require a prior knowledge of frequency spectra of the transmitted pulses. Our proposed model technique will lead to discrete, multidimensional, shift-variant and parametric difference or convolution equations with the transmitted pulse pressure as the input, the measurement data of the echo signals as the output, and functions of the tissue compressibility and mass density distributions as shift-variant parameters that can be readily identified from input-output measurements. The proposed model represents the entire multiple scattering process, and hence overcomes the key limitation in the current ultrasound imaging methods.

  6. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described

  7. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  8. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  9. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability. PMID:25207828

  10. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  11. Resolution enhancement in medical ultrasound imaging.

    PubMed

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  12. [Ultrasound imaging of Dupuytren's contracture].

    PubMed

    Créteur, V; Madani, A; Gosset, N

    2010-06-01

    Dupuytren's contracture is characterized by two underlying lesions, nodules and cords. These involve the palmar fascia at the distal palmar crease, especially at the level of the third and fourth rays with progressive disabling finger contracture. The superficial palmar aponeurosis appears as a thin echogenic lamellar structure overlying the flexor tendons. The demonstration of hypoechoic bands adhering to the marging of the flexor tendons and deep surface of the dermis appears to be pathognomonic of the disease. Compared to tendons, early nodules are hypoechoic and typically hypervascular whereas older nodules are iso- to hyperechoic, without hypervascular Doppler signal. Ultrasound can sometimes demonstrate arterial encasement by fibrous or scarring tissue. Ultrasound therefore is very useful for the differential diagnosis of pathologies involving the palmar surface of the hand, for the early detection of Dupuytren's contracture, and for the detection of complication, especially vascular. These data may have an impact on management. PMID:20808269

  13. Image guidance of intracardiac ultrasound with fusion of pre-operative images.

    PubMed

    Sun, Yiyong; Kadoury, Samuel; Li, Yong; John, Matthias; Resnick, Jeff; Plambeck, Gerry; Liao, Rui; Sauer, Frank; Xu, Chenyang

    2007-01-01

    This paper presents a method for registering 3D intracardiac echo (ICE) to pre-operative images. A magnetic tracking sensor is integrated on the ICE catheter tip to provide the 3D location and orientation. The user guides the catheter into the patient heart to acquire a series of ultrasound images covering the anatomy of the heart chambers. An automatic intensity-based registration algorithm is applied to align these ultrasound images with pre-operative images. One of the important applications is to help electrophysiology doctors to treat complicated atrial fibrillation cases. After registration, the doctor can see the position and orientation of the ICE catheter and other tracked catheters inside the heart anatomy in real time. The image guidance provided by this technique may increase the ablation accuracy and reduce the amount of time for the electrophysiology procedures. We show successful image registration results from animal experiments.

  14. High definition ultrasound imaging for battlefield medical applications

    SciTech Connect

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M.; Rogers, B; Walsh, N.

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  15. Ultrasound Imaging in Teaching Cardiac Physiology

    ERIC Educational Resources Information Center

    Johnson, Christopher D.; Montgomery, Laura E. A.; Quinn, Joe G.; Roe, Sean M.; Stewart, Michael T.; Tansey, Etain A.

    2016-01-01

    This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such…

  16. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    PubMed Central

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  17. Geometric reconstruction using tracked ultrasound strain imaging

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Simpson, Amber L.; Ondrake, Janet E.; Miga, Michael I.

    2013-03-01

    The accurate identification of tumor margins during neurosurgery is a primary concern for the surgeon in order to maximize resection of malignant tissue while preserving normal function. The use of preoperative imaging for guidance is standard of care, but tumor margins are not always clear even when contrast agents are used, and so margins are often determined intraoperatively by visual and tactile feedback. Ultrasound strain imaging creates a quantitative representation of tissue stiffness which can be used in real-time. The information offered by strain imaging can be placed within a conventional image-guidance workflow by tracking the ultrasound probe and calibrating the image plane, which facilitates interpretation of the data by placing it within a common coordinate space with preoperative imaging. Tumor geometry in strain imaging is then directly comparable to the geometry in preoperative imaging. This paper presents a tracked ultrasound strain imaging system capable of co-registering with preoperative tomograms and also of reconstructing a 3D surface using the border of the strain lesion. In a preliminary study using four phantoms with subsurface tumors, tracked strain imaging was registered to preoperative image volumes and then tumor surfaces were reconstructed using contours extracted from strain image slices. The volumes of the phantom tumors reconstructed from tracked strain imaging were approximately between 1.5 to 2.4 cm3, which was similar to the CT volumes of 1.0 to 2.3 cm3. Future work will be done to robustly characterize the reconstruction accuracy of the system.

  18. Development of a Hybrid Magnetic Resonance and Ultrasound Imaging System

    PubMed Central

    Sherwood, Victoria; Rivens, Ian; Collins, David J.; Leach, Martin O.; ter Haar, Gail R.

    2014-01-01

    A system which allows magnetic resonance (MR) and ultrasound (US) image data to be acquired simultaneously has been developed. B-mode and Doppler US were performed inside the bore of a clinical 1.5 T MRI scanner using a clinical 1–4 MHz US transducer with an 8-metre cable. Susceptibility artefacts and RF noise were introduced into MR images by the US imaging system. RF noise was minimised by using aluminium foil to shield the transducer. A study of MR and B-mode US image signal-to-noise ratio (SNR) as a function of transducer-phantom separation was performed using a gel phantom. This revealed that a 4 cm separation between the phantom surface and the transducer was sufficient to minimise the effect of the susceptibility artefact in MR images. MR-US imaging was demonstrated in vivo with the aid of a 2 mm VeroWhite 3D-printed spherical target placed over the thigh muscle of a rat. The target allowed single-point registration of MR and US images in the axial plane to be performed. The system was subsequently demonstrated as a tool for the targeting and visualisation of high intensity focused ultrasound exposure in the rat thigh muscle. PMID:25177702

  19. Application of external tracking in ultrasound elasticity imaging

    NASA Astrophysics Data System (ADS)

    Foroughi, Pezhman; Hager, Gregory D.; Wacker, Frank K.; Boctor, Emad M.

    2010-03-01

    Despite the success of ultrasound elasticity imaging (USEI) in medical applications such as diagnosis and screening of breast lesions and prostate cancer, USEI has not been adopted in routine clinical procedures. This is partly caused by the difficulty in acquiring reliable images and interpreting them, the lack of consistency over time, and the dependency of image quality to the expertise of the user. We previously demonstrated the potential of exploiting an external tracker to partially alleviate these issues and enhance the quality of USEI. The tracking data enabled fast and automatic selection of pairs of RF frames used in strain calculation. Here, we expand this method by including new features. The proposed method employs image content to compensate for the limited accuracy of the tracking device. It also combines multiple strain images to improve the quality of the final image. For this purpose, It normalizes the images and determines which images can be combined relying on the tracking information. We have acquired RF frames synchronized with tracking data from livers of pig containing an ablated region and a breast phantom using two different tracking devices; an optical tracker and a less accurate electromagnetic tracker. We present the promising results of the proposed method and investigate the sensitivity of frame selection technique without using the image content to inaccuracies in tracking information.

  20. Automatic 3D lesion segmentation on breast ultrasound images

    NASA Astrophysics Data System (ADS)

    Kuo, Hsien-Chi; Giger, Maryellen L.; Reiser, Ingrid; Drukker, Karen; Edwards, Alexandra; Sennett, Charlene A.

    2013-02-01

    Automatically acquired and reconstructed 3D breast ultrasound images allow radiologists to detect and evaluate breast lesions in 3D. However, assessing potential cancers in 3D ultrasound can be difficult and time consuming. In this study, we evaluate a 3D lesion segmentation method, which we had previously developed for breast CT, and investigate its robustness on lesions on 3D breast ultrasound images. Our dataset includes 98 3D breast ultrasound images obtained on an ABUS system from 55 patients containing 64 cancers. Cancers depicted on 54 US images had been clinically interpreted as negative on screening mammography and 44 had been clinically visible on mammography. All were from women with breast density BI-RADS 3 or 4. Tumor centers and margins were indicated and outlined by radiologists. Initial RGI-eroded contours were automatically calculated and served as input to the active contour segmentation algorithm yielding the final lesion contour. Tumor segmentation was evaluated by determining the overlap ratio (OR) between computer-determined and manually-drawn outlines. Resulting average overlap ratios on coronal, transverse, and sagittal views were 0.60 +/- 0.17, 0.57 +/- 0.18, and 0.58 +/- 0.17, respectively. All OR values were significantly higher the 0.4, which is deemed "acceptable". Within the groups of mammogram-negative and mammogram-positive cancers, the overlap ratios were 0.63 +/- 0.17 and 0.56 +/- 0.16, respectively, on the coronal views; with similar results on the other views. The segmentation performance was not found to be correlated to tumor size. Results indicate robustness of the 3D lesion segmentation technique in multi-modality 3D breast imaging.

  1. Beef quality parameters estimation using ultrasound and color images

    PubMed Central

    2015-01-01

    Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. Proposal An algorithm based on curve evolution is implemented to calculate the rib eye area. The backfat thickness is estimated from the profile of distances between two curves that limit the steak and the rib eye, previously detected. A model base in Support Vector Regression (SVR) is trained to estimate the intramuscular fat percentage. A series of features extracted on a region of interest, previously detected in both ultrasound and color images, were proposed. In all cases, a complete evaluation was performed with different databases including: color and ultrasound images acquired by a beef industry expert, intramuscular fat estimation obtained by an expert using a commercial software, and chemical analysis. Conclusions The proposed algorithms show good results to calculate the rib eye area and the backfat thickness measure and profile. They are also promising in predicting the percentage of intramuscular fat. PMID:25734452

  2. Quantitative neuromuscular ultrasound in intensive care unit-acquired weakness: A systematic review.

    PubMed

    Bunnell, Aaron; Ney, John; Gellhorn, Alfred; Hough, Catherine L

    2015-11-01

    Intensive care unit-acquired weakness (ICU-AW) causes significant morbidity and impairment in critically ill patients. Recent advances in neuromuscular ultrasound (NMUS) allow evaluation of neuromuscular pathology early in critical illness. Here we review application of ultrasound in ICU-AW. MEDLINE-indexed articles were searched for terms relevant to ultrasound and critical illness. Two reviewers evaluated the resulting abstracts (n = 218) and completed full-text review (n = 13). Twelve studies and 1 case report were included. Ten studies evaluated muscle thickness or cross-sectional area (CSA): 8 reported a decrease, and 2 reported no change. Two studies reported preservation of muscle thickness in response to neuromuscular electrical stimulation, and 1 found no preservation. One study found decreases in gray-scale standard deviation, but no change in echogenicity. One study described increases in echogenicity and fasciculations. Ultrasound reliability in ICU-AW is not fully established. Further investigation is needed to identify ultrasound measures that reliably predict clinical, electrodiagnostic, and pathologic findings of ICU-AW.

  3. New developments in paediatric cardiac functional ultrasound imaging.

    PubMed

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed. PMID:27277901

  4. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Owen, Neil (Inventor); Bailey, Michael R. (Inventor); Hossack, James (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  5. Molecular Ultrasound Imaging: Current Status and Future Directions

    PubMed Central

    Deshpande, Nirupama; Needles, Andrew; Willmann, Jürgen K.

    2011-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionizing irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of preclinical and clinical ultrasound systems , the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic. PMID:20541656

  6. In-vivo synthetic aperture flow imaging in medical ultrasound.

    PubMed

    Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt

    2003-07-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation. Any type of filter can be used for discrimination between tissue and blood flow without initialization, and the number of lines used for velocity estimation is limited only by the nonstationarity of the flow. The new approach is investigated through both simulations and measurements. A flow rig is used for generating a parabolic laminar flow, and a research scanner is used for acquiring RF data from individual transducer elements. A reference profile is calculated from a mass flow meter. The parabolic velocity profile is estimated using the new approach with a relative standard deviation of 2.2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of flow in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions.

  7. Fully automatic contour detection in intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Brusseau, Elisabeth F.; de Korte, Chris L.; Mastik, Fritz; Schaar, Johannes; van der Steen, Anton F.

    2004-04-01

    Segmentation of deformable structures remains a challenging task in ultrasound imaging especially in low signal-to-noise ratio applications. In this paper a fully automatic method, dedicated to the luminal contour segmentation in intracoronary ultrasound imaging is introduced. The method is based on an active contour with a priori properties that evolves according to the statistics of the ultrasound texture brightness, determined as being mainly Rayleigh distributed. However, contrary to classical snake-based algorithms, the presented technique neither requires from the user the pre-selection of a region of interest tight around the boundary, nor parameter tuning. This fully automatic character is achieved by an initial contour that is not set, but estimated and thus adapted to each image. Its estimation combines two statistical criteria extracted from the a posteriori probability, function of the contour position. These criteria are the location of the function maximum (or maximum a posteriori estimator) and the first zero-crossing of the function derivative. Then starting form the initial contour, a region of interest is automatically selected and the process iterated until the contour evolution can be ignored. In vivo coronary images from 15 patients, acquired with a 20 MHz central frequency Jomed Invision ultrasound scanner were segmented with the developed method. Automatic contours were compared to those manually drawn by two physician in terms of mean absolute difference. Results demonstrate that the error between automatic contours and the average of manual ones (0.099+/-0.032mm) and the inter-expert error (0.097+/-0.027mm) are similar and of small amplitude.

  8. A novel de-noising method for B ultrasound images

    NASA Astrophysics Data System (ADS)

    Tian, Da-Yong; Mo, Jia-qing; Yu, Yin-Feng; Lv, Xiao-Yi; Yu, Xiao; Jia, Zhen-Hong

    2015-12-01

    B ultrasound as a kind of ultrasonic imaging, which has become the indispensable diagnosis method in clinical medicine. However, the presence of speckle noise in ultrasound image greatly reduces the image quality and interferes with the accuracy of the diagnosis. Therefore, how to construct a method which can eliminate the speckle noise effectively, and at the same time keep the image details effectively is the research target of the current ultrasonic image de-noising. This paper is intended to remove the inherent speckle noise of B ultrasound image. The novel algorithm proposed is based on both wavelet transformation of B ultrasound images and data fusion of B ultrasound images, with a smaller mean squared error (MSE) and greater signal to noise ratio (SNR) compared with other algorithms. The results of this study can effectively remove speckle noise from B ultrasound images, and can well preserved the details and edge information which will produce better visual effects.

  9. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  10. Micro-ultrasound for preclinical imaging.

    PubMed

    Foster, F Stuart; Hossack, John; Adamson, S Lee

    2011-08-01

    Over the past decade, non-invasive preclinical imaging has emerged as an important tool to facilitate biomedical discovery. Not only have the markets for these tools accelerated, but the numbers of peer-reviewed papers in which imaging end points and biomarkers have been used have grown dramatically. High frequency 'micro-ultrasound' has steadily evolved in the post-genomic era as a rapid, comparatively inexpensive imaging tool for studying normal development and models of human disease in small animals. One of the fundamental barriers to this development was the technological hurdle associated with high-frequency array transducers. Recently, new approaches have enabled the upper limits of linear and phased arrays to be pushed from about 20 to over 50 MHz enabling a broad range of new applications. The innovations leading to the new transducer technology and scanner architecture are reviewed. Applications of preclinical micro-ultrasound are explored for developmental biology, cancer, and cardiovascular disease. With respect to the future, the latest developments in high-frequency ultrasound imaging are described.

  11. Advanced ultrasound probes for medical imaging

    NASA Astrophysics Data System (ADS)

    Wildes, Douglas G.; Smith, L. Scott

    2012-05-01

    New medical ultrasound probe architectures and materials build upon established 1D phased array technology and provide improved imaging performance and clinical value. Technologies reviewed include 1.25D and 1.5D arrays for elevation slice thickness control; electro-mechanical and 2D array probes for real-time 3D imaging; catheter probes for imaging during minimally-invasive procedures; single-crystal piezoelectric materials for greater frequency bandwidth; and cMUT arrays using silicon MEMS in place of piezo materials.

  12. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  13. An Open System for Intravascular Ultrasound Imaging

    PubMed Central

    Qiu, Weibao; Chen, Yan; Li, Xiang; Yu, Yanyan; Cheng, Wang Fai; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Dai, Jiyan; Sun, Lei

    2013-01-01

    Visualization of the blood vessels can provide valuable morphological information for diagnosis and therapy strategies for cardiovascular disease. Intravascular ultrasound (IVUS) is able to delineate internal structures of vessel wall with fine spatial resolution. However, the developed IVUS is insufficient to identify the fibrous cap thickness and tissue composition of atherosclerotic lesions. Novel imaging strategies have been proposed, such as increasing the center frequency of ultrasound or using a modulated excitation technique to improve the accuracy of diagnosis. Dual-mode tomography combining IVUS with optical tomography has also been developed to determine tissue morphology and characteristics. The implementation of these new imaging methods requires an open system that allows users to customize the system for various studies. This paper presents the development of an IVUS system that has open structures to support various imaging strategies. The system design is based on electronic components and printed circuit board, and provides reconfigurable hardware implementation, programmable image processing algorithms, flexible imaging control, and raw RF data acquisition. In addition, the proposed IVUS system utilized a miniaturized ultrasound transducer constructed using PMN-PT single crystal for better piezoelectric constant and electromechanical coupling coefficient than traditional lead zirconate titanate (PZT) ceramics. Testing results showed that the IVUS system could offer a minimum detectable signal of 25 μV, allowing a 51 dB dynamic range at 47 dB gain, with a frequency range from 20 to 80 MHz. Finally, phantom imaging, in vitro IVUS vessel imaging, and multimodality imaging with photoacoustics were conducted to demonstrate the performance of the open system. PMID:23143570

  14. Localized harmonic motion imaging for focused ultrasound surgery targeting.

    PubMed

    Curiel, Laura; Hynynen, Kullervo

    2011-08-01

    Recently, an in vivo real-time ultrasound-based monitoring technique that uses localized harmonic motion (LHM) to detect changes in tissues during focused ultrasound surgery (FUS) has been proposed to control the exposure. This technique can potentially be used as well for targeting imaging. In the present study, we evaluated the potential of using LHM to detect changes in stiffness and the feasibility of using it for imaging purposes in phantoms and in vivo tumor detection. A single-element FUS transducer (80 mm focal length, 100 mm diameter, 1.485 MHz) was used for inducing a localized harmonic motion and a separate ultrasound diagnostic transducer excited by a pulser/receiver (5 kHz PRF, 5 MHz) was used to track motion. The motion was estimated using cross-correlation techniques on the acquired radio-frequency (RF) signal. Silicon phantom studies were performed to determine the size of inclusion that was possible to detect using this technique. Inclusions were discerned from the surroundings as a reduction on LHM amplitude and it was possible to depict inclusions as small as 4 mm. The amplitude of the induced LHM was always lower at the inclusions compared with the one obtained at the surroundings. Ten New Zealand rabbits had VX2 tumors implanted on their thighs and LHM was induced and measured at the tumor region. Tumors (as small as 10 mm in length and 4 mm in width) were discerned from the surroundings as a reduction on LHM amplitude.

  15. A preliminary evaluation of self-made nanobubble in contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Wu, Kaizhi; Li, Jing; Liu, Haijuan; Zhou, Qibing; Ding, Mingyue

    2014-03-01

    Nanoscale bubbles (nanobubbles) have been reported to improve contrast in tumor-targeted ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, a self-made nanobubble ultrasound contrast agent was preliminarily characterized and evaluated in-vitro and in-vivo. Fundamental properties such as morphology appearance, size distribution, zeta potential, bubble concentration (bubble numbers per milliliter contrast agent suspension) and the stability of nanobubbles were assessed by light microscope and particle sizing analysis. Then the concentration intensity curve and time intensity curves (TICs) were acquired by ultrasound imaging experiment in-vitro. Finally, the contrast-enhanced ultrasonography was performed on rat to investigate the procedure of liver perfusion. The results showed that the nanobubbles had good shape and uniform distribution with the average diameter of 507.9 nm, polydispersity index (PDI) of 0.527, and zeta potential of -19.17 mV. Significant contrast enhancement was observed in in-vitro ultrasound imaging, demonstrating that the self-made nanobubbles can enhance the contrast effect of ultrasound imaging efficiently in-vitro. Slightly contrast enhancement was observed in in-vivo ultrasound imaging, indicating that the nanobubbles are not stable enough in-vivo. Future work will be focused on improving the ultrasonic imaging performance, stability, and antibody binding of the nanoscale ultrasound contrast agent.

  16. An open access thyroid ultrasound image database

    NASA Astrophysics Data System (ADS)

    Pedraza, Lina; Vargas, Carlos; Narváez, Fabián.; Durán, Oscar; Muñoz, Emma; Romero, Eduardo

    2015-01-01

    Computer aided diagnosis systems (CAD) have been developed to assist radiologists in the detection and diagnosis of abnormalities and a large number of pattern recognition techniques have been proposed to obtain a second opinion. Most of these strategies have been evaluated using different datasets making their performance incomparable. In this work, an open access database of thyroid ultrasound images is presented. The dataset consists of a set of B-mode Ultrasound images, including a complete annotation and diagnostic description of suspicious thyroid lesions by expert radiologists. Several types of lesions as thyroiditis, cystic nodules, adenomas and thyroid cancers were included while an accurate lesion delineation is provided in XML format. The diagnostic description of malignant lesions was confirmed by biopsy. The proposed new database is expected to be a resource for the community to assess different CAD systems.

  17. Ultrasound imaging in teaching cardiac physiology.

    PubMed

    Johnson, Christopher D; Montgomery, Laura E A; Quinn, Joe G; Roe, Sean M; Stewart, Michael T; Tansey, Etain A

    2016-09-01

    This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such as stroke volume, ejection fraction, and cardiac output. By repeating the measurements from a subject after a brief exercise period, an increase in stroke volume and ejection fraction are easily demonstrable, potentially with or without an increase in left ventricular end-diastolic volume (which indicates preload). Thus, factors that affect cardiac performance can readily be discussed. This activity may be performed as a practical demonstration and visualized using an overhead projector or networked computers, concentrating on using the ultrasound images to teach basic physiological principles. This has proved to be highly popular with students, who reported a significant improvement in their understanding of Frank-Starling's law of the heart with ultrasound imaging. PMID:27445285

  18. Ultrasound image of the skin, apparatus and imaging basics

    PubMed Central

    Malinowska, Sylwia

    2013-01-01

    Ultrasound imaging of the skin is becoming more and more popular. Skin ultrasound examinations are used both in order to assess healthy skin and to evaluate pathological lesions. They are mainly performed in dermatology as well as in broadly understood aesthetic medicine and cosmetology. At present, skin imaging is enabled by high-frequency equipment and high-quality conventional devices. The introduction of high-frequency electronic transducers which are supported by conventional scanners may be a turning point in skin ultrasound equipment. Irrespective of the ultrasound scanner, three layers may be distinguished in the image of the healthy skin: epidermal echo, dermis and subcutaneous tissue. High-frequency equipment allows for detailed imaging of the epidermal echo, dermis and upper part of the subcutaneous tissue. It is also possible to visualize the skin appendages (hair with follicles and nails) as well as slight vessels that run in the dermis and upper subcutaneous tissue. Contrary to high-frequency equipment, conventional scanners do not allow for a detailed assessment of the epidermal and dermal echoes. Instead, they enable the visualization of the entire subcutaneous tissue. The following parameters are used for the assessment of skin ultrasound images: thickness of individual skin layers, caliber of blood vessels, echogenicity of the dermis or its individual layers, echogenicity of the subcutaneous tissue as well as the presence or absence of flow in slight venous vessels. Currently, the studies on the usage of sonoelastography for skin assessment are in progress. Considering the dynamic development of skin imaging equipment and its diagnostic possibilities, one might suspect that high-frequency examinations will become more common and will be fundamental for the evaluation of both healthy and pathologically altered skin. This paper is an introduction to a series of articles on the clinical application of high-frequency ultrasound. The next articles will

  19. A Molecular Image-directed, 3D Ultrasound-guided Biopsy System for the Prostate

    PubMed Central

    Fei, Baowei; Schuster, David M.; Master, Viraj; Akbari, Hamed; Fenster, Aaron; Nieh, Peter

    2012-01-01

    Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this biopsy approach uses two-dimensional (2D) ultrasound images to guide biopsy and can miss up to 30% of prostate cancers. We are developing a molecular image-directed, three-dimensional (3D) ultrasound image-guided biopsy system for improved detection of prostate cancer. The system consists of a 3D mechanical localization system and software workstation for image segmentation, registration, and biopsy planning. In order to plan biopsy in a 3D prostate, we developed an automatic segmentation method based wavelet transform. In order to incorporate PET/CT images into ultrasound-guided biopsy, we developed image registration methods to fuse TRUS and PET/CT images. The segmentation method was tested in ten patients with a DICE overlap ratio of 92.4% ± 1.1 %. The registration method has been tested in phantoms. The biopsy system was tested in prostate phantoms and 3D ultrasound images were acquired from two human patients. We are integrating the system for PET/CT directed, 3D ultrasound-guided, targeted biopsy in human patients. PMID:22708023

  20. Perfusion imaging with non-contrast ultrasound

    NASA Astrophysics Data System (ADS)

    Tierney, Jaime E.; Dumont, Douglas M.; Byram, Brett C.

    2016-04-01

    A Doppler ultrasound clutter filter that enables estimation of low velocity blood flow could considerably improve ultrasound as a tool for clinical diagnosis and monitoring, including for the evaluation of vascular diseases and tumor perfusion. Conventional Doppler ultrasound is currently used for visualizing and estimating blood flow. However, conventional Doppler is limited by frame rate and tissue clutter caused by involuntary movement of the patient or sonographer. Spectral broadening of the clutter due to tissue motion limits ultrasound's ability to detect blood flow less than about 5mm/s at an 8MHz center frequency. We propose a clutter filtering technique that may increase the sensitivity of Doppler measurements to at least as low as 0.41mm/s. The proposed filter uses an adaptive demodulation scheme that decreases the bandwidth of the clutter. To test the performance of the adaptive demodulation method at removing sonographer hand motion, six volunteer subjects acquired data from a basic quality assurance phantom. Additionally, to test initial in vivo feasibility, an arterial occlusion reactive hyperemia study was performed to assess the efficiency of the proposed filter at preserving signals from blood velocities 2mm/s or greater. The hand motion study resulted in initial average bandwidths of 577Hz (28.5mm/s), which were decreased to 7.28Hz (0.36mm/s) at -60 dB at 3cm using our approach. The in vivo power Doppler study resulted in 15.2dB and 0.15dB dynamic ranges between the lowest and highest blood flow time points for the proposed filter and conventional 50Hz high pass filter, respectively.

  1. Wireless image streaming in mobile ultrasound.

    PubMed

    Dickson, Brett W; Pedersen, Peder C

    2010-03-01

    This work evaluates the feasibility of using 802.11 g ad hoc and 3G cellular broadband networks to wirelessly stream ultrasound video in real-time. Telemedicine ultrasound applications in events such as disaster relief and first-response triage can incorporate these technologies, enabling onsite medical personnel to receive assistance with diagnostic decisions by remote medical experts. The H.264 scalable video codec was used to encode echocardiographic video streams at various image resolutions (video graphics array [VGA] and quarter video graphics array [QVGA]) and frame rates (10, 15, 20, and 30 frames/s). The video stream was transmitted using 802.11 g and 3G cellular technologies, and pertinent transmission parameters such as data rate, packet loss, delay jitter, and latency were measured. 802.11 g permits high frame rate and VGA resolution and has low latency and jitter, but it is suitable only for short communication ranges, whereas the 3G cellular network allows medium to low frame rate streaming at QVGA image resolution with medium latency. However, video streaming can take place from any location with 3G service to any other site with Internet connectivity. The transmitted ultrasound video streams were subsequently recorded and evaluated by physicians with expertise in medical ultrasonography who evaluated the diagnostic value of the received video streams relative to the original videos. They expressed the opinion that image quality in the case of both 802.11 g and 3G was fully to adequately preserved, but missed frames could momentarily decrease the diagnostic value. This research demonstrates that 3G and 802.11 g wireless networks combined with efficient video compression make diagnostically valuable wireless streaming of ultrasound video feasible.

  2. Hepatic lesions segmentation in ultrasound nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Kissi, Adelaide A.; Cormier, Stephane; Pourcelot, Leandre; Tranquart, Francois

    2005-04-01

    Doppler has been used for many years for cardiovascular exploration in order to visualize the vessels walls and anatomical or functional diseases. The use of ultrasound contrast agents makes it possible to improve ultrasonic information. Nonlinear ultrasound imaging highlights the detection of these agents within an organ and hence is a powerful technique to image perfusion of an organ in real-time. The visualization of flow and perfusion provides important information for the diagnosis of various diseases as well as for the detection of tumors. However, the images are buried in noise, the speckle, inherent in the image formation. Furthermore at portal phase, there is often an absence of clear contrast between lesions and surrounding tissues because the organ is filled with agents. In this context, we propose a new method of automatic liver lesions segmentation in nonlinear imaging sequences for the quantification of perfusion. Our method of segmentation is divided into two stages. Initially, we developed an anisotropic diffusion step which raised the structural characteristics to eliminate the speckle. Then, a fuzzy competitive clustering process allowed us to delineate liver lesions. This method has been used to detect focal hepatic lesions (metastasis, nodular hyperplasia, adenoma). Compared to medical expert"s report obtained on 15 varied lesions, the automatic segmentation allows us to identify and delineate focal liver lesions during the portal phase which high accuracy. Our results show that this method improves markedly the recognition of focal hepatic lesions and opens the way for future precise quantification of contrast enhancement.

  3. Automated fetal spine detection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Tolay, Paresh; Vajinepalli, Pallavi; Bhattacharya, Puranjoy; Firtion, Celine; Sisodia, Rajendra Singh

    2009-02-01

    A novel method is proposed for the automatic detection of fetal spine in ultrasound images along with its orientation in this paper. This problem presents a variety of challenges, including robustness to speckle noise, variations in the visible shape of the spine due to orientation of the ultrasound probe with respect to the fetus and the lack of a proper edge enclosing the entire spine on account of its composition out of distinct vertebra. The proposed method improves robustness and accuracy by making use of two independent techniques to estimate the spine, and then detects the exact location using a cross-correlation approach. Experimental results show that the proposed method is promising for fetal spine detection.

  4. Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review.

    PubMed

    Sudarshan, Vidya K; Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chandran, Vinod; Molinari, Filippo; Fujita, Hamido; Ng, Kwan Hoong

    2016-02-01

    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images. PMID:26761591

  5. Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review.

    PubMed

    Sudarshan, Vidya K; Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chandran, Vinod; Molinari, Filippo; Fujita, Hamido; Ng, Kwan Hoong

    2016-02-01

    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images.

  6. High resolution depth-resolved imaging from multi-focal images for medical ultrasound.

    PubMed

    Diamantis, Konstantinos; Dalgarno, Paul A; Greenaway, Alan H; Anderson, Tom; Jensen, Jørgen Arendt; Sboros, Vassilis

    2015-01-01

    An ultrasound imaging technique providing sub-diffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values for in-focus images. The technique is derived from biological microscopy and is validated here with simulated ultrasound data. A linear array probe is used to scan a point scatterer phantom that moves in depth with a controlled step. From the beamformed responses of each scatterer position the image sharpness is assessed. Values from all positions plotted together form a curve that peaks at the receive focus, which is set during the beamforming. Selection of three different receive foci for each acquired dataset will result in the generation of three overlapping sharpness curves. A set of three calibration curves combined with the use of a maximum-likelihood algorithm is then able to estimate, with high precision, the depth location of any emitter fron each single image. Estimated values are compared with the ground truth demonstrating that an accuracy of 28.6 μm (0.13λ) is achieved for a 4 mm depth range. PMID:26737920

  7. Image reconstruction for robot assisted ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Aalamifar, Fereshteh; Zhang, Haichong K.; Rahmim, Arman; Boctor, Emad M.

    2016-04-01

    An investigation of several image reconstruction methods for robot-assisted ultrasound (US) tomography setup is presented. In the robot-assisted setup, an expert moves the US probe to the location of interest, and a robotic arm automatically aligns another US probe with it. The two aligned probes can then transmit and receive US signals which are subsequently used for tomographic reconstruction. This study focuses on reconstruction of the speed of sound. In various simulation evaluations as well as in an experiment with a millimeter-range inaccuracy, we demonstrate that the limited data provided by two probes can be used to reconstruct pixel-wise images differentiating between media with different speeds of sound. Combining the results of this investigation with the developed robot-assisted US tomography setup, we envision feasibility of this setup for tomographic imaging in applications beyond breast imaging, with potentially significant efficacy in cancer diagnosis.

  8. Twofold processing for denoising ultrasound medical images.

    PubMed

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India. PMID:26697285

  9. Multi-Frequency Intravascular Ultrasound (IVUS) Imaging

    PubMed Central

    Ma, Teng; Yu, Mingyue; Chen, Zeyu; Fei, Chunlong; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Acute coronary syndrome (ACS) is frequently associated with the sudden rupture of a vulnerable atherosclerotic plaque within the coronary artery. Several unique physiological features, including a thin fibrous cap accompanied by a necrotic lipid core, are the targeted indicators for identifying the vulnerable plaques. Intravascular ultrasound (IVUS), a catheter-based imaging technology, has been routinely performed in clinics for more than 20 years to describe the morphology of the coronary artery and guide percutaneous coronary interventions. However, conventional IVUS cannot facilitate the risk assessment of ACS because of its intrinsic limitations, such as insufficient resolution. Renovation of the IVUS technology is essentially needed to overcome the limitations and enhance the coronary artery characterization. In this paper, a multi-frequency intravascular ultrasound (IVUS) imaging system was developed by incorporating a higher frequency IVUS transducer (80 to 150 MHz) with the conventional IVUS (30–50 MHz) system. The newly developed system maintains the advantage of deeply penetrating imaging with the conventional IVUS, while offering an improved higher resolution image with IVUS at a higher frequency. The prototyped multi-frequency catheter has a clinically compatible size of 0.95 mm and a favorable capability of automated image co-registration. In vitro human coronary artery imaging has demonstrated the feasibility and superiority of the multi-frequency IVUS imaging system to deliver a more comprehensive visualization of the coronary artery. This ultrasonic-only intravascular imaging technique, based on a moderate refinement of the conventional IVUS system, is not only cost-effective from the perspective of manufacturing and clinical practice, but also holds the promise of future translation into clinical benefits. PMID:25585394

  10. Micro-ultrasound for preclinical imaging

    PubMed Central

    Foster, F. Stuart; Hossack, John; Adamson, S. Lee

    2011-01-01

    Over the past decade, non-invasive preclinical imaging has emerged as an important tool to facilitate biomedical discovery. Not only have the markets for these tools accelerated, but the numbers of peer-reviewed papers in which imaging end points and biomarkers have been used have grown dramatically. High frequency ‘micro-ultrasound’ has steadily evolved in the post-genomic era as a rapid, comparatively inexpensive imaging tool for studying normal development and models of human disease in small animals. One of the fundamental barriers to this development was the technological hurdle associated with high-frequency array transducers. Recently, new approaches have enabled the upper limits of linear and phased arrays to be pushed from about 20 to over 50 MHz enabling a broad range of new applications. The innovations leading to the new transducer technology and scanner architecture are reviewed. Applications of preclinical micro-ultrasound are explored for developmental biology, cancer, and cardiovascular disease. With respect to the future, the latest developments in high-frequency ultrasound imaging are described. PMID:22866232

  11. Validation of Ultrasound Imaging to Rule-out Thoracic Trauma on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Melton, Shannon; Martin, David; Dulchavsky, Scott A.

    2006-01-01

    Introduction: Aboard the International Space Station (ISS) an intra-thoracic injury may be disastrous to the crew member if the diagnosis is missed or even delayed. Pneumothorax and hemothorax commonly seen in trauma patients; the diagnosis is usually confirmed by chest X-ray or computed tomography. In this study, the ability of ultrasound to rule out pneumothorax by the presence "lung sliding" and hemothorax by the absence of pleural fluid was validated. Methods: The research activities were approved by the NASA Johnson Space Center Committee for the Protection of Human Subjects, and the participating crewmembers signed informed consent prior to the activity. ISS crewmembers received 2-hours of "hands on" ultrasound training 8 months prior to the on-orbit ultrasound exam. Baseline ultrasound images of the thorax were acquired on the crewmebers of Increment 8 and 9 prior to launch from Bakonur, Russia. Ultrasound examination of the thorax were performed on crewmembers at 30 day intervals (n=??) throughout their flight. Post flight images were acquired on or about landing day 10. Ultrasound images were acquired using the ISS Health Research Facility ultrasound system and examined by experts on the ground to rule out the presence of pneumothorax and hemothorax. Results: The presence of "lung sliding" which excludes pneumothorax, was seen in all subjects. The absence of pleural fluid, which excludes hemothorax was seen in all subjects. The optimal position between sonographer and patient under microgravity conditions and the amount and type of training for a non-physician crew medical officer for these procedures was also established for this procedure. Conclusion: Ultrasound can be performed on orbit under microgravity condition to rule thoracic trauma, such as pneumothorax and hemothorax.

  12. Acquired immunodeficiency syndrome: Ga-67 citrate imaging

    SciTech Connect

    Woolfenden, J.M.; Carrasquillo, J.A.; Larson, S.M.; Simmons, J.T.; Masur, H.; Smith, P.D.; Shelhamer, J.H.; Ognibene, F.P.

    1987-02-01

    All gallium-67 citrate scans obtained in patients with acquired immunodeficiency syndrome (AIDS) at the Clinical Center, National Institutes of Health (Bethesda, Md.) were retrospectively analyzed and correlated with the results of bronchoscopy, chest radiography, and endoscopy. There were 164 scans of 95 patients. Twenty scans were from patients with Pneumocystis carinii pneumonia; 19 were abnormal, for a sensitivity of 95%. Ga-67 uptake tended to be less in patients receiving therapy for P. carinii pneumonia. Chest radiographs were normal at least initially in three patients with abnormal scans and P. carinii pneumonia. Unusually prominent colonic activity was associated with infection in some patients. No lesions of Kaposi sarcoma showed tracer uptake. Gallium scanning is useful for detecting P. carinii pneumonia and other opportunistic infections in patients with AIDS, but it is not useful for localizing Kaposi sarcoma.

  13. Consider ultrasound first for imaging the female pelvis.

    PubMed

    Benacerraf, Beryl R; Abuhamad, Alfred Z; Bromley, Bryann; Goldstein, Steven R; Groszmann, Yvette; Shipp, Thomas D; Timor-Tritsch, Ilan E

    2015-04-01

    Ultrasound technology has evolved dramatically in recent years and now includes applications such as 3-dimensional volume imaging, real-time evaluation of pelvic organs (simultaneous with the physical examination), and Doppler blood flow mapping without the need for contrast, which makes ultrasound imaging unique for imaging the female pelvis. Among the many cross-sectional imaging techniques, we should use the most informative, less invasive, and less expensive modality to avoid radiation when possible. Hence, ultrasound imaging should be the first imaging modality used in women with pelvic symptoms.

  14. The tongue stops here: Ultrasound imaging of the palate

    NASA Astrophysics Data System (ADS)

    Epstein, Melissa A.; Stone, Maureen

    2005-10-01

    This letter presents a method for imaging the palate and extracting the palate contour from ultrasound images. Ultrasound does not usually capture the palate because the air at the tongue surface reflects the ultrasound beam back to the transducer. However, when the tongue touches the palate during a swallow, the ultrasound beam is transmitted through the soft tissue until it reaches and is reflected by the palate. In combination with tongue contours, the palate contour has the potential for disambiguation of the tongue surface, registration of images within and across subjects, and calculation of phonetically important measures.

  15. Ultrasound imaging of the anal sphincter complex: a review.

    PubMed

    Abdool, Z; Sultan, A H; Thakar, R

    2012-07-01

    Endoanal ultrasound is now regarded as the gold standard for evaluating anal sphincter pathology in the investigation of anal incontinence. The advent of three-dimensional ultrasound has further improved our understanding of the two-dimensional technique. Endoanal ultrasound requires specialised equipment and its relative invasiveness has prompted clinicians to explore alternative imaging techniques. Transvaginal and transperineal ultrasound have been recently evaluated as alternative imaging modalities. However, the need for technique standardisation, validation and reporting is of paramount importance. We conducted a MEDLINE search (1950 to February 2010) and critically reviewed studies using the three imaging techniques in evaluating anal sphincter integrity.

  16. Real-Time Ellipsometry-Based Transmission Ultrasound Imaging

    SciTech Connect

    Kallman, J S; Poco, J F; Ashby, A E

    2007-02-14

    Ultrasonic imaging is a valuable tool for non-destructive evaluation and medical diagnosis. Reflection mode is exclusively used for medical imaging, and is most frequently used for nondestructive evaluation (NDE) because of the relative speed of acquisition. Reflection mode imaging is qualitative, yielding little information about material properties, and usually only about material interfaces. Transmission imaging can be used in 3D reconstructions to yield quantitative information: sound speed and attenuation. Unfortunately, traditional scanning methods of acquiring transmission data are very slow, requiring on the order of 20 minutes per image. The sensing of acoustic pressure fields as optical images can significantly speed data acquisition. An entire 2D acoustic pressure field can be acquired in under a second. The speed of data acquisition for a 2D view makes it feasible to obtain multiple views of an object. With multiple views, 3D reconstruction becomes possible. A fast, compact (no big magnets or accelerators), inexpensive, 3D imaging technology that uses no ionizing radiation could be a boon to the NDE and medical communities. 2D transmission images could be examined in real time to give the ultrasonic equivalent of a fluoroscope, or accumulated in such a way as to acquire phase and amplitude data over multiple views for 3D reconstruction (for breast cancer imaging, for example). Composite panels produced for the aircraft and automobile industries could be inspected in near real time, and inspection of attenuating materials such as ceramics and high explosives would be possible. There are currently three optical-readout imaging transmission ultrasound technologies available. One is based on frustrated total internal reflection (FTIR) [1,2], one on Fabry-Perot interferometry [3], and another on critical angle modulation [4]. Each of these techniques has its problems. The FTIR based system cannot currently be scaled to large aperture sizes, the Fabry

  17. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    PubMed

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast.

  18. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    PubMed

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. PMID:27153374

  19. Quantitative blood speed imaging with intravascular ultrasound.

    PubMed

    Crowe, J R; O'Donnell, M

    2001-03-01

    Previously, we presented a method of real-time arterial color flow imaging using an intravascular ultrasound (IVUS) imaging system, where real-time RF A-scans were processed with an FIR (finite-impulse response) filter bank to estimate relative blood speed. Although qualitative flow measurements are clinically valuable, realizing the full potential of blood flow imaging requires quantitative flow speed and volume measurements in real time. Unfortunately, the rate of RF echo-to-echo decorrelation is not directly related to scatterer speed in a side-looking IVUS system because the elevational extent of the imaging slice varies with range. Consequently, flow imaging methods using any type of decorrelation processing to estimate blood speed without accounting for spatial variation of the radiation pattern will have estimation errors that prohibit accurate comparison of speed estimates from different depths. The FIR filter bank approach measures the rate of change of the ultrasound signal by estimating the slow-time spectrum of RF echoes. A filter bank of M bandpass filters is applied in parallel to estimate M components of the slow-time DFT (discrete Fourier transform). The relationship between the slow-time spectrum, aperture diffraction pattern, and scatterer speed is derived for a simplified target. Because the ultimate goal of this work is to make quantitative speed measurements, we present a method to map slow time spectral characteristics to a quantitative estimate. Results of the speed estimator are shown for a simulated circumferential catheter array insonifying blood moving uniformly past the array (i.e., plug flow) and blood moving with a parabolic profile (i.e., laminar flow). PMID:11370361

  20. Interference-free ultrasound imaging during HIFU therapy, using software tools

    NASA Technical Reports Server (NTRS)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  1. Estimating elastic properties of tissues from standard 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Kybic, Jan; Smutek, Daniel

    2005-04-01

    We propose a way of measuring elastic properties of tissues in-vivo, using standard medical image ultrasound machine without any special hardware. Images are acquired while the tissue is being deformed by a varying pressure applied by the operator on the hand-held ultrasound probe. The local elastic shear modulus is either estimated from a local displacement field reconstructed by an elastic registration algorithm, or both the modulus and the displacement are estimated simultaneously. The relation between modulus and displacement is calculated using a finite element method (FEM). The estimation algorithms were tested on both synthetic, phantom and real subject data.

  2. Fetal magnetic resonance imaging and ultrasound.

    PubMed

    Wataganara, Tuangsit; Ebrashy, Alaa; Aliyu, Labaran Dayyabu; Moreira de Sa, Renato Augusto; Pooh, Ritsuko; Kurjak, Asim; Sen, Cihat; Adra, Abdallah; Stanojevic, Milan

    2016-07-01

    Magnetic resonance imaging (MRI) has been increasingly adopted in obstetrics practice in the past three decades. MRI aids prenatal ultrasound and improves diagnostic accuracy for selected maternal and fetal conditions. However, it should be considered only when high-quality ultrasound cannot provide certain information that affects the counseling, prenatal intervention, pregnancy course, and delivery plan. Major indications of fetal MRI include, but are not restricted to, morbidly adherent placenta, selected cases of fetal brain anomalies, thoracic lesions (especially in severe congenital diaphragmatic hernia), and soft tissue tumors at head and neck regions of the fetus. For fetal anatomy assessment, a 1.5-Tesla machine with a fast T2-weighted single-shot technique is recommended for image requisition of common fetal abnormalities. Individual judgment needs to be applied when considering usage of a 3-Tesla machine. Gadolinium MRI contrast is not recommended during pregnancy. MRI should be avoided in the first half of pregnancy due to small fetal structures and motion artifacts. Assessment of fetal cerebral cortex can be achieved with MRI in the third trimester. MRI is a viable research tool for noninvasive interrogation of the fetus and the placenta. PMID:27092644

  3. A Guide to Analysing Tongue Motion from Ultrasound Images

    ERIC Educational Resources Information Center

    Stone, Maureen

    2005-01-01

    This paper is meant to be an introduction to and general reference for ultrasound imaging for new and moderately experienced users of the instrument. The paper consists of eight sections. The first explains how ultrasound works, including beam properties, scan types and machine features. The second section discusses image quality, including the…

  4. SQL based cardiovascular ultrasound image classification.

    PubMed

    Nandagopalan, S; Suryanarayana, Adiga B; Sudarshan, T S B; Chandrashekar, Dhanalakshmi; Manjunath, C N

    2013-01-01

    This paper proposes a novel method to analyze and classify the cardiovascular ultrasound echocardiographic images using Naïve-Bayesian model via database OLAP-SQL. Efficient data mining algorithms based on tightly-coupled model is used to extract features. Three algorithms are proposed for classification namely Naïve-Bayesian Classifier for Discrete variables (NBCD) with SQL, NBCD with OLAP-SQL, and Naïve-Bayesian Classifier for Continuous variables (NBCC) using OLAP-SQL. The proposed model is trained with 207 patient images containing normal and abnormal categories. Out of the three proposed algorithms, a high classification accuracy of 96.59% was achieved from NBCC which is better than the earlier methods.

  5. Ultrasound Thermal Field Imaging of Opaque Fluids

    NASA Technical Reports Server (NTRS)

    Andereck, C. David

    1999-01-01

    We have initiated an experimental program to develop an ultrasound system for non-intrusively imaging the thermal field in opaque fluids under an externally imposed temperature gradient. Many industrial processes involve opaque fluids, such as molten metals, semiconductors, and polymers, often in situations in which thermal gradients are important. For example, one may wish to understand semiconductor crystal growth dynamics in a Bridgman apparatus. Destructive testing of the crystal after the process is completed gives only indirect information about the fluid dynamics of the formation process. Knowledge of the coupled thermal and velocity fields during the growth process is then essential. Most techniques for non-intrusive velocity and temperature measurement in fluids are optical in nature, and hence the fluids studied must be transparent. In some cases (for example, LDV (laser Doppler velocimetry) and PIV (particle imaging velocimetry)) the velocities of small neutrally buoyant seed particles suspended in the fluid, are measured. Without particle seeding one can use the variation of the index of refraction of the fluid with temperature to visualize, through interferometric, Schlieren or shadowgraph techniques, the thermal field. The thermal field in turn gives a picture of the pattern existing in the fluid. If the object of study is opaque, non-optical techniques must be used. In this project we focus on the use of ultrasound, which propagates easily through opaque liquids and solids. To date ultrasound measurements have almost exclusively relied on the detection of sound scattered from density discontinuities inside the opaque material of interest. In most cases it has been used to visualize structural properties, but more recently the ultrasound Doppler velocimeter has become available. As in the optical case, it relies on seed particles that scatter Doppler shifted sound back to the detector. Doppler ultrasound techniques are, however, not useful for

  6. Standards of ultrasound imaging of the adrenal glands.

    PubMed

    Słapa, Rafał Z; Jakubowski, Wiesław S; Dobruch-Sobczak, Katarzyna; Kasperlik-Załuska, Anna A

    2015-12-01

    Adrenal glands are paired endocrine glands located over the upper renal poles. Adrenal pathologies have various clinical presentations. They can coexist with the hyperfunction of individual cortical zones or the medulla, insufficiency of the adrenal cortex or retained normal hormonal function. The most common adrenal masses are tumors incidentally detected in imaging examinations (ultrasound, tomography, magnetic resonance imaging), referred to as incidentalomas. They include a range of histopathological entities but cortical adenomas without hormonal hyperfunction are the most common. Each abdominal ultrasound scan of a child or adult should include the assessment of the suprarenal areas. If a previously non-reported, incidental solid focal lesion exceeding 1 cm (incidentaloma) is detected in the suprarenal area, computed tomography or magnetic resonance imaging should be conducted to confirm its presence and for differentiation and the tumor functional status should be determined. Ultrasound imaging is also used to monitor adrenal incidentaloma that is not eligible for a surgery. The paper presents recommendations concerning the performance and assessment of ultrasound examinations of the adrenal glands and their pathological lesions. The article includes new ultrasound techniques, such as tissue harmonic imaging, spatial compound imaging, three-dimensional ultrasound, elastography, contrast-enhanced ultrasound and parametric imaging. The guidelines presented above are consistent with the recommendations of the Polish Ultrasound Society.

  7. Cardiac phase detection in intravascular ultrasound images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Lemos, Pedro Alves; Yoneyama, Takashi; Furuie, Sergio Shiguemi

    2008-03-01

    Image gating is related to image modalities that involve quasi-periodic moving organs. Therefore, during intravascular ultrasound (IVUS) examination, there is cardiac movement interference. In this paper, we aim to obtain IVUS gated images based on the images themselves. This would allow the reconstruction of 3D coronaries with temporal accuracy for any cardiac phase, which is an advantage over the ECG-gated acquisition that shows a single one. It is also important for retrospective studies, as in existing IVUS databases there are no additional reference signals (ECG). From the images, we calculated signals based on average intensity (AI), and, from consecutive frames, average intensity difference (AID), cross-correlation coefficient (CC) and mutual information (MI). The process includes a wavelet-based filter step and ascendant zero-cross detection in order to obtain the phase information. Firstly, we tested 90 simulated sequences with 1025 frames each. Our method was able to achieve more than 95.0% of true positives and less than 2.3% of false positives ratio, for all signals. Afterwards, we tested in a real examination, with 897 frames and ECG as gold-standard. We achieved 97.4% of true positives (CC and MI), and 2.5% of false positives. For future works, methodology should be tested in wider range of IVUS examinations.

  8. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography.

  9. Calibration of ultrasound backscatter temperature imaging for high-intensity focused ultrasound treatment planning.

    PubMed

    Civale, John; Rivens, Ian; Ter Haar, Gail; Morris, Hugh; Coussios, Constantin; Friend, Peter; Bamber, Jeffrey

    2013-09-01

    High-intensity focused ultrasound (HIFU) is rapidly gaining acceptance as a non-invasive method for soft tissue tumor ablation, but improvements in the methods of treatment delivery, planning and monitoring are still required. Backscatter temperature imaging (BTI) uses ultrasound to visualize heating-induced echo strain and may be used to indicate the position of the HIFU focal region using low-power "sub-lesioning" exposure. The technique may also provide a quantitative tool for assessing the efficacy of treatment delivery if apparent strain measurements can be related to the underlying temperature rise. To obtain temperature estimates from strain measurements, the relationship between these variables has to be either measured or otherwise assumed from previous calibrations in similar tissues. This article describes experimental measurements aimed at deriving the relationship between temperature rise and apparent strain in the laboratory environment using both ex vivo bovine liver tissue samples and normothermically perfused porcine livers. A BTI algorithm was applied to radiofrequency ultrasound echo data acquired from a clinical ultrasound scanner (Z.One, Zonare Medical Systems, Mountain View, CA, USA) where the imaging probe was aligned with the focal region of a HIFU transducer. Temperature measurements were obtained using needle thermocouples implanted in the liver tissue. A series of "non-ablative" HIFU exposures giving peak temperatures below 10°C were made in three separate ex vivo bovine livers, yielding an average strain/temperature coefficient of 0.126 ± 0.088 percentage strain per degree Celsius. In the perfused porcine livers at a starting temperature of 38°C (normal body temperature) the strain/temperature coefficients were found to be 0.040 ± 0.029 percentage strain per degree Celsius. The uncertainty in these results is directly linked to the precision of the strain measurement, as well as the naturally occurring variance between different

  10. Integrated intravascular optical coherence tomography (OCT) - ultrasound (US) imaging system

    NASA Astrophysics Data System (ADS)

    Yin, Jiechen; Yang, Hao-Chung; Li, Xiang; Zhou, Qifa; Hu, Changhong; Zhang, Jun; Shung, K. Kirk; Chen, Zhongping

    2010-02-01

    Optical coherence tomography (OCT) and intravascular ultrasound (IVUS) are considered two complementary imaging techniques in the detection and diagnosis of atherosclerosis. OCT permits visualization of micron-scale features of atherosclerosis plaque, and IVUS offers full imaging depth of vessel wall. Under the guidance of IVUS, minimal amount of flushing agent will be needed to obtain OCT imaging of the interested area. We report on a dual-modality optical coherence tomography (OCT) - ultrasound (US) system for intravascular imaging. To the best of our knowledge, we have developed the first integrated OCT-US probe that combines OCT optical components with an ultrasound transducer. The OCT optical components mainly consist of a single mode fiber, a gradient index (GRIN) lens for light beam focusing, and a right-angled prism for reflecting light into biological tissue. A 40MHz PZT-5H side-viewing ultrasound transducer was fabricated to obtain the ultrasound image. These components were integrated into a single probe, enabling both OCT and ultrasound imaging at the same time. In vitro OCT and ultrasound images of a rabbit aorta were obtained using this dual-modality imaging system. This study demonstrates the feasibility of an OCT-US system for intravascular imaging which is expected to have a prominent impact on early detection and characterization of atherosclerosis.

  11. Effects of modulation phase of ultrasound-modulated light on the ultrasound-modulated optical image in turbid media.

    PubMed

    Weng, Cuncheng; Zhang, Jing

    2012-04-01

    In this paper, our investigations suggest that the modulation phase of ultrasound-modulated light escaping from the different locations in the ultrasonic field is different. In turbid media, the modulation phase causes the ultrasound-modulated light intensity collected outside the media to fluctuate. However, the ultrasound-modulated optical technology uses the ultrasound-modulated light signals to image. Consequently, the modulation phase affects the quality of ultrasound-modulated optical imaging.

  12. Ultrasound breast imaging using frequency domain reverse time migration

    NASA Astrophysics Data System (ADS)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  13. High-frequency ultrasound imaging for breast cancer biopsy guidance.

    PubMed

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W; Hovanessian-Larsen, Linda J; Lang, Julie E; Sener, Stephen F; Vallone, John; Martin, Sue E; Kirk Shung, K

    2015-10-01

    Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  14. Non-negative constraint for image-based breathing gating in ultrasound hepatic perfusion data

    NASA Astrophysics Data System (ADS)

    Wu, Kaizhi; Ding, Mingyue; Chen, Xi; Deng, Wenjie; Zhang, Zhijun

    2015-12-01

    Images acquired during free breathing using contrast enhanced ultrasound hepatic perfusion imaging exhibits a periodic motion pattern. It needs to be compensated for if a further accurate quantification of the hepatic perfusion analysis is to be executed. To reduce the impact of respiratory motion, image-based breathing gating algorithm was used to compensate the respiratory motion in contrast enhanced ultrasound. The algorithm contains three steps of which respiratory kinetics extracted, image subsequences determined and image subsequences registered. The basic performance of the algorithm was to extract the respiratory kinetics of the ultrasound hepatic perfusion image sequences accurately. In this paper, we treated the kinetics extracted model as a non-negative matrix factorization (NMF) problem. We extracted the respiratory kinetics of the ultrasound hepatic perfusion image sequences by non-negative matrix factorization (NMF). The technique involves using the NMF objective function to accurately extract respiratory kinetics. It was tested on simulative phantom and used to analyze 6 liver CEUS hepatic perfusion image sequences. The experimental results show the effectiveness of our proposed method in quantitative and qualitative.

  15. Multimedia systems in ultrasound image boundary detection and measurements

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Chalana, Vikram; Kim, Yongmin

    1997-05-01

    Ultrasound as a medical imaging modality offers the clinician a real-time of the anatomy of the internal organs/tissues, their movement, and flow noninvasively. One of the applications of ultrasound is to monitor fetal growth by measuring biparietal diameter (BPD) and head circumference (HC). We have been working on automatic detection of fetal head boundaries in ultrasound images. These detected boundaries are used to measure BPD and HC. The boundary detection algorithm is based on active contour models and takes 32 seconds on an external high-end workstation, SUN SparcStation 20/71. Our goal has been to make this tool available within an ultrasound machine and at the same time significantly improve its performance utilizing multimedia technology. With the advent of high- performance programmable digital signal processors (DSP), the software solution within an ultrasound machine instead of the traditional hardwired approach or requiring an external computer is now possible. We have integrated our boundary detection algorithm into a programmable ultrasound image processor (PUIP) that fits into a commercial ultrasound machine. The PUIP provides both the high computing power and flexibility needed to support computationally-intensive image processing algorithms within an ultrasound machine. According to our data analysis, BPD/HC measurements made on PUIP lie within the interobserver variability. Hence, the errors in the automated BPD/HC measurements using the algorithm are on the same order as the average interobserver differences. On PUIP, it takes 360 ms to measure the values of BPD/HC on one head image. When processing multiple head images in sequence, it takes 185 ms per image, thus enabling 5.4 BPD/HC measurements per second. Reduction in the overall execution time from 32 seconds to a fraction of a second and making this multimedia system available within an ultrasound machine will help this image processing algorithm and other computer-intensive imaging

  16. Variable ultrasound trigger delay for improved magnetic resonance acoustic radiation force imaging

    NASA Astrophysics Data System (ADS)

    Mougenot, Charles; Waspe, Adam; Looi, Thomas; Drake, James M.

    2016-01-01

    Magnetic resonance acoustic radiation force imaging (MR-ARFI) allows the quantification of microscopic displacements induced by ultrasound pulses, which are proportional to the local acoustic intensity. This study describes a new method to acquire MR-ARFI maps, which reduces the measurement noise in the quantification of displacement as well as improving its robustness in the presence of motion. Two MR-ARFI sequences were compared in this study. The first sequence ‘variable MSG’ involves switching the polarity of the motion sensitive gradient (MSG) between odd and even image frames. The second sequence named ‘static MSG’ involves a variable ultrasound trigger delay to sonicate during the first or second MSG for odd and even image frames, respectively. As previously published, the data acquired with a variable MSG required the use of reference data acquired prior to any sonication to process displacement maps. In contrary, data acquired with a static MSG were converted to displacement maps without using reference data acquired prior to the sonication. Displacement maps acquired with both sequences were compared by performing sonications for three different conditions: in a polyacrylamide phantom, in the leg muscle of a freely breathing pig and in the leg muscle of pig under apnea. The comparison of images acquired at even image frames and odd image frames indicates that the sequence with a static MSG provides a significantly better steady state (p  <  0.001 based on a Student’s t-test) than the images acquired with a variable MSG. In addition no reference data prior to sonication were required to process displacement maps for data acquired with a static MSG. The absence of reference data prior to sonication provided a 41% reduction of the spatial distribution of noise (p  <  0.001 based on a Student’s t-test) and reduced the sensitivity to motion for displacements acquired with a static MSG. No significant differences were expected and

  17. Imaging nonmelanoma skin cancers with combined ultrasound-photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Sunar, Ulas; Rohrbach, Daniel J.; Morgan, Janet; Zeitouni, Natalie

    2013-03-01

    PDT has become a treatment of choice especially for the cases with multiple sites and large areas. However, the efficacy of PDT is limited for thicker and deeper tumors. Depth and size information as well as vascularity can provide useful information to clinicians for planning and evaluating PDT. High-resolution ultrasound and photoacoustic imaging can provide information regarding skin structure and vascularity. We utilized combined ultrasound-photoacoustic microscopy for imaging a basal cell carcinoma (BCC) tumor pre-PDT and the results indicate that combined ultrasound-photoacoustic imaging can be useful tool for PDT planning by providing both structural and functional contrasts.

  18. Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.

    PubMed

    Passmore, Elyse; Pandy, Marcus G; Graham, H Kerr; Sangeux, Morgan

    2016-02-01

    Despite variation in bone geometry, muscle and joint function is often investigated using generic musculoskeletal models. Patient-specific bone geometry can be obtained from computerised tomography, which involves ionising radiation, or magnetic resonance imaging (MRI), which is costly and time consuming. Freehand 3-D ultrasound provides an alternative to obtain bony geometry. The purpose of this study was to determine the accuracy and repeatability of 3-D ultrasound in measuring femoral torsion. Measurements of femoral torsion were performed on 10 healthy adults using MRI and 3-D ultrasound. Measurements of femoral torsion from 3-D ultrasound were, on average, smaller than those from MRI (mean difference = 1.8°; 95% confidence interval: -3.9°, 7.5°). MRI and 3-D ultrasound had Bland and Altman repeatability coefficients of 3.1° and 3.7°, respectively. Accurate measurements of femoral torsion were obtained with 3-D ultrasound offering the potential to acquire patient-specific bone geometry for musculoskeletal modelling. Three-dimensional ultrasound is non-invasive and relatively inexpensive and can be integrated into gait analysis.

  19. Application of tissue characterization in intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Mullen, William L.; Fitzgerald, Peter J.; Yock, Paul G.

    1994-05-01

    Current intravascular ultrasound imaging technology is able to determine the extent and distribution of pathologic processes within the vessel wall, but is not highly sensitive in discriminating between certain types of tissue. `Tissue characterization' refers to a set of computer-based techniques that utilize features of the ultrasound signal beyond basic amplitude to help define the composition of the tissue of interest. This technique involves quantitative analysis of the ultrasound signals reflected from tissue before these signals pass through the processing steps in the ultrasound instrument.

  20. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.

    PubMed

    Hsiao, Yi-Sing; Deng, Cheri X

    2016-02-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods.

  1. Multilayer Array Transducer for Nonlinear Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Owen, Neil R.; Kaczkowski, Peter J.; Li, Tong; Gross, Dan; Postlewait, Steven M.; Curra, Francesco P.

    2011-09-01

    The properties of nonlinear acoustic wave propagation are known to be able to improve the resolution of ultrasound imaging, and could be used to dynamically estimate the physical properties of tissue. However, transducers capable of launching a wave that becomes nonlinear through propagation do not typically have the necessary bandwidth to detect the higher harmonics. Here we present the design and characterization of a novel multilayer transducer for high intensity transmit and broadband receive. The transmit layer was made from a narrow-band, high-power piezoceramic (PZT), with nominal frequency of 2.0 MHz, that was diced into an array of 32 elements. Each element was 0.300 mm wide and 6.3 mm in elevation, and with a pitch of 0.400 mm the overall aperture width was 12.7 mm. A quarter-wave matching layer was attached to the PZT substrate to improve transmit efficiency and bandwidth. The overlaid receive layer was made from polyvinylidene fluoride (PVDF) that had gold metalization on one side. A custom two-sided flex circuit routed electrical connections to the PZT elements and patterned the PVDF elements; the PZT and PVDF elements had identical apertures. A low viscosity and electrically nonconductive epoxy was used for all adhesion layers. Characterization of electrical parameters and acoustic output were performed per standard methods, where transmit and receive events were driven by a software-controlled ultrasound engine. Echo data, collected from ex vivo tissue and digitized at 45 MS/s, exhibited frequency content up to the 4th harmonic of the 2 MHz transmit frequency.

  2. Three-dimensional ultrasound imaging of vessel wall for evaluating atherosclerosis risk and disease

    NASA Astrophysics Data System (ADS)

    Amin, Viren R.; Wang, Bo; Sonka, Milan; Lauer, Ronald M.

    2002-04-01

    This research aims at developing a three-dimensional (3D) ultrasound system for carotid and brachial artery scanning for evaluating vessel wall characteristics. In the long term, we seek to test hypothesis that the artery wall measurements of carotid intima-media-thickness and brachial flow mediated dilatation using 3D ultrasound data provide better repeatability than those derived from conventional 2D ultrasound scans. The approach is to implement a free-hand data acquisition scheme using conventional 2D medical ultrasound scanner, develop data processing algorithms for appropriately registering and displaying the volumetric ultrasound vessel scans, and develop techniques for measuring vessel wall characteristics. The system uses electromagnetic sensor mounted on the transducer to acquire position and orientation of each image slice as the transducer is moved freely to scan the area of interest. These non-parallel images are registered into a 3D dataset for reconstruction, segmentation, and measurements of the vessel wall structure. A simple calibration object is developed using a small stainless-steel sphere in a fixed position to perform coordinate transformations and pixel registration. A commercial 3D ultrasound tissue-mimicking phantom is used for assessment of freehand 3D data acquisition, calibration, registration, and visualization schemes. Early results of experimental carotid artery scans of volunteers are presented.

  3. Complex wavelet based speckle reduction using multiple ultrasound images

    NASA Astrophysics Data System (ADS)

    Uddin, Muhammad Shahin; Tahtali, Murat; Pickering, Mark R.

    2014-04-01

    Ultrasound imaging is a dominant tool for diagnosis and evaluation in medical imaging systems. However, as its major limitation is that the images it produces suffer from low quality due to the presence of speckle noise, to provide better clinical diagnoses, reducing this noise is essential. The key purpose of a speckle reduction algorithm is to obtain a speckle-free high-quality image whilst preserving important anatomical features, such as sharp edges. As this can be better achieved using multiple ultrasound images rather than a single image, we introduce a complex wavelet-based algorithm for the speckle reduction and sharp edge preservation of two-dimensional (2D) ultrasound images using multiple ultrasound images. The proposed algorithm does not rely on straightforward averaging of multiple images but, rather, in each scale, overlapped wavelet detail coefficients are weighted using dynamic threshold values and then reconstructed by averaging. Validation of the proposed algorithm is carried out using simulated and real images with synthetic speckle noise and phantom data consisting of multiple ultrasound images, with the experimental results demonstrating that speckle noise is significantly reduced whilst sharp edges without discernible distortions are preserved. The proposed approach performs better both qualitatively and quantitatively than previous existing approaches.

  4. Toward image analysis and decision support for ultrasound technology.

    PubMed

    Crofts, Gillian; Padman, Rema; Maharaja, Nisha

    2013-01-01

    Ultrasound is a low cost and efficient method of detecting diseases and abnormalities in the body. Yet there is a lack of precision and reliability associated with the technology, partly due to the operator dependent nature of ultrasound scanning. When scanning is performed to an agreed protocol, ultrasound has been shown to be highly reliable. This research aims to minimize these limitations that arise during ultrasound training, scanning and reporting by developing and evaluating an image analysis and decision support system that can aid the decision making process. We hypothesize that this intervention will likely increase the role of ultrasound in diagnosis when compared with other imaging technologies, particularly in low resource settings. PMID:23920862

  5. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Erpelding, Todd N.; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Wang, Lihong V.

    2012-06-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) detects both the pulse-echo ultrasound and photoacoustic signals. A multichannel data acquisition system acquires the RF channel data. The imaging system enables rendering of co-registered 3-D ultrasound and photoacoustic images without mechanical scanning. The resolution along the azimuth, elevation, and axial direction are measured to be 0.69, 0.90 and 0.84 mm for photoacoustic imaging. In vivo 3-D photoacoustic mapping of the sentinel lymph node was demonstrated in a rat model using methylene blue dye. These results highlight the clinical potential of 3-D PA imaging for identification of sentinel lymph nodes for cancer staging in humans.

  6. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    PubMed

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis

  7. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  8. Physical principles of microbubbles for ultrasound imaging and therapy.

    PubMed

    Stride, Eleanor

    2015-01-01

    Microbubble ultrasound contrast agents have been in clinical use for more than two decades, during which time their range of applications has increased to encompass echocardiography, Doppler enhancement, perfusion studies and molecular imaging, as well as a number of therapeutic applications, including drug delivery, gene therapy, high-intensity focused ultrasound treatments and sonothrombolysis. The aim of this article is to review the different types of microbubble agents, their physical behaviours and the mechanisms underlying their effectiveness in imaging and therapeutic applications.

  9. Physical principles of microbubbles for ultrasound imaging and therapy.

    PubMed

    Stride, Eleanor

    2009-01-01

    Microbubble ultrasound contrast agents have been in clinical use for more than two decades, during which time their range of applications has increased to encompass echocardiography, Doppler enhancement, perfusion studies and molecular imaging, as well as a number of therapeutic applications including drug delivery, gene therapy, high-intensity focused ultrasound treatments and sonothrombolysis. The aim of this article is to review the different types of microbubble agent, their physical behaviour and the mechanisms underlying their effectiveness in imaging and therapeutic applications.

  10. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.

    PubMed

    Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

    2014-10-20

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.

  11. Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback.

    PubMed

    Lin, Kao-Han; Young, Sun-Yi; Hsu, Ming-Chuan; Chan, Hsu; Chen, Yung-Yaw; Lin, Win-Li

    2008-01-01

    In this study, we developed a focused ultrasound (FUS) thermal therapy system with ultrasound image guidance and thermocouple temperature measurement feedback. Hydraulic position devices and computer-controlled servo motors were used to move the FUS transducer to the desired location with the measurement of actual movement by linear scale. The entire system integrated automatic position devices, FUS transducer, power amplifier, ultrasound image system, and thermocouple temperature measurement into a graphical user interface. For the treatment procedure, a thermocouple was implanted into a targeted treatment region in a tissue-mimicking phantom under ultrasound image guidance, and then the acoustic interference pattern formed by image ultrasound beam and low-power FUS beam was employed as image guidance to move the FUS transducer to have its focal zone coincident with the thermocouple tip. The thermocouple temperature rise was used to determine the sonication duration for a suitable thermal lesion as a high power was turned on and ultrasound image was used to capture the thermal lesion formation. For a multiple lesion formation, the FUS transducer was moved under the acoustic interference guidance to a new location and then it sonicated with the same power level and duration. This system was evaluated and the results showed that it could perform two-dimensional motion control to do a two-dimensional thermal therapy with a small localization error 0.5 mm. Through the user interface, the FUS transducer could be moved to heat the target region with the guidance of ultrasound image and acoustic interference pattern. The preliminary phantom experimental results demonstrated that the system could achieve the desired treatment plan satisfactorily. PMID:19163216

  12. Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study

    NASA Astrophysics Data System (ADS)

    Wang, Tianren; Jing, Yun

    2013-10-01

    This paper presents a numerical study for ultrasound transcranial imaging. To correct for the phase aberration from the skull, two critical steps are needed prior to brain imaging. In the first step, the skull shape and speed of sound are acquired by either CT scans or ultrasound scans. In the ultrasound scan approach, phased array and double focusing technique are utilized, which are able to estimate the thickness of the skull with a maximum error of around 10% and the average speed of sound in the skull is underestimated by less than 2%. In the second step, the fast marching method is used to compute the phase delay based on the known skull shape and sound speed from the first step, and the computation can be completed in seconds for 2D problems. The computed phase delays are then used in combination with the conventional delay-and-sum algorithm for generating B-mode images. Images of wire phantoms with CT or ultrasound scan-based phase correction are shown to have much less artifact than the ones without correction. Errors of deducing speed of sound from CT scans are also discussed regarding its effect on the transcranial ultrasound images. Assuming the speed of sound grows linearly with the density, this study shows that, the CT-based phase correction approach can provide clear images of wire phantoms even if the speed of sound is overestimated by 400 m s-1, or the linear coefficient is overestimated by 40%. While in this study, ultrasound scan-based phase correction performs almost equally well with the CT-based approach, potential problems are identified and discussed.

  13. Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study.

    PubMed

    Wang, Tianren; Jing, Yun

    2013-10-01

    This paper presents a numerical study for ultrasound transcranial imaging. To correct for the phase aberration from the skull, two critical steps are needed prior to brain imaging. In the first step, the skull shape and speed of sound are acquired by either CT scans or ultrasound scans. In the ultrasound scan approach, phased array and double focusing technique are utilized, which are able to estimate the thickness of the skull with a maximum error of around 10% and the average speed of sound in the skull is underestimated by less than 2%. In the second step, the fast marching method is used to compute the phase delay based on the known skull shape and sound speed from the first step, and the computation can be completed in seconds for 2D problems. The computed phase delays are then used in combination with the conventional delay-and-sum algorithm for generating B-mode images. Images of wire phantoms with CT or ultrasound scan-based phase correction are shown to have much less artifact than the ones without correction. Errors of deducing speed of sound from CT scans are also discussed regarding its effect on the transcranial ultrasound images. Assuming the speed of sound grows linearly with the density, this study shows that, the CT-based phase correction approach can provide clear images of wire phantoms even if the speed of sound is overestimated by 400 m s(-1), or the linear coefficient is overestimated by 40%. While in this study, ultrasound scan-based phase correction performs almost equally well with the CT-based approach, potential problems are identified and discussed.

  14. A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf A.; Shapiro, Linda G.

    2008-03-01

    Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.

  15. Ultrasound image velocimetry for rheological measurements

    NASA Astrophysics Data System (ADS)

    Gurung, A.; Haverkort, J. W.; Drost, S.; Norder, B.; Westerweel, J.; Poelma, C.

    2016-09-01

    Ultrasound image velocimetry (UIV) allows for the non-intrusive measurement of a wide range of flows without the need for optical transparency. In this study, we used UIV to measure the local velocity field of a model drilling fluid that exhibits yield stress flow behavior. The radial velocity profile was used to determine the yield stress and the Herschel-Bulkley model flow index n and the consistency index k. Reference data were obtained using the conventional offline Couette rheometry. A comparison showed reasonable agreement between the two methods. The discrepancy in model parameters could be attributed to inherent differences between the methods, which cannot be captured by the three-parameter model used. Overall, with a whole flow field measurement technique such as UIV, we were able to quantify the complex rheology of a model drilling fluid. These preliminary results show that UIV can be used as a non-intrusive diagnostic for in situ, real-time measurement of complex opaque flow rheology.

  16. Ultrasound image velocimetry for rheological measurements

    NASA Astrophysics Data System (ADS)

    Gurung, A.; Haverkort, J. W.; Drost, S.; Norder, B.; Westerweel, J.; Poelma, C.

    2016-09-01

    Ultrasound image velocimetry (UIV) allows for the non-intrusive measurement of a wide range of flows without the need for optical transparency. In this study, we used UIV to measure the local velocity field of a model drilling fluid that exhibits yield stress flow behavior. The radial velocity profile was used to determine the yield stress and the Herschel–Bulkley model flow index n and the consistency index k. Reference data were obtained using the conventional offline Couette rheometry. A comparison showed reasonable agreement between the two methods. The discrepancy in model parameters could be attributed to inherent differences between the methods, which cannot be captured by the three-parameter model used. Overall, with a whole flow field measurement technique such as UIV, we were able to quantify the complex rheology of a model drilling fluid. These preliminary results show that UIV can be used as a non-intrusive diagnostic for in situ, real-time measurement of complex opaque flow rheology.

  17. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  18. Evaluation of outliers in acquired brain MR images

    NASA Astrophysics Data System (ADS)

    Moldovanu, S.; (Vişan Pungǎ, M.; Moraru, L.

    2015-01-01

    Pre-processing is an important stage in the analysis of magnetic resonance images (MRI), because the effect of specific image artefacts, such as intensity inhomogeneity, noise and low contrast can adversely affect the quantitative image analysis. The image histogram is a useful tool in the analysis of MR images given that it allows a close relationship with important image features such as contrast and noise. The noise and variable contrast are elements that locally modify the quality of images. The key issue of this study derives from the fact that the spatial histogram can contain outliers indicating corrupted image information through the disorder of the bins. These aberrant errors should be excluded from the studied data sets. Here, the outliers are evaluated by using rigorous methods based on the probability theory and Chauvenet (CC), Grubbs (GC) and Peirce's (PC) criteria. In order to check the quality of the MR images, the Minkowsky (MD), Euclidean (ED) and cosine (CD) distance functions were used. They act as similarity scores between the histogram of the acquired MRI and the processed image. This analysis is necessary because, sometimes, the distance function exceeds the co-domain because of the outliers. In this paper, 32 MRIs are tested and the outliers are removed so that the distance functions generate uncorrupted and real values.

  19. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging. PMID:26412926

  20. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging.

  1. Registration of Real-Time 3-D Ultrasound to Tomographic Images of the Abdominal Aorta.

    PubMed

    Brekken, Reidar; Iversen, Daniel Høyer; Tangen, Geir Arne; Dahl, Torbjørn

    2016-08-01

    The purpose of this study was to develop an image-based method for registration of real-time 3-D ultrasound to computed tomography (CT) of the abdominal aorta, targeting future use in ultrasound-guided endovascular intervention. We proposed a method in which a surface model of the aortic wall was segmented from CT, and the approximate initial location of this model relative to the ultrasound volume was manually indicated. The model was iteratively transformed to automatically optimize correspondence to the ultrasound data. Feasibility was studied using data from a silicon phantom and in vivo data from a volunteer with previously acquired CT. Through visual evaluation, the ultrasound and CT data were seen to correspond well after registration. Both aortic lumen and branching arteries were well aligned. The processing was done offline, and the registration took approximately 0.2 s per ultrasound volume. The results encourage further patient studies to investigate accuracy, robustness and clinical value of the approach. PMID:27156015

  2. Ultrasound artifacts: classification, applied physics with illustrations, and imaging appearances.

    PubMed

    Prabhu, Somnath J; Kanal, Kalpana; Bhargava, Puneet; Vaidya, Sandeep; Dighe, Manjiri K

    2014-06-01

    Ultrasound has become a widely used diagnostic imaging modality in medicine because of its safety and portability. Because of rapid advances in technology, in recent years, sonographic imaging quality has significantly increased. Despite these advances, the potential to encounter artifacts while imaging remains.This article classifies both common and uncommon gray-scale and Doppler ultrasound artifacts into those resulting from physiology and those caused by hardware. A brief applied-physics explanation for each artifact is listed along with an illustrated diagram. The imaging appearance of artifacts is presented in case examples, along with strategies to minimize the artifacts in real time or use them for clinical advantage where applicable.

  3. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    PubMed Central

    Paefgen, Vera; Doleschel, Dennis; Kiessling, Fabian

    2015-01-01

    Ultrasound (US) is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents (CAs). There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular CAs enable functional analyses, e.g., to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by US pulses to locally release the entrapped agent. Recent studies show that US CAs are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of US CAs and introduces the current clinical applications of contrast-enhanced US. Additionally, an overview of the recent developments in US probe design for functional and molecular diagnosis as well as for drug delivery is given. PMID:26441654

  4. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on

  5. Imaging the hip joint in osteoarthritis: A place for ultrasound?

    PubMed

    Sudula, S N

    2016-05-01

    Osteoarthritis has traditionally been imaged with conventional radiographs; this has been regarded as the reference technique in osteoarthritis for a long time. However, in recent years, innovative imaging techniques such as ultrasonography have been used to obtain a better understanding of this disease. This is mainly due to tremendous technical advances and progressive developments of ultrasound equipment occurring over the past decade. Ultrasonography has been demonstrated to be a valuable imaging technique in the diagnosis and management of osteoarthritis of the hip joint. Application of this imaging methodology for osteoarthritis has improved the understanding of the disease process and may aid in the assessment of the efficacy of future therapies. The execution of ultrasound-guided procedures with safety and reliability has a relevant significance in patient management of osteoarthritis of the hip joint. This paper reviews the use of ultrasound as an imaging technique for the evaluation and treatment of osteoarthritis hip joint.

  6. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System

    PubMed Central

    Kim, Jeesu; Park, Sara; Jung, Yuhan; Chang, Sunyeob; Park, Jinyong; Zhang, Yumiao; Lovell, Jonathan F.; Kim, Chulhong

    2016-01-01

    Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfaces. Here, we present a real-time clinical photoacoustic and ultrasound imaging system which consists of an FDA-approved clinical ultrasound system integrated with a portable laser. The system is completely programmable, has an intuitive user interface, and can be adapted for different applications by switching handheld imaging probes with various transducer types. The customizable photoacoustic and ultrasound imaging system is intended to meet the diverse needs of medical researchers performing both clinical and preclinical photoacoustic studies. PMID:27731357

  7. Imaging the hip joint in osteoarthritis: A place for ultrasound?

    PubMed

    Sudula, S N

    2016-05-01

    Osteoarthritis has traditionally been imaged with conventional radiographs; this has been regarded as the reference technique in osteoarthritis for a long time. However, in recent years, innovative imaging techniques such as ultrasonography have been used to obtain a better understanding of this disease. This is mainly due to tremendous technical advances and progressive developments of ultrasound equipment occurring over the past decade. Ultrasonography has been demonstrated to be a valuable imaging technique in the diagnosis and management of osteoarthritis of the hip joint. Application of this imaging methodology for osteoarthritis has improved the understanding of the disease process and may aid in the assessment of the efficacy of future therapies. The execution of ultrasound-guided procedures with safety and reliability has a relevant significance in patient management of osteoarthritis of the hip joint. This paper reviews the use of ultrasound as an imaging technique for the evaluation and treatment of osteoarthritis hip joint. PMID:27482280

  8. High-resolution imaging with a real-time synthetic aperture ultrasound system: a phantom study

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Labyed, Yassin; Simonetti, Francesco; Williamson, Michael; Rosenberg, Robert; Heintz, Philip; Sandoval, Daniel

    2011-03-01

    It is difficult for ultrasound to image small targets such as breast microcalcifications. Synthetic aperture ultrasound imaging has recently developed as a promising tool to improve the capabilities of medical ultrasound. We use two different tissueequivalent phantoms to study the imaging capabilities of a real-time synthetic aperture ultrasound system for imaging small targets. The InnerVision ultrasound system DAS009 is an investigational system for real-time synthetic aperture ultrasound imaging. We use the system to image the two phantoms, and compare the images with those obtained from clinical scanners Acuson Sequoia 512 and Siemens S2000. Our results show that synthetic aperture ultrasound imaging produces images with higher resolution and less image artifacts than Acuson Sequoia 512 and Siemens S2000. In addition, we study the effects of sound speed on synthetic aperture ultrasound imaging and demonstrate that an accurate sound speed is very important for imaging small targets.

  9. Ultrasound, normal fetus - head measurements (image)

    MedlinePlus

    ... Many health care providers like to have fetal measurements to verify the size of the fetus and ... any abnormalities. This ultrasound is of a head measurement, indicated by the cross hairs and dotted lines.

  10. Ultrasound, normal fetus - abdomen measurements (image)

    MedlinePlus

    ... Many health care providers like to have fetal measurements to verify the size of the fetus and ... any abnormalities. This ultrasound is of an abdominal measurement. It shows a cross-section of the abdomen, ...

  11. Ultrasound, normal placenta - Braxton Hicks (image)

    MedlinePlus

    ... performed at 17 weeks gestation. It shows the placenta during a normal (Braxton Hicks) contraction. Throughout the ... contracts to facilitate better blood flow through the placenta and the fetus. In this ultrasound, the placenta ...

  12. Reconfigurable 2D cMUT-ASIC arrays for 3D ultrasound image

    NASA Astrophysics Data System (ADS)

    Song, Jongkeun; Jung, Sungjin; Kim, Youngil; Cho, Kyungil; Kim, Baehyung; Lee, Seunghun; Na, Junseok; Yang, Ikseok; Kwon, Oh-kyong; Kim, Dongwook

    2012-03-01

    This paper describes the design and implementations of the complete 2D capacitive micromachined ultrasound transducer electronics and its analog front-end module for transmitting high voltage ultrasound pulses and receiving its echo signals to realize 3D ultrasound image. In order to minimize parasitic capacitances and ultimately improve signal-to- noise ratio (SNR), cMUT has to be integrate with Tx/Rx electronics. Additionally, in order to integrate 2D cMUT array module, significant optimized high voltage pulser circuitry, low voltage analog/digital circuit design and packaging challenges are required due to high density of elements and small pitch of each element. We designed 256(16x16)- element cMUT and reconfigurable driving ASIC composed of 120V high voltage pulser, T/R switch, low noise preamplifier and digital control block to set Tx frequency of ultrasound and pulse train in each element. Designed high voltage analog ASIC was successfully bonded with 2D cMUT array by flip-chip bonding process and it connected with analog front-end board to transmit pulse-echo signals. This implementation of reconfigurable cMUT-ASIC-AFE board enables us to produce large aperture 2D transducer array and acquire high quality of 3D ultrasound image.

  13. Methods for segmenting curved needles in ultrasound images.

    PubMed

    Okazawa, Stephen H; Ebrahimi, Richelle; Chuang, Jason; Rohling, Robert N; Salcudean, Septimiu E

    2006-06-01

    Ultrasound-guided percutaneous needle insertions are widely used techniques in current clinical practice. Some of these procedures have a high degree of difficulty because of poor observability of the needle in the ultrasound image. There have been recent efforts to improve guidance by computer assisted needle detection. These software techniques are often limited by not representing needle curvature. We present two methods to detect the needle in 2D ultrasound that specifically address needle curvature. Firstly, we demonstrate a real-time needle segmentation algorithm based on the Hough transform which detects the needle and represents its curved shape. Secondly, we demonstrate how a new coordinate transformation can transform detection of a curved needle to a linear fit. These methods are demonstrated on ultrasound and photographic images.

  14. Versatile robotic probe calibration for position tracking in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Eirik Bø, Lars; Fagertun Hofstad, Erlend; Lindseth, Frank; Hernes, Toril A. N.

    2015-05-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  15. Versatile robotic probe calibration for position tracking in ultrasound imaging.

    PubMed

    Bø, Lars Eirik; Hofstad, Erlend Fagertun; Lindseth, Frank; Hernes, Toril A N

    2015-05-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy. PMID:25855886

  16. Current Role of Ultrasound in Small Bowel Imaging.

    PubMed

    Wale, Anita; Pilcher, James

    2016-08-01

    Bowel ultrasound is cheap, relatively quick, allows dynamic evaluation of the bowel, has no radiation burden, is well tolerated by patients, and allows repeat imaging. Bowel ultrasound requires a systematic assessment of the entire bowel using high-frequency probes. In addition, hydrosonography and contrast-enhanced ultrasound may be performed. We present the normal sonographic appearances of large and small bowel and the sonographic appearances of acute appendicitis, Crohn's disease, celiac disease, intussusception, infectious enteritis, intestinal tuberculosis, small bowel ileus and obstruction, small bowel ischemia, and malignant tumors. PMID:27342894

  17. Cardiovascular Molecular Imaging with Contrast Ultrasound: Principles and Applications

    PubMed Central

    Shim, Chi Young

    2014-01-01

    Methods for imaging the molecular or cellular profile of tissue are being developed for all forms of non-invasive cardiovascular imaging. It is thought that these technologies will potentially improve patient outcomes by allowing diagnosis of disease at an early-stage, monitoring disease progression, providing important information on patient risk, and for tailoring therapy to the molecular basis of disease. Molecular imaging is also already assuming an important role in science by providing a better understanding of the molecular basis of cardiovascular pathology, for assessing response to new therapies, and for rapidly optimizing new or established therapies. Ultrasound-based molecular imaging is one of these new approaches. Contrast-enhanced ultrasound molecular imaging relies on the detection of novel site-targeted microbubbles (MB) or other acoustically active particles which are administered by intravenous injection, circulate throughout the vascular compartment, and are then retained and imaged within regions of disease by ligand-directed binding. The technique is thought to be advantageous in practical terms of cost, time, and ease of use. The aim of this review is to discuss the molecular participants of cardiovascular disease that have been targeted for ultrasound imaging, general features of site-targeted MB, imaging protocols, and potential roles of ultrasound molecular imaging in cardiovascular research and clinical medicine. PMID:24497883

  18. Acquired premature ejaculation and male accessory gland infection: relevance of ultrasound examination

    PubMed Central

    La Vignera, Sandro; Condorelli, Rosita A; Vicari, Enzo; Favilla, Vincenzo; Morgia, Giuseppe; Calogero, Aldo E

    2016-01-01

    We have previously demonstrated a high frequency of premature ejaculation (PE) among patients with male accessory gland infection (MAGI). The aim of this study was to evaluate the ultrasound (US) features of patients with MAGI and acquired premature ejaculation (APE) associated (MAGI-APEpos). US evaluation of 50 MAGI-APEpos patients compared to 50 patients with MAGI without PE (MAGI-PEneg) which represent the control group. The diagnosis of APE was made through the evaluation of Intravaginal ejaculation latency time (IELT) and confirmed with the questionnaire PEDT (Premature Ejaculation Diagnostic Tool). The main outcome measure was represented by the frequency of US criteria suggestive of P (prostatitis), V (vesiculitis), and E (epididymitis) in MAGI-APEpos and MAGI-PEneg patients. MAGI-APEpos patients showed a total number of US criteria significantly higher compared to MAGI-PEneg patients. MAGI-APEpos showed a higher frequency of US criteria of V and E (complicated forms of MAGI). Finally, in MAGI-APEpos group, it was found a positive relationship between the anteroposterior diameter (APD) of the caudal tract of the epididymis and the APD of the seminal vesicles, as well as between both diameters and the PEDT score. MAGI-APEpos patients have a peculiar US characterization compared to MAGI-PEneg patients. According to these results, US evaluation of the epididymal and of the prostato vesicular tract should be considered in the practical clinical approach of patients with MAGI and APE. In particular, it could be a support for a possible pathophysiological interpretation of this clinical problem in these patients. PMID:26387584

  19. Interventional multispectral photoacoustic imaging with a clinical linear array ultrasound probe for guiding nerve blocks

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2016-03-01

    Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.

  20. Ultrasound Imaging Using Diffraction Tomography in a Cylindrical Geometry

    SciTech Connect

    Chambers, D H; Littrup, P

    2002-01-24

    Tomographic images of tissue phantoms and a sample of breast tissue have been produced from an acoustic synthetic array system for frequencies near 500 kHz. The images for sound speed and attenuation show millimeter resolution and demonstrate the feasibility of obtaining high-resolution tomographic images with frequencies that can deeply penetrate tissue. The image reconstruction method is based on the Born approximation to acoustic scattering and is a simplified version of a method previously used by Andre (Andre, et. al., Int. J. Imaging Systems and Technology, Vol 8, No. 1, 1997) for a circular acoustic array system. The images have comparable resolution to conventional ultrasound images at much higher frequencies (3-5 MHz) but with lower speckle noise. This shows the potential of low frequency, deeply penetrating, ultrasound for high-resolution quantitative imaging.

  1. Ultrasound stylet for non-image-guided ventricular catheterization.

    PubMed

    Coulson, Nathaniel K; Chiarelli, Peter A; Su, David K; Chang, Jason J; MacConaghy, Brian; Murthy, Revathi; Toms, Peter; Robb, Terrence L; Ellenbogen, Richard G; Browd, Samuel R; Mourad, Pierre D

    2015-10-01

    OBJECT Urgent ventriculostomy placement can be a lifesaving procedure in the setting of hydrocephalus or elevated intracranial pressure. While external ventricular drain (EVD) insertion is common, there remains a high rate of suboptimal drain placement. Here, the authors seek to demonstrate the feasibility of an ultrasound-based guidance system that can be inserted into an existing EVD catheter to provide a linear ultrasound trace that guides the user toward the ventricle. METHODS The ultrasound stylet was constructed as a thin metal tube, with dimensions equivalent to standard catheter stylets, bearing a single-element, ceramic ultrasound transducer at the tip. Ultrasound backscatter signals from the porcine ventricle were processed by custom electronics to offer real-time information about ventricular location relative to the catheter. Data collected from the prototype device were compared with reference measurements obtained using standard clinical ultrasound imaging. RESULTS A study of porcine ventricular catheterization using the experimental device yielded a high rate of successful catheter placement after a single pass (10 of 12 trials), despite the small size of pig ventricles and the lack of prior instruction on porcine ventricular architecture. A characteristic double-peak signal was identified, which originated from ultrasound reflections off of the near and far ventricular walls. Ventricular dimensions, as obtained from the width between peaks, were in agreement with standard ultrasound reference measurements (p < 0.05). Furthermore, linear ultrasound backscatter data permitted in situ measurement of the stylet distance to the ventricular wall (p < 0.05), which assisted in catheter guidance. CONCLUSIONS The authors have demonstrated the ability of the prototype ultrasound stylet to guide ventricular access in the porcine brain. The alternative design of the device makes it potentially easy to integrate into the standard workflow for bedside EVD

  2. Dynamic Ultrasound Imaging Applications to Quantify Musculoskeletal Function

    PubMed Central

    Sikdar, Siddhartha; Wei, Qi; Cortes, Nelson

    2014-01-01

    Advances in imaging methods have led to new capability to study muscle and tendon motion in vivo. Direct measurements of muscle and tendon kinematics using imaging may lead to improved understanding of musculoskeletal function. This review presents quantitative ultrasound methods for muscle dynamics that can be used to assess in vivo musculoskeletal function when integrated with other conventional biomechanical measurements. PMID:24949846

  3. Hybrid-modality ocular imaging using a clinical ultrasound system and nanosecond pulsed laser

    PubMed Central

    Lim, Hoong-Ta; Matham, Murukeshan Vadakke

    2015-01-01

    Abstract. Hybrid optical modality imaging is a special type of multimodality imaging significantly used in the recent past in order to harness the strengths of different imaging methods as well as to furnish complementary information beyond that provided by any individual method. We present a hybrid-modality imaging system based on a commercial clinical ultrasound imaging (USI) system using a linear array ultrasound transducer (UST) and a tunable nanosecond pulsed laser as the source. The integrated system uses photoacoustic imaging (PAI) and USI for ocular imaging to provide the complementary absorption and structural information of the eye. In this system, B-mode images from PAI and USI are acquired at 10 Hz and about 40 Hz, respectively. A linear array UST makes the system much faster compared to other ocular imaging systems using a single-element UST to form B-mode images. The results show that the proposed instrumentation is able to incorporate PAI and USI in a single setup. The feasibility and efficiency of this developed probe system was illustrated by using enucleated pig eyes as test samples. It was demonstrated that PAI could successfully capture photoacoustic signals from the iris, anterior lens surface, and posterior pole, while USI could accomplish the mapping of the eye to reveal the structures like the cornea, anterior chamber, lens, iris, and posterior pole. This system and the proposed methodology are expected to enable ocular disease diagnostic applications and can be used as a preclinical imaging system. PMID:26835487

  4. Guideline report. Medical ultrasound imaging: progress and opportunities.

    PubMed

    Burns, M

    1989-01-01

    Utilization of medical ultrasound has expanded rapidly during the past several years. In 1988, sales of ultrasound equipment will approach $600 million, which is higher than any other individual imaging modality, including the most capital intensive, such as magnetic resonance imaging (MRI), computed tomography (CT), and cath lab angiography. This growth would have been difficult to predict previously, since ultrasound appeared to be a relatively mature imaging modality not too long ago. There are several reasons for this growth. Technological developments have been quite rapid; ultrasound has become easier to use, image quality has improved dramatically, and diagnostic accuracy has been enhanced. There has been a proliferation of new equipment at all ends of the price spectrum, allowing the user a wide choice in instrument performance, multi-function capabilities, and automated features to increase patient throughput. The DRG environment and the prospect for more pre-admission tests have also been a stimulus. Hospital buying activity has expanded, and many more ultrasound exams are now being conducted on an outpatient basis. Sales to freestanding imaging centers and individual physicians have similarly increased. The hospital user is willing to pay a large premium for advanced technical performance and is prepared to retire or replace older technology in less than three years. This replacement cycle is much shorter than the four to five year period which existed prior to 1985. By comparison, some of the more traditional imaging areas, such as radiology, have replacement rates of eight to ten years. The reason for early replacement is obvious. Ultrasound exams in hospitals generate revenues at a rate that justifies the purchase of the most advanced equipment. It also improves the referral rate and positions the hospital as a high quality provider. Even with low utilization rates, an ultrasound instrument can normally pay for itself in less than one year of regular

  5. Real-time kidney ultrasound image segmentation: a prospective study

    NASA Astrophysics Data System (ADS)

    Dahdouh, S.; Frenoux, E.; Osorio, A.

    2009-02-01

    Segmentation of ultrasound kidney images represents a challenge due to low quality data. Speckle, shadows, signal dropout and low contrast make segmentation a harsh task. In addition, kidney ultrasound imaging presents a great variability concerning the organ's shape on the image. This characteristic makes learning methods hard to use. The aim of this study is to develop a real time kidney ultrasound image segmentation method usable during surgical operations such as punctures. To deal with real time constraints, we decided to focus on region based methods and particularly split and merge algorithm. In this prospective study, the selection of the interesting area in the initial image is made by the physician, drawing a coarse bounding box around the organ. A pre-processing phase is first performed to correct image's artefacts. This phase is composed of three major steps. First, an image specification is made between the image to segment and a reference one. Then, a Haar wavelet filtering method is applied on the resulting image and finally an anisotropic diffusion filter is applied to smooth the result. Then, a split and merge algorithm is applied on the resulting image. Both split and merge criteria are based on regions statistics. Our method has been successfully applied on a set of 22 clinical images coming from 10 different patients and presenting different points of view regarding kidney's shape. We obtained very good results, for an average computational time of 8.5 seconds per image.

  6. Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space.

    PubMed

    Jones, J A; Sargsyan, A E; Barr, Y R; Melton, S; Hamilton, D R; Dulchavsky, S A; Whitson, P A

    2009-07-01

    An operationally available diagnostic imaging capability augments spaceflight medical support by facilitating the diagnosis, monitoring and treatment of medical or surgical conditions, by improving medical outcomes and, thereby, by lowering medical mission impacts and the probability of crew evacuation due to medical causes. Microgravity-related physiological changes occurring during spaceflight can affect the genitourinary system and potentially cause conditions such as urinary retention or nephrolithiasis for which ultrasonography (U/S) would be a useful diagnostic tool. This study describes the first genitourinary ultrasound examination conducted in space, and evaluates image quality, frame rate, resolution requirements, real-time remote guidance of nonphysician crew medical officers and evaluation of on-orbit tools that can augment image acquisition. A nonphysician crew medical officer (CMO) astronaut, with minimal training in U/S, performed a self-examination of the genitourinary system onboard the International Space Station, using a Philips/ATL Model HDI-5000 ultrasound imaging unit located in the International Space Station Human Research Facility. The CMO was remotely guided by voice commands from experienced, earth-based sonographers stationed in Mission Control Center in Houston. The crewmember, with guidance, was able to acquire all of the target images. Real-time and still U/S images received at Mission Control Center in Houston were of sufficient quality for the images to be diagnostic for multiple potential genitourinary applications. Microgravity-based ultrasound imaging can provide diagnostic quality images of the retroperitoneum and pelvis, offering improved diagnosis and treatment for onboard medical contingencies. Successful completion of complex sonographic examinations can be obtained even with minimally trained nonphysician ultrasound operators, with the assistance of ground-based real-time guidance.

  7. Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer

    NASA Astrophysics Data System (ADS)

    Erpelding, Todd N.; Wang, Yu; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Kim, Chulhong; Wang, Lihong V.

    2011-03-01

    Photoacoustic tomography provides both structural and functional imaging in vivo based on optical absorption contrast. A novel imaging system that incorporates a two-dimensional matrix ultrasound probe for combined photoacoustic and ultrasonic three-dimensional (3D) volumetric imaging is presented. The system consists of a tunable dye laser pumped by a Nd:YAG laser, a commercial ultrasound imaging system (Philips iU22) with a two-dimensional matrix transducer (Philips X7-2, 2500 elements, 2-7 MHz), and a multichannel data acquisition system which allows us to acquire RF channel data. Compared with alternative 3D techniques, this system is attractive because it can generate co-registered 3D photoacoustic and ultrasound images without mechanical scanning. Moreover, the lateral resolution along the azimuth and elevational directions are measured to be 0.77 +/- 0.06 mm and 0.96 +/- 0.06 mm, respectively, based on reconstructed photoacoustic images of phantoms containing individual human hairs. Finally, in vivo 3D photoacoustic sentinel lymph node mapping using methylene blue dye in a rat model is demonstrated.

  8. A computational model for estimating tumor margins in complementary tactile and 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Shamsil, Arefin; Escoto, Abelardo; Naish, Michael D.; Patel, Rajni V.

    2016-03-01

    Conventional surgical methods are effective for treating lung tumors; however, they impose high trauma and pain to patients. Minimally invasive surgery is a safer alternative as smaller incisions are required to reach the lung; however, it is challenging due to inadequate intraoperative tumor localization. To address this issue, a mechatronic palpation device was developed that incorporates tactile and ultrasound sensors capable of acquiring surface and cross-sectional images of palpated tissue. Initial work focused on tactile image segmentation and fusion of position-tracked tactile images, resulting in a reconstruction of the palpated surface to compute the spatial locations of underlying tumors. This paper presents a computational model capable of analyzing orthogonally-paired tactile and ultrasound images to compute the surface circumference and depth margins of a tumor. The framework also integrates an error compensation technique and an algebraic model to align all of the image pairs and to estimate the tumor depths within the tracked thickness of a palpated tissue. For validation, an ex vivo experimental study was conducted involving the complete palpation of 11 porcine liver tissues injected with iodine-agar tumors of varying sizes and shapes. The resulting tactile and ultrasound images were then processed using the proposed model to compute the tumor margins and compare them to fluoroscopy based physical measurements. The results show a good negative correlation (r = -0.783, p = 0.004) between the tumor surface margins and a good positive correlation (r = 0.743, p = 0.009) between the tumor depth margins.

  9. A physics-based intravascular ultrasound image reconstruction method for lumen segmentation.

    PubMed

    Mendizabal-Ruiz, Gerardo; Kakadiaris, Ioannis A

    2016-08-01

    Intravascular ultrasound (IVUS) refers to the medical imaging technique consisting of a miniaturized ultrasound transducer located at the tip of a catheter that can be introduced in the blood vessels providing high-resolution, cross-sectional images of their interior. Current methods for the generation of an IVUS image reconstruction from radio frequency (RF) data do not account for the physics involved in the interaction between the IVUS ultrasound signal and the tissues of the vessel. In this paper, we present a novel method to generate an IVUS image reconstruction based on the use of a scattering model that considers the tissues of the vessel as a distribution of three-dimensional point scatterers. We evaluated the impact of employing the proposed IVUS image reconstruction method in the segmentation of the lumen/wall interface on 40MHz IVUS data using an existing automatic lumen segmentation method. We compared the results with those obtained using the B-mode reconstruction on 600 randomly selected frames from twelve pullback sequences acquired from rabbit aortas and different arteries of swine. Our results indicate the feasibility of employing the proposed IVUS image reconstruction for the segmentation of the lumen.

  10. A physics-based intravascular ultrasound image reconstruction method for lumen segmentation.

    PubMed

    Mendizabal-Ruiz, Gerardo; Kakadiaris, Ioannis A

    2016-08-01

    Intravascular ultrasound (IVUS) refers to the medical imaging technique consisting of a miniaturized ultrasound transducer located at the tip of a catheter that can be introduced in the blood vessels providing high-resolution, cross-sectional images of their interior. Current methods for the generation of an IVUS image reconstruction from radio frequency (RF) data do not account for the physics involved in the interaction between the IVUS ultrasound signal and the tissues of the vessel. In this paper, we present a novel method to generate an IVUS image reconstruction based on the use of a scattering model that considers the tissues of the vessel as a distribution of three-dimensional point scatterers. We evaluated the impact of employing the proposed IVUS image reconstruction method in the segmentation of the lumen/wall interface on 40MHz IVUS data using an existing automatic lumen segmentation method. We compared the results with those obtained using the B-mode reconstruction on 600 randomly selected frames from twelve pullback sequences acquired from rabbit aortas and different arteries of swine. Our results indicate the feasibility of employing the proposed IVUS image reconstruction for the segmentation of the lumen. PMID:27235803

  11. Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)

    NASA Astrophysics Data System (ADS)

    Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram

    2014-03-01

    Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.

  12. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    SciTech Connect

    Demi, Libertario Sloun, Ruud J. G. van; Mischi, Massimo; Wijkstra, Hessel

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  13. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  14. Ultrasound introscopic image quantitative characteristics for medical diagnostics and refinements of physical noise rise reasons

    NASA Astrophysics Data System (ADS)

    Novoselets, Mikhail K.; Radchenko, Sergiy P.; Tsubin, Vitaliy A.; Gridko, Alexander N.

    1994-05-01

    Ultrasound images obtained with a simple sector scan show a granular appearance, called `speckle'. The speckle is the useless property of the ultrasound introskopic images as it mask all small differences of the images. The possibility of the speckle noise reduction by special created filter is analyzed. The computer processing results of ultrasound introskopic thyroid gland images by such filter are presented.

  15. Development of photoacoustic imaging technology overlaid on ultrasound imaging and its clinical application

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Tsujita, Kazuhiro; Horiguchi, Akio; Irisawa, Kaku; Komatsu, Tomohiro; Ayaori, Makoto; Hirasawa, Takeshi; Kasamatsu, Tadashi; Hirota, Kazuhiro; Tsuda, Hitoshi; Ikewaki, Katsunori; Asano, Tomohiko

    2015-03-01

    Purpose: Photoacoustic imaging (PAI) enables one to visualize the distribution of hemoglobin and acquire a map of microvessels without using contrast agents. The purpose of our study is to develop a clinically applicable PAI system integrated with a clinical ultrasound (US) array system with handheld PAI probes providing coregistered PAI and US images. Clinical research trials were performed to evaluate the performance and feasibility of clinical value. Materials and Methods: We developed two types of handheld PAI probes: a linear PAI probe combining a conventional linear-array US probe with optical illumination and a transrectal ultrasonography (TRUS)-type PAI probe. We performed experiments with Japanese white rabbits and conducted clinical research trials of urology and vascular medicine with the approval of the medical human ethics committee of the National Defense Medical College. Results: We successfully acquired high-dynamic-range images of the vascular network ranging from capillaries to landmark arteries and identified the femoral vein, deep femoral vein, and great saphenous vein of rabbits. These major vessels in the rabbits groin are surrounded with microvessels connected to each other. Periprostatic microvessels were monitored during radical prostatectomy for localized prostate cancer and they were colocalized with nerve fibers, and their distribution was consistent with the corresponding PAI. The TRUS-type PAI probe clearly demonstrated the location and extent of the neurovascular bundle (NVB) better than does TRUS alone. Conclusions: The system, which can obtain a PAI, a US image, and a merged image, was innovatively designed so that medical doctors can easily find the location without any prior knowledge or extended skills to analyze the obtained images. Our pilot feasibility study confirms that PAI could be an imaging modality useful in the screening study and diagnostic biopsy.

  16. Ultrasound Imaging of the Pelvic Floor.

    PubMed

    Stone, Daniel E; Quiroz, Lieschen H

    2016-03-01

    This article discusses the background and appraisal of endoluminal ultrasound of the pelvic floor. It provides a detailed anatomic assessment of the muscles and surrounding organs of the pelvic floor. Different anatomic variability and pathology, such as prolapse, fecal incontinence, urinary incontinence, vaginal wall cysts, synthetic implanted material, and pelvic pain, are easily assessed with endoluminal vaginal ultrasound. With pelvic organ prolapse in particular, not only is the prolapse itself seen but the underlying cause related to the anatomic and functional abnormalities of the pelvic floor muscle structures are also visualized.

  17. Ultrasound and fluoroscopic images fusion by autonomous ultrasound probe detection.

    PubMed

    Mountney, Peter; Ionasec, Razvan; Kaizer, Markus; Mamaghani, Sina; Wu, Wen; Chen, Terrence; John, Matthias; Boese, Jan; Comaniciu, Dorin

    2012-01-01

    New minimal-invasive interventions such as transcatheter valve procedures exploit multiple imaging modalities to guide tools (fluoroscopy) and visualize soft tissue (transesophageal echocardiography (TEE)). Currently, these complementary modalities are visualized in separate coordinate systems and on separate monitors creating a challenging clinical workflow. This paper proposes a novel framework for fusing TEE and fluoroscopy by detecting the pose of the TEE probe in the fluoroscopic image. Probe pose detection is challenging in fluoroscopy and conventional computer vision techniques are not well suited. Current research requires manual initialization or the addition of fiducials. The main contribution of this paper is autonomous six DoF pose detection by combining discriminative learning techniques with a fast binary template library. The pose estimation problem is reformulated to incrementally detect pose parameters by exploiting natural invariances in the image. The theoretical contribution of this paper is validated on synthetic, phantom and in vivo data. The practical application of this technique is supported by accurate results (< 5 mm in-plane error) and computation time of 0.5s.

  18. Ultrasound and fluoroscopic images fusion by autonomous ultrasound probe detection.

    PubMed

    Mountney, Peter; Ionasec, Razvan; Kaizer, Markus; Mamaghani, Sina; Wu, Wen; Chen, Terrence; John, Matthias; Boese, Jan; Comaniciu, Dorin

    2012-01-01

    New minimal-invasive interventions such as transcatheter valve procedures exploit multiple imaging modalities to guide tools (fluoroscopy) and visualize soft tissue (transesophageal echocardiography (TEE)). Currently, these complementary modalities are visualized in separate coordinate systems and on separate monitors creating a challenging clinical workflow. This paper proposes a novel framework for fusing TEE and fluoroscopy by detecting the pose of the TEE probe in the fluoroscopic image. Probe pose detection is challenging in fluoroscopy and conventional computer vision techniques are not well suited. Current research requires manual initialization or the addition of fiducials. The main contribution of this paper is autonomous six DoF pose detection by combining discriminative learning techniques with a fast binary template library. The pose estimation problem is reformulated to incrementally detect pose parameters by exploiting natural invariances in the image. The theoretical contribution of this paper is validated on synthetic, phantom and in vivo data. The practical application of this technique is supported by accurate results (< 5 mm in-plane error) and computation time of 0.5s. PMID:23286091

  19. Agreement between objective and subjective assessment of image quality in ultrasound abdominal aortic aneurism screening

    PubMed Central

    Wolstenhulme, S; Keeble, C; Moore, S; Evans, J A

    2015-01-01

    Objective: To investigate agreement between objective and subjective assessment of image quality of ultrasound scanners used for abdominal aortic aneurysm (AAA) screening. Methods: Nine ultrasound scanners were used to acquire longitudinal and transverse images of the abdominal aorta. 100 images were acquired per scanner from which 5 longitudinal and 5 transverse images were randomly selected. 33 practitioners scored 90 images blinded to the scanner type and subject characteristics and were required to state whether or not the images were of adequate diagnostic quality. Odds ratios were used to rank the subjective image quality of the scanners. For objective testing, three standard test objects were used to assess penetration and resolution and used to rank the scanners. Results: The subjective diagnostic image quality was ten times greater for the highest ranked scanner than for the lowest ranked scanner. It was greater at depths of <5.0 cm (odds ratio, 6.69; 95% confidence interval, 3.56, 12.57) than at depths of 15.1–20.0 cm. There was a larger range of odds ratios for transverse images than for longitudinal images. No relationship was seen between subjective scanner rankings and test object scores. Conclusion: Large variation was seen in the image quality when evaluated both subjectively and objectively. Objective scores did not predict subjective scanner rankings. Further work is needed to investigate the utility of both subjective and objective image quality measurements. Advances in knowledge: Ratings of clinical image quality and image quality measured using test objects did not agree, even in the limited scenario of AAA screening. PMID:25494526

  20. Ultrasound elasticity imaging of human posterior tibial tendon

    NASA Astrophysics Data System (ADS)

    Gao, Liang

    Posterior tibial tendon dysfunction (PTTD) is a common degenerative condition leading to a severe impairment of gait. There is currently no effective method to determine whether a patient with advanced PTTD would benefit from several months of bracing and physical therapy or ultimately require surgery. Tendon degeneration is closely associated with irreversible degradation of its collagen structure, leading to changes to its mechanical properties. If these properties could be monitored in vivo, it could be used to quantify the severity of tendonosis and help determine the appropriate treatment. Ultrasound elasticity imaging (UEI) is a real-time, noninvasive technique to objectively measure mechanical properties in soft tissue. It consists of acquiring a sequence of ultrasound frames and applying speckle tracking to estimate displacement and strain at each pixel. The goals of my dissertation were to 1) use acoustic simulations to investigate the performance of UEI during tendon deformation with different geometries; 2) develop and validate UEI as a potentially noninvasive technique for quantifying tendon mechanical properties in human cadaver experiments; 3) design a platform for UEI to measure mechanical properties of the PTT in vivo and determine whether there are detectable and quantifiable differences between healthy and diseased tendons. First, ultrasound simulations of tendon deformation were performed using an acoustic modeling program. The effects of different tendon geometries (cylinder and curved cylinder) on the performance of UEI were investigated. Modeling results indicated that UEI accurately estimated the strain in the cylinder geometry, but underestimated in the curved cylinder. The simulation also predicted that the out-of-the-plane motion of the PTT would cause a non-uniform strain pattern within incompressible homogeneous isotropic material. However, to average within a small region of interest determined by principal component analysis (PCA

  1. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  2. Segmentation of ultrasound breast images based on a neutrosophic method

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Zhang, Ling; Cheng, Heng-Da

    2010-11-01

    Breast cancer is one of the leading cancers of women. Ultrasound is often used for breast cancer diagnosis because it is harmless, portable, and low-cost. However, the segmentation of breast ultrasound (BUS) images is a difficult task due to their low contrast and speckle noise. Neutrosophy studies the origin, nature, and scope of neutralities and their interactions with different ideational spectra. It is a new philosophy to extend fuzzy logic and is the basis of neutrosophic logic, neutrosophic probability theory, neutrosophic set theory, and neutrosophic statistics. In this paper, we employ neutrosophy and develop a fully automatic algorithm for BUS image segmentation. By using neutrosophy, we integrate two conflicting opinions about speckle in ultrasound image: speckle is noise and speckle includes pattern information. The experiments demonstrate that the proposed approach is accurate, effective, and robust.

  3. Robust contour tracking in ultrasound tongue image sequences.

    PubMed

    Xu, Kele; Yang, Yin; Stone, Maureen; Jaumard-Hakoun, Aurore; Leboullenger, Clémence; Dreyfus, Gérard; Roussel, Pierre; Denby, Bruce

    2016-01-01

    A new contour-tracking algorithm is presented for ultrasound tongue image sequences, which can follow the motion of tongue contours over long durations with good robustness. To cope with missing segments caused by noise, or by the tongue midsagittal surface being parallel to the direction of ultrasound wave propagation, active contours with a contour-similarity constraint are introduced, which can be used to provide 'prior' shape information. Also, in order to address accumulation of tracking errors over long sequences, we present an automatic re-initialization technique, based on the complex wavelet image similarity index. Experiments on synthetic data and on real 60 frame per second (fps) data from different subjects demonstrate that the proposed method gives good contour tracking for ultrasound image sequences even over durations of minutes, which can be useful in applications such as speech recognition where very long sequences must be analyzed in their entirety.

  4. MMSE Reconstruction for 3D Freehand Ultrasound Imaging

    PubMed Central

    Huang, Wei; Zheng, Yibin

    2008-01-01

    The reconstruction of 3D ultrasound (US) images from mechanically registered, but otherwise irregularly positioned, B-scan slices is of great interest in image guided therapy procedures. Conventional 3D ultrasound algorithms have low computational complexity, but the reconstructed volume suffers from severe speckle contamination. Furthermore, the current method cannot reconstruct uniform high-resolution data from several low-resolution B-scans. In this paper, the minimum mean-squared error (MMSE) method is applied to 3D ultrasound reconstruction. Data redundancies due to overlapping samples as well as correlation of the target and speckle are naturally accounted for in the MMSE reconstruction algorithm. Thus, the reconstruction process unifies the interpolation and spatial compounding. Simulation results for synthetic US images are presented to demonstrate the excellent reconstruction. PMID:18382623

  5. Detection of vascular defects during operation by imaging ultrasound.

    PubMed Central

    Sigel, B; Coelho, J C; Flanigan, D P; Schuler, J J; Machi, J; Beitler, J C

    1982-01-01

    Real-time high resolution ultrasound imaging was employed during reconstructive vascular operation in 165 patients. The purpose of this diagnostic procedure was to detect unrecognized strictures, thrombi, and intimal flaps in order to permit their surgical correction at the primary operation. Defects were discovered in 48 patients (29%). In 34 patients (21%), because of size and location, defects were not considered sufficiently significant to warrant re-exploration. In 14 patients (8%), ultrasound revealed defects that prompted immediate re-exploration. Patients with ultrasound defects considered to be insignificant did as well as patients with no demonstrable defects. In the 14 patients who were re-explored, 12 had major defects that were corrected. These 12 patients also did well after operation. In two of the 14 patients, defects could not be found at re-exploration. Both these patients experienced early thrombosis of bypass grafts. In 56 patients, ultrasound was compared with arteriography at the same operation. The accuracy of operative ultrasound and operative arteriography was 96% and 85%, respectively. Operative ultrasound is more accurate, simpler and safer than arteriography and may be the preferred method for detection of vascular defects at reconstructive surgery. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:7125733

  6. Automatic segmentation of the lumen of the carotid artery in ultrasound B-mode images

    NASA Astrophysics Data System (ADS)

    Santos, André M. F.; Tavares, Jão. Manuel R. S.; Sousa, Luísa; Santos, Rosa; Castro, Pedro; Azevedo, Elsa

    2013-02-01

    A new algorithm is proposed for the segmentation of the lumen and bifurcation boundaries of the carotid artery in B-mode ultrasound images. It uses the hipoechogenic characteristics of the lumen for the identification of the carotid boundaries and the echogenic characteristics for the identification of the bifurcation boundaries. The image to be segmented is processed with the application of an anisotropic diffusion filter for speckle removal and morphologic operators are employed in the detection of the artery. The obtained information is then used in the definition of two initial contours, one corresponding to the lumen and the other to the bifurcation boundaries, for the posterior application of the Chan-vese level set segmentation model. A set of longitudinal B-mode images of the common carotid artery (CCA) was acquired with a GE Healthcare Vivid-e ultrasound system (GE Healthcare, United Kingdom). All the acquired images include a part of the CCA and of the bifurcation that separates the CCA into the internal and external carotid arteries. In order to achieve the uppermost robustness in the imaging acquisition process, i.e., images with high contrast and low speckle noise, the scanner was adjusted differently for each acquisition and according to the medical exam. The obtained results prove that we were able to successfully apply a carotid segmentation technique based on cervical ultrasonography. The main advantage of the new segmentation method relies on the automatic identification of the carotid lumen, overcoming the limitations of the traditional methods.

  7. FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.

    PubMed

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2012-07-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.

  8. FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.

    PubMed

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2012-07-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830

  9. FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging

    PubMed Central

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2016-01-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830

  10. Dual-Modality PET/Ultrasound imaging of the Prostate

    SciTech Connect

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  11. Resolution and quantitative accuracy improvements in ultrasound transmission imaging

    NASA Astrophysics Data System (ADS)

    Chenevert, T. L.

    The type of ultrasound transmission imaging, referred to as ultrasonic computed tomography (UCT), reconstructs distributions of tissue speed of sound and sound attenuation properties from measurements of acoustic pulse time of flight (TCF) and energy received through tissue. Although clinical studies with experimental UCT scanners have demonstrated UCT is sensitive to certain tissue pathologies not easily detected with conventional ultrasound imaging, they have also shown UCT to suffer from artifacts due to physical differences between the acoustic beam and its ray model implicit in image reconstruction algorithms. Artifacts are expressed as large quantitative errors in attenuation images, and poor spatial resolution and size distortion (exaggerated size of high speed of sound regions) in speed of sound images. Methods are introduced and investigated which alleviate these problems in UCT imaging by providing improved measurements of pulse TCF and energy.

  12. Integrated intravascular optical coherence tomography ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Yin, Jiechen; Yang, Hao-Chung; Li, Xiang; Zhang, Jun; Zhou, Qifa; Hu, Changhong; Shung, K. Kirk; Chen, Zhongping

    2010-01-01

    We report on a dual-modality optical coherence tomography (OCT) ultrasound (US) system for intravascular imaging. To the best of our knowledge, we have developed the first integrated OCT-US probe that combines OCT optical components with an US transducer. The OCT optical components mainly consist of a single-mode fiber, a gradient index lens for light-beam focusing, and a right-angled prism for reflecting light into biological tissue. A 40-MHz piezoelectric transducer (PZT-5H) side-viewing US transducer was fabricated to obtain the US image. These components were integrated into a single probe, enabling both OCT and US imaging at the same time. In vitro OCT and ultrasound images of a rabbit aorta were obtained using this dual-modality imaging system. This study demonstrates the feasibility of an OCT-US system for intravascular imaging, which is expected to have a prominent impact on early detection and characterization of atherosclerosis.

  13. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    NASA Astrophysics Data System (ADS)

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.; Hall, Timothy J.

    2013-03-01

    The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth.

  14. Automatic 3D ultrasound calibration for image guided therapy using intramodality image registration

    NASA Astrophysics Data System (ADS)

    Schlosser, Jeffrey; Kirmizibayrak, Can; Shamdasani, Vijay; Metz, Steve; Hristov, Dimitre

    2013-11-01

    Many real time ultrasound (US) guided therapies can benefit from management of motion-induced anatomical changes with respect to a previously acquired computerized anatomy model. Spatial calibration is a prerequisite to transforming US image information to the reference frame of the anatomy model. We present a new method for calibrating 3D US volumes using intramodality image registration, derived from the ‘hand-eye’ calibration technique. The method is fully automated by implementing data rejection based on sensor displacements, automatic registration over overlapping image regions, and a self-consistency error metric evaluated continuously during calibration. We also present a novel method for validating US calibrations based on measurement of physical phantom displacements within US images. Both calibration and validation can be performed on arbitrary phantoms. Results indicate that normalized mutual information and localized cross correlation produce the most accurate 3D US registrations for calibration. Volumetric image alignment is more accurate and reproducible than point selection for validating the calibrations, yielding <1.5 mm root mean square error, a significant improvement relative to previously reported hand-eye US calibration results. Comparison of two different phantoms for calibration and for validation revealed significant differences for validation (p = 0.003) but not for calibration (p = 0.795).

  15. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    SciTech Connect

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; Jong, N. de; Vos, H. J.

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  16. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    NASA Astrophysics Data System (ADS)

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; de Jong, N.; Vos, H. J.

    2015-10-01

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. "superharmonic" imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which `signal' denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  17. DNA image cytometry in acquired immune deficiency syndrome (AIDS).

    PubMed

    Auffermann, W; Krueger, G R; Böcking, A

    1986-03-01

    In nine cases with the acquired immune deficiency syndrome (AIDS), including four stage I cases, three stage II cases and two stage III cases, DNA image cytometry was performed on Feulgen-stained lymph node imprint smears. Diploidy was found in three cases, tetraploidy in three cases and octoploidy in two cases. Aneuploid DNA distribution patterns were not seen. The lymphoid cells showed an enormously increased proliferation rate. Two cases in stage I revealed characteristic intranuclear DNA inclusions in lymphoid cells. These results indicate that DNA image cytometry may be useful as an adjunct to surgical pathology in certain cases to assist in the differential diagnosis between AIDS and benign conditions of the lymphoid system as well as between AIDS and malignant lymphomas, which usually have aneuploid DNA patterns.

  18. Imaging Performance of Quantitative Transmission Ultrasound

    PubMed Central

    Lenox, Mark W.; Wiskin, James; Lewis, Matthew A.; Darrouzet, Stephen; Borup, David; Hsieh, Scott

    2015-01-01

    Quantitative Transmission Ultrasound (QTUS) is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound. PMID:26604918

  19. Method for acquiring, storing and analyzing crystal images

    NASA Technical Reports Server (NTRS)

    Gester, Thomas E. (Inventor); Rosenblum, William M. (Inventor); Christopher, Gayle K. (Inventor); Hamrick, David T. (Inventor); Delucas, Lawrence J. (Inventor); Tillotson, Brian (Inventor)

    2003-01-01

    A system utilizing a digital computer for acquiring, storing and evaluating crystal images. The system includes a video camera (12) which produces a digital output signal representative of a crystal specimen positioned within its focal window (16). The digitized output from the camera (12) is then stored on data storage media (32) together with other parameters inputted by a technician and relevant to the crystal specimen. Preferably, the digitized images are stored on removable media (32) while the parameters for different crystal specimens are maintained in a database (40) with indices to the digitized optical images on the other data storage media (32). Computer software is then utilized to identify not only the presence and number of crystals and the edges of the crystal specimens from the optical image, but to also rate the crystal specimens by various parameters, such as edge straightness, polygon formation, aspect ratio, surface clarity, crystal cracks and other defects or lack thereof, and other parameters relevant to the quality of the crystals.

  20. Nanobubble-Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor.

    PubMed

    Yang, Hengli; Cai, Wenbin; Xu, Lei; Lv, Xiuhua; Qiao, Youbei; Li, Pan; Wu, Hong; Yang, Yilin; Zhang, Li; Duan, Yunyou

    2015-01-01

    Nanobubbles (NBs), as novel ultrasound contrast agents (UCAs), have attracted increasing attention in the field of molecular ultrasound imaging for tumors. However, the preparation of uniform-sized NBs is considered to be controversial, and poor tumor selectivity in in vivo imaging has been reported. In this study, we fabricated uniform nano-sized NBs (478.2 ± 29.7 nm with polydispersity index of 0.164 ± 0.044, n = 3) using a thin-film hydration method by controlling the thickness of phospholipid films; we then conjugated the NBs with Affibody molecules to produce nano-sized UCAs referred to as NB-Affibody with specific affinity to human epidermal growth factor receptor type 2 (HER2)-overexpressing tumors. NB-Affibody presented good ultrasound enhancement, demonstrating a peak intensity of 104.5 ± 2.1 dB under ultrasound contrast scanning. Ex vivo experiments further confirmed that the NB-Affibody conjugates were capable of targeting HER2-expressing tumor cells in vivo with high affinity. The newly prepared nano-sized NB-Affibody conjugates were observed to be novel targeted UCAs for efficient and safe specific molecular imaging and may have potential applications in early cancer quantitative diagnosis and targeted therapy in the future.

  1. High resolution ultrasound elastomicroscopy imaging of soft tissues: system development and feasibility

    NASA Astrophysics Data System (ADS)

    Zheng, Y. P.; Bridal, S. L.; Shi, J.; Saied, A.; Lu, M. H.; Jaffre, B.; Mak, A. F. T.; Laugier, P.

    2004-09-01

    Research in elasticity imaging typically relies on 1-10 MHz ultrasound. Elasticity imaging at these frequencies can provide strain maps with a resolution in the order of millimetres, but this is not sufficient for applications to skin, articular cartilage or other fine structures. We developed a prototype high resolution elastomicroscopy system consisting of a 50 MHz ultrasound backscatter microscope system and a calibrated compression device using a load cell to measure the pressure applied to the specimen, which was installed between a rigidly fixed face-plate and a specimen platform. Radiofrequency data were acquired in a B-scan format (10 mm wide × 3 mm deep) in specimens of mouse skin and bovine patellar cartilage. The scanning resolution along the B-scan plane direction was 50 µm, and the ultrasound signals were digitized at 500 MHz to achieve a sensitivity better than 1 µm for the axial displacement measurement. Because of elevated attenuation of ultrasound at high frequencies, special consideration was necessary to design a face-plate permitting efficient ultrasound transmission into the specimen and relative uniformity of the compression. Best results were obtained using a thin plastic film to cover a specially shaped slit in the face-plate. Local tissue strain maps were constructed by applying a cross-correlation tracking method to signals obtained at the same site at different compression levels. The speed of sound in the tissue specimen (1589.8 ± 7.8 m s-1 for cartilage and 1532.4 ± 4.4 m s-1 for skin) was simultaneously measured during the compression test. Preliminary results demonstrated that this ultrasound elastomicroscopy technique was able to map deformations of the skin and articular cartilage specimens to high resolution, in the order of 50 µm. This system can also be potentially used for the assessment of other biological tissues, bioengineered tissues or biomaterials with fine structures.

  2. Characteristics of the audio sound generated by ultrasound imaging systems

    NASA Astrophysics Data System (ADS)

    Fatemi, Mostafa; Alizad, Azra; Greenleaf, James F.

    2005-03-01

    Medical ultrasound scanners use high-energy pulses to probe the human body. The radiation force resulting from the impact of such pulses on an object can vibrate the object, producing a localized high-intensity sound in the audible range. Here, a theoretical model for the audio sound generated by ultrasound scanners is presented. This model describes the temporal and spectral characteristics of the sound. It has been shown that the sound has rich frequency components at the pulse repetition frequency and its harmonics. Experiments have been conducted in a water tank to measure the sound generated by a clinical ultrasound scanner in various operational modes. Results are in general agreement with the theory. It is shown that a typical ultrasound scanner with a typical spatial-peak pulse-average intensity value at 2 MHz may generate a localized sound-pressure level close to 100 dB relative to 20 μPa in the audible (<20 kHz) range under laboratory conditions. These findings suggest that fetuses may become exposed to a high-intensity audio sound during maternal ultrasound examinations. Therefore, contrary to common beliefs, ultrasound may not be considered a passive tool in fetal imaging..

  3. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  4. Image stitching for three-pass whole breast ultrasound

    NASA Astrophysics Data System (ADS)

    Chang, Ruey-Feng; Chen, Chii-Jen; Takada, Etsuo; Chou, Yi-Hong; Chen, Dar-Ren

    2006-03-01

    Early detection through screening is the best defense against morbidity and mortality from breast cancers. Mammography is the most used screening tool for detecting early breast cancer because it can easily obtain the view of whole breast. However, because the ultrasound images are cross-sectional images, not projection images like mammography, and the ultrasound probe does not fully cover the breast width, it is not a convenient screening tool when adjunct with screening mammography. The physician needs a lot of examination time to perform the breast screening. Recently, some whole breast ultrasound scanning machines are developed. The examination could be performed by an experienced technician. Because the probe width still does not fully cover the breast width, several scanning passes are required to obtain the whole breast image. The physician still cannot have a full view of breast. In this paper, an image stitching technique is proposed to stitch multi-pass images into a full-view image. The produced full-view image can reveal the breast anatomy and assists physicians to reduce extra manual adjustment.

  5. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    NASA Astrophysics Data System (ADS)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  6. Combined Ultrasound and MR Imaging to Guide Focused Ultrasound Therapies in the Brain

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-01-01

    Purpose Several emerging therapies with potential for use in the brain harness effects produced by acoustic cavitation – the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength, and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. Materials and Methods We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. Results The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. Conclusion While preliminary, these data clearly demonstrate, for the first time, that is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate it will also prove to

  7. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-08-01

    Multimodal medical imaging is gaining increased popularity in the clinic. This stems from the fact that data acquired from different physical phenomena may provide complementary information resulting in a more comprehensive picture of the pathological state. In this context, nano-sized contrast agents may augment the potential sensitivity of each imaging modality and allow targeted visualization of physiological points of interest (e.g. tumours). In this study, 7 nm copper oxide nanoparticles (CuO NPs) were synthesized and characterized. Then, in vitro and phantom specimens containing CuO NPs ranging from 2.4 to 320 μg · mL-1 were scanned, using both 9.4 T MRI and through-transmission ultrasonic imaging. The results show that the CuO NPs induce shortening of the magnetic T1 relaxation time on the one hand, and increase the speed of sound and ultrasonic attenuation coefficient on the other. Moreover, these visible changes are NP concentration-dependent. The change in the physical properties resulted in a substantial increase in the contrast-to-noise ratio (3.4-6.8 in ultrasound and 1.2-19.3 in MRI). In conclusion, CuO NPs are excellent candidates for MRI-ultrasound dual imaging contrast agents. They offer radiation-free high spatial resolution scans by MRI, and cost-effective high temporal resolution scans by ultrasound.

  8. Vein graft surveillance with scanhead tracking duplex ultrasound imaging: a preliminary report.

    PubMed

    Jong, J M; Beach, K W; Primozich, J F; Bergelin, R O; Caps, M; Chan, C H; Strandness, D E

    1998-11-01

    A severe arterial occlusion in the leg usually is bypassed by implanting a saphenous vein harvested from the limb. Once implanted, the vein functions well but over time may develop stenoses that may lead to occlusion. In order to detect and correct the stenoses that may lead to graft failure, frequent surveillance of the vein graft is required. A new ultrasound imaging method was developed to display the panoramic view of the vein graft in combination with its blood flow velocity waveform for surveillance. The panoramic view is the projection (ray-casting) image of multiple B-mode images with sequential longitudinal view of the vein graft. The velocity waveform also is recorded along the vessel with pulsed Doppler ultrasound. The acquired images and waveforms from the ultrasound scanner are registered individually in three-dimensional space with an electromagnet-based position and orientation sensor located on the scanhead. A prominent point on the scar from the surgery is used as the fiducial mark for spatial registration, so that the same lesion in the vein graft can be tracked automatically at each visit for retrospective study. PMID:10385954

  9. Ultrasound and photoacoustic imaging to monitor mesenchymal stem cells labeled with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Nam, Seung Yun; Ricles, Laura M.; Sokolov, Konstantin; Suggs, Laura J.; Emelianov, Stanislav Y.

    2011-03-01

    Mesenchymal stem cells (MSCs) are versatile in many tissue engineering applications and have the potential to be used for cellular therapies because they can differentiate into many cell types. Specifically, the use of MSCs for the treatment of ischemic disease is promising because MSCs can express characteristics of vascular cells. MSCs can promote vascular growth at the site of injury after delivery using a PEGylated fibrin gel. In order to quantitatively assess in vivo delivery and differentiation of MSCs, a non-invasive and high-resolution imaging technique is required. In this study, the combined ultrasound and photoacoustic imaging was demonstrated to monitor MSCs labeled with citrate-stabilized gold nanoparticles (Au NPs). It was observed that uptake of nanoparticles did not have a significant effect on cell viability and proliferation over a two-week period. Four different cell concentrations of either the non-labeled MSCs or the Au NP labeled MSCs were embedded in the tissue mimicking gelatin phantom. The ultrasound and photoacoustic signals were acquired and quantitatively analyzed to assess sensitivity and accuracy of the developed imaging approach. Furthermore, based on the results, the feasibility of in vivo ultrasound and photoacoustic imaging of MSCs was discussed.

  10. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    NASA Astrophysics Data System (ADS)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  11. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  12. Atherosclerotic carotid lumen segmentation in combined B-mode and contrast enhanced ultrasound images

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Carvalho, Diego D. B.; Klein, Stefan; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2014-03-01

    Patients with carotid atherosclerotic plaques carry an increased risk of cardiovascular events such as stroke. Ultrasound has been employed as a standard for diagnosis of carotid atherosclerosis. To assess atherosclerosis, the intima contour of the carotid artery lumen should be accurately outlined. For this purpose, we use simultaneously acquired side-by-side longitudinal contrast enhanced ultrasound (CEUS) and B-mode ultrasound (BMUS) images and exploit the information in the two imaging modalities for accurate lumen segmentation. First, nonrigid motion compensation is performed on both BMUS and CEUS image sequences, followed by averaging over the 150 time frames to produce an image with improved signal-to-noise ratio (SNR). After that, we segment the lumen from these images using a novel method based on dynamic programming which uses the joint histogram of the CEUS and BMUS pair of images to distinguish between background, lumen, tissue and artifacts. Finally, the obtained lumen contour in the improved-SNR mean image is transformed back to each time frame of the original image sequence. Validation was done by comparing manual lumen segmentations of two independent observers with automated lumen segmentations in the improved-SNR images of 9 carotid arteries from 7 patients. The root mean square error between the two observers was 0.17+/-0.10mm and between automated and average of manual segmentation of two observers was 0.19+/-0.06mm. In conclusion, we present a robust and accurate carotid lumen segmentation method which overcomes the complexity of anatomical structures, noise in the lumen, artifacts and echolucent plaques by exploiting the information in this combined imaging modality.

  13. A method for estimating the microbubble concentration in contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Sciallero, C.; Crocco, M.; Trucco, A.

    2011-11-01

    The estimation of the contrast agent concentration can provide useful information in medical diagnostics. Because the intensity of an ultrasound image is not directly correlated with the volumetric concentration of a contrast agent, a method that can estimate the concentration, working only from the signals acquired by the ultrasound scanner, could be particularly useful in terms of precision, time consumption and cost. In this paper, a method to obtain the ultrasound image of a region of interest and the estimation of the related microbubble concentration is proposed. The mentioned tasks are performed in a unique investigation, working from the signals remotely acquired by means of an ultrasound scanner equipped with a grabber board, which is able to collect radio-frequency data. The algorithm is divided into two steps. Firstly, a signal-processing technique, based on multi-pulse transmission and recombination of the received signals, is used to obtain an image of the scene, emphasizing the bubble echoes and abating the contributions of surrounding tissue. Then, the concentration estimation method, based on a nonlinear regression approach carried out by a support vector machine, is applied. Because the training phase requires precise knowledge of the bubble concentration, a completely synthetic training set is assumed, whereas the test set is derived from real signals. In this paper, both non-specific and targeted microbubbles (able to selectively adhere to cancer cells) are considered. The results are encouraging and reveal that the proposed method can provide an accurate estimation in a small volume, which can be useful for diagnostic purposes.

  14. Utilizing ultrasound as a surface digitization tool in image guided liver surgery

    NASA Astrophysics Data System (ADS)

    Miller, Kristen E.; Ondrake, Janet E.; Pheiffer, Thomas S.; Simpson, Amber L.; Miga, Michael I.

    2012-02-01

    Intraoperative ultrasound imaging is a commonly used modality for image guided surgery and can be used to monitor changes from pre-operative data in real time. Often a mapping of the liver surface is required to achieve image-tophysical alignment for image guided liver surgery. Laser range scans and tracked optical stylus instruments have both been utilized in the past to create an intraoperative representation of the organ surface. This paper proposes a method to digitize the organ surface utilizing tracked ultrasound and to evaluate a relatively simple correction technique. Surfaces are generated from point clouds obtained from the US transducer face itself during tracked movement. In addition, a surface generated from a laser range scan (LRS) was used as the gold standard for evaluating the accuracy of the US transducer swab surfaces. Two liver phantoms with varying stiffness were tested. The results reflected that the average deformation observed for a 60 second swab of the liver phantom was 3.7 +/- 0.9 mm for the more rigid phantom and 4.6 +/- 1.2 mm for the less rigid phantom. With respect to tissue targets below the surface, the average error in position due to ultrasound surface digitization was 3.5 +/- 0.5 mm and 5.9 +/- 0.9 mm for the stiffer and softer phantoms respectively. With the simple correction scheme, the surface error was reduced to 1.1 +/- 0.8 mm and 1.7 +/- 1.0 mm, respectively; and the subsurface target error was reduced to 2.0 +/- 0.9 mm and 4.5 +/- 1.8 mm, respectively. These results are encouraging and suggest that the ultrasound probe itself and the acquired images could serve as a comprehensive digitization approach for image guided liver surgery.

  15. Techniques for Field Application of Lingual Ultrasound Imaging

    ERIC Educational Resources Information Center

    Gick, Bryan; Bird, Sonya; Wilson, Ian

    2005-01-01

    Techniques are discussed for using ultrasound for lingual imaging in field-related applications. The greatest challenges we have faced distinguishing the field setting from the laboratory setting are the lack of controlled head/transducer movement, and the related issue of tissue compression. Two experiments are reported. First, a pilot study…

  16. Imaging of the pancreatic duct by linear endoscopic ultrasound

    PubMed Central

    Sharma, Malay; Rai, Praveer; Rameshbabu, Chittapuram Srinivasan; Arya, Shalini

    2015-01-01

    The current gold standard investigation for anatomic exploration of the pancreatic duct (PD) is endoscopic retrograde cholangiopancreatography. Magnetic resonance cholangiopancreatography is a noninvasive method for exploration of the PD. A comprehensive evaluation of the course of PD and its branches has not been described by endoscopic ultrasound (EUS). In this article, we describe the techniques of imaging of PD using linear EUS. PMID:26374577

  17. Microwave thermal imaging of scanned focused ultrasound heating: animal experiments

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Meaney, Paul M.; Hoopes, P. Jack; Geimer, Shireen D.; Paulsen, Keith D.

    2011-03-01

    High intensity focused ultrasound (HIFU) uses focused ultrasound beams to ablate localized tumors noninvasively. Multiple clinical trials using HIFU treatment of liver, kidney, breast, pancreas and brain tumors have been conducted, while monitoring the temperature distribution with various imaging modalities such as MRI, CT and ultrasound. HIFU has achieved only minimal acceptance partially due to insufficient guidance from the limited temperature monitoring capability and availability. MR proton resonance frequency (PRF) shift thermometry is currently the most effective monitoring method; however, it is insensitive in temperature changes in fat, susceptible to motion artifacts, and is high cost. Exploiting the relationship between dielectric properties (i.e. permittivity and conductivity) and tissue temperature, in vivo dielectric property distributions of tissue during heating were reconstructed with our microwave tomographic imaging technology. Previous phantom studies have demonstrated sub-Celsius temperature accuracy and sub-centimeter spatial resolution in microwave thermal imaging. In this paper, initial animal experiments have been conducted to further investigate its potential. In vivo conductivity changes inside the piglet's liver due to focused ultrasound heating were observed in the microwave images with good correlation between conductivity changes and temperature.

  18. Denoising of Ultrasound Cervix Image Using Improved Anisotropic Diffusion Filter

    PubMed Central

    Rose, R Jemila; Allwin, S

    2015-01-01

    ABSTRACT Objective: The purpose of this study was to evaluate an improved oriented speckle reducing anisotropic diffusion (IADF) filter that suppress the speckle noise from ultrasound B-mode images and shows better result than previous filters such as anisotropic diffusion, wavelet denoising and local statistics. Methods: The clinical ultrasound images of the cervix were obtained by ATL HDI 5000 ultrasound machine from the Regional Cancer Centre, Medical College campus, Thiruvananthapuram. The standardized ways of organizing and storing the image were in the format of bmp and the dimensions of 256 × 256 with the help of an improved oriented speckle reducing anisotropic diffusion filter. For analysis, 24 ultrasound cervix images were tested and the performance measured. Results: This provides quality metrics in the case of maximum peak signal-to-noise ratio (PSNR) of 31 dB, structural similarity index map (SSIM) of 0.88 and edge preservation accuracy of 88%. Conclusion: The IADF filter is the optimal method and it is capable of strong speckle suppression with less computational complexity. PMID:26624591

  19. A High-Frequency High Frame Rate Duplex Ultrasound Linear Array Imaging System for Small Animal Imaging

    PubMed Central

    Zhang, Lequan; Xu, Xiaochen; Hu, Changhong; Sun, Lei; Yen, Jesse T.; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only real-time B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of a high frequency ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array. The system included a HF pulsed-wave Doppler module, a 32-channel HF B-mode imaging module, a PC with a 200 MS/s 14-bit A/D card, and real-time LabView software. A 50dB signal-to-noise ratio (SNR) and a depth of penetration of larger than 12 mm were achieved using a 35 MHz linear array with 50 μm pitch. The two-way beam widths were determined to be 165 μm to 260 μm and the clutter energy to total energy ratio (CTR) were 9.1 dB to 12 dB, when the array was electronically focused at different focal points at depths from 4.8 mm to 9.6 mm. The system is capable of acquiring real-time B-mode images at a rate greater than 400 frames per second (fps) for a 4.8 × 13 mm field of view, using a 30 MHz 64-element linear array with 100 μm pitch. Sample in vivo cardiac high frame rate images and duplex images of mouse hearts are shown to assess its current imaging capability and performance for small animals. PMID:20639149

  20. Quantitative 3-d diagnostic ultrasound imaging using a modified transducer array and an automated image tracking technique.

    PubMed

    Hossack, John A; Sumanaweera, Thilaka S; Napel, Sandy; Ha, Jun S

    2002-08-01

    An approach for acquiring dimensionally accurate three-dimensional (3-D) ultrasound data from multiple 2-D image planes is presented. This is based on the use of a modified linear-phased array comprising a central imaging array that acquires multiple, essentially parallel, 2-D slices as the transducer is translated over the tissue of interest. Small, perpendicularly oriented, tracking arrays are integrally mounted on each end of the imaging transducer. As the transducer is translated in an elevational direction with respect to the central imaging array, the images obtained by the tracking arrays remain largely coplanar. The motion between successive tracking images is determined using a minimum sum of absolute difference (MSAD) image matching technique with subpixel matching resolution. An initial phantom scanning-based test of a prototype 8 MHz array indicates that linear dimensional accuracy of 4.6% (2 sigma) is achievable. This result compares favorably with those obtained using an assumed average velocity [31.5% (2 sigma) accuracy] and using an approach based on measuring image-to-image decorrelation [8.4% (2 sigma) accuracy]. The prototype array and imaging system were also tested in a clinical environment, and early results suggest that the approach has the potential to enable a low cost, rapid, screening method for detecting carotid artery stenosis. The average time for performing a screening test for carotid stenosis was reduced from an average of 45 minutes using 2-D duplex Doppler to 12 minutes using the new 3-D scanning approach.

  1. Self-acquired patient images: the promises and the pitfalls.

    PubMed

    Damanpour, Shadi; Srivastava, Divya; Nijhawan, Rajiv I

    2016-03-01

    Self-acquired patient images, also known as selfies, are increasingly utilized in the practice of dermatology; however, research on their utility is somewhat limited. While the implementation of selfies has yet to be universally accepted, their role in triage appears to be especially useful. The potential for reducing office wait times, expediting referrals, and providing dermatologic services to patients with limited access to care is promising. In addition, as technology advances, the number of smartphone applications related to dermatology that are available to the general public has risen exponentially. With appropriate standardization, regulation, and confidentiality measures, these tools can be feasible adjuncts in clinical practice, dermatologic surgery, and teledermatology. Selfies likely will have a large role in dermatologic practice and delivery in the future. PMID:26963112

  2. Self-acquired patient images: the promises and the pitfalls.

    PubMed

    Damanpour, Shadi; Srivastava, Divya; Nijhawan, Rajiv I

    2016-03-01

    Self-acquired patient images, also known as selfies, are increasingly utilized in the practice of dermatology; however, research on their utility is somewhat limited. While the implementation of selfies has yet to be universally accepted, their role in triage appears to be especially useful. The potential for reducing office wait times, expediting referrals, and providing dermatologic services to patients with limited access to care is promising. In addition, as technology advances, the number of smartphone applications related to dermatology that are available to the general public has risen exponentially. With appropriate standardization, regulation, and confidentiality measures, these tools can be feasible adjuncts in clinical practice, dermatologic surgery, and teledermatology. Selfies likely will have a large role in dermatologic practice and delivery in the future.

  3. Coregistered photoacoustic-ultrasound imaging applied to brachytherapy

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Zemp, Roger J.

    2011-08-01

    Brachytherapy is a form of radiation therapy commonly used in the treatment of prostate cancer wherein sustained radiation doses can be precisely targeted to the tumor area by the implantation of small radioactive seeds around the treatment area. Ultrasound is a popular imaging mode for seed implantation, but the seeds are difficult to distinguish from the tissue structure. In this work, we demonstrate the feasibility of photoacoustic imaging for identifying brachytherapy seeds in a tissue phantom, comparing the received intensity to endogenous contrast. We have found that photoacoustic imaging at 1064 nm can identify brachytherapy seeds uniquely at laser penetration depths of 5 cm in biological tissue at the ANSI limit for human exposure with a contrast-to-noise ratio of 26.5 dB. Our realtime combined photoacoustic-ultrasound imaging approach may be suitable for brachytherapy seed placement and post-placement verification, potentially allowing for realtime dosimetry assessment during implantation.

  4. Statistical approach for detecting cancer lesions from prostate ultrasound images

    NASA Astrophysics Data System (ADS)

    Houston, A. G.; Premkumar, Saganti B.; Babaian, Richard J.; Pitts, David E.

    1993-07-01

    Sequential digitized cross-sectional ultrasound image planes of several prostates have been studied at the pixel level during the past year. The statistical distribution of gray scale values in terms of simple statistics, sample means and sample standard deviations, have been considered for estimating the differences between cross-sectional image planes of the gland due to the presence of cancer lesions. Based on a variability measure, the results for identifying the presence of cancer lesions in the peripheral zone of the gland for 25 blind test cases were found to be 64% accurate. This accuracy is higher than that obtained by visual photo interpretation of the image data, though not as high as our earlier results were indicating. Axial-view ultrasound image planes of prostate glands were obtained from the apex to the base of the gland at 2 mm intervals. Results for the 25 different prostate glands, which include pathologically confirmed benign and cancer cases, are presented.

  5. Ultrasound contrast agent fabricated from microbubbles containing instant adhesives, and its ultrasound imaging ability

    NASA Astrophysics Data System (ADS)

    Makuta, T.; Tamakawa, Y.

    2012-04-01

    Non-invasive surgery techniques and drug delivery system with acoustic characteristics of ultrasound contrast agent have been studied intensively in recent years. Ultrasound contrast agent collapses easily under the blood circulating and the ultrasound irradiating because it is just a stabilized bubble without solid-shell by surface adsorption of surfactant or lipid. For improving the imaging stability, we proposed the fabrication method of the hollow microcapsule with polymer shell, which can be fabricated just blowing vapor of commonly-used instant adhesive (Cyanoacrylate monomer) into water as microbubbles. Therefore, the cyanoacrylate vapor contained inside microbubble initiates polymerization on the gasliquid interface soon after microbubbles are generated in water. Consequently, hollow microspheres coated by cyanoacrylate thin film are generated. In this report, we revealed that diameter distributions of microbubbles and microcapsules were approximately same and most of them were less than 10 μm, that is, smaller than blood capillary. In addition, we also revealed that hollow microcapsules enhanced the acoustic signal especially in the harmonic contrast imaging and were broken or agglomerated under the ultrasound field. As for the yield of hollow microcapsules, we revealed that sodium dodecyl sulfate addition to water phase instead of deoxycolic acid made the fabrication yield increased.

  6. Imaging of human tooth enamel using ultrasound.

    PubMed

    Culjat, M; Singh, R S; Yoon, D C; Brown, E R

    2003-04-01

    This paper reports the results of a complete circumferential scan of a human tooth and its underlying dentino-enamel junction using ultrasound at frequencies in the 10-MHz range. The imagery shows clearly a two-dimensional contour of the dentinoenamel junction with a depth and lateral resolution of approximately 100 microm and 750 microm, respectively. The resulting sonograph is compared with an optical micrograph of the same tooth to verify the accuracy of the ultrasonic technique. The results are a significant step toward the biolocation of submillimeter size features within the tooth volume.

  7. Ultrasound

    MedlinePlus

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two- ... sound waves and appear dark or black. An ultrasound can supply vital information about a mother's pregnancy ...

  8. Development of Ultrasound Tomography for Breast Imaging: Technical Assessment

    SciTech Connect

    Duric, N; Littrup, P; Babkin, A; Chambers, D; Azevedo, S; Arkady, K; Pevzner, R; Tokarev, M; Holsapple, E

    2004-09-30

    Ultrasound imaging is widely used in medicine because of its benign characteristics and real-time capabilities. Physics theory suggests that the application of tomographic techniques may allow ultrasound imaging to reach its full potential as a diagnostic tool allowing it to compete with other tomographic modalities such as X-ray CT and MRI. This paper describes the construction and use of a prototype tomographic scanner and reports on the feasibility of implementing tomographic theory in practice and the potential of US tomography in diagnostic imaging. Data were collected with the prototype by scanning two types of phantoms and a cadaveric breast. A specialized suite of algorithms was developed and utilized to construct images of reflectivity and sound speed from the phantom data. The basic results can be summarized as follows: (1) A fast, clinically relevant US tomography scanner can be built using existing technology. (2) The spatial resolution, deduced from images of reflectivity, is 0.4 mm. The demonstrated 10 cm depth-of-field is superior to that of conventional ultrasound and the image contrast is improved through the reduction of speckle noise and overall lowering of the noise floor. (3) Images of acoustic properties such as sound speed suggest that it is possible to measure variations in the sound speed of 5 m/s. An apparent correlation with X-ray attenuation suggests that the sound speed can be used to discriminate between various types of soft tissue. (4) Ultrasound tomography has the potential to improve diagnostic imaging in relation to breast cancer detection.

  9. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies

    PubMed Central

    Arvanitis, Costas D.; McDannold, Nathan

    2013-01-01

    Purpose: Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. Methods: The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30–110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. Results: When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was −3.4 ± 2.1 mm and −0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small

  10. Super-Resolution Image Reconstruction Applied to Medical Ultrasound

    NASA Astrophysics Data System (ADS)

    Ellis, Michael

    Ultrasound is the preferred imaging modality for many diagnostic applications due to its real-time image reconstruction and low cost. Nonetheless, conventional ultrasound is not used in many applications because of limited spatial resolution and soft tissue contrast. Most commercial ultrasound systems reconstruct images using a simple delay-and-sum architecture on receive, which is fast and robust but does not utilize all information available in the raw data. Recently, more sophisticated image reconstruction methods have been developed that make use of far more information in the raw data to improve resolution and contrast. One such method is the Time-Domain Optimized Near-Field Estimator (TONE), which employs a maximum a priori estimation to solve a highly underdetermined problem, given a well-defined system model. TONE has been shown to significantly improve both the contrast and resolution of ultrasound images when compared to conventional methods. However, TONE's lack of robustness to variations from the system model and extremely high computational cost hinder it from being readily adopted in clinical scanners. This dissertation aims to reduce the impact of TONE's shortcomings, transforming it from an academic construct to a clinically viable image reconstruction algorithm. By altering the system model from a collection of individual hypothetical scatterers to a collection of weighted, diffuse regions, dTONE is able to achieve much greater robustness to modeling errors. A method for efficient parallelization of dTONE is presented that reduces reconstruction time by more than an order of magnitude with little loss in image fidelity. An alternative reconstruction algorithm, called qTONE, is also developed and is able to reduce reconstruction times by another two orders of magnitude while simultaneously improving image contrast. Each of these methods for improving TONE are presented, their limitations are explored, and all are used in concert to reconstruct in

  11. Speckle reduction in ultrasound images using nonisotropic adaptive filtering.

    PubMed

    Eom, Kie B

    2011-10-01

    In this article, a speckle reduction approach for ultrasound imaging that preserves important features such as edges, corners and point targets is presented. Speckle reduction is an important problem in coherent imaging, such as ultrasound imaging or synthetic aperture radar, and many speckle reduction algorithms have been developed. Speckle is a non-additive and non-white process and the reduction of speckle without blurring sharp features is known to be difficult. The new speckle reduction algorithm presented in this article utilizes a nonhomogeneous filter that adapts to the proximity and direction of the nearest important features. To remove speckle without blurring important features, the location and direction of edges in the image are estimated. Then for each pixel in the image, the distance and angle to the nearest edge are efficiently computed by a two-pass algorithm and stored in distance and angle maps. Finally for each pixel, an adaptive directional filter aligned to the nearest edge is applied. The shape and orientation of the adaptive filter are determined from the distance and angle maps. The new speckle reduction algorithm is tested with both synthesized and real ultrasound images. The performance of the new algorithm is also compared with those of other speckle reduction approaches and it is shown that the new algorithm performs favorably in reducing speckle without blurring important features.

  12. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.

    PubMed

    Puett, C; Sheeran, P S; Rojas, J D; Dayton, P A

    2014-09-01

    Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity.

  13. Integrated ultrasound and gamma imaging probe for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; De Vincentis, G.

    2016-03-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures.

  14. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  15. An image-guided tool to prevent hospital acquired infections

    NASA Astrophysics Data System (ADS)

    Nagy, Melinda; Szilágyi, László; Lehotsky, Ákos; Haidegger, Tamás; Benyó, Balázs

    2011-03-01

    Hospital Acquired Infections (HAI) represent the fourth leading cause of death in the United States, and claims hundreds of thousands of lives annually in the rest of the world. This paper presents a novel low-cost mobile device|called Stery-Hand|that helps to avoid HAI by improving hand hygiene control through providing an objective evaluation of the quality of hand washing. The use of the system is intuitive: having performed hand washing with a soap mixed with UV re ective powder, the skin appears brighter in UV illumination on the disinfected surfaces. Washed hands are inserted into the Stery-Hand box, where a digital image is taken under UV lighting. Automated image processing algorithms are employed in three steps to evaluate the quality of hand washing. First, the contour of the hand is extracted in order to distinguish the hand from the background. Next, a semi-supervised clustering algorithm classies the pixels of the hand into three groups, corresponding to clean, partially clean and dirty areas. The clustering algorithm is derived from the histogram-based quick fuzzy c-means approach, using a priori information extracted from reference images, evaluated by experts. Finally, the identied areas are adjusted to suppress shading eects, and quantied in order to give a verdict on hand disinfection quality. The proposed methodology was validated through tests using hundreds of images recorded in our laboratory. The proposed system was found robust and accurate, producing correct estimation for over 98% of the test cases. Stery-Hand may be employed in general practice, and it may also serve educational purposes.

  16. Estimation of fetal gestational age from ultrasound images

    NASA Astrophysics Data System (ADS)

    Salari, Valiollah

    1992-06-01

    Estimation of fetal gestational age, weight, and determination of fetal growth from the measurements of certain parameters of fetal head, abdomen, and femur have been well established in prenatal sonography. The measurements are made from the two dimensional, B- mode, ultrasound images of the fetus. The most common parameters measured are, biparietal diameter, occipital frontal diameter, head circumference, femur diaphysis length, and abdominal circumference. Since the fetal head has an elliptical shape and the femur has a linear shape, fitting the ellipse on the image of the fetal head, a line on the image of the femur are the tasks of image processing which are discussed in this paper.

  17. A new automatic landmark extraction framework on ultrasound images of femoral condyles

    NASA Astrophysics Data System (ADS)

    Masson-Sibut, Agnès; Nakib, Amir; Petit, Eric; Leitner, François

    2012-03-01

    In Computer Assisted Orthopaedic Surgery (CAOS), surgeons have to acquire some anatomical landmarks as inputs to the system. To do so, they use manual pointers that are localized in the Operating Room (OR) space using an infrared camera. When the needed landmark is not reachable through an opening, it is palpated directly on skin and there is a loss of precision that can vary from several millimeters to centimeters depending on the thickness of soft tissues. In this paper, we propose a new framework based on three main steps to register the bone surface and extract automatically anatomical landmarks with an ultrasound probe. This framework is based on an oriented gradient calculation, a simulated-compound and a contour closure using a graph representation. The oriented gradient allows extracting a set of pixels that probably belong to the bone surface. The simulatedcompound step allows using ultrasound images properties to define a set of small segments which may belong to the bone surface, and the graph representation allows eliminating false positive detection among remaining segments. The proposed method has been validated on a database of 230 ultrasound images of anterior femoral condyles (on the knee). The average computation time is 0.11 sec per image, and average errors are: 0.54 mm for the bone surface extraction, 0.31 mm for the condylar line, and 1.4 mm for the trochlea middle.

  18. Dual-modality imaging system combined fast photoacoustic imaging and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Yuan, Yi

    2009-08-01

    In this paper, we have developed a fast dual-modality imaging system for reconstruction photoacoustic and ultrasound imaging based on a novel digital phased array. The scanning mode and image reconstruction algorithms were modified from our previous work to improve the image quality. A 128-element linear transducer array is connected to a multichannel signal acquisition and digital beam-formation system providing techniques of dynamic receiving focus and dynamic receiving apodization to process the signal. We use the linear transducer array with combined scanning mode to detect signals at multiple locations on a circle around the sample. It makes our dual-modality imaging own the ability of imaging complicated structures of objects. An improved limited-field filtered back projection algorithm with directivity factors was applied in photoacoustic imaging to further improve the lateral resolution. Phase-controlled imaging algorithm was applied to reconstruct acoustical impedance difference in the pure ultrasound imaging. The experiments on phantoms and in vivo early breast cancer detection in a mouse model were performed. The images are clearly, accurately provided.

  19. Single-element focused ultrasound transducer method for harmonic motion imaging.

    PubMed

    Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa E

    2006-07-01

    The harmonic motion imaging (HMI) technique for simultaneous monitoring and generation of ultrasound therapy using two separate focused ultrasound transducer elements was previously demonstrated. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force using a single focused-ultrasound element. A wave propagation simulation model first indicated that, unlike in the two-beam configuration, the amplitude-modulated beam produced a stable focal zone for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were performed on gelatin phantoms and ex vivo tissues. The radiation force was generated by a 4.68 MHz focused ultrasound (FUS) transducer using a 50 Hz amplitude-modulated wave. A 7.5 MHz pulse-echo transducer was used to acquire rf echoes during the application of the harmonic radiation force. Consecutive rf echoes were acquired with a pulse repetition frequency (PRF) of 6.5 kHz and 1D cross-correlation was performed to estimate the resulting axial tissue displacement. The HMI technique was shown capable of estimating stiffness-dependent displacement amplitudes. Finally, taking advantage of the real-time capability of the HMI technique, temperature-dependent measurements enabled monitoring ofHIFU sonication in ex vivo tissues. The new HMI method may thus enable a highly-localized force and stiffness-dependent measurements as well as real-time and low-cost HIFU monitoring.

  20. Novel 3-D laparoscopic magnetic ultrasound image guidance for lesion targeting

    PubMed Central

    Sindram, David; McKillop, Iain H; Martinie, John B; Iannitti, David A

    2010-01-01

    Objectives: Accurate laparoscopic liver lesion targeting for biopsy or ablation depends on the ability to merge laparoscopic and ultrasound images with proprioceptive instrument positioning, a skill that can be acquired only through extensive experience. The aim of this study was to determine whether using magnetic positional tracking to provide three-dimensional, real-time guidance improves accuracy during laparoscopic needle placement. Methods: Magnetic sensors were embedded into a needle and laparoscopic ultrasound transducer. These sensors interrupted the magnetic fields produced by an electromagnetic field generator, allowing for real-time, 3-D guidance on a stereoscopic monitor. Targets measuring 5 mm were embedded 3–5 cm deep in agar and placed inside a laparoscopic trainer box. Two novices (a college student and an intern) and two experts (hepatopancreatobiliary surgeons) targeted the lesions out of the ultrasound plane using either traditional or 3-D guidance. Results: Each subject targeted 22 lesions, 11 with traditional and 11 with the novel guidance (n = 88). Hit rates of 32% (14/44) and 100% (44/44) were observed with the traditional approach and the 3-D magnetic guidance approach, respectively. The novices were essentially unable to hit the targets using the traditional approach, but did not miss using the novel system. The hit rate of experts improved from 59% (13/22) to 100% (22/22) (P < 0.0001). Conclusions: The novel magnetic 3-D laparoscopic ultrasound guidance results in perfect targeting of 5-mm lesions, even by surgical novices. PMID:21083797

  1. High-resolution 3D ultrasound jawbone surface imaging for diagnosis of periodontal bony defects: an in vitro study.

    PubMed

    Mahmoud, Ahmed M; Ngan, Peter; Crout, Richard; Mukdadi, Osama M

    2010-11-01

    Although medical specialties have recognized the importance of using ultrasonic imaging, dentistry is only beginning to discover its benefit. This has particularly been important in the field of periodontics which studies infections in the gum and bone tissues that surround the teeth. This study investigates the feasibility of using a custom-designed high-frequency ultrasound imaging system to reconstruct high-resolution (< 50 μm) three-dimensional (3D) surface images of periodontal defects in human jawbone. The system employs single-element focused ultrasound transducers with center frequencies ranging from 30 to 60 MHz. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high-precision two-dimensional (2D) positioning system of ±1 μm resolution for acquiring accurate measurements of the mandible, in vitro. Signal and image processing algorithms are applied to reconstruct high-resolution ultrasound images and extract the jawbone surface in each frame. Then, all edges are combined and smoothed in order to render a 3D surface image of the jawbone. In vitro experiments were performed to assess the system performance using mandibles with teeth (dentate) or without (nondentate). The system was able to reconstruct 3D images for the mandible's outer surface with superior spatial resolution down to 24 μm, and to perform the whole scanning in < 30 s. Major anatomical landmarks on the images were confirmed with the anatomical structures on the mandibles. All the anatomical landmarks were detected and fully described as 3D images using this novel ultrasound imaging technique, whereas the 2D X-ray radiographic images suffered from poor contrast. These results indicate the great potential of utilizing high-resolution ultrasound as a noninvasive, nonionizing imaging technique for the early diagnosis of the more severe form of periodontal disease.

  2. Liver ultrasound image classification by using fractal dimension of edge

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Bibicu, Dorin; Moraru, Luminita

    2012-08-01

    Medical ultrasound image edge detection is an important component in increasing the number of application of segmentation, and hence it has been subject of many studies in the literature. In this study, we have classified the liver ultrasound images (US) combining Canny and Sobel edge detectors with fractal analysis in order to provide an indicator about of the US images roughness. We intend to provide a classification rule of the focal liver lesions as: cirrhotic liver, liver hemangioma and healthy liver. For edges detection the Canny and Sobel operators were used. Fractal analyses have been applied for texture analysis and classification of focal liver lesions according to fractal dimension (FD) determined by using the Box Counting method. To assess the performance and accuracy rate of the proposed method the contrast-to-noise (CNR) is analyzed.

  3. Effects of nonlinear propagation in ultrasound contrast agent imaging.

    PubMed

    Tang, Meng-Xing; Kamiyama, Naohisa; Eckersley, Robert J

    2010-03-01

    This paper investigates two types of nonlinear propagation and their effects on image intensity and contrast-to-tissue ratio (CTR) in contrast ultrasound images. Previous studies have shown that nonlinear propagation can occur when ultrasound travels through tissue and microbubble clouds, making tissue farther down the acoustic path appear brighter in pulse inversion (PI) images, thus reducing CTR. In this study, the effect of nonlinear propagation through tissue or microbubbles on PI image intensity and CTR are compared at low mechanical index. A combination of simulation and experiment with SonoVue microbubbles were performed using a microbubble dynamics model, a laboratory ultrasound system and a clinical prototype scanner. The results show that, close to the bubble resonance frequency, nonlinear propagation through a bubble cloud of a few centimeter thickness with a modest concentration (1:10000 dilution of SonoVue microbubbles) is much more significant than through tissue-mimicking material. Consequently, CTR in regions distal to the imaging probe is greatly reduced for nonlinear propagation through the bubble cloud, with as much as a 12-dB reduction compared with nonlinear propagation through tissue-mimicking material. Both types of nonlinear propagation cause only a small change in bubble PI signals at the bubble resonance frequency. When the driving frequency increases beyond bubble resonance, nonlinear propagation through bubbles is greatly reduced in absolute values. However because of a greater reduction in nonlinear scattering from bubbles at higher frequencies, the corresponding CTR is much lower than that at bubble resonance frequency.

  4. Ultrasound elastography: enabling technology for image guided laparoscopic prostatectomy

    NASA Astrophysics Data System (ADS)

    Fleming, Ioana N.; Rivaz, Hassan; Macura, Katarzyna; Su, Li-Ming; Hamper, Ulrike; Lagoda, Gwen A.; Burnett, Arthur L., II; Lotan, Tamara; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2009-02-01

    Radical prostatectomy using the laparoscopic and robot-assisted approach lacks tactile feedback. Without palpation, the surgeon needs an affordable imaging technology which can be easily incorporated into the laparoscopic surgical procedure, allowing for precise real time intraoperative tumor localization that will guide the extent of surgical resection. Ultrasound elastography (USE) is a novel ultrasound imaging technology that can detect differences in tissue density or stiffness based on tissue deformation. USE was evaluated here as an enabling technology for image guided laparoscopic prostatectomy. USE using a 2D Dynamic Programming (DP) algorithm was applied on data from ex vivo human prostate specimens. It proved consistent in identification of lesions; hard and soft, malignant and benign, located in the prostate's central gland or in the peripheral zone. We noticed the 2D DP method was able to generate low-noise elastograms using two frames belonging to the same compression or relaxation part of the palpation excitation, even at compression rates up to 10%. Good preliminary results were validated by pathology findings, and also by in vivo and ex vivo MR imaging. We also evaluated the use of ultrasound elastography for imaging cavernous nerves; here we present data from animal model experiments.

  5. Acoustic reciprocity of spatial coherence in ultrasound imaging.

    PubMed

    Bottenus, Nick; Üstüner, Kutay F

    2015-05-01

    A conventional ultrasound image is formed by transmitting a focused wave into tissue, time-shifting the backscattered echoes received on an array transducer, and summing the resulting signals. The van Cittert-Zernike theorem predicts a particular similarity, or coherence, of these focused signals across the receiving array. Many groups have used an estimate of the coherence to augment or replace the B-mode image in an effort to suppress noise and stationary clutter echo signals, but this measurement requires access to individual receive channel data. Most clinical systems have efficient pipelines for producing focused and summed RF data without any direct way to individually address the receive channels. We describe a method for performing coherence measurements that is more accessible for a wide range of coherence-based imaging. The reciprocity of the transmit and receive apertures in the context of coherence is derived and equivalence of the coherence function is validated experimentally using a research scanner. The proposed method is implemented on a commercial ultrasound system and in vivo short-lag spatial coherence imaging is demonstrated using only summed RF data. The components beyond the acquisition hardware and beamformer necessary to produce a real-time ultrasound coherence imaging system are discussed. PMID:25965679

  6. Mirizzi Syndrome with Endoscopic Ultrasound Image

    PubMed Central

    Rayapudi, K.; Gholami, P.; Olyaee, M.

    2013-01-01

    We describe a 66-year-old Caucasian man with type 1 Mirizzi syndrome diagnosed on endoscopic ultrasound. He presented with acute onset of jaundice, malaise, dark urine over 3–4 days, and was found to have obstructive jaundice on lab testing. CT scan of the abdomen showed intrahepatic biliary ductal dilation, a 1.5 cm common bile duct (CBD) above the pancreas, and possible stones in the CBD, but no masses. Endoscopic retrograde cholangiopancreatography (ERCP) by a community gastroenterologist failed to cannulate the CBD. At the University Center, type 1 Mirizzi syndrome was noted on endoscopic ultrasound with narrowing of the CBD with extrinsic compression from cystic duct stone. During repeat ERCP, the CBD could be cannulated over the pancreatic duct wire. A mid CBD narrowing, distal CBD stones, proximal CBD and extrahepatic duct dilation were noted, and biliary sphincterotomy was performed. A small stone in the distal CBD was removed with an extraction balloon. The cystic duct stone was moved with the biliary balloon into the CBD, mechanical basket lithotripsy was performed and stone fragments were delivered out with an extraction balloon. The patient was seen 7 weeks later in the clinic. Skin and scleral icterus had cleared up and he is scheduled for an elective cholecystectomy. Mirizzi syndrome refers to biliary obstruction resulting from impacted stone in the cystic duct or neck of the gallbladder and commonly presents with obstructive jaundice. Type 1 does not have cholecystocholedochal fistulas, but they present in types 2, 3 and 4. Surgery is the mainstay of therapy. Endoscopic treatment is effective and can also be used as a temporizing measure or definitive treatment in poor surgical risk candidates. PMID:23741207

  7. Novel trends in transrectal ultrasound imaging of prostate gland carcinoma

    PubMed Central

    Nowicki, Andrzej; Záťura, František; Gołąbek, Tomasz; Chłosta, Piotr

    2014-01-01

    Carcinoma of the prostate gland is the most common neoplasm in men. Its treatment depends on multiple factors among which local staging plays a significant role. The basic method is transrectal ultrasound imaging. This examination enables imaging of the prostate gland and its abnormalities, but it also allows ultrasound-guided biopsies to be conducted. A conventional gray-scale ultrasound examination enables assessment of the size, echostructure and outlines of the anatomic capsule, but in many cases, neoplastic lesions cannot be observed. For this reason, new sonographic techniques are implemented in order to facilitate detectability of cancer. The usage of contrast agents during transrectal ultrasound examination must be emphasized since, in combination with color Doppler, it facilitates detection of cancerous lesions by visualizing flow which is not observable without contrast enhancement. Elastography, in turn, is a different solution. It uses the differences in tissue elasticity between a neoplastic region and normal prostatic parenchyma that surrounds it. This technique facilitates detection of lesions irrespective of their echogenicity and thereby supplements conventional transrectal examinations. However, the size of the prostate gland and its relatively far location from the transducer may constitute limitations to the effectiveness of elastography. Moreover, the manner of conducting such an examination depends on the examiner and his or her subjective assessment. Another method, which falls within the novel, popular trend of combining imaging methods, is fusion of magnetic resonance imaging and transrectal sonography. The application of multidimensional magnetic resonance imaging, which is currently believed to be the best method for prostate cancer staging, in combination with the availability of a TRUS examination and the possibility of monitoring biopsies in real-time sonography is a promising alternative, but it is associated with higher costs and

  8. Novel trends in transrectal ultrasound imaging of prostate gland carcinoma.

    PubMed

    Szopiński, Tomasz; Nowicki, Andrzej; Záťura, František; Gołąbek, Tomasz; Chłosta, Piotr

    2014-09-01

    Carcinoma of the prostate gland is the most common neoplasm in men. Its treatment depends on multiple factors among which local staging plays a significant role. The basic method is transrectal ultrasound imaging. This examination enables imaging of the prostate gland and its abnormalities, but it also allows ultrasound-guided biopsies to be conducted. A conventional gray-scale ultrasound examination enables assessment of the size, echostructure and outlines of the anatomic capsule, but in many cases, neoplastic lesions cannot be observed. For this reason, new sonographic techniques are implemented in order to facilitate detectability of cancer. The usage of contrast agents during transrectal ultrasound examination must be emphasized since, in combination with color Doppler, it facilitates detection of cancerous lesions by visualizing flow which is not observable without contrast enhancement. Elastography, in turn, is a different solution. It uses the differences in tissue elasticity between a neoplastic region and normal prostatic parenchyma that surrounds it. This technique facilitates detection of lesions irrespective of their echogenicity and thereby supplements conventional transrectal examinations. However, the size of the prostate gland and its relatively far location from the transducer may constitute limitations to the effectiveness of elastography. Moreover, the manner of conducting such an examination depends on the examiner and his or her subjective assessment. Another method, which falls within the novel, popular trend of combining imaging methods, is fusion of magnetic resonance imaging and transrectal sonography. The application of multidimensional magnetic resonance imaging, which is currently believed to be the best method for prostate cancer staging, in combination with the availability of a TRUS examination and the possibility of monitoring biopsies in real-time sonography is a promising alternative, but it is associated with higher costs and

  9. Ultrasound in Radiology: from Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy

    PubMed Central

    Klibanov, Alexander L.; Hossack, John A.

    2015-01-01

    During the past decade, ultrasound has expanded medical imaging well beyond the “traditional” radiology setting - a combination of portability, low cost and ease of use makes ultrasound imaging an indispensable tool for radiologists as well as for other medical professionals who need to obtain imaging diagnosis or guide a therapeutic intervention quickly and efficiently. Ultrasound combines excellent ability for deep penetration into soft tissues with very good spatial resolution, with only a few exceptions (i.e. those involving overlying bone or gas). Real-time imaging (up to hundreds and thousands frames per second) enables guidance of therapeutic procedures and biopsies; characterization of the mechanical properties of the tissues greatly aids with the accuracy of the procedures. The ability of ultrasound to deposit energy locally brings about the potential for localized intervention encompassing: tissue ablation, enhancing penetration through the natural barriers to drug delivery in the body and triggering drug release from carrier micro- and nanoparticles. The use of microbubble contrast agents brings the ability to monitor and quantify tissue perfusion, and microbubble targeting with ligand-decorated microbubbles brings the ability to obtain molecular biomarker information, i.e., ultrasound molecular imaging. Overall, ultrasound has become the most widely used imaging modality in modern medicine; it will continue to grow and expand. PMID:26200224

  10. Reduction of attenuation effects in 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Frimmel, Hans; Acosta, Oscar; Fenster, Aaron; Ourselin, Sébastien

    2007-03-01

    Ultrasound (US) is one of the most used imaging modalities today as it is cheap, reliable, safe and widely available. There are a number of issues with US images in general. Besides reflections which is the basis of ultrasonic imaging, other phenomena such as diffraction, refraction, attenuation, dispersion and scattering appear when ultrasound propagates through different tissues. The generated images are therefore corrupted by false boundaries, lack of signal for surface tangential to ultrasound propagation, large amount of noise giving rise to local properties, and anisotropic sampling space complicating image processing tasks. Although 3D Transrectal US (TRUS) probes are not yet widely available, within a few years they will likely be introduced in hospitals. Therefore, the improvement of automatic segmentation from 3D TRUS images, making the process independent of human factor is desirable. We introduce an algorithm for attenuation correction, reducing enhancement/shadowing effects and average attenuation effects in 3D US images, taking into account the physical properties of US. The parameters of acquisition such as logarithmic correction are unknown, therefore no additional information is available to restore the image. As the physical properties are related to the direction of each US ray, the 3D US data set is resampled into cylindrical coordinates using a fully automatic algorithm. Enhancement and shadowing effects, as well as average attenuation effects, are then removed with a rescaling process optimizing simultaneously in and perpendicular to the US ray direction. A set of tests using anisotropic diffusion are performed to illustrate the improvement in image quality, where well defined structures are visible. The evolution of both the entropy and the contrast show that our algorithm is a suitable pre-processing step for segmentation tasks.

  11. In vivo real-time volumetric synthetic aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Rasmussen, Morten F.; Brandt, Andreas H.; Stuart, Matthias B.; Nikolov, Svetoslav; Jensen, Jørgen A.

    2015-03-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological. This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° × 90° field-of-view was achieved. data were obtained using a 3.5 MHz 32 × 32 elements 2-D phased array transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak-temporal-average intensity for parallel beam-forming (PB) are 0.83 and 377.5mW/cm2, and for SA are 0.48 and 329.5mW/cm2. A human kidney was volumetrically imaged with SA and PB techniques simultaneously. Two radiologists for evaluation of the volumetric SA were consulted by means of a questionnaire on the level of details perceivable in the beam-formed images. The comparison was against PB based on the in vivo data. The feedback from the domain experts indicates that volumetric SA images internal body structures with a better contrast resolution compared to PB at all positions in the entire imaged volume. Furthermore, the autocovariance of a homogeneous area in the in vivo SA data, had 23.5% smaller width at the half of its maximum value compared to PB.

  12. Attenuation mapping for monitoring thermal therapy using ultrasound transmission imaging.

    PubMed

    Parmar, N; Kolios, M C

    2004-01-01

    The use of an ultrasound (US) transmission imaging system to monitor attenuation changes during tissue heating was investigated. This work presents preliminary results of images obtained from an acoustic camera before, during and after heating tissue phantoms using a heated needle. Two types of tissue-mimicking phantoms were used, agar and polyacrylamide-based. Regions of interests were chosen in images obtained from the real-time imaging system, and the pixel intensity values before, during and after heating were compared. In both phantoms, a decrease in image intensities was observed during heating, indicating an increase in tissue attenuation. Additionally, an irreversible change in image intensity was observed in regions close to the heat source. The reversibility of the intensity change was shown to be a function of the distance from the heating needle to the selected region. Initial results indicate that US transmission imaging can be used to monitor thermal therapy. PMID:17271937

  13. Image-based registration of ultrasound and magnetic resonance images: a preliminary study

    NASA Astrophysics Data System (ADS)

    Pagoulatos, Niko; Haynor, David R.; Kim, Yongmin

    2000-04-01

    A number of surgical procedures are planned and executed based on medical images. Typically, x-ray computed tomography (CT) and magnetic resonance (MR) images are acquired preoperatively for diagnosis and surgical planning. In the operating room, execution of the surgical plan becomes feasible due to registration between preoperative images and surgical space where patient anatomy lies. In this paper, we present a new automatic algorithm where we use ultrasound (US) 2D B-mode images to register the preoperative MR image coordinate system with the surgical space which in our experiments is represented by the reference coordinate system of a DC magnetic position sensor. The position sensor is also used for tracking the position and orientation of the US images. Furthermore, we simulated patient anatomy by using custom-built phantoms. Our registration algorithm is a hybrid between fiducial- based and image-based registration algorithms. Initially, we perform a fiducial-based rigid-body registration between MR and position sensor space. Then, by changing various parameters of the rigid-body fiducial-based transformation, we produce an MR-sensor misregistration in order to simulate potential movements of the skin fiducials and/or the organs. The perturbed transformation serves as the initial estimate for the image-based registration algorithm, which uses normalized mutual information as a similarity measure, where one or more US images of the phantom are automatically matched with the MR image data set. By using the fiducial- based registration as the gold standard, we could compute the accuracy of the image-based registration algorithm in registering MR and sensor spaces. The registration error varied depending on the number of 2D US images used for registration. A good compromise between accuracy and computation time was the use of 3 US slices. In this case, the registration error had a mean value of 1.88 mm and standard deviation of 0.42 mm, whereas the required

  14. Oil-based gel phantom for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Aggarwal, Lucimara P.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo. Z.

    2015-06-01

    Water-based materials are commonly used in phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. Styrene-Ethylene/Butylene-Styrene (SEBS) copolymer in mineral oil samples were made varying the SEBS concentration between 5-15%, and low-density polyethylene (LDPE) between 0-9%. Acoustic properties such as speed of sound and attenuation coefficient were obtained by the substitution technique with frequencies ranging from 2.25-10 MHz, and were consistent to that of soft tissue. These properties were controlled varying SEBS and LDPE concentration; speed of sound from 1445-1480 m/s, and attenuation from 0.86-11.31 dB/cm were observed. SEBS gels with 0% of LDPE were optically transparent, presenting low optical absorption and scattering coefficients in the visible region of the spectrum. In order to fully characterize the optical properties of the samples, the reflectances of the surfaces were measured, along with the absorption. Scattering and absorption coefficients ranging from 400 nm to 1200 nm were calculated for each compound. The results showed that the presence of LDPE increased absorption and scattering of the phantoms. The results suggest the copolymer gels are promising for ultrasound and optical imaging, what make them also potentially useful for photoacoustic imaging.

  15. High resolution three-dimensional prostate ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Yinbo; Patil, Abhay; Hossack, John A.

    2006-03-01

    This work reports on the application of ultrasound elastography to prostate cancer detection using a high resolution three-dimensional (3D) ultrasound imaging system. The imaging was performed at a relatively high frequency (14 MHz), yielding very fine resolution that is optimal for prostate ultrasound imaging. The fine resolution achieved aids in locating smaller lesions than are normally detectable. Elasticity was measured with a quantitative and automatically controlled "Synthetic Digital Rectal Examination (SDRE)" wherein a smoothly increasing force was applied by injecting water, controlled by an electronic syringe pump, into a latex cover over the transrectal transducer. The lesion identified as stiffened tissue was visually enhanced by colorizing and superimposing it over the conventional B-mode image. Experimental results using a tissue-mimicking phantom demonstrated that the reconstruction accuracy of the I-Beam transducer resulted in less than 15% volumetric error. Thus, this high resolution 3D prostate elastography is possible and may provide reliable and accurate determination of the size and the location of cancers, which may result in improved specificity and sensitivity of cancer detection.

  16. Real Time Fast Ultrasound Imaging Technology and Possible Applications

    NASA Astrophysics Data System (ADS)

    Cruza, J. F.; Perez, M.; Moreno, J. M.; Fritsch, C.

    In this work, a novel hardware architecture for fast ultrasound imaging based on FPGA devices is proposed. A key difference over other approaches is the unlimited scalability in terms of active channels without performance losses. Acquisition and processing tasks share the same hardware, eliminating communication bottlenecks with smaller size and power losses. These features make this system suitable to implement the most demanding imaging applications, like 3D Phased Array, Total Focusing Method, Vector Doppler, Image Compounding, High Speed Part Scanning and advanced elastographic techniques. A single medium sized FPGA allows beamforming up to 200 scan lines simultaneously, which is enough to perform most of the above mentioned applications in strict real time.

  17. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  18. Ultrasound imaging of the mouse pancreatic duct using lipid microbubbles

    NASA Astrophysics Data System (ADS)

    Banerjee, B.; McKeown, K. R.; Skovan, B.; Ogram, E.; Ingram, P.; Ignatenko, N.; Paine-Murrieta, G.; Witte, R.; Matsunaga, T. O.

    2012-03-01

    Research requiring the murine pancreatic duct to be imaged is often challenging due to the difficulty in selectively cannulating the pancreatic duct. We have successfully catheterized the pancreatic duct through the common bile duct in severe combined immune deficient (SCID) mice and imaged the pancreatic duct with gas filled lipid microbubbles that increase ultrasound imaging sensitivity due to exquisite scattering at the gas/liquid interface. A SCID mouse was euthanized by CO2, a midline abdominal incision made, the common bile duct cut at its midpoint, a 2 cm, 32 gauge tip catheter was inserted about 1 mm into the duct and tied with suture. The duodenum and pancreas were excised, removed in toto, embedded in agar and an infusion pump was used to instill normal saline or lipid-coated microbubbles (10 million / ml) into the duct. B-mode images before and after infusion of the duct with microbubbles imaged the entire pancreatic duct (~ 1 cm) with high contrast. The microbubbles were cavitated by high mechanical index (HMI) ultrasound for imaging to be repeated. Our technique of catheterization and using lipid microbubbles as a contrast agent may provide an effective, affordable technique of imaging the murine pancreatic duct; cavitation with HMI ultrasound would enable repeated imaging to be performed and clustering of targeted microbubbles to receptors on ductal cells would allow pathology to be localized accurately. This research was supported by the Experimental Mouse Shared Service of the AZ Cancer Center (Grant Number P30CA023074, NIH/NCI and the GI SPORE (NIH/NCI P50 CA95060).

  19. Reconstruction of three-dimensional ultrasound images based on cyclic Savitzky-Golay filters

    NASA Astrophysics Data System (ADS)

    Toonkum, Pollakrit; Suwanwela, Nijasri C.; Chinrungrueng, Chedsada

    2011-01-01

    We present a new algorithm for reconstructing a three-dimensional (3-D) ultrasound image from a series of two-dimensional B-scan ultrasound slices acquired in the mechanical linear scanning framework. Unlike most existing 3-D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the cyclic Savitzky-Golay (CSG) reconstruction filter, is an improvement on the original Savitzky-Golay filter in two respects: First, it is extended to accept a 3-D array of data as the filter input instead of a one-dimensional data sequence. Second, it incorporates the cyclic indicator function in its least-squares objective function so that the CSG algorithm can simultaneously perform both smoothing and interpolating tasks. The performance of the CSG reconstruction filter compared to that of most existing reconstruction algorithms in generating a 3-D synthetic test image and a clinical 3-D carotid artery bifurcation in the mechanical linear scanning framework are also reported.

  20. Evaluation of Carotid Plaque Using Ultrasound Imaging

    PubMed Central

    2016-01-01

    Traditional risk factors for predicting of cardiovascular disease are not always effective predictors for development of cardiovascular events. This review summarizes several newly developed noninvasive imaging techniques for evaluating carotid plaques and their role in cardiovascular disease risk. PMID:27358696

  1. Ultrasound imaging velocimetry: effect of beam sweeping on velocity estimation.

    PubMed

    Zhou, Bin; Fraser, Katharine H; Poelma, Christian; Mari, Jean-Martial; Eckersley, Robert J; Weinberg, Peter D; Tang, Meng-Xing

    2013-09-01

    As an emerging flow-mapping tool that can penetrate deep into optically opaque media such as human tissue, ultrasound imaging velocimetry has promise in various clinical applications. Previous studies have shown that errors occur in velocity estimation, but the causes have not been well characterised. In this study, the error in velocity estimation resulting from ultrasound beam sweeping in image acquisition is quantitatively investigated. The effects on velocity estimation of the speed and direction of beam sweeping relative to those of the flow are studied through simulation and experiment. The results indicate that a relative error in velocity estimation of up to 20% can be expected. Correction methods to reduce the errors under steady flow conditions are proposed and evaluated. Errors in flow estimation under unsteady flow are discussed.

  2. Optical Micromachined Ultrasound Transducers (OMUT)-- A New Approach for High Frequency Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Tadayon, Mohammad Amin

    Piezoelectric technology is the backbone of most medical ultrasound imaging arrays, however, in scaling the technology to sizes required for high frequency operation (> 20 MHz), it encounters substantial difficulties in fabrication and signal transduction efficiency. These limitations particularly affect the design of intravascular ultrasound (IVUS) imaging probes whose operating frequency can approach 60 MHz. Optical technology has been proposed and investigated for several decades as an alternative approach for high frequency ultrasound transducers. However, to apply this promising technology in guiding clinical operations such as in interventional cardiology, brain surgery, and laparoscopic surgery further raise in the sensitivity is required. Here, in order to achieve the required sensitivity for an intravascular ultrasound imaging probe, we introduce design changes making use of alternative receiver mechanisms. First, we present an air cavity detector that makes use of a polymer membrane for increased mechanical deflection. We have also significantly raised the thin film detector sensitivity by improving its optical characteristics. This can be achieved by inducing a refractive index feature inside the Fabry-Perot resonator that simply creates a waveguide between the two mirrors. This approach eliminates the loss in energy due to diffraction in the cavity, and therefore the Q-factor is only limited by mirror loss and absorption. To demonstrate this optical improvements, a waveguide Fabry-Perot resonator has been fabricated consisting of two dielectric Bragg reflectors with a layer of photosensitive polymer between them. The measured finesse of the fabricated resonator was 692, and the Q-factor was 55000. The fabrication process of this device has been modified to fabricate an ultrasonically testable waveguide Fabry-Perot resonator. By applying this method, we have achieved a noise equivalent pressure of 178 Pa over a bandwidth of 28 MHz or 0.03 Pa/Hz1/2 which

  3. A 4-DOF Robot for Positioning Ultrasound Imaging Catheters

    PubMed Central

    Loschak, Paul M.; Degirmenci, Alperen; Tenzer, Yaroslav; Howe, Robert D.

    2015-01-01

    In this paper we present the design, fabrication, and testing of a robot for automatically positioning ultrasound imaging catheters. Our system will point ultrasound (US) catheters to provide real-time imaging of anatomical structures and working instruments during minimally invasive surgeries. Manually navigating US catheters is difficult and requires extensive training in order to aim the US imager at desired targets. Therefore, a four DOF robotic system was developed to automatically navigate US imaging catheters for enhanced imaging. A rotational transmission enables three DOF for pitch, yaw, and roll of the imager. This transmission is translated by the fourth DOF. An accuracy analysis was conducted to calculate the maximum allowable joint motion error. Rotational joints must be accurate to within 1.5° and the translational joint must be accurate within 1.4 mm. Motion tests were then conducted to validate the accuracy of the robot. The average resulting errors in positioning of the rotational joints were measured to be 0.28°-0.38° with average measured backlash error 0.44°. Average translational positioning and backlash errors were measured to be significantly lower than the reported accuracy of the position sensor. The resulting joint motion errors were well within the required specifications for accurate robot motion. Such effective navigation of US imaging catheters will enable better visualization in various procedures ranging from cardiac arrhythmia treatment to tumor removal in urological cases. PMID:26925468

  4. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    PubMed Central

    Drukker, Karen; Sennett, Charlene A.; Giger, Maryellen L.

    2014-01-01

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V® ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation. PMID:24387528

  5. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    SciTech Connect

    Drukker, Karen Sennett, Charlene A.; Giger, Maryellen L.

    2014-01-15

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V{sup ®} ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation.

  6. EEG and functional ultrasound imaging in mobile rats

    PubMed Central

    Sieu, Lim-Anna; Bergel, Antoine; Tiran, Elodie; Deffieux, Thomas; Pernot, Mathieu; Gennisson, Jean-Luc; Tanter, Mickaël; Cohen, Ivan

    2015-01-01

    We developed an integrated experimental framework which extends the brain exploration capabilities of functional ultrasound imaging to awake/mobile animals. In addition to hemodynamic data, this method further allows parallel access to EEG recordings of neuronal activity. This approach is illustrated with two proofs of concept: first, a behavioral study, concerning theta rhythm activation in a maze running task and, second, a disease-related study concerning spontaneous epileptic seizures. PMID:26237228

  7. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    PubMed Central

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Background Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. Methods We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. Results In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. Conclusion In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary. PMID:18215290

  8. ΤND: a thyroid nodule detection system for analysis of ultrasound images and videos.

    PubMed

    Keramidas, Eystratios G; Maroulis, Dimitris; Iakovidis, Dimitris K

    2012-06-01

    In this paper, we present a computer-aided-diagnosis (CAD) system prototype, named TND (Thyroid Nodule Detector), for the detection of nodular tissue in ultrasound (US) thyroid images and videos acquired during thyroid US examinations. The proposed system incorporates an original methodology that involves a novel algorithm for automatic definition of the boundaries of the thyroid gland, and a novel approach for the extraction of noise resilient image features effectively representing the textural and the echogenic properties of the thyroid tissue. Through extensive experimental evaluation on real thyroid US data, its accuracy in thyroid nodule detection has been estimated to exceed 95%. These results attest to the feasibility of the clinical application of TND, for the provision of a second more objective opinion to the radiologists by exploiting image evidences.

  9. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.

    PubMed

    Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F Stuart; Jiang, Xiaoning; Dayton, Paul A

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  10. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.

    PubMed

    Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F Stuart; Jiang, Xiaoning; Dayton, Paul A

    2014-11-04

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.

  11. Variogram methods for texture classification of atherosclerotic plaque ultrasound images

    NASA Astrophysics Data System (ADS)

    Jeromin, Oliver M.; Pattichis, Marios S.; Pattichis, Constantinos; Kyriacou, Efthyvoulos; Nicolaides, Andrew

    2006-03-01

    Stroke is the third leading cause of death in the western world and the major cause of disability in adults. The type and stenosis of extracranial carotid artery disease is often responsible for ischemic strokes, transient ischemic attacks (TIAs) or amaurosis fugax (AF). The identification and grading of stenosis can be done using gray scale ultrasound scans. The appearance of B-scan pictures containing various granular structures makes the use of texture analysis techniques suitable for computer assisted tissue characterization purposes. The objective of this study is to investigate the usefulness of variogram analysis in the assessment of ultrasound plague morphology. The variogram estimates the variance of random fields, from arbitrary samples in space. We explore stationary random field models based on the variogram, which can be applied in ultrasound plaque imaging leading to a Computer Aided Diagnosis (CAD) system for the early detection of symptomatic atherosclerotic plaques. Non-parametric tests on the variogram coefficients show that the cofficients coming from symptomatic versus asymptomatic plaques come from distinct distributions. Furthermore, we show significant improvement in class separation, when a log point-transformation is applied to the images, prior to variogram estimation. Model fitting using least squares is explored for anisotropic variograms along specific directions. Comparative classification results, show that variogram coefficients can be used for the early detection of symptomatic cases, and also exhibit the largest class distances between symptomatic and asymptomatic plaque images, as compared to over 60 other texture features, used in the literature.

  12. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    PubMed Central

    Martin, K. Heath; Lindsey, Brooks D.; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F. Stuart; Jiang, Xiaoning; Dayton, Paul A.

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  13. Automatic dynamic range adjustment for ultrasound B-mode imaging.

    PubMed

    Lee, Yeonhwa; Kang, Jinbum; Yoo, Yangmo

    2015-02-01

    In medical ultrasound imaging, dynamic range (DR) is defined as the difference between the maximum and minimum values of the displayed signal to display and it is one of the most essential parameters that determine its image quality. Typically, DR is given with a fixed value and adjusted manually by operators, which leads to low clinical productivity and high user dependency. Furthermore, in 3D ultrasound imaging, DR values are unable to be adjusted during 3D data acquisition. A histogram matching method, which equalizes the histogram of an input image based on that from a reference image, can be applied to determine the DR value. However, it could be lead to an over contrasted image. In this paper, a new Automatic Dynamic Range Adjustment (ADRA) method is presented that adaptively adjusts the DR value by manipulating input images similar to a reference image. The proposed ADRA method uses the distance ratio between the log average and each extreme value of a reference image. To evaluate the performance of the ADRA method, the similarity between the reference and input images was measured by computing a correlation coefficient (CC). In in vivo experiments, the CC values were increased by applying the ADRA method from 0.6872 to 0.9870 and from 0.9274 to 0.9939 for kidney and liver data, respectively, compared to the fixed DR case. In addition, the proposed ADRA method showed to outperform the histogram matching method with in vivo liver and kidney data. When using 3D abdominal data with 70 frames, while the CC value from the ADRA method is slightly increased (i.e., 0.6%), the proposed method showed improved image quality in the c-plane compared to its fixed counterpart, which suffered from a shadow artifact. These results indicate that the proposed method can enhance image quality in 2D and 3D ultrasound B-mode imaging by improving the similarity between the reference and input images while eliminating unnecessary manual interaction by the user.

  14. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Ning; Larrat, Benoît; Pernot, Mathieu; Tanter, Mickaël

    2012-08-01

    We have previously proven the feasibility of ultrasound-based shear wave imaging (SWI) to non-invasively characterize myocardial fiber orientation in both in vitro porcine and in vivo ovine hearts. The SWI-estimated results were in good correlation with histology. In this study, we proposed a new and robust fiber angle estimation method through a tensor-based approach for SWI, coined together as elastic tensor imaging (ETI), and compared it with magnetic resonance diffusion tensor imaging (DTI), a current gold standard and extensively reported non-invasive imaging technique for mapping fiber architecture. Fresh porcine (n = 5) and ovine (n = 5) myocardial samples (20 × 20 × 30 mm3) were studied. ETI was firstly performed to generate shear waves and to acquire the wave events at ultrafast frame rate (8000 fps). A 2.8 MHz phased array probe (pitch = 0.28 mm), connected to a prototype ultrasound scanner, was mounted on a customized MRI-compatible rotation device, which allowed both the rotation of the probe from -90° to 90° at 5° increments and co-registration between two imaging modalities. Transmural shear wave speed at all propagation directions realized was firstly estimated. The fiber angles were determined from the shear wave speed map using the least-squares method and eigen decomposition. The test myocardial sample together with the rotation device was then placed inside a 7T MRI scanner. Diffusion was encoded in six directions. A total of 270 diffusion-weighted images (b = 1000 s mm-2, FOV = 30 mm, matrix size = 60 × 64, TR = 6 s, TE = 19 ms, 24 averages) and 45 B0 images were acquired in 14 h 30 min. The fiber structure was analyzed by the fiber-tracking module in software, MedINRIA. The fiber orientation in the overlapped myocardial region which both ETI and DTI accessed was therefore compared, thanks to the co-registered imaging system. Results from all ten samples showed good correlation (r2 = 0.81, p < 0.0001) and good agreement (3.05° bias

  15. SU-E-J-42: Evaluation of Fiducial Markers for Ultrasound and X-Ray Images Used for Motion Tracking in Pancreas SBRT

    SciTech Connect

    Ng, SK; Armour, E; Su, L; Zhang, Y; Wong, J; Ding, K; Iordachita, I; Sen, H Tutkun; Kazanzides, P; Bell, M Lediju

    2015-06-15

    Purpose Ultrasound tracking of target motion relies on visibility of vascular and/or anatomical landmark. However this is challenging when the target is located far from vascular structures or in organs that lack ultrasound landmark structure, such as in the case of pancreas cancer. The purpose of this study is to evaluate visibility, artifacts and distortions of fusion coils and solid gold markers in ultrasound, CT, CBCT and kV images to identify markers suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment. Methods Two fusion coils (1mm × 5mm and 1mm × 10 mm) and a solid gold marker (0.8mm × 10mm) were embedded in a tissue–like ultrasound phantom. The phantom (5cm × 12cm × 20cm) was prepared using water, gelatin and psyllium-hydrophilic-mucilloid fiber. Psylliumhydrophilic mucilloid acts as scattering medium to produce echo texture that simulates sonographic appearance of human tissue in ultrasound images while maintaining electron density close to that of water in CT images. Ultrasound images were acquired using 3D-ultrasound system with markers embedded at 5, 10 and 15mm depth from phantom surface. CT images were acquired using Philips Big Bore CT while CBCT and kV images were acquired with XVI-system (Elexta). Visual analysis was performed to compare visibility of the markers and visibility score (1 to 3) were assigned. Results All markers embedded at various depths are clearly visible (score of 3) in ultrasound images. Good visibility of all markers is observed in CT, CBCT and kV images. The degree of artifact produced by the markers in CT and CBCT images are indistinguishable. No distortion is observed in images from any modalities. Conclusion All markers are visible in images across all modalities in this homogenous tissue-like phantom. Human subject data is necessary to confirm the marker type suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment.

  16. Ultrasound time-reversal MUSIC imaging with diffraction and attenuation compensation.

    PubMed

    Labyed, Yassin; Huang, Lianjie

    2012-10-01

    Time-reversal imaging with multiple signal classification (TR-MUSIC) is an algorithm for imaging point-like scatterers embedded in a homogeneous and non-attenuative medium. We generalize this algorithm to account for the attenuation in the medium and the diffraction effects caused by the finite size of the transducer elements. The generalized algorithm yields higher-resolution images than those obtained with the original TR-MUSIC algorithm. We evaluate the axial and lateral resolutions of the images obtained with the generalized algorithm when noise corrupts the recorded signals and show that the axial resolution is degraded more than the lateral resolution. The TR-MUSIC algorithm is valid only when the number of point-like targets in the imaging plane is fewer than the number of transducer elements used to interrogate the medium. We remedy this shortcoming by dividing the imaging plane into subregions and applying the TR-MUSIC algorithm to the windowed backscattered signals corresponding to each subregion. The images of all subregions are then combined to form the total image. Imaging results of numerical and phantom data show that when the number of scatterers within each subregion is much smaller than the number of transducer elements, the windowing method yields super-resolution images with accurate scatterer localization. We use computer simulations and tissue-mimicking phantom data acquired with a real-time synthetic-aperture ultrasound system to illustrate the algorithms presented in the paper. PMID:23143569

  17. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  18. Refraction Correction in 3D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2014-01-01

    We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell’s law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency. PMID:24275538

  19. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  20. Barker-coded excitation in ophthalmological ultrasound imaging

    PubMed Central

    Zhou, Sheng; Wang, Xiao-Chun; Yang, Jun; Ji, Jian-Jun; Wang, Yan-Qun

    2014-01-01

    High-frequency ultrasound is an attractive means to obtain fine-resolution images of biological tissues for ophthalmologic imaging. To solve the tradeoff between axial resolution and detection depth, existing in the conventional single-pulse excitation, this study develops a new method which uses 13-bit Barker-coded excitation and a mismatched filter for high-frequency ophthalmologic imaging. A novel imaging platform has been designed after trying out various encoding methods. The simulation and experiment result show that the mismatched filter can achieve a much higher out signal main to side lobe which is 9.7 times of the matched one. The coded excitation method has significant advantages over the single-pulse excitation system in terms of a lower MI, a higher resolution, and a deeper detection depth, which improve the quality of ophthalmic tissue imaging. Therefore, this method has great values in scientific application and medical market. PMID:25356093

  1. Adaptive texture filtering for defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles

    1993-05-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  2. Material characterization and defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Mahdavieh, Jacob; Ross, Joseph; Nash, Charles

    1992-08-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  3. Expectation-Driven Text Extraction from Medical Ultrasound Images.

    PubMed

    Reul, Christian; Köberle, Philipp; Üçeyler, Nurcan; Puppe, Frank

    2016-01-01

    In this study an expectation-driven approach is proposed to extract data stored as pixel structures in medical ultrasound images. Prior knowledge about certain properties like the position of the text and its background and foreground grayscale values is utilized. Several open source Java libraries are used to pre-process the image and extract the textual information. The results are presented in an Excel table together with the outcome of several consistency checks. After manually correcting potential errors, the outcome is automatically stored in the main database. The proposed system yielded excellent results, reaching an accuracy of 99.94% and reducing the necessary human effort to a minimum. PMID:27577478

  4. Integrated transrectal probe for translational ultrasound-photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bell, Kevan L.; Harrison, Tyler; Usmani, Nawaid; Zemp, Roger J.

    2016-03-01

    A compact photoacoustic transrectal probe is constructed for improved imaging in brachytherapy treatment. A 192 element 5 MHz linear transducer array is mounted inside a small 3D printed casing along with an array of optical fibers. The device is fed by a pump laser and tunable NIR-optical parametric oscillator with data collected by a Verasonics ultrasound platform. This assembly demonstrates improved imaging of brachytherapy seeds in phantoms with depths up to 5 cm. The tuneable excitation in combination with standard US integration provides adjustable contrast between the brachytherapy seeds, blood filled tubes and background tissue.

  5. Double difference tomography for breast ultrasound sound speed imaging

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Duric, Neb; Rama, Olsi; Burger, Angelika; Polin, Lisa; Nechiporchik, Nicole

    2011-03-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. Double difference (DD) tomography utilizes more accurate differential time-of-flight (ToF) data to reconstruct the sound speed structure of the breast. It can produce more precise and better resolution sound speed images than standard tomography that uses absolute ToF data. We apply DD tomography to phantom data and excised mouse mammary glands data. DD tomograms demonstrate sharper sound speed contrast than the standard tomograms.

  6. Reconstruction of 3D ultrasound images based on Cyclic Regularized Savitzky-Golay filters.

    PubMed

    Toonkum, Pollakrit; Suwanwela, Nijasri C; Chinrungrueng, Chedsada

    2011-02-01

    This paper presents a new three-dimensional (3D) ultrasound reconstruction algorithm for generation of 3D images from a series of two-dimensional (2D) B-scans acquired in the mechanical linear scanning framework. Unlike most existing 3D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the Cyclic Regularized Savitzky-Golay (CRSG) filter, is a new variant of the Savitzky-Golay (SG) smoothing filter. The CRSG filter has been improved upon the original SG filter in two respects: First, the cyclic indicator function has been incorporated into the least square cost function to enable the CRSG filter to approximate nonuniformly spaced data of the unobserved image intensities contained in unfilled voxels and reduce speckle noise of the observed image intensities contained in filled voxels. Second, the regularization function has been augmented to the least squares cost function as a mechanism to balance between the degree of speckle reduction and the degree of detail preservation. The CRSG filter has been evaluated and compared with the Voxel Nearest-Neighbor (VNN) interpolation post-processed by the Adaptive Speckle Reduction (ASR) filter, the VNN interpolation post-processed by the Adaptive Weighted Median (AWM) filter, the Distance-Weighted (DW) interpolation, and the Adaptive Distance-Weighted (ADW) interpolation, on reconstructing a synthetic 3D spherical image and a clinical 3D carotid artery bifurcation in the mechanical linear scanning framework. This preliminary evaluation indicates that the CRSG filter is more effective in both speckle reduction and geometric reconstruction of 3D ultrasound images than the other methods. PMID:20696448

  7. A probability tracking approach to segmentation of ultrasound prostate images using weak shape priors

    NASA Astrophysics Data System (ADS)

    Xu, Robert S.; Michailovich, Oleg V.; Solovey, Igor; Salama, Magdy M. A.

    2010-03-01

    Prostate specific antigen density is an established parameter for indicating the likelihood of prostate cancer. To this end, the size and volume of the gland have become pivotal quantities used by clinicians during the standard cancer screening process. As an alternative to manual palpation, an increasing number of volume estimation methods are based on the imagery data of the prostate. The necessity to process large volumes of such data requires automatic segmentation algorithms, which can accurately and reliably identify the true prostate region. In particular, transrectal ultrasound (TRUS) imaging has become a standard means of assessing the prostate due to its safe nature and high benefit-to-cost ratio. Unfortunately, modern TRUS images are still plagued by many ultrasound imaging artifacts such as speckle noise and shadowing, which results in relatively low contrast and reduced SNR of the acquired images. Consequently, many modern segmentation methods incorporate prior knowledge about the prostate geometry to enhance traditional segmentation techniques. In this paper, a novel approach to the problem of TRUS segmentation, particularly the definition of the prostate shape prior, is presented. The proposed approach is based on the concept of distribution tracking, which provides a unified framework for tracking both photometric and morphological features of the prostate. In particular, the tracking of morphological features defines a novel type of "weak" shape priors. The latter acts as a regularization force, which minimally bias the segmentation procedure, while rendering the final estimate stable and robust. The value of the proposed methodology is demonstrated in a series of experiments.

  8. Breast ultrasound tomography with two parallel transducer arrays

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Gao, Kai; Intrator, Miranda; Hanson, Kenneth

    2016-03-01

    Breast ultrasound tomography is an emerging imaging modality to reconstruct the sound speed, density, and ultrasound attenuation of the breast in addition to ultrasound reflection/beamforming images for breast cancer detection and characterization. We recently designed and manufactured a new synthetic-aperture breast ultrasound tomography prototype with two parallel transducer arrays consisting of a total of 768 transducer elements. The transducer arrays are translated vertically to scan the breast in a warm water tank from the chest wall/axillary region to the nipple region to acquire ultrasound transmission and reflection data for whole-breast ultrasound tomography imaging. The distance of these two ultrasound transducer arrays is adjustable for scanning breasts with different sizes. We use our breast ultrasound tomography prototype to acquire phantom and in vivo patient ultrasound data to study its feasibility for breast imaging. We apply our recently developed ultrasound imaging and tomography algorithms to ultrasound data acquired using our breast ultrasound tomography system. Our in vivo patient imaging results demonstrate that our breast ultrasound tomography can detect breast lesions shown on clinical ultrasound and mammographic images.

  9. Analysis of left ventricular impedance in comparison with ultrasound images.

    PubMed

    Choi, Seong Wook; Park, Sung Min

    2012-05-01

    Cardiac monitoring of ventricular assist devices (VADs) is important for detecting heart failure risks, such as critical arrhythmia and ventricular fibrillation, and for supplying data that are useful for hemodynamic control. Specifically, impedance cardiograms (ICGs) are especially beneficial because they have no effect on the tissue or organs and can monitor various parameters simultaneously, including the heart rate and heart contractions. In this article, we measured impedance changes in porcine left ventricles using electrodes placed around the inlet and outlet cannulae of the VAD. The measured left ventricular impedance (LVI) waveform changes are caused by heart movements, such as cardiac muscle contraction and changes in blood volume as a result of heart filling and emptying. In contrast to other impedance measurements, LVI is less affected by the movement of other organs. Using a porcine model, LVIs were measured and compared with blood flow data measured with an ultrasound blood flowmeter. The ICG showed the same frequency as the animal's heart rate, and their amplitudes were closely related to cardiac output (CO). However, the waveform differed from other vital signs, such as CO, electrocardiogram, and blood pressure. Ultrasound images were used to explain the impedance waveform. In the ultrasound images, we obtained the shape and size of the animal's heart and calculated the predicted impedance data. We then compared these to the actual measured data. These results show that the impedance signal contains detailed information on heart rate and CO; these results were unaffected by the cannulae or VAD perfusion. PMID:22188560

  10. Compensation of log-compressed images for 3-D ultrasound.

    PubMed

    Sanches, João M; Marques, Jorge S

    2003-02-01

    In this study, a Bayesian approach was used for 3-D reconstruction in the presence of multiplicative noise and nonlinear compression of the ultrasound (US) data. Ultrasound images are often considered as being corrupted by multiplicative noise (speckle). Several statistical models have been developed to represent the US data. However, commercial US equipment performs a nonlinear image compression that reduces the dynamic range of the US signal for visualization purposes. This operation changes the distribution of the image pixels, preventing a straightforward application of the models. In this paper, the nonlinear compression is explicitly modeled and considered in the reconstruction process, where the speckle noise present in the radio frequency (RF) US data is modeled with a Rayleigh distribution. The results obtained by considering the compression of the US data are then compared with those obtained assuming no compression. It is shown that the estimation performed using the nonlinear log-compression model leads to better results than those obtained with the Rayleigh reconstruction method. The proposed algorithm is tested with synthetic and real data and the results are discussed. The results have shown an improvement in the reconstruction results when the compression operation is included in the image formation model, leading to sharper images with enhanced anatomical details.

  11. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  12. Comparison of algorithms for ultrasound image segmentation without ground truth

    NASA Astrophysics Data System (ADS)

    Sikka, Karan; Deserno, Thomas M.

    2010-02-01

    Image segmentation is a pre-requisite to medical image analysis. A variety of segmentation algorithms have been proposed, and most are evaluated on a small dataset or based on classification of a single feature. The lack of a gold standard (ground truth) further adds to the discrepancy in these comparisons. This work proposes a new methodology for comparing image segmentation algorithms without ground truth by building a matrix called region-correlation matrix. Subsequently, suitable distance measures are proposed for quantitative assessment of similarity. The first measure takes into account the degree of region overlap or identical match. The second considers the degree of splitting or misclassification by using an appropriate penalty term. These measures are shown to satisfy the axioms of a quasi-metric. They are applied for a comparative analysis of synthetic segmentation maps to show their direct correlation with human intuition of similar segmentation. Since ultrasound images are difficult to segment and usually lack a ground truth, the measures are further used to compare the recently proposed spectral clustering algorithm (encoding spatial and edge information) with standard k-means over abdominal ultrasound images. Improving the parameterization and enlarging the feature space for k-means steadily increased segmentation quality to that of spectral clustering.

  13. Sequential liver imaging in the hypereosinophilic syndrome: discordant images with scintigraphy, ultrasound, and computed tomography.

    PubMed

    White, W L; Wahner, H W; Brown, M L; James, E M

    1981-02-01

    Sequential liver scintigrams in a patient with hypereosinophilic syndrome were used to demonstrate liver involvement initially and then to show progression of hepatic disease followed by gradual normalization on treatment. Computed tomography and ultrasound images of the liver were normal; thus, tissue density differences and sonar interfaces were apparently not sufficiently large for detection of tissue infiltrates, whereas abnormalities in Kupffer cell function resulted in abnormal scintigram images. A pattern of changing and vanishing filling defects on the scintigram while computed tomography and ultrasound images were normal was observed in the hypereosinophilic syndrome.

  14. SOUND-SPEED AND ATTENUATION IMAGING OF BREAST TISSUE USING WAVEFORM TOMOGRAPHY OF TRANSMISSION ULTRASOUND DATA

    SciTech Connect

    HUANG, LIANJIE; PRATT, R. GERHARD; DURIC, NEB; LITTRUP, PETER

    2007-01-25

    Waveform tomography results are presented from 800 kHz ultrasound transmission scans of a breast phantom, and from an in vivo ultrasound breast scan: significant improvements are demonstrated in resolution over time-of-flight reconstructions. Quantitative reconstructions of both sound-speed and inelastic attenuation are recovered. The data were acquired in the Computed Ultrasound Risk Evaluation (CURE) system, comprising a 20 cm diameter solid-state ultrasound ring array with 256 active, non-beamforming transducers. Waveform tomography is capable of resolving variations in acoustic properties at sub-wavelength scales. This was verified through comparison of the breast phantom reconstructions with x-ray CT results: the final images resolve variations in sound speed with a spatial resolution close to 2 mm. Waveform tomography overcomes the resolution limit of time-of-flight methods caused by finite frequency (diffraction) effects. The method is a combination of time-of-flight tomography, and 2-D acoustic waveform inversion of the transmission arrivals in ultrasonic data. For selected frequency components of the waveforms, a finite-difference simulation of the visco-acoustic wave equation is used to compute synthetic data in the current model, and the data residuals are formed by subtraction. The residuals are used in an iterative, gradient-based scheme to update the sound-speed and attenuation model to produce a reduced misfit to the data. Computational efficiency is achieved through the use of time-reversal of the data residuals to construct the model updates. Lower frequencies are used first, to establish the long wavelength components of the image, and higher frequencies are introduced later to provide increased resolution.

  15. Real-time two-dimensional temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2009-01-01

    We present a system for real-time 2D imaging of temperature change in tissue media using pulse-echo ultrasound. The frontend of the system is a SonixRP ultrasound scanner with a research interface giving us the capability of controlling the beam sequence and accessing radio frequency (RF) data in real-time. The beamformed RF data is streamlined to the backend of the system, where the data is processed using a two-dimensional temperature estimation algorithm running in the graphics processing unit (GPU). The estimated temperature is displayed in real-time providing feedback that can be used for real-time control of the heating source. Currently we have verified our system with elastography tissue mimicking phantom and in vitro porcine heart tissue, excellent repeatability and sensitivity were demonstrated.

  16. Automated quality assessment in three-dimensional breast ultrasound images.

    PubMed

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects. PMID:27158633

  17. Multi-modal Ultrasound Imaging for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Medina-Valdés, L.; Pérez-Liva, M.; Camacho, J.; Udías, J. M.; Herraiz, J. L.; González-Salido, N.

    This work describes preliminary results of a two-modality imaging system aimed at the early detection of breast cancer. The first technique is based on compounding conventional echographic images taken at regular angular intervals around the imaged breast. The other modality obtains tomographic images of propagation velocity using the same circular geometry. For this study, a low-cost prototype has been built. It is based on a pair of opposed 128-element, 3.2 MHz array transducers that are mechanically moved around tissue mimicking phantoms. Compounded images around 360° provide improved resolution, clutter reduction, artifact suppression and reinforce the visualization of internal structures. However, refraction at the skin interface must be corrected for an accurate image compounding process. This is achieved by estimation of the interface geometry followed by computing the internal ray paths. On the other hand, sound velocity tomographic images from time of flight projections have been also obtained. Two reconstruction methods, Filtered Back Projection (FBP) and 2D Ordered Subset Expectation Maximization (2D OSEM), were used as a first attempt towards tomographic reconstruction. These methods yield useable images in short computational times that can be considered as initial estimates in subsequent more complex methods of ultrasound image reconstruction. These images may be effective to differentiate malignant and benign masses and are very promising for breast cancer screening.

  18. High frame rate photoacoustic imaging using clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Kathyayini; Pramanik, Manojit

    2016-03-01

    Photoacoustic tomography (PAT) is a potential hybrid imaging modality which is gaining attention in the field of medical imaging. Typically a Q-switched Nd:YAG laser is used to excite the tissue and generate photoacoustic signals. But, they are not suitable for clinical applications owing to their high cost, large size. Also, their low pulse repetition rate (PRR) of few tens of hertz prevents them from being used in real-time PAT. So, there is a growing need for an imaging system capable of real-time imaging for various clinical applications. In this work, we are using a nanosecond pulsed laser diode as an excitation source and a clinical ultrasound imaging system to obtain the photoacoustic imaging. The excitation laser is ~803 nm in wavelength with energy of ~1.4 mJ per pulse. So far, the reported frame rate for photoacoustic imaging is only a few hundred Hertz. We have demonstrated up to 7000 frames per second framerate in photoacoustic imaging (B-mode) and measured the flow rate of fast moving obje ct. Phantom experiments were performed to test the fast imaging capability and measure the flow rate of ink solution inside a tube. This fast photoacoustic imaging can be used for various clinical applications including cardiac related problems, where the blood flow rate is quite high, or other dynamic studies.

  19. Analysis of ultrasound pulse-echo images for characterization of muscle disease

    NASA Astrophysics Data System (ADS)

    Leeman, Sidney; Heckmatt, John Z.

    1996-04-01

    This study aims to extract quantifiable indices characterizing ultrasound propagation and scattering in skeletal muscle, from data acquired using a real-time linear array scanner in a paediatric muscle clinic, in order to establish early diagnosis of Duchenne muscular dystrophy in young children, as well as to chart the progressive severity of the disease. Approximately 40 patients with gait disorders, aged between 1 and 11 years, were scanned with a real-time linear array ultrasound scanner, at 5 MHz. A control group consisted of approximately 50 boys, in the same age range, with no evidence or history of muscle disease. Results show that ultrasound quantitative methods can provide a tight clustering of normal data, and also provide a basis for charting the degree of change in diseased muscle. The most significant (quantitative) parameters derive from the frequency of the attenuation and the muscle echogenicity. The approach provides a discrimination method that is more sensitive than visual assessment of the corresponding image by even an experienced observer. There are also indications that the need for traumatic muscle biopsy may be obviated in some cases.

  20. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis.

    PubMed

    Costopoulos, Charis; Brown, Adam J; Teng, Zhongzhao; Hoole, Stephen P; West, Nick E J; Samady, Habib; Bennett, Martin R

    2016-01-01

    Invasive imaging modalities, in particular intravascular ultrasound (IVUS) and optical coherence tomography (OCT), have become established tools for the in vivo study of coronary atherosclerosis. Their use in clinical studies has confirmed histopathological observations that certain important plaque features, such as thin fibrous caps and large lipid cores, are associated with plaque rupture, the precipitating event for the majority of myocardial infarctions. Serial imaging studies have also successfully been used for the evaluation of potential disease modifying pharmacological agents. Recent prospective IVUS studies have confirmed specific baseline imaging features associated with subsequent adverse clinical outcomes, although absolute event rates were too low for clinical utility. Development of hybrid IVUS-OCT imaging or integration of novel techniques, including near-infrared spectroscopy, plaque structural and endothelial shear stress, have great potential to improve our current ability to identify and stratify atheromatous plaques at risk of rupture.

  1. Beating heart mitral valve repair with integrated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Moore, John T.; Peters, Terry M.

    2015-03-01

    Beating heart valve therapies rely extensively on image guidance to treat patients who would be considered inoperable with conventional surgery. Mitral valve repair techniques including the MitrClip, NeoChord, and emerging transcatheter mitral valve replacement techniques rely on transesophageal echocardiography for guidance. These images are often difficult to interpret as the tool will cause shadowing artifacts that occlude tissue near the target site. Here, we integrate ultrasound imaging directly into the NeoChord device. This provides an unobstructed imaging plane that can visualize the valve lea ets as they are engaged by the device and can aid in achieving both a proper bite and spacing between the neochordae implants. A proof of concept user study in a phantom environment is performed to provide a proof of concept for this device.

  2. Frequency Domain Ultrasound Waveform Tomography: Breast Imaging Using a Ring Transducer

    PubMed Central

    Sandhu, G Y; Li, C; Roy, O; Schmidt, S; Duric, N

    2016-01-01

    Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4–1 MHz and an average sound speed of 1500 m/s, the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F). PMID:26110909

  3. Assessment of Median Nerve Mobility by Ultrasound Dynamic Imaging for Diagnosing Carpal Tunnel Syndrome.

    PubMed

    Kuo, Tai-Tzung; Lee, Ming-Ru; Liao, Yin-Yin; Chen, Jiann-Perng; Hsu, Yen-Wei; Yeh, Chih-Kuang

    2016-01-01

    Carpal tunnel syndrome (CTS) is the most common peripheral neuropathy and is characterized by median nerve entrapment at the wrist and the resulting median nerve dysfunction. CTS is diagnosed clinically as the gold standard and confirmed with nerve conduction studies (NCS). Complementing NCS, ultrasound imaging could provide additional anatomical information on pathological and motion changes of the median nerve. The purpose of this study was to estimate the transverse sliding patterns of the median nerve during finger movements by analyzing ultrasound dynamic images to distinguish between normal subjects and CTS patients. Transverse ultrasound images were acquired, and a speckle-tracking algorithm was used to determine the lateral displacements of the median nerve in radial-ulnar plane in B-mode images utilizing the multilevel block-sum pyramid algorithm and averaging. All of the averaged lateral displacements at separate acquisition times within a single flexion-extension cycle were accumulated to obtain the cumulative lateral displacements, which were curve-fitted with a second-order polynomial function. The fitted curve was regarded as the transverse sliding pattern of the median nerve. The R2 value, curvature, and amplitude of the fitted curves were computed to evaluate the goodness, variation and maximum value of the fit, respectively. Box plots, the receiver operating characteristic (ROC) curve, and a fuzzy c-means clustering algorithm were utilized for statistical analysis. The transverse sliding of the median nerve during finger movements was greater and had a steeper fitted curve in the normal subjects than in the patients with mild or severe CTS. The temporal changes in transverse sliding of the median nerve within the carpal tunnel were found to be correlated with the presence of CTS and its severity. The representative transverse sliding patterns of the median nerve during finger movements were demonstrated to be useful for quantitatively estimating

  4. Monte Carlo modeling of ultrasound probes for image guided radiotherapy

    SciTech Connect

    Bazalova-Carter, Magdalena; Schlosser, Jeffrey; Chen, Josephine; Hristov, Dimitre

    2015-10-15

    Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 and 8.0 g/cm{sup 3}. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm{sup 2} beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm{sup 2} beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm{sup 3}, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical orientation. The

  5. Monte Carlo modeling of ultrasound probes for image guided radiotherapy

    PubMed Central

    Bazalova-Carter, Magdalena; Schlosser, Jeffrey; Chen, Josephine; Hristov, Dimitre

    2015-01-01

    Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 and 8.0 g/cm3. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm2 beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm2 beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R2 > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm3, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical orientation. The X6-1 probe in vertical

  6. Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation.

    PubMed

    Seo, Chi Hyung; Yen, Jesse T

    2008-10-01

    This paper introduces a novel sidelobe and clutter suppression method in ultrasound imaging called dual apodization with cross-correlation or DAX. DAX dramatically improves the contrast-to-noise ratio (CNR) allowing for easier visualization of anechoic cysts and blood vessels. This technique uses dual apodization or weighting strategies that are effective in removing or minimizing clutter and efficient in terms of computational load and hardware/software needs. This dual apodization allows us to determine the amount of mainlobe versus clutter contribution in a signal by cross-correlating RF data acquired from 2 apodization functions. Simulation results using a 128 element 5 MHz linear array show an improvement in CNR of 139% compared with standard beamformed data with uniform apodization in a 3 mm diameter anechoic cylindrical cyst. Experimental CNR using a tissue-mimicking phantom with the same sized cyst shows an improvement of 123% in a DAX processed image. PMID:18986868

  7. Simultaneous bilateral real-time 3-d transcranial ultrasound imaging at 1 MHz through poor acoustic windows.

    PubMed

    Lindsey, Brooks D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2013-04-01

    Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%-29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging-the ultrasound brain helmet-and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field.

  8. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  9. Clinical real-time photoacoustic/ultrasound imaging system at POSTECH

    NASA Astrophysics Data System (ADS)

    Kim, Jeesu; Park, Sara; Jung, Yuhan; Zhang, Yumiao; Lovell, Jonathan F.; Kim, Chulhong

    2016-03-01

    We have successfully developed a clinical real-time photoacoustic/ultrasound (PA/US) imaging system. The PA/US imaging system was adapted with a FDA approved commercial US imaging system and a portable pulsed laser system. All image processing and display tasks were performed in real-time by using a graphical processing unit of the US imaging system. We have tested performances of the system by measuring maximum penetration depth, noise equivalent sensitivity, and axial resolution of contrast agent deposited microtubes under chicken breast tissues. By adapting various US transducers (i.e., linear, convex, phased, and endocavity), adaptable capability of the system was verified. In addition, volumetric PA/US imaging was performed by applying a linear scanning along an elevational direction. We have successfully acquired volumetric PA/US images of human forearms in vivo. We believe that the developed clinical real-time PA/US imaging system can be utilized in various preclinical and clinical studies in the near future.

  10. Ultrasound imaging of oxidative stress in vivo with chemically-generated gas microbubbles.

    PubMed

    Perng, John Kangchun; Lee, Seungjun; Kundu, Kousik; Caskey, Charles F; Knight, Sarah F; Satir, Sarp; Ferrara, Katherine W; Taylor, W Robert; Degertekin, F Levent; Sorescu, Daniel; Murthy, Niren

    2012-09-01

    Ultrasound contrast agents (UCAs) have tremendous potential for in vivo molecular imaging because of their high sensitivity. However, the diagnostic potential of UCAs has been difficult to exploit because current UCAs are based on pre-formed microbubbles, which can only detect cell surface receptors. Here, we demonstrate that chemical reactions that generate gas forming molecules can be used to perform molecular imaging by ultrasound in vivo. This new approach was demonstrated by imaging reactive oxygen species in vivo with allylhydrazine, a liquid compound that is converted into nitrogen and propylene gas after reacting with radical oxidants. We demonstrate that allylhydrazine encapsulated within liposomes can detect a 10 micromolar concentration of radical oxidants by ultrasound, and can image oxidative stress in mice, induced by lipopolysaccharide, using a clinical ultrasound system. We anticipate numerous applications of chemically-generated microbubbles for molecular imaging by ultrasound, given ultrasound's ability to detect small increments above the gas saturation limit, its spatial resolution and widespread clinical use.

  11. NON-RIGID IMAGE REGISTRATION BASED STRAIN ESTIMATOR FOR INTRAVASCULAR ULTRASOUND ELASTOGRAPHY

    PubMed Central

    Richards, Michael S.; Doyley, Marvin M.

    2013-01-01

    Intravascular ultrasound elastography (IVUSe) could improve the diagnosis of cardiovascular disease by revealing vulnerable plaques through their mechanical tissue properties. To improve the performance of IVUSe, we developed and implemented a non-rigid image-registration method to visualize the radial and circumferential component of strain within vascular tissues. We evaluated the algorithm’s performance with four initialization schemes using simulated and experimentally acquired ultrasound images. Applying the registration method to radio-frequency (RF) echo frames improved the accuracy of displacements compared to when B-mode images were employed. However, strain elastograms measured from RF echo frames produce erroneous results when both the zero-initialization method and the mesh-refinement scheme were employed. For most strain levels, the cross-correlation-initialization method produced the best performance. The simulation study predicted that elastograms obtained from vessels with average strains in the range of 3%–5% should have high elastographic signal-to-noise ratio (SNRe)–on the order of 4.5 and 7.5 for the radial and circumferential components of strain, respectively. The preliminary in vivo validation study (phantom and an atherosclerotic rabbit) demonstrated that the non-rigid registration method could produce useful radial and circumferential strain elastograms under realistic physiologic conditions. The results of this investigation were sufficiently encouraging to warrant a more comprehensive in vivo validation. PMID:23245827

  12. A method for three-dimensional prostate imaging using transrectal ultrasound.

    PubMed

    Richard, W D; Grimmell, C K; Bedigian, K; Frank, K J

    1993-01-01

    This paper describes a method for forming three-dimensional images of the prostate using transrectal ultrasound. This method extracts three-dimensional images of the prostate from sets of two-dimensional ultrasound images obtained via a special-purpose transrectal ultrasound probe. Each two-dimensional image is segmented and the results used to form a three-dimensional image of the prostate. A method for segmenting two-dimensional images of the prostate based on the Laplacian-of-Gaussian edge operator is described. The three-dimensional imaging method described provides a new, noninvasive method for monitoring gland pathology during radiation therapy. PMID:8518996

  13. Contrast-Enhanced Ultrasound Imaging for the Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening

    PubMed Central

    Fan, Ching-Hsiang; Lin, Wun-Hao; Ting, Chien-Yu; Chai, Wen-Yen; Yen, Tzu-Chen; Liu, Hao-Li; Yeh, Chih-Kuang

    2014-01-01

    The blood-brain barrier (BBB) can be transiently and locally opened by focused ultrasound (FUS) in the presence of microbubbles (MBs). Various imaging modalities and contrast agents have been used to monitor this process. Unfortunately, direct ultrasound imaging of BBB opening with MBs as contrast agent is not feasible, due to the inability of MBs to penetrate brain parenchyma. However, FUS-induced BBB opening is accompanied by changes in blood flow and perfusion, suggesting the possibility of perfusion-based ultrasound imaging. Here we evaluated the use of MB destruction-replenishment, which was originally developed for analysis of ultrasound perfusion kinetics, for verifying and quantifying FUS-induced BBB opening. MBs were intravenously injected and the BBB was disrupted by 2 MHz FUS with burst-tone exposure at 0.5-0.7 MPa. A perfusion kinetic map was estimated by MB destruction-replenishment time-intensity curve analysis. Our results showed that the scale and distribution of FUS-induced BBB opening could be determined at high resolution by ultrasound perfusion kinetic analysis. The accuracy and sensitivity of this approach was validated by dynamic contrast-enhanced MRI. Our successful demonstration of ultrasound imaging to monitor FUS-induced BBB opening provides a new approach to assess FUS-dependent brain drug delivery, with the benefit of high temporal resolution and convenient integration with the FUS device. PMID:25161701

  14. The Feasibility of Thermal Imaging as a Future Portal Imaging Device for Therapeutic Ultrasound.

    PubMed

    Miloro, Piero; Civale, John; Rivens, Ian; Shaw, Adam

    2016-08-01

    This technical note describes a prototype thermally based portal imaging device that allows mapping of energy deposition on the surface of a tissue mimicking material in a focused ultrasound surgery (FUS) beam by using an infrared camera to measure the temperature change on that surface. The aim of the work is to explore the feasibility of designing and building a system suitable for rapid quality assurance (QA) for use with both ultrasound- and magnetic resonance (MR) imaging-guided clinical therapy ultrasound systems. The prototype was tested using an MR-guided Sonalleve FUS system (with the treatment couch outside the magnet bore). The system's effective thermal noise was 0.02°C, and temperature changes as low as 0.1°C were easily quantifiable. The advantages and drawbacks of thermal imaging for QA are presented through analysis of the results of an experimental session.

  15. The Feasibility of Thermal Imaging as a Future Portal Imaging Device for Therapeutic Ultrasound.

    PubMed

    Miloro, Piero; Civale, John; Rivens, Ian; Shaw, Adam

    2016-08-01

    This technical note describes a prototype thermally based portal imaging device that allows mapping of energy deposition on the surface of a tissue mimicking material in a focused ultrasound surgery (FUS) beam by using an infrared camera to measure the temperature change on that surface. The aim of the work is to explore the feasibility of designing and building a system suitable for rapid quality assurance (QA) for use with both ultrasound- and magnetic resonance (MR) imaging-guided clinical therapy ultrasound systems. The prototype was tested using an MR-guided Sonalleve FUS system (with the treatment couch outside the magnet bore). The system's effective thermal noise was 0.02°C, and temperature changes as low as 0.1°C were easily quantifiable. The advantages and drawbacks of thermal imaging for QA are presented through analysis of the results of an experimental session. PMID:27174419

  16. Potential role of ultrasound imaging in interstitial image based cervical cancer brachytherapy

    PubMed Central

    2014-01-01

    In 2012, more than 500,000 cases of cervical cancer were diagnosed worldwide. Over three quarters of these cases occur in less developed countries [1]. Advancements in image-guided brachytherapy are resulting in improved outcomes and reduced morbidity for women with this disease, but its worldwide adoption is hampered by lack of accessibility to advanced imaging techniques. Ultrasound is emerging as a potential option for tumor visualization, brachytherapy catheter placement, and treatment planning. While additional work is needed, ultrasound can potentially serve as the sole imaging modality for catheter insertion and planning. This paper will review our current knowledge on the use of ultrasound in interstitial brachytherapy treatment for cervical cancer. PMID:25097565

  17. AG73-modified Bubble liposomes for targeted ultrasound imaging of tumor neovasculature.

    PubMed

    Negishi, Yoichi; Hamano, Nobuhito; Tsunoda, Yuka; Oda, Yusuke; Choijamts, Batsuren; Endo-Takahashi, Yoko; Omata, Daiki; Suzuki, Ryo; Maruyama, Kazuo; Nomizu, Motoyoshi; Emoto, Makoto; Aramaki, Yukihiko

    2013-01-01

    Ultrasound imaging is a widely used imaging technique. The use of contrast agents has become an indispensible part of clinical ultrasound imaging, and molecular imaging via ultrasound has recently attracted significant attention. We recently reported that "Bubble liposomes" (BLs) encapsulating US imaging gas liposomes were suitable for ultrasound imaging and gene delivery. The 12 amino acid AG73 peptide derived from the laminin α1 chain is a ligand for syndecans, and syndecan-2 is highly expressed in blood vessels. In this study, we prepared AG73 peptide-modified BLs (AG73-BLs) and assessed their specific attachment and ultrasound imaging ability for blood vessels in vitro and in vivo. First, we assessed the specific attachment of AG73-BLs in vitro, using flow cytometry and microscopy. AG73-BLs showed specific attachment compared with non-labeled or control peptide-modified BLs. Next, we examined ultrasound imaging in tumor-bearing mice. When BLs were administered, contrast imaging of AG73-BLs was sustainable for up to 4 min, while contrast imaging of non-labeled BLs was not observed. Thus, it is suggested that AG73-BLs may become useful ultrasound contrast agents in the clinic for diagnosis based on ultrasound imaging.

  18. Imaging of acquired coronary diseases: From children to adults.

    PubMed

    Dehaene, A; Jacquier, A; Falque, C; Gorincour, G; Gaubert, J Y

    2016-05-01

    Acquired coronary diseases include aneurysms, fistulae, dissections, and stenosis. Aneurysms may occur secondarily to Kawasaki disease, a childhood vasculitis, the prognosis of which depends on the coronary involvement, or they may be degenerative, infectious, inflammatory, or traumatic in origin. Fistulae develop between the coronary arterial system and a pulmonary or bronchial artery, or cardiac cavity. Dissections may occur spontaneously or may be post-traumatic. These coronary abnormalities may be found incidentally or may present as complications, infarction or rupture. The goals of this article are to understand acquired childhood and adult coronary diseases and their usual means of presentation, the ways of investigating them, and the principles of their treatment. PMID:27130480

  19. A dual modality phantom for cone beam CT and ultrasound image fusion in prostate implant

    SciTech Connect

    Ng, Angela; Beiki-Ardakan, Akbar; Tong, Shidong; Moseley, Douglas; Siewerdsen, Jeffrey; Jaffray, David; Yeung, Ivan W. T.

    2008-05-15

    In transrectal ultrasound (TRUS) guided prostate seed brachytherapy, TRUS provides good delineation of the prostate while x-ray imaging, e.g., C-arm, gives excellent contrast for seed localization. With the recent availability of cone beam CT (CBCT) technology, the combination of the two imaging modalities may provide an ideal system for intraoperative dosimetric feedback during implantation. A dual modality phantom made of acrylic and copper wire was designed to measure the accuracy and precision of image coregistration between a C-arm based CBCT and 3D TRUS. The phantom was scanned with TRUS and CBCT under the same setup condition. Successive parallel transverse ultrasound (US) images were acquired through manual stepping of the US probe across the phantom at an increment of 1 mm over 7.5 cm. The CBCT imaging was done with three reconstructed slice thicknesses (0.4, 0.8, and 1.6 mm) as well as at three different tilt angles (0 deg., 15 deg., 30 deg. ), and the coregistration between CBCT and US images was done using the Variseed system based on four fiducial markers. Fiducial localization error (FLE), fiducial registration error (FRE), and target registration error (TRE) were calculated for all registered image sets. Results showed that FLE were typically less than 0.4 mm, FRE were less than 0.5 mm, and TRE were typically less than 1 mm within the range of operation for prostate implant (i.e., <6 cm to surface of US probe). An analysis of variance test showed no significant difference in TRE for the CBCT-US fusion among the three slice thicknesses (p=0.37). As a comparison, the experiment was repeated with a US-conventional CT scanner combination. No significant difference in TRE was noted between the US-conventional CT fusion and that for all three CBCT image slice thicknesses (p=0.21). CBCT imaging was also performed at three different C-arm tilt angles of 0 deg., 15 deg., and 30 deg. and reconstructed at a slice thickness of 0.8 mm. There is no significant

  20. Thermal Imaging of Convecting Opaque Fluids using Ultrasound

    NASA Technical Reports Server (NTRS)

    Xu, Hongzhou; Fife, Sean; Andereck, C. David

    2002-01-01

    An ultrasound technique has been developed to non-intrusively image temperature fields in small-scale systems of opaque fluids undergoing convection. Fluids such as molten metals, semiconductors, and polymers are central to many industrial processes, and are often found in situations where natural convection occurs, or where thermal gradients are otherwise important. However, typical thermal and velocimetric diagnostic techniques rely upon transparency of the fluid and container, or require the addition of seed particles, or require mounting probes inside the fluid, all of which either fail altogether in opaque fluids, or necessitate significant invasion of the flow and/or modification of the walls of the container to allow access to the fluid. The idea behind our work is to use the temperature dependence of sound velocity, and the ease of propagation of ultrasound through fluids and solids, to probe the thermal fields of convecting opaque fluids non-intrusively and without the use of seed particles. The technique involves the timing of the return echoes from ultrasound pulses, a variation on an approach used previously in large-scale systems.

  1. Advances in a fully integrated intravascular OCT-ultrasound system for cardiovascular imaging

    NASA Astrophysics Data System (ADS)

    Jing, Joe; Li, Jiawen; Li, Xiang; Yin, Jiechen; Zhang, Jun; Hoang, Khiet; Patel, Pranav; Zhou, Qifa; Chen, Zhongping

    2012-01-01

    Intracoronary optical coherence tomography (OCT) and intravascular ultrasound (IVUS) are two popular techniques for the detection and determination of atherosclerosis. IVUS allows visualization of plaques while also providing a large penetration depth to determine plaque volume. Intracoronary OCT provides the ability to capture microscopic features associated with high risk plaque. Traditionally to utilize the benefits of both modalities, separate probes and systems had to be used one at a time to image a vessel. We present work required to create a combined OCT IVUS system capable of simultaneous imaging to detect atherosclerotic plaques. A novel integrated probe of size 0.69 mm OD featuring sequential placement of components was created to acquire co-registered images within small coronary vessels. By utilizing commercial graphics processing units (GPUs) real time visualization of acquired data is possible up to a maximum 48 frames per second per channel. In vitro studies on human coronary artery samples as well as in vivo studies in rabbits and pigs show various plaque buildups in both OCT and IVUS images which match histology results, demonstrating the capabilities of the system.

  2. Fast retrieval of calcification from sequential intravascular ultrasound gray-scale images.

    PubMed

    Zheng, Sun; Bing-Ru, Liu

    2016-08-12

    Intravascular ultrasound (IVUS)-based tissue characterization is invaluable for the computer-aided diagnosis and interventional treatment of cardiac vessel diseases. Although the analysis of raw backscattered signals allows more accurate plaque characterization than gray-scale images, its applications are limited due to its nature of electrocardiogram-gated acquisition. Images acquired by IVUS devices that do not allow the acquisition of raw signals cannot be characterized. To address these limitations, we developed a method for fast frame-by-frame retrieval and location of calcification according to the jump features of radial gray-level variation curves from sequential IVUS gray-scale images. The proposed method consists of three main steps: (1) radial gray-level variation curves are extracted from each filtered polar view, (2) sequential images are preliminarily queried according to the maximal slopes of radial gray-level variation curves, and finally, (3) key frames that include calcification are selected through checking the gray-level features of successive pixel columns in the preliminary results. Experimental results with clinically acquired in vivo data sets indicate key frames that include calcification can be retrieved with the advantages of simplicity, high efficiency, and accuracy. Recognition results correlate well with manual characterization results obtained by experienced physicians and through virtual histology. PMID:27567774

  3. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging

    PubMed Central

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  4. Breast imaging with ultrasound tomography: a comparative study with MRI

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan; Littrup, Peter; Duric, Neb; Li, Cuiping; Schmidt, Steven; Lupinacci, Jessica; Myc, Lukasz; Szczepanski, Amy; Rama, Olsi; Bey-Knight, Lisa

    2010-03-01

    The purpose of this study was to investigate the performance of an ultrasound tomography (UST) prototype relative to magnetic resonance (MR) for imaging overall breast anatomy and accentuating tumors relative to background tissue. The study was HIPAA compliant, approved by the Institutional Review Board, and performed after obtaining the requisite informed consent. Twenty-three patients were imaged with MR and the UST prototype. T1 weighted images with fat saturation, with and without gadolinium enhancement, were used to examine anatomical structures and tumors, while T2 weighted images were used to identify cysts. The UST scans generated sound speed, attenuation, and reflection images. A qualitative visual comparison of the MRI and UST images was then used to identify anatomical similarities. A more focused approach that involved a comparison of reported masses, lesion volumes, and breast density was used to quantify the findings from the visual assessment. Our acoustic tomography prototype imaged distributions of fibrous stroma, parenchyma, fatty tissues, and lesions in patterns similar to those seen in the MR images. The range of thresholds required to establish tumor volume equivalency between MRI and UST suggested that a universal threshold for isolating masses relative to background tissue is feasible with UST. UST has demonstrated the ability to visualize and characterize breast tissues in a manner comparable to MRI. Thresholding techniques accentuate masses relative to background anatomy, which may prove clinically useful for early cancer detection.

  5. Development of catheters for combined intravascular ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Karpiouk, Andrei B.; Wang, Bo; Emelianov, Stanislav Y.

    2009-02-01

    Coronary atherosclerosis is a complex disease accompanied by the development of plaques in the arterial wall. Since the vulnerability of the plaques depends on their composition, the appropriate treatment of the arteriosclerosis requires a reliable characterization of the plaques' geometry and content. The intravascular ultrasound (IVUS) imaging is capable of providing structural details of the plaques as well as some functional information. In turn, more functional information about the same plaques can be obtained from intravascular photoacoustic (IVPA) images since the optical properties of the plaque's components differ from that of their environment. The combined IVUS/IVPA imaging is capable of simultaneously detecting and differentiating the plaques, thus determining their vulnerability. The potential of combined IVUS/IVPA imaging has already been demonstrated in phantoms and ex-vivo experiments. However, for in-vivo or clinical imaging, an integrated IVUS/IVPA catheter is required. In this paper, we introduce two prototypes of integrated IVUS/IVPA catheters for in-vivo imaging based on a commercially available single-element IVUS imaging catheter. The light delivery systems are developed using multimode optical fibers with custom-designed distal tips. Both prototypes were tested and compared using an arterial mimicking phantom. The advantages and limitations of both designs are discussed. Overall, the results of our studies suggest that both designs of integrated IVUS/IVPA catheter have a potential for in-vivo IVPA/IVUS imaging of atherosclerotic plaques.

  6. Visual screening of muscle ultrasound images in children.

    PubMed

    Brandsma, Rick; Verbeek, Renate J; Maurits, Natasha M; van der Hoeven, Johannes H; Brouwer, Oebele F; den Dunnen, Wilfred F A; Burger, Huibert; Sival, Deborah A

    2014-10-01

    In children, non-invasive muscle ultrasound (MU) imaging has become increasingly important for the detection of neuromuscular pathology, by either quantitative or visual assessment. MU quantification requires time, expertise and equipment. If application of visual MU screening provides reliable results, ubiquitous application could be advocated. Previously, we found that visual MU screening can reliably detect segmental neuromuscular alterations within a patient. Analogously, we reasoned that visual MU screening could discern pathologic MU images from healthy controls. We therefore investigated visual screening results by 20 clinical observers (involving 100 MU images, with [n = 53] and without [n = 47] neuromuscular pathology). MU screening revealed adequate sensitivity, specificity and negative predictive value (85%, 75% and 82%, respectively). MU-experienced observers revealed higher specificity than MU-inexperienced observers (86% vs. 69%, p = 0.005). We conclude that clinical observers can identify neuromuscular pathology by visual screening. To enhance specificity, a secondary view by an expert appears advisory.

  7. Multiple LREK active contours for knee meniscus ultrasound image segmentation.

    PubMed

    Faisal, Amir; Ng, Siew-Cheok; Goh, Siew-Li; George, John; Supriyanto, Eko; Lai, Khin W

    2015-10-01

    Quantification of knee meniscus degeneration and displacement in an ultrasound image requires simultaneous segmentation of femoral condyle, meniscus, and tibial plateau in order to determine the area and the position of the meniscus. In this paper, we present an active contour for image segmentation that uses scalable local regional information on expandable kernel (LREK). It includes using a strategy to adapt the size of a local window in order to avoid being confined locally in a homogeneous region during the segmentation process. We also provide a multiple active contours framework called multiple LREK (MLREK) to deal with multiple object segmentation without merging and overlapping between the neighboring contours in the shared boundaries of separate regions. We compare its performance to other existing active contour models and show an improvement offered by our model. We then investigate the choice of various parameters in the proposed framework in response to the segmentation outcome. Dice coefficient and Hausdorff distance measures over a set of real knee meniscus ultrasound images indicate a potential application of MLREK for assessment of knee meniscus degeneration and displacement. PMID:25910057

  8. Feature-based fuzzy connectedness segmentation of ultrasound images with an object completion step

    PubMed Central

    Rueda, Sylvia; Knight, Caroline L.; Papageorghiou, Aris T.; Alison Noble, J.

    2015-01-01

    Medical ultrasound (US) image segmentation and quantification can be challenging due to signal dropouts, missing boundaries, and presence of speckle, which gives images of similar objects quite different appearance. Typically, purely intensity-based methods do not lead to a good segmentation of the structures of interest. Prior work has shown that local phase and feature asymmetry, derived from the monogenic signal, extract structural information from US images. This paper proposes a new US segmentation approach based on the fuzzy connectedness framework. The approach uses local phase and feature asymmetry to define a novel affinity function, which drives the segmentation algorithm, incorporates a shape-based object completion step, and regularises the result by mean curvature flow. To appreciate the accuracy and robustness of the methodology across clinical data of varying appearance and quality, a novel entropy-based quantitative image quality assessment of the different regions of interest is introduced. The new method is applied to 81 US images of the fetal arm acquired at multiple gestational ages, as a means to define a new automated image-based biomarker of fetal nutrition. Quantitative and qualitative evaluation shows that the segmentation method is comparable to manual delineations and robust across image qualities that are typical of clinical practice. PMID:26319973

  9. Stolt's f-k migration for plane wave ultrasound imaging.

    PubMed

    Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy

    2013-09-01

    Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wave-fronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. To perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to outline the advantages of PWI with Stolt's f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt's f-k migration was also compared with the Fourier-based method developed by J.-Y. Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a stateof- the-art dynamic focusing mode. This remained true even with a very small number of steering angles, thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu's and DAS migration schemes. Matlab codes for the Stolt's f-k migration for PWI are provided. PMID:24626107

  10. Stolt's f-k migration for plane wave ultrasound imaging.

    PubMed

    Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy

    2013-09-01

    Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wave-fronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. To perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to outline the advantages of PWI with Stolt's f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt's f-k migration was also compared with the Fourier-based method developed by J.-Y. Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a stateof- the-art dynamic focusing mode. This remained true even with a very small number of steering angles, thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu's and DAS migration schemes. Matlab codes for the Stolt's f-k migration for PWI are provided.

  11. A Split-and-Merge-Based Uterine Fibroid Ultrasound Image Segmentation Method in HIFU Therapy.

    PubMed

    Xu, Menglong; Zhang, Dong; Yang, Yan; Liu, Yu; Yuan, Zhiyong; Qin, Qianqing

    2015-01-01

    High-intensity focused ultrasound (HIFU) therapy has been used to treat uterine fibroids widely and successfully. Uterine fibroid segmentation plays an important role in positioning the target region for HIFU therapy. Presently, it is completed by physicians manually, reducing the efficiency of therapy. Thus, computer-aided segmentation of uterine fibroids benefits the improvement of therapy efficiency. Recently, most computer-aided ultrasound segmentation methods have been based on the framework of contour evolution, such as snakes and level sets. These methods can achieve good performance, although they need an initial contour that influences segmentation results. It is difficult to obtain the initial contour automatically; thus, the initial contour is always obtained manually in many segmentation methods. A split-and-merge-based uterine fibroid segmentation method, which needs no initial contour to ensure less manual intervention, is proposed in this paper. The method first splits the image into many small homogeneous regions called superpixels. A new feature representation method based on texture histogram is employed to characterize each superpixel. Next, the superpixels are merged according to their similarities, which are measured by integrating their Quadratic-Chi texture histogram distances with their space adjacency. Multi-way Ncut is used as the merging criterion, and an adaptive scheme is incorporated to decrease manual intervention further. The method is implemented using Matlab on a personal computer (PC) platform with Intel Pentium Dual-Core CPU E5700. The method is validated on forty-two ultrasound images acquired from HIFU therapy. The average running time is 9.54 s. Statistical results showed that SI reaches a value as high as 87.58%, and normHD is 5.18% on average. It has been demonstrated that the proposed method is appropriate for segmentation of uterine fibroids in HIFU pre-treatment imaging and planning. PMID:25973906

  12. A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors.

    PubMed

    Prendes, Jorge; Chabert, Marie; Pascal, Frederic; Giros, Alain; Tourneret, Jean-Yves

    2015-03-01

    Remote sensing images are commonly used to monitor the earth surface evolution. This surveillance can be conducted by detecting changes between images acquired at different times and possibly by different kinds of sensors. A representative case is when an optical image of a given area is available and a new image is acquired in an emergency situation (resulting from a natural disaster for instance) by a radar satellite. In such a case, images with heterogeneous properties have to be compared for change detection. This paper proposes a new approach for similarity measurement between images acquired by heterogeneous sensors. The approach exploits the considered sensor physical properties and specially the associated measurement noise models and local joint distributions. These properties are inferred through manifold learning. The resulting similarity measure has been successfully applied to detect changes between many kinds of images, including pairs of optical images and pairs of optical-radar images.

  13. An iterated Laplacian based semi-supervised dimensionality reduction for classification of breast cancer on ultrasound images.

    PubMed

    Liu, Xiao; Shi, Jun; Zhou, Shichong; Lu, Minhua

    2014-01-01

    The dimensionality reduction is an important step in ultrasound image based computer-aided diagnosis (CAD) for breast cancer. A newly proposed l2,1 regularized correntropy algorithm for robust feature selection (CRFS) has achieved good performance for noise corrupted data. Therefore, it has the potential to reduce the dimensions of ultrasound image features. However, in clinical practice, the collection of labeled instances is usually expensive and time costing, while it is relatively easy to acquire the unlabeled or undetermined instances. Therefore, the semi-supervised learning is very suitable for clinical CAD. The iterated Laplacian regularization (Iter-LR) is a new regularization method, which has been proved to outperform the traditional graph Laplacian regularization in semi-supervised classification and ranking. In this study, to augment the classification accuracy of the breast ultrasound CAD based on texture feature, we propose an Iter-LR-based semi-supervised CRFS (Iter-LR-CRFS) algorithm, and then apply it to reduce the feature dimensions of ultrasound images for breast CAD. We compared the Iter-LR-CRFS with LR-CRFS, original supervised CRFS, and principal component analysis. The experimental results indicate that the proposed Iter-LR-CRFS significantly outperforms all other algorithms.

  14. Automated 3D whole-breast ultrasound imaging: results of a clinical pilot study

    NASA Astrophysics Data System (ADS)

    Leproux, Anaïs; van Beek, Michiel; de Vries, Ute; Wasser, Martin; Bakker, Leon; Cuisenaire, Olivier; van der Mark, Martin; Entrekin, Rob

    2010-03-01

    We present the first clinical results of a novel fully automated 3D breast ultrasound system. This system was designed to match a Philips diffuse optical mammography system to enable straightforward coregistration of optical and ultrasound images. During a measurement, three 3D transducers scan the breast at 4 different views. The resulting 12 datasets are registered together into a single volume using spatial compounding. In a pilot study, benign and malignant masses could be identified in the 3D images, however lesion visibility is less compared to conventional breast ultrasound. Clear breast shape visualization suggests that ultrasound could support the reconstruction and interpretation of diffuse optical tomography images.

  15. Data acquisition system to interface between imaging instruments and the network: Applications in electron microscopy and ultrasound

    NASA Astrophysics Data System (ADS)

    Kapp, Oscar H.; Ruan, Shengyang

    1997-09-01

    A system for data acquisition for imaging instruments utilizing a computer network was created. Two versions of this system, both with the same basic design, were separately installed in conjunction with an electron microscope and a clinical ultrasound device. They serve the functions of data acquisition and data server to manage and to transfer images from these instruments. The virtues of this system are its simplicity of design, universality, cost effectiveness, ease of management, security for data, and instrument protection. This system, with little or no modification, may be used in conjunction with a broad range of data acquiring instruments in scientific, industrial, and medical laboratories.

  16. High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes

    PubMed Central

    Weed, Scott A.

    2015-01-01

    High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease. PMID:26274059

  17. Intraoperative ultrasound to stereocamera registration using interventional photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Su, Steven; Kim, Robert; Kuo, Nathanael; Taylor, Russell H.; Kang, Jin U.; Boctor, Emad M.

    2012-02-01

    There are approximately 6000 hospitals in the United States, of which approximately 5400 employ minimally invasive surgical robots for a variety of procedures. Furthermore, 95% of these robots require extensive registration before they can be fitted into the operating room. These "registrations" are performed by surgical navigation systems, which allow the surgical tools, the robot and the surgeon to be synchronized together-hence operating in concert. The most common surgical navigation modalities include: electromagnetic (EM) tracking and optical tracking. Currently, these navigation systems are large, intrusive, come with a steep learning curve, require sacrifices on the part of the attending medical staff, and are quite expensive (since they require several components). Recently, photoacoustic (PA) imaging has become a practical and promising new medical imaging technology. PA imaging only requires the minimal equipment standard with most modern ultrasound (US) imaging systems as well as a common laser source. In this paper, we demonstrate that given a PA imaging system, as well as a stereocamera (SC), the registration between the US image of a particular anatomy and the SC image of the same anatomy can be obtained with reliable accuracy. In our experiments, we collected data for N = 80 trials of sample 3D US and SC coordinates. We then computed the registration between the SC and the US coordinates. Upon validation, the mean error and standard deviation between the predicted sample coordinates and the corresponding ground truth coordinates were found to be 3.33 mm and 2.20 mm respectively.

  18. Photoacoustic and ultrasound dual-modality imaging for inflammatory arthritis

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Chamberland, David; Girish, Gandikota; Wang, Xueding

    2014-03-01

    Arthritis is a leading cause of disability, affecting 46 million of the population in the U.S. Rendering new optical contrast in articular tissues at high spatial and temporal resolution, emerging photoacoustic imaging (PAI) combined with more established ultrasound (US) imaging technologies provides unique opportunities for diagnosis and treatment monitoring of inflammatory arthritis. In addition to capturing peripheral bone and soft tissue images, PAI has the capability to quantify hemodynamic properties including regional blood oxygenation and blood volume, both abnormal in synovial tissues affected by arthritis. Therefore, PAI, especially when performed together with US, should be of considerable help for further understanding the pathophysiology of arthritis as well as assisting in therapeutic decisions, including assessing the efficacy of new pharmacological therapies. In this paper, we will review our recent work on the development of PAI for application to the diagnostic imaging and therapeutic monitoring of inflammatory arthritis. We will present the imaging results from a home-built imaging system and another one based on a commercial US. The performance of PAI in evaluating pharmacological therapy on animal model of arthritis will be shown. Moreover, our resent work on PAI and US dual-modality imaging of human peripheral joints in vivo will also be presented.

  19. High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes.

    PubMed

    Walk, Elyse L; McLaughlin, Sarah L; Weed, Scott A

    2015-01-01

    High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease. PMID:26274059

  20. Feasibility of ultrasound imaging of osteochondral defects in the ankle: a clinical pilot study.

    PubMed

    Kok, A C; Terra, M P; Muller, S; Askeland, C; van Dijk, C N; Kerkhoffs, G M M J; Tuijthof, G J M

    2014-10-01

    Talar osteochondral defects (OCDs) are imaged using magnetic resonance imaging (MRI) or computed tomography (CT). For extensive follow-up, ultrasound might be a fast, non-invasive alternative that images both bone and cartilage. In this study the potential of ultrasound, as compared with CT, in the imaging and grading of OCDs is explored. On the basis of prior CT scans, nine ankles of patients without OCDs and nine ankles of patients with anterocentral OCDs were selected and classified using the Loomer CT classification. A blinded expert skeletal radiologist imaged all ankles with ultrasound and recorded the presence of OCDs. Similarly to CT, ultrasound revealed typical morphologic OCD features, for example, cortex irregularities and loose fragments. Cartilage disruptions, Loomer grades IV (displaced fragment) and V (cyst with fibrous roof), were visible as well. This study encourages further research on the use of ultrasound as a follow-up imaging modality for OCDs located anteriorly or centrally on the talar dome.

  1. I Vivo Quantitative Ultrasound Imaging and Scatter Assessments.

    NASA Astrophysics Data System (ADS)

    Lu, Zheng Feng

    There is evidence that "instrument independent" measurements of ultrasonic scattering properties would provide useful diagnostic information that is not available with conventional ultrasound imaging. This dissertation is a continuing effort to test the above hypothesis and to incorporate quantitative ultrasound methods into clinical examinations for early detection of diffuse liver disease. A well-established reference phantom method was employed to construct quantitative ultrasound images of tissue in vivo. The method was verified by extensive phantom tests. A new method was developed to measure the effective attenuation coefficient of the body wall. The method relates the slope of the difference between the echo signal power spectrum from a uniform region distal to the body wall and the echo signal power spectrum from a reference phantom to the body wall attenuation. The accuracy obtained from phantom tests suggests further studies with animal experiments. Clinically, thirty-five healthy subjects and sixteen patients with diffuse liver disease were studied by these quantitative ultrasound methods. The average attenuation coefficient in normals agreed with previous investigators' results; in vivo backscatter coefficients agreed with the results from normals measured by O'Donnell. Strong discriminating power (p < 0.001) was found for both attenuation and backscatter coefficients between fatty livers and normals; a significant difference (p < 0.01) was observed in the backscatter coefficient but not in the attenuation coefficient between cirrhotic livers and normals. An in vivo animal model of steroid hepatopathy was used to investigate the system sensitivity in detecting early changes in canine liver resulting from corticosteroid administration. The average attenuation coefficient slope increased from 0.7 dB/cm/MHz in controls to 0.82 dB/cm/MHz (at 6 MHz) in treated animals on day 14 into the treatment, and the backscatter coefficient was 26times 10^{ -4}cm^{-1}sr

  2. Volumetric breast density evaluation from ultrasound tomography images

    SciTech Connect

    Glide-Hurst, Carri K.; Duric, Neb; Littrup, Peter

    2008-09-15

    Previous ultrasound tomography work conducted by our group showed a direct correlation between measured sound speed and physical density in vitro, and increased in vivo sound speed with increasing mammographic density, a known risk factor for breast cancer. Building on these empirical results, the purpose of this work was to explore a metric to quantify breast density using our ultrasound tomography sound speed images in a manner analogous to computer-assisted mammogram segmentation for breast density analysis. Therefore, volumetric ultrasound percent density (USPD) is determined by segmenting high sound speed areas from each tomogram using a k-means clustering routine, integrating these results over the entire volume of the breast, and dividing by whole-breast volume. First, a breast phantom comprised of fat inclusions embedded in fibroglandular tissue was scanned four times with both our ultrasound tomography clinical prototype (with 4 mm spatial resolution) and CT. The coronal transmission tomograms and CT images were analyzed using semiautomatic segmentation routines, and the integrated areas of the phantom's fat inclusions were compared between the four repeated scans. The average variability for inclusion segmentation was {approx}7% and {approx}2%, respectively, and a close correlation was observed in the integrated areas between the two modalities. Next, a cohort of 93 patients was imaged, yielding volumetric coverage of the breast (45-75 sound speed tomograms/patient). The association of USPD with mammographic percent density (MPD) was evaluated using two measures: (1) qualitative, as determined by a radiologist's visual assessment using BI-RADS Criteria and (2) quantitative, via digitization and semiautomatic segmentation of craniocaudal and mediolateral oblique mammograms. A strong positive association between BI-RADS category and USPD was demonstrated [Spearman {rho}=0.69 (p<0.001)], with significant differences between all BI-RADS categories as assessed

  3. Spatial and frequency-based super-resolution of ultrasound images.

    PubMed

    Wu, Mon-Ju; Karls, Joseph; Duenwald-Kuehl, Sarah; Vanderby, Ray; Sethares, William

    2014-07-01

    Modern ultrasound systems can output video images containing more spatial and temporal information than still images. Super-resolution techniques can exploit additional information but face two challenges: image registration and complex motion. In addition, information from multiple available frequencies is unexploited. Herein, we utilised these information sources to create better ultrasound images and videos, extending existing technologies for image capture. Spatial and frequency-based super-resolution processing using multiple motion estimation and frequency combination was applied to ultrasound videos of deforming models. Processed images are larger, have greater clarity and detail, and less variability in intensity between frames. Significantly, strain measurements are more accurate and precise than those from raw videos, and have a higher contrast ratio between 'tumour' and 'surrounding tissue' in a phantom model. We attribute improvements to reduced noise and increased resolution in processed images. Our methods can significantly improve quantitative and qualitative assessments of ultrasound images when compared assessments of standard images.

  4. Characterization of various tissue mimicking materials for medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Thouvenot, Audrey; Poepping, Tamie; Peters, Terry M.; Chen, Elvis C. S.

    2016-04-01

    Tissue mimicking materials are physical constructs exhibiting certain desired properties, which are used in machine calibration, medical imaging research, surgical planning, training, and simulation. For medical ultrasound, those specific properties include acoustic propagation speed and attenuation coefficient over the diagnostic frequency range. We investigated the acoustic characteristics of polyvinyl chloride (PVC) plastisol, polydimethylsiloxane (PDMS), and isopropanol using a time-of-light technique, where a pulse was passed through a sample of known thickness contained in a water bath. The propagation speed in PVC is approximately 1400ms-1 depending on the exact chemical composition, with the attenuation coefficient ranging from 0:35 dB cm-1 at 1MHz to 10:57 dB cm-1 at 9 MHz. The propagation speed in PDMS is in the range of 1100ms-1, with an attenuation coefficient of 1:28 dB cm-1 at 1MHz to 21:22 dB cm-1 at 9 MHz. At room temperature (22 °C), a mixture of water-isopropanol (7:25% isopropanol by volume) exhibits a propagation speed of 1540ms-1, making it an excellent and inexpensive tissue-mimicking liquid for medical ultrasound imaging.

  5. [Diagnosis. Radiological study. Ultrasound, computed tomography and magnetic resonance imaging].

    PubMed

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Because of its low cost, availability in primary care and ease of interpretation, simple X-ray should be the first-line imaging technique used by family physicians for the diagnosis and/or follow-up of patients with osteoarthritis. Nevertheless, this technique should only be used if there are sound indications and if the results will influence decision-making. Despite the increase of indications in patients with rheumatological disease, the role of ultrasound in patients with osteoarthritis continues to be limited. Computed tomography (CT) is of some -although limited- use in osteoarthritis, especially in the study of complex joints (such as the sacroiliac joint and facet joints). Magnetic resonance imaging (MRI) has represented a major advance in the evaluation of joint cartilage and subchondral bone in patients with osteoarthritis but, because of its high cost and diagnostic-prognostic yield, this technique should only be used in highly selected patients. The indications for ultrasound, CT and MRI in patients with osteoarthritis continue to be limited in primary care and often coincide with situations in which the patient may require hospital referral. Patient safety should be bourne in mind. Patients should be protected from excessive ionizing radiation due to unnecessary repeat X-rays or inadequate views or to requests for tests such as CT, when not indicated.

  6. Diagnostic ultrasound tooth imaging using fractional Fourier transform.

    PubMed

    Harput, Sevan; Evans, Tony; Bubb, Nigel; Freear, Steven

    2011-10-01

    An ultrasound contact imaging method is proposed to measure the enamel thickness in the human tooth. A delay-line transducer with a working frequency of 15 MHz is chosen to achieve a minimum resolvable distance of 400 μm in human enamel. To confirm the contact between the tooth and the transducer, a verification technique based on the phase shift upon reflection is used. Because of the high attenuation in human teeth, linear frequency-modulated chirp excitation and pulse compression are exploited to increase the penetration depth and improve the SNR. Preliminary measurements show that the enamel-dentin boundary creates numerous internal reflections, which cause the applied chirp signals to interfere arbitrarily. In this work, the fractional Fourier transform (FrFT) is employed for the first time in dental imaging to separate chirp signals overlapping in both time and frequency domains. The overlapped chirps are compressed using the FrFT and matched filter techniques. Micro-computed tomography is used for validation of the ultrasound measurements for both techniques. For a human molar, the thickness of the enamel layer is measured with an average error of 5.5% after compressing with the FrFT and 13.4% after compressing with the matched filter based on the average speed of sound in human teeth.

  7. Robust shape tracking with multiple models in ultrasound images.

    PubMed

    Nascimento, Jacinto C; Marques, Jorge S

    2008-03-01

    This paper addresses object tracking in ultrasound images using a robust multiple model tracker. The proposed tracker has the following features: 1) it uses multiple dynamic models to track the evolution of the object boundary, and 2) it models invalid observations (outliers), reducing their influence on the shape estimates. The problem considered in this paper is the tracking of the left ventricle which is known to be a challenging problem. The heart motion presents two phases (diastole and systole) with different dynamics, the multiple models used in this tracker try to solve this difficulty. In addition, ultrasound images are corrupted by strong multiplicative noise which prevents the use of standard deformable models. Robust estimation techniques are used to address this difficulty. The multiple model data association (MMDA) tracker proposed in this paper is based on a bank of nonlinear filters, organized in a tree structure. The algorithm determines which model is active at each instant of time and updates its state by propagating the probability distribution, using robust estimation techniques.

  8. A comparative study in ultrasound breast imaging classification

    NASA Astrophysics Data System (ADS)

    Yap, Moi Hoon; Edirisinghe, Eran A.; Bez, Helmut E.

    2009-02-01

    American College of Radiology introduces a standard in classification, the breast imaging reporting and data system (BIRADS), standardize the reporting of ultrasound findings, clarify its interpretation, and facilitate communication between clinicians. The effective use of new technologies to support healthcare initiatives is important and current research is moving towards implementing computer tools in the diagnostics process. Initially a detailed study was carried out to evaluate the performance of two commonly used appearance based classification algorithms, based on the use of Principal Component Analysis (PCA), and two dimensional linear discriminant analysis (2D-LDA). The study showed that these two appearance based classification approaches are not capable of handling the classification of ultrasound breast image lesions. Therefore further investigations in the use of a popular feature based classifier - Support Vector Machine (SVM) was conducted. A pre-processing step before feature based classification is feature extraction, which involve shape, texture and edge descriptors for the Region of Interest (ROI). The input dataset to SVM classification is from a fully automated ROI detection. We achieve the success rate of 0.550 in PCA, 0.500 in LDA, and 0.931 in SVM. The best combination of features in SVM classification is to combine the shape, texture and edge descriptors, with sensitivity 0.840 and specificity 0.968. This paper briefly reviews the background to the project and then details the ongoing research. In conclusion, we discuss the contributions, limitations, and future plans of our work.

  9. Three-dimensional laser optoacoustic and laser ultrasound imaging system for biomedical research

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Su, Richard; Conjusteau, Andre; Oruganti, Tanmayi; Wang, Kun; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.

    2015-03-01

    In this work, we introduce an improved prototype of the imaging system that combines three-dimensional optoacoustic tomography (3D-OAT) and laser ultrasound tomography slicer (2D-LUT) to obtain coregistered maps of tissue optical absorption and speed of sound (SOS). The imaging scan is performed by a 360 degree rotation of a phantom/mouse with respect to a static arc-shaped array of ultrasonic transducers. A Q-switched laser system is used to establish optoacoustic illumination pattern appropriate for deep tissue imaging with a tunable (730-840 nm) output wavelengths operated at 10 Hz pulse repetition rate. For the LUT slicer scans, the array is pivoted by 90 degrees with respect to the central transducers providing accurate registration of optoacoustic and SOS maps, the latter being reconstructed using waveform inversion with source encoding (WISE) technique. The coregistered OAT-LUT modality is validated by imaging a phantom and a live mouse. SOS maps acquired in the imaging system can be employed by an iterative optoacoustic reconstruction algorithm capable of compensating for acoustic wavefield aberrations. The most promising applications of the imaging system include 3D angiography, cancer research, and longitudinal studies of biological distributions of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, fluorophores, etc.).

  10. Prostate Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  11. Ultrasound -- Pelvis

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  12. Hip Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  13. Ultrasound -- Vascular

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  14. Musculoskeletal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  15. Ultrasound - Scrotum

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  16. Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study.

    PubMed

    Mari, Jean Martial; Xia, Wenfeng; West, Simeon J; Desjardins, Adrien E

    2015-11-01

    Accurate and efficient identification of nerves is an essential component of peripheral nerve blocks. While ultrasound (US) imaging is increasingly used as a guidance modality, it often provides insufficient contrast for identifying nerves from surrounding tissues such as tendons. Electrical nerve stimulators can be used in conjunction with US imaging for discriminating nerves from surrounding tissues, but they are insufficient to reliably prevent neural punctures, so that alternative methods are highly desirable. In this study, an interventional multispectral photoacoustic (PA) imaging system was used to directly compare the signal amplitudes and spectra acquired from nerves and tendons ex vivo, for the first time. The results indicate that the system can provide significantly higher image contrast for discriminating nerves and tendons than that provided by US imaging. As such, photoacoustic imaging could be valuable as an adjunct to US for guiding peripheral nerve blocks. PMID:26580699

  17. Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; Xia, Wenfeng; West, Simeon J.; Desjardins, Adrien E.

    2015-11-01

    Accurate and efficient identification of nerves is an essential component of peripheral nerve blocks. While ultrasound (US) imaging is increasingly used as a guidance modality, it often provides insufficient contrast for identifying nerves from surrounding tissues such as tendons. Electrical nerve stimulators can be used in conjunction with US imaging for discriminating nerves from surrounding tissues, but they are insufficient to reliably prevent neural punctures, so that alternative methods are highly desirable. In this study, an interventional multispectral photoacoustic (PA) imaging system was used to directly compare the signal amplitudes and spectra acquired from nerves and tendons ex vivo, for the first time. The results indicate that the system can provide significantly higher image contrast for discriminating nerves and tendons than that provided by US imaging. As such, photoacoustic imaging could be valuable as an adjunct to US for guiding peripheral nerve blocks.

  18. Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study.

    PubMed

    Mari, Jean Martial; Xia, Wenfeng; West, Simeon J; Desjardins, Adrien E

    2015-11-01

    Accurate and efficient identification of nerves is an essential component of peripheral nerve blocks. While ultrasound (US) imaging is increasingly used as a guidance modality, it often provides insufficient contrast for identifying nerves from surrounding tissues such as tendons. Electrical nerve stimulators can be used in conjunction with US imaging for discriminating nerves from surrounding tissues, but they are insufficient to reliably prevent neural punctures, so that alternative methods are highly desirable. In this study, an interventional multispectral photoacoustic (PA) imaging system was used to directly compare the signal amplitudes and spectra acquired from nerves and tendons ex vivo, for the first time. The results indicate that the system can provide significantly higher image contrast for discriminating nerves and tendons than that provided by US imaging. As such, photoacoustic imaging could be valuable as an adjunct to US for guiding peripheral nerve blocks.

  19. Watermarking of ultrasound medical images in teleradiology using compressed watermark.

    PubMed

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq

    2016-01-01

    The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel's least significant bits (LSBs). The watermark lossless compression and embedding at pixel's LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes.

  20. Watermarking of ultrasound medical images in teleradiology using compressed watermark.

    PubMed

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq

    2016-01-01

    The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel's least significant bits (LSBs). The watermark lossless compression and embedding at pixel's LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes. PMID:26839914

  1. Multifunctional Catheters Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Nikoozadeh, Amin; Oralkan, Omer; Khuri-Yakub, Pierre T.; Sahn, David J.

    2015-01-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters’ ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools. PMID:18986948

  2. Automatic finger joint synovitis localization in ultrasound images

    NASA Astrophysics Data System (ADS)

    Nurzynska, Karolina; Smolka, Bogdan

    2016-04-01

    A long-lasting inflammation of joints results between others in many arthritis diseases. When not cured, it may influence other organs and general patients' health. Therefore, early detection and running proper medical treatment are of big value. The patients' organs are scanned with high frequency acoustic waves, which enable visualization of interior body structures through an ultrasound sonography (USG) image. However, the procedure is standardized, different projections result in a variety of possible data, which should be analyzed in short period of time by a physician, who is using medical atlases as a guidance. This work introduces an efficient framework based on statistical approach to the finger joint USG image, which enables automatic localization of skin and bone regions, which are then used for localization of the finger joint synovitis area. The processing pipeline realizes the task in real-time and proves high accuracy when compared to annotation prepared by the expert.

  3. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    PubMed

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  4. Real-time monitoring of high intensity focused ultrasound (HIFU) ablation of in vitro canine livers using Harmonic Motion Imaging for Focused Ultrasound (HMIFU)

    PubMed Central

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93—element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging. PMID:26556647

  5. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    PubMed

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging. PMID:26556647

  6. Classification of Images Acquired with Colposcopy Using Artificial Neural Networks

    PubMed Central

    Simões, Priscyla W; Izumi, Narjara B; Casagrande, Ramon S; Venson, Ramon; Veronezi, Carlos D; Moretti, Gustavo P; da Rocha, Edroaldo L; Cechinel, Cristian; Ceretta, Luciane B; Comunello, Eros; Martins, Paulo J; Casagrande, Rogério A; Snoeyer, Maria L; Manenti, Sandra A

    2014-01-01

    OBJECTIVE To explore the advantages of using artificial neural networks (ANNs) to recognize patterns in colposcopy to classify images in colposcopy. PURPOSE Transversal, descriptive, and analytical study of a quantitative approach with an emphasis on diagnosis. The training test e validation set was composed of images collected from patients who underwent colposcopy. These images were provided by a gynecology clinic located in the city of Criciúma (Brazil). The image database (n = 170) was divided; 48 images were used for the training process, 58 images were used for the tests, and 64 images were used for the validation. A hybrid neural network based on Kohonen self-organizing maps and multilayer perceptron (MLP) networks was used. RESULTS After 126 cycles, the validation was performed. The best results reached an accuracy of 72.15%, a sensibility of 69.78%, and a specificity of 68%. CONCLUSION Although the preliminary results still exhibit an average efficiency, the present approach is an innovative and promising technique that should be deeply explored in the context of the present study. PMID:25374454

  7. Methods for identification of images acquired with digital cameras

    NASA Astrophysics Data System (ADS)

    Geradts, Zeno J.; Bijhold, Jurrien; Kieft, Martijn; Kurosawa, Kenji; Kuroki, Kenro; Saitoh, Naoki

    2001-02-01

    From the court we were asked whether it is possible to determine if an image has been made with a specific digital camera. This question has to be answered in child pornography cases, where evidence is needed that a certain picture has been made with a specific camera. We have looked into different methods of examining the cameras to determine if a specific image has been made with a camera: defects in CCDs, file formats that are used, noise introduced by the pixel arrays and watermarking in images used by the camera manufacturer.

  8. Ultrasound Volume Projection Imaging for Assessment of Scoliosis.

    PubMed

    Cheung, Chung-Wai James; Zhou, Guang-Quan; Law, Siu-Yin; Mak, Tak-Man; Lai, Ka-Lee; Zheng, Yong-Ping

    2015-08-01

    The standing radiograph is used as a gold standard to diagnose spinal deformity including scoliosis, a medical condition defined as lateral spine curvature > 10°. However, the health concern of X-ray and large inter-observer variation of measurements on X-ray images have significantly restricted its application, particularly for scoliosis screening and close follow-up for adolescent patients. In this study, a radiation-free freehand 3-D ultrasound system was developed for scoliosis assessment using a volume projection imaging method. Based on the obtained coronal view images, two measurement methods were proposed using transverse process and spinous profile as landmarks, respectively. As a reliability study, 36 subjects (age: 30.1 ±14.5; male: 12; female: 24) with different degrees of scoliosis were scanned using the system to test the inter- and intra-observer repeatability. The intra- and inter-observer tests indicated that the new assessment methods were repeatable, with ICC larger than 0.92. Small intra- and inter-observer variations of measuring spine curvature were observed for the two measurement methods (intra-: 1.4 ±1.0° and 1.4 ±1.1°; inter-: 2.2 ±1.6° and 2.5 ±1.6°). The results also showed that the spinal curvature obtained by the new method had good linear correlations with X-ray Cobb's method (R2 = 0.8, p < 0.001, 29 subjects). These results suggested that the ultrasound volume projection imaging method can be a promising approach for the assessment of scoliosis, and further research should be followed up to demonstrate its potential clinical applications for mass screening and curve progression and treatment outcome monitoring of scoliosis patients.

  9. Investigating the Effectiveness of Wavelet Approximations in Resizing Images for Ultrasound Image Classification.

    PubMed

    Manzoor, Umar; Nefti, Samia; Ferdinando, Milella

    2016-10-01

    Images are difficult to classify and annotate but the availability of digital image databases creates a constant demand for tools that automatically analyze image content and describe it with either a category or a set of variables. Ultrasound Imaging is very popular and is widely used to see the internal organ(s) condition of the patient. The main target of this research is to develop a robust image processing techniques for a better and more accurate medical image retrieval and categorization. This paper looks at an alternative to feature extraction for image classification such as image resizing technique. A new mean for image resizing using wavelet transform is proposed. Results, using real medical images, have shown the effectiveness of the proposed technique for classification task comparing to bi-cubic interpolation and feature extraction.

  10. Investigating the Effectiveness of Wavelet Approximations in Resizing Images for Ultrasound Image Classification.

    PubMed

    Manzoor, Umar; Nefti, Samia; Ferdinando, Milella

    2016-10-01

    Images are difficult to classify and annotate but the availability of digital image databases creates a constant demand for tools that automatically analyze image content and describe it with either a category or a set of variables. Ultrasound Imaging is very popular and is widely used to see the internal organ(s) condition of the patient. The main target of this research is to develop a robust image processing techniques for a better and more accurate medical image retrieval and categorization. This paper looks at an alternative to feature extraction for image classification such as image resizing technique. A new mean for image resizing using wavelet transform is proposed. Results, using real medical images, have shown the effectiveness of the proposed technique for classification task comparing to bi-cubic interpolation and feature extraction. PMID:27586590

  11. VHF-induced thermoacoustic imaging of fresh human prostates using a clinical ultrasound transducer array

    NASA Astrophysics Data System (ADS)

    Patch, S. K.; See, W. A.

    2016-03-01

    The purpose of this work was to demonstrate that a clinical ultrasound transducer array can practically detect thermoacoustic pulses induced by irradiation by very high frequency (VHF) electromagnetic energy. This is an important step because thermoacoustic signal strength is directly proportional to the specific absorption rate (SAR), which is lower in the VHF regime than in microwave or optical regimes. A 96-channel transducer array (P4-1) providing 3 cm coverage was incorporated into a benchtop thermoacoustic imaging system for imaging fresh surgical specimens. Thermoacoustic signal was generated by 700 ns irradiation pulses with 11 kV/m electric field strength and 108 MHz carrier frequency. To improve SNR 1024 pulses were averaged at a 250 Hz repetition rate. Two sets of sinograms were acquired, separated by a 2 cm translation along the tomographic axis and reconstructed over a 6 x 6 x 5 cm3 volume. Contrast and in-plane resolution were measured by imaging a homogeneous cylindrical phantom and an 80- micron wire designed to highlight E-field polarization effects. FWHM of the in-plane point spread function varied from 250 microns to 1.1 mm, depending upon transducer used and phantom orientation relative to the electric field. Several fresh human prostates were imaged immediately after surgery. Rudimentary comparison to histology was performed and volumetric reconstruction of the multi-channel P4-1 data visualizes anatomic features that are rarely seen in ultrasound, CT, or MRI. The single element transducer provided superior image contrast, but with inferior resolution.

  12. Dual-element needle transducer for intravascular ultrasound imaging

    PubMed Central

    Yoon, Sangpil; Kim, Min Gon; Williams, Jay A.; Yoon, Changhan; Kang, Bong Jin; Cabrera-Munoz, Nestor; Shung, K. Kirk; Kim, Hyung Ham

    2015-01-01

    Abstract. A dual-element needle transducer for intravascular ultrasound imaging has been developed. A low-frequency element and a high-frequency element were integrated into one device to obtain images which conveyed both low- and high-frequency information from a single scan. The low-frequency element with a center frequency of 48 MHz was fabricated from the single crystal form of lead magnesium niobate-lead titanate solid solution with two matching layers (MLs) and the high frequency element with a center frequency of 152 MHz was fabricated from lithium niobate with one ML. The measured axial and lateral resolutions were 27 and 122  μm, respectively, for the low-frequency element, and 14 and 40  μm, respectively, for the high-frequency element. The performance of the dual-element needle transducer was validated by imaging a tissue-mimicking phantom with lesion-mimicking area, and ex vivo rabbit aortas in water and rabbit whole blood. The results suggest that a low-frequency element effectively provides depth resolved images of the whole vessel and its adjacent tissue, and a high-frequency element visualizes detailed structure near the surface of the lumen wall in the presence of blood within the lumen. The advantages of a dual-element approach for intravascular imaging are also discussed. PMID:26158118

  13. Surveillance of hemodialysis vascular access with ultrasound vector flow imaging

    NASA Astrophysics Data System (ADS)

    Brandt, Andreas H.; Olesen, Jacob B.; Hansen, Kristoffer L.; Rix, Marianne; Jensen, Jørgen A.; Nielsen, Michael B.

    2015-03-01

    The aim of this study was prospectively to monitor the volume flow in patients with arteriovenous fistula (AVF) with the angle independent ultrasound technique Vector Flow Imaging (VFI). Volume flow values were compared with Ultrasound dilution technique (UDT). Hemodialysis patients need a well-functioning vascular access with as few complications as possible and preferred vascular access is an AVF. Dysfunction due to stenosis is a common complication, and regular monitoring of volume flow is recommended to preserve AVF patency. UDT is considered the gold standard for volume flow surveillance, but VFI has proven to be more precise, when performing single repeated instantaneous measurements. Three patients with AVF were monitored with UDT and VFI monthly for five months. A commercial ultrasound scanner with a 9 MHz linear array transducer with integrated VFI was used to obtain data. UDT values were obtained with Transonic HD03 Flow-QC Hemodialysis Monitor. Three independent measurements at each scan session were obtained with UDT and VFI each month. Average deviation of volume flow between UDT and VFI was 25.7 % (Cl: 16.7% to 34.7%) (p= 0.73). The standard deviation for all patients, calculated from the mean variance of each individual scan sessions, was 199.8 ml/min for UDT and 47.6 ml/min for VFI (p = 0.002). VFI volume flow values were not significantly different from the corresponding estimates obtained using UDT, and VFI measurements were more precise than UDT. The study indicates that VFI can be used for surveillance of volume flow.

  14. Characterization and differentiation of two mammary tumors using parametric imaging with ultrasound

    NASA Astrophysics Data System (ADS)

    Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2003-10-01

    Two kinds of solid tumors were acquired and scanned in vivo ultrasonically. The first tumor series (fibroadenoma) was acquired from tumors that developed spontaneously in rats. The second tumor series was acquired by culturing a carcinoma cell line (4T1-MMT) and injecting the cells into Balb/c mice. The scatterer properties (average scatterer diameter and acoustic concentration) were estimated using a Gaussian form factor from the backscattered ultrasound measured from both kinds of tumors. Parametric images of tumors were constructed utilizing estimated scatterer properties for regions of interest inside the tumors and surrounding normal tissues. The average scatterer diameter and acoustic concentration for the fibroadenomas were estimated at 107+/-14 micrometers and 15.2+/-5 dB (mm-3), respectively. The average scatterer diameter and acoustic concentration for the carcinomas was estimated at 30+/-4.6 micrometers and 10.3+/-6.9 dB (mm-3), respectively. A comparison with light microscopic evaluations of the fibroadenomas showed cellular structures around 100 micrometers in size, and carcinomas showed cell nuclei with an average size of 12.5 micrometers in diameter (the total cellular size ranging from 50% to 200% larger than the nucleus size). [Work supported by NIH F32 CA96419 to MLO and by the University of Illinois Research Board.

  15. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  16. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system.

    PubMed

    Monfaredi, Reza; Wilson, Emmanuel; Azizi Koutenaei, Bamshad; Labrecque, Brendan; Leroy, Kristen; Goldie, James; Louis, Eric; Swerdlow, Daniel; Cleary, Kevin

    2015-02-01

    Ultrasound imaging is frequently used in medicine. The quality of ultrasound images is often dependent on the skill of the sonographer. Several researchers have proposed robotic systems to aid in ultrasound image acquisition. In this paper we first provide a short overview of robot-assisted ultrasound imaging (US). We categorize robot-assisted US imaging systems into three approaches: autonomous US imaging, teleoperated US imaging, and human-robot cooperation. For each approach several systems are introduced and briefly discussed. We then describe a compact six degree of freedom parallel mechanism telerobotic system for ultrasound imaging developed by our research team. The long-term goal of this work is to enable remote ultrasound scanning through teleoperation. This parallel mechanism allows for both translation and rotation of an ultrasound probe mounted on the top plate along with force control. Our experimental results confirmed good mechanical system performance with a positioning error of < 1 mm. Phantom experiments by a radiologist showed promising results with good image quality.

  17. Synergistic image reconstruction for hybrid ultrasound and photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas P.; Wang, Kun; Wang, Lihong V.; Anastasio, Mark A.

    2015-03-01

    Conventional photoacoustic computed tomography (PACT) image reconstruction methods assume that the object and surrounding medium are described by a constant speed-of-sound (SOS) value. In order to accurately recover fine structures, SOS heterogeneities should be quantified and compensated for during PACT reconstruction. To address this problem, several groups have proposed hybrid systems that combine PACT with ultrasound computed tomography (USCT). In such systems, a SOS map is reconstructed first via USCT. Consequently, this SOS map is employed to inform the PACT reconstruction method. Additionally, the SOS map can provide structural information regarding tissue, which is complementary to the functional information from the PACT image. We propose a paradigm shift in the way that images are reconstructed in hybrid PACT-USCT imaging. Inspired by our observation that information about the SOS distribution is encoded in PACT measurements, we propose to jointly reconstruct the absorbed optical energy density and SOS distributions from a combined set of USCT and PACT measurements, thereby reducing the two reconstruction problems into one. This innovative approach has several advantages over conventional approaches in which PACT and USCT images are reconstructed independently: (1) Variations in the SOS will automatically be accounted for, optimizing PACT image quality; (2) The reconstructed PACT and USCT images will possess minimal systematic artifacts because errors in the imaging models will be optimally balanced during the joint reconstruction; (3) Due to the exploitation of information regarding the SOS distribution in the full-view PACT data, our approach will permit high-resolution reconstruction of the SOS distribution from sparse array data.

  18. Advantages of percutaneous abdominal biopsy under PET-CT/ultrasound fusion imaging guidance: a pictorial essay.

    PubMed

    Paparo, Francesco; Piccazzo, Riccardo; Cevasco, Luca; Piccardo, Arnoldo; Pinna, Francesco; Belli, Fiorenza; Bacigalupo, Lorenzo; Biscaldi, Ennio; De Caro, Giovanni; Rollandi, Gian Andrea

    2014-10-01

    Positron emission tomography (PET) is a functional imaging technique that can investigate the metabolic characteristics of tissues. Currently, PET images are acquired and co-registered with a computed tomography (CT) scan (PET-CT), which is employed for correction of attenuation and anatomical localization. In spite of the high negative predictive value of PET, false-positive results may occur; indeed, Fluorine 18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) uptake is not specific to cancer. As (18)F-FDG uptake may also be seen in non-malignant infectious or inflammatory processes, FDG-avid lesions may necessitate biopsy to confirm or rule out malignancy. However, some PET-positive lesions may have little or no correlative ultrasound (US) and/or CT findings (i.e., low conspicuity on morphological imaging). Since it is not possible to perform biopsy under PET guidance alone, owing to intrinsic technical limitations, PET information has to be integrated into a CT- or US-guided biopsy procedure (multimodal US/PET-CT fusion imaging). The purpose of this pictorial essay is to describe the technique of multimodal imaging fusion between real-time US and PET/CT, and to provide an overview of the clinical settings in which this multimodal integration may be useful in guiding biopsy procedures in PET-positive abdominal lesions.

  19. A high-resolution technique for ultrasound harmonic imaging using sparse representations in Gabor frames.

    PubMed

    Michailovich, Oleg; Adam, Dan

    2002-12-01

    Over the last few decades there were dramatic improvements in ultrasound imaging quality with the utilization of harmonic frequencies induced by both tissue and echo-contrast agents. The advantages of harmonic imaging cause rapid penetration of this modality to diverse clinical uses, among which myocardial perfusion determination seems to be the most important application. In order to effectively employ the information, comprised in the higher harmonics of the received signals, this information should be properly extracted. A commonly used method of harmonics separation is linear filtering. One of its main shortcomings is the inverse relationship between the detectability of the contrast agent and the axial resolution. In this paper, a novel, nonlinear technique is proposed for separating the harmonic components, contained in the received radio-frequency images. It is demonstrated that the harmonic separation can be efficiently performed by means of convex optimization. It performs the separation without affecting the image resolution. The procedure is based on the concepts of sparse signal representation in overcomplete signal bases. A special type of the sparse signal representation, that is especially suitable for the problem at hand, is explicitly described. The ability of the novel technique to acquire "un-masked," second (or higher) harmonic images is demonstrated in series of computer and phantom experiments.

  20. Ultrasound imaging of breast tumor perfusion and neovascular morphology.

    PubMed

    Hoyt, Kenneth; Umphrey, Heidi; Lockhart, Mark; Robbin, Michelle; Forero-Torres, Andres

    2015-09-01

    A novel image processing strategy is detailed for simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. After normalization and tumor segmentation, a global time-intensity curve describing contrast agent flow was analyzed to derive surrogate measures of tumor perfusion (i.e., peak intensity, time-to-peak intensity, area under the curve, wash-in rate, wash-out rate). A maximum intensity image was generated from these same segmented image sequences, and each vascular component was skeletonized via a thinning algorithm. This skeletonized data set and collection of vessel segments were then investigated to extract parameters related to the neovascular network and physical architecture (i.e., vessel-to-tissue ratio, number of bifurcations, vessel count, average vessel length and tortuosity). An efficient computation of local perfusion parameters was also introduced and operated by averaging time-intensity curve data over each individual neovascular segment. Each skeletonized neovascular segment was then color-coded by these local measures to produce a parametric map detailing spatial properties of tumor perfusion. Longitudinal DCE-US image data sets were collected in six patients diagnosed with invasive breast cancer using a Philips iU22 ultrasound system equipped with a L9-3 transducer and Definity contrast agent. Patients were imaged using US before and after contrast agent dosing at baseline and again at weeks 6, 12, 18 and 24 after treatment started. Preliminary clinical results suggested that breast tumor response to neoadjuvant chemotherapy may be associated with temporal and spatial changes in DCE-US-derived parametric measures of tumor perfusion. Moreover, changes in neovascular morphology parametric measures may also help identify any breast tumor response (or lack thereof) to systemic treatment. Breast cancer management from early detection to therapeutic

  1. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields. PMID:26285181

  2. Advanced ultrasound activated lockin-thermography for defect selective depth-resolved imaging

    NASA Astrophysics Data System (ADS)

    Gleiter, A.; Riegert, G.; Zweschper, Th.; Degenhardt, R.; Busse, G.

    2006-04-01

    Ultrasound activated Lockin-Thermography ("ultrasound attenuation mapping") is a defect selective NDT-technique. Its main advantage is a high probability of defect detection ("POD") since only defects produce a signal while all other features are suppressed. The mechanism involved is local sound absorption which turns a variably loaded defect into a heat source. Thermographic monitoring of elastic wave attenuation in defects was reported for the first time in 1979 by Henneke and colleagues for continuous and pulsed ultrasound injection. Later, amplitude modulated ultrasound was used to derive frequency coded phase angle images combining defect-selectivity with robustness of measurement. With mono-frequent ultrasound excitation a standing wave pattern might hide defects. With additional modulation of the ultrasound frequency such a misleading pattern can be minimized. Applications related to quality maintenance (aerospace, automotive industry) will be presented in order to illustrate the potential of frequency modulated ultrasound excitation and its applications.

  3. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael

    2015-11-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz-1 cm-1). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep

  4. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.

    PubMed

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael

    2015-11-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep

  5. Ultrasound

    MedlinePlus

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  6. Non-invasive parenchymal, vascular and metabolic high-frequency ultrasound and photoacoustic rat deep brain imaging.

    PubMed

    Giustetto, Pierangela; Filippi, Miriam; Castano, Mauro; Terreno, Enzo

    2015-03-02

    Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive

  7. Non-invasive Parenchymal, Vascular and Metabolic High-frequency Ultrasound and Photoacoustic Rat Deep Brain Imaging

    PubMed Central

    Giustetto, Pierangela; Filippi, Miriam; Castano, Mauro; Terreno, Enzo

    2015-01-01

    Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive

  8. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance.

    PubMed

    Western, Craig; Hristov, Dimitre; Schlosser, Jeffrey

    2015-06-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included.

  9. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance

    PubMed Central

    Western, Craig; Hristov, Dimitre

    2015-01-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included. PMID:26180704

  10. Application of ultrasound processed images in space: assessing diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  11. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters

    PubMed Central

    Mehrmohammadi, M; Yoon, KY; Qu, M; Johnston, KP; Emelianov, SY

    2011-01-01

    Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR. PMID:21157009

  12. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  13. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging.

    PubMed

    Fite, Brett Z; Decaris, Martin; Sun, Yinghua; Sun, Yang; Lam, Adrian; Ho, Clark K L; Leach, J Kent; Marcu, Laura

    2011-04-01

    A multimodal diagnostic system that integrates time-resolved fluorescence spectroscopy, fluorescence lifetime imaging microscopy, and ultrasound backscatter microscopy is evaluated here as a potential tool for assessing changes in engineered tissue composition and microstructure nondestructively and noninvasively. The development of techniques capable of monitoring the quality of engineered tissue, determined by extracellular matrix (ECM) content, before implantation would alleviate the need for destructive assays over multiple time points and advance the widespread development and clinical application of engineered tissues. Using a prototype system combining time-resolved fluorescence spectroscopy, FLIM, and UBM, we measured changes in ECM content occurring during chondrogenic differentiation of equine adipose stem cells on 3D biodegradable matrices. The optical and ultrasound results were validated against those acquired via conventional techniques, including collagen II immunohistochemistry, picrosirius red staining, and measurement of construct stiffness. Current results confirm the ability of this multimodal approach to follow the progression of tissue maturation along the chondrogenic lineage by monitoring ECM production (namely, collagen type II) and by detecting resulting changes in mechanical properties of tissue constructs. Although this study was directed toward monitoring chondrogenic tissue maturation, these data demonstrate the feasibility of this approach for multiple applications toward engineering other tissues, including bone and vascular grafts. PMID:21303258

  14. Successful ultrasound imaging of pulmonary sub-pleural hamartoma.

    PubMed

    Song, Jun; Liu, Qing-Xin; Mishra, Ramesh Raj; Li, Chuang; Zeng, Hong

    2015-04-01

    Pulmonary hamartoma, a common benign tumor of the lung, often presents as a solitary nodule on the peripheral lung, and is mainly composed of bronchial mucosa epithelial cells, chondrocytes, and adipose cells. Here, we report the case of a 42-year-old female who had a lung nodule that appeared as a homogeneous high-density shadow of a peripheral localization on chest computed tomography scan. For further evaluation, transthoracic ultrasonography examination was performed, which revealed a round, heterogenous, hypoechoic mass attached to the visceral pleura and showing obvious respiratory motions on the real-time ultrasonic images. Video-assisted thoracoscopic operation with ultrasound marking was performed, and a tumor 1.5 × 1.0 cm in size was successfully removed from this patient. The pathohistological diagnosis was pulmonary hamartoma, and the patient was successfully cured. PMID:26576587

  15. Projection-reflection ultrasound images using PE-CMOS sensor: a preliminary bone fracture study

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Liu, Chu-Chuan; Freedman, Matthew T.; Mun, Seong-Ki; Kula, John; Lasser, Marvin E.; Lasser, Bob; Wang, Yue Joseph

    2008-03-01

    In this study, we investigated the characteristics of the ultrasound reflective image obtained by a CMOS sensor array coated with piezoelectric material (PE-CMOS). The laboratory projection-reflection ultrasound prototype consists of five major components: an unfocused ultrasound transducer, an acoustic beam splitter, an acoustic compound lens, a PE-CMOS ultrasound sensing array (Model I400, Imperium Inc. Silver Spring, MD), and a readout circuit system. The prototype can image strong reflective materials such as bone and metal. We found this projection-reflection ultrasound prototype is able to reveal hairline bone fractures with and without intact skin and tissue. When compared, the image generated from a conventional B-scan ultrasound on the same bone fracture is less observable. When it is observable with the B-scan system, the fracture or crack on the surface only show one single spot of echo due to its scan geometry. The corresponding image produced from the projection-reflection ultrasound system shows a bright blooming strip on the image clearly indicating the fracture on the surface of the solid material. Speckles of the bone structure are also observed in the new ultrasound prototype. A theoretical analysis is provided to link the signals as well as speckles detected in both systems.

  16. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  17. Multimodality image guidance system integrating X-ray fluoroscopy and ultrasound image streams with electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Luis F.; Shechter, Guy; Stanton, Douglas; Dalal, Sandeep; Elgort, Daniel; Manzke, Robert; Chan, Raymond C.; Zagorchev, Lyubomir

    2007-03-01

    This work presents an integrated system for multimodality image guidance of minimally invasive medical procedures. This software and hardware system offers real-time integration and registration of multiple image streams with localization data from navigation systems. All system components communicate over a local area Ethernet network, enabling rapid and flexible deployment configurations. As a representative configuration, we use X-ray fluoroscopy (XF) and ultrasound (US) imaging. The XF imaging system serves as the world coordinate system, with gantry geometry derived from the imaging system, and patient table position tracked with a custom-built measurement device using linear encoders. An electromagnetic (EM) tracking system is registered to the XF space using a custom imaging phantom that is also tracked by the EM system. The RMS fiducial registration error for the EM to X-ray registration was 2.19 mm, and the RMS target registration error measured with an EM-tracked catheter was 8.81 mm. The US image stream is subsequently registered to the XF coordinate system using EM tracking of the probe, following a calibration of the US image within the EM coordinate system. We present qualitative results of the system in operation, demonstrating the integration of live ultrasound imaging spatially registered to X-ray fluoroscopy with catheter localization using electromagnetic tracking.

  18. Fast microcalcification detection in ultrasound images using image enhancement and threshold adjacency statistics

    NASA Astrophysics Data System (ADS)

    Cho, Baek Hwan; Chang, Chuho; Lee, Jong-Ha; Ko, Eun Young; Seong, Yeong Kyeong; Woo, Kyoung-Gu

    2013-02-01

    The existence of microcalcifications (MCs) is an important marker of malignancy in breast cancer. In spite of the benefits in mass detection for dense breasts, ultrasonography is believed that it might not reliably detect MCs. For computer aided diagnosis systems, however, accurate detection of MCs has the possibility of improving the performance in both Breast Imaging-Reporting and Data System (BI-RADS) lexicon description for calcifications and malignancy classification. We propose a new efficient and effective method for MC detection using image enhancement and threshold adjacency statistics (TAS). The main idea of TAS is to threshold an image and to count the number of white pixels with a given number of adjacent white pixels. Our contribution is to adopt TAS features and apply image enhancement to facilitate MC detection in ultrasound images. We employed fuzzy logic, tophat filter, and texture filter to enhance images for MCs. Using a total of 591 images, the classification accuracy of the proposed method in MC detection showed 82.75%, which is comparable to that of Haralick texture features (81.38%). When combined, the performance was as high as 85.11%. In addition, our method also showed the ability in mass classification when combined with existing features. In conclusion, the proposed method exploiting image enhancement and TAS features has the potential to deal with MC detection in ultrasound images efficiently and extend to the real-time localization and visualization of MCs.

  19. RF Device for Acquiring Images of the Human Body

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; McGrath, William R.

    2010-01-01

    A safe, non-invasive method for forming images through clothing of large groups of people, in order to search for concealed weapons either made of metal or not, has been developed. A millimeter wavelength scanner designed in a unique, ring-shaped configuration can obtain a full 360 image of the body with a resolution of less than a millimeter in only a few seconds. Millimeter waves readily penetrate normal clothing, but are highly reflected by the human body and concealed objects. Millimeter wave signals are nonionizing and are harmless to human tissues when used at low power levels. The imager (see figure) consists of a thin base that supports a small-diameter vertical post about 7 ft (=2.13 m) tall. Attached to the post is a square-shaped ring 2 in. (=5 cm) wide and 3 ft (=91 cm) on a side. The ring is oriented horizontally, and is supported halfway along one side by a connection to a linear bearing on the vertical post. A planar RF circuit board is mounted to the inside of each side of the ring. Each circuit board contains an array of 30 receivers, one transmitter, and digitization electronics. Each array element has a printed-circuit patch antenna coupled to a pair of mixers by a 90 coupler. The mixers receive a reference local oscillator signal to a subharmonic of the transmitter frequency. A single local oscillator line feeds all 30 receivers on the board. The resulting MHz IF signals are amplified and carried to the edge of the board where they are demodulated and digitized. The transmitted signal is derived from the local oscillator at a frequency offset determined by a crystal oscillator. One antenna centrally located on each side of the square ring provides the source illumination power. The total transmitted power is less than 100 mW, resulting in an exposure level that is completely safe to humans. The output signals from all four circuit boards are fed via serial connection to a data processing computer. The computer processes the approximately 1-MB

  20. Comparison of Inter-Observer Variability and Diagnostic Performance of the Fifth Edition of BI-RADS for Breast Ultrasound of Static versus Video Images.

    PubMed

    Youk, Ji Hyun; Jung, Inkyung; Yoon, Jung Hyun; Kim, Sung Hun; Kim, You Me; Lee, Eun Hye; Jeong, Sun Hye; Kim, Min Jung

    2016-09-01

    Our aim was to compare the inter-observer variability and diagnostic performance of the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound of static and video images. Ninety-nine breast masses visible on ultrasound examination from 95 women 19-81 y of age at five institutions were enrolled in this study. They were scheduled to undergo biopsy or surgery or had been stable for at least 2 y of ultrasound follow-up after benign biopsy results or typically benign findings. For each mass, representative long- and short-axis static ultrasound images were acquired; real-time long- and short-axis B-mode video images through the mass area were separately saved as cine clips. Each image was reviewed independently by five radiologists who were asked to classify ultrasound features according to the fifth edition of the BI-RADS lexicon. Inter-observer variability was assessed using kappa (κ) statistics. Diagnostic performance on static and video images was compared using the area under the receiver operating characteristic curve. No significant difference was found in κ values between static and video images for all descriptors, although κ values of video images were higher than those of static images for shape, orientation, margin and calcifications. After receiver operating characteristic curve analysis, the video images (0.83, range: 0.77-0.87) had higher areas under the curve than the static images (0.80, range: 0.75-0.83; p = 0.08). Inter-observer variability and diagnostic performance of video images was similar to that of static images on breast ultrasonography according to the new edition of BI-RADS.

  1. Post-processing multiple-frame super-resolution in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Morin, Renaud; Basarab, Adrian; Ploquin, Marie; Kouamé, Denis

    2012-03-01

    High resolution medical ultrasound imaging is an ongoing challenge in many diagnosis applications and can be achieved by instrumentation. Very few works have investigated ultrasound image resolution enhancement whereas many works regarded general purpose optical image or video fields. Many algorithms were proposed within these fields to achieve the "super-resolution" (SR), which consists in merging several low resolution images to create a higher resolution image. However, the straightforward implementation of such techniques for ultrasound imaging is unsuccessful, due to the intrinsic nature of ultrasound motions and speckle. We show how to overcome the intrinsic limit of super-resolution in this framework by refining the registration part of common multi-frame techniques. Classic super-resolution algorithms were implemented and evaluated using sequences of ultrasound images. Such methods not only fail to estimate the true elastic motion but also break the speckle characteristics, resulting in a degradation of the original image. Knowing that a registration error of only 1 pixel leads to a high-resolution image worse than an interpolation, the registration must be adapted to the framework of ultrasound imaging. For this purpose, we investigate different motion estimations. The process described above was evaluated on ultrasound sequences containing up to 15 phantom images with an inclusion scanned with a 7.5 MHz linear probe. Qualitative improvements were observable as soon as at least 5 low-resolution images were used. Ultrasound B-mode profiles of radio-frequency lines were studied and the inclusion was more accurately identified. The Contrast-to-Noise Ratio was increased by approximately 13%.

  2. Pectoralis major tears: anatomy, classification, and diagnosis with ultrasound and MR imaging.

    PubMed

    Chiavaras, Mary M; Jacobson, Jon A; Smith, Jay; Dahm, Diane L

    2015-02-01

    Accurate characterization of pectoralis major tears is important to guide management. Imaging evaluation with ultrasound and MR imaging can be difficult given the complex regional anatomy. In addition, recent literature has redefined the anatomy of the distal pectoralis major. The purpose of this study is to review pectoralis major injuries taking into account new anatomic descriptions using ultrasound and MR imaging, including cadaveric dissection, surgically produced pectoralis tears, and clinical pectoralis tendon tear with surgical correlation.

  3. Medical ultrasound: imaging of soft tissue strain and elasticity

    PubMed Central

    Wells, Peter N. T.; Liang, Hai-Dong

    2011-01-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques—low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)—are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool. PMID:21680780

  4. Advances in ultrasound imaging for congenital malformations during early gestation

    PubMed Central

    Rayburn, William F.; Jolley, Jennifer A.; Simpson, Lynn L.

    2015-01-01

    With refinement in ultrasound technology, detection of fetal structural abnormalities has improved and there have been detailed reports of the natural history and expected outcomes for many anomalies. The ability to either reassure a high-risk woman with normal intrauterine images or offer comprehensive counseling and offer options in cases of strongly suspected lethal or major malformations has shifted prenatal diagnoses to the earliest possible gestational age. When indicated, scans in early gestation are valuable in accurate gestational dating. Stricter sonographic criteria for early nonviability guard against unnecessary intervention. Most birth defects are without known risk factors, and detection of certain malformations is possible in the late first trimester. The best time for a standard complete fetal and placental scan is 18–20 weeks. In addition, certain soft anatomic markers provide clues to chromosomal aneuploidy risk. Maternal obesity and multifetal pregnancies are now more common and further limit early gestation visibility. Other advanced imaging techniques during early gestation in select cases of suspected malformations include fetal echocardiography and magnetic resonance imaging. PMID:25820190

  5. Learning evaluation of ultrasound image segmentation using combined measures

    NASA Astrophysics Data System (ADS)

    Fang, Mengjie; Luo, Yongkang; Ding, Mingyue

    2016-03-01

    Objective evaluation of medical image segmentation is one of the important steps for proving its validity and clinical applicability. Although there are many researches presenting segmentation methods on medical image, while with few studying the evaluation methods on their results, this paper presents a learning evaluation method with combined measures to make it as close as possible to the clinicians' judgment. This evaluation method is more quantitative and precise for the clinical diagnose. In our experiment, the same data sets include 120 segmentation results of lumen-intima boundary (LIB) and media-adventitia boundary (MAB) of carotid ultrasound images respectively. And the 15 measures of goodness method and discrepancy method are used to evaluate the different segmentation results alone. Furthermore, the experimental results showed that compared with the discrepancy method, the accuracy with the measures of goodness method is poor. Then, by combining with the measures of two methods, the average accuracy and the area under the receiver operating characteristic (ROC) curve of 2 segmentation groups are higher than 93% and 0.9 respectively. And the results of MAB are better than LIB, which proved that this novel method can effectively evaluate the segmentation results. Moreover, it lays the foundation for the non-supervised segmentation evaluation system.

  6. Medical ultrasound: imaging of soft tissue strain and elasticity.

    PubMed

    Wells, Peter N T; Liang, Hai-Dong

    2011-11-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques-low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)-are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool.

  7. Orbital cavernous hemangiomas: ultrasound and magnetic resonance imaging evaluation.

    PubMed

    Diamantopoulou, A; Damianidis, Ch; Kyriakou, V; Kotziamani, N; Emmanouilidou, M; Goutsaridou, F; Tsitouridis, I

    2010-03-01

    Cavernous hemangioma is the most common intraorbital lesion in adults. The aim of our study was to evaluate the magnetic resonance imaging (MRI) and ultrasound (US) characteristics of cavernous hemangioma and their role in the differential diagnosis of orbital tumors. Eight patients with orbital cavernous hemangiomas, five women and three men with a mean age of 48 years were examined in a period of six years. All patients underwent MRI examination and four patients were also evaluated by US. In all cases MRI depicted a well-defined intraconal tumor. The lesions were homogeneous, isointense to muscle on T1-weighted sequence and hyperintense to muscle on T2-weighted sequence in six patients. In one patient the mass was isointense on T1WI with heterogeneous signal intensity on T2WI and in one patient the lesion had heterogeneous signal intensity on both T1- and T2-weighted sequences. After intravenous contrast medium administration, the tumors showed initial inhomogeneous enhancement with progressive accumulation of contrast material on delayed images in seven patients and initial homogeneous enhancement in one patient. On ultrasonography, the orbital masses appeared slightly hyperechoic, heterogeneous with small areas of slow blood flow. The analysis of imaging characteristics of a well-defined intraconal lesion in an adult patient with painless progressive proptosis can be highly suggestive of the diagnosis of cavernous hemangioma.

  8. Co-registration of ultrasound and frequency-domain photoacoustic radar images and image improvement for tumor detection

    NASA Astrophysics Data System (ADS)

    Dovlo, Edem; Lashkari, Bahman; Choi, Sung soo Sean; Mandelis, Andreas

    2015-03-01

    This paper demonstrates the co-registration of ultrasound (US) and frequency domain photoacoustic radar (FD-PAR) images with significant image improvement from applying image normalization, filtering and amplification techniques. Achieving PA imaging functionality on a commercial Ultrasound instrument could accelerate clinical acceptance and use. Experimental results presented demonstrate live animal testing and show enhancements in signal-to-noise ratio (SNR), contrast and spatial resolution. The co-registered image produced from the US and phase PA images, provides more information than both images independently.

  9. Psychomotor skills in medical ultrasound imaging: an analysis of the core skill set.

    PubMed

    Nicholls, Delwyn; Sweet, Linda; Hyett, Jon

    2014-08-01

    Sonographers use psychomotor skills to perform medical ultrasound examinations. Psychomotor skills describe voluntary movements of the limb, joints, and muscles in response to sensory stimuli and are regulated by the motor neural cortex in the brain. We define a psychomotor skill in relation to medical ultrasound imaging as "the unique mental and motor activities required to execute a manual task safely and efficiently for each clinical situation." Skills in clinical ultrasound practice may be open or closed; most skills used in medical ultrasound imaging are open. Open skills are both complex and multidimensional. Visuomotor and visuospatial psychomotor skills are central components of medical ultrasound imaging. Both types of skills rely on learners having a visual exemplar or standard of performance with which to reference their skill performance and evaluate anatomic structures. These are imperative instructional design principles when teaching psychomotor skills.

  10. Psychomotor skills in medical ultrasound imaging: an analysis of the core skill set.

    PubMed

    Nicholls, Delwyn; Sweet, Linda; Hyett, Jon

    2014-08-01

    Sonographers use psychomotor skills to perform medical ultrasound examinations. Psychomotor skills describe voluntary movements of the limb, joints, and muscles in response to sensory stimuli and are regulated by the motor neural cortex in the brain. We define a psychomotor skill in relation to medical ultrasound imaging as "the unique mental and motor activities required to execute a manual task safely and efficiently for each clinical situation." Skills in clinical ultrasound practice may be open or closed; most skills used in medical ultrasound imaging are open. Open skills are both complex and multidimensional. Visuomotor and visuospatial psychomotor skills are central components of medical ultrasound imaging. Both types of skills rely on learners having a visual exemplar or standard of performance with which to reference their skill performance and evaluate anatomic structures. These are imperative instructional design principles when teaching psychomotor skills. PMID:25063399

  11. Nonrigid registration of carotid ultrasound and MR images using a "twisting and bending" model

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Nuwan D.; Chiu, Bernard; Samani, Abbas; Spence, J. David; Parraga, Grace; Samarabandu, Jagath; Fenster, Aaron

    2008-03-01

    Atherosclerosis at the carotid bifurcation resulting in cerebral emboli is a major cause of ischemic stroke. Most strokes associated with carotid atherosclerosis can be prevented by lifestyle/dietary changes and pharmacological treatments if identified early by monitoring carotid plaque changes. Plaque composition information from magnetic resonance (MR) carotid images and dynamic characteristics information from 3D ultrasound (US) are necessary for developing and validating US imaging tools to identify vulnerable carotid plaques. Combining these images requires nonrigid registration to correct the non-linear miss-alignments caused by relative twisting and bending in the neck due to different head positions during the two image acquisitions sessions. The high degree of freedom and large number of parameters associated with existing nonrigid image registration methods causes several problems including unnatural plaque morphology alteration, computational complexity, and low reliability. Our approach was to model the normal movement of the neck using a "twisting and bending model" with only six parameters for nonrigid registration. We evaluated our registration technique using intra-subject in-vivo 3D US and 3D MR carotid images acquired on the same day. We calculated the Mean Registration Error (MRE) between the segmented vessel surfaces in the target image and the registered image using a distance-based error metric after applying our "twisting bending model" based nonrigid registration algorithm. We achieved an average registration error of 1.33+/-0.41mm using our nonrigid registration technique. Visual inspection of segmented vessel surfaces also showed a substantial improvement of alignment with our non-rigid registration technique.

  12. An image-guidance system for dynamic dose calculation in prostate brachytherapy using ultrasound and fluoroscopy

    SciTech Connect

    Kuo, Nathanael Prince, Jerry L.; Dehghan, Ehsan; Deguet, Anton; Mian, Omar Y.; Le, Yi; Song, Danny Y.; Burdette, E. Clif; Fichtinger, Gabor; Lee, Junghoon

    2014-09-15

    Purpose: Brachytherapy is a standard option of care for prostate cancer patients but may be improved by dynamic dose calculation based on localized seed positions. The American Brachytherapy Society states that the major current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. An image-guidance system was therefore developed to localize seeds for dynamic dose calculation. Methods: The proposed system is based on transrectal ultrasound (TRUS) and mobile C-arm fluoroscopy, while using a simple fiducial with seed-like markers to compute pose from the nonencoded C-arm. Three or more fluoroscopic images and an ultrasound volume are acquired and processed by a pipeline of algorithms: (1) seed segmentation, (2) fiducial detection with pose estimation, (3) seed matching with reconstruction, and (4) fluoroscopy-to-TRUS registration. Results: The system was evaluated on ten phantom cases, resulting in an overall mean error of 1.3 mm. The system was also tested on 37 patients and each algorithm was evaluated. Seed segmentation resulted in a 1% false negative rate and 2% false positive rate. Fiducial detection with pose estimation resulted in a 98% detection rate. Seed matching with reconstruction had a mean error of 0.4 mm. Fluoroscopy-to-TRUS registration had a mean error of 1.3 mm. Moreover, a comparison of dose calculations between the authors’ intraoperative method and an independent postoperative method shows a small difference of 7% and 2% forD{sub 90} and V{sub 100}, respectively. Finally, the system demonstrated the ability to detect cold spots and required a total processing time of approximately 1 min. Conclusions: The proposed image-guidance system is the first practical approach to dynamic dose calculation, outperforming earlier solutions in terms of robustness, ease of use, and functional completeness.

  13. Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging

    PubMed Central

    Hannah, Alexander S.; Luke, Geoffrey P.; Emelianov, Stanislav Y.

    2016-01-01

    Microbubbles are widely used as contrast agents to improve the diagnostic capability of conventional, highly speckled, low-contrast ultrasound imaging. However, while microbubbles can be used for molecular imaging, these agents are limited to the vascular space due to their large size (> 1 μm). Smaller microbubbles are desired but their ultrasound visualization is limited due to lower echogenicity or higher resonant frequencies. Here we present nanometer scale, phase changing, blinking nanocapsules (BLInCs), which can be repeatedly optically triggered to provide transient contrast and enable background-free ultrasound imaging. In response to irradiation by near-infrared laser pulses, the BLInCs undergo cycles of rapid vaporization followed by recondensation into their native liquid state at body temperature. High frame rate ultrasound imaging measures the dynamic echogenicity changes associated with these controllable, periodic phase transitions. Using a newly developed image processing algorithm, the blinking particles are distinguished from tissue, providing a background-free image of the BLInCs while the underlying B-mode ultrasound image is used as an anatomical reference of the tissue. We demonstrate the function of BLInCs and the associated imaging technique in a tissue-mimicking phantom and in vivo for the identification of the sentinel lymph node. Our studies indicate that BLInCs may become a powerful tool to identify biological targets using a conventional ultrasound imaging system. PMID:27570556

  14. Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging.

    PubMed

    Hannah, Alexander S; Luke, Geoffrey P; Emelianov, Stanislav Y

    2016-01-01

    Microbubbles are widely used as contrast agents to improve the diagnostic capability of conventional, highly speckled, low-contrast ultrasound imaging. However, while microbubbles can be used for molecular imaging, these agents are limited to the vascular space due to their large size (> 1 μm). Smaller microbubbles are desired but their ultrasound visualization is limited due to lower echogenicity or higher resonant frequencies. Here we present nanometer scale, phase changing, blinking nanocapsules (BLInCs), which can be repeatedly optically triggered to provide transient contrast and enable background-free ultrasound imaging. In response to irradiation by near-infrared laser pulses, the BLInCs undergo cycles of rapid vaporization followed by recondensation into their native liquid state at body temperature. High frame rate ultrasound imaging measures the dynamic echogenicity changes associated with these controllable, periodic phase transitions. Using a newly developed image processing algorithm, the blinking particles are distinguished from tissue, providing a background-free image of the BLInCs while the underlying B-mode ultrasound image is used as an anatomical reference of the tissue. We demonstrate the function of BLInCs and the associated imaging technique in a tissue-mimicking phantom and in vivo for the identification of the sentinel lymph node. Our studies indicate that BLInCs may become a powerful tool to identify biological targets using a conventional ultrasound imaging system. PMID:27570556

  15. Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery.

    PubMed

    Nguyen, An T; Wrenn, Steven P

    2014-01-01

    Ultrasound is well known as a safe, reliable imaging modality. A historical limitation of ultrasound, however, was its inability to resolve structures at length scales less than nominally 20 µm, which meant that classical ultrasound could not be used in applications such as echocardiography and angiogenesis where one requires the ability to image small blood vessels. The advent of ultrasound contrast agents, or microbubbles, removed this limitation and ushered in a new wave of enhanced ultrasound applications. In recent years, the microbubbles have been designed to achieve yet another application, namely ultrasound-triggered drug delivery. Ultrasound contrast agents are thus tantamount to 'theranostic' vehicles, meaning they can do both therapy (drug delivery) and imaging (diagnostics). The use of ultrasound contrast agents as drug delivery vehicles, however, is perhaps less than ideal when compared to traditional drug delivery vehicles (e.g., polymeric microcapsules and liposomes) which have greater drug carrying capacities. The drawback of the traditional drug delivery vehicles is that they are not naturally acoustically active and cannot be used for imaging. The notion of a theranostic vehicle is sufficiently intriguing that many attempts have been made in recent years to achieve a vehicle that combines the echogenicity of microbubbles with the drug carrying capacity of liposomes. The attempts can be classified into three categories, namely entrapping, tethering, and nesting. Of these, nesting is the newest-and perhaps the most promising.

  16. Four-dimensional ultrasound current source density imaging of a dipole field

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Olafsson, R.; Ingram, P.; Li, Q.; Qin, Y.; Witte, R. S.

    2011-09-01

    Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was scanned near the source and sink, while the AE signal was detected on remote recording electrodes, resulting in time-lapsed volume movies of the alternating current distribution.

  17. Ultrasound harmonic enhanced imaging using eigenspace-based coherence factor.

    PubMed

    Guo, Wei; Wang, Yuanyuan; Yu, Jinhua

    2016-12-01

    Tissue harmonic imaging (THI) utilizes harmonic signals generating within the tissue as the result of nonlinear acoustic wave propagation. With inadequate transmitting acoustic energy, THI is incapable to detect the small objects since poor harmonic signals have been generated. In most cases, high transmission energy cannot be guaranteed because of the imaging safety issue or specific imaging modality such as the plane wave imaging (PWI). Discrimination of small point targets such as calcification, however, is particularly important in the ultrasound diagnosis. Few efforts have been made to pursue the THI with high resolution and good small target visibility at the same time. In this paper, we proposed a new eigenspace-based coherence factor (ESBCF) beamformer to solve this problem. A new kind of coherence factor (CF), named as ESBCF, is firstly proposed to detect the point targets. The detected region-of-interest (ROI) is then enhanced adaptively by using a newly developed beamforming method. The ESBCF combines the information from signal eigenspace and coherence factor by expanding the CF to the covariance matrix of signal. Analogous to the image processing but in the radio frequency (RF) data domain, the proposed method fully utilizes the information from the fundamental and harmonic components. The performance of the proposed method is demonstrated by simulation and phantom experiments. The improvement of the point contrast ratio (PCR) is 7.6dB in the simulated data, and 6.0dB in the phantom experiment. Thanks to the improved small point detection ability of the ESBCF, the proposed beamforming algorithm can enhance the PCR considerably and maintain the high resolution of the THI at the same time. PMID:27513207

  18. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    NASA Astrophysics Data System (ADS)

    Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael

    2008-11-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  19. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis.

    PubMed

    Tsui, Po-Hsiang; Ho, Ming-Chih; Tai, Dar-In; Lin, Ying-Hsiu; Wang, Chiao-Yin; Ma, Hsiang-Yang

    2016-01-01

    Acoustic structure quantification (ASQ) is a recently developed technique widely used for detecting liver fibrosis. Ultrasound Nakagami parametric imaging based on the Nakagami distribution has been widely used to model echo amplitude distribution for tissue characterization. We explored the feasibility of using ultrasound Nakagami imaging as a model-based ASQ technique for assessing liver fibrosis. Standard ultrasound examinations were performed on 19 healthy volunteers and 91 patients with chronic hepatitis B and C (n = 110). Liver biopsy and ultrasound Nakagami imaging analysis were conducted to compare the METAVIR score and Nakagami parameter. The diagnostic value of ultrasound Nakagami imaging was evaluated using receiver operating characteristic (ROC) curves. The Nakagami parameter obtained through ultrasound Nakagami imaging decreased with an increase in the METAVIR score (p < 0.0001), representing an increase in the extent of pre-Rayleigh statistics for echo amplitude distribution. The area under the ROC curve (AUROC) was 0.88 for the diagnosis of any degree of fibrosis (≥F1), whereas it was 0.84, 0.69, and 0.67 for ≥F2, ≥F3, and ≥F4, respectively. Ultrasound Nakagami imaging is a model-based ASQ technique that can be beneficial for the clinical diagnosis of early liver fibrosis. PMID:27605260

  20. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis

    PubMed Central

    Tsui, Po-Hsiang; Ho, Ming-Chih; Tai, Dar-In; Lin, Ying-Hsiu; Wang, Chiao-Yin; Ma, Hsiang-Yang

    2016-01-01

    Acoustic structure quantification (ASQ) is a recently developed technique widely used for detecting liver fibrosis. Ultrasound Nakagami parametric imaging based on the Nakagami distribution has been widely used to model echo amplitude distribution for tissue characterization. We explored the feasibility of using ultrasound Nakagami imaging as a model-based ASQ technique for assessing liver fibrosis. Standard ultrasound examinations were performed on 19 healthy volunteers and 91 patients with chronic hepatitis B and C (n = 110). Liver biopsy and ultrasound Nakagami imaging analysis were conducted to compare the METAVIR score and Nakagami parameter. The diagnostic value of ultrasound Nakagami imaging was evaluated using receiver operating characteristic (ROC) curves. The Nakagami parameter obtained through ultrasound Nakagami imaging decreased with an increase in the METAVIR score (p < 0.0001), representing an increase in the extent of pre-Rayleigh statistics for echo amplitude distribution. The area under the ROC curve (AUROC) was 0.88 for the diagnosis of any degree of fibrosis (≥F1), whereas it was 0.84, 0.69, and 0.67 for ≥F2, ≥F3, and ≥F4, respectively. Ultrasound Nakagami imaging is a model-based ASQ technique that can be beneficial for the clinical diagnosis of early liver fibrosis. PMID:27605260

  1. Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets.

    PubMed

    Luke, Geoffrey P; Hannah, Alexander S; Emelianov, Stanislav Y

    2016-04-13

    We have developed a method for super-resolution ultrasound imaging, which relies on a new class of blinking nanometer-size contrast agents: laser-activated nanodroplets (LANDs). The LANDs can be repeatedly optically triggered to undergo vaporization; the resulting spatially stationary, temporally transient microbubbles provide high ultrasound contrast for several to hundreds of milliseconds before recondensing to their native liquid nanodroplet state. By capturing high frame rate ultrasound images of blinking LANDs, we demonstrate the ability to detect individual recondensation events. Then we apply a newly developed super-resolution image processing algorithm to localize the LAND positions in vivo almost an order of magnitude better than conventional ultrasound imaging. These results pave the way for high resolution molecular imaging deep in tissue.

  2. Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging

    PubMed Central

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148

  3. Combined optoacoustic and high-frequency ultrasound imaging of live mouse embryos

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Aristizbal, Orlando; Filoux, Erwan; Sampathkumar, Ashwinkumar; Mamou, Jonathan; Turnbull, Daniel H.; Ketterling, Jeffrey A.

    2012-02-01

    The cell differentiation and proliferation of the central nervous system (CNS) are closely related to vascular development. An imaging protocol that integrated optoacoustics (OA) with high-frequency ultrasound (HFU) was developed for in vivo imaging of brain ventricles and vasculature in mouse embryos. A 40-MHz, co-polymer, 5-element annular-array transducer with a geometric focus of 12 mm was modified to accommodate free-beam, coaxial illumination. Three-dimensional (3-D) data sets were acquired by raster scanning the transducer-optics assembly in 50-μm increments. A single intact conceptus from an anesthetized mouse was surgically exposed into PBS-filled Petri-dish. An 800-μm spot illumination from a pulsed, 532-nm, Nd-YAG laser was synchronized with a high-voltage impulse excitation of the central array element to facilitate simultaneous and spatially coregistered OA and HFU data acquisition. The resulting OA and HFU signals from each scan location were recorded on all five array channels and post-processed using a synthetic-focusing algorithm to enhance the depth of field (DOF). Dual-modality images were acquired from mouse embryos at E11.5, E12.5, and E13.5 days of gestation. The extended DOF allowed morphologically accurate visualization of the embryonic head. The brain ventricles were segmented from the HFU data and rendered in 3-D. The OA data provided visualization of the vascular plexus as well as individual blood vessels. Feasibility of spatially co-registered, low-cost dual-modality in vivo imaging of mouse embryos was demonstrated.

  4. Use of ultrasound, color Doppler imaging and radiography to monitor periapical healing after endodontic surgery.

    PubMed

    Tikku, Aseem P; Kumar, Sunil; Loomba, Kapil; Chandra, Anil; Verma, Promila; Aggarwal, Renu

    2010-09-01

    This study evaluated the effectiveness of ultrasound, color Doppler imaging and conventional radiography in monitoring the post-surgical healing of periapical lesions of endodontic origin. Fifteen patients who underwent periapical surgery for endodontic pathology were randomly selected. In all patients, periapical lesions were evaluated preoperatively using ultrasound, color Doppler imaging and conventional radiography, to analyze characteristics such as size, shape and dimensions. On radiographic evaluation, dimensions were measured in the superoinferior and mesiodistal direction using image-analysis software. Ultrasound evaluation was used to measure the changes in shape and dimensions on the anteroposterior, superoinferior, and mesiodistal planes. Color Doppler imaging was used to detect the blood-flow velocity. Postoperative healing was monitored in all patients at 1 week and 6 months by using ultrasound and color Doppler imaging, together with conventional radiography. The findings were then analyzed to evaluate the effectiveness of the 3 imaging techniques. At 6 months, ultrasound and color Doppler imaging were significantly better than conventional radiography in detecting changes in the healing of hard tissue at the surgical site (P < 0.004). This study demonstrates that ultrasound and color Doppler imaging have the potential to supplement conventional radiography in monitoring the post-surgical healing of periapical lesions of endodontic origin.

  5. WE-D-18C-01: Art of Imaging: Diagnostic Ultrasound Image Artifacts

    SciTech Connect

    Zagzebski, J; Lu, Z

    2014-06-15

    Assumptions followed during construction of B-mode and color flow images are that the pulse-echo transit time can be converted to reflector depth through uniform tissue models, echoes originate only from locations along the transmit-receive axes of pulse propagation, and first order correction schemes adequately account for acoustic wave attenuation and absorption. The latter allows the display brightness to encode tissue echogenicity. This course will challenge participants to identify imaging artifacts whose origins stem from the more complex and realistic propagating and scattering conditions common in clinical ultrasound. Speckle, a very common artifact but a clinically employed feature, originates from simultaneous echoes from diffuse scatterers and is a result of coherent detection of signals. One of the most bothersome artifacts are those due to reverberations especially that originating from superficial tissue interfaces. Methods to overcome these will be discussed. This presentation also will describe and illustrate speed of sound, refraction, enhancement, shadowing, mirroring, beam width, beam-forming, and slice thickness artifacts. All are useful examples of limitations introduced by acoustic waves propagating through complex tissue paths. New formats for physician board certification exams are demanding the inclusion of image-based examples of ultrasound physics. Instructors' knowledge of, and access to examples of ultrasound artifacts are important in this effort. The presentation will incorporate an audience response system to challenge participants in correct identification of some of these artifacts. Learning Objectives: Review basic mechanisms for producing ultrasound images. Identify the etiology of speckle, reverberation noise, beam width and slice thickness artifacts, and artifacts associated with pulse propagation. Discuss methods that reduce the impact of artifacts OR employ artifacts effectively to facilitate clinical diagnosis.

  6. Comparison of portable and conventional ultrasound imaging in spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Yan, Christina; Tabanfar, Reza; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks, but bones have reduced visibility in ultrasound imaging and high quality ultrasound machines are often expensive and not portable. In this work, we investigate the image quality and measurement accuracy of a low cost and portable ultrasound machine in comparison to a standard ultrasound machine in scoliosis monitoring. METHODS: Two different kinds of ultrasound machines were tested on three human subjects, using the same position tracker and software. Spinal curves were measured in the same reference coordinate system using both ultrasound machines. Lines were defined by connecting two symmetric landmarks identified on the left and right transverse process of the same vertebrae, and spinal curvature was defined as the transverse process angle between two such lines, projected on the coronal plane. RESULTS: Three healthy volunteers were scanned by both ultrasound configurations. Three experienced observers localized transverse processes as skeletal landmarks and obtained transverse process angles in images obtained from both ultrasounds. The mean difference per transverse process angle measured was 3.00 +/-2.1°. 94% of transverse processes visualized in the Sonix Touch were also visible in the Telemed. Inter-observer error in the Telemed was 4.5° and 4.3° in the Sonix Touch. CONCLUSION: Price, convenience and accessibility suggest the Telemed to be a viable alternative in scoliosis monitoring, however further improvements in measurement protocol and image noise reduction must be completed before implementing the Telemed in the clinical setting.

  7. Diagnosis of Knee Osteochondral Lesions With Ultrasound Imaging.

    PubMed

    Penttilä, Pekko; Liukkonen, Jukka; Joukainen, Antti; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha; Kröger, Heikki

    2015-10-01

    Evaluation of articular cartilage and subchondral bone is essential in the diagnosis of joint diseases and injuries. Interobserver and intraobserver reproducibilities of arthroscopic grading are only poor to moderate. Thus, for quantitative and objective evaluation of cartilage and subchondral bone, ultrasound arthroscopy (UA) has been introduced to clarify this dilemma. Assessment of the clinical feasibility of high-frequency ultrasonography (US) during 6 knee arthroscopies was conducted, and the surgical technique is presented. US imaging was conducted with a flexible 9-MHz US catheter inserted into the joint through conventional portals. US and arthroscopy videos were synchronously recorded, and US parameters for cartilage and subchondral bone characteristics were measured. Arthroscopy and US imaging were combined to perform cartilage grading. UA produced quantitative data on lesion size, as well as cartilage quality, and showed subchondral bone changes. Visualization of an osteochondritis dissecans lesion not detected by conventional arthroscopy and US-guided retrograde drilling were possible with UA. To conclude, UA proved to be clinically feasible and aided in the diagnosis when assessing knee osteochondral lesions. PMID:26697300

  8. A novel fusion imaging system for endoscopic ultrasound

    PubMed Central

    Gruionu, Lucian Gheorghe; Săftoiu, Adrian; Gruionu, Gabriel

    2016-01-01

    Background and Objective: Navigation of a flexible endoscopic ultrasound (EUS) probe inside the gastrointestinal (GI) tract is problematic due to the small window size and complex anatomy. The goal of the present study was to test the feasibility of a novel fusion imaging (FI) system which uses electromagnetic (EM) sensors to co-register the live EUS images with the pre-procedure computed tomography (CT) data with a novel navigation algorithm and catheter. Methods: An experienced gastroenterologist and a novice EUS operator tested the FI system on a GI tract bench top model. Also, the experienced gastroenterologist performed a case series of 20 patients during routine EUS examinations. Results: On the bench top model, the experienced and novice doctors reached the targets in 67 ± 18 s and 150 ± 24 s with a registration error of 6 ± 3 mm and 11 ± 4 mm, respectively. In the case series, the total procedure time was 24.6 ± 6.6 min, while the time to reach the clinical target was 8.7 ± 4.2 min. Conclusions: The FI system is feasible for clinical use, and can reduce the learning curve for EUS procedures and improve navigation and targeting in difficult anatomic locations. PMID:26879165

  9. Correlation of diagnostic ultrasound and radionuclide imaging in scrotal disease

    SciTech Connect

    Chen, D.C.P.; Holder, L.E.; Kaplan, G.N.

    1984-01-01

    A retrospective study was performed to evaluate the usefulness of scrotal ultrasound imaging (SU) and radionuclide scrotal imaging (RSI) in 43 patients (pts), age: 16-75. Twenty-two of them complained of scrotal pain; 18 had a scrotal mass; and 4 had a history of trauma. The final diagnoses were conformed by surgery (n = 21) and long-term follow-up (n = 22) and included 4 late phase and 1 early testicular torsion (TT), 11 acute epididymitis (AE), 4 subacute epididymitis (SE), 5 malignant tumors, 3 testicular atrophy, 2 intratesticular hematomas, 10 hydroceles or other cystic lesions, and miscellaneous. In pts with scrotal pain, 3/4 with late phase TT were correctly diagnosed, while one pt with early TT and 11/15 with AE or SE were not diagnosed by SU. All of them were correctly diagnosed with RSI except one with scrotal cyst. SU was able to separate cystic masses (n = 10) from solid masses (n = 6), but cannot separate malignant from benign lesions. SU was excellent in detecting 19 hydroceles and 2 intratesticular hematomas, while 3 lesions < 1 cm. were not seen in RSI. The authors concluded that SU is useful in pts with scrotal mass to separate solid from cystic lesions. However, SU is unable to differentiate the acute epididymitis from early testicular torsion. In pts with acute scrotal pain, SU is not helpful and RSI should still be the first study performed.

  10. Diagnosis of Knee Osteochondral Lesions With Ultrasound Imaging

    PubMed Central

    Penttilä, Pekko; Liukkonen, Jukka; Joukainen, Antti; Virén, Tuomas; Jurvelin, Jukka S.; Töyräs, Juha; Kröger, Heikki

    2015-01-01

    Evaluation of articular cartilage and subchondral bone is essential in the diagnosis of joint diseases and injuries. Interobserver and intraobserver reproducibilities of arthroscopic grading are only poor to moderate. Thus, for quantitative and objective evaluation of cartilage and subchondral bone, ultrasound arthroscopy (UA) has been introduced to clarify this dilemma. Assessment of the clinical feasibility of high-frequency ultrasonography (US) during 6 knee arthroscopies was conducted, and the surgical technique is presented. US imaging was conducted with a flexible 9-MHz US catheter inserted into the joint through conventional portals. US and arthroscopy videos were synchronously recorded, and US parameters for cartilage and subchondral bone characteristics were measured. Arthroscopy and US imaging were combined to perform cartilage grading. UA produced quantitative data on lesion size, as well as cartilage quality, and showed subchondral bone changes. Visualization of an osteochondritis dissecans lesion not detected by conventional arthroscopy and US-guided retrograde drilling were possible with UA. To conclude, UA proved to be clinically feasible and aided in the diagnosis when assessing knee osteochondral lesions. PMID:26697300

  11. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    PubMed

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  12. A novel super resolution scheme to acquire and process satellite images

    NASA Astrophysics Data System (ADS)

    Yin, Dong-yu; Su, Xiao-feng; Lin, Jian-chun; Wang, Gan-quan; Kuang, Ding-bo

    2013-09-01

    Geosynchronous satellite has obvious limitations for the weight and the scale of payloads, and large aperture optical system is not permitted. The optical diffraction limit of small aperture optical system has an adverse impact on the resolution of the acquired images. Therefore, how to get high resolution images using super-resolution technique with the acquired low resolution images becomes a popular problem investigated by researchers. Here, we present a novel scheme to acquire low resolution images and process them to achieve a high resolution image. Firstly, to acquire low resolution images, we adopt a special arrangement pattern of four CCD staggered arrays on the focal plane in the remote sensing satellite framework .These four CCD linear arrays are parallelized with a 0.25√2 pixel shift along the CCD direction and a 1.25 pixel shift along the scanning direction. The rotation angle between the two directions is 45 degree. The tilting sampling mode and the special arrangement pattern allow the sensor to acquire images with a smaller sampling interval which can give the resolution a greater enhancement. Secondly, to reconstruct a high resolution image of pretty good quality with a magnification factor 4, we propose a novel algorithm based on the iterative-interpolation super resolution algorithm (IISR) and the new edge-directed interpolation algorithm (NEDI). The new algorithm makes a critical improvement to NEDI and introduces it into the multi-frame interpolation in IISR. The algorithm can preserve the edges well and requires a relatively small number of low-resolution images to achieve better reconstruction accuracy .In the last part of the paper, we carry out a simulation experiment, and use MSE as the quality measure. The results demonstrate that our new scheme substantially improves the image resolution with both better quantitative quality and visual quality compared with some previous normal methods.

  13. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention.

    PubMed

    Wein, Wolfgang; Brunke, Shelby; Khamene, Ali; Callstrom, Matthew R; Navab, Nassir

    2008-10-01

    The fusion of tracked ultrasound with CT has benefits for a variety of clinical applications, however extensive manual effort is usually required for correct registration. We developed new methods that allow one to simulate medical ultrasound from CT in real-time, reproducing the majority of ultrasonic imaging effects. They are combined with a robust similarity measure that assesses the correlation of a combination of signals extracted from CT with ultrasound, without knowing the influence of each signal. This serves as the foundation of a fully automatic registration, that aligns a 3D ultrasound sweep with the corresponding tomographic modality using a rigid or an affine transformation model, without any manual interaction. These techniques were evaluated in a study involving 25 patients with indeterminate lesions in liver and kidney. The clinical setup, acquisition and registration workflow is described, along with the evaluation of the registration accuracy with respect to physician-defined Ground Truth. Our new algorithm correctly registers without any manual interaction in 76% of the cases, the average RMS TRE over multiple target lesions throughout the liver is 8.1mm.

  14. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health. PMID:26831342

  15. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health.

  16. Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging

    PubMed Central

    Klibanov, Alexander L

    2013-01-01

    Ultrasound imaging is widely used in cardiovascular diagnostics. Contrast agents expand the range of tasks that ultrasound can perform. In the clinic in US, endocardial border delineation and left ventricle opacification have been an approved indication for more than a decade. However, myocardial perfusion contrast ultrasound studies are still at the clinical trials stage. Blood pool contrast and perfusion in other tissues might be an easier indication to achieve: general blood pool ultrasound contrast is in wider use in Europe, Canada, Japan, and China. Targeted (molecular) contrast microbubbles will be the next generation of ultrasound imaging probes, capable of specific delineation of the areas of disease by adherence to molecular targets. The shell of targeted microbubbles (currently in the preclinical research and early stage clinical trials) is decorated with the ligands (antibodies, peptides or mimetics, hormones, carbohydrates) that ensure firm binding to the molecular markers of disease. PMID:23913363

  17. Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging.

    PubMed

    Colchester, Richard J; Zhang, Edward Z; Mosse, Charles A; Beard, Paul C; Papakonstantinou, Ioannis; Desjardins, Adrien E

    2015-04-01

    An all-optical ultrasound probe for vascular tissue imaging was developed. Ultrasound was generated by pulsed laser illumination of a functionalized carbon nanotube composite coating on the end face of an optical fiber. Ultrasound was detected with a Fabry-Pérot (FP) cavity on the end face of an adjacent optical fiber. The probe diameter was < 0.84 mm and had an ultrasound bandwidth of ~20 MHz. The probe was translated across the tissue sample to create a virtual linear array of ultrasound transmit/receive elements. At a depth of 3.5 mm, the axial resolution was 64 µm and the lateral resolution was 88 µm, as measured with a carbon fiber target. Vascular tissues from swine were imaged ex vivo and good correspondence to histology was observed. PMID:25909031

  18. Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging

    PubMed Central

    Colchester, Richard J.; Zhang, Edward Z.; Mosse, Charles A.; Beard, Paul C.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2015-01-01

    An all-optical ultrasound probe for vascular tissue imaging was developed. Ultrasound was generated by pulsed laser illumination of a functionalized carbon nanotube composite coating on the end face of an optical fiber. Ultrasound was detected with a Fabry-Pérot (FP) cavity on the end face of an adjacent optical fiber. The probe diameter was < 0.84 mm and had an ultrasound bandwidth of ~20 MHz. The probe was translated across the tissue sample to create a virtual linear array of ultrasound transmit/receive elements. At a depth of 3.5 mm, the axial resolution was 64 µm and the lateral resolution was 88 µm, as measured with a carbon fiber target. Vascular tissues from swine were imaged ex vivo and good correspondence to histology was observed. PMID:25909031

  19. scVEGF Microbubble Ultrasound Contrast Agents: A Novel Probe for Ultrasound Molecular Imaging of Tumor Angiogenesis

    PubMed Central

    Christopher R., Anderson; Joshua J., Rychak; Marina, Backer; Joseph, Backer; Klaus, Ley; Alexander L., Klibanov

    2012-01-01

    Objective To develop a novel microbubble (MB) ultrasound contrast agent covalently coupled to a recombinant single-chain vascular endothelial growth factor construct (scVEGF) through uniform site-specific conjugation for ultrasound imaging of tumor angiogenesis. Methods Ligand conjugation to maleimide-bearing MB by thioether bonding was first validated with a fluorophore (BODIPY-cystine), and covalently bound dye was detected by fluorometry and flow cytometry. MBs were subsequently site-specifically conjugated to cysteine-containing Cys-tag in scVEGF, and bound scVEGF was quantified by enzyme-linked immunosorbent assay. Targeted adhesion of scVEGF-MB was investigated with in vitro parallel plate flow chamber assays with recombinant murine VEGFR-2 substrates and human VEGFR-2-expressing porcine endothelial cells (PAE/KDR). A wall-less ultrasound flow phantom, with flow channels coated with immobilized VEGFR-2, was used to detect adhesion of scVEGF-MB with contrast ultrasound imaging. A murine model of colon adenocarcinoma was used to assess retention of scVEGF-MB with contrast ultrasound imaging during tumor angiogenesis in vivo. Results Proof-of-principle of ligand conjugation to maleimide-bearing MB was demonstrated with a BODIPY-cysteine fluorophore. Conjugation of BODIPY to MB saturated at 10-fold molar excess BODIPY relative to maleimide groups on MB surfaces. MB reacted with scVEGF and led to the conjugation of 1.2 × 105 molecules scVEGF per MB. Functional adhesion of sc-VEGF-MB was shown in parallel plate flow chamber assays. At a shear stress of 1.0 dynes/cm2, scVEGF-MB exhibited 5-fold higher adhesion to both recombinant VEGFR-2 substrates and VEGFR-2-expressing endothelial cells compared with nontargeted control MB. Additionally, scVEGF-MB targeted to immobilized VEGFR-2 in an ultrasound flow phantom showed an 8-fold increase in mean acoustic signal relative to casein-coated control channels. In an in vivo model of tumor angiogenesis, scVEGF MB showed

  20. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  1. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy.

    PubMed

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  2. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy.

    PubMed

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images. PMID:27405692

  3. IN VIVO BREAST SOUND-SPEED IMAGING WITH ULTRASOUND TOMOGRAPHY

    PubMed Central

    Li, Cuiping; Duric, Nebojsa; Littrup, Peter; Huang, Lianjie

    2014-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1 through 4. Our analysis showed that the improvements for average sharpness (in the unit of (m · s)−1) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4-fold compared with the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422±9 m/s (mean±SD) and 1487±21 m/s, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions 1548±17 m/s was higher, on average, than that of benign ones (1513±27 m/s) (one-sided p < 0.001). These results suggest that, clinically, sound-speed tomograms can be used to assess breast density (and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor the clinical response of breast cancer patients to neo-adjuvant chemotherapy. PMID:19647920

  4. Low complex subspace minimum variance beamformer for medical ultrasound imaging.

    PubMed

    Deylami, Ali Mohades; Asl, Babak Mohammadzadeh

    2016-03-01

    Minimum variance (MV) beamformer enhances the resolution and contrast in the medical ultrasound imaging at the expense of higher computational complexity with respect to the non-adaptive delay-and-sum beamformer. The major complexity arises from the estimation of the L×L array covariance matrix using spatial averaging, which is required to more accurate estimation of the covariance matrix of correlated signals, and inversion of it, which is required for calculating the MV weight vector which are as high as O(L(2)) and O(L(3)), respectively. Reducing the number of array elements decreases the computational complexity but degrades the imaging resolution. In this paper, we propose a subspace MV beamformer which preserves the advantages of the MV beamformer with lower complexity. The subspace MV neglects some rows of the array covariance matrix instead of reducing the array size. If we keep η rows of the array covariance matrix which leads to a thin non-square matrix, the weight vector of the subspace beamformer can be achieved in the same way as the MV obtains its weight vector with lower complexity as high as O(η(2)L). More calculations would be saved because an η×L covariance matrix must be estimated instead of a L×L. We simulated a wire targets phantom and a cyst phantom to evaluate the performance of the proposed beamformer. The results indicate that we can keep about 16 from 43 rows of the array covariance matrix which reduces the order of complexity to 14% while the image resolution is still comparable to that of the standard MV beamformer. We also applied the proposed method to an experimental RF data and showed that the subspace MV beamformer performs like the standard MV with lower computational complexity.

  5. In vivo breast sound-speed imaging with ultrasound tomography

    SciTech Connect

    Huang, Lianjie; Li, Cuiping; Duric, Neb; Littrup, Peter

    2009-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1-4. For all four breast types from fatty to dense, the improvements for average sharpness (in the unit of (m{center_dot} s) {sup -1}) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4 fold compared to the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 {+-} 9 mls (mean{+-} SD) and1487 {+-} 21 mls, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548{+-}17 mls) was higher, on average, than that of benign ones (1513{+-}27 mls) (one-sided p

  6. Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy

    SciTech Connect

    Presles, Benoît Rit, Simon; Sarrut, David; Fargier-Voiron, Marie; Liebgott, Hervé; Biston, Marie-Claude; Munoz, Alexandre; Pommier, Pascal; Lynch, Rod

    2014-12-15

    Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computed from the dilated reference positioning volume drawn on the reference image and use mutual inform