Science.gov

Sample records for acquiring high-resolution images

  1. Ultra-high resolution color images of the surface of comet 67P acquired by ROLIS

    NASA Astrophysics Data System (ADS)

    Schröder, Stefan; Mottola, Stefano; Arnold, Gabriele; Grothues, Hans-Georg; Hamm, Maximilian; Jaumann, Ralf; Michaelis, Harald; Pelivan, Ivanka; Proffe, Gerrit; Bibring, Jean-Pierre

    2015-04-01

    On Nov 12, 2014, the Rosetta Philae lander descended towards comet 67P/Churyumov-Gerasimenko. The onboard ROLIS camera successfully acquired high resolution images of the surface looking down from its vantage point on the instrument platform. ROLIS is a compact CCD imager with a 1024×1024 pixel sensor and a 57° field of view (Mottola et al., 2007, SSR 128, 241). It is equipped with an infinity lens (IFL), without which the camera focus is 30 cm. At Philae's final landing site, ROLIS removed the IFL and initiated an imaging sequence that shows the surface at the highest resolution ever obtained for a cometary surface (~0.5 mm per pixel). Illumination of the scene was provided by an onboard array of LEDs in four different colors: red, green, blue, and near-IR. ROLIS acquired one image for each color and a single dark exposure. The images show a unique, almost fractal morphology for the surface below the landing site that defies easy interpretation. However, there are similarities with some structures seen by the CIVA camera. Color and albedo variations over the surface are minor, and individual grains cannot be distinguished. The images are out-of-focus, indicating the surface was further away than the nominal 30 cm. The location of the illumination spot and the change of focus over the image are consistent with an inclined surface, indicating that Philae's final resting position is strongly tilted. In fact, it was inclined so much that we see the local horizon, even though ROLIS is downward-looking. Remarkably, the scene beyond the horizon is illuminated by the Sun, and out-of-focus particles can be seen to travel in the sky. The images suggest the environment of the lander is laden with fine dust, but a final assessment requires careful consideration of possible sources of stray light. Just before Philae went to sleep, ROLIS acquired an additional exposure with the IFL and the red LED. The resulting image is fully in focus. Because Philae had rotated and lifted

  2. Clinical Application of High-Resolution Computed Tomographic Imaging Features of Community-Acquired Pneumonia

    PubMed Central

    Nie, Yunqiang; Li, Cuiyun; Zhang, Jingling; Wang, Hui; Han, Ping; Lv, Xin; Xu, Xinyi; Guo, Miao

    2016-01-01

    Background This article discusses the value of high-resolution computed tomography (HRCT) in the diagnosis and treatment of pulmonary infections. Lung infection caused by pathogens is an important cause of death. Traditional methods to treat lung infection involved empirical antibiotic therapy. Thin-slice CT scanning is widely used in the clinical setting, and HRCT scan can very clearly show alveolar and bronchiolar involvement of infection. Material/Methods In total, 178 patients with community-acquired pneumonia (CAP) were enrolled. All the patients underwent CT scan, qualified sputum, and blood samples for culture or immunological biochemical tests. CT imaging features, pathogenic bacteria, and treatment results were used for statistical analysis. Results In 77 patients with lobar consolidation, the rate of detection was 43.26% (77/178), and in 101 patients with lobular pneumonia it was 56.74% (101/178). In 51 patients, pathogenic bacteria were detected (28.65%, 51/178). Sixteen of 33 patients detected with bacteria had cavities (48.5%, 16/33) and 35 of 145 patients detected with bacteria had no cavities (24.1%, 35/145). The difference between the 2 groups was statistically significant (χ2=7.795, P=0.005). According to the pathogenic bacteria, 38 patients were cured (74.51%, 38/51), and according to the CT imaging features 81 patients were cured (71.05%, 81/114). No statistically significant difference was found between them (χ2=0.209, P=0.647). Conclusions Treatment effect of CAP based on HRCT findings is not inferior to treatment effect guided by microbial characterization. PMID:27031210

  3. Mars Orbiter Camera Acquires High Resolution Stereoscopic Images of the Viking One Landing Site

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Two MOC images of the vicinity of the Viking Lander 1 (MOC 23503 and 25403), acquired separately on 12 April 1998 at 08:32 PDT and 21 April 1998 at 13:54 PDT (respectively), are combined here in a stereoscopic anaglyph. The more recent, slightly better quality image is in the red channel, while the earlier image is shown in the blue and green channels. Only the overlap portion of the images is included in the composite.

    Image 23503 was taken at a viewing angle of 31.6o from vertical; 25403 was taken at an angle of 22.4o, for a difference of 9.4o. Although this is not as large a difference as is typically used in stereo mapping, it is sufficient to provide some indication of relief, at least in locations of high relief.

    The image shows the raised rims and deep interiors of the larger impact craters in the area (the largest crater is about 650 m/2100 feet across). It shows that the relief on the ridges is very subtle, and that, in general, the Viking landing site is very flat. This result is, of course, expected: the VL-1 site was chosen specifically because it was likely to have low to very low slopes that represented potential hazards to the spacecraft.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  4. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  5. Large-Volume Reconstruction of Brain Tissue from High-Resolution Serial Section Images Acquired by SEM-Based Scanning Transmission Electron Microscopy

    PubMed Central

    Kuwajima, Masaaki; Mendenhall, John M.; Harris, Kristen M.

    2013-01-01

    With recent improvements in instrumentation and computational tools, serial section electron microscopy has become increasingly straightforward. A new method for imaging ultrathin serial sections is developed based on a field emission scanning electron microscope fitted with a transmitted electron detector. This method is capable of automatically acquiring high-resolution serial images with a large field size and very little optical and physical distortions. In this chapter, we describe the procedures leading to the generation and analyses of a large-volume stack of high-resolution images (64 μm × 64 μm × 10 μm, or larger, at 2 nm pixel size), including how to obtain large-area serial sections of uniform thickness from well-preserved brain tissue that is rapidly perfusion-fixed with mixed aldehydes, processed with a microwave-enhanced method, and embedded into epoxy resin. PMID:23086880

  6. Large-volume reconstruction of brain tissue from high-resolution serial section images acquired by SEM-based scanning transmission electron microscopy.

    PubMed

    Kuwajima, Masaaki; Mendenhall, John M; Harris, Kristen M

    2013-01-01

    With recent improvements in instrumentation and computational tools, serial section electron microscopy has become increasingly straightforward. A new method for imaging ultrathin serial sections is developed based on a field emission scanning electron microscope fitted with a transmitted electron detector. This method is capable of automatically acquiring high-resolution serial images with a large field size and very little optical and physical distortions. In this chapter, we describe the procedures leading to the generation and analyses of a large-volume stack of high-resolution images (64 μm × 64 μm × 10 μm, or larger, at 2 nm pixel size), including how to obtain large-area serial sections of uniform thickness from well-preserved brain tissue that is rapidly perfusion-fixed with mixed aldehydes, processed with a microwave-enhanced method, and embedded into epoxy resin.

  7. High Resolution Imaging Spectrometer (HIRIS)

    NASA Technical Reports Server (NTRS)

    Conley, Joseph M.; Herring, Mark; Norris, David D.

    1988-01-01

    The High Resolution Imaging Spectrometer (HIRIS), related data system, orbit, and mission operations are described. The pushbroom instrument simultaneously images the terrestrial surface in 192 spectral bands from 0.4 to 2.5 microns. The swath width is 30 km and spatial resolution is 30 m. It is planned to be launched with the Earth Observing System aboard the Space Station Polar Platform in 1995. Array detectors allow concurrent integration of the signals at 192,000 detector elements.

  8. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  9. High resolution imaging at Palomar

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    1992-01-01

    For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.

  10. High-resolution imaging ellipsometer.

    PubMed

    Zhan, Qiwen; Leger, James R

    2002-08-01

    We report on a novel imaging ellipsometer using a high-numerical-aperture (NA) objective lens capable of measuring a two-dimensional ellipsometric signal with high resolution. Two-dimensional ellipsometric imaging is made possible by spatial filtering at the pupil plane of the objective. A Richards-Wolf vectorial diffraction model and geometrical optics model are developed to simulate the system. The thickness profile of patterned polymethyl methacrylate is measured for calibration purposes. Our instrument has a sensitivity of 5 A and provides spatial resolution of approximately 0.5 microm with 632.8-nm illumination. Its capability of measuring refractive-index variations with high spatial resolution is also demonstrated.

  11. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  12. Small UAV-Acquired, High-resolution, Georeferenced Still Imagery

    SciTech Connect

    Ryan Hruska

    2005-09-01

    Currently, small Unmanned Aerial Vehicles (UAVs) are primarily used for capturing and down-linking real-time video. To date, their role as a low-cost airborne platform for capturing high-resolution, georeferenced still imagery has not been fully utilized. On-going work within the Unmanned Vehicle Systems Program at the Idaho National Laboratory (INL) is attempting to exploit this small UAV-acquired, still imagery potential. Initially, a UAV-based still imagery work flow model was developed that includes initial UAV mission planning, sensor selection, UAV/sensor integration, and imagery collection, processing, and analysis. Components to support each stage of the work flow are also being developed. Critical to use of acquired still imagery is the ability to detect changes between images of the same area over time. To enhance the analysts’ change detection ability, a UAV-specific, GIS-based change detection system called SADI or System for Analyzing Differences in Imagery is under development. This paper will discuss the associated challenges and approaches to collecting still imagery with small UAVs. Additionally, specific components of the developed work flow system will be described and graphically illustrated using varied examples of small UAV-acquired still imagery.

  13. High-resolution color images of Io

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Soderblom, L. A.

    1984-01-01

    Color versions of the highest resolution Voyager images of Io were produced by combining the low resolution color images with the high resolution, clear filter images. High resolution versions of the orange, blue, and violet filter images are produced by: orange = high-res clear * low-res orange / low-res clear blue = high-res clear * low-res blue / low-res clear violet = high-res clear * low-res violet / low-res clear. The spectral responses of the high and low resolution clear filter images cancel, leaving the color, while the spatial frequencies of the two low resolution images cancel, leaving the high resolution.

  14. Semiconductor crystal high resolution imager

    NASA Technical Reports Server (NTRS)

    Levin, Craig S. (Inventor); Matteson, James (Inventor)

    2011-01-01

    A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).

  15. High Resolution Imaging with AEOS

    SciTech Connect

    Patience, J; Macintosh, B A; Max, C E

    2001-08-27

    The U. S. Air Force Advanced Electro-Optical System (AEOS) which includes a 941 actuator adaptive optics system on a 3.7m telescope has recently been made available for astronomical programs. Operating at a wavelength of 750 nm, the diffraction-limited angular resolution of the system is 0.04 inches; currently, the magnitude limit is V {approx} 7 mag. At the distances of nearby open clusters, diffraction-limited images should resolve companions with separations as small as 4-6 AU--comparable to the Sun-Jupiter distance. The ability to study such close separations is critical, since most companions are expected to have separations in the few AU to tens of AU range. With the exceptional angular resolution of the current AEOS setup, but restricted target magnitude range, we are conducting a companion search of a large, well-defined sample of bright early-type stars in nearby open clusters and in the field. Our data set will both characterize this relatively new adaptive optics system and answer questions in binary star formation and stellar X-ray activity. We will discuss our experience using AEOS, the data analysis involved, and our initial results.

  16. Applications of high-resolution remote sensing image data

    NASA Technical Reports Server (NTRS)

    Strome, W. M.; Leckie, D.; Miller, J.; Buxton, R.

    1990-01-01

    There are many situations in which the image resolution of satellite data is insufficient to provide the detail required for resource management and environmental monitoring. This paper will focus on applications of high-resolution (0.4 to 10 m) airborne multispectral and imaging spectrometer data acquired in Canada using the MEIS II multispectral line imager and the PMI imaging spectrometer. Applications discussed will include forestry, mapping, and geobotany.

  17. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  18. Pyramidal fractal dimension for high resolution images

    NASA Astrophysics Data System (ADS)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  19. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images. PMID:27475069

  20. High-resolution reconstruction for terahertz imaging.

    PubMed

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  1. High-Resolution Anamorphic SPECT Imaging

    PubMed Central

    Durko, Heather L.; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    We have developed a gamma-ray imaging system that combines a high-resolution silicon detector with two sets of movable, half-keel-edged copper-tungsten blades configured as crossed slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnifications are not constrained to be equal. The detector is a 60 mm × 60 mm, one-millimeter-thick, one-megapixel silicon double-sided strip detector with a strip pitch of 59 μm. The flexible nature of this system allows the application of adaptive imaging techniques. We present system details; calibration, acquisition, and reconstruction methods; and imaging results. PMID:26160983

  2. High resolution millimeter-wave imaging sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Howard, R. J.; Parks, G. S.

    1985-01-01

    A scanning 3-mm radiometer is described that has been built for use on a small aircraft to produce real time high resolution images of the ground when atmospheric conditions such as smoke, dust, and clouds make IR and visual sensors unusable. The sensor can be used for a variety of remote sensing applications such as measurements of snow cover and snow water equivalent, precipitation mapping, vegetation type and extent, surface moisture and temperature, and surface thermal inertia. The advantages of millimeter waves for cloud penetration and the ability to observe different physical phenomena make this system an attractive supplement to visible and IR remote sensing systems.

  3. Limiting liability via high resolution image processing

    SciTech Connect

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  4. High-resolution speckle imaging through strong atmospheric turbulence.

    PubMed

    Hope, Douglas A; Jefferies, Stuart M; Hart, Michael; Nagy, James G

    2016-05-30

    We demonstrate that high-resolution imaging through strong atmospheric turbulence can be achieved by acquiring data with a system that captures short exposure ("speckle") images using a range of aperture sizes and then using a bootstrap multi-frame blind deconvolution restoration process that starts with the smallest aperture data. Our results suggest a potential paradigm shift in how we image through atmospheric turbulence. No longer should image acquisition and post processing be treated as two independent processes: they should be considered as intimately related.

  5. High resolution multimodal clinical ophthalmic imaging system.

    PubMed

    Mujat, Mircea; Ferguson, R Daniel; Patel, Ankit H; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X

    2010-05-24

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  6. High-resolution CCD imaging alternatives

    NASA Astrophysics Data System (ADS)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  7. HIRIS - The High Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1988-01-01

    The High-Resolution Imaging Spectrometer (HIRIS) is a JPL facility instrument designed for NASA's Earth Observing System (Eos).It will have 10-nm wide spectral bands from 0.4-2.5 microns at 30 m spatial resolution over a 30 km swath. The spectral resolution allows identification of many minerals in rocks and soils, important algal pigments in oceans and inland waters, spectral changes associated with plant canopy biochemistry, composition of atmospheric aerosols, and grain size of snow and its contamination by absorbing impurities. The bands wil have 12-bit quantization over a dynamic range suitable for bright targets, such as snow. For targets of low brightness, such as water bodies, image-motion compensation will allow gains up to a factor of eight to increase signal-to-noise ratios. In the 824-km orbit altitude proposed for Eos, the crosstrack pointing capability will allow 4-5 views during a 16-day revisit cycle.

  8. Resolution analysis of high-resolution marine seismic data acquired off Yeosu, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Kim, Wonsik; Koo, Nam-Hyung; Park, Keun-Pil; Yoo, Dong-Geun; Kang, Dong-Hyo; Kim, Young-Gun; Seo, Gab-Seok; Hwang, Kyu-Duk

    2014-05-01

    High-resolution marine seismic surveys have been conducted for the mineral exploration and engineering purpose survey. To improve the quality of high-resolution seismic data, small-scaled multi-channel seismic techniques are used. In this study, we designed high-resolution marine seismic survey using a small airgun and an 8-channel streamer cable and analyzed the resolution of the seismic data related to acquisition and processing parameters. The field survey was conducted off Yeosu, Korea where the stratified thin sedimentary layers are deposited. We used a 30 in3 airgun and an 8-channel streamer cable with a 5 m group interval. We shoot the airgun with a 5 m shot interval and recorded digital data with a 0.1 ms sample interval and 1 s record length. The offset between the source and the first channel was 20 m. We processed the acquired data with simple procedure such as gain recovery, deconvolution, digital filtering, CMP sorting, NMO correction, static correction and stacking. To understand the effect of the acquisition parameters on the vertical and horizontal resolution, we resampled the acquired data using various sample intervals and CMP intervals and produced seismic sections. The analysis results show that the detailed subsurface structures can be imaged with good resolution and continuity using acquisition parameters with a sample interval shorter than 0.2 ms and a CMP interval shorter than 2.5 m. A high-resolution marine 8-channel airgun seismic survey using appropriate acquisition and processing parameters can be effective in imaging marine subsurface structure with a high resolution. This study is a part of a National Research Laboratory (NRL) project and a part of an Energy Technology Innovation (ETI) Project of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Trade, Industry and Energy (MOTIE). The authors thank the officers and crew of the R/V Tamhae II for their efforts in the field survey.

  9. High resolution multiplexed functional imaging in live embyros (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical projection tomography (OPT) creates isotropic 3D imaging of tissue. Two approaches exist today: Wide-field OPT illuminates the entire sample and acquires projection images with a camera; Scanning-laser optical tomography (SLOT) generates the projection with a moving laser beam and point detector. SLOT has superior light collecting efficiency than wide-field optical tomography, making it ideal for tissue fluorescence imaging. Regardless the approach, traditional OPT has to compromise between the resolution and the depth of view. In traditional SLOT, the focused Gaussian beam diverges quickly from the focused plane, making it impossible to achieve high resolution imaging through a large volume specimen. We report using Bessel beam instead of Gaussian beam to perform SLOT. By illuminating samples with a narrow Bessel beam throughout an extended depth, high-resolution projection images can be measured in large volume. Under Bessel illumination, the projection image contains signal from annular-rings of the Bessel beam. Traditional inverse Radon transform of these projections will result in ringing artifacts in reconstructed imaging. Thus a modified 3D filtered back projection algorithm is developed to perform tomography reconstructing of Bessel-illuminated projection images. The resulting 3D imaging is free of artifact and achieved cellular resolution in extended sample volume. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove Bessel SLOT a promising imaging method in development biology research.

  10. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  11. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  12. High-resolution microwave images of Saturn

    NASA Technical Reports Server (NTRS)

    Grossman, A. W.; Muhleman, D. O.; Berge, G. L.

    1989-01-01

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern midlatitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH3 mixing ratio to be 0.00012 in a region just below the NH3 clouds, while the observed bright band indicates a 25 percent relative decrease of NH3 in northern midlatitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.

  13. High-resolution microwave images of saturn.

    PubMed

    Grossman, A W; Muhleman, D O; Berge, G L

    1989-09-15

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern mid-latitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH(3) mixing ratio to be 1.2 x 10(-4) in a region just below the NH(3) clouds, while the observed bright band indicates a 25 percent relative decrease of NH(3) in northern mid-latitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.

  14. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    The systematic orbital imaging of the Martian surface started 4 decades ago from NASA's Viking Orbiter 1 & 2 missions, which were launched in August 1975, and acquired orbital images of the planet between 1976 and 1980. The result of this reconnaissance was the first medium-resolution (i.e. ≤ 300m/pixel) global map of Mars, as well as a variety of high-resolution images (reaching up to 8m/pixel) of special regions of interest. Over the last two decades NASA has sent 3 more spacecraft with onboard instruments for high-resolution orbital imaging: Mars Global Surveyor (MGS) having onboard the Mars Orbital Camera - Narrow Angle (MOC-NA), Mars Odyssey having onboard the Thermal Emission Imaging System - Visual (THEMIS-VIS) and the Mars Reconnaissance Orbiter (MRO) having on board two distinct high-resolution cameras, Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE). Moreover, ESA has the multispectral High resolution Stereo Camera (HRSC) onboard ESA's Mars Express with resolution up to 12.5m since 2004. Overall, this set of cameras have acquired more than 400,000 high-resolution images, i.e. with resolution better than 100m and as fine as 25 cm/pixel. Notwithstanding the high spatial resolution of the available NASA orbital products, their accuracy of areo-referencing is often very poor. As a matter of fact, due to pointing inconsistencies, usually form errors in roll attitude, the acquired products may actually image areas tens of kilometers far away from the point that they are supposed to be looking at. On the other hand, since 2004, the ESA Mars Express has been acquiring stereo images through the High Resolution Stereo Camera (HRSC), with resolution that is usually 12.5-25 metres per pixel. The achieved coverage is more than 64% for images with resolution finer than 20 m/pixel, while for ~40% of Mars, Digital Terrain Models (DTMs) have been produced with are co-registered with MOLA [Gwinner et al., 2010]. The HRSC images and DTMs

  15. High resolution ultrasound and photoacoustic imaging of single cells

    PubMed Central

    Strohm, Eric M.; Moore, Michael J.; Kolios, Michael C.

    2016-01-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level. PMID:27114911

  16. The high resolution imaging spectrometer (HIRIS) for EOS

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Herring, Mark

    1989-01-01

    The high resolution imaging spectrometer (HIRIS) designed for the Earth Observing System (EOS) is designed to acquire images in 192 spectral bands simultaneously in the 0.4-2.5-micron wavelength region. HIRIS is a targeting rather than a continuous acquisition instrument and obtains high-spatial- and spectral-resolution images in a 30-km swath with a 30-m ground instantaneous field of view (GIFOV) in vertical viewing. Pointing will allow image acquisition at -30 to +60 deg along-track and +/-24 deg cross-track. The raw data rate of the instrument is 512 Mbs. The high spectral resolution will make it possible to identify many surficial materials such as rocks, soils, and suspended matter in water directly. HIRIS also offers the possibility of studying biochemical process in vegetation canopies.

  17. High resolution ultrasound and photoacoustic imaging of single cells.

    PubMed

    Strohm, Eric M; Moore, Michael J; Kolios, Michael C

    2016-03-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  18. High Resolution Image From Viking Lander 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking 1 took this high-resolution picture today, its third day on Mars. Distance from the camera to the nearfield (bottom) is about 4 meters (13 feet); to the horizon, about 3 kilometers (1.8 miles). The photo shows numerous angular blocks ranging in size from a few centimeters to several meters. The surface between the blocks is composed of fine-grained material. Accumulation of some fine-grained material behind blocks indicates wind deposition of dust and sand downwind of obstacles. The large block on the horizon is about 4 meters (13 feet) wide. Distance across the horizon is about 34 meters (110 feet).

  19. High-resolution ophthalmic imaging system

    DOEpatents

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  20. High resolution in galaxy photometry and imaging

    NASA Astrophysics Data System (ADS)

    Nieto, J.-L.; Lelievre, G.

    Techniques for increasing the resolution of ground-based photometric observations of galaxies are discussed. The theoretical limitations on resolution and their implications for choosing telescope size at a given site considered, with an emphasis on the importance of the Fried (1966) parameter r0. The techniques recommended are shortening exposure time, selection of the highest-resolution images, and a posteriori digital image processing (as opposed to active-mirror image stabilization or the cine-CCD system of Fort et al., 1984). The value of the increased resolution (by a factor of 2) achieved at Pic du Midi observatory for studies of detailed structure in extragalactic objects, for determining the distance to galaxies, and for probing the central cores of galaxies is indicated.

  1. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  2. High-resolution breath-hold cardiac magnetic resonance imaging

    SciTech Connect

    Liu, Yu.

    1993-01-01

    This dissertation work is composed of investigations of three methods for fast cardiac magnetic resonance imaging (MRI). These methods include (1) 2D breath-hold magnetization prepared gradient echo and fast spin-echo (FSE) cardiac imaging, (2) 3D breath-hold magnetization prepared gradient echo cardiac imaging, and (3) real-time monitoring, feedback, and triggering for breath-hold MRI. The hypothesis of this work is that high resolution 2D and 3D magnetic resonance data sets for the heart can be acquired with the combination of magnetization prepared blood suppression for gradient echo techniques and accurate breath-holding methods. The 2D method included development of magnetic resonance data acquisition for cardiac imaging. The acquisition time is within a single breath-hold of 16 seconds (assuming heart 60/min). The data acquisition is synchronized with the electrocardiogram signal. Based on consistent observations of specific small cardiac structures like the papillary muscle, trabeculae, moderator band, and coronary vessels in studies of normal volunteers, the image quality represents a significant improvement over that obtained with fast imaging methods previously. To further improve the image quality provided by the 2D method, the first 3D cardiac MRI technique was developed. This method provides even better spatial resolution for cardiac images, with a voxel size of 1.09 [times] 2.19 [times] 4 mm[sup 3]. A 3D acquisition is completed in 8 breath-holds. The data acquisition for 3D cardiac imaging requires a consistent breath-hold position to avoid respiratory artifacts. To improve the reliability of the 3DFT acquisition, a new technique called MR breath-hold feedback was developed to provide reproducible breathholding. The diaphragm location is used as the index for breath-hold reproducibility measurement. The range of the diaphragm displacement in different breath-hold is reduced from 8.3 mm without the technique, to 1.3 mm with the technique.

  3. High Resolution Imaging Spectrometer (HIRIS): Science and Instrument

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Davis, Curtiss O.

    1991-01-01

    The High Resolution Imaging Spectrometer (HIRIS) is a facility instrument slated for flight on the second of the EOS-A series of platforms. HIRIS is designed to acquire 24-km wide, 30-m pixel images in 192 spectral bands simultaneously in the 0.4-2.45-micrometer wavelength region. With pointing mirrors it can sample any place on Earth, except the poles, every two days. HIRIS operates at the intermediate scale between the human and the global and therefore links studies of Earth surface processes to global monitoring carried out by lower-resolution instruments. So far, over 50 science data products from HIRIS images have been identified in the fields of atmospheric gases, clouds, snow and ice, water, vegetation, and rocks and soils. The key attribute of imaging spectrometry that makes it possible to derive quantitative information from the data is the large number of contiguous spectral bands. Therefore spectrum matching techniques can be applied. Such techniques are not possible with present-day, multispectral scanner data.

  4. High-Resolution MOC Image of Phobos

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of Phobos, the inner and larger of the two moons of Mars, was taken by the Mars Global Surveyor on August 19, 1998. This image shows a close-up of the largest crater on Phobos, Stickney, 10 kilometers (6 miles) in diameter. Individual boulders are visible on the near rim of the crater, and are presumed to be ejecta blocks from the impact that formed Stickney. Some of these boulders are enormous - more than 50 meters (160 feet) across. Also crossing at and near the rim of Stickney are shallow, elongated depressions called grooves. This crater is nearly half the size of Phobos and these grooves may be fractures caused by its formation. Phobos was observed by both the Mars Orbiter Camera (MOC) and Thermal Emission Spectrometer (TES). This image is one of the highest resolution images (4 meters or 13 feet per picture element or pixel) ever obtained of the Martian satellite.

    Malin Space Science Systems, Inc. and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Thermal Emission Spectrometer is operated by Arizona State University and was built by Raytheon Santa Barbara Remote Sensing. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  5. High Resolution Multimode Fiber Image Recovery

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah

    2000-01-01

    The research emphasis is on developing a cost-effective method of recovering image information from small, closely confined spaces using multimode fibers. The state-of-the-art good quality-viewing fiber, which can currently be used for performing this function, is a 0.5 mm diameter bundle containing 6000 pixels at a cost of $10,000 per fiber bundle. However, these fiber bundles are very fragile and can easily break during surgical use, thereby making instrument reliability and replacement cost,a major impediment to their routine use in many applications. The advantage of working with a single multimode fiber is that it is significantly less expensive and mechanically more robust. In addition, careful choice of numerical aperture allows a higher image resolution (roughly 750,000 pixels) with a 0.5 mm diameter multimode fiber.

  6. High resolution image measurements of nuclear tracks

    NASA Technical Reports Server (NTRS)

    Shirk, E. K.; Price, P. B.

    1980-01-01

    The striking clarity and high contrast of the mouths of tracks etched in CR-39 plastic detectors allow automatic measurement of track parameters to be made with simple image-recognition equipment. Using a commercially available Vidicon camera system with a microprocessor-controlled digitizer, resolution for normally incident C-12 and N-14 ions at 32 MeV/amu equivalent to a 14sigma separation of adjacent charges was demonstrated.

  7. Medusae Fossae Formation - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An exotic terrain of wind-eroded ridges and residual smooth surfaces are seen in one of the highest resolution images ever taken of Mars from orbit. The Medusae Fossae formation is believed to be formed of the fragmental ejecta of huge explosive volcanic eruptions. When subjected to intense wind-blasting over hundreds of millions of years, this material erodes easily once the uppermost tougher crust is breached. The crust, or cap rock, can be seen in the upper right part of the picture. The finely-spaced ridges are similar to features on Earth called yardangs, which are formed by intense winds plucking individual grains from, and by wind-driven sand blasting particles off, sedimentary deposits.

    The image was taken on October 30, 1997 at 11:05 AM PST, shortly after the Mars Global Surveyor spacecraft's 31st closest approach to Mars. The image covers an area 3.6 X 21.5 km (2.2 X 13.4 miles) at 3.6 m (12 feet) per picture element--craters only 11 m (36 feet, about the size of a swimming pool) across can be seen. The best Viking view of the area (VO 1 387S34) has a resolution of 240 m/pixel, or 67 times lower resolution than the MOC frame.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  8. GLASS CERAMICS FOR HIGH RESOLUTION IMAGING

    SciTech Connect

    Johnson, Jackie A.; Weber, Rick; Kolesnikov, Alexander I; SCHWEIZER, Stefan

    2008-01-01

    Glass-ceramic materials are being developed for use in digital mammography systems. The materials are transparent x-ray storage phosphors, which are potentially less expensive than competing materials with superior performance. The materials do not suffer from loss of resolution and increased noise due to light scattering from grain boundaries, as do the currently available polycrystalline materials. The glass ceramics are based on Eu2+ -doped fluorochlorozirconate glasses. These can be heat treated to nucleate Eudoped barium chloride nanocrystals. The glass ceramic converts ionizing radiation (typically x-rays) into stable electronhole pairs that can be read by scanning a stimulating light beam across the glass to cause photostimulated luminescence (PSL) emission. Measurements on the materials are ongoing to elucidate structure-property relationships developed as a result of introducing rare-earth ions and modifying process conditions. Image quality measurements indicate that the current material competes with state-of-the-art x-ray imaging plates. The paper presents results on structure, properties and future directions of the materials described above.

  9. High-resolution colorimetric imaging of paintings

    NASA Astrophysics Data System (ADS)

    Martinez, Kirk; Cupitt, John; Saunders, David R.

    1993-05-01

    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  10. Flow-ejecta Crater in Icaria Planum - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Global Surveyor Orbiter Camera (MOC) acquired this high resolution image of a flow ejecta crater on November 19, 1997, at 8:26 PM PST, about 18 minutes after the start the 45th orbit of Mars. The area shown is roughly 6.5 by 40.2 kilometers (4 by 25 miles), and is located near 40 degrees South latitude, 120 degrees West longitude. Features as small as 15-18 m (50-60 feet) across are visible in the picture.

    Flow ejecta craters are so named because the material blasted out of the crater during the impact process appears to have flowed across the surface of Mars. First seen in Mariner 9 images in 1973, and described in detail using Viking Orbiter images acquired in 1976-78, flow-ejecta craters are considered by many scientists to be evidence that liquid water could be found in the near-subsurface at the time the craters formed. This image, a factor of two better than any previous view of such features (and a factor of 33 better than the best Viking frame of the specific crater, 056A61), shows two smaller, pre-existing craters and the interaction of the flowing ejecta with these craters. The uppermost small crater has been over-topped and partly buried by the flow, while the flow has been diverted around the lower crater. Ridges formed where the flow 'stacked up' behind obstacles, or came to rest.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  11. Cheetah: A high frame rate, high resolution SWIR image camera

    NASA Astrophysics Data System (ADS)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  12. Schiaparelli Crater Rim and Interior Deposits - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A portion of the rim and interior of the large impact crater Schiaparelli is seen at high resolution in this image acquired October 18, 1997 by the Mars Global Surveyor Orbiter Camera (MOC). The area covered is very small--3.9 X 10.2 km (2.4 X 6.33 mi)--but is seen at 63 times higher resolution than the Viking image. The subdued relief and bright surface are attributed to blanketing by dust; many small craters have been completely filled in, and only the most recent (and very small) craters appear sharp and bowl-shaped. Some of the small craters are only 10-12 m (30-35 feet) across. Occasional dark streaks on steeper slopes are small debris slides that have probably occurred in the past few decades. The two prominent, narrow ridges in the center of the image may be related to the adjustment of the crater floor to age or the weight of the material filling the basin.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  13. Obtaining high resolution XUV coronal images

    NASA Technical Reports Server (NTRS)

    Golub, L.; Spiller, E.

    1992-01-01

    Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.

  14. High resolution CO images of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Meixner, M.; Puchalsky, R.; Blitz, L.; Wright, M.

    1990-01-01

    The CO (J = 1-0) emission of three Seyfert galaxies, NGC 3227, NGC 7469, and NGC 5033 was imaged. The CO emission in NGC 3227 and NGC 7469 appears as compact structures centered on the active nuclei, containing substantial fractions of the single-dish flux. In NGC 3227, 10 percent of the CO flux detected by the interferometer is contained within the ionized narrow-line region. The unresolved molecular gas concentrations in the nucleus of NGC 3227 imply a CO mass of 65 million solar masses concentrated within a diameter less than 50 pc. The CO emission in NGC 5033 is not detected at this resolution, implying a CO structure size of 20 to 60 arcsec. Continuum emission at 2.7 mm is not detected in any of the three galaxies. In the center of NGC 7469, the H2 mass is comparable to the dynamical mass. Kinematic studies of the detected gas reveal a rotational motion of the gas in NGC 3227 and NGC 7469, allowing identification of the gas in NGC 7469 with a nuclear starburst. These data are consistent with the idea that interactions between galaxies cause gas to concentrate in their nuclei thereby feeding starburst and Seyfert activity.

  15. Wide swath and high resolution optical imaging satellite of Japan

    NASA Astrophysics Data System (ADS)

    Katayama, Haruyoshi; Kato, Eri; Imai, Hiroko; Sagisaka, Masakazu

    2016-05-01

    The "Advanced optical satellite" (tentative name) is a follow-on mission from ALOS. Mission objectives of the advanced optical satellite is to build upon the existing advanced techniques for global land observation using optical sensors, as well as to promote data utilization for social needs. Wide swath and high resolution optical imager onboard the advanced optical satellite will extend the capabilities of earlier ALOS missions. The optical imager will be able to collect high-resolution (< 1 m) and wide-swath (70 km) images with high geo-location accuracy. This paper introduces a conceptual design of the advanced optical satellite.

  16. Distant Supernova Remnant Imaged by Chandra's High Resolution Camera

    NASA Astrophysics Data System (ADS)

    1999-09-01

    supernova." The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing power of the mirrors. When used with the Chandra mirrors, the HRC will make images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a stop sign at a distance of twelve miles. The checkout period for the HRC will continue for the next few weeks, during which time the team expects to acquire images of other supernova remnants, star clusters, and starburst galaxies. To follow Chandra's progress, visit the Chandra News Web site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra X-ray Observatory for NASA's Office of Space Science, NASA Headquarters, Washington, D.C. The Smithsonian Astrophysical Observatory's Chandra X-ray Center in Cambridge, Mass., manages the Chandra science program and controls the observatory for NASA. TRW Space and Electronics Group of Redondo Beach, Calif., leads the contractor team that built Chandra. High resolution digital versions of the X-ray image (300 dpi JPG, TIFF) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/0050/ or via links in: http://chandra.harvard.edu

  17. High Resolution Digital Imaging of Paintings: The Vasari Project.

    ERIC Educational Resources Information Center

    Martinez, Kirk

    1991-01-01

    Describes VASARI (the Visual Art System for Archiving and Retrieval of Images), a project funded by the European Community to show the feasibility of high resolution colormetric imaging directly from paintings. The hardware and software used in the system are explained, storage on optical disks is described, and initial results are reported. (five…

  18. High-resolution Urban Image Classification Using Extended Features

    SciTech Connect

    Vatsavai, Raju

    2011-01-01

    High-resolution image classification poses several challenges because the typical object size is much larger than the pixel resolution. Any given pixel (spectral features at that location) by itself is not a good indicator of the object it belongs to without looking at the broader spatial footprint. Therefore most modern machine learning approaches that are based on per-pixel spectral features are not very effective in high- resolution urban image classification. One way to overcome this problem is to extract features that exploit spatial contextual information. In this study, we evaluated several features in- cluding edge density, texture, and morphology. Several machine learning schemes were tested on the features extracted from a very high-resolution remote sensing image and results were presented.

  19. High-resolution axial MR imaging of tibial stress injuries

    PubMed Central

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  20. High resolution ultraviolet imaging spectrometer for latent image analysis.

    PubMed

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  1. High-Resolution Cassini RADAR Scatterometer Images of Titan's Surface

    NASA Astrophysics Data System (ADS)

    Wye, Lauren C.; Zebker, H. A.; Cassini RADAR Team

    2006-09-01

    The Cassini RADAR scatterometer has acquired observations to date of about 40% of Titan's surface at resolutions averaging just under 100 km, where the resolution cell size is set by the real aperture of the radar antenna. Finer resolution (0.3-1 km) images have been acquired by RADAR in synthetic-aperture (SAR) mode of about 10% of the surface. Additional techniques have been developed to use the SAR processor at larger distances (denoted High-SAR) for increased high-resolution (2-3 km) coverage, though with very narrow swath sizes (see West et al., this conference). In this paper, we demonstrate that complex processing methods, specifically range compression and unfocused SAR processing, can also be applied to the data collected in rastered scatterometer mode, achieving resolutions near 15 km and maintaining 10 or more radar "looks.” Despite poorer resolution, rastered scatterometry has two advantages over SAR and High-SAR: 1) greater surface coverage is possible with less data volume, and 2) the surface is sampled over a wider range of incidence angles, so that important characteristics like dielectric constant and surface slope may be estimated. Improving the resolution of the scatterometer's near-global backscatter maps will significantly enhance the unique knowledge that RADAR contributes to the understanding of Titan and its fascinating surface. Here, we present examples of scatterometer coverage of Titan at its highest resolution. This work was carried out at Stanford University, under contract with the Cassini Project of the Jet Propulsion Laboratory (JPL) / National Aeronautics and Space Administration (NASA).

  2. High-resolution imaging of cellular processes in Caenorhabditis elegans.

    PubMed

    Maddox, Amy S; Maddox, Paul S

    2012-01-01

    Differential interference contrast (DIC) imaging of Caenorhabditis elegans embryogenesis led to a Nobel Prize in Physiology or Medicine (Sulston et al., 1983) as did the first use of green fluorescent protein (GFP) in a transgenic C. elegans (Chalfie et al., 1994). Given that C. elegans is free living, does not require exceptional environmental control, and is optically clear, live imaging is a powerful tool in for this model system. Combining genetics with high-resolution imaging has continued to make important contributions to many fields. In this chapter, we discuss how certain aspects of high-resolution microscopy are implemented. This is not an exhaustive review of microscopy; it is meant to be a helpful guide and point of reference for some basic concepts in imaging. While these concepts are largely true for all biological imaging, they are chosen as particularly important for C. elegans. PMID:22226519

  3. Progressive display of very high resolution images using wavelets.

    PubMed Central

    Zhang, Ya; Wang, James Z.

    2002-01-01

    Digital or digitized biomedical images often have very high resolutions', which make them difficult or impossible to display on computer screens. Therefore, it is desirable to develop a multiresolution display method with which users can freely browse the contents of those high resolution images. In this paper, we present an improved wavelet-based progressive image display algorithm by stressing on the encoding and decoding process. The encoder, which dynamically determines levels of transform and partition of coefficients, is based on a modified Haar wavelet transform. The decoder retrieves the necessary data and reconstructs the requested region at a scale specified by the user. A prototype system, which enables virtually any size of images to be displayed progressively, has been implemented based on this algorithm. The system has low computational complexity for both encoding and decoding process. Images Figure 2 PMID:12476909

  4. High-resolution imaging of upper limb neuropathies.

    PubMed

    Howe, Benjamin Matthew; Spinner, Robert J; Felmlee, Joel P; Amrami, Kimberly K

    2015-04-01

    MRI of the peripheral nerves continues to grow technologically and in clinical use. This article reviews the technological aspects and basic interpretation of high-resolution MR imaging of the upper extremity nerves. These techniques work with 1.5-, or preferably 3-T, scanners regardless of vendors. The article also includes selected pitfalls in the interpretation of upper extremity nerve MRI.

  5. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    images of interior structure to ~20 m, and to map dielectric properties (related to internal composition) to better than 200 m throughout. This is comparable in detail to modern 3D medical ultrasound, although we emphasize that the techniques are somewhat different. An interior mass distribution is obtained through spacecraft tracking, using data acquired during the close, quiet radar orbits. This is aligned with the radar-based images of the interior, and the shape model, to contribute to the multi-dimensional 3D global view. High-resolution visible imaging provides boundary conditions and geologic context to these interior views. An infrared spectroscopy and imaging campaign upon arrival reveals the time-evolving activity of the nucleus and the structure and composition of the inner coma, and the definition of surface units. CORE is designed to obtain a total view of a comet, from the coma to the active and evolving surface to the deep interior. Its primary science goal is to obtain clear images of internal structure and dielectric composition. These will reveal how the comet was formed, what it is made of, and how it 'works'. By making global yet detailed connections from interior to exterior, this knowledge will be an important complement to the Rosetta mission, and will lay the foundation for comet nucleus sample return by revealing the areas of shallow depth to 'bedrock', and relating accessible deposits to their originating provenances within the nucleus.

  6. An evaluation of SEBAL algorithm using high resolution aircraft data acquired during BEAREX07

    NASA Astrophysics Data System (ADS)

    Paul, G.; Gowda, P. H.; Prasad, V. P.; Howell, T. A.; Staggenborg, S.

    2010-12-01

    Surface Energy Balance Algorithm for Land (SEBAL) computes spatially distributed surface energy fluxes and evapotranspiration (ET) rates using a combination of empirical and deterministic equations executed in a strictly hierarchical sequence. Over the past decade SEBAL has been tested over various regions and has found its application in solving water resources and irrigation problems. This research combines high resolution remote sensing data and field measurements of the surface radiation and agro-meteorological variables to review various SEBAL steps for mapping ET in the Texas High Plains (THP). High resolution aircraft images (0.5-1.8 m) acquired during the Bushland Evapotranspiration and Agricultural Remote Sensing Experiment 2007 (BEAREX07) conducted at the USDA-ARS Conservation and Production Research Laboratory in Bushland, Texas, was utilized to evaluate the SEBAL. Accuracy of individual relationships and predicted ET were investigated using observed hourly ET rates from 4 large weighing lysimeters, each located at the center of 4.7 ha field. The uniqueness and the strength of this study come from the fact that it evaluates the SEBAL for irrigated and dryland conditions simultaneously with each lysimeter field planted to irrigated forage sorghum, irrigated forage corn, dryland clumped grain sorghum, and dryland row sorghum. Improved coefficients for the local conditions were developed for the computation of roughness length for momentum transport. The decision involved in selection of dry and wet pixels, which essentially determines the partitioning of the available energy between sensible (H) and latent (LE) heat fluxes has been discussed. The difference in roughness length referred to as the kB-1 parameter was modified in the current study. Performance of the SEBAL was evaluated using mean bias error (MBE) and root mean square error (RMSE). An RMSE of ±37.68 W m-2 and ±0.11 mm h-1 was observed for the net radiation and hourly actual ET, respectively

  7. High-Resolution Angioscopic Imaging During Endovascular Neurosurgery

    PubMed Central

    McVeigh, Patrick Z.; Sacho, Raphael; Weersink, Robert A.; Pereira, Vitor M.; Kucharczyk, Walter; Seibel, Eric J.; Wilson, Brian C.

    2014-01-01

    BACKGROUND: Endoluminal optical imaging, or angioscopy, has not seen widespread application during neurointerventional procedures, largely as a result of the poor imaging resolution of existing angioscopes. Scanning fiber endoscopes (SFEs) are a novel endoscopic platform that allows high-resolution video imaging in an ultraminiature form factor that is compatible with currently used distal access endoluminal catheters. OBJECTIVE: To test the feasibility and potential utility of high-resolution angioscopy with an SFE during common endovascular neurosurgical procedures. METHODS: A 3.7-French SFE was used in a porcine model system to image endothelial disruption, ischemic stroke and mechanical thrombectomy, aneurysm coiling, and flow-diverting stent placement. RESULTS: High-resolution, video-rate imaging was shown to be possible during all of the common procedures tested and provided information that was complementary to standard fluoroscopic imaging. SFE angioscopy was able to assess novel factors such as aneurysm base coverage fraction and side branch patency, which have previously not been possible to determine with conventional angiography. CONCLUSION: Endovascular imaging with an SFE provides important information on factors that cannot be assessed fluoroscopically and is a novel platform on which future neurointerventional techniques may be based because it allows for periprocedural inspection of the integrity of the vascular system and the deployed devices. In addition, it may be of diagnostic use for inspecting the vascular wall and postprocedure device evaluation. ABBREVIATIONS: CFB, coherent fiber bundle F, French SFE, scanning fiber endoscope PMID:24762703

  8. High-resolution MRI of spinal cords by compressive sensing parallel imaging.

    PubMed

    Peng Li; Xiangdong Yu; Griffin, Jay; Levine, Jonathan M; Jim Ji

    2015-08-01

    Spinal Cord Injury (SCI) is a common injury due to diseases or accidents. Noninvasive imaging methods play a critical role in diagnosing SCI and monitoring the response to therapy. Magnetic Resonance Imaging (MRI), by the virtue of providing excellent soft tissue contrast, is the most promising imaging method for this application. However, spinal cord has a very small cross-section, which needs high-resolution images for better visualization and diagnosis. Acquiring high-resolution spinal cord MRI images requires long acquisition time due to the physical and physiological constraints. Moreover, long acquisition time makes MRI more susceptible to motion artifacts. In this paper, we studied the application of compressive sensing (CS) and parallel imaging to achieve high-resolution imaging from sparsely sampled and reduced k-space data acquired by parallel receive arrays. In particular, the studies are limited to the effects of 2D Cartesian sampling with different subsampling schemes and reduction factors. The results show that compressive sensing parallel MRI has the potential to provide high-resolution images of the spinal cord in 1/3 of the acquisition time required by the conventional methods.

  9. Parallelization and Algorithmic Enhancements of High Resolution IRAS Image Construction

    NASA Technical Reports Server (NTRS)

    Cao, Yu; Prince, Thomas A.; Tereby, Susan; Beichman, Charles A.

    1996-01-01

    The Infrared Astronomical Satellite caried out a nearly complete survey of the infrared sky, and the survey data are important for the study of many astrophysical phenomena. However, many data sets at other wavelengths have higher resolutions than that of the co-added IRAS maps, and high resolution IRAS images are strongly desired both for their own information content and their usefulness in correlation. The HIRES program was developed by the Infrared Processing and Analysis Center (IPAC) to produce high resolution (approx. 1') images from IRAS data using the Maximum Correlation Method (MCM). We describe the port of HIRES to the Intel Paragon, a massively parallel supercomputer, other software developments for mass production of HIRES images, and the IRAS Galaxy Atlas, a project to map the Galactic plane at 60 and 100(micro)m.

  10. High-resolution imaging of globular cluster cores

    NASA Technical Reports Server (NTRS)

    Weir, N.; Piotto, G.; Djorgovski, S.

    1990-01-01

    An approach based on the maximum entropy method aimed at increasing angular resolution to study globular cluster cores is presented. To perform the image restoration the Gull-Skilling (1989) MEMSYS-3 code for maximum entropy reconstruction of arbitrary data sets was used. This software was recently applied to restoration of ESO images of the R136 object in the core of the 30 Doradus nebula. It was demonstrated that the software made it possible to restore an image at subpixel spatial scales which facilitates the detection of very high-resolution structure in the restored image.

  11. High Resolution Seismic Imaging of the Brawley Seismic Fault Zone

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R. D.; Rymer, M. J.; Lohman, R. B.; McGuire, J. J.; Sickler, R. R.; Criley, C.; Rosa, C.

    2011-12-01

    In March 2010, we acquired a series of high-resolution P-wave seismic reflection and refraction data sets across faults in the Brawley seismic zone (BSZ) within the Salton Sea Geothermal Field (SSGF). Our objectives were to determine the dip, possible structural complexities, and seismic velocities within the BSZ. One dataset was 3.4 km long trending east-west, and consisted of 334 shots recorded by a 2.4 km spread of 40 hz geophones placed every 10 meters. The spread was initially laid out from the first station at the eastern end of the profile to roughly 2/3 into the profile. After about half the shots, the spread was shifted from roughly 1/3 into the profile to the last station at the western end of the profile. P-waves were generated by Betsy-Seisgun 'shots' spaced every 10 meters. Initial analysis of first breaks indicate near-surface velocities of ~500-600 meters/sec, and deeper velocities of around 2000 meters/sec. Preliminary investigation of shot gathers indicate a prominent fault that extends to the ground surface. This fault is on a projection of the Kalin fault from about 40 m to the south, and broke the surface down to the west with an approximately north-south strike during a local swarm of earthquakes in 2005 and also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The dataset is part of the combined Obsidian Creep data set, and provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  12. Adaptive optics with pupil tracking for high resolution retinal imaging.

    PubMed

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  13. Compact and mobile high resolution PET brain imager

    DOEpatents

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  14. High resolution surface plasmon microscopy for cell imaging

    NASA Astrophysics Data System (ADS)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  15. Updating Object for GIS Database Information Using High Resolution Satellite Images: a Case Study Zonguldak

    NASA Astrophysics Data System (ADS)

    Alkan, M.; Arca, D.; Bayik, Ç.; Marangoz, A. M.

    2011-09-01

    Nowadays Geographic Information Systems (GIS) uses Remote Sensing (RS) data for a lot of applications. One of the application areas is the updating of the GIS database using high resolution imagery. In this context high resolution satellite imagery data is very important for many applications areas today's and future. And also, high resolution satellite imagery data will be used in many applications for different purposes. Information systems needs to high resolution imagery data for updating. Updating is very important component for the any of the GIS systems. One of this area will be updated and kept alive GIS database information. High resolution satellite imagery is used with different data base which serve map information via internet and different aims of information systems applications in future topographic and cartographic information systems will very important in our country in this sense use of the satellite images will be unavoidable. In this study explain to how is acquired to satellite images and how is use this images in information systems for object and roads. Firstly, pan-sharpened two of the IKONOS's images have been produced by fusion of high resolution PAN and MS images using PCI Geomatica v9.1 software package. Automatic object extraction has been made using eCognition v4.0.6. On the other hand, these objects have been manually digitized from high resolution images using ArcGIS v9.3. software package. Application section of in this study, satellite images data will be compared each other and GIS objects and road database. It is also determined which data is useful in Geographic Information Systems. Finally, this article explains that integration of remote sensing technology and GIS applications.

  16. Multispectral high-resolution hologram generation using orthographic projection images

    NASA Astrophysics Data System (ADS)

    Muniraj, I.; Guo, C.; Sheridan, J. T.

    2016-08-01

    We present a new method of synthesizing a digital hologram of three-dimensional (3D) real-world objects from multiple orthographic projection images (OPI). A high-resolution multiple perspectives of 3D objects (i.e., two dimensional elemental image array) are captured under incoherent white light using synthetic aperture integral imaging (SAII) technique and their OPIs are obtained respectively. The reference beam is then multiplied with the corresponding OPI and integrated to form a Fourier hologram. Eventually, a modified phase retrieval algorithm (GS/HIO) is applied to reconstruct the hologram. The principle is validated experimentally and the results support the feasibility of the proposed method.

  17. Saturn - high-resolution filtered image of Enceladus

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This high-resolution filtered image of Enceladus was made from several images obtained Aug. 25 by Voyager 2 from a range of 119,000 kilometers (74,000 miles). It shows further surface detail on this Saturnian moon (also viewed in the accompanying release P-23955C/BW, S-2-50, imaged about the same time). Enceladus is seen to resemble Jupiter's Galilean satellite Ganymede, which is, however, about 10 times larger. Faintly visible here in 'Saturnshine' is the hemisphere turned away from the sun. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  18. Extraction and labeling high-resolution images from PDF documents

    NASA Astrophysics Data System (ADS)

    Chachra, Suchet K.; Xue, Zhiyun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Accuracy of content-based image retrieval is affected by image resolution among other factors. Higher resolution images enable extraction of image features that more accurately represent the image content. In order to improve the relevance of search results for our biomedical image search engine, Open-I, we have developed techniques to extract and label high-resolution versions of figures from biomedical articles supplied in the PDF format. Open-I uses the open-access subset of biomedical articles from the PubMed Central repository hosted by the National Library of Medicine. Articles are available in XML and in publisher supplied PDF formats. As these PDF documents contain little or no meta-data to identify the embedded images, the task includes labeling images according to their figure number in the article after they have been successfully extracted. For this purpose we use the labeled small size images provided with the XML web version of the article. This paper describes the image extraction process and two alternative approaches to perform image labeling that measure the similarity between two images based upon the image intensity projection on the coordinate axes and similarity based upon the normalized cross-correlation between the intensities of two images. Using image identification based on image intensity projection, we were able to achieve a precision of 92.84% and a recall of 82.18% in labeling of the extracted images.

  19. Providing Internet Access to High-Resolution Mars Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  20. Providing Internet Access to High-Resolution Lunar Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  1. A methodology for high resolution digital image correlation in high temperature experiments.

    PubMed

    Blaber, Justin; Adair, Benjamin S; Antoniou, Antonia

    2015-03-01

    We propose a methodology for performing high resolution Digital Image Correlation (DIC) analysis during high-temperature mechanical tests. Specifically, we describe a technique for producing a stable, high-quality pattern on metal surfaces along with a simple optical system that uses a visible-range camera and a long-range microscope. The results are analyzed with a high-quality open-source DIC software developed by us. Using the proposed technique, we successfully acquired high-resolution strain maps of the crack tip field in a nickel superalloy sample at 1000 °C. PMID:25832279

  2. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    PubMed Central

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  3. High-resolution (30 m) lunar radar images

    NASA Technical Reports Server (NTRS)

    Zisk, Stanley H.

    1988-01-01

    New high-resolution radar images of the lunar surface are being produced using the Haystack Observatory range-Doppler radar system. The goals are to: investigate the decameter-scale properties of the lunar surface, as an aid in the understanding of the geophysical history of the moon; and to improve the understanding of the mechanisms of planetary radar backscattering, to aid in the interpretation of the coarser-resolution images which were and will be obtained from planetary probe missions and other earth-based observations.

  4. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  5. High-Resolution Multichannel Seismic-Reflection Data Acquired in the Northern Gulf of Mexico, 1998-99

    USGS Publications Warehouse

    Hart, Patrick E.; Cooper, Alan K.; Twichell, David C.; Lee, Myung; Agena, Warren

    2002-01-01

    During June 1998 and April 1999, the U.S. Geological Survey (USGS) conducted two research cruises in the northern Gulf of Mexico to acquire high-resolution seismic reflection data across the upper and middle continental slope as part of an investigation of the seismic character, distribution, and potential effects of naturally-occurring marine gas hydrates and related free gas within the gas hydrate stability zone. Over 1600 km of two-dimensional multichannel seismic reflection profiles were acquired during these two cruises. The specific objectives of this investigation are (a) to produce high-resolution images of the gas hydrate stability zone; (b) to study the distribution and character of potential seafloor failures and their relationship to known and inferred gas hydrate deposits; (c) to look at systematic variations in subsurface structure in gas hydrate and non-hydrate areas; and (d) to estimate, if possible, the amounts of hydrates present within the gas hydrate stability zone. The multichannel profiles provide high-quality images with approximately 5 meters of vertical resolution and up to 2 km of penetration. This report gives an overview of the acquisition and data processing of the multichannel seismic reflection profiles and provides references and links to reports with more detailed information. Geologic interpretations of these seismic profiles regarding gas hydrate occurrence and distribution within the study areas of this investigation are given in Cooper and Hart (2002).

  6. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    SciTech Connect

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  7. High resolution three-dimensional prostate ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Yinbo; Patil, Abhay; Hossack, John A.

    2006-03-01

    This work reports on the application of ultrasound elastography to prostate cancer detection using a high resolution three-dimensional (3D) ultrasound imaging system. The imaging was performed at a relatively high frequency (14 MHz), yielding very fine resolution that is optimal for prostate ultrasound imaging. The fine resolution achieved aids in locating smaller lesions than are normally detectable. Elasticity was measured with a quantitative and automatically controlled "Synthetic Digital Rectal Examination (SDRE)" wherein a smoothly increasing force was applied by injecting water, controlled by an electronic syringe pump, into a latex cover over the transrectal transducer. The lesion identified as stiffened tissue was visually enhanced by colorizing and superimposing it over the conventional B-mode image. Experimental results using a tissue-mimicking phantom demonstrated that the reconstruction accuracy of the I-Beam transducer resulted in less than 15% volumetric error. Thus, this high resolution 3D prostate elastography is possible and may provide reliable and accurate determination of the size and the location of cancers, which may result in improved specificity and sensitivity of cancer detection.

  8. High-resolution dynamic speech imaging with deformation estimation.

    PubMed

    Maojing Fu; Barlaz, Marissa S; Shosted, Ryan K; Zhi-Pei Liang; Sutton, Bradley P

    2015-08-01

    Dynamic speech magnetic resonance imaging (DSMRI) is a promising technique for visualizing articulatory motion in real time. However, many existing applications of DSMRI have been limited by slow imaging speed and the lack of quantitative motion analysis. In this paper, we present a novel DS-MRI technique to simultaneously estimate dynamic image sequence of speech and the associated deformation field. Extending on our previous Partial Separability (PS) model-based methods, the proposed technique visualizes both speech motion and deformation with a spatial resolution of 2.2 × 2.2 mm(2) and a nominal frame rate of 100 fps. Also, the technique enables direct analysis of articulatory motion through the deformation fields. Effectiveness of the method is systematically examined via in vivo experiments. Utilizing the obtained high-resolution images and deformation fields, we also performed a phonetics study on Brazilian Portuguese to show the method's practical utility. PMID:26736572

  9. A high resolution capacitive imaging sensor for manufacturing applications

    SciTech Connect

    Novak, J.L.; Wiczer, J.J.

    1990-09-06

    A high resolution capacitive image sensing technique for measuring edge and surface profiles during manufacturing processes has been invented. A prototype device utilizing this technique consists of two 0.020 in. (500 {mu}m) diameter electrodes fabricated on a printed circuit board with a 0.010 in. (250 {mu}m) gap between them. As the device is mechanically scanned over the workpiece, the spatial variations in the edge or surface to be measured interfere with an electric field imposed between the electrodes, altering the mutual capacitance. The sensor functions as a near field proximity sensor producing range images of surface imperfections. This sensor has been used in applications requiring a preview image of burrs on the edge of a machined part and other processes requiring an inspection image after automated deburring operations. 10 refs., 8 figs.

  10. Image reconstruction enables high resolution imaging at large penetration depths in fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dilipkumar, Shilpa; Montalescot, Sandra; Mondal, Partha Pratim

    2013-10-01

    Imaging thick specimen at a large penetration depth is a challenge in biophysics and material science. Refractive index mismatch results in spherical aberration that is responsible for streaking artifacts, while Poissonian nature of photon emission and scattering introduces noise in the acquired three-dimensional image. To overcome these unwanted artifacts, we introduced a two-fold approach: first, point-spread function modeling with correction for spherical aberration and second, employing maximum-likelihood reconstruction technique to eliminate noise. Experimental results on fluorescent nano-beads and fluorescently coated yeast cells (encaged in Agarose gel) shows substantial minimization of artifacts. The noise is substantially suppressed, whereas the side-lobes (generated by streaking effect) drops by 48.6% as compared to raw data at a depth of 150 μm. Proposed imaging technique can be integrated to sophisticated fluorescence imaging techniques for rendering high resolution beyond 150 μm mark.

  11. Very High Resolution Image of Icy Cliffs on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image, taken by the camera onboard NASA's Galileo spacecraft, is a very high resolution view of the Conamara Chaos region on Jupiter's moon Europa. It shows an area where icy plates have been broken apart and moved around laterally. The top of this image is dominated by corrugated plateaus ending in icy cliffs over a hundred meters (a few hundred feet) high. Debris piled at the base of the cliffs can be resolved down to blocks the size of a house. A fracture that runs horizontally across and just below the center of the Europa image is about the width of a freeway.

    North is to the top right of the image, and the sun illuminates the surface from the east. The image is centered at approximately 9 degrees north latitude and 274 degrees west longitude. The image covers an area approximately 1.7 kilometers by 4 kilometers (1 mile by 2.5 miles). The resolution is 9 meters (30 feet) per picture element. This image was taken on December 16, 1997 at a range of 900 kilometers (540 miles) by Galileo's solid state imaging system.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  12. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  13. A parallel solution for high resolution histological image analysis.

    PubMed

    Bueno, G; González, R; Déniz, O; García-Rojo, M; González-García, J; Fernández-Carrobles, M M; Vállez, N; Salido, J

    2012-10-01

    This paper describes a general methodology for developing parallel image processing algorithms based on message passing for high resolution images (on the order of several Gigabytes). These algorithms have been applied to histological images and must be executed on massively parallel processing architectures. Advances in new technologies for complete slide digitalization in pathology have been combined with developments in biomedical informatics. However, the efficient use of these digital slide systems is still a challenge. The image processing that these slides are subject to is still limited both in terms of data processed and processing methods. The work presented here focuses on the need to design and develop parallel image processing tools capable of obtaining and analyzing the entire gamut of information included in digital slides. Tools have been developed to assist pathologists in image analysis and diagnosis, and they cover low and high-level image processing methods applied to histological images. Code portability, reusability and scalability have been tested by using the following parallel computing architectures: distributed memory with massive parallel processors and two networks, INFINIBAND and Myrinet, composed of 17 and 1024 nodes respectively. The parallel framework proposed is flexible, high performance solution and it shows that the efficient processing of digital microscopic images is possible and may offer important benefits to pathology laboratories.

  14. Detection of Barchan Dunes in High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Azzaoui, M. A.; Adnani, M.; El Belrhiti, H.; Chaouki, I. E.; Masmoudi, C.

    2016-06-01

    Barchan dunes are the fastest moving sand dunes in the desert. We developed a process to detect barchans dunes on High resolution satellite images. It consisted of three steps, we first enhanced the image using histogram equalization and noise reduction filters. Then, the second step proceeds to eliminate the parts of the image having a texture different from that of the barchans dunes. Using supervised learning, we tested a coarse to fine textural analysis based on Kolomogorov Smirnov test and Youden's J-statistic on co-occurrence matrix. As an output we obtained a mask that we used in the next step to reduce the search area. In the third step we used a gliding window on the mask and check SURF features with SVM to get barchans dunes candidates. Detected barchans dunes were considered as the fusion of overlapping candidates. The results of this approach were very satisfying in processing time and precision.

  15. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  16. 2D optoacoustic array for high resolution imaging

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R. S.; Kim, K.; Huang, S.-W.; Hou, Y.; O'Donnell, M.

    2006-02-01

    An optoacoustic detector denotes the detection of acoustic signals by optical devices. Recent advances in fabrication techniques and the availability of high power tunable laser sources have greatly accelerated the development of efficient optoacoustic detectors. The unique advantages of optoacoustic technology are of special interest in applications that require high resolution imaging. For these applications optoacoustic technology enables high frequency transducer arrays with element size on the order of 10 μm. Laser generated ultrasound (photoacoustic effect) has been studied since the early observations of A.G. Bell (1880) of audible sound generated by light absorption . Modern studies have demonstrated the use of the photoacoustic effect to form a versatile imaging modality for medical and biological applications. A short laser pulse illuminates a tissue creating rapid thermal expansion and acoustic emission. Detection of the resulting acoustic field by an array enables the imaging of the tissue optical absorption using ultrasonic imaging methods. We present an integrated imaging system that employs photoacoustic sound generation and 2D optoacoustic reception. The optoacoustic receiver consists of a thin polymer Fabry-Perot etalon. The etalon is an optical resonator of a high quality factor (Q = 750). The relatively low elasticity modulus of the polymer and the high Q-factor of the resonator combine to yield high ultrasound sensitivity. The etalon thickness (10 μm) was optimized for wide bandwidth (typically above 50 MHz). An optical scanning and focusing system is used to create a large aperture and high density 2D ultrasonic receiver array. High resolution 3D images of phantom targets and biological tissue samples were obtained.

  17. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  18. The Potential for Bayesian Compressive Sensing to Significantly Reduce Electron Dose in High Resolution STEM Images

    SciTech Connect

    Stevens, Andrew J.; Yang, Hao; Carin, Lawrence; Arslan, Ilke; Browning, Nigel D.

    2014-02-11

    The use of high resolution imaging methods in the scanning transmission electron microscope (STEM) is limited in many cases by the sensitivity of the sample to the beam and the onset of electron beam damage (for example in the study of organic systems, in tomography and during in-situ experiments). To demonstrate that alternative strategies for image acquisition can help alleviate this beam damage issue, here we apply compressive sensing via Bayesian dictionary learning to high resolution STEM images. These experiments successively reduce the number of pixels in the image (thereby reducing the overall dose while maintaining the high resolution information) and show promising results for reconstructing images from this reduced set of randomly collected measurements. We show that this approach is valid for both atomic resolution images and nanometer resolution studies, such as those that might be used in tomography datasets, by applying the method to images of strontium titanate and zeolites. As STEM images are acquired pixel by pixel while the beam is scanned over the surface of the sample, these post acquisition manipulations of the images can, in principle, be directly implemented as a low-dose acquisition method with no change in the electron optics or alignment of the microscope itself.

  19. High-resolution adaptive imaging with a single photodiode

    PubMed Central

    Soldevila, F.; Salvador-Balaguer, E.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2015-01-01

    During the past few years, the emergence of spatial light modulators operating at the tens of kHz has enabled new imaging modalities based on single-pixel photodetectors. The nature of single-pixel imaging enforces a reciprocal relationship between frame rate and image size. Compressive imaging methods allow images to be reconstructed from a number of projections that is only a fraction of the number of pixels. In microscopy, single-pixel imaging is capable of producing images with a moderate size of 128 × 128 pixels at frame rates under one Hz. Recently, there has been considerable interest in the development of advanced techniques for high-resolution real-time operation in applications such as biological microscopy. Here, we introduce an adaptive compressive technique based on wavelet trees within this framework. In our adaptive approach, the resolution of the projecting patterns remains deliberately small, which is crucial to avoid the demanding memory requirements of compressive sensing algorithms. At pattern projection rates of 22.7 kHz, our technique would enable to obtain 128 × 128 pixel images at frame rates around 3 Hz. In our experiments, we have demonstrated a cost-effective solution employing a commercial projection display. PMID:26382114

  20. High-resolution adaptive imaging with a single photodiode

    NASA Astrophysics Data System (ADS)

    Soldevila, F.; Salvador-Balaguer, E.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2015-09-01

    During the past few years, the emergence of spatial light modulators operating at the tens of kHz has enabled new imaging modalities based on single-pixel photodetectors. The nature of single-pixel imaging enforces a reciprocal relationship between frame rate and image size. Compressive imaging methods allow images to be reconstructed from a number of projections that is only a fraction of the number of pixels. In microscopy, single-pixel imaging is capable of producing images with a moderate size of 128 × 128 pixels at frame rates under one Hz. Recently, there has been considerable interest in the development of advanced techniques for high-resolution real-time operation in applications such as biological microscopy. Here, we introduce an adaptive compressive technique based on wavelet trees within this framework. In our adaptive approach, the resolution of the projecting patterns remains deliberately small, which is crucial to avoid the demanding memory requirements of compressive sensing algorithms. At pattern projection rates of 22.7 kHz, our technique would enable to obtain 128 × 128 pixel images at frame rates around 3 Hz. In our experiments, we have demonstrated a cost-effective solution employing a commercial projection display.

  1. High-resolution imaging in the scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Pennycook, S. J.; Jesson, D. E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. S states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z.

  2. A miniature high resolution 3-D imaging sonar.

    PubMed

    Josserand, Tim; Wolley, Jason

    2011-04-01

    This paper discusses the design and development of a miniature, high resolution 3-D imaging sonar. The design utilizes frequency steered phased arrays (FSPA) technology. FSPAs present a small, low-power solution to the problem of underwater imaging sonars. The technology provides a method to build sonars with a large number of beams without the proportional power, circuitry and processing complexity. The design differs from previous methods in that the array elements are manufactured from a monolithic material. With this technique the arrays are flat and considerably smaller element dimensions are achievable which allows for higher frequency ranges and smaller array sizes. In the current frequency range, the demonstrated array has ultra high image resolution (1″ range×1° azimuth×1° elevation) and small size (<3″×3″). The design of the FSPA utilizes the phasing-induced frequency-dependent directionality of a linear phased array to produce multiple beams in a forward sector. The FSPA requires only two hardware channels per array and can be arranged in single and multiple array configurations that deliver wide sector 2-D images. 3-D images can be obtained by scanning the array in a direction perpendicular to the 2-D image field and applying suitable image processing to the multiple scanned 2-D images. This paper introduces the 3-D FSPA concept, theory and design methodology. Finally, results from a prototype array are presented and discussed.

  3. Change detection in very high resolution multisensor optical images

    NASA Astrophysics Data System (ADS)

    Solano Correa, Yady T.; Bovolo, Francesca; Bruzzone, Lorenzo

    2014-10-01

    This work aims at developing an approach to the detection of changes in multisensor multitemporal VHR optical images. The main steps of the proposed method are: i) multisensor data homogenization; and ii) change detection in multisensor multitemporal VHR optical images. The proposed approach takes advantage of: the conversion to physical quantities suggested by Pacifici et. al.1 , the framework for the design of systems for change detection in VHR images presented by Bruzzone and Bovolo2 and the framework for unsupervised change detection presented by Bovolo and Bruzzone3. Multisensor data homogenization is achieved during pre-processing by taking into account differences in both radiometric and geometric dimensions. Whereas change detection was approached by extracting proper features from multisensor images such that they result to be comparable (at a given level of abstraction) even if extracted from images acquired by different sensors. In order to illustrate the results, a data set made up of a QuickBird and a WorldView-2 images - acquired in 2006 and 2010 respectively - over an area located in the Trentino region of Italy were used. However, the proposed approach is thought to be exportable to multitemporal images coming from passive sensors other than the two mentioned above. The experimental results obtained on the QuickBird and WorlView-2 image pair are accurate. Thus opening to further experiments on multitemporal images acquired by other sensors.

  4. High-Resolution Mars Camera Test Image of Moon (Infrared)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test.

    The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  5. High resolution 3D imaging of synchrotron generated microbeams

    SciTech Connect

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  6. Thermal refocusing method for spaceborne high-resolution optical imagers.

    PubMed

    Selımoglu, Ozgur; Ekinci, Mustafa; Karcı, Ozgur

    2016-05-20

    We describe the design of a thermal refocusing method for spaceborne high-resolution imagers where Korsch optical design is usually implemented. The secondary mirror is made of aluminum, a high thermal expansion coefficient material, instead of conventional zero-expansion glass ceramics. In this way, the radius of the curvature can be controlled by means of temperature change of the mirror. Change in the radius of curvature also changes the effective focal length of the camera which is used for compensation of the defocus that occurred in space. We show that the 30 μm despace of the secondary mirror in the optical system can be compensated by an ∼10°C temperature change of the mirror while the image quality is maintained. PMID:27411138

  7. Porous silicon phantoms for high-resolution scintillation imaging

    NASA Astrophysics Data System (ADS)

    Di Francia, G.; Scafè, R.; De Vincentis, G.; La Ferrara, V.; Iurlaro, G.; Nasti, I.; Montani, L.; Pellegrini, R.; Betti, M.; Martucciello, N.; Pani, R.

    2006-12-01

    High resolution radionuclide imaging requires phantoms with precise geometries and known activities using either Anger cameras equipped with pinhole collimators or dedicated small animal devices. Porous silicon samples, having areas of different shape and size, can be made and loaded with a radioactive material, obtaining: (a) precise radio-emitting figures corresponding to the porous areas geometry, (b) a radioactivity of each figure depending on the pore's specifications, and (c) the same emission energy to be used in true exams. To this aim a sample with porous circular areas has been made and loaded with a 99mTcO 4- solution. Imaging has been obtained using both general purpose and pinhole collimators. This first sample shows some defects that are analyzed and discussed.

  8. High resolution imaging of objects located within a wall

    NASA Astrophysics Data System (ADS)

    Greneker, Eugene F.; Showman, Gregory A.; Trostel, John M.; Sylvester, Vincent

    2006-05-01

    Researchers at Georgia Tech Research Institute have developed a high resolution imaging radar technique that allows large sections of a test wall to be scanned in X and Y dimensions. The resulting images that can be obtained provide information on what is inside the wall, if anything. The scanning homodyne radar operates at a frequency of 24.1 GHz at with an output power level of approximately 10 milliwatts. An imaging technique that has been developed is currently being used to study the detection of toxic mold on the back surface of wallboard using radar as a sensor. The moisture that is associated with the mold can easily be detected. In addition to mold, the technique will image objects as small as a 4 millimeter sphere on the front or rear of the wallboard and will penetrate both sides of a wall made of studs and wallboard. Signal processing is performed on the resulting data to further sharpen the image. Photos of the scanner and images produced by the scanner are presented. A discussion of the signal processing and technical challenges are also discussed.

  9. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  10. High-resolution planetary imaging via spotlight-mode synthetic aperture radar.

    PubMed

    Webb, J H; Munson, D R; Stacy, N S

    1998-01-01

    We consider the application of a spotlight-mode synthetic aperture radar (SAR) imaging technique to the problem of high-resolution lunar imaging and other related radar astronomy problems. This approach offers improved image quality, compared with conventional processing, at the expense of slightly increased computational effort. Results of the processing of lunar data acquired with the 12.6 cm wavelength radar system at Arecibo Observatory are presented, and compared with the best available published result, by Stacy (1993), which uses focusing techniques from stripmap SAR.

  11. Observing submesoscale currents from high resolution surface roughness images

    NASA Astrophysics Data System (ADS)

    Rascle, N.; Chapron, B.; Nouguier, F.; Mouche, A.; Ponte, A.

    2015-12-01

    At times, high resolution sea surface roughness variations can provide stunning details of submesoscale upper ocean dynamics. As interpreted, transformations of short scale wind waves by horizontal current gradients are responsible for those spectacular observations. Here we present tow major advances towards the quantitative interpretation of those observations. First, we show that surface roughness variations mainly trace two particular characteristics of the current gradient tensor, the divergence and the strain in the wind direction. Local vorticity and shear in the wind direction should not affect short scale roughness distribution and would not be detectable. Second, we discuss the effect of the viewing direction using sets of quasi-simultaneous sun glitter images, taken from different satellites to provide different viewing configurations. We show that upwind and crosswind viewing observations can be markedly different. As further confirmed with idealized numerical simulations, this anisotropy well traces surface current strain area, while more isotropic contrasts likely trace areas dominated by surface divergence conditions. These findings suggest the potential to directly observe surface currents at submesoscale by using high resolution roughness observations at multiple azimuth viewing angles.

  12. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  13. A mechanical microcompressor for high resolution imaging of motile specimens.

    PubMed

    Zinskie, Jessica A; Shribak, Michael; Bruist, Michael F; Aufderheide, Karl J; Janetopoulos, Chris

    2015-10-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events.

  14. A mechanical microcompressor for high resolution imaging of motile specimens

    PubMed Central

    Zinskie, Jessica A.; Shribak, Michael; Bruist, Michael F.; Aufderheide, Karl J.; Janetopoulos, Chris

    2015-01-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. PMID:26192819

  15. A mechanical microcompressor for high resolution imaging of motile specimens.

    PubMed

    Zinskie, Jessica A; Shribak, Michael; Bruist, Michael F; Aufderheide, Karl J; Janetopoulos, Chris

    2015-10-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. PMID:26192819

  16. Preliminary results from Mariner 10: High resolution images of the Moon

    NASA Technical Reports Server (NTRS)

    Robinson, Mark S.; Hawke, B. Ray; Edwards, Kay; Lucey, Paul G.; Clark, Beth E.

    1993-01-01

    In November of 1973 the Mariner 10 spacecraft acquired high resolution images of both the Earth and the Moon as it began its voyage to Venus and then Mercury. The best images had a resolution of approximately l km and were taken from an unusual viewpoint, above the lunar North Pole. At this time the Moon was illuminated such that the eastern limb, including approximately 30 degrees of the farside, was visible. Two high resolution mosaics were acquired during this period which provide excellent views of regions of the Moon poorly seen from the Earth. These include the Frigoris, Humboldtianum, Marginis, and Smythii regions. These images also covered expanses of highlands not visible from the Earth. These data were unique in that they were the only useful robotic spacecraft images of the Moon; and they remained so until December of 1990 when the Galileo spacecraft made its first encounter with the Moon. These Mariner 10 lunar images were acquired and are currently being used in conjunction with Earth-based telescopic spectra as well as Apollo and Lunar Orbiter photographic data to investigate the nature of deposits comprising the Northeast Nearside of the Moon. These Mariner 10 frames have proved useful for photogeologic, photometric, and photoclinometric analyses; they were also used in support of the second Galileo lunar encounter of December 1992.

  17. High-Resolution Multiphoton Imaging of Tumors In Vivo

    PubMed Central

    Wyckoff, Jeffrey; Gligorijevic, Bojana; Entenberg, David; Segall, Jeffrey; Condeelis, John

    2014-01-01

    Analysis of the individual steps in metastasis is crucial if insights at the molecular level are to be linked to the cell biology of cancer. A technical hurdle to achieving the analysis of the individual steps of metastasis is the fact that, at the gross level, tumors are heterogeneous in both animal models and patients. Human primary tumors show extensive variation in all properties ranging from growth and morphology of the tumor through tumor-cell density in the blood and formation and growth of metastases. Methods capable of the direct visualization and analysis of tumor-cell behavior at single-cell resolution in vivo have become crucial in advancing the understanding of mechanisms of metastasis, the definition of microenvironment, and the markers related to both. This article discusses the use of high-resolution multiphoton imaging of tumors (specifically breast tumors in mice) in vivo. PMID:21969629

  18. Imaging plasmodesmata with high-resolution scanning electron microscopy.

    PubMed

    Barton, Deborah A; Overall, Robyn L

    2015-01-01

    High-resolution scanning electron microscopy (HRSEM) is an effective tool to investigate the distribution of plasmodesmata within plant cell walls as well as to probe their complex, three-dimensional architecture. It is a useful alternative to traditional transmission electron microscopy (TEM) in which plasmodesmata are sectioned to reveal their internal substructures. Benefits of adopting an HRSEM approach to studies of plasmodesmata are that the specimen preparation methods are less complex and time consuming than for TEM, many plasmodesmata within a large region of tissue can be imaged in a single session, and three-dimensional information is readily available without the need for reconstructing TEM serial sections or employing transmission electron tomography, both of which are lengthy processes. Here we describe methods to prepare plant samples for HRSEM using pre- or postfixation extraction of cellular material in order to visualize plasmodesmata embedded within plant cell walls.

  19. High-resolution multiphoton imaging of tumors in vivo.

    PubMed

    Wyckoff, Jeffrey; Gligorijevic, Bojana; Entenberg, David; Segall, Jeffrey; Condeelis, John

    2011-10-01

    Analysis of the individual steps in metastasis is crucial if insights at the molecular level are to be linked to the cell biology of cancer. A technical hurdle to achieving the analysis of the individual steps of metastasis is the fact that, at the gross level, tumors are heterogeneous in both animal models and patients. Human primary tumors show extensive variation in all properties ranging from growth and morphology of the tumor through tumor-cell density in the blood and formation and growth of metastases. Methods capable of the direct visualization and analysis of tumor-cell behavior at single-cell resolution in vivo have become crucial in advancing the understanding of mechanisms of metastasis, the definition of microenvironment, and the markers related to both. This article discusses the use of high-resolution multiphoton imaging of tumors (specifically breast tumors in mice) in vivo.

  20. High-resolution imaging microchannel plate detector for EUV spectrometry

    NASA Astrophysics Data System (ADS)

    Bannister, Nigel P.; Lapington, Jonathan S.; Barstow, Martin A.; Fraser, George W.; Sanderson, B. S.; Tandy, J. A.; Pearson, James F.; Spragg, J. E.

    2000-12-01

    We describe the development of an imaging microchannel plate detector for a new class of high resolution EUV spectrometer. The detector incorporates a front MCP coated with a CsI photocathode to enhance quantum efficiency, while the rear MCP, supplied by Photonis SAS for a European Space Agency Technology Research Program, represents one of the first uses of a 6 micron pore device in astronomy. The detector uses a unique design of charge division anode, the Vernier readout, enabling it to deliver a spatial resolution better than 15 microns FWHM. The detector forms an integral component of J- PEX, a sounding rocket EUV spectrometer operating at near- normal incidence, using multilayer coated gratings to deliver a resolution and effective area 10 times that of EUVE in the 225 - 245 angstrom band.

  1. Precision cosmology with time delay lenses: High resolution imaging requirements

    SciTech Connect

    Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  2. Precision cosmology with time delay lenses: high resolution imaging requirements

    SciTech Connect

    Meng, Xiao-Lei; Liao, Kai; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Marshall, Philip J. E-mail: tt@astro.ucla.edu E-mail: mauger@ast.cam.ac.uk E-mail: dr.phil.marshall@gmail.com

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  3. Theme issue "High Resolution Earth Imaging for Geospatial Information"

    NASA Astrophysics Data System (ADS)

    Heipke, Christian; Soergel, Uwe; Rottensteiner, Franz; Jutzi, Boris

    2015-02-01

    Earth imaging from air and space has undergone major changes over the last decade. Examples of new and significant developments comprise the development and constant improvement of digital aerial cameras, multiple-echo and full-waveform laser scanners and the appearance of geosensor networks and unconventional platforms, most notably unmanned aircraft systems (UAS), sometimes called unmanned aerial vehicles (UAV) or remotely piloted aircraft systems (RPAS), and the ever increasing number of high-resolution and hyperspectral optical and SAR satellite sensors, small satellites and satellite constellations, which allow for both, a continued availability of satellite data over long periods of time, and a very short revisit time for any location on the globe. To give few examples: the latest Landsat satellite, appropriately called the Landsat data continuity mission or LDCM was launched on February 2013, continuing the Landsat mission which began back in 1972; during 2013 and 2014 France has put the SPOT 6 and 7 twin satellites into orbit, extending the history of high resolution space images, which started in 1986; and in April 2014 the European Space Agency (ESA) successfully launched the Sentinel 1A satellite with a synthetic aperture radar (SAR) sensor, the first of a fleet of different sensors that will be sent into space in the coming years. Sentinel 1A together with its twin system Sentinel 1B, to be launched in 2016, will continue the tremendous success story of ESA's C band SAR satellite activities dating back to 1991. Like the predecessors ERS 1, ERS 2, and Envisat ASAR, the Sentinel 1 systems are designed to cover the entire land mass with medium resolution, the repeat cycle is 12 days for Sentinel 1A alone and will even drop to six days as soon as both satellites are operational.

  4. High-resolution mechanical imaging of the kidney.

    PubMed

    Streitberger, Kaspar-Josche; Guo, Jing; Tzschätzsch, Heiko; Hirsch, Sebastian; Fischer, Thomas; Braun, Jürgen; Sack, Ingolf

    2014-02-01

    The objective of this study was to test the feasibility and reproducibility of in vivo high-resolution mechanical imaging of the asymptomatic human kidney. Hereby nine volunteers were examined at three different physiological states of urinary bladder filling (a normal state, urinary urgency, and immediately after urinary relief). Mechanical imaging was performed of the in vivo kidney using three-dimensional multifrequency magnetic resonance elastography combined with multifrequency dual elastovisco inversion. Other than in classical elastography, where the storage and loss shear moduli are evaluated, we analyzed the magnitude |G(⁎)| and the phase angle φ of the complex shear modulus reconstructed by simultaneous inversion of full wave field data corresponding to 7 harmonic drive frequencies from 30 to 60Hz and a resolution of 2.5mm cubic voxel size. Mechanical parameter maps were derived with a spatial resolution superior to that in previous work. The group-averaged values of |G(⁎)| were 2.67±0.52kPa in the renal medulla, 1.64±0.17kPa in the cortex, and 1.17±0.21kPa in the hilus. The phase angle φ (in radians) was 0.89±0.12 in the medulla, 0.83±0.09 in the cortex, and 0.72±0.06 in the hilus. All regional differences were significant (P<0.001), while no significant variation was found in relation to different stages of bladder filling. In summary our study provides first high-resolution maps of viscoelastic parameters of the three anatomical regions of the kidney. |G(⁎)| and φ provide novel information on the viscoelastic properties of the kidney, which is potentially useful for the detection of renal lesions or fibrosis.

  5. High-resolution mechanical imaging of the kidney.

    PubMed

    Streitberger, Kaspar-Josche; Guo, Jing; Tzschätzsch, Heiko; Hirsch, Sebastian; Fischer, Thomas; Braun, Jürgen; Sack, Ingolf

    2014-02-01

    The objective of this study was to test the feasibility and reproducibility of in vivo high-resolution mechanical imaging of the asymptomatic human kidney. Hereby nine volunteers were examined at three different physiological states of urinary bladder filling (a normal state, urinary urgency, and immediately after urinary relief). Mechanical imaging was performed of the in vivo kidney using three-dimensional multifrequency magnetic resonance elastography combined with multifrequency dual elastovisco inversion. Other than in classical elastography, where the storage and loss shear moduli are evaluated, we analyzed the magnitude |G(⁎)| and the phase angle φ of the complex shear modulus reconstructed by simultaneous inversion of full wave field data corresponding to 7 harmonic drive frequencies from 30 to 60Hz and a resolution of 2.5mm cubic voxel size. Mechanical parameter maps were derived with a spatial resolution superior to that in previous work. The group-averaged values of |G(⁎)| were 2.67±0.52kPa in the renal medulla, 1.64±0.17kPa in the cortex, and 1.17±0.21kPa in the hilus. The phase angle φ (in radians) was 0.89±0.12 in the medulla, 0.83±0.09 in the cortex, and 0.72±0.06 in the hilus. All regional differences were significant (P<0.001), while no significant variation was found in relation to different stages of bladder filling. In summary our study provides first high-resolution maps of viscoelastic parameters of the three anatomical regions of the kidney. |G(⁎)| and φ provide novel information on the viscoelastic properties of the kidney, which is potentially useful for the detection of renal lesions or fibrosis. PMID:24355382

  6. Black phosphorus photodetector for multispectral, high-resolution imaging.

    PubMed

    Engel, Michael; Steiner, Mathias; Avouris, Phaedon

    2014-11-12

    Black phosphorus is a layered semiconductor that is intensely researched in view of applications in optoelectronics. In this letter, we investigate a multilayer black phosphorus photodetector that is capable of acquiring high-contrast (V > 0.9) images both in the visible (λVIS = 532 nm) as well as in the infrared (λIR = 1550 nm) spectral regime. In a first step, by using photocurrent microscopy, we map the active area of the device and we characterize responsivity and gain. In a second step, by deploying the black phosphorus device as a point-like detector in a confocal microsope setup, we acquire diffraction-limited optical images with submicron resolution. The results demonstrate the usefulness of black phosphorus as an optoelectronic material for hyperspectral imaging applications.

  7. Image Registration of High-Resolution Uav Data: the New Hypare Algorithm

    NASA Astrophysics Data System (ADS)

    Bahr, T.; Jin, X.; Lasica, R.; Giessel, D.

    2013-08-01

    Unmanned aerial vehicles play an important role in the present-day civilian and military intelligence. Equipped with a variety of sensors, such as SAR imaging modes, E/O- and IR sensor technology, they are due to their agility suitable for many applications. Hence, the necessity arises to use fusion technologies and to develop them continuously. Here an exact image-to-image registration is essential. It serves as the basis for important image processing operations such as georeferencing, change detection, and data fusion. Therefore we developed the Hybrid Powered Auto-Registration Engine (HyPARE). HyPARE combines all available spatial reference information with a number of image registration approaches to improve the accuracy, performance, and automation of tie point generation and image registration. We demonstrate this approach by the registration of 39 still images from a high-resolution image stream, acquired with a Aeryon Photo3S™ camera on an Aeryon Scout micro-UAV™.

  8. Automatic Crowd Analysis from Very High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Reinartz, P.

    2011-04-01

    Recently automatic detection of people crowds from images became a very important research field, since it can provide crucial information especially for police departments and crisis management teams. Due to the importance of the topic, many researchers tried to solve this problem using street cameras. However, these cameras cannot be used to monitor very large outdoor public events. In order to bring a solution to the problem, herein we propose a novel approach to detect crowds automatically from remotely sensed images, and especially from very high resolution satellite images. To do so, we use a local feature based probabilistic framework. We extract local features from color components of the input image. In order to eliminate redundant local features coming from other objects in given scene, we apply a feature selection method. For feature selection purposes, we benefit from three different type of information; digital elevation model (DEM) of the region which is automatically generated using stereo satellite images, possible street segment which is obtained by segmentation, and shadow information. After eliminating redundant local features, remaining features are used to detect individual persons. Those local feature coordinates are also assumed as observations of the probability density function (pdf) of the crowds to be estimated. Using an adaptive kernel density estimation method, we estimate the corresponding pdf which gives us information about dense crowd and people locations. We test our algorithm usingWorldview-2 satellite images over Cairo and Munich cities. Besides, we also provide test results on airborne images for comparison of the detection accuracy. Our experimental results indicate the possible usage of the proposed approach in real-life mass events.

  9. Heuristic optimization in penumbral image for high resolution reconstructed image

    SciTech Connect

    Azuma, R.; Nozaki, S.; Fujioka, S.; Chen, Y. W.; Namihira, Y.

    2010-10-15

    Penumbral imaging is a technique which uses the fact that spatial information can be recovered from the shadow or penumbra that an unknown source casts through a simple large circular aperture. The size of the penumbral image on the detector can be mathematically determined as its aperture size, object size, and magnification. Conventional reconstruction methods are very sensitive to noise. On the other hand, the heuristic reconstruction method is very tolerant of noise. However, the aperture size influences the accuracy and resolution of the reconstructed image. In this article, we propose the optimization of the aperture size for the neutron penumbral imaging.

  10. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-09-01

    The Dawn spacecraft Framing Camera (FC) acquired over 2400 clear filter images of Ceres with a resolution of about 140 m/pixel during the six cycles in the High Altitude Mapping Orbit (HAMO) phase between August 18 and October 21, 2015. We ortho-rectified the images from the first cycle and produced a global, high-resolution, controlled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page

  11. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images

    PubMed Central

    Hapala, Prokop; Švec, Martin; Stetsovych, Oleksandr; van der Heijden, Nadine J.; Ondráček, Martin; van der Lit, Joost; Mutombo, Pingo; Swart, Ingmar; Jelínek, Pavel

    2016-01-01

    How electronic charge is distributed over a molecule determines to a large extent its chemical properties. Here, we demonstrate how the electrostatic force field, originating from the inhomogeneous charge distribution in a molecule, can be measured with submolecular resolution. We exploit the fact that distortions typically observed in high-resolution atomic force microscopy images are for a significant part caused by the electrostatic force acting between charges of the tip and the molecule of interest. By finding a geometrical transformation between two high-resolution AFM images acquired with two different tips, the electrostatic force field or potential over individual molecules and self-assemblies thereof can be reconstructed with submolecular resolution. PMID:27230940

  12. Noninvasive mapping of subcutaneous vasculature with high resolution photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Lao, Yeqi; Xing, Da; Yang, Sihua

    2007-11-01

    As a novel hybrid imaging modality, photoacoustic (PA) imaging combines the merits of high optical contrast, good ultrasonic resolution and sufficient imaging depth, which may be of great benefit to noninvasively detect and monitor the pathological changes of subcutaneous vasculature, e.g., congenital vascular tumor and vascular malformation. In this paper, we apply a set of photoacoustic imaging system to image a sample of subcutaneous blood vessels, which is used to simulate the location of human's subcutaneous vasculature. Furthermore, an image of subcutaneous vasculature of the abdomen in a mouse is acquired in vivo. Laser pulses at a wavelength of 532 nm from a Q-switched Nd:YAG laser are employed as light source to generate PA signals in the experiments, because the optical absorption of whole blood is much stronger than that of other tissues at this wavelength. A needle polyvinylidene fluoride (PVDF) hydrophone with a diameter of 1mm is used to capture PA signals through a circular scan. The experimental results show that detailed structural information of subcutaneous vasculature, such as the shape and position of the blood vessels and the vessel branching, is clearly revealed by the PA imaging system. The spatial resolution of the PA imaging system reaches 80μm. Moreover, the reconstructed image of a mouse's abdomen in vivo demonstrates that this technique is suitable for noninvasive subcutaneous vasculature imaging. All of the results prove that the PA imaging can be used as a helpful tool for monitoring the pathological changes of subcutaneous vasculature.

  13. Image processing for a high-resolution optoelectronic retinal prosthesis.

    PubMed

    Asher, Alon; Segal, William A; Baccus, Stephen A; Yaroslavsky, Leonid P; Palanker, Daniel V

    2007-06-01

    In an effort to restore visual perception in retinal diseases such as age-related macular degeneration or retinitis pigmentosa, a design was recently presented for a high-resolution optoelectronic retinal prosthesis having thousands of electrodes. This system requires real-time image processing fast enough to convert a video stream of images into electrical stimulus patterns that can be properly interpreted by the brain. Here, we present image-processing and tracking algorithms for a subretinal implant designed to stimulate the second neuron in the visual pathway, bypassing the degenerated first synaptic layer. For this task, we have developed and implemented: 1) A tracking algorithm that determines the implant's position in each frame. 2) Image cropping outside of the implant boundaries. 3) A geometrical transformation that distorts the image appropriate to the geometry of the fovea. 4) Spatio-temporal image filtering to reproduce the visual processing normally occurring in photoceptors and at the photoreceptor-bipolar cell synapse. 5) Conversion of the filtered visual information into a pattern of electrical current. Methods to accelerate real-time transformations include the exploitation of data redundancy in the time domain, and the use of precomputed lookup tables that are adjustable to retinal physiology and allow flexible control of stimulation parameters. A software implementation of these algorithms processes natural visual scenes with sufficient speed for real-time operation. This computationally efficient algorithm resembles, in some aspects, biological strategies of efficient coding in the retina and could provide a refresh rate higher than fifty frames per second on our system.

  14. Structure recognition from high resolution images of ceramic composites

    SciTech Connect

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  15. Spin resolved bandstructure imaging with a high resolution momentum microscope.

    PubMed

    Tusche, Christian; Krasyuk, Alexander; Kirschner, Jürgen

    2015-12-01

    We present a spin resolving "momentum microscope" for the high resolution imaging of the momentum distribution of photoelectrons. Measurements of the band structure of a Au(111) single crystal surface demonstrate an energy resolution of ΔE=12 meV and a momentum resolution of Δk∥=0.0049 Å(-1), measured at the line-width of the spin-orbit split Shockley surface state. The relative accuracy of the k∥ measurement in the order of 10(-4) Å(-1) reveals a deviation from the ideal two-dimensional free electron gas model of the Shockley surface state, manifested in a threefold radial symmetry. Spin resolution in the full momentum image is obtained by an imaging spin-filter based on low-energy electron diffraction at a Au passivated Ir(100) single crystal. Using working points at 10.5 eV and 11.5 eV scattering energy with a completely reversed asymmetry of ±60% we demonstrate the efficient mapping of the spin texture of the Au(111) surface state.

  16. Wavelength scanning digital interference holography for high-resolution ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Kim, M. K.; Kay, Christine N.

    2009-02-01

    An improved digital interference holography (DIH) technique suitable for fundus images is proposed. This technique incorporates a dispersion compensation algorithm to compensate for the unknown axial length of the eye. Using this instrument we acquired successfully tomographic fundus images in human eye with narrow axial resolution less than 5μm. The optic nerve head together with the surrounding retinal vasculature were constructed. We were able to quantify a depth of 84μm between the retinal fiber and the retinal pigmented epithelium layers. DIH provides high resolution 3D information which could potentially aid in guiding glaucoma diagnosis and treatment.

  17. High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.

    PubMed

    Krämer, Martin; Reichenbach, Jürgen R

    2014-05-01

    We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps.

  18. WINKLER - An imaging high resolution gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Nakano, G. H.; Sandie, W. G.; Kilner, J. R.; Pang, F.; Imai, B. B.

    1991-04-01

    The WINKLER high-resolution gamma-ray spectrometer was originally developed to fly on a high-altitude aircraft. Following the discovery of Supernova 1987A in the Large Magellanic Cloud, arrangements were made to perform balloon-borne observations of this event. The instrument was quickly adapted to fit on a gondola furnished by NASA/MSFC in a collaborative effort and was flown in a series of three successful flights from Alice Springs, Australia. The second flight on October 29-31, 1987 resulted in the first high-resolution detection of the 847-keV line emission from the decay of 56Co and provided definitive confirmation of the explosive nucleosynthesis process. WINKLER comprises an array of nine coaxial n-type germanium detectors which are housed in a common vaccuum cryostat and surrounded by an NaI(Tl) scintillator shield that suppresses Compton interactions and gamma-ray background. Gamma-ray images are obtained with a rotational modulation collimator system attached to the spectrometer. Collimator holes in the upper section of the shield define the angular field of view of the instrument to 22 deg FWHM. The energy range of the spectrometer is 20 eV to 8 MeV, and the composite energy resolution from all detectors is 1.5 keV at 100 keV and about 2.5 keV at 1.33 MeV. The total frontal area of the sensor array is 214 cm2 with a volume of 1177 cm3, providing sufficient detection sensitivity for gamma-ray astronomy as well as for land-based applications such as treaty verification monitoring.

  19. Wide-Field-of-View, High-Resolution, Stereoscopic Imager

    NASA Technical Reports Server (NTRS)

    Prechtl, Eric F.; Sedwick, Raymond J.

    2010-01-01

    A device combines video feeds from multiple cameras to provide wide-field-of-view, high-resolution, stereoscopic video to the user. The prototype under development consists of two camera assemblies, one for each eye. One of these assemblies incorporates a mounting structure with multiple cameras attached at offset angles. The video signals from the cameras are fed to a central processing platform where each frame is color processed and mapped into a single contiguous wide-field-of-view image. Because the resolution of most display devices is typically smaller than the processed map, a cropped portion of the video feed is output to the display device. The positioning of the cropped window will likely be controlled through the use of a head tracking device, allowing the user to turn his or her head side-to-side or up and down to view different portions of the captured image. There are multiple options for the display of the stereoscopic image. The use of head mounted displays is one likely implementation. However, the use of 3D projection technologies is another potential technology under consideration, The technology can be adapted in a multitude of ways. The computing platform is scalable, such that the number, resolution, and sensitivity of the cameras can be leveraged to improve image resolution and field of view. Miniaturization efforts can be pursued to shrink the package down for better mobility. Power savings studies can be performed to enable unattended, remote sensing packages. Image compression and transmission technologies can be incorporated to enable an improved telepresence experience.

  20. High-resolution OCT balloon imaging catheter with astigmatism correction

    PubMed Central

    Xi, Jiefeng; Huo, Li; Wu, Yicong; Cobb, Michael J.; Hwang, Joo Ha; Li, Xingde

    2014-01-01

    We report new optics designs for an optical coherence tomography (OCT) balloon imaging catheter to achieve diffraction-limited high resolution at a large working distance and enable the correction of severe astigmatism in the catheter. The designs employed a 1 mm diameter gradient-index lens of a properly chosen pitch number and a glass rod spacer to fully utilize the available NA of the miniature optics. Astigmatism caused by the balloon tubing was analyzed, and a method based on a cylindrical reflector was proposed and demonstrated to compensate the astigmatism. A catheter based on the new designs was successfully developed with a measured diffraction-limited lateral resolution of ∼21 μm, a working distance of ∼ 11 –12 mm, and a round-shape beam profile. The performance of the OCT balloon catheter was demonstrated by 3D full-circumferential imaging of a swine esophagus in vivo along with a high-speed, Fourier-domain, mode-locked swept-source OCT system. PMID:19571960

  1. High Resolution Imaging of Circumstellar Disks at Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Wilner, David J.

    2003-01-01

    Our program uses the techniques of millimeter interferometry to make high resolution observations of dust continuum emission to study the structure of protoplanetary disks and debris disks around nearby stars. Observations of dust emission at these wavelengths are advantageous because the dust emission is generally optically thin and directly proportional to mass, and contrast with stellar photospheres is not a problem. We are using of several observational facilities, including (1) the Very Large Array (VLA) of the National Radio Astronomy Observatories, (2) the Plateau de Bure Interferometer (PdBI) of the Institut de RadioAstronomie Millimetrique, and (3) the Submillimeter Array (SMA), now under construction by the Smithsonian Astrophysical Observatory and Academia Sinica (Taiwan). In the past year, we have accomplished the following (more details below): (1) We continued work on our 'low resolution' VLA survey of disks in Herbig Ae star and binary systems, primarily to identify candidates for higher resolution follow-up. We have submitted a paper for publication on the detailed analysis of the structure of the disk around CQ Tauri; (2) We completed analysis of our PdBI observations of the debris disk around Vega, and we presented these results at (1) the 199th AAS meeting in Washington, DC, and (2) a symposium in memory of Fred Gillett on Debris Disks and the Formation of Planets, in Tucson, AZ; (3) We continue commissioning observations with the SMA, which include the first ever interferometric images in the 850 micron wavelength band, in preparation for eventually imaging debris disks.

  2. Dry-contact technique for high-resolution ultrasonic imaging.

    PubMed

    Tohmyoh, Hironori; Saka, Masumi

    2003-06-01

    To accomplish a high-resolution ultrasonic imaging without wetting a sample, the efficiency of the dry-contact ultrasonic transmission is discussed. In this study, a dry-contact interface is formed on a sample by inserting a thin film between water and a sample, and the pressure is working on the interface by evacuating the air between the film and the sample. A model of dry-contact ultrasonic transmission is presented to assess the signal loss accompanied with the transmission. From the determination of the signal loss caused by the transmission using various films, it was found that the higher frequency ultrasound is transmitted effectively into the sample by selecting an optimum film, which can keep the displacement continuity between the film and the sample during ultrasonic transmission. At last, ultrasonic imaging with the sufficient signal-to-noise ratio (SNR) and high lateral resolution was performed on the delamination in a package and the jointing interface of the ball-grid-array package without wetting the packages.

  3. High resolution imaging system for Udaipur Solar Observatory

    NASA Astrophysics Data System (ADS)

    Bayanna, A. Raja; Louis, Rohan Eugene; Kumar, Brajesh; Mathew, Shibu K.; Venkatakrishnan, P.

    2007-09-01

    A Multi-Application Solar Telescope (MAST) is proposed to be installed at the Udaipur Solar Observatory (USO) in India to monitor the Sun in optical and near infra-red wavelengths. The median value of the Fried's parameter at this site is 4 cm. USO is in the process of building an Adaptive optics (AO) system in order to have diffraction limited performance of the MAST under this moderate seeing condition. AO helps in achieving high-resolution imaging by compensating the atmospheric turbulence in real-time. We have performed simulations to evaluate the performance of AO for various seeing conditions. It was concluded that with the present availability of AO system components, a 55 cm aperture telescope would yield optimum performance with AO, in combination with post-processing techniques like speckle imaging and phase diversity. At present, we are developing a proto-type AO system at USO to demonstrate its performance with a 15 cm Coudé refracting telescope as a preparation for the main AO system to be deployed on the MAST. The prototype AO system is being realized in two phases. In the first phase, we have developed an image stabilization system to compensate the global tilt of the wave-front. The second phase consists of sensing and correcting the local tilts of the wave-front by integrating a micro-machined membrane deformable mirror with the image stabilization system and is currently in progress. Here, we present the details of our proto-type AO system. We also present preliminary results obtained from simulations using Phase Diversity as a post processing technique.

  4. High resolution imaging of the outflow channels on Mars

    NASA Astrophysics Data System (ADS)

    Davatzes, A. K.; Gulick, V. C.

    2008-12-01

    We report observations of the outflow channels on Mars from HiRISE images in MRO's first Martian year. Several hundred images of the outflow channels on Mars have been collected to date from HiRISE, as well as coordinated images with CTX and CRISM. Depositional features, such as slackwater deposits and small bedforms that are expected to be visible at the resolution of HiRISE have not yet been observed, largely due to post-fluvial modification of the channels. Many of the channels have been subsequently covered by a thin layer of lava, ash, dust, or lineated valley fill. Although altered slightly by later aeolian modification, Ares Valles and Kasei Valles preserve much of the original fluvial erosional forms, particularly cataracts and longitudinal grooves that can be used to infer the mechanics of the flow. Cataracts, steep knickpoints in the large outflow channels, were once large waterfalls on the Martian surface. These have been observed in all of the larger outflow systems, including Kasai, Athabasca, Mangala, and Reull Valles. High resolution imaging shows that all of the cataract systems have multiple generations of erosion, with smaller subchannels within the cataract system. Based on the length of the recession and the morphological evidence most of the large channels experienced multiple flooding events or pulses. The tectonically sourced outflow channels, such as Athabasca and Mangala Valles, show sourcing at regions of complex fault geometries, specifically at fault relays. In terrestrial systems, relays tend to be regions of concentrated stress that can produce dilation manifested as high joint density, as well as point sources for hydrothermal outflow on Earth. Athabasca and Mangala Valles, sourced proximal to large volcanic centers, may have been regions of major hydrothermal activity in the past.

  5. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  6. High resolution image reconstruction from projection of low resolution images differing in subpixel shifts

    NASA Astrophysics Data System (ADS)

    Mareboyana, Manohar; Le Moigne, Jacqueline; Bennett, Jerome

    2016-05-01

    In this paper, we demonstrate simple algorithms that project low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithms are very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. are used in projection. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML) algorithms. The algorithms are robust and are not overly sensitive to the registration inaccuracies.

  7. Special issue on high-resolution optical imaging

    NASA Astrophysics Data System (ADS)

    Smith, Peter J. S.; Davis, Ilan; Galbraith, Catherine G.; Stemmer, Andreas

    2013-09-01

    The pace of development in the field of advanced microscopy is truly breath-taking, and is leading to major breakthroughs in our understanding of molecular machines and cell function. This special issue of Journal of Optics draws attention to a number of interesting approaches, ranging from fluorescence and imaging of unlabelled cells, to computational methods, all of which are describing the ever increasing detail of the dynamic behaviour of molecules in the living cell. This is a field which traditionally, and currently, demonstrates a marvellous interplay between the disciplines of physics, chemistry and biology, where apparent boundaries to resolution dissolve and living cells are viewed in ever more clarity. It is fertile ground for those interested in optics and non-conventional imaging to contribute high-impact outputs in the fields of cell biology and biomedicine. The series of articles presented here has been selected to demonstrate this interdisciplinarity and to encourage all those with a background in the physical sciences to 'dip their toes' into the exciting and dynamic discoveries surrounding cell function. Although single molecule super-resolution microscopy is commercially available, specimen preparation and interpretation of single molecule data remain a major challenge for scientists wanting to adopt the techniques. The paper by Allen and Davidson [1] provides a much needed detailed introduction to the practical aspects of stochastic optical reconstruction microscopy, including sample preparation, image acquisition and image analysis, as well as a brief description of the different variants of single molecule localization microscopy. Since super-resolution microscopy is no longer restricted to three-dimensional imaging of fixed samples, the review by Fiolka [2] is a timely introduction to techniques that have been successfully applied to four-dimensional live cell super-resolution microscopy. The combination of multiple high-resolution techniques

  8. High-Resolution Imaging of Asteroids/Satellites with AO

    NASA Astrophysics Data System (ADS)

    Merline, William

    2012-02-01

    We propose to make high-resolution observations of asteroids using AO, to measure size, shape, and pole position (spin vectors), and/or to search for satellites. We have demonstrated that AO imaging allows determination of the pole/dimensions in 1 or 2 nights on a single target, rather than the years of observations with lightcurve inversion techniques that only yield poles and axial ratios, not true dimensions. Our new technique (KOALA) combines AO imaging with lightcurve and occultation data for optimum size/shape determinations. We request that LGS be available for faint targets, but using NGS AO, we will measure several large and intermediate asteroids that are favorably placed in spring/summer of 2012 for size/shape/pole. Accurately determining the volume from the often-irregular shape allows us to derive densities to much greater precision in cases where the mass is known, e.g., from the presence of a satellite. We will search several d! ozen asteroids for the presence of satellites, particularly in under-studied populations, particularly NEOs (we have recently achieved the first-ever optical image of an NEO binary [Merline et al. 2008b, IAUC 8977]). Satellites provide a real-life lab for testing collisional models. We will search for satellites around special objects at the request of lightcurve observers, and we will make a search for debris in the vicinity of Pluto, in support of the New Horizons mission. Our shape/size work requires observations over most of a full rotation period (typically several hours).

  9. High resolution Doppler imager on the Upper Atmosphere Research Satellite

    SciTech Connect

    Skinner, W.R.; Hays, P.B.; Grassl, H.J.; Gell, D.A.; Burrage, M.D.; Marshall, A.R.; Ortland, D.A.

    1994-12-31

    The High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite has been providing measurements of the wind field in the stratosphere, mesosphere and lower thermosphere since November 1991. Examination of various calibration data indicates the instrument has remained remarkably stable since launch. The instrument has a thermal drift of about 30 m/s/{degree}C (slightly dependent on wavelength) and a long-term temporal drift that has amounted to about 80 m/s since launch. These effects are removed in the data processing leaving an uncertainty in the instrument stability of {minus}2 nVs. The temperature control of the instrument has improved significantly since launch as a new method was implemented. The initial temperature control held the instrument temperature at about {+-}1{degree}C. The improved method, which holds constant the temperature of the optical bench instead of the radiator, keeps the instrument temperature at about 0.2{degree}C. The calibrations indicate very little change in the sensitivity of the instrument. The detector response has shown no degradation and the optics have not changed their transmittance.

  10. Special issue on high-resolution optical imaging

    NASA Astrophysics Data System (ADS)

    Smith, Peter J. S.; Davis, Ilan; Galbraith, Catherine G.; Stemmer, Andreas

    2013-09-01

    The pace of development in the field of advanced microscopy is truly breath-taking, and is leading to major breakthroughs in our understanding of molecular machines and cell function. This special issue of Journal of Optics draws attention to a number of interesting approaches, ranging from fluorescence and imaging of unlabelled cells, to computational methods, all of which are describing the ever increasing detail of the dynamic behaviour of molecules in the living cell. This is a field which traditionally, and currently, demonstrates a marvellous interplay between the disciplines of physics, chemistry and biology, where apparent boundaries to resolution dissolve and living cells are viewed in ever more clarity. It is fertile ground for those interested in optics and non-conventional imaging to contribute high-impact outputs in the fields of cell biology and biomedicine. The series of articles presented here has been selected to demonstrate this interdisciplinarity and to encourage all those with a background in the physical sciences to 'dip their toes' into the exciting and dynamic discoveries surrounding cell function. Although single molecule super-resolution microscopy is commercially available, specimen preparation and interpretation of single molecule data remain a major challenge for scientists wanting to adopt the techniques. The paper by Allen and Davidson [1] provides a much needed detailed introduction to the practical aspects of stochastic optical reconstruction microscopy, including sample preparation, image acquisition and image analysis, as well as a brief description of the different variants of single molecule localization microscopy. Since super-resolution microscopy is no longer restricted to three-dimensional imaging of fixed samples, the review by Fiolka [2] is a timely introduction to techniques that have been successfully applied to four-dimensional live cell super-resolution microscopy. The combination of multiple high-resolution techniques

  11. High-resolution full-panoramic imaging surveillance system

    NASA Astrophysics Data System (ADS)

    Kerbyson, Gerald M.

    2002-08-01

    This paper describes new class of high-resolution electro-optical imaging search and surveillance system (visual and/or IR). This new system uniquely provides continuous real-time situation-awareness and response, with immediate detection of approaching/ emerging threats, and rapid assessment of a situation, permitting immediate response/ reaction to counter the threat. As such it is uniquely suited for a very wide variety of diverse surveillance applications, especially in the areas of security and defense. The system provides an uninterrupted real-time, effectively live, imaging-display coverage of the entire 360 degree(s) panorama, all evaluated in real time at the full resolution of the imaging sensor. The image resolution for the full 360 degree(s) panorama collected by the sensor, and displayed by the display module, is unprecedentedly high, typically at least 20 megapixels (e.g., 2,000 pixels vertically by 20,000 pixels in circumference). The associated scene-scan cycle time is typically a second or less. This level of performance assures earliest detection of distant targets and highest-quality evaluation of the targets. Two alternative means of surveillance evaluation are available: the Direct-View (Observer) Surveillance Evaluation, and the Semi-Automated Surveillance Evaluation, with visual verification by the observer personnel. The resulting surveillance capability is unprecedented, simultaneously providing a) assured target detection anywhere within the 360 degree(s) panorama, b) classification, c) localization, d) tracking, and e) target status and activity monitoring, all without the need for any external tip-off or cueing inputs to the system. The greatest value of this unique situation-awareness capability is primarily in situations requiring high-confidence protection of high-value vehicles or installations located inside a relatively open and unobstructed region wherein hostile threats could quickly appear at any time and from any direction. An

  12. Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos

    PubMed Central

    Kagemann, Larry; Ishikawa, Hiroshi; Zou, Jian; Charukamnoetkanok, Puwat; Wollstein, Gadi; Townsend, Kelly A.; Gabriele, Michelle L.; Bahary, Nathan; Wei, Xiangyun; Fujimoto, James G.

    2008-01-01

    Purpose To demonstrate a new imaging method for high resolution spectral domain optical coherence tomography (SD-OCT) for small animal developmental imaging. Methods Wildtype zebrafish that were 24, 48, 72, and 120 h post fertilization (hpf) and nok gene mutant (48 hpf) embryos were imaged in vivo. Three additional embryos were imaged twice, once at 72 hpf and again at 120 hpf. Images of the developing eye, brain, heart, whole body, proximal yolk sac, distal yolk sac, and tail were acquired. Three-dimensional OCT data sets (501×180 axial scans) were obtained as well as oversampled frames (8,100 axial scans) and repeated line scans (180 repeated frames). Scan volumes ranged from 750×750 µm to 3×3 mm, each 1.8 mm thick. Three-dimenstional data sets allowed construction of C-mode slabs of the embryo. Results SD-OCT provided ultra-high resolution visualization of the eye, brain, heart, ear, and spine of the developing embryo as early as 24 hpf, and allowed development to be documented in each of these organ systems in consecutive sessions. Repeated line scanning with averaging optimized the visualization of static and dynamic structures contained in SD-OCT images. Structural defects caused by a mutation in the nok gene were readily observed as impeded ocular development, and enlarged pericardial cavities. Conclusions SD-OCT allowed noninvasive, in vivo, ultra-high resolution, high-speed imaging of zebrafish embryos in their native state. The ability to measure structural and functional features repeatedly on the same specimen, without the need to sacrifice, promises to be a powerful tool in small animal developmental imaging. PMID:19052656

  13. Fast, High-Resolution Terahertz Radar Imaging at 25 Meters

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Talukder, Ashit; Panangadan, Anand V.; Peay, Chris S.; Siegel, Peter H.

    2010-01-01

    We report improvements in the scanning speed and standoff range of an ultra-wide bandwidth terahertz (THz) imaging radar for person-borne concealed object detection. Fast beam scanning of the single-transceiver radar is accomplished by rapidly deflecting a flat, light-weight subreflector in a confocal Gregorian optical geometry. With RF back-end improvements also implemented, the radar imaging rate has increased by a factor of about 30 compared to that achieved previously in a 4 m standoff prototype instrument. In addition, a new 100 cm diameter ellipsoidal aluminum reflector yields beam spot diameters of approximately 1 cm over a 50x50 cm field of view at a range of 25 m, although some aberrations are observed that probably arise from misaligned optics. Through-clothes images of a concealed threat at 25 m range, acquired in 5 seconds, are presented, and the impact of reduced signal-to-noise from an even faster frame rate is analyzed. These results inform the system requirements for eventually achieving sub-second or video-rate THz radar imaging.

  14. Fast high-resolution terahertz radar imaging at 25 meters

    NASA Astrophysics Data System (ADS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Talukder, Ashit; Panangadan, Anand V.; Peay, Chris S.; Mehdi, Imran; Siegel, Peter H.

    2010-04-01

    We report improvements in the scanning speed and standoff range of an ultra-wide bandwidth terahertz (THz) imaging radar for person-borne concealed object detection. Fast beam scanning of the single-transceiver radar is accomplished by rapidly deflecting a flat, light-weight subreflector in a confocal Gregorian optical geometry. With RF back-end improvements also implemented, the radar imaging rate has increased by a factor of about 30 compared to that achieved previously in a 4 m standoff prototype instrument. In addition, a new 100 cm diameter ellipsoidal aluminum reflector yields beam spot diameters of approximately 1 cm over a 50×50 cm field of view at a range of 25 m, although some aberrations are observed that probably arise from misaligned optics. Through-clothes images of concealed pipes at 25 m range, acquired in 5 seconds, are presented, and the impact of reduced signal-to-noise from an even faster frame rate is analyzed. These results inform the requirements for eventually achieving sub-second or video-rate THz radar imaging.

  15. Estimating Scots Pine Tree Mortality Using High Resolution Multispectral Images

    NASA Astrophysics Data System (ADS)

    Buriak, L.; Sukhinin, A. I.; Conard, S. G.; Ivanova, G. A.; McRae, D. J.; Soja, A. J.; Okhotkina, E.

    2010-12-01

    Scots pine (Pinus sylvestris) forest stands of central Siberia are characterized by a mixed-severity fire regime that is dominated by low- to high-severity surface fires, with crown fires occurring less frequently. The purpose of this study was to link ground measurements with air-borne and satellite observations of active wildfires and older fire scars to better estimate tree mortality remotely. Data from field sampling on experimental fires and wildfires were linked with intermediate-resolution satellite (Landsat Enhanced Thematic Mapper) data to estimate fire severity and carbon emissions. Results are being applied to Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, MERIS, Landsat-ETM, SPOT (i.e., low, middle and high spatial resolution), to understand their remote-sensing capability for mapping fire severity, as indicated by tree mortality. Tree mortality depends on fireline intensity, residence time, and the physiological effects on the cambium layer, foliage and roots. We have correlated tree mortality measured after fires of varying severity with NDVI and other Chlorophyll Indexes to model tree mortality on a landscape scale. The field data obtained on experimental and wildfires are being analyzed and compared with intermediate-resolution satellite data (Landsat7-ETM) to help estimate fire severity, emissions, and carbon balance. In addition, it is being used to monitor immediate ecosystem fire effects (e.g., tree mortality) and long-term postfire vegetation recovery. These data are also being used to validate AVHRR , MODIS, and MERIS estimates of burn area. We studied burned areas in the Angara Region of central Siberia (northeast of Lake Baikal) for which both ground data and satellite data (ENVISAT-MERIS, Spot4, Landsat5, Landsat7-ETM) were available for the 2003 - 2004 and 2006 - 2008 periods. Ground validation was conducted on seventy sample plots established on burned sites differing in

  16. High resolution Ceres HAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2016-04-01

    Introduction: NASA's Dawn spacecraft entered the orbit of dwarf planet Ceres in March 2015, and will characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Ceres. One of the major goals of the mission is a global mapping of Ceres. Data: The Dawn mission was mapping Ceres in HAMO (High Altitude Mapping Orbit, 1475 km altitude) between August and October 2015. The framing camera took about 2,600 clear filter images with a resolution of about 140 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected images from one cycle (cycle #1) for the mosaicking process to have similar viewing and illumination conditions. Very minor gaps in the coverage were filled with a few images from cycle #2. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the targets. Both, improved orientation and a high-resolution shape model, are provided by stereo processing (bundle block adjustment) of the HAMO stereo image dataset [3]. Ceres's HAMO shape model was used for the calculation of the ray intersection points while the map projection itself was done onto the reference sphere of Ceres with a radius of 470 km. The final step is the controlled mosaicking) of all images to a global mosaic of Ceres, the so-called basemap. Ceres map tiles: The Ceres atlas was produced in a scale of 1:750,000 and consists of 15 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4]. A map scale of 1:750,000 guarantees a mapping at the highest available Dawn resolution in HAMO. The individual tiles were extracted from the global mosaic and reprojected. Nomenclature: The Dawn team proposed 81 names for geological features. By international

  17. High Resolution Near-Infrared Imaging with Tip - Adaptive Optics.

    NASA Astrophysics Data System (ADS)

    Close, Laird Miller

    1995-01-01

    The development and design of the first operational tip-tilt Cassegrain secondary mirror are presented. This system, FASTTRAC, samples image motion at up to 50 Hz by tracking either infrared (m_{k } <=q 11) or visible (mR <=q 16) guide stars up to 30" and 90" away from the science target respectively. The Steward Observatory 2.3m or 1.5m telescope secondaries act as rapid tip-tilt mirrors to stabilize image motion (<=q0.1" rms;~5 Hz -3 dB frequency) based on the motion of the guide star. FASTTRAC obtains nearly diffraction-limited resolutions in seeing conditions where D/r_circ < 4 in agreement with theoretical expectations. FASTTRAC's unique ability to guide on infrared stars has allowed the first adaptively corrected images of the heavily extincted Galactic Center to be obtained. Over a hundred excellent (0.28" < FWHM < 0.6") images have been obtained of this region. These images do not detect any long term variations in the massive black hole candidate Sgr A*'s luminosity from June 1993 to September 1995. The average infrared magnitudes observed are K = 12.1 +/- 0.3, H = 13.7 +/- 0.3 and J = 16.6 +/- 0.4 integrated over 0.5" at the position of Sgr A*. No significant rapid periodicities were observed from Sgr A* for amplitudes >=q50% of the mean flux in the period range of 3-30 minutes. It is confirmed in the latest 0.28" FWHM image that there is 0.5" "bar" of emission running East-West at the position of Sgr A* as was earlier seen by Eckart et al. 1993. The observed fluxes are consistent with an inclined accretion disk around a ~1 times 10^6 M _odot black hole. However, they are also explained by a line of hot luminous (integrated luminosity of ~10^{3.5 -4.6}L_odot) central cluster stars positionally coincident with Sgr A* naturally explaining the observed 0.5" "bar". High-resolution images with FASTTRAC guiding on a faint (R = 16) visible guide star, combined with spectra from the MMT, have shown that IRAS FSC 10214 + 4724 (z = 2.28) gains its uniquely large

  18. Bathymetric Extraction Using WORLDVIEW-2 High Resolution Images

    NASA Astrophysics Data System (ADS)

    Deidda, M.; Sanna, G.

    2012-07-01

    The fundamental principle underlying the methods used to extract bathymetric information from remote-sensed imagery is that different wavelengths of the solar light penetrate the water body to different depths. In order to extract bathymetric values from multispectral satellite imagery we implemented the Jupp method (Jupp, 1988), in IDL language and integrated it in the ENVI menu structure. In this experiment we apply this method to two images of the Poetto beach in Cagliari (Sardinia, Italy) acquired from the new-generation WorldView-2 sensor. Launched in October 2009, the WorldView-2 sensor provides, among others, one (named Coastal) that was designed specifically for this kind of analysis; we chose to use the Coastal band in place of the Blue one when applying the model. The images (a stereoscopic pair) were acquired on June 17, 2011. The 5419 scene was pre-processed in order to separate the sea bottom classes. This class was then georeferenced to overlap on the 5318 scene. A traditional bathymetric survey was performed, up to 1,50 m, planned and carried out in order to calibrate the model. For each scene, 10 calibration areas were selected, and for each of them a digital model of the sea bottom was generated. Precision and accuracy of the method were evaluated by analyzing the results extracted from the stereo-pairs and by examining the correlation between the surveyed depth values and the calculated ones, between the different models calculated from the same scene using different calibration areas, and between the models obtained from the two images.

  19. High resolution reconstruction of solar prominence images observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xiang, Yong-yuan; Liu, Zhong; Jin, Zhen-yu

    2016-11-01

    A high resolution image showing fine structures is crucial for understanding the nature of solar prominence. In this paper, high resolution imaging of solar prominence on the New Vacuum Solar Telescope (NVST) is introduced, using speckle masking. Each step of the data reduction especially the image alignment is discussed. Accurate alignment of all frames and the non-isoplanatic calibration of each image are the keys for a successful reconstruction. Reconstructed high resolution images from NVST also indicate that under normal seeing condition, it is feasible to carry out high resolution observations of solar prominence by a ground-based solar telescope, even in the absence of adaptive optics.

  20. An Automated Platform for High-Resolution Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Lanekoff, Ingela T.; Heath, Brandi S.; Liyu, Andrey V.; Thomas, Mathew; Carson, James P.; Laskin, Julia

    2012-10-02

    An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours. This is achieved by controlling the distance between the sample and the probe by mounting the sample holder onto an automated XYZ stage and defining the tilt of the sample plane. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSI QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. High resolution mass analysis combined with MS/MS experiments enabled identification of lipids and metabolites in the tissue section. In addition, high dynamic range and sensitivity of the technique allowed us to generate ion images of low-abundance isobaric lipids. High-spatial resolution image acquired over a small region of the tissue section revealed the spatial distribution of an abundant brain metabolite, creatine, in the white and gray matter that is consistent with the literature data obtained using magnetic resonance spectroscopy.

  1. High resolution VESTA LAMO atlas derived from Dawn FC images.

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Cris T.

    2013-04-01

    Introduction: NASA's Dawn spacecraft entered orbit of the inner main belt asteroid 4 Vesta on July 16, 2011, and spent about one year in orbit to characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Vesta before it departed to asteroid 1 Ceres in late 2012. One of the major goals of the mission was a global mapping of Vesta. Data: The DAWN mission was mapping Vesta from three different orbit heights during Survey orbit (3100 km altitude), HAMO (High Altitude Mapping Orbit, 700 km altitude), and LAMO (Low Altitude Mapping Orbit, 210 km altitude) [1]. The Dawn mission is equipped with a framing camera (FC) [2] which was the prime instrument during the LAMO phase. DAWN orbited Vesta during LAMO in 21 cycles between December 2011 and end of April 2012. The framing camera took about 10,000 clear filter images with a resolution of about 20 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected about 8,000 images for the global coverage of Vesta. Data Processing: The first step of the processing chain is to ortho rectify the images to the proper scale and map projection type. This process requires detailed high-resolution information of the local topography of Vesta. The global topgraphy was calculated during the stereo processing of the HAMO images [3] and was used here. The shape model was used for the calculation of the ray intersection points while the map projection itself was done onto a sphere with a mean radius of 255 km. The next step was the mosaicking of all images to one global mosaic of Vesta, the so called basemap. Vesta map tiles: The Vesta atlas was produced in a scale of 1:200,000 and consists of 30 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4] and is used for example for mapping Mars in a scale of 1:5,000,000. A map scale of 1:200,000 guarantees a mapping at the highest available DAWN

  2. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  3. New High-Resolution Images of Summer Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Kwok, Ronald; Untersteiner, Norbert

    2011-02-01

    In 1995 a group of government and academic scientists were appointed by the vice president of the United States to review and advise on acquisitions of imagery obtained by classified intelligence satellites (National Technical Means) and to recommend the declassification of certain data sets for the benefit of science. The group is called MEDEA and was first described by Richelson [1998]. MEDEA disbanded in 2000 but reassembled in 2008. On 15 June 2009, under the auspices of MEDEA, the U.S. Geological Survey (USGS) released to the public as Literal Image Derived Products (LIDPs) numerous images with 1-meter resolution acquired since 1999 at six locations in the Arctic Basin (Beaufort Sea, Canadian Arctic, Fram Strait, East Siberian Sea, Chukchi Sea, and Point Barrow). These locations are named “fiducial sites” to suggest that the collected imagery establishes a baseline data set for understanding recent and future changes. Data in the Global Fiducials Library (GFL) can be accessed via http://gfl.usgs.gov/. This data repository is updated by USGS as additional data become available.

  4. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    SciTech Connect

    Ramos, Jorge R.

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  5. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    NASA Astrophysics Data System (ADS)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  6. An integral design strategy combining optical system and image processing to obtain high resolution images

    NASA Astrophysics Data System (ADS)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  7. 3D High-Resolution Seismic Imaging of Fluid Flow Anomalies on the Norwegian Continental Shelf

    NASA Astrophysics Data System (ADS)

    Planke, S.; Eriksen, F. N.; Eriksen, O. K.; Myklebust, R.; Stokke, H. H.

    2015-12-01

    Fluid flow anomalies are common on the Norwegian Continental Shelf. Such features are imaged by multiple P-Cable high resolution seismic 2D lines and 3D cubes in the Norwegian Barents Sea. P-Cable is a high resolution 3D seismic system consisting of multiple streamers attached to a cross cable that is towed perpendicular to the vessels steaming direction. The short offset, high frequency source and closely spaced streamers facilitates for excellent vertical and horizontal resolution that provides key information for understanding the sub-surface. Recent data have been broadband processed, and the method has proven to enhance the imaging of the sub-surface significantly. Barents Sea P-Cable surveys have targeted shallow fluid anomalies in the uppermost ca. 500 meters of the sub-surface. New data have been acquired in 2012, 2014 and 2015. The most recent data focus on the southeast part of the Norwegian Barents Sea where P-Cable data give a new insight into the subsurface not provided by conventional seismic data in the region. Geologically, the Barents Sea region is characterized by Paleozoic and Mesozoic siliciclastic successions overlaid in most areas by a thin cover of Cenozoic glacial sediments. Hydrocarbon-rich Jurassic and Triassic sequences are locally situated in the shallow sub-surface as a result of extensive late Cenozoic uplift and erosion. The unloading has been reported to reactivate and create new faults in addition to initiate further migration of fluids in the sub-surface (Chand et al., 2012). The presence of shallow hydrocarbon systems creates an optimal setting for imaging fluid flow anomalies with high resolution 3D seismic data. The Barents Sea P-Cable data image a range of fluid related features such as cross-cutting reflections and bright spots, chimney structures, acoustic masking, pockmarks and mud volcanoes.

  8. High-Resolution MR Imaging of the Human Brainstem In vivo at 7 Tesla

    PubMed Central

    Deistung, Andreas; Schäfer, Andreas; Schweser, Ferdinand; Biedermann, Uta; Güllmar, Daniel; Trampel, Robert; Turner, Robert; Reichenbach, Jürgen R.

    2013-01-01

    The human brainstem, which comprises a multitude of axonal nerve fibers and nuclei, plays an important functional role in the human brain. Depicting its anatomy non-invasively with high spatial resolution may thus in turn help to better relate normal and pathological anatomical variations to medical conditions as well as neurological and peripheral functions. We explored the potential of high-resolution magnetic resonance imaging (MRI) at 7 T for depicting the intricate anatomy of the human brainstem in vivo by acquiring and generating images with multiple contrasts: T2-weighted images, quantitative maps of longitudinal relaxation rate (R1 maps) and effective transverse relaxation rate (R2* maps), magnetic susceptibility maps, and direction-encoded track-density images. Images and quantitative maps were compared with histological stains and anatomical atlases to identify nerve nuclei and nerve fibers. Among the investigated contrasts, susceptibility maps displayed the largest number of brainstem structures. Contrary to R1 maps and T2-weighted images, which showed rather homogeneous contrast, R2* maps, magnetic susceptibility maps, and track-density images clearly displayed a multitude of smaller and larger fiber bundles. Several brainstem nuclei were identifiable in sections covering the pons and medulla oblongata, including the spinal trigeminal nucleus and the reticulotegmental nucleus on magnetic susceptibility maps as well as the inferior olive on R1, R2*, and susceptibility maps. The substantia nigra and red nuclei were visible in all contrasts. In conclusion, high-resolution, multi-contrast MR imaging at 7 T is a versatile tool to non-invasively assess the individual anatomy and tissue composition of the human brainstem. PMID:24194710

  9. High Resolution Spectroscopy and Imaging of Hot Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Cruddace, R. G.; Gursky, H.; Yentis, D. J.; Barbee, T. W., Jr.; Goldstein, W. H.; Kordas, J. F.; Fritz, G. G.; Barstow, M. A.; Bannister, N. P.; Lapington, J. S.

    2001-12-01

    Future X-ray and EUV missions should include high-resolution spectrometers, permitting use of the full range of spectroscopic diagnostics, in particular measurement of line profiles and Doppler shifts. We present a design for such an instrument (APEX), which would fly on a Small Explorer Satellite and which employs multilayer-coated ion-etched gratings in a normal-incidence configuration. We have already flown successfully a prototype spectrometer (J-PEX) on a NASA sounding rocket. The resulting EUV spectrum of the white dwarf G191-B2B will be presented.

  10. Batch Co-Registration of Mars High-Resolution Images to HRSC MC11-E Mosaic

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2016-06-01

    Four NASA missions over the last forty years with onboard instruments for high-resolution orbital imaging have achieved both global coverage (with 6m CTX, 20m THEMIS-VIS and >8m Viking Orbiter cameras) as well as imaging with very high resolution in specific regions of interest (e.g. 25cm HiRISE and ≈1.5-12m MOC-NA cameras). Overall, this set of cameras have acquired more than 400,000 high-quality images of Mars with resolution between 25cm/pixel and 100m/pixel (Sidiropoulos and Muller, 2015). On the other hand, ESA has sent the only high-resolution stereo photogrammetric camera around Mars, HRSC onboard the Mars Express spacecraft, which has been mapping the Martian surface since 2004 with a resolution of 12.5 m/pixel (Jaumann et al., 2015). Initially the raw images are combined through an elaborate photogrammetric process to get (single-strip) 3D products (i.e. digital terrain models (DTMs) and derived orthorectified images (ORIs)). However, recently the processing chain has changed, and the single-strip product release was temporarily halted to be replaced by the production and release of mosaics of Mars quadrangles. The first product of this kind is the mosaic for the East part of quadrangle MC11 (i.e. the MC11-E mosaic), a product with 12.5 metres per pixel resolution in the panchromatic image and 50 metres per pixel resolution in the corresponding DTM (Gwinner et al., 2015). Such a product provides an excellent basemap to co-register and orthorectify all NASA high-resolution (≤100m/pixel) orbital images. The need for this co-registration to HRSC comes from their poor areo-referencing, which often leads to large deviations (reaching up to several kilometres) between the area they are supposed to image and the area they are actually imaging. After co-registration, all products are projected onto an common 3D coordinate system, which allows an examination of dynamic features of Mars through the changes that happen on its surface. In this work, we present the

  11. High-Resolution Views of Io's Emakong Patera: Latest Galileo Imaging Results

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Keszthelyi, L. P.; Davies, A. G.; Greeley, R.; Head, J. W., III

    2002-01-01

    This presentation will discuss analyses of the latest Galileo SSI (solid state imaging) high-resolution images of the Emakong lava channels and flow field on Jupiter's moon Io. Additional information is contained in the original extended abstract.

  12. High-resolution full-field optical coherence tomography using high dynamic range image processing

    NASA Astrophysics Data System (ADS)

    Leong-Hoï, A.; Claveau, R.; Montgomery, P. C.; Serio, B.; Uhring, W.; Anstotz, F.; Flury, M.

    2016-04-01

    Full-field optical coherence tomography (FF-OCT) based on white-light interference microscopy, is an emerging noninvasive imaging technique for characterizing biological tissue or optical scattering media with micrometer resolution. Tomographic images can be obtained by analyzing a sequence of interferograms acquired with a camera. This is achieved by scanning an interferometric microscope objectives along the optical axis and performing appropriate signal processing for fringe envelope extraction, leading to three-dimensional imaging over depth. However, noise contained in the images can hide some important details or induce errors in the size of these details. To firstly reduce temporal and spatial noise from the camera, it is possible to apply basic image post processing methods such as image averaging, dark frame subtraction or flat field division. It has been demonstrate that this can improve the quality of microscopy images by enhancing the signal to noise ratio. In addition, the dynamic range of images can be enhanced to improve the contrast by combining images acquired with different exposure times or light intensity. This can be made possible by applying a hybrid high dynamic range (HDR) technique, which is proposed in this paper. High resolution tomographic analysis is thus performed using a combination of the above-mentioned image processing techniques. As a result, the lateral resolution of the system can be improved so as to approach the diffraction limit of the microscope as well as to increase the power of detection, thus enabling new sub-diffraction sized structures contained in a transparent layer, initially hidden by the noise, to be detected.

  13. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    PubMed Central

    de Oliveira, Luciano Fonseca Lemos; Mejia, Jorge; de Carvalho, Eduardo Elias Vieira; Lataro, Renata Maria; Frassetto, Sarita Nasbine; Fazan, Rubens; Salgado, Hélio Cesar; Galvis-Alonso, Orfa Yineth; Simões, Marcus Vinícius

    2013-01-01

    Background Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. Objective To determine the accuracy of this system for quantification of myocardial infarct area in rats. Methods Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. Results The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. Conclusion The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents. PMID:23917507

  14. A variety of vertical integration process for high resolution seismic imaging

    NASA Astrophysics Data System (ADS)

    Tong, S.; Liu, Y., Sr.; Wen, J.

    2015-12-01

    Seismic prospecting, including long array multichannel seismic prospecting, ultrahigh resolution shallow profile prospecting and short trace interval short array high resolution multichannel seismic prospecting, make a great contribution to discover the marine oil-gas field. Seismic data have different dominant frequencies, resolution and penetration depth for different exploration purposes and methods. In seismic prospecting the long array has shot-receiver offset over several kilometers. Its trace interval and shot interval is about some decameters, while the dominant frequency is tens of hertz. Its penetration depth is thousands of meters. Its order of resolution in vertical and horizontal is meters to decameters. Ultrahigh resolution shallow profile prospecting data is used at well site and later for risk assessment with sonar data. We need its vertical and horizontal resolution come to at least decimeter level. Its frequency is about thousands hertz and penetration depth is about decameters. Small-interval, short array, high resolution multichannel seismic prospecting has compromise effect between long array multichannel seismic prospecting and ultrahigh resolution shallow profile prospecting. We can use this to link up long array multichannel seismic prospecting and ultrahigh resolution shallow profile prospecting vertically. By mixing these different frequency seismic data one can maximize the advantages of these data. Since different seismic data can only achieve certain level of accuracy and quality in seismic imaging, there is no perfect method to process these data in vertical direction. Here, we propose to mix those data and achieve the integrated seismic processing. Base on mixing different seismic data, the cooperative process can take the advantage of mixing data to image different target layers. With this method we can lay bare mysteries of ocean bottom and deeper layer, provide assistance to find oil and gas, and provide services for oil-gas field

  15. High-Resolution Radio Imaging of the "Cosmic Hand"

    NASA Astrophysics Data System (ADS)

    Ng, Chi-Yung; Gaensler, Bryan; Slane, Patrick; Harvey-Smith, Lisa

    2012-10-01

    The 'Cosmic Hand' is an extremely complex pulsar wind nebula system powered by the energetic pulsar B1509-58 in supernova remnant G320.4-1.2 (MSH 15-52). Our recent ATCA observations revealed an intriguing jet-like linear feature of 1'-scale surrounding the pulsar. This could be the first known radio jet from a young pulsar, or a synchrotron wisp extending to high latitude. We propose here high-resolution observations to resolve its detailed morphology and to detect any time variability, with the aim to identify its physical nature. Confirming the jet nature could help reveal its launching mechanism and the particle acceleration process, while a wisp can indicate the flow structure beyond the equatorial plane. In either case, this will set an important example to refine our understanding of pulsar wind physics.

  16. High resolution imaging of tunnels by magnetic resonance neurography

    PubMed Central

    Wang, Kenneth C.; Thawait, Shrey K.; Williams, Eric H.; Hashemi, Shahreyar Shar; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh

    2011-01-01

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. PMID:21479520

  17. 3D Cryo-Imaging: A Very High-Resolution View of the Whole Mouse

    PubMed Central

    Roy, Debashish; Steyer, Grant J.; Gargesha, Madhusudhana; Stone, Meredith E.; Wilson, David L.

    2009-01-01

    We developed the Case Cryo-imaging system that provides information rich, very high-resolution, color brightfield, and molecular fluorescence images of a whole mouse using a section-and-image block-face imaging technology. The system consists of a mouse-sized, motorized cryo-microtome with special features for imaging, a modified, brightfield/ fluorescence microscope, and a robotic xyz imaging system positioner, all of which is fully automated by a control system. Using the robotic system, we acquired microscopic tiled images at a pixel size of 15.6 µm over the block face of a whole mouse sectioned at 40 µm, with a total data volume of 55 GB. Viewing 2D images at multiple resolutions, we identified small structures such as cardiac vessels, muscle layers, villi of the small intestine, the optic nerve, and layers of the eye. Cryo-imaging was also suitable for imaging embryo mutants in 3D. A mouse, in which enhanced green fluorescent protein was expressed under gamma actin promoter in smooth muscle cells, gave clear 3D views of smooth muscle in the urogenital and gastrointestinal tracts. With cryo-imaging, we could obtain 3D vasculature down to 10 µm, over very large regions of mouse brain. Software is fully automated with fully programmable imaging/sectioning protocols, email notifications, and automatic volume visualization. With a unique combination of field-of-view, depth of field, contrast, and resolution, the Case Cryo-imaging system fills the gap between whole animal in vivo imaging and histology. PMID:19248166

  18. Evidence of Frontal Rupturing in the Mentawai Gap, SW Sumatra, Newly Acquired High-Resolution Seismic Reflection and Bathymetry Data

    NASA Astrophysics Data System (ADS)

    Hananto, N.; Singh, S. C.; Tapponnier, P.; Sieh, K.; Carton, H. D.; Leclerc, F.; Carson, S.; Wei, S.; Nugroho, A. B.; Avianto, P.; Gemilang, W. A.; Duperray, R.; Permana, H.

    2015-12-01

    We present here the first results of the Mentawai Gap Tsunami Earthquake Research Assessment (MEGATERA) survey, conducted onboard R/V Falkor of the Schmidt Ocean Institute from 23 May-29 July 2015. The Mentawai Gap, located along the Sunda subduction zone offshore SW Sumatra, has been inferred to have the potential to produce a devastating great earthquake in the near future. Along this segment of the megathrust, only limited/small patches ruptured on 12 September 2007, during a twin earthquake of Mw = 8.5 and 7.9, and on October 25th, 2010, during the Mw=7.8 shallow earthquake that generated a large tsunami with run-up of up to ~8 m on Pagai islands. To better understand the mechanism of tsunamigenesis in general and better assess this hazard in the Mentawai locked zone in particular, we acquired a total of 1725 km high-resolution seismic reflection data across the subduction front along with more than 10000 km2 of multibeam bathymetry data. Along the Mentawai trench, we imaged the 2010 tsunami earthquake rupture zone, the Mentawai locked zone, the region impinged by the Investigator Fracture zone as well as the bending-related normal faults dissecting the incoming plate. We find that the morphology of the frontal accretionary wedge section within both the region ruptured in 2010 and the locked segment consists of multiple folds bounded by double-vergent active faults, which when activated during a megathrust event could generate a large tsunami. We also find evidence of mass wasting along thrust escarpments, which could be erosional features or more likely landslides scars triggered by earthquake shaking. The density and distribution of these geologic features along strike could give clues on the seismic history of the segments. These new data will allow us to elucidate the tsunamigenic potential of the Mentawai locked zone.

  19. Lensfree on-chip high-resolution imaging using two-way lighting, and its limitations

    NASA Astrophysics Data System (ADS)

    Adachi, Yasuhiko; Tamaki, Tokuhiko; Motomura, Hideto; Kato, Yoshihisa

    2016-03-01

    A high-magnification image of a biological sample can generally be obtained by an optical microscope with an objective lens, moving the image sensor with a sub-pixel shift and the subsequent image processing for super-resolution. However, to obtain a high-resolution image, a large number of images will be required for the super-resolution, and thus it is difficult to achieve real-time operation, and the field-of-view (FOV) is not sufficiently wide. The currently proposed digital holography technique places a sample on the image sensor and captures the interference fringe (hologram) to reconstruct a 3D high-resolution image in a computer. This technique ensures the features of a wide FOV, whereas the high resolution obtained by image processing cannot ensure real-time operation, because it requires recursive calculations of light propagation and adequate computer resources. To realize wide FOV and the real-time operation at the same time, we have developed a new technique: Lensfree on-chip high-resolution imaging using two-way lighting. High-resolution image is immediately obtained by image processing of the low-resolution images of the samples. This makes it possible to ensure a wide FOV, a deep depth of focus without the need for focus adjustment, and a continuously expanding operation. We also discuss the limitations of the high resolution.

  20. A new high-resolution electromagnetic method for subsurface imaging

    NASA Astrophysics Data System (ADS)

    Feng, Wanjie

    For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am 2) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a

  1. The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP)

    USGS Publications Warehouse

    McEwen, A.S.; Banks, M.E.; Baugh, N.; Becker, K.; Boyd, A.; Bergstrom, J.W.; Beyer, R.A.; Bortolini, E.; Bridges, N.T.; Byrne, S.; Castalia, B.; Chuang, F.C.; Crumpler, L.S.; Daubar, I.; Davatzes, A.K.; Deardorff, D.G.; DeJong, A.; Alan, Delamere W.; Dobrea, E.N.; Dundas, C.M.; Eliason, E.M.; Espinoza, Y.; Fennema, A.; Fishbaugh, K.E.; Forrester, T.; Geissler, P.E.; Grant, J. A.; Griffes, J.L.; Grotzinger, J.P.; Gulick, V.C.; Hansen, C.J.; Herkenhoff, K. E.; Heyd, R.; Jaeger, W.L.; Jones, D.; Kanefsky, B.; Keszthelyi, L.; King, R.; Kirk, R.L.; Kolb, K.J.; Lasco, J.; Lefort, A.; Leis, R.; Lewis, K.W.; Martinez-Alonso, S.; Mattson, S.; McArthur, G.; Mellon, M.T.; Metz, J.M.; Milazzo, M.P.; Milliken, R.E.; Motazedian, T.; Okubo, C.H.; Ortiz, A.; Philippoff, A.J.; Plassmann, J.; Polit, A.; Russell, P.S.; Schaller, C.; Searls, M.L.; Spriggs, T.; Squyres, S. W.; Tarr, S.; Thomas, N.; Thomson, B.J.; Tornabene, L.L.; Van Houten, C.; Verba, C.; Weitz, C.M.; Wray, J.J.

    2010-01-01

    The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ???0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions. ?? 2009 Elsevier Inc.

  2. Towards Adaptive High-Resolution Images Retrieval Schemes

    NASA Astrophysics Data System (ADS)

    Kourgli, A.; Sebai, H.; Bouteldja, S.; Oukil, Y.

    2016-06-01

    Nowadays, content-based image-retrieval techniques constitute powerful tools for archiving and mining of large remote sensing image databases. High spatial resolution images are complex and differ widely in their content, even in the same category. All images are more or less textured and structured. During the last decade, different approaches for the retrieval of this type of images have been proposed. They differ mainly in the type of features extracted. As these features are supposed to efficiently represent the query image, they should be adapted to all kind of images contained in the database. However, if the image to recognize is somewhat or very structured, a shape feature will be somewhat or very effective. While if the image is composed of a single texture, a parameter reflecting the texture of the image will reveal more efficient. This yields to use adaptive schemes. For this purpose, we propose to investigate this idea to adapt the retrieval scheme to image nature. This is achieved by making some preliminary analysis so that indexing stage becomes supervised. First results obtained show that by this way, simple methods can give equal performances to those obtained using complex methods such as the ones based on the creation of bag of visual word using SIFT (Scale Invariant Feature Transform) descriptors and those based on multi scale features extraction using wavelets and steerable pyramids.

  3. High resolution PET breast imager with improved detection efficiency

    DOEpatents

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  4. The pixel rectangle index used in object based building extraction from high resolution images

    NASA Astrophysics Data System (ADS)

    Cui, W. H.; Feng, X.; Qin, K.

    2014-03-01

    An improved high resolution object-based building extraction method based on Pixel Rectangle Index is presented in this paper. We use Minimum Span Tree optimal theory to realize object-based high resolution image segmentation. First, we proposed a rotation invariant Pixel Rectangle Index by introducing the principal direction of homogeneous area. Second, we improved the calculation of edge-weight by introducing the band-weight and Pixel Rectangle Index. The QuickBird high resolution images were used to do the building extraction experiment. The experiment result proved that this method can obtain high extraction accuracy and this algorithm can be efficiently used in remote sensing images.

  5. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    SciTech Connect

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-07-23

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 {mu}m and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the

  6. High resolution images of Venus from ground-based radar

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Slade, M. A.; Robinett, L.; Brokl, S.; Downs, G. S.

    1988-01-01

    The Goldstone Deep Space Station ground-based synthetic aperture radar system has been used to obtain radar images of Venus with resolutions of close to 1.3 km. Observations were made at 12.5 cm wavelength using circular polarization. From 12 days of observations during the 1986 inferior conjunction, three images have been selected for initial processing. The images show remarkable surface features including craters, ridges, and regions of high Fresnel reflectivity in the plains region.

  7. Virtually distortion-free imaging system for large field, high resolution lithography

    DOEpatents

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-05

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

  8. Virtually distortion-free imaging system for large field, high resolution lithography

    DOEpatents

    Hawryluk, Andrew M.; Ceglio, Natale M.

    1993-01-01

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

  9. A high-resolution radio image of a young supernova

    NASA Technical Reports Server (NTRS)

    Bartel, N.; Rupen, M. P.; Shapiro, I. I.; Preston, R. A.; Rius, A.

    1991-01-01

    A VLBI radio images of the bright supernova 1986J, which occurred in the galaxy NGC891 at a distance of about 12 Mpc, is presented. No detailed image of any supernova or remnant has been obtained before so soon after the explosion. The image shows a shell of emission with jetlike protrusions. Analysis of the images should advance understanding of the dynamics of the expanding debris, the dissipation of energy into the surrounding circumstellar medium, and the evolution of the supernova into the remnant.

  10. High-Resolution and Animal Imaging Instrumentation and Techniques

    NASA Astrophysics Data System (ADS)

    Belcari, Nicola; Guerra, AlbertoDel

    During the last decade we have observed a growing interest in "in vivo" imaging techniques for small animals. This is due to the necessity of studying biochemical processes at a molecular level for pharmacology, genetic, and pathology investigations. This field of research is usually called "molecular imaging."Advances in biological understanding have been accompanied by technological advances in instrumentation and techniques and image-reconstruction software, resulting in improved image quality, visibility, and interpretation. The main technological challenge is then the design of systems with high spatial resolution and high sensitivity.

  11. High resolution image processing on low-cost microcomputers

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1993-01-01

    Recent advances in microcomputer technology have resulted in systems that rival the speed, storage, and display capabilities of traditionally larger machines. Low-cost microcomputers can provide a powerful environment for image processing. A new software program which offers sophisticated image display and analysis on IBM-based systems is presented. Designed specifically for a microcomputer, this program provides a wide-range of functions normally found only on dedicated graphics systems, and therefore can provide most students, universities and research groups with an affordable computer platform for processing digital images. The processing of AVHRR images within this environment is presented as an example.

  12. High resolution imaging of the Earth with adaptive full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Morgan, J. V.; Warner, M.; Guasch, L.; Umpleby, A.; Yao, G.; Herrmann, F. J.

    2014-12-01

    Three-dimensional full-waveform inversion (FWI) is a high-resolution, high-fidelity, quantitative, seismic imaging technique that has advanced rapidly within the oil and gas industry. The method involves the iterative improvement of a starting model using a series of local linearized updates to solve the full non-linear inversion problem. During the inversion, forward modeling employs the full two-way three-dimensional heterogeneous anisotropic acoustic or elastic wave equation to predict the observed raw field data, wiggle-for-wiggle, trace-by-trace. The method is computationally demanding; it is highly parallelized, and runs on large multi-core multi-node clusters. A recently developed adaptive version of FWI is able to overcome the requirement for a good starting model and low frequencies in the data, and this opens up the range of datasets and problems to which FWI can be applied. Here, we demonstrate what can be achieved by applying this newly practical technique to high-density 3D seismic datasets acquired to image petroleum targets. We show that the resulting anisotropic p-wave velocity models match in situ measurements in boreholes, reproduce detailed structure observed independently on high-resolution seismic reflection sections, accurately predict the raw seismic data, and simplify and sharpen reverse-time-migrated reflection images of deeper horizons. The velocity models image individual faults, gas clouds, channels, and other geological features with previously unobtainable resolution and clarity. These same benefits can be obtained when this technique is applied to scientific targets provided that the data coverage is adequate in three-dimensions, and that an appropriate range of offsets and azimuths are available. Possible targets range from the water column, ice sheets, and Holocene deposits, through active faults, spreading centres, collision zones, rifted margins, magma plumbing, lower-continental crust, and deep crustal hot zones, to whole

  13. Properties of the Agilkia touchdown site on 67P from ROLIS high resolution imaging

    NASA Astrophysics Data System (ADS)

    Mottola, Stefano; Jaumann, Ralf; Schröder, Stefan; Arnold, Gabriele; Grothues, Hans-Georg; Hamm, Maximilian; Michaelis, Harald; Pelivan, Ivanka; Proffe, Gerrit; Bibring, Jean-Pierre

    2015-04-01

    ROLIS (ROsetta Lander Imaging System) [1,2] is an imager with multispectral capabilities onboard the Rosetta Lander Philae. From its location on the instruments balcony and having a down-looking orientation, ROLIS acquired an imaging sequence of the Agilkia landing site during the descent onto comet 67P/Churyumov-Gerasimenko. These images provide the highest resolution available for the first touch-down site. The aim of the ROLIS experiment is to study the photometric properties, the morphology, the texture and microstructure of the comet's surface in order to understand the processes that control the cometary evolution. ROLIS is a compact CCD imager with a 1k x 1k pixel sensor and a 57° field of view. During the descent it was focused to infinity and acquired panchromatic images. After landing ROLIS was refocused to a nominal distance of 30 cm and performed close-up, multi-spectral imaging of the soil, with help of a 4-color LED illumination device. During the descent, ROLIS acquired images with a cadence of 10 s. Since the exact time of touchdown was not known, and due to storage and uplink capacity limitations, the images were stored in a ring buffer with the capacity of seven images, with the latest image overwriting the oldest. At the moment of touchdown the acquisition sequence was halted, and the last seven images -the ones with the highest resolution- were relayed to the orbiter. The landing occurred on Nov 12, 2014 at 15:34:04 UT. The sun elevation angle of about 30° provided near-ideal conditions for morphological analysis. The image acquired at the highest altitude (70 m) has a footprint of about 70 m and a resolution of 7 cm/pix, whereas the image closest to the surface was acquired at about 10 m altitude and has a resolution of about 1 cm/pix. The high-resolution images acquired just before touchdown reveal a generally smooth and subdued terrain whose characteristics vary over scales of a few tens of meters. A comparatively uniform background made of

  14. High-resolution adaptive imaging of a single atom

    NASA Astrophysics Data System (ADS)

    Wong-Campos, J. D.; Johnson, K. G.; Neyenhuis, B.; Mizrahi, J.; Monroe, C.

    2016-09-01

    Optical imaging systems are used extensively in the life and physical sciences because of their ability to non-invasively capture details on the microscopic and nanoscopic scales. Such systems are often limited by source or detector noise, image distortions and human operator misjudgement. Here, we report a general, quantitative method to analyse and correct these errors. We use this method to identify and correct optical aberrations in an imaging system for single atoms and realize an atomic position sensitivity of ∼0.5 nm Hz‑1/2 with a minimum uncertainty of 1.7 nm, allowing the direct imaging of atomic motion. This is the highest position sensitivity ever measured for an isolated atom and opens up the possibility of performing out-of-focus three-dimensional particle tracking, imaging of atoms in three-dimensional optical lattices or sensing forces at the yoctonewton (10‑24 N) scale.

  15. Specific Analysis of Web Camera and High Resolution Planetary Imaging

    NASA Astrophysics Data System (ADS)

    Park, Youngsik; Lee, Dongju; Jin, Ho; Han, Wonyong; Park, Jang-Hyun

    2006-12-01

    Web camera is usually used for video communication between PC, it has small sensing area, cannot using long exposure application, so that is insufficient for astronomical application. But web camera is suitable for bright planet, moon, it doesn't need long exposure time. So many amateur astronomer using web camera for planetary imaging. We used ToUcam manufactured by Phillips for planetary imaging and Registax commercial program for a video file combining. And then, we are measure a property of web camera, such as linearity, gain that is usually using for analysis of CCD performance. Because of using combine technic selected high quality image from video frame, this method can take higher resolution planetary imaging than one shot image by film, digital camera and CCD. We describe a planetary observing method and a video frame combine method.

  16. High-resolution adaptive imaging of a single atom

    NASA Astrophysics Data System (ADS)

    Wong-Campos, J. D.; Johnson, K. G.; Neyenhuis, B.; Mizrahi, J.; Monroe, C.

    2016-09-01

    Optical imaging systems are used extensively in the life and physical sciences because of their ability to non-invasively capture details on the microscopic and nanoscopic scales. Such systems are often limited by source or detector noise, image distortions and human operator misjudgement. Here, we report a general, quantitative method to analyse and correct these errors. We use this method to identify and correct optical aberrations in an imaging system for single atoms and realize an atomic position sensitivity of ˜0.5 nm Hz-1/2 with a minimum uncertainty of 1.7 nm, allowing the direct imaging of atomic motion. This is the highest position sensitivity ever measured for an isolated atom and opens up the possibility of performing out-of-focus three-dimensional particle tracking, imaging of atoms in three-dimensional optical lattices or sensing forces at the yoctonewton (10-24 N) scale.

  17. Single sideband imaging in high-resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Hohenstein, M.

    1992-06-01

    More then 20 years ago, Hanßen and Morgenstern [1] described the case of single sideband imaging in electron microscopy. Single sideband imaging allows to correct artifacts in the imaging process due to spherical aberration and defocus and to reconstruct the electron wave function at the exit surface of the sample from experimental micrographs. In the present work, optimized imaging parameters allowed us to obtain new experimental results, thus confirming the resolution limit of single sideband imaging (0.13 nm) to be close to the information limit of a JEOL 4000EX microscope. Furthermore, the reconstructed exit surface wave functions were throuroughly checked by using them to calculate a focus series, which was compared with an experimental focus series.

  18. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images.

    PubMed

    Hou, Bin; Wang, Yunhong; Liu, Qingjie

    2016-01-01

    Characterizations of up to date information of the Earth's surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation. PMID:27618903

  19. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images.

    PubMed

    Hou, Bin; Wang, Yunhong; Liu, Qingjie

    2016-08-27

    Characterizations of up to date information of the Earth's surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.

  20. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

    PubMed Central

    Hou, Bin; Wang, Yunhong; Liu, Qingjie

    2016-01-01

    Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation. PMID:27618903

  1. High-resolution light field reconstruction using a hybrid imaging system.

    PubMed

    Wang, Xiang; Li, Lin; Hou, GuangQi

    2016-04-01

    Recently, light field cameras have drawn much attraction for their innovative performance in photographic and scientific applications. However, narrow baselines and constrained spatial resolution of current light field cameras impose restrictions on their usability. Therefore, we design a hybrid imaging system containing a light field camera and a high-resolution digital single lens reflex camera, and these two kinds of cameras share the same optical path with a beam splitter so as to achieve the reconstruction of high-resolution light fields. The high-resolution 4D light fields are reconstructed with a phase-based perspective variation strategy. First, we apply complex steerable pyramid decomposition on the high-resolution image from the digital single lens reflex camera. Then, we perform phase-based perspective-shift processing with the disparity value, which is extracted from the upsampled light field depth map, to create high-resolution synthetic light field images. High-resolution digital refocused images and high-resolution depth maps can be generated in this way. Furthermore, controlling the magnitude of the perspective shift enables us to change the depth of field rendering in the digital refocused images. We show several experimental results to demonstrate the effectiveness of our approach.

  2. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    SciTech Connect

    Deng, Z.; Richmond, M. C.; Mueller, R. P.; Gruensch, G. R.

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  3. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    DOEpatents

    Majewski, Stanislaw; Proffitt, James

    2010-12-28

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  4. High-Resolution Image of Europa's Ridged Plains

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This spectacular image taken by NASA's Galileo spacecraft camera shows a region of ridged plains on Jupiter's moon Europa. The plains are comprised of many parallel and cross-cutting ridges, commonly in pairs. The majority of the region is of very bright, but darker material is seen primarily in valleys between ridges. Some of the most prominent ridges have dark deposits along their margins and in their central valleys. Some of this dark material probably moved down the flanks of the ridges and has piled up along their bases. The most prominent ridges are about a kilometer in width (less than a mile). In the top right hand corner of the image the end of a dark wide ridge (about 2 kilometers or 1.2 miles across) is visible. Several deep fractures cut through this ridge and continue into the plains. The brightness of the region suggests that frost covers much of Europa's surface. This image looks different from those obtained earlier in Galileo's mission, because this image was taken with the Sun higher in Europa's sky.

    This image was taken on December 16, 1997 at a range of 1,300 kilometers (800 miles) by Galileo's solid state imaging system. North is to the top of the picture, and the Sun illuminates the surface from the upper left. This image, centered at approximately 14 degrees south latitude and 194 degrees west longitude, covers an area approximately 20 kilometers (12 miles) on each side. The resolution is 26 meters (85 feet) per picture element.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  5. High Resolution Imaging of Circumstellar Disks at Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Wilner, David J.

    2004-01-01

    We summarize progress on our program to use high angular resolution imaging of thermal dust continuum emission at millimeter and submillimeter wavelengths to probe the structure of protoplanetary disks and debris disks around nearby stars.

  6. Adaptive optics technology for high-resolution retinal imaging.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  7. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  8. On-demand optical immobilization of Caenorhabditis elegans for high-resolution imaging and microinjection.

    PubMed

    Hwang, Hyundoo; Krajniak, Jan; Matsunaga, Yohei; Benian, Guy M; Lu, Hang

    2014-09-21

    This paper describes a novel selective immobilization technique based on optical control of the sol-gel transition of thermoreversible Pluronic gel, which provides a simple, versatile, and biocompatible approach for high-resolution imaging and microinjection of Caenorhabditis elegans.

  9. High Resolution Global Topography of Eros from NEAR Imaging and LIDAR Data

    NASA Technical Reports Server (NTRS)

    Gaskell, Robert W.; Konopliv, A.; Barnouin-Jha, O.; Scheeres, D.

    2006-01-01

    Principal Data Products: Ensemble of L-maps from SPC, Spacecraft state, Asteroid pole and rotation. Secondary Products: Global topography model, inertia tensor, gravity. Composite high resolution topography. Three dimensional image maps.

  10. High resolution resonance ionization imaging detector and method

    DOEpatents

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  11. Development of high resolution imaging detectors for x ray astronomy

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  12. Urban land-use intensity extraction based on Quickbird high resolution image

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Liu, Yanfang

    2008-12-01

    The abundance of high resolution image information and the intensity of urban spatial system can be combined organically in the process of image understanding, information extraction and quota measurement. The evaluation indices of urban land use intensity extracted from Quickbird image include building density, floor ratio area, green ratio, vacancy ratio, and etc. Firstly, land use condition in the research area is acquired through the overlay of Quickbird image and Wuhan land use map. Secondly, the study adopts spectral threshold segmentation method to extract building shadow, object-oriented classification method to obtain building base area, shadow-based height reversion approach to estimate building height in typical urban residential block and object-oriented segmentation and classification approach to estimate concerned indices in city village. In the end, the comparison and discussion of urban land intensity are made according to BD and FAR in urban residential block and city village respectively. It is concluded that FAR (floor ratio area) in urban residential block can be planned higher and BD (building density) in city village should be lower according to the present planning regulations in Wuhan.

  13. HIRIS, the instrument and its science. [High Resolution Imaging Spectrometer for EOS platforms

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Davis, Curtiss O.

    1992-01-01

    The High Resolution Imaging Spectrometer (HIRIS) is a facility instrument slated for flight on the second EOS series AM platforms. HIRIS is designed to acquire 24 km wide, 30 m pixel images in 192 spectral bands simultaneously in the 0.4-2.45 micron wavelength region. With pointing mirrors it can sample any place on Earth, except the poles, every 2 days. HIRIS operates at the intermediate scale between the human and the global and therefore links studies of Earth surface processes to global monitoring carried out by lower resolution instruments. So far, over 50 science data products from HIRIS images have been identified in the fields of atmospheric gases, clouds, snow and ice, water, vegetation, and rocks and soils. The key attribute of imaging spectrometry that makes it possible to derive quantitative information from the data is the large number of contiguous, spectral bands. Therefore, spectrum-matching techniques can be applied. Such techniques are not possible with present-day, multispectral scanner data.

  14. Automated Detection of Oil Depots from High Resolution Images: a New Perspective

    NASA Astrophysics Data System (ADS)

    Ok, A. O.; Başeski, E.

    2015-03-01

    This paper presents an original approach to identify oil depots from single high resolution aerial/satellite images in an automated manner. The new approach considers the symmetric nature of circular oil depots, and it computes the radial symmetry in a unique way. An automated thresholding method to focus on circular regions and a new measure to verify circles are proposed. Experiments are performed on six GeoEye-1 test images. Besides, we perform tests on 16 Google Earth images of an industrial test site acquired in a time series manner (between the years 1995 and 2012). The results reveal that our approach is capable of detecting circle objects in very different/difficult images. We computed an overall performance of 95.8% for the GeoEye-1 dataset. The time series investigation reveals that our approach is robust enough to locate oil depots in industrial environments under varying illumination and environmental conditions. The overall performance is computed as 89.4% for the Google Earth dataset, and this result secures the success of our approach compared to a state-of-the-art approach.

  15. Dynamic, gated and high resolution imaging with the ECAT III

    SciTech Connect

    Hoffman, E.J.; Phelps, M.E.; Huang, S.; Collard, P.E.; Bidaut, L.M.; Schwab, R.L.; Ricci, A.R.

    1986-02-01

    The ECAT III was designed primarily with a view towards imaging the heart. The gantry both rotates about the vertical axis and tilts about the horizontal axis to allow the optimum imaging angle of the heart. The patient opening is 65 cm in diameter to allow these motions. The system allows six TTL inputs to allow the user to insert additional information into the data stream (i.e. R wave gate from EKG, respiratory gate, signal start of injection, time of blood sample, etc.). The 512 narrow detectors (5.6 mm) per ring and their close packing (.5 mm) in conjunction with the natural spatial resolution limits of annihilation coincidence detection allow the system to image without the requirement of a scanning motion. This eliminates the problem of artefacts caused by inconsistent data due to asynchrony between the scanning motion of a PET system and the cardiac and/or the respiratory cycle. In this work, the authors present initial experience with the ECAT III in imaging phantoms, animals and man.

  16. High-resolution bispectral imager at 1000 frames per second.

    PubMed

    Strojnik, Marija; Paez, Gonzalo

    2015-09-21

    We describe a bispectral, 1000-frames per second imaging instrument working simultaneously in two spectral bands. These bands may be selected for a specific application; however, we implement a pair centered at 4.3 μm and 4.66 μm. Synchronization is accomplished by employing a single focal plane array. To demonstrate the performance of the bispectral imager, we apply it to the methane flame of a Bunsen burner in a near conjugate configuration with flame image length subtending at about 200 pixels. The instrument detects bispectral puffing at 2 Hz, pulsations, and bispectral radiation oscillations, first reported here in two spectral intervals. The period of oscillatory spectral components in two bands is the same, about 3 Hz for this flame, with delay of a quarter period between them, first reported here. With 1-ms integration time, we detect significant formation of turbulence and vortices, especially pronounced in the region where the flame transitions into a plume. We display bispectral ratioed images of flames in near-real time with either the laboratory or the field device. PMID:26406755

  17. High-Resolution MOC Image of Phobos' Stickney Crater

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of Phobos, the inner and larger of the two moons of Mars, was taken by the Mars Global Surveyor on August 19, 1998. This image is a close-up of the far wall of the Stickney crater, 10 kilometers (6 miles) in diameter, that is the largest crater on Phobos. This image shows lighter and darker streaks going down the slopes (C). The presence of material of different brightness on the far crater slopes and in some of the grooves shows that the satellite is heterogeneous (that is, it is made of a mixture of different types of materials). The motion of debris down slopes is guided by gravity, which is only about 1/1000th that of the Earth -- e.g., a 68-kilogram (150-pound) person would weigh only about 57 grams (2 ounces) on Phobos. Phobos was observed by both the Mars Orbiter Camera (MOC) and Thermal Emission Spectrometer (TES). This image is one of the highest resolution images (4 meters or 13 feet per picture element or pixel) ever obtained of the Martian satellite.

    Malin Space Science Systems, Inc. and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Thermal Emission Spectrometer is operated by Arizona State University and was built by Raytheon Santa Barbara Remote Sensing. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  18. High-Resolution MOC Image of Phobos with Graphics Overlay

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of Phobos, the inner and larger of the two moons of Mars, was taken by the Mars Global Surveyor on August 19, 1998. The white boxes indicate the location of the subframes or close-ups: that on the left is C and that on the right is D. Each box is 1.92 kilometers (1.19 miles) square. The image shows several new features of this lumpy moon -- features that are associated with the prominent crater seen in the upper left quarter of the image. This is the largest crater on Phobos, Stickney, 10 kilometers (6 miles) in diameter. Individual boulders are visible on the near rim of the crater (D), and are presumed to be ejecta blocks from the impact that formed Stickney. Some of these boulders are enormous - more than 50 meters (160 feet) across. Also crossing at and near the rim of Stickney are shallow, elongated depressions called grooves. This crater is nearly half the size of Phobos and these grooves may be fractures caused by its formation. The far wall of the crater shows lighter and darker streaks going down the slopes (C). Phobos was observed by both the Mars Orbiter Camera (MOC) and Thermal Emission Spectrometer (TES). This image is one of the highest resolution images (4 meters or 13 feet per picture element or pixel) ever obtained of the Martian satellite.

    Malin Space Science Systems, Inc. and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Thermal Emission Spectrometer is operated by Arizona State University and was built by Raytheon Santa Barbara Remote Sensing. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  19. Integration of Point Clouds from Terrestrial Laser Scanning and Image-Based Matching for Generating High-Resolution Orthoimages

    NASA Astrophysics Data System (ADS)

    Salach, A.; Markiewicza, J. S.; Zawieska, D.

    2016-06-01

    An orthoimage is one of the basic photogrammetric products used for architectural documentation of historical objects; recently, it has become a standard in such work. Considering the increasing popularity of photogrammetric techniques applied in the cultural heritage domain, this research examines the two most popular measuring technologies: terrestrial laser scanning, and automatic processing of digital photographs. The basic objective of the performed works presented in this paper was to optimize the quality of generated high-resolution orthoimages using integration of data acquired by a Z+F 5006 terrestrial laser scanner and a Canon EOS 5D Mark II digital camera. The subject was one of the walls of the "Blue Chamber" of the Museum of King Jan III's Palace at Wilanów (Warsaw, Poland). The high-resolution images resulting from integration of the point clouds acquired by the different methods were analysed in detail with respect to geometric and radiometric correctness.

  20. High-Resolution MOC Image of Phobos' Face

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of Phobos, the inner and larger of the two moons of Mars, was taken by the Mars Global Surveyor on August 19, 1998. The minimum distance between the spacecraft and Phobos was 1,080 kilometers (671 miles). Phobos was observed by both the Mars Orbiter Camera (MOC) and Thermal Emission Spectrometer (TES). This image is one of the highest resolution images (4 meters or 13 feet per picture element or pixel) ever obtained of the Martian satellite. The image shows several new features of this lumpy moon -- features that are associated with the prominent crater seen in the upper left quarter of the image. This is the largest crater on Phobos, Stickney, 10 kilometers (6 miles) in diameter. Individual boulders are visible on the near rim of the crater (D), and are presumed to be ejecta blocks from the impact that formed Stickney. Some of these boulders are enormous - more than 50 meters (160 feet) across. Also crossing at and near the rim of Stickney are shallow, elongated depressions called grooves. This crater is nearly half the size of Phobos and these grooves may be fractures caused by its formation. The far wall of the crater shows lighter and darker streaks going down the slopes (C). The presence of material of different brightness on the far crater slopes and in some of the grooves shows that the satellite is heterogeneous (that is, it is made of a mixture of different types of materials). The motion of debris down slopes is guided by gravity, which is only about 1/1000th that of the Earth -- e.g., a 68-kilogram (150- pound) person would weigh only about 57 grams (2 ounces) on Phobos. Previous images from the Viking spacecraft in the 1970's were not of sufficient resolution to show the effectiveness of gravity on Phobos in moving material down slopes.

    Malin Space Science Systems, Inc. and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA

  1. Building identification from very high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Lhomme, Stephane

    Urbanisation still remains one of the main problems worldwide. The extent and rapidity of the urban growth induce a number of socio-economic and environmental conflicts everywhere. In order to reduce these problems, urban planners need to integrate spatial information in planning tools. Actually high expectations are made on Very High Spatial Resolution imagery (VHSR). These high-spatial resolution images are available at a reasonable price and due to short revisit periods, they offer a high degree of actuality. However, interpretation methods seem not to be adapted to this new type of images. The aim of our study is to develop a new method for semi-automatic building extraction with VHSR. The different steps performed to achieve our objective are each presented in a chapter. In the first chapter, the general context of our research is described with the definition of our objective. After a short historical review of urbanisation, we focus on urban growth and associated problems. In the following we discuss the possible contributions of geography to reduce these problems. After discussing concepts, theories and methodologies of geographical analysis in urban areas, we present existing general urban planning tools. Finally, we show the special interest of our study that is due to a growing need to integrate spatial information in these decision support tools. In the second chapter we verify the possibility of reaching our objective by analysing the technical characteristics of the images, the noise and the distortions which affect the images. Quality and interpretability of the studied image is analysed in order to show the capacity of these image to represent urban objects as close to reality as possible. The results confirm the potential of VHSR Imagery for urban objects analysis. The third chapter deal with the preliminary steps necessary for the elaboration of our method of building extraction. First, we evaluate the quality of the Sherbrooke Ikonos image

  2. Improved SOT (Hinode mission) high resolution solar imaging observations

    NASA Astrophysics Data System (ADS)

    Goodarzi, H.; Koutchmy, S.; Adjabshirizadeh, A.

    2015-08-01

    We consider the best today available observations of the Sun free of turbulent Earth atmospheric effects, taken with the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Both the instrumental smearing and the observed stray light are analyzed in order to improve the resolution. The Point Spread Function (PSF) corresponding to the blue continuum Broadband Filter Imager (BFI) near 450 nm is deduced by analyzing (i) the limb of the Sun and (ii) images taken during the transit of the planet Venus in 2012. A combination of Gaussian and Lorentzian functions is selected to construct a PSF in order to remove both smearing due to the instrumental diffraction effects (PSF core) and the large-angle stray light due to the spiders and central obscuration (wings of the PSF) that are responsible for the parasitic stray light. A Max-likelihood deconvolution procedure based on an optimum number of iterations is discussed. It is applied to several solar field images, including the granulation near the limb. The normal non-magnetic granulation is compared to the abnormal granulation which we call magnetic. A new feature appearing for the first time at the extreme- limb of the disk (the last 100 km) is discussed in the context of the definition of the solar edge and of the solar diameter. A single sunspot is considered in order to illustrate how effectively the restoration works on the sunspot core. A set of 125 consecutive deconvolved images is assembled in a 45 min long movie illustrating the complexity of the dynamical behavior inside and around the sunspot.

  3. High-Resolution Radar Imaging of Mercury's North Pole

    NASA Astrophysics Data System (ADS)

    Harmon, J. K.; Perillat, P. J.; Slade, M. A.

    2001-01-01

    The recently upgraded Arecibo S-band (λ12.6-cm) radar was used to make delay-Doppler images of Mercury's north polar region, where earlier observations had shown strong echoes from putative ice deposits in craters. The image resolution of 1.5-3 km is a substantial improvement over the 15-km resolution of the older Arecibo images (J. K. Harmon et al. 1994, Nature369, 213-215). The new observations confirm all the original polar features and reveal many additional features, including several at latitudes as low as 72-75°N and several from craters less than 10 km in diameter. All of the new features located on the Mariner-imaged side of the planet can be matched with known craters or other shaded areas. We find the north pole to be located 65 km from the original Mariner-based pole and 15 km from the new Mariner-based pole of M. S. Robinson et al. (1999, J. Geophys. Res.104, 30,847-30,852). The improved resolution reveals fine structure in the radar features and their respective host craters, including radar shadowing/highlighting by central peaks and rim walls, rim terracing, and preferential concentration of radar-bright deposits in shaded southern floor areas. The radar features' high brightness, circular polarization inversion (μ c=1.25), and confinement to regions permanently shaded from direct sunlight are all consistent with volume scattering from a cold-trapped volatile such as clean water ice. The sizes and locations of most of the features show good agreement with the thermal model of A. R. Vasavada, D. A. Paige, and S. E. Wood (1999, Icarus141, 179-193) for insulated (buried) water ice, although the problems of explaining radar features in small craters and the rapid burial required at lower latitudes suggest that other factors may be suppressing ice loss after emplacement.

  4. High resolution and image processing of otoconia matrix

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.

    1993-01-01

    This study was designed to investigate patterns of fibrils organization in histochemically stained otoconia. Transmission electron microscope and video imaging were used. These data indicate that otoconia of the chick (Gallus domesticus) inner ear may have central cores in vivo. The data also show that the ultrastructural organization of fibrils fixed with aldehydes and histochemical stains follows trajectories that conform to the hexagonal shape of otoconia. These changes in direction may contribute to the formation of a central core. The existence of central cores is important for the in vivo buoyancy of otoconia. Packing of fibrils is tighter after phosphotungstic acid (PTA) stained otoconia than with other histochemical stains, which usually produce looser packing of fibrils and seemingly larger central core. TEM of tilted and untilted material showed that turning of fibrils occurs at the points where the face angles of otoconia form and where central cores exist. Video image processing of the images allowed reconstructing a template which, if assumed to repeat and change trajectories, would fit the pattern of fibrils seen in fixed otoconia. Since it is highly unlikely that aldehyde primary fixation or PTA stain caused such drastic change in the direction of fibrils, the template derived from these results may closely approximate patterns of otoconia fibrils packing in vivo. However, if the above is correct, the perfect crystallographic diffraction pattern of unfixed otoconia do not correspond to patterns of fixed fibrils.

  5. ERIS: the exoplanet high-resolution image simulator for CHARIS

    NASA Astrophysics Data System (ADS)

    Limbach, Mary Anne; Groff, Tyler D.; Kasdin, N. J.; Brandt, Timothy; Mede, Kyle; Loomis, Craig; Hayashi, Masahiko; Takato, Naruhisa

    2014-07-01

    ERIS is an image simulator for CHARIS, the high-contrast exoplanet integral field spectrograph (IFS) being built at Princeton University for the Subaru telescope. We present here the software design and implementation of the ERIS code. ERIS simulates CHARIS FITS images and data cubes that are used for developing the data reduction pipeline and verifying the expected CHARIS performance. Components of the software include detailed models of the light source (such as a star or exoplanet), atmosphere, telescope, adaptive optics systems (AO188 and SCExAO), CHARIS IFS and the Hawaii2-RG infrared detector. Code includes novel details such as the phase errors at the lenslet array, optical wavefront error maps and pinholes for reducing crosstalk, just to list a few. The details of the code as well as several simulated images are presented in this paper. This IFS simulator is critical for the CHARIS data analysis pipeline development, minimizing troubleshooting in the lab and on-sky and the characterization of crosstalk.

  6. High-resolution panoramic images with megapixel MWIR FPA

    NASA Astrophysics Data System (ADS)

    Leboucher, Vincent; Aubry, Gilles

    2014-06-01

    In the continuity of its current strategy, HGH maintains a deep effort in developing its most recent product family: the infrared (IR) panoramic 360-degree surveillance sensors. During the last two years, HGH optimized its prototype Middle Wave IR (MWIR) panoramic sensor IR Revolution 360 HD that gave birth to Spynel-S product. Various test campaigns proved its excellent image quality. Cyclope, the software associated with Spynel, benefitted from recent image processing improvements and new functionalities such as target geolocalization, long range sensor slue to cue and facilitated forensics analysis. In the frame of the PANORAMIR project sustained by the DGA (Délégation Générale de l'Armement), HGH designed a new extra large resolution sensor including a MWIR megapixel Focal Plane Array (FPA) detector (1280×1024 pixels). This new sensor is called Spynel-X. It provides outstanding resolution 360-degree images (with more than 100 Mpixels). The mechanical frame of Spynel (-S and -X) was designed with the collaboration of an industrial design agency. Spynel got the "Observeur du Design 2013" label.

  7. An automated image processing routine for segmentation of cell cytoplasms in high-resolution autofluorescence images

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Skala, Melissa C.

    2014-02-01

    The heterogeneity of genotypes and phenotypes within cancers is correlated with disease progression and drug-resistant cellular sub-populations. Therefore, robust techniques capable of probing majority and minority cell populations are important both for cancer diagnostics and therapy monitoring. Herein, we present a modified CellProfiler routine to isolate cytoplasmic fluorescence signal on a single cell level from high resolution auto-fluorescence microscopic images.

  8. Wavelet analysis and classification of urban environment using high-resolution multispectral image data

    NASA Astrophysics Data System (ADS)

    Myint, Soe Win

    2001-07-01

    Attempts to analyze urban features and classify land use and land cover directly from high-resolution satellite data with traditional computer classification techniques have proven to be inefficient. The fundamental problem usually found in identifying urban land cover types from high-resolution satellite imagery is that urban areas are composed of diverse materials (metal, glass, concrete, asphalt, plastic, trees, soil, etc.). These materials, each of which may have completely different spectral characteristics, are combined in complex ways by human beings. Hence, each urban land cover type may contain several different objects with different reflectance values. Noisy appearance with lots of edges, and the complex nature of these images, inhibit accurate interpretation of urban features. Traditional classifiers employ spectral information based on single pixel value and ignore a great amount of spatial information. Texture features play an important role in image segmentation and object recognition, as well as interpretation of images in a variety of applications ranging from medical imaging to remote sensing. This study analyzed urban texture features in multi-spectral image data. Recent development in the mathematical theory of wavelet transform has received overwhelming attention by the image analysts. An evaluation of the ability of wavelet transform and other texture analysis algorithms in urban feature extraction and classification was performed in this study. Advanced Thermal Land Application Sensor (ATLAS) image data at 2.5 m spatial resolution acquired with 15 channel (0.45 mum--12.2 mum) were used for this research. The data were collected by a NASA Stennis LearJet 23 flying at 6600 feet over Baton Rouge, Louisiana, on May 7, 1999. The algorithms examined were the wavelet transforms, spatial co-occurrence matrix, fractal analysis, and spatial autocorrelation. The performance of the above approaches with the use of different window sizes, different

  9. High Resolution Imaging of Io's Volcanoes with LBTI

    NASA Astrophysics Data System (ADS)

    Conrad, Al; Leisenring, Jarron; de Kleer, Katherine; Skemer, Andy; Hinz, Philip; Skrutskie, Michael; Veillet, Christian; de Pater, Imke; Bertero, Mario; Boccacci, Patrizia; Defrère, Denis; Hofmann, Karl-Heinz; La Camera, Andrea; Schertl, Dieter; Spencer, John; Weigelt, Gerd; Woodward, Charles E.

    2014-11-01

    The Large Binocular Telescope (LBT), located on Mount Graham in eastern Arizona, employs two 8.4 meter mirrors with a 14.4 center-to-center separation on a common mount. Coherent combination of these two AO-corrected apertures via the LBT Interferometer (LBTI) produces Fizeau interferometric images with spatial resolution consistent with the diffraction limit of the 22.8-meter aperture. In particular LBTI resolves thermal signatures (i.e., features observed at M-band) on the surface of Io down to ~150 kilometers; a two-fold improvement over what has previously been possible from the ground. We show images collected with LBTI on December 24, 2013, in which Loki's shape is clearly resolved and at least fourteen additional volcanic hot spots are detected.We analyze three locations in the LBTI data: emission features within Loki Patera, the area near Rarog and Heno Patarae, and a hot spot seen in the Colchis Regio.For Loki Patera, we interpret spatially resolved variation in the emission within that region. With M-band resolution that is comparable to what has previously been achievable only at K-band, we compare localized emission features with what has been seen in earlier observations at shorter wavelengths.Thermal emission from activity at Rarog and Heno Patarae is well resolved in these images, while a third hot-spot in the nearby Lerna Regio is also clearly resolved. This area is of special interest since it was the site of two high-effusion outbursts on August 15th, 2013 [de Pater et al. (2014) Icarus].Lastly, we explore a hot-spot seen in the Colchis Regio that may be a remnant of a violent outburst detected on August 29th, 2013 [de Kleer et al. (2014) Icarus].

  10. Atmospheric correction of high resolution land surface images

    NASA Technical Reports Server (NTRS)

    Diner, D. J.; Martonchik, J. V.; Danielson, E. D.; Bruegge, C. J.

    1989-01-01

    Algorithms to correct for atmospheric-scattering effects in high-spatial resolution land-surface images require the ability to perform rapid and accurate computations of the top-of-atmosphere diffuse radiance field for arbitrarily general surface reflectance distributions (which may be both heterogeneous and non-Lambertian) and atmospheric models. Using three-dimensional radiative transfer (3DRT) theory algorithms are being developed. The methodology used to perform the 3DRT calculations is described. It is shown how these calculations are used to perform atmospheric corrections, and the sensitivity of the retrieved surface reflectances to atmospheric structural parameters is illustrated.

  11. A test strategy for high resolution image scanners

    NASA Astrophysics Data System (ADS)

    Gruen, A. W.

    1983-10-01

    The scope of this study is the design of a device-independent test strategy for performance tests of the AIDS (Advanced Image Digitizing System) scanner. Major system characteristics to be tested are the geometrical accuracy, linearity of gray shade response, MTF, and resolution of the output. Other parameters addressed here are dynamic range, noise, response uniformity, flare light, coherency, and temporal stability. Test standards are suggested and data processing aspects are considered for both the geometric and radiometric tests. The recommended test strategy is finally summarized in table format.

  12. High resolution ultrasound elastomicroscopy imaging of soft tissues: system development and feasibility

    NASA Astrophysics Data System (ADS)

    Zheng, Y. P.; Bridal, S. L.; Shi, J.; Saied, A.; Lu, M. H.; Jaffre, B.; Mak, A. F. T.; Laugier, P.

    2004-09-01

    Research in elasticity imaging typically relies on 1-10 MHz ultrasound. Elasticity imaging at these frequencies can provide strain maps with a resolution in the order of millimetres, but this is not sufficient for applications to skin, articular cartilage or other fine structures. We developed a prototype high resolution elastomicroscopy system consisting of a 50 MHz ultrasound backscatter microscope system and a calibrated compression device using a load cell to measure the pressure applied to the specimen, which was installed between a rigidly fixed face-plate and a specimen platform. Radiofrequency data were acquired in a B-scan format (10 mm wide × 3 mm deep) in specimens of mouse skin and bovine patellar cartilage. The scanning resolution along the B-scan plane direction was 50 µm, and the ultrasound signals were digitized at 500 MHz to achieve a sensitivity better than 1 µm for the axial displacement measurement. Because of elevated attenuation of ultrasound at high frequencies, special consideration was necessary to design a face-plate permitting efficient ultrasound transmission into the specimen and relative uniformity of the compression. Best results were obtained using a thin plastic film to cover a specially shaped slit in the face-plate. Local tissue strain maps were constructed by applying a cross-correlation tracking method to signals obtained at the same site at different compression levels. The speed of sound in the tissue specimen (1589.8 ± 7.8 m s-1 for cartilage and 1532.4 ± 4.4 m s-1 for skin) was simultaneously measured during the compression test. Preliminary results demonstrated that this ultrasound elastomicroscopy technique was able to map deformations of the skin and articular cartilage specimens to high resolution, in the order of 50 µm. This system can also be potentially used for the assessment of other biological tissues, bioengineered tissues or biomaterials with fine structures.

  13. High resolution hyperspectral imaging with a high throughput virtual slit

    NASA Astrophysics Data System (ADS)

    Gooding, Edward A.; Gunn, Thomas; Cenko, Andrew T.; Hajian, Arsen R.

    2016-05-01

    Hyperspectral imaging (HSI) device users often require both high spectral resolution, on the order of 1 nm, and high light-gathering power. A wide entrance slit assures reasonable étendue but degrades spectral resolution. Spectrometers built using High Throughput Virtual Slit™ (HTVS) technology optimize both parameters simultaneously. Two remote sensing use cases that require high spectral resolution are discussed. First, detection of atmospheric gases with intrinsically narrow absorption lines, such as hydrocarbon vapors or combustion exhaust gases such as NOx and CO2. Detecting exhaust gas species with high precision has become increasingly important in the light of recent events in the automobile industry. Second, distinguishing reflected daylight from emission spectra in the visible and NIR (VNIR) regions is most easily accomplished using the Fraunhofer absorption lines in solar spectra. While ground reflectance spectral features in the VNIR are generally quite broad, the Fraunhofer lines are narrow and provide a signature of intrinsic vs. extrinsic illumination. The High Throughput Virtual Slit enables higher spectral resolution than is achievable with conventional spectrometers by manipulating the beam profile in pupil space. By reshaping the instrument pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane, typically delivering 5X or better the spectral resolution achievable with a conventional design.

  14. Fast and high resolution single-cell BRET imaging.

    PubMed

    Goyet, Elise; Bouquier, Nathalie; Ollendorff, Vincent; Perroy, Julie

    2016-01-01

    Resonance Energy Transfer (RET)-based technologies are used to report protein-protein interactions in living cells. Among them, Bioluminescence-initiated RET (BRET) provides excellent sensitivity but the low light intensity intrinsic to the bioluminescent process hampers its use for the localization of protein complexes at the sub-cellular level. Herein we have characterized the methodological conditions required to reliably perform single-cell BRET imaging using an extremely bright luciferase, Nanoluciferase (Nluc). With this, we achieved an unprecedented performance in the field of protein-protein interaction imaging in terms of temporal and spatial resolution, duration of signal stability, signal sensitivity and dynamic range. As proof-of-principle, an Nluc-containing BRET-based sensor of ERK activity enabled the detection of subtle, transient and localized variations in ERK activity in neuronal dendritic spines, induced by the activation of endogenous synaptic NMDA receptors. This development will improve our comprehension of both the spatio-temporal dynamics of protein-protein interactions and the activation patterns of specific signaling pathways. PMID:27302735

  15. High Resolution HST Images of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    1994-05-01

    At the Edge of the Solar System Click here to jump to photo. The remote planet Pluto and its moon Charon orbit the Sun at a mean distance of almost 6,000 million kilometres, or nearly fourty times farther out than the Earth. During a recent investigation by an international group of astronomers [1], the best picture ever of Pluto and Charon [2] was secured with the European Space Agency's Faint Object Camera at the Hubble Space Telescope (HST). It shows the two objects as individual disks, and it is likely that further image enhancement will allow us to see surface features on Pluto. A Very Special Pair of Celestial Objects Almost all the known facts about these two bodies show that they are quite unusual: Pluto's orbit around the Sun is much more elongated and more inclined to the main plane of the Solar System than that of any other major planet; Charon's orbit around Pluto is nearly perpendicular to this plane; their mutual distance is amazingly small when compared to their size; Charon is half the size of Pluto and the ratio of their masses is much closer to unity than is the case for all other planets and their moons. Moreover, both are small and solid bodies, in contrast to the other, large and gaseous planets in the outer Solar System. We do not know why this is so. But there is another important aspect which makes Pluto and Charon even more interesting: at this very large distance from the Sun, any evolutionary changes happen very slowly. It is therefore likely that Pluto and Charon hold important clues to the conditions that prevailed in the early Solar System and thus to the origin and the evolution of the Solar System as a whole. Long and Difficult Analysis Ahead The present image shows that the overall quality of the new data obtained with the ESA Faint Object Camera on the refurbished Hubble Space Telescope is extremely good. However, such an image represents only the first step of a subsequent, detailed analysis with the ultimate goal of determining

  16. Fast and high resolution single-cell BRET imaging

    PubMed Central

    Goyet, Elise; Bouquier, Nathalie; Ollendorff, Vincent; Perroy, Julie

    2016-01-01

    Resonance Energy Transfer (RET)-based technologies are used to report protein-protein interactions in living cells. Among them, Bioluminescence-initiated RET (BRET) provides excellent sensitivity but the low light intensity intrinsic to the bioluminescent process hampers its use for the localization of protein complexes at the sub-cellular level. Herein we have characterized the methodological conditions required to reliably perform single-cell BRET imaging using an extremely bright luciferase, Nanoluciferase (Nluc). With this, we achieved an unprecedented performance in the field of protein-protein interaction imaging in terms of temporal and spatial resolution, duration of signal stability, signal sensitivity and dynamic range. As proof-of-principle, an Nluc-containing BRET-based sensor of ERK activity enabled the detection of subtle, transient and localized variations in ERK activity in neuronal dendritic spines, induced by the activation of endogenous synaptic NMDA receptors. This development will improve our comprehension of both the spatio-temporal dynamics of protein-protein interactions and the activation patterns of specific signaling pathways. PMID:27302735

  17. High-resolution polarization sensitive OCT for ocular imaging in rodents

    NASA Astrophysics Data System (ADS)

    Fialová, Stanislava; Rauscher, Sabine; Gröger, Marion; Pircher, Michael; Hitzenberger, Christoph K.; Baumann, Bernhard

    2015-03-01

    A new high-resolution polarization sensitive optical coherence tomography system was developed for imaging rodent retina. Various light-tissue interactions such as birefringence and depolarization can change the polarization state of light. In the eye, there are several tissues that have these properties, for example retinal pigment epithelium (depolarization) and sclera (birefringence). These layers play key roles in diseases like age-related macular degeneration or glaucoma. Animal models are an important component for understanding disease pathogenesis. The gold standard for the evaluation of preclinical experiments is histology, which is an invasive and terminal procedure. Since OCT is non-invasive, it has the potential to be an alternative to histology with the benefit of long-term study of the disease progression in the same animal. In this study, a superluminescent diode with spectrum width 100 nm and mean wavelength 840 nm is used as a light source in order to enable high axial resolution. Spectrometers are custom built to enable high imaging speed that allows acquiring 3D data sets with 1024x200x1536 voxels in 3.44 s. From the acquired data, images displaying phase retardation induced by birefringence and orientation of birefringent axis were calculated. In first measurements, we were able to identify the RPE-choroid complex (depolarization effect) and the sclera (strong birefringence) in the retina of Long-Evans and Sprague-Dawley rats. Our preliminary results demonstrate the feasibility of the system for high speed/resolution imaging of the rodent retina. This is useful for longitudinal studies of disease models of retinal disease in rats and mice

  18. MRO's High Resolution Imaging Science Experiment (HiRISE): Polar Science Expectations

    NASA Technical Reports Server (NTRS)

    McEwen, A.; Herkenhoff, K.; Hansen, C.; Bridges, N.; Delamere, W. A.; Eliason, E.; Grant, J.; Gulick, V.; Keszthelyi, L.; Kirk, R.

    2003-01-01

    The Mars Reconnaissance Orbiter (MRO) is expected to launch in August 2005, arrive at Mars in March 2006, and begin the primary science phase in November 2006. MRO will carry a suite of remote-sensing instruments and is designed to routinely point off-nadir to precisely target locations on Mars for high-resolution observations. The mission will have a much higher data return than any previous planetary mission, with 34 Tbits of returned data expected in the first Mars year in the mapping orbit (255 x 320 km). The HiRISE camera features a 0.5 m telescope, 12 m focal length, and 14 CCDs. We expect to acquire approximately 10,000 observations in the primary science phase (approximately 1 Mars year), including approximately 2,000 images for 1,000 stereo targets. Each observation will be accompanied by a approximately 6 m/pixel image over a 30 x 45 km region acquired by MRO s context imager. Many HiRISE images will be full resolution in the center portion of the swath width and binned (typically 4x4) on the sides. This provides two levels of context, so we step out from 0.3 m/pixel to 1.2 m/pixel to 6 m/pixel (at 300 km altitude). We expect to cover approximately 1% of Mars at better than 1.2 m/pixel, approximately 0.1% at 0.3 m/pixel, approximately 0.1% in 3 colors, and approximately 0.05% in stereo. Our major challenge is to find the dey contacts, exposures and type morphologies to observe.

  19. High resolution neutron imaging of water in PEM fuel cells

    SciTech Connect

    Mukundan, Rangachary; Borup, Rodney L; Davey, John R; Spendelow, Jacob S

    2008-01-01

    Optimal water management in Polymer Electrolyte Membrane (PEM) fuel cells is critical to improving the performance and durability of fuel cell systems especially during transient, start-up and shut-down operations. For example, while a high water content is desirable for improved membrane and catalyst ionomer conductivity, high water content can also block gas access to the triple-phase boundary resulting in lowered performance due to catalyst and gas diffusion layer (GDL) flooding. Visualizing liquid water by neutron imaging has been used over the past decade to study the water distribution inside operating fuel cells. In this paper, the results from our imaging at NIST using their recently installed higher resolution ({approx} 25 mm) Microchannel Plate (MCP) detector with a pixel pitch of 14.7 mm are presented. This detector is capable of quantitatively imaging the water inside the MEA (Membrane Electrode Assembly)/GDL (Gas Diffusion Layer) of working fuel cells and can provide the water profiles within these various components in addition to the channel water. Specially designed fuel cells (active area = 2.25 cm{sup 2}) have been used in order to take advantage of the full detector resolution. The cell design is illustrated in a figure where one of the current collector/end plates is shown. The serpentine pattern was machined into a block of aluminum and plated with nickel and then gold to form the flow field. The measurements were performed using beam no. 1 and aperture no. 2 with a fluence rate of 1.9 x 10{sup 6} neutrons cm{sup -2} sec{sup -1}. The cells were assembled with Gore{sup TM} Primea{sup R} MEAs and SGL Sigracet {sup R} 24 series GDLs (PRIMEA, GORE-SELECT and GORE are trademarks of W. L. Gore & Associates, Inc). All the cells were tested at 80 {sup o}C with 1.2 stoichiometry H{sub 2} and 2.0 stoichiometry air flows.

  20. In vivo high-resolution diffusion tensor imaging of the mouse brain.

    PubMed

    Wu, Dan; Xu, Jiadi; McMahon, Michael T; van Zijl, Peter C M; Mori, Susumu; Northington, Frances J; Zhang, Jiangyang

    2013-12-01

    Diffusion tensor imaging (DTI) of the laboratory mouse brain provides important macroscopic information for anatomical characterization of mouse models in basic research. Currently, in vivo DTI of the mouse brain is often limited by the available resolution. In this study, we demonstrate in vivo high-resolution DTI of the mouse brain using a cryogenic probe and a modified diffusion-weighted gradient and spin echo (GRASE) imaging sequence at 11.7 T. Three-dimensional (3D) DTI of the entire mouse brain at 0.125 mm isotropic resolution could be obtained in approximately 2 h. The high spatial resolution, which was previously only available with ex vivo imaging, enabled non-invasive examination of small structures in the adult and neonatal mouse brains. Based on data acquired from eight adult mice, a group-averaged DTI atlas of the in vivo adult mouse brain with 60 structure segmentations was developed. Comparisons between in vivo and ex vivo mouse brain DTI data showed significant differences in brain morphology and tissue contrasts, which indicate the importance of the in vivo DTI-based mouse brain atlas.

  1. Accuracy Analysis on Large Blocks of High Resolution Images

    NASA Technical Reports Server (NTRS)

    Passini, Richardo M.

    2007-01-01

    Although high altitude frequencies effects are removed at the time of basic image generation, low altitude (Yaw) effects are still present in form of affinity/angular affinity. They are effectively removed by additional parameters. Bundle block adjustment based on properly weighted ephemeris/altitude quaternions (BBABEQ) are not enough to remove the systematic effect. Moreover, due to the narrow FOV of the HRSI, position and altitude are highly correlated making it almost impossible to separate and remove their systematic effects without extending the geometric model (Self-Calib.) The systematic effects gets evident on the increase of accuracy (in terms of RMSE at GCPs) for looser and relaxed ground control at the expense of large and strong block deformation with large residuals at check points. Systematic errors are most freely distributed and their effects propagated all over the block.

  2. AXAF-1 High Resolution Assembly Image Model and Comparison with X-Ray Ground Test Image

    NASA Technical Reports Server (NTRS)

    Zissa, David E.

    1999-01-01

    The x-ray ground test of the AXAF-I High Resolution Mirror Assembly was completed in 1997 at the X-ray Calibration Facility at Marshall Space Flight Center. Mirror surface measurements by HDOS, alignment results from Kodak, and predicted gravity distortion in the horizontal test configuration are being used to model the x-ray test image. The Marshall Space Flight Center (MSFC) image modeling serves as a cross check with Smithsonian Astrophysical observatory modeling. The MSFC image prediction software has evolved from the MSFC model of the x-ray test of the largest AXAF-I mirror pair in 1991. The MSFC image modeling software development is being assisted by the University of Alabama in Huntsville. The modeling process, modeling software, and image prediction will be discussed. The image prediction will be compared with the x-ray test results.

  3. High resolution digital terrain models and orthorectified images of Mars from HiRISE and HiSCI

    NASA Astrophysics Data System (ADS)

    Mattson, S.; McEwen, A. S.; Ojha, L.; Heyd, R.; Howington-Kraus, E.; Kirk, R. L.

    2011-10-01

    Stereo images acquired from the High Resolution Imaging Science Experiment (HiRISE) camera currently operating on the Mars Reconnaissance Orbiter are being used to generate high resolution Digital Terrain Models (DTMs) and orthorectified images [1]. Orthorectified images of repeat coverage over a given DTM can now be created, providing a powerful research tool for investigating active surface processes on Mars. New discoveries of surface changes on Mars have been made that would not have been possible without stereo images [e.g. 2]. The methods and products developed for HiRISE DTM and orthoimage processing will be leveraged for the planned High-resolution Stereo Color Imager (HiSCI) instrument to fly on the joint NASA-ESA ExoMars Trace Gas Orbiter (TGO) mission, planned to launch in 2016 [3]. The HiRISE team releases DTMs and orthoimages to the Planetary Data System (PDS) on nearly a monthly frequency [1]. A similar schedule for DTM/orthoimage production and public release is planned for HiSCI [3].

  4. Nanedi Vallis: Sustained Water Flow? - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This picture of a canyon on the Martian surface was obtained a few minutes after 10 PM PST, January 8, 1998 by the Mars Orbiter Camera (MOC), during the 87th orbit around Mars of the Mars Global Surveyor spacecraft. It shows the canyon of Nanedi Vallis, one of the Martian valley systems cutting through cratered plains in the Xanthe Terra region of Mars. The picture covers an area 9.8 km by 18.5 km (6.1 mi by 11.5 mi), and features as small as 12 m (39 ft) can be seen. The canyon is about 2.5 km (1.6 mi) wide. Rocky outcrops are found along the upper canyon walls; weathered debris found on the lower canyon slopes and along the canyon floor. The origin of this canyon is enigmatic: some features, such as terraces within the canyon (as seen near the top of the frame) and the small 200 m (660 ft) wide channel (also seen near the top of the frame) suggest continual fluid flow and downcutting. Other features, such as the lack of a contributing pattern of smaller channels on the surface surrounding the canyon, box-headed tributaries, and the size and tightness of the apparent meanders (as seen, for example, in the Viking image 89A32), suggest formation by collapse. It is likely that both continual flow and collapse have been responsible for the canyon as it now appears. Further observations, especially in areas west of the present image, will be used to help separate the relative effects of these and other potential formation and modification processes.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  5. High Resolution MALDI Imaging Mass Spectrometry of Retinal Tissue Lipids

    NASA Astrophysics Data System (ADS)

    Anderson, David M. G.; Ablonczy, Zsolt; Koutalos, Yiannis; Spraggins, Jeffrey; Crouch, Rosalie K.; Caprioli, Richard M.; Schey, Kevin L.

    2014-08-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism's surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4 -/- knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.

  6. High Resolution MALDI Imaging Mass Spectrometry of Retinal Tissue Lipids

    PubMed Central

    Anderson, David M. G.; Ablonczy, Zsolt; Koutalos, Yiannis; Spraggins, Jeffrey; Crouch, Rosalie K.; Caprioli, Richard M.; Schey, Kevin L.

    2014-01-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism’s surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina including age related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4−/− knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers. PMID:24819461

  7. High resolution MALDI imaging mass spectrometry of retinal tissue lipids.

    PubMed

    Anderson, David M G; Ablonczy, Zsolt; Koutalos, Yiannis; Spraggins, Jeffrey; Crouch, Rosalie K; Caprioli, Richard M; Schey, Kevin L

    2014-08-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism's surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4(-/-) knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.

  8. Retrieving high-resolution images over the Internet from an anatomical image database

    NASA Astrophysics Data System (ADS)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  9. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters.

    PubMed

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.

  10. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    PubMed Central

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  11. The pulsed all fiber laser application in the high-resolution 3D imaging LIDAR system

    NASA Astrophysics Data System (ADS)

    Gao, Cunxiao; Zhu, Shaolan; Niu, Linquan; Feng, Li; He, Haodong; Cao, Zongying

    2014-05-01

    An all fiber laser with master-oscillator-power-amplifier (MOPA) configuration at 1064nm/1550nm for the high-resolution three-dimensional (3D) imaging light detection and ranging (LIDAR) system was reported. The pulsewidth and the repetition frequency could be arbitrarily tuned 1ns~10ns and 10KHz~1MHz, and the peak power exceeded 100kW could be obtained with the laser. Using this all fiber laser in the high-resolution 3D imaging LIDAR system, the image resolution of 1024x1024 and the distance precision of +/-1.5 cm was obtained at the imaging distance of 1km.

  12. Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks.

    PubMed

    Pahlevaninezhad, Hamid; Lee, Anthony M D; Hohert, Geoffrey; Lam, Stephen; Shaipanich, Tawimas; Beaudoin, Eve-Lea; MacAulay, Calum; Boudoux, Caroline; Lane, Pierre

    2016-07-15

    High-resolution imaging from within airways may allow new methods for studying lung disease. In this work, we report an endoscopic imaging system capable of high-resolution autofluorescence imaging (AFI) and optical coherence tomography (OCT) in peripheral airways using a 0.9 mm diameter double-clad fiber (DCF) catheter. In this system, AFI excitation light is coupled into the core of the DCF, enabling tightly focused excitation light while maintaining efficient collection of autofluorescence emission through the large diameter inner cladding of the DCF. We demonstrate the ability of this imaging system to visualize pulmonary vasculature as small as 12 μm in vivo. PMID:27420497

  13. Using very high resolution satellite images to identify coastal zone dynamics at North Western Black Sea

    NASA Astrophysics Data System (ADS)

    Florin Zoran, Liviu; Ionescu Golovanov, Carmen; Zoran, Maria

    2010-05-01

    The availability of updated information about the extension and characteristics of land cover is a crucial issue in the perspective of a correct landscape planning and management of marine coastal zones. Satellite remote sensing data can provide accurate information about land coverage at different scales and the recent availability of very high resolution images definitely improved the precision of coastal zone spatio-temporal changes. The Romanian North Western coastal and shelf zones of the Black Sea and Danube delta are a mosaic of complex, interacting ecosystems, rich natural resources and socio-economic activity. Dramatic changes in the Black Sea's ecosystem and resources are due to natural and anthropogenic causes (increase in the nutrient and pollutant load of rivers input, industrial and municipal wastewater pollution along the coast, and dumping on the open sea). A scientific management system for protection, conservation and restoration must be based on reliable information on bio-geophysical and geomorphologic processes, coastal erosion, sedimentation dynamics, mapping of macrophyte fields, water quality, and climatic change effects. Use of satellite images is of great help for coastal zone monitoring and environmental impact assessment. Synergetic use of in situ measurements with multisensors satellite data could provide a complex assessment of spatio-temporal changes. In this study was developed a method for extracting coastal zone features information as well as landcover dynamics from IKONOS, very high resolution images for North-Western Black Sea marine coastal zone. The main objective was obtaining reliable data about the spatio-temporal coastal zone changes in two study areas located in Constanta urban area and Danube Delta area. We used an object-oriented approach based on preliminary segmentation and classification of the resulting object. First of all, segmentation parameters were tested and selected comparing segmented polygons with

  14. The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images.

    PubMed

    Stevens, Andrew; Yang, Hao; Carin, Lawrence; Arslan, Ilke; Browning, Nigel D

    2014-02-01

    The use of high-resolution imaging methods in scanning transmission electron microscopy (STEM) is limited in many cases by the sensitivity of the sample to the beam and the onset of electron beam damage (for example, in the study of organic systems, in tomography and during in situ experiments). To demonstrate that alternative strategies for image acquisition can help alleviate this beam damage issue, here we apply compressive sensing via Bayesian dictionary learning to high-resolution STEM images. These computational algorithms have been applied to a set of images with a reduced number of sampled pixels in the image. For a reduction in the number of pixels down to 5% of the original image, the algorithms can recover the original image from the reduced data set. We show that this approach is valid for both atomic-resolution images and nanometer-resolution studies, such as those that might be used in tomography datasets, by applying the method to images of strontium titanate and zeolites. As STEM images are acquired pixel by pixel while the beam is scanned over the surface of the sample, these postacquisition manipulations of the images can, in principle, be directly implemented as a low-dose acquisition method with no change in the electron optics or the alignment of the microscope itself.

  15. On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, P.; Muller, J.-P.

    2015-11-01

    This work deals with the meta-data analysis of high-resolution orbital imagery that was acquired over the last four decades of Mars. The objective of this analysis is to provide a starting point for planetary scientists who are interested in examining the martian surface in order to detect changes that are related to not fully understood natural phenomena. An image aggregation method is introduced and used to generate image groupings related to prioritising regions for change detection. The parameters determining each grouping are the season, the Martian Year and the local time that an image was acquired, the imaging instrument and its resolution. The analysis shows that there is sufficient coverage to systematically examine periodic martian phenomena in images that depict the same area over the same season, as well as sporadic martian phenomena (e.g. a new crater) in images that depict the same area in different time periods. The end product of this work is a series of 35 global coverage maps demonstrating the high-resolution repeat coverage of Mars up to Martian Year 31 under different temporal and viewing condition constraints. These are available both through supplementary material as well as via a web-GIS.

  16. Water Extraction in High Resolution Remote Sensing Image Based on Hierarchical Spectrum and Shape Features

    NASA Astrophysics Data System (ADS)

    Li, Bangyu; Zhang, Hui; Xu, Fanjiang

    2014-03-01

    This paper addresses the problem of water extraction from high resolution remote sensing images (including R, G, B, and NIR channels), which draws considerable attention in recent years. Previous work on water extraction mainly faced two difficulties. 1) It is difficult to obtain accurate position of water boundary because of using low resolution images. 2) Like all other image based object classification problems, the phenomena of "different objects same image" or "different images same object" affects the water extraction. Shadow of elevated objects (e.g. buildings, bridges, towers and trees) scattered in the remote sensing image is a typical noise objects for water extraction. In many cases, it is difficult to discriminate between water and shadow in a remote sensing image, especially in the urban region. We propose a water extraction method with two hierarchies: the statistical feature of spectral characteristic based on image segmentation and the shape feature based on shadow removing. In the first hierarchy, the Statistical Region Merging (SRM) algorithm is adopted for image segmentation. The SRM includes two key steps: one is sorting adjacent regions according to a pre-ascertained sort function, and the other one is merging adjacent regions based on a pre-ascertained merging predicate. The sort step is done one time during the whole processing without considering changes caused by merging which may cause imprecise results. Therefore, we modify the SRM with dynamic sort processing, which conducts sorting step repetitively when there is large adjacent region changes after doing merging. To achieve robust segmentation, we apply the merging region with six features (four remote sensing image bands, Normalized Difference Water Index (NDWI), and Normalized Saturation-value Difference Index (NSVDI)). All these features contribute to segment image into region of object. NDWI and NSVDI are discriminate between water and some shadows. In the second hierarchy, we adopt

  17. High-resolution far-field ghost imaging via sparsity constraint

    PubMed Central

    Gong, Wenlin; Han, Shensheng

    2015-01-01

    Ghost imaging (GI) is a method to nonlocally image an object with a single-pixel detector. However, the speckle's transverse size at the object plane limits the system's imaging resolution for conventional GI linear reconstruction algorithm. By combining the sparsity constraint of imaging object with ghost imaging method, we demonstrate experimentally that ghost imaging via sparsity constraint (GISC) can dramatically enhance the imaging resolution even using the random measurements far below the Nyquist limit. The image reconstruction algorithm of GISC is based on compressive sensing. Factors affecting the reconstruction quality of high-resolution GISC, such as the receiving system's numerical aperture and the object's sparse representation basis, are also investigated experimentally. This high-resolution imaging technique will have great applications in the microscopy and remote-sensing areas. PMID:25787897

  18. High-resolution 3D ultrasound jawbone surface imaging for diagnosis of periodontal bony defects: an in vitro study.

    PubMed

    Mahmoud, Ahmed M; Ngan, Peter; Crout, Richard; Mukdadi, Osama M

    2010-11-01

    Although medical specialties have recognized the importance of using ultrasonic imaging, dentistry is only beginning to discover its benefit. This has particularly been important in the field of periodontics which studies infections in the gum and bone tissues that surround the teeth. This study investigates the feasibility of using a custom-designed high-frequency ultrasound imaging system to reconstruct high-resolution (< 50 μm) three-dimensional (3D) surface images of periodontal defects in human jawbone. The system employs single-element focused ultrasound transducers with center frequencies ranging from 30 to 60 MHz. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high-precision two-dimensional (2D) positioning system of ±1 μm resolution for acquiring accurate measurements of the mandible, in vitro. Signal and image processing algorithms are applied to reconstruct high-resolution ultrasound images and extract the jawbone surface in each frame. Then, all edges are combined and smoothed in order to render a 3D surface image of the jawbone. In vitro experiments were performed to assess the system performance using mandibles with teeth (dentate) or without (nondentate). The system was able to reconstruct 3D images for the mandible's outer surface with superior spatial resolution down to 24 μm, and to perform the whole scanning in < 30 s. Major anatomical landmarks on the images were confirmed with the anatomical structures on the mandibles. All the anatomical landmarks were detected and fully described as 3D images using this novel ultrasound imaging technique, whereas the 2D X-ray radiographic images suffered from poor contrast. These results indicate the great potential of utilizing high-resolution ultrasound as a noninvasive, nonionizing imaging technique for the early diagnosis of the more severe form of periodontal disease.

  19. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data.

    PubMed

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L; Polimeni, Jonathan R

    2016-07-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we present a framework for deriving cortical surface reconstructions directly from high-resolution EPI-based reference images that provide anatomical models exactly geometric distortion-matched to the functional data. Anatomical EPI data with 1mm isotropic voxel size were acquired using a fast multiple inversion recovery time EPI sequence (MI-EPI) at 7T, from which quantitative T1 maps were calculated. Using these T1 maps, volumetric data mimicking the tissue contrast of standard anatomical data were synthesized using the Bloch equations, and these T1-weighted data were automatically processed using FreeSurfer. The spatial alignment between T2(⁎)-weighted EPI data and the synthetic T1-weighted anatomical MI-EPI-based images was improved compared to the conventional anatomical reference. In particular, the alignment near the regions vulnerable to distortion due to magnetic susceptibility differences was improved, and sampling of the adjacent tissue classes outside of the cortex was reduced when using cortical surface reconstructions derived directly from the MI-EPI reference. The MI-EPI method therefore produces high-quality anatomical data that can be automatically segmented with standard software, providing cortical surface reconstructions that are geometrically matched to the BOLD fMRI data. PMID:27079529

  20. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data.

    PubMed

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L; Polimeni, Jonathan R

    2016-07-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we present a framework for deriving cortical surface reconstructions directly from high-resolution EPI-based reference images that provide anatomical models exactly geometric distortion-matched to the functional data. Anatomical EPI data with 1mm isotropic voxel size were acquired using a fast multiple inversion recovery time EPI sequence (MI-EPI) at 7T, from which quantitative T1 maps were calculated. Using these T1 maps, volumetric data mimicking the tissue contrast of standard anatomical data were synthesized using the Bloch equations, and these T1-weighted data were automatically processed using FreeSurfer. The spatial alignment between T2(⁎)-weighted EPI data and the synthetic T1-weighted anatomical MI-EPI-based images was improved compared to the conventional anatomical reference. In particular, the alignment near the regions vulnerable to distortion due to magnetic susceptibility differences was improved, and sampling of the adjacent tissue classes outside of the cortex was reduced when using cortical surface reconstructions derived directly from the MI-EPI reference. The MI-EPI method therefore produces high-quality anatomical data that can be automatically segmented with standard software, providing cortical surface reconstructions that are geometrically matched to the BOLD fMRI data.

  1. Image Segmentation By Cluster Analysis Of High Resolution Textured SPOT Images

    NASA Astrophysics Data System (ADS)

    Slimani, M.; Roux, C.; Hillion, A.

    1986-04-01

    Textural analysis is now a commonly used technique in digital image processing. In this paper, we present an application of textural analysis to high resolution SPOT satellite images. The purpose of the methodology is to improve classification results, i.e. image segmentation in remote sensing. Remote sensing techniques, based on high resolution satellite data offer good perspectives for the cartography of littoral environment. Textural information contained in the pan-chromatic channel of ten meters resolution is introduced in order to separate different types of structures. The technique we used is based on statistical pattern recognition models and operates in two steps. A first step, features extraction, is derived by using a stepwise algorithm. Segmentation is then performed by cluster analysis using these extracted. features. The texture features are computed over the immediate neighborhood of the pixel using two methods : the cooccurence matrices method and the grey level difference statistics method. Image segmentation based only on texture features is then performed by pixel classification and finally discussed. In a future paper, we intend to compare the results with aerial data in view of the management of the littoral resources.

  2. SOLARNET: a UV, FUV, EUV, XUV high resolution imaging, spectro-imaging and spectroscopy mission.

    NASA Astrophysics Data System (ADS)

    Damé, L.

    SOLARNET is a high resolution mission which encompass extremely high resolution in the UV and FUV to access process scales of magnetic reconnection dissipation emerging flux onset of Flares and CME s origin of solar wind The chromosphere to the low corona with emphasis on the transition zone where the magnetic confinement is expected to be maximum are at the heart of this mission which will open a whole new chapter of the physics of solar magnetic field structuring evolution and mapping from the photosphere to the heliosphere SOLARNET is an inexpensive and compact medium size high resolution solar physics mission that will bring together most of the best of SOHO and TRACE It is proposed to CNES and ESA for a new start in 2006 and a possible launch in 2011-2012 to fill the gap before the first results of the Solar Orbiter or Probe results in the late 2018 at best Partnerships with India and China are under discussion and several European contributions are considered SOLARNET instrumentation consists in a multiple instrument payload to achieve both the necessary global view of extended events and the detailed high resolution understanding of them The major instrument is a 3-telescope interferometer of 1 meter baseline capable to provide 50 times the best ever spatial resolution achieved in Space with previous current or even planned solar missions 20 mas -- 20 km on the Sun in the FUV The interferometer is associated to an on-axis Subtractive Double Monochromator coupled to an Imaging Fourier Transform Spectrometer itself capable of very high spectral

  3. Interactive Display of High-Resolution Images on the World Wide Web.

    ERIC Educational Resources Information Center

    Clyde, Stephen W.; Hirschi, Gregory W.

    Viewing high-resolution images on the World Wide Web at a level of detail necessary for collaborative research is still a problem today, given the Internet's current bandwidth limitations and its ever increasing network traffic. ImageEyes is an interactive display tool being developed at Utah State University that addresses this problem by…

  4. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  5. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI

  6. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    SciTech Connect

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  7. High Resolution Photoelectron Spectroscopy of Au_2^- and Au_4^- by Photoelectron Imaging

    NASA Astrophysics Data System (ADS)

    Leon, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-06-01

    We report high resolution photoelectron spectra of Au_2^- and Au_4^- obtained with a newly-built photoelectron imaging apparatus. Gold anions are produced by laser vaporization and the desired specie is mass selected and focused into the collinear velocity-map imaging (VMI) lens assembly. The design of the imaging lens has allowed us to obtain less than 0.9% energy resolution for high kinetic energy electrons ( > 1eV) while maintaining wavenumber resolution for low kinetic energy electrons. Although gold dimer and tetramer have been studied in the past, we present spectroscopic results under high resolution. For Au_2^-, we report high resolution spectra with an accurate determination of the electron affinity together with a complete vibrational assignment, for both the anion and neutral ground states, while for Au_4^-, we are able to resolve a low frequency mode and obtain accurately the adiabatic detachment energy.

  8. Operation of MRO's High Resolution Imaging Science Experiment (HiRISE): Maximizing Science Participation

    NASA Technical Reports Server (NTRS)

    Eliason, E.; Hansen, C. J.; McEwen, A.; Delamere, W. A.; Bridges, N.; Grant, J.; Gulich, V.; Herkenhoff, K.; Keszthelyi, L.; Kirk, R.

    2003-01-01

    Science return from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) will be optimized by maximizing science participation in the experiment. MRO is expected to arrive at Mars in March 2006, and the primary science phase begins near the end of 2006 after aerobraking (6 months) and a transition phase. The primary science phase lasts for almost 2 Earth years, followed by a 2-year relay phase in which science observations by MRO are expected to continue. We expect to acquire approx. 10,000 images with HiRISE over the course of MRO's two earth-year mission. HiRISE can acquire images with a ground sampling dimension of as little as 30 cm (from a typical altitude of 300 km), in up to 3 colors, and many targets will be re-imaged for stereo. With such high spatial resolution, the percent coverage of Mars will be very limited in spite of the relatively high data rate of MRO (approx. 10x greater than MGS or Odyssey). We expect to cover approx. 1% of Mars at approx. 1m/pixel or better, approx. 0.1% at full resolution, and approx. 0.05% in color or in stereo. Therefore, the placement of each HiRISE image must be carefully considered in order to maximize the scientific return from MRO. We believe that every observation should be the result of a mini research project based on pre-existing datasets. During operations, we will need a large database of carefully researched 'suggested' observations to select from. The HiRISE team is dedicated to involving the broad Mars community in creating this database, to the fullest degree that is both practical and legal. The philosophy of the team and the design of the ground data system are geared to enabling community involvement. A key aspect of this is that image data will be made available to the planetary community for science analysis as quickly as possible to encourage feedback and new ideas for targets.

  9. Agricultural land-use mapping using very high resolution satellite images in Canary Islands

    NASA Astrophysics Data System (ADS)

    Labrador Garcia, Mauricio; Arbelo, Manuel; Evora Brondo, Juan Antonio; Hernandez-Leal, Pedro A.; Alonso-Benito, Alfonso

    Crop maps are a basic tool for rural planning and a way to asses the impact of politics and infrastructures in the rural environment. Thus, they must be accurate and updated. Because of the small size of the land fields in Canary Islands, until now the crop maps have been made by means of an intense and expensive field work. The tiny crop terraces do not allow the use of traditional medium-size resolution satellite images. The launch of several satellites with sub-meter spatial resolutions in the last years provides an opportunity to update land use maps in these fragmented areas. SATELMAC is a project financed by the PCT-MAC 2007-2013 (FEDER funds). One of the main objectives of this project is to develop a methodology that allows the use of very high resolution satellite images to automate as much as possible the updating of agricultural land use maps. The study was carried out in 3 different areas of the two main islands of the Canarian Archipelago, Tenerife and Gran Canaria. The total area is about 550 km2 , which includes both urban and rural areas. Multitemporal images from Geo-Eye 1 were acquired during a whole agricultural season to extract information about annual and perennial crops. The work includes a detailed geographic correction of the images and dealing with many adverse factors like cloud shadows, variability of atmospheric conditions and the heterogeneity of the land uses within the study area. Different classification methods, including traditional pixel-based methods and object-oriented approach, were compared in order to obtain the best accuracy. An intensive field work was carried out to obtain the ground truth, which is the base for the classification procedures and the validation of the results. The final results will be integrated into a cadastral vector layer.

  10. Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering

    NASA Astrophysics Data System (ADS)

    Mason, D. C.; Giustarini, L.; Garcia-Pintado, J.; Cloke, H. L.

    2014-05-01

    Flooding is a particular hazard in urban areas worldwide due to the increased risks to life and property in these regions. Synthetic Aperture Radar (SAR) sensors are often used to image flooding because of their all-weather day-night capability, and now possess sufficient resolution to image urban flooding. The flood extents extracted from the images may be used for flood relief management and improved urban flood inundation modelling. A difficulty with using SAR for urban flood detection is that, due to its side-looking nature, substantial areas of urban ground surface may not be visible to the SAR due to radar layover and shadow caused by buildings and taller vegetation. This paper investigates whether urban flooding can be detected in layover regions (where flooding may not normally be apparent) using double scattering between the (possibly flooded) ground surface and the walls of adjacent buildings. The method estimates double scattering strengths using a SAR image in conjunction with a high resolution LiDAR (Light Detection and Ranging) height map of the urban area. A SAR simulator is applied to the LiDAR data to generate maps of layover and shadow, and estimate the positions of double scattering curves in the SAR image. Observations of double scattering strengths were compared to the predictions from an electromagnetic scattering model, for both the case of a single image containing flooding, and a change detection case in which the flooded image was compared to an un-flooded image of the same area acquired with the same radar parameters. The method proved successful in detecting double scattering due to flooding in the single-image case, for which flooded double scattering curves were detected with 100% classification accuracy (albeit using a small sample set) and un-flooded curves with 91% classification accuracy. The same measures of success were achieved using change detection between flooded and un-flooded images. Depending on the particular flooding

  11. Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering

    NASA Astrophysics Data System (ADS)

    Mason, David; Giustarini, Laura; Garcia-Pintado, Javier; Cloke, Hannah

    2014-05-01

    compared to an un-flooded image of the same area acquired with the same radar parameters. The method proved successful in detecting double scattering due to flooding in the single-image case, for which flooded double scattering curves were detected with 100% classification accuracy (albeit using a small sample set) and un-flooded curves with 91% classification accuracy. The same measures of success were achieved using change detection between flooded and un-flooded images. Depending on the particular flooding situation, the method could lead to improved detection of flooding in urban areas. 1. Mason DC, Giustarini L, Garcia-Pintado J (2014). Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering. Int. J. Applied Earth Observation and Geoscience, 28C (May 2014), 150-159.

  12. Toward an image compression algorithm for the high-resolution electronic still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    Taking pictures with a camera that uses a digital recording medium instead of film has the advantage of recording and transmitting images without the use of a darkroom or a courier. However, high-resolution images contain an enormous amount of information and strain data-storage systems. Image compression will allow multiple images to be stored in the High-Resolution Electronic Still Camera. The camera is under development at Johnson Space Center. Fidelity of the reproduced image and compression speed are of tantamount importance. Lossless compression algorithms are fast and faithfully reproduce the image, but their compression ratios will be unacceptably low due to noise in the front end of the camera. Future efforts will include exploring methods that will reduce the noise in the image and increase the compression ratio.

  13. Equivalent physical models and formulation of equivalent source layer in high-resolution EEG imaging.

    PubMed

    Yao, Dezhong; He, Bin

    2003-11-01

    In high-resolution EEG imaging, both equivalent dipole layer (EDL) and equivalent charge layer (ECL) assumed to be located just above the cortical surface have been proposed as high-resolution imaging modalities or as intermediate steps to estimate the epicortical potential. Presented here are the equivalent physical models of these two equivalent source layers (ESL) which show that the strength of EDL is proportional to the surface potential of the layer when the outside of the layer is filled with an insulator, and that the strength of ECL is the normal current of the layer when the outside is filled with a perfect conductor. Based on these equivalent physical models, closed solutions of ECL and EDL corresponding to a dipole enclosed by a spherical layer are given. These results provide the theoretical basis of ESL applications in high-resolution EEG mapping.

  14. Magellan radar image compared to high resolution Earth-based image of Venus

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A strip of a Magellan radar image (left) is compared to a high resolution Earth-based radar image of Venus, obtained by the U.S. National Astronomy and Ionosphere Center's Arecibo Observatory in Puerto Rico. The small white box in the Arecibo image corresponds to the Magellan image. This portion of the Magellan imagery shows a small region on the east flank of a major volcanic upland called Beta Regio. The image is centered at 23 degrees north latitude and 286.7 degrees east longitude. The ridge and valley network in the middle part of the image is formed by intersecting faults which have broken the Venusian crust into a complex deformed type of surface called tessera, the Latin word for tile. The parallel mountains and valleys resemble the Basin and Range Province in the western United States. The irregular dark patch near the top of the image is a smooth surface, probably formed, according to scientists, by lava flows in a region about 10 kilometers (6 miles) across. Similar dark sur

  15. Shoreline Tracing Using Medium to High-Resolution Satellite Images for Storm Surge Modelling

    NASA Astrophysics Data System (ADS)

    Ladiero, C.; Lagmay, A. M. A.; Santiago, J. T.; Suarez, J. K. B.; Puno, J. V.; Bahala, M. A.

    2014-12-01

    In a developing country like Philippines, which ranks fourth in the longest coastline in the world at 36 289 kilometers, acquiring an updated and finer shoreline at the municipal level is mostly scarce. Previous studies have emphasized the importance of accurately delineating shoreline in coastal management, engineering design, sea-level rise research, coastal hazard map development, boundary definition, coastal change research and monitoring and numerical models. In the context of storm surge modelling, shoreline boundary serves as basis for tidal conditions and requires to be well-defined to generate an accurate simulation result. This paper presents the cost-effective way of shoreline tracing employed by the Storm Surge component under the Department of Science and Technology-Nationwide Operational Assessment of Hazards (DOST-Project NOAH) for use in modelling storm surge hazards in the country, particularly in San Pedro Bay during the Typhoon Haiyan. Project NOAH was tasked to conduct disaster science research and development and recommend innovative information services in government's disaster prevention and mitigation efforts through cutting edge technologies. The Storm Surge component commenced in September 2013 and was mandated by the Philippine government to identify storm surge vulnerable areas and provide high-resolution maps of storm surge inundation in the localities. In the absence of LIDAR data at the time, the Project utilized the freely available medium to high resolution satellite images of Google Earth and digitized the shoreline. To minimize subjectivity, set of digitizing standards were developed for classifying common shoreline features in the country, differentiating image textures and colors and tabulating identified shoreline features. After which, the digitized shoreline were quality checked and corrected for topology using ArcGIS Desktop 10 software. The final output is a vector data that served as boundary for topo-bathy extraction

  16. Advances in high-resolution imaging – techniques for three-dimensional imaging of cellular structures

    PubMed Central

    Lidke, Diane S.; Lidke, Keith A.

    2012-01-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques. PMID:22685332

  17. High-Resolution Vessel Wall Magnetic Resonance Imaging in Varicella-Zoster Virus Vasculitis.

    PubMed

    Tsivgoulis, Georgios; Lachanis, Stefanos; Magoufis, Georgios; Safouris, Apostolos; Kargiotis, Odysseas; Stamboulis, Elefterios

    2016-06-01

    Varicella-zoster virus vasculopathy is a rare but potentially treatable condition. Diagnosis has been based on angiography, brain magnetic resonance imaging (MRI), and cerebrospinal fluid analysis. High-resolution vessel wall MRI may aid to the diagnosis by differentiating inflammation from other vessel wall pathologies. We present the characteristic MRI findings of this condition in a young patient presenting with ischemic stroke.

  18. On-demand optical immobilization of Caenorhabditis elegans for high-resolution imaging and microinjection

    PubMed Central

    Hwang, Hyundoo; Krajniak, Jan; Matsunaga, Yohei; Benian, Guy M.

    2014-01-01

    This paper describes a novel selected immobilization technique based on optical control of the sol-gel transition of thermoreversible Pluronic gel, which provides a simple, versatile, and biocompatible approach for high-resolution imaging and microinjection of Caenorhabditis elegans. PMID:25056343

  19. A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars

    USGS Publications Warehouse

    Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,

    2002-01-01

    A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.

  20. Monitoring irrigation volumes using high-resolution NDVI image time series: calibration and validation in the Kairouan plain (Tunisia)

    NASA Astrophysics Data System (ADS)

    Saadi, S.; Simonneaux, V.; Boulet, G.; Mougenot, B.; Lili Chabaane, Z.

    2015-10-01

    The increasing availability of high resolution high repetitively VIS-NIR remote sensing, like the forthcoming Sentinel-2 mission to be launched in 2015, offers unprecedented opportunity to improve agricultural monitoring. In this study, regional evapotranspiration and crop water consumption were estimated over an irrigated area located in the Kairouan plain (central Tunisia) using the FAO-56 dual crop coefficient water balance model combined with NDVI image time series providing estimates of the actual basal crop coefficient (Kcb) and vegetation fraction cover. Three time series of high-resolution SPOT5 images have been acquired for the 2008-2009, 2011-2012 and 2012-2013 hydrological years. We also benefited from a SPOT4 time series acquired in the frame of the SPOT4-Take5 experiment. The SPOT5 images were radiometrically corrected, first, using the SMAC6s Algorithm, and then improved using invariant objects located on the scene. The method was first calibrated using ground measurements of evapotranspiration achieved using eddy-correlation devices installed on irrigated wheat and barley plots. For other crops for which no calibration data was available, parameters were taken from bibliography. Then, the model was run to spatialize irrigation over the whole area and a validation was done using cumulated seasonal water volumes obtained from ground survey for three irrigated perimeters. In a subsequent step, evapotranspiration estimates were obtained using a large aperture scintillometer and were used for an additional validation of the model outputs.

  1. Feasibility of endovascular optical coherence tomography for high-resolution carotid vessel wall imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Kyle H. Y.; Sun, Cuiru; Cruz, Juan P.; Marotta, Thomas R.; Spears, Julian; Montanera, Walter J.; Herman, Peter R.; Thind, Aman; Courtney, Brian; Standish, Beau A.; Yang, Victor X. D.

    2012-02-01

    Carotid Artery Stenting (CAS) is a procedure that treats carotid atherosclerosis which should be monitored by in vivo high resolution imaging for the quality of the procedure and potential complications. The purpose of this pilot study is to evaluate the ability of optical coherence tomography to construct high resolution two and three dimensional images of stenting in porcine carotid artery for high accuracy diagnostic purposes. Four Yorkshire pigs were anaesthetized and catheterized. A state-of-the-art optical coherence tomography (OCT) system (Lightlab Imaging, St. Jude Medical Inc.) and an automated injector were used to obtain both healthy and stented porcine carotid artery images. Data obtained were then processed for visualization. The state-of-the-art OCT system was able to capture high resolution images of both healthy and stented carotid arteries. High quality three dimensional images of stented carotid arteries were constructed, clearly depicting stent apposition and thrombus formation over different stents. The results demonstrated that current state-of-the-art OCT system can be used to generate high quality three dimensional images of carotid arterial stents for accurate diagnosis of stent apposition and complications under appropriate imaging conditions.

  2. Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging.

    PubMed

    Gierlinger, Notburga; Sapei, Lanny; Paris, Oskar

    2008-04-01

    Equisetaceae has been of research interest for decades, as it is one of the oldest living plant families, and also due to its high accumulation of silica up to 25% dry wt. Aspects of silica deposition, its association with other biomolecules, as well as the chemical composition of the outer strengthening tissue still remain unclear. These questions were addressed by using high resolution (<1 microm) Confocal Raman microscopy. Two-dimensional spectral maps were acquired on cross sections of Equisetum hyemale and Raman images calculated by integrating over the intensity of characteristic spectral regions. This enabled direct visualization of differences in chemical composition and extraction of average spectra from defined regions for detailed analyses, including principal component analysis (PCA) and basis analysis (partial least square fit based on model spectra). Accumulation of silica was imaged in the knobs and in a thin layer below the cuticula. In the spectrum extracted from the knob region as main contributions, a broad band below 500 cm(-1) attributed to amorphous silica, and a band at 976 cm(-1) assigned to silanol groups, were found. From this, we concluded that these protrusions were almost pure amorphous, hydrated silica. No silanol group vibration was detected in the silicified epidermal layer below and association with pectin and hemicelluloses indicated. Pectin and hemicelluloses (glucomannan) were found in high levels in the epidermal layer and in a clearly distinguished outer part of the hypodermal sterome fibers. The inner part of the two-layered cells revealed as almost pure cellulose, oriented parallel along the fiber.

  3. Quantitative Analysis of High-Resolution Microendoscopic Images for Diagnosis of Esophageal Squamous Cell Carcinoma

    PubMed Central

    Shin, Dongsuk; Protano, Marion-Anna; Polydorides, Alexandros D.; Dawsey, Sanford M.; Pierce, Mark C.; Kim, Michelle Kang; Schwarz, Richard A.; Quang, Timothy; Parikh, Neil; Bhutani, Manoop S.; Zhang, Fan; Wang, Guiqi; Xue, Liyan; Wang, Xueshan; Xu, Hong; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.

    2014-01-01

    Background & Aims High-resolution microendoscopy is an optical imaging technique with the potential to improve the accuracy of endoscopic screening for esophageal squamous neoplasia. Although these microscopic images can readily be interpreted by trained personnel, quantitative image analysis software could facilitate the use of this technology in low-resource settings. In this study we developed and evaluated quantitative image analysis criteria for the evaluation of neoplastic and non-neoplastic squamous esophageal mucosa. Methods We performed image analysis of 177 patients undergoing standard upper endoscopy for screening or surveillance of esophageal squamous neoplasia, using high-resolution microendoscopy, at 2 hospitals in China and 1 in the United States from May 2010 to October 2012. Biopsies were collected from imaged sites (n=375); a consensus diagnosis was provided by 2 expert gastrointestinal pathologists and used as the standard. Results Quantitative information from the high-resolution images was used to develop an algorithm to identify high-grade squamous dysplasia or invasive squamous cell cancer, based on histopathology findings. Optimal performance was obtained using mean nuclear area as the basis for classification, resulting in sensitivities and specificities of 93% and 92% in the training set, 87% and 97% in the test set, and 84% and 95% in an independent validation set, respectively. Conclusions High-resolution microendoscopy with quantitative image analysis can aid in the identification of esophageal squamous neoplasia. Use of software-based image guides may overcome issues of training and expertise in low-resource settings, allowing for widespread use of these optical biopsy technologies. PMID:25066838

  4. High resolution quantitative phase imaging of live cells with constrained optimization approach

    NASA Astrophysics Data System (ADS)

    Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu

    2016-03-01

    Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.

  5. Comprehensive data visualization for high resolution endovascular carotid arterial wall imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Kyle H. Y.; Sun, Cuiru; Cruz, Juan P.; Marotta, Thomas R.; Spears, Julian; Montanera, Walter J.; Thind, Aman; Courtney, Brian; Standish, Beau A.; Yang, Victor X. D.

    2012-05-01

    Carotid angioplasty and stenting is a minimally invasive endovascular procedure that may benefit from in vivo high resolution imaging for monitoring the physical placement of the stent and potential complications. The purpose of this pilot study was to evaluate the ability of optical coherence tomography to construct high resolution 2D and 3D images of stenting in porcine carotid artery. Four Yorkshire pigs were anaesthetized and catheterized. A state-of-the-art optical coherence tomography (OCT) system and an automated injector were used to obtain both healthy and stented porcine carotid artery images. Data obtained were then processed for visualization. The state-of-the-art OCT system was able to capture high resolution images of both healthy and stented carotid arteries. High quality 3D images of healthy and stented carotid arteries were constructed, clearly depicting vessel wall morphological features, stent apposition and thrombus formation over the inserted stent. The results demonstrate that OCT can be used to generate high quality 3D images of carotid arterial stents for accurate diagnosis of stent apposition and complications under appropriate imaging conditions.

  6. Generating High resolution surfaces from images: when photogrammetry and applied geophysics meets

    NASA Astrophysics Data System (ADS)

    Bretar, F.; Pierrot-Deseilligny, M.; Schelstraete, D.; Martin, O.; Quernet, P.

    2012-04-01

    Airborne digital photogrammetry has been used for some years to create digital models of the Earth's topography from calibrated cameras. But, in the recent years, the use of non-professionnal digital cameras has become valuable to reconstruct topographic surfaces. Today, the multi megapixel resolution of non-professionnal digital cameras, either used in a close range configuration or from low altitude flights, provide a ground pixel size of respectively a fraction of millimeters to couple of centimeters. Such advances turned into reality because the data processing chain made a tremendous break through during the last five years. This study investigates the potential of the open source software MICMAC developed by the French National Survey IGN (http://www.micmac.ign.fr) to calibrate unoriented digital images and calculate surface models of extremely high resolution for Earth Science purpose. We would like to report two experiences performed in 2011. The first has been performed in the context of risk assessment of rock falls and landslides along the cliffs of Normandy seashore. The acquisition protocol for the first site of "Criel-sur-Mer" has been very simple: a walk along the chalk vertical cliffs taking photos with a focal of 18mm every approx. 50m with an overlap of 80% allowed to generate 2.5km of digital surface at centimeter resolution. The site of "Les Vaches Noires" has been more complicated to acquire because of both the geology (dark clays) and the geometry (the landslide direction is parallel to the seashore and has a high field depth from the shore). We therefore developed an innovative device mounted on board of an autogyre (in-between ultralight power driven aircraft and helicopter). The entire area has been surveyed with a focal of 70mm at 400m asl with a ground pixel of 3cm. MICMAC gives the possibility to directly georeference digital Model. Here, it has been performed by a net of wireless GPS called Geocubes, also developed at IGN. The second

  7. High-resolution thermal imaging methodology for non-destructive evaluation of historic structures

    NASA Astrophysics Data System (ADS)

    Hess, Michael; Vanoni, David; Petrovic, Vid; Kuester, Falko

    2015-11-01

    This paper presents a methodology for automated, portable thermography, for the acquisition of high-resolution thermal image mosaics supporting the non-destructive evaluation of historic structures. The presented approach increases the spatial resolution of thermal surveys to a level of detail needed for building scale analysis. The integration of a robotic camera platform enables automated alignment of multiple images into a high-resolution thermal image mosaic giving a holistic view of the structure while maintaining a level of detail equaling or exceeding that of traditional spot surveys using existing cameras. Providing a digital workflow for automated data and metadata recording increases the consistency and accuracy of surveys regardless of the location or operator. An imaging workflow and instrumentation are shown for a case-study on buildings in Florence, Italy demonstrating the effectiveness of this methodology for structural diagnostics.

  8. Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display.

    PubMed

    Jang, Ju-Seog; Oh, Yong-Seok; Javidi, Bahram

    2004-02-23

    We present a projection method in integral imaging for large-scale high-resolution three-dimensional display. In the proposed method, the entire set of high resolution elemental images with a large number of pixels is spatially divided into smaller image subsets. Then they are projected separately onto the corresponding lenslet array positions either simultaneously or in a sequence faster than the flicker fusion frequency of human eyes or both (i.e., spatiotemporal multiplexing). Thus display panels that do not have enough pixel numbers can be used to display the entire elemental images with a large number of pixels. Preliminary experiments were performed using a galvanometer-based optical scanner. PMID:19474856

  9. High Resolution Electromechanical Imaging of Ferroelectric Materials in a Liquid Environment by Piezoresponse Force Microscopy

    SciTech Connect

    Rodriguez, Brian J; Jesse, Stephen; Baddorf, Arthur P; Kalinin, Sergei V

    2006-01-01

    High-resolution imaging of ferroelectric materials using piezoresponse force microscopy (PFM) is demonstrated in an aqueous environment. The elimination of both long-range electrostatic forces and capillary interactions results in a localization of the ac field to the tip-surface junction and allows the tip-surface contact area to be controlled. This approach results in spatial resolutions approaching the limit of the intrinsic domain-wall width. Imaging at frequencies corresponding to high-order cantilever resonances minimizes the viscous damping and added mass effects on cantilever dynamics and allows sensitivities comparable to ambient conditions. PFM in liquids will provide novel opportunities for high-resolution studies of ferroelectric materials, imaging of soft polymer materials, and imaging of biological systems in physiological environments on, ultimately, the molecular level.

  10. Fusing electro-optic and infrared signals for high resolution night images

    NASA Astrophysics Data System (ADS)

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-03-01

    Electro-optic (EO) images exhibit the properties of high resolution and low noise level, while it is a challenge to distinguish objects at night through infrared (IR) images, especially for objects with a similar temperature. Therefore, we will propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which will result in high resolution IR images and help us distinguish objects at night. Superimposing the detected edge of the EO image onto the corresponding transformed IR image is our principal idea for the proposed framework. In this framework, we will adopt the theoretical point spread function (PSF) proposed by Russell C. Hardie et al. for our IR image system, which is contributed by the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we will design an inverse filter in terms of the proposed PSF to conduct the IR image transformation. The framework requires four main steps, which are inverse filter-based IR image transformation, EO image edge detection, registration and superimposing of the obtained image pair. Simulation results will show the superimposed IR images.

  11. High resolution MRI imaging at 1. 5T using surface coils

    SciTech Connect

    Blinder, R.A.; Herfkens, R.J.; Coleman, R.E.; Johnson, G.A.; Schenck, J.F.; Hart, H.R. Jr.; Foster, T.H.; Edelstein, W.A.

    1985-05-01

    The potential utility of high resolution MRI imaging in various pathologic conditions was explored. As the voxel size of MRI images is decreased the signal per pixel diminishes due to the geometric decrease in volume. In very high resolution images the signal can be small enough to be obscured by Johnson noise. High magnetic field strength (1.5T) coupled with surface coil imaging increases the signal to noise ratio. The surface coils used were single turn coils with diameters of 6 or 11 cm depending on the body part being imaged. A ''clam shell'' crossed coil was used for imaging the knees. Using a 1.5T prototype MRI imaging system we have obtained images with 14.5 cm field of view that are 256 by 256 pixels with a slice thickness of 3 mm. Good signal to noise is obtained using 2DTF imaging with only 2 excitations per phase encoding step (1 average). Images obtained of peripheral joints demonstrate articular cartilage, ligamentous structures, and trabeculae in medullary bone. These exams have demonstrated the changes of rheumatoid arthritis, and the extent of neoplastic involvement in bone. Images of the temporomandibular joint and the neck have been obtained. Parathyroid adenomas have been identified. Surface coil imaging and high magnetic fields allow for high resolution MRI imaging of various anatomic structures. Good signal to noise can be accomplished without extensive signal averaging so that reasonable imaging times and throughput can be realized with voxel dimensions of 0.6 x 0.6 x 3mm.

  12. High Resolution Velocity Map Imaging Photoelectron Spectroscopy of the Beryllium Oxide Anion, BeO-

    NASA Astrophysics Data System (ADS)

    Dermer, Amanda Reed; Mascaritolo, Kyle; Heaven, Michael

    2016-06-01

    The photodetachment spectrum of BeO- has been studied using high resolution velocity map imaging photoelectron spectroscopy. The vibrational contours were imaged and compared with Franck-Condon simulations for the ground and excited states of the neutral. The electron affinity of BeO was measured for the first time, and anisotropies of several transitions were determined. Experimental findings are compared to high level ab initio calculations.

  13. Ultra-High Resolution Diffusion Tensor Imaging of the Microscopic Pathways of the Medial Temporal Lobe

    PubMed Central

    Zeineh, Michael M.; Holdsworth, Samantha; Skare, Stefan; Atlas, Scott W.; Bammer, Roland

    2015-01-01

    Diseases involving the medial temporal lobes (MTL) such as Alzheimer’s disease and mesial temporal sclerosis pose an ongoing diagnostic challenge because of the difficulty in identifying conclusive imaging features, particularly in pre-clinical states. Abnormal neuronal connectivity may be present in the circuitry of the MTL, but current techniques cannot reliably detect those abnormalities. Diffusion tensor imaging (DTI) has shown promise in defining putative abnormalities in connectivity, but DTI studies of the MTL performed to date have shown neither dramatic nor consistent differences across patient populations. Conventional DTI methodology provides an inadequate depiction of the complex microanatomy present in the medial temporal lobe because of a typically employed low isotropic resolution of 2.0–2.5mm, a low signal-to-noise ratio (SNR), and echo-planar imaging (EPI) geometric distortions that are exacerbated by the inhomogeneous magnetic environment at the skull base. In this study, we pushed the resolving power of DTI to near-mm isotropic voxel size to achieve a detailed depiction of mesial temporal microstructure at 3T. High image fidelity and SNR at this resolution are achieved through several mechanisms: (1) acquiring multiple repetitions of the minimum field of view required for hippocampal coverage to boost SNR; (2) utilizing a single-refocused diffusion preparation to enhance SNR further; (3) performing a phase correction to reduce Rician noise; (4) minimizing distortion and maintaining left-right distortion symmetry with axial-plane parallel imaging; and (5) retaining anatomical and quantitative accuracy through the use of motion correction coupled with a higher-order eddy-current correction scheme. We combined this high-resolution methodology with a detailed segmentation of the MTL to identify tracks in all subjects that may represent the major pathways of the MTL, including the perforant pathway. Tractography performed on a subset of the data

  14. Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors

    PubMed Central

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena

    2013-01-01

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804

  15. Computational burden resulting from image recognition of high resolution radar sensors.

    PubMed

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena

    2013-01-01

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.

  16. High resolution depth-resolved imaging from multi-focal images for medical ultrasound.

    PubMed

    Diamantis, Konstantinos; Dalgarno, Paul A; Greenaway, Alan H; Anderson, Tom; Jensen, Jørgen Arendt; Sboros, Vassilis

    2015-01-01

    An ultrasound imaging technique providing sub-diffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values for in-focus images. The technique is derived from biological microscopy and is validated here with simulated ultrasound data. A linear array probe is used to scan a point scatterer phantom that moves in depth with a controlled step. From the beamformed responses of each scatterer position the image sharpness is assessed. Values from all positions plotted together form a curve that peaks at the receive focus, which is set during the beamforming. Selection of three different receive foci for each acquired dataset will result in the generation of three overlapping sharpness curves. A set of three calibration curves combined with the use of a maximum-likelihood algorithm is then able to estimate, with high precision, the depth location of any emitter fron each single image. Estimated values are compared with the ground truth demonstrating that an accuracy of 28.6 μm (0.13λ) is achieved for a 4 mm depth range. PMID:26737920

  17. [Change detection from high-resolution remote sensing image based on MSE model].

    PubMed

    Wei, Li-Fei; Wang, Hai-Bo

    2013-03-01

    At present, most of the traditional change detection methods from high-resolution remote sensing image are based on a feature information, the information of multi-feature information cannot be extracted, so it is difficult to detect the complete information. In order to solve this problem, a change detection algorithm of high-resolution remote sensing image based on multiview spectral embedding is proposed in the present paper. Firstly, change image is obtained using traditional difference change detection method, and multi-feature information is extracted. The feature vector information is fused by a MSE model and the complete change information can be obtained. The experimental results show that the detection accuracy of the proposed method is better than the accuracy of traditional methods, and its stability is outstanding.

  18. High-resolution images of Pd particles supported on highly oriented pyrolytic graphite and glassy carbon

    SciTech Connect

    Murakami, Yasushi; Naoi, Katsuo; Yahikozawa, Kiyochika; Takasu, Yoshio . Dept. of Fine Materials Engineering)

    1994-09-01

    Ultrafine metal particles dispersed on supporting materials have been developed as catalysts for the oxidation of automobile exhaust gas, the hydrogenation of carbon monoxide, and electrodes of fuel cells. Both activities and selectivities of these reactions depend on the morphology of the dispersed metal. The morphology of palladium particles supported on both highly oriented pyrolytic graphite (HOPG) and glassy carbon was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The particles on the HOPG were linked with neighboring particles to agglomerate, while the particles on the glassy carbon were circular. AFM data with tapping mode for the palladium particles on HOPG were consistent with the high-resolution SEM image. Although the lateral resolution of the AFM image was lower than that for the high-resolution SEM data, the AFM image clearly indicated the height distribution of the agglomerates.

  19. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit.

    PubMed

    Liu, Shusen; Li, Pengcheng; Luo, Qingming

    2008-09-15

    Laser speckle contrast analysis (LASCA) is a non-invasive, full-field optical technique that produces two-dimensional map of blood flow in biological tissue by analyzing speckle images captured by CCD camera. Due to the heavy computation required for speckle contrast analysis, video frame rate visualization of blood flow which is essentially important for medical usage is hardly achieved for the high-resolution image data by using the CPU (Central Processing Unit) of an ordinary PC (Personal Computer). In this paper, we introduced GPU (Graphics Processing Unit) into our data processing framework of laser speckle contrast imaging to achieve fast and high-resolution blood flow visualization on PCs by exploiting the high floating-point processing power of commodity graphics hardware. By using GPU, a 12-60 fold performance enhancement is obtained in comparison to the optimized CPU implementations.

  20. High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yin, Jiechen; Hu, Changhong; Zhou, Qifa; Shung, K. Kirk; Chen, Zhongping

    2010-09-01

    We report an integrated ultrasound (US) and optical coherence tomography (OCT) probe and system for intravascular imaging. The dual-function probe is based on a 50 MHz focused ring US transducer, with a centric hole for mounting OCT probe. The coaxial US and light beams are steered by a 45° mirror to enable coregistered US/OCT imaging simultaneously. Lateral resolution of US is improved due to focused ultrasonic beam. Mirror effects on US were investigated and in vitro imaging of a rabbit aorta has been carried out. The combined US-OCT system demonstrated high resolution in visualizing superficial arterial structures while retaining deep penetration of ultrasonic imaging.

  1. High resolution crustal image of South California Continental Borderland: Reverse time imaging including multiples

    NASA Astrophysics Data System (ADS)

    Bian, A.; Gantela, C.

    2014-12-01

    Strong multiples were observed in marine seismic data of Los Angeles Regional Seismic Experiment (LARSE).It is crucial to eliminate these multiples in conventional ray-based or one-way wave-equation based depth image methods. As long as multiples contain information of target zone along travelling path, it's possible to use them as signal, to improve the illumination coverage thus enhance the image quality of structural boundaries. Reverse time migration including multiples is a two-way wave-equation based prestack depth image method that uses both primaries and multiples to map structural boundaries. Several factors, including source wavelet, velocity model, back ground noise, data acquisition geometry and preprocessing workflow may influence the quality of image. The source wavelet is estimated from direct arrival of marine seismic data. Migration velocity model is derived from integrated model building workflow, and the sharp velocity interfaces near sea bottom needs to be preserved in order to generate multiples in the forward and backward propagation steps. The strong amplitude, low frequency marine back ground noise needs to be removed before the final imaging process. High resolution reverse time image sections of LARSE Lines 1 and Line 2 show five interfaces: depth of sea-bottom, base of sedimentary basins, top of Catalina Schist, a deep layer and a possible pluton boundary. Catalina Schist shows highs in the San Clemente ridge, Emery Knoll, Catalina Ridge, under Catalina Basin on both the lines, and a minor high under Avalon Knoll. The high of anticlinal fold in Line 1 is under the north edge of Emery Knoll and under the San Clemente fault zone. An area devoid of any reflection features are interpreted as sides of an igneous plume.

  2. High-Resolution Aeromagnetic Survey To Image Shallow Faults, Poncha Springs and Vicinity, Chaffee County, Colorado

    USGS Publications Warehouse

    Grauch, V.J.S.; Drenth, Benjamin J.

    2009-01-01

    High-resolution aeromagnetic data were acquired over the town of Poncha Springs and areas to the northwest to image faults, especially where they are concealed. Because this area has known hot springs, faults or fault intersections at depth can provide pathways for upward migration of geothermal fluids or concentrate fracturing that enhances permeability. Thus, mapping concealed faults provides a focus for follow-up geothermal studies. Fault interpretation was accomplished by synthesizing interpretative maps derived from several different analytical methods, along with preliminary depth estimates. Faults were interpreted along linear aeromagnetic anomalies and breaks in anomaly patterns. Many linear features correspond to topographic features, such as drainages. A few of these are inferred to be fault-related. The interpreted faults show an overall pattern of criss-crossing fault zones, some of which appear to step over where they cross. Faults mapped by geologists suggest similar crossing patterns in exposed rocks along the mountain front. In low-lying areas, interpreted faults show zones of west-northwest-, north-, and northwest-striking faults that cross ~3 km (~2 mi) west-northwest of the town of Poncha Springs. More easterly striking faults extend east from this juncture. The associated aeromagnetic anomalies are likely caused by magnetic contrasts associated with faulted sediments that are concealed less than 200 m (656 ft) below the valley floor. The faults may involve basement rocks at greater depth as well. A relatively shallow (<300 m or <984 ft), faulted basement block is indicated under basin-fill sediments just north of the hot springs and south of the town of Poncha Springs.

  3. High-resolution, near-real-time x-ray video imaging without image intensification

    NASA Astrophysics Data System (ADS)

    Mengers, Paul

    1993-12-01

    This paper discusses a type of x-ray camera designed to generate standard RS-170 video output that does not use x-ray or optical image intensifiers. Instead, it employs a very sensitive, very high resolution CCD sensor which views an x-ray-to-light conversion screen directly through a high speed imaging lens. This new solid state TV camera, which is described later, has very low readout noise plus unusually high gain which enables it to generate real-time video with incident flux levels typical of many inspection applications. Perhaps more important is an ability to integrate for multiple frame intervals on the chip followed by the output of a standard, RS-170 format video frame containing two balanced interlaced fields. In this integrating mode excellent quality images of low contrast objects can be obtained with only a few tenths of a second integration intervals. The basic elements of this type of camera are described and applications discussed where this approach appears to have important advantages over other methods in common use.

  4. Interval TYPE-2 Fuzzy Based Neural Network for High Resolution Remote Sensing Image Segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Xu, Aigong; Li, Chao; Zhao, Xuemei

    2016-06-01

    Recently, high resolution remote sensing image segmentation is a hot issue in image procesing procedures. However, it is a difficult task. The difficulties derive from the uncertainties of pixel segmentation and decision-making model. To this end, we take spatial relationship into consideration when constructing the interval type-2 fuzzy neural networks for high resolution remote sensing image segmentation. First, the proposed algorithm constructs a Gaussian model as a type-1 fuzzy model to describe the uncertainty contained in the image. Second, interval type-2 fuzzy model is obtained by blurring the mean and variance in type-1 model. The proposed interval type-2 model can strengthen the expression of uncertainty and simultaneously decrease the uncertainty in the decision model. Then the fuzzy membership function itself and its upper and lower fuzzy membership functions of the training samples are used as the input of neuron network which acts as the decision model in proposed algorithm. Finally, the relationship of neighbour pixels is taken into consideration and the fuzzy membership functions of the detected pixel and its neighbourhood are used to decide the class of each pixel to get the final segmentation result. The proposed algorithm, FCM and HMRF-FCM algorithm and an interval type-2 fuzzy neuron networks without spatial relationships are performed on synthetic and real high resolution remote sensing images. The qualitative and quantitative analyses demonstrate the efficient of the proposed algorithm, especially for homogeneous regions which contains a great difference in its gray level (for example forest).

  5. Automated cellular annotation for high-resolution images of adult Caenorhabditis elegans

    PubMed Central

    Batzoglou, Serafim

    2013-01-01

    Motivation: Advances in high-resolution microscopy have recently made possible the analysis of gene expression at the level of individual cells. The fixed lineage of cells in the adult worm Caenorhabditis elegans makes this organism an ideal model for studying complex biological processes like development and aging. However, annotating individual cells in images of adult C.elegans typically requires expertise and significant manual effort. Automation of this task is therefore critical to enabling high-resolution studies of a large number of genes. Results: In this article, we describe an automated method for annotating a subset of 154 cells (including various muscle, intestinal and hypodermal cells) in high-resolution images of adult C.elegans. We formulate the task of labeling cells within an image as a combinatorial optimization problem, where the goal is to minimize a scoring function that compares cells in a test input image with cells from a training atlas of manually annotated worms according to various spatial and morphological characteristics. We propose an approach for solving this problem based on reduction to minimum-cost maximum-flow and apply a cross-entropy–based learning algorithm to tune the weights of our scoring function. We achieve 84% median accuracy across a set of 154 cell labels in this highly variable system. These results demonstrate the feasibility of the automatic annotation of microscopy-based images in adult C.elegans. Contact: saerni@cs.stanford.edu PMID:23812982

  6. Interactive Change Detection Using High Resolution Remote Sensing Images Based on Active Learning with Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Ru, Hui; Yu, Huai; Huang, Pingping; Yang, Wen

    2016-06-01

    Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  7. High-resolution chirp seismic reflection data acquired from the Cap de Creus shelf and canyon area, Gulf of Lions, Spain in 2004

    USGS Publications Warehouse

    Grossman, Eric E.; Hart, Patrick E.; Field, Michael E.; Triezenberg, Peter

    2006-01-01

    Seismic reflection data were collected from the Cap de Creus shelf and canyon in the southwest portion of the Gulf of Lions in October 2004. The data were acquired using the U.S. Geological Survey`s (USGS) high-resolution Edgetech CHIRP 512i seismic reflection system aboard the R/V Oceanus. Data from the shipboard 3.5 kHz echosounder were also collected but are not presented here. The seismic reflection data were collected as part of EuroSTRATAFORM funded by the Office of Naval Research. In October 2004, more than 200 km of high resolution seismic reflection data were collected in water depths ranging 30 m - 600 m. All data were recorded with a Delph Seismic PC-based digital recording system and processed with Delph Seismic software. Processed sections were georeferenced into tiff images for digital archive, processing and display. Penetration ranged 20-80 m. The data feature high quality vertical cross-section imagery of numerous sequences of Quaternary seismic stratigraphy. The report includes trackline maps showing the location of the data, as well as both digital data files (SEG-Y) and images of all of the profiles. The data are of high quality and provide new information on the location and thickness of sediment deposits overlying a major erosion surface on the Cap de Creus shelf; they also provide new insight into sediment processes on the walls and in the channel of Cap de Creus Canyon. These data are under study by researchers at the US Geological Survey, the University of Barcelona, and Texas A and M University. Copies of the data are available to all researchers.

  8. Comparison of Different Vegetation Indices for Very High-Resolution Images, Specific Case Ultracam-D Imagery

    NASA Astrophysics Data System (ADS)

    Barzegar, M.; Ebadi, H.; Kiani, A.

    2015-12-01

    Today digital aerial images acquired with UltraCam sensor are known to be a valuable resource for producing high resolution information of land covers. In this research, different methods for extracting vegetation from semi-urban and agricultural regions were studied and their results were compared in terms of overall accuracy and Kappa statistic. To do this, several vegetation indices were first tested on three image datasets with different object-based classifications in terms of presence or absence of sample data, defining other features and also more classes. The effects of all these cases were evaluated on final results. After it, pixel-based classification was performed on each dataset and their accuracies were compared to optimum object-based classification. The importance of this research is to test different indices in several cases (about 75 cases) and to find the quantitative and qualitative effects of increasing or decreasing auxiliary data. This way, researchers who intent to work with such high resolution data are given an insight on the whole procedure of detecting vegetation species as one of the outstanding and common features from such images. Results showed that DVI index can better detect vegetation regions in test images. Also, the object-based classification with average 93.6% overall accuracy and 86.5% Kappa was more suitable for extracting vegetation rather than the pixel-based classification with average 81.2% overall accuracy and 59.7% Kappa.

  9. Non-negative structural sparse representation for high resolution hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Meng, Guiyu; Li, Guangyu; Dong, Weisheng; Shi, Guangming

    2014-11-01

    High resolution hyperspectral images have important applications in many areas, such as anomaly detection, target recognition and image classification. Due to the limitation of the sensors, it is challenging to obtain high spatial resolution hyperspectral images. Recently, the methods that reconstruct high spatial resolution hyperspectral images from the pair of low resolution hyperspectral images and high resolution RGB image of the same scene have shown promising results. In these methods, sparse non-negative matrix factorization (SNNMF) technique was proposed to exploit the spectral correlations among the RGB and spectral images. However, only the spectral correlations were exploited in these methods, ignoring the abundant spatial structural correlations of the hyperspectral images. In this paper, we propose a novel algorithm combining the structural sparse representation and non-negative matrix factorization technique to exploit the spectral-spatial structure correlations and nonlocal similarity of the hyperspectral images. Compared with SNNMF, our method makes use of both the spectral and spatial redundancies of hyperspectral images, leading to better reconstruction performance. The proposed optimization problem is efficiently solved by using the alternating direction method of multipliers (ADMM) technique. Experiments on a public database show that our approach performs better than other state-of-the-art methods on the visual effect and in the quantitative assessment.

  10. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    SciTech Connect

    Yamamoto, Seiichi Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  11. High-resolution interferometric radar images of equatorial spread F scattering structures using Capon's method

    NASA Astrophysics Data System (ADS)

    Zewdie, G. K.; Rodrigues, F. S.; Paula, E. R.

    2015-12-01

    Coherent backscatter radar imaging techniques use measurements made by multiple antenna baselines (visibility estimates) to infer the spatial distribution of the scatterers (brightness function) responsible for the observed echoes. It has been proposed that the Capon method for spectral estimation can be used for high-resolution estimation of the brightness distribution. We investigate the application of the Capon method to measurements made by a small (7-baseline) 30 MHz ionospheric coherent backscatter radar interferometer in Sao Luis, Brazil. The longest baseline of the interferometer is only 15 times the wavelength of radar signal (10 m), and the ionospheric radar soundings have been made using only 4-8 kW transmitters. Nevertheless, we have been able to obtain high-resolution (kilometric scales in the zonal direction) images of scattering structures during equatorial spread F (ESF) events over a wide field of view (+/- 10 degrees off zenith). We will present numerical simulations demonstrating the performance of the technique for the Sao Luis radar setup as well as results of the Capon technique applied to actual measurements. We will discuss the behavior of the ESF scattering structures as seen in the Capon images. The high-resolution images can assist our interpretation of plasma instabilities in the equatorial ionosphere and serve to test our ability to model the behavior of ionospheric irregularities during space weather events such as those associated with ESF.

  12. Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.

  13. Improved fusing infrared and electro-optic signals for high-resolution night images

    NASA Astrophysics Data System (ADS)

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-06-01

    Electro-optic (EO) images exhibit the properties of high resolution and low noise level, while it is a challenge to distinguish objects with infrared (IR), especially for objects with similar temperatures. In earlier work, we proposed a novel framework for IR image enhancement based on the information (e.g., edge) from EO images. Our framework superimposed the detected edges of the EO image with the corresponding transformed IR image. Obviously, this framework resulted in better resolution IR images that help distinguish objects at night. For our IR image system, we used the theoretical point spread function (PSF) proposed by Russell C. Hardie et al., which is composed of the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we designed an inverse filter based on the proposed PSF to transform the IR image. In this paper, blending the detected edge of the EO image with the corresponding transformed IR image and the original IR image is the principal idea for improving the previous framework. This improved framework requires four main steps: (1) inverse filter-based IR image transformation, (2) image edge detection, (3) images registration, and (4) blending of the corresponding images. Simulation results show that blended IR images have better quality over the superimposed images that were generated under the previous framework. Based on the same steps, the simulation result shows a blended IR image of better quality when only the original IR image is available.

  14. WAHRSIS: A low-cost high-resolution whole sky imager with near-infrared capabilities

    NASA Astrophysics Data System (ADS)

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2014-05-01

    Cloud imaging using ground-based whole sky imagers is essential for a fine-grained understanding of cloud formations, which can be useful in many applications. Some such imagers are available commercially, but their cost is relatively high, and their flexibility is limited. Therefore, we built a new daytime Whole Sky Imager (WSI) called Wide Angle High-Resolution Sky Imaging System (WAHRSIS). The strengths of our new design are its simplicity, low manufacturing cost, and high image resolution. Our imager captures the entire hemisphere in a single picture using a digital camera with a Fish-eye lens. The camera was modified to capture light across the visible and near-infrared spectral ranges. This paper describes the design of the device as well as the geometric and radiometric calibration of the imaging system.

  15. A fast and automatic mosaic method for high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  16. High-Resolution Imaging of Patients with Bietti Crystalline Dystrophy with CYP4V2 Mutation

    PubMed Central

    Gocho, Kiyoko; Kameya, Shuhei; Akeo, Keiichiro; Kikuchi, Sachiko; Usui, Ayumi; Yamaki, Kunihiko; Hayashi, Takaaki; Tsuneoka, Hiroshi; Mizota, Atsushi; Takahashi, Hiroshi

    2014-01-01

    The purpose of this study was to determine the retinal morphology of eyes with Bietti crystalline dystrophy (BCD) associated with a CYP4V2 mutation using high-resolution imaging techniques. Three subjects with BCD underwent detailed ophthalmic examinations. High-resolution fundus images were obtained with an adaptive optics (AO) fundus camera. A common homozygous mutation was detected in the three patients. Funduscopic examination of the three patients revealed the presence of crystalline deposits in the retina, and all of the crystalline deposits were also detected in the infrared (IR) images. The crystals observed in the IR images were seen as bright reflective plaques located on the RPE layer in the SD-OCT images. The clusters of hyperreflective signals in the AO images corresponded to the crystals in the IR images. High-magnification AO images revealed that the clusters of hyperreflective signals consisted of circular spots that are similar to the signals of cone photoreceptors. Most of these circular spots were detected in healthy areas in the FAF images. There is a possibility that circular spots observed by AO are residual cone photoreceptors located over the crystals. PMID:25276414

  17. Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Sung-Liang; Ling, Tao; Guo, L. Jay

    2011-05-01

    Small size polymer microring resonators have been exploited for photoacoustic (PA) imaging. To demonstrate the advantages of the wide acceptance angle of ultrasound detection of small size microrings, photoacoustic tomography (PAT), and delay-and-sum beamforming PA imaging was conducted. In PAT, we compared the imaging quality using different sizes of detectors with similar noise-equivalent pressures and the same wideband response: 500 μm hydrophone and 100, 60, and 40 μm microrings. The results show significantly improved imaging contrast and high resolution over the whole imaging region using smaller size detectors. The uniform high resolution in PAT imaging using 40 μm microrings indicates the potential to resolve microvasculature over a large imaging region. The improved lateral resolution of two-dimensional and three-dimensional delay-and-sum beamforming PA imaging using a synthetic array demonstrate another advantageous application of small microrings. The small microrings can also be applied to other ultrasound-related imaging applications.

  18. Flow Ejecta and Slope Landslides in Small Crater - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of a moderately small impact crater on Mars was taken by the Mars Global Surveyor Orbiter Camera (MOC) on October 17, 1997 at 4:11:07 PM PST, during MGS orbit 22. The image covers an area 2.9 by 48.4 kilometers (1.8 by 30 miles) at 9.6 m (31.5 feet) per picture element, and is centered at 21.3 degrees N, 179.8 degrees W, near Orcus Patera. The MOC image is a factor of 15X better than pervious Viking views of this particular crater.

    The unnamed crater is one of three closely adjacent impact features that display the ejecta pattern characteristic of one type of 'flow-ejecta' crater. Such patterns are considered evidence of fluidized movement of the materials ejected during the cratering event, and are believed to indicate the presence of subsurface ice or liquid water.

    Long, linear features of different brightness values can be seen on the on the steep slopes inside and outside the crater rim. This type of feature, first identified in Viking Orbiter images acquired over 20 years ago, are more clearly seen in this new view (about 3 times better than the best previous observations). Their most likely explanation is that small land or dirt slides, initiated by seismic or wind action, have flowed down the steep slopes. Initially dark because of the nature of the surface disturbance, these features get lighter with time as the ubiquitous fine, bright dust settles onto them from the martian atmosphere. Based on estimates of the dust fall-out rate, many of these features are probably only a few tens to hundreds of years old. Thus, they are evidence of a process that is active on Mars today.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner

  19. Application of high resolution images from unmanned aerial vehicles for hydrology and rangeland science

    NASA Astrophysics Data System (ADS)

    Rango, A.; Vivoni, E. R.; Anderson, C. A.; Perini, N. A.; Saripalli, S.; Laliberte, A.

    2012-12-01

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low flight altitudes and velocities, UAVs are able to produce high resolution (5 cm) images as well as stereo coverage (with 75% forward overlap and 40% sidelap) to extract digital elevation models (DEM). Another advantage of flying at low altitude is that the potential problems of atmospheric haze obscuration are eliminated. Both small fixed-wing and rotary-wing aircraft have been used in our experiments over two rangeland areas in the Jornada Experimental Range in southern New Mexico and the Santa Rita Experimental Range in southern Arizona. The fixed-wing UAV has a digital camera in the wing and six-band multispectral camera in the nose, while the rotary-wing UAV carries a digital camera as payload. Because we have been acquiring imagery for several years, there are now > 31,000 photos at one of the study sites, and 177 mosaics over rangeland areas have been constructed. Using the DEM obtained from the imagery we have determined the actual catchment areas of three watersheds and compared these to previous estimates. At one site, the UAV-derived watershed area is 4.67 ha which is 22% smaller compared to a manual survey using a GPS unit obtained several years ago. This difference can be significant in constructing a watershed model of the site. From a vegetation species classification, we also determined that two of the shrub types in this small watershed(mesquite and creosote with 6.47 % and 5.82% cover, respectively) grow in similar locations(flat upland areas with deep soils), whereas the most predominant shrub(mariola with 11.9% cover) inhabits hillslopes near stream channels(with steep shallow soils). The positioning of these individual shrubs throughout the catchment using

  20. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.

    PubMed

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-09-11

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.

  1. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    PubMed Central

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  2. High Resolution Surface Geometry and Albedo by Combining Laser Altimetry and Visible Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; vonToussaint, Udo; Cheeseman, Peter C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.

  3. MRO's High Resolution Imaging Science Experiment (HiRISE): Education and Public Outreach Plans

    NASA Technical Reports Server (NTRS)

    Gulick, V.; McEwen, A.; Delamere, W. A.; Eliason, E.; Grant, J.; Hansen, C.; Herkenhoff, K.; Keszthelyi, L.; Kirk, R.; Mellon, M.

    2003-01-01

    The High Resolution Imaging Experiment, described by McEwen et al. and Delamere et al., will fly on the Mars 2005 Orbiter. In conjunction with the NASA Mars E/PO program, the HiRISE team plans an innovative and aggressive E/PO effort to complement the unique high-resolution capabilities of the camera. The team is organizing partnerships with existing educational outreach programs and museums and plans to develop its own educational materials. In addition to other traditional E/PO activities and a strong web presence, opportunities will be provided for the public to participate in image targeting and science analysis. The main aspects of our program are summarized.

  4. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.

    PubMed

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  5. The Role of Imaging for Trigeminal Neuralgia: A Segmental Approach to High-Resolution MRI.

    PubMed

    Seeburg, Daniel P; Northcutt, Benjamin; Aygun, Nafi; Blitz, Ari M

    2016-07-01

    High-resolution MRI affords exquisite anatomic detail and allows radiologists to scrutinize the entire course of the trigeminal nerve (cranial nerve [CN] V). This article focuses first on the normal MRI appearance of the course of CN V and how best to image each segment. Special attention is then devoted to the role of MRI in presurgical evaluation of patients with neurovascular conflict and in identifying secondary causes of trigeminal neuralgia, including multiple sclerosis. Fundamental concepts in postsurgical imaging after neurovascular decompression are also addressed. Finally, how imaging has been used to better understand the etiology of trigeminal neuralgia is discussed. PMID:27324998

  6. Human oral mucosal epithelial cell sheets imaging with high-resolution phase-diversity homodyne OCT

    NASA Astrophysics Data System (ADS)

    Senda, Naoko; Osawa, Kentaro

    2015-03-01

    There is a need for development of non-invasive technique to evaluate regenerative tissues such as cell sheets for transplantation. We demonstrated non-invasive imaging inside living cell sheets of human oral mucosal epithelial cells by phase-diversity homodyne optical coherence tomography (OCT). The new method OCT developed in Hitachi enables cell imaging because of high resolution (axial resolution; ~2.6 μm, lateral resolution; ~1 μm, in the air). Nuclei inside cell sheets were imaged with sufficient spatial resolution to identify each cell. It suggested that the new method OCT could be useful for non-invasive cell sheet evaluation test.

  7. High Resolution Imager (HRI) for the Roentgen Satellite (ROSAT) definition study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The design of the high resolution imager (HRI) on HEAO 2 was modified for use in the instrument complement of the Roentgen Satellite (ROSAT). Mechanical models of the front end assembly, central electronics assembly, and detector assembly were used to accurately represent the HRI envelope for both fit checks and focal plane configuration studies. The mechanical and electrical interfaces were defined and the requirements for electrical ground support equipment were established. A summary description of the ROSAT telescope and mission is included.

  8. InSAR Forensics: Tracing InSAR Scatterers in High Resolution Optical Image

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhu, XiaoXiang

    2015-05-01

    This paper presents a step towards a better interpretation of the scattering mechanism of different objects and their deformation histories in SAR interferometry (InSAR). The proposed technique traces individual SAR scatterer in high resolution optical images where their geometries, materials, and other properties can be better analyzed and classified. And hence scatterers of a same object can be analyzed in group, which brings us to a new level of InSAR deformation monitoring.

  9. High rate data systems. [for High Resolution Imaging Spectrometer and SAR

    NASA Technical Reports Server (NTRS)

    Miller, Richard B.; Nichols, David A.

    1987-01-01

    The characteristics of the high resolution imaging spectrometer (HIRIS) and the synthetic aperture radar (SAR) are described with consideration given to the source of their high data rates. A functional-level description of the end-to-end data flow for HIRIS and SAR is provided. Attention is also given to major technological challenges that must be met in achieving an implementation of the system. Management issues associated with high rate, high volume data are also discussed.

  10. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    SciTech Connect

    Mukherjee, Partha P; Makundan, Rangachary; Spendelow, Jacob S; Borup, Rodney L; Hussey, D S; Jacobson, D L; Arif, M

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  11. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    PubMed Central

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available. PMID:23112602

  12. Multi-sensor fusion of infrared and electro-optic signals for high resolution night images.

    PubMed

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  13. High-resolution, continuous field-of-view (FOV), non-rotating imaging system

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L. (Inventor); Stirbl, Robert C. (Inventor); Aghazarian, Hrand (Inventor); Padgett, Curtis W. (Inventor)

    2010-01-01

    A high resolution CMOS imaging system especially suitable for use in a periscope head. The imaging system includes a sensor head for scene acquisition, and a control apparatus inclusive of distributed processors and software for device-control, data handling, and display. The sensor head encloses a combination of wide field-of-view CMOS imagers and narrow field-of-view CMOS imagers. Each bank of imagers is controlled by a dedicated processing module in order to handle information flow and image analysis of the outputs of the camera system. The imaging system also includes automated or manually controlled display system and software for providing an interactive graphical user interface (GUI) that displays a full 360-degree field of view and allows the user or automated ATR system to select regions for higher resolution inspection.

  14. Mitigating atmospheric effects in high-resolution infra-red surveillance imagery with bispectral speckle imaging

    SciTech Connect

    Carrano, C J

    2006-05-30

    Obtaining a high-resolution image of an object or scene from a long distance away can be very problematic, even with the best optical system. This is because atmospheric blurring and distortion will limit the resolution and contrast of high-resolution imaging systems with substantial sized apertures over horizontal and slant paths. Much of the horizontal and slant-path surveillance imagery we have previously collected and successfully enhanced has been collected at visible wavelengths where atmospheric effects are the strongest. Imaging at longer wavelengths has the benefit of seeing through obscurants or even at night, but even though the atmospheric effects are noticeably reduced, they are nevertheless present, especially near the ground. This paper will describe our recent work on enhanced infrared (IR) surveillance using bispectral speckle imaging. Bispectral speckle imaging in this context is an image postprocessing algorithm that aims to solve the atmospheric blurring and distortion problem of imaging through horizontal or slant path turbulence. A review of the algorithm as well as descriptions of the IR camera and optical systems used in our data collections will be given. Examples of horizontal and slant-path imagery before and after speckle processing will also be presented to demonstrate the resolution improvement gained by the processing. Comparisons of IR imagery to visible wavelength imagery of the same target under the same conditions will be shown to demonstrate the tradeoffs of going to longer wavelengths.

  15. FFT-enhanced IHS transform method for fusing high-resolution satellite images

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2007-01-01

    Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  16. Occluded target viewing and identification high-resolution 2D imaging laser radar

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Dippel, George F.; Cecchetti, Kristen D.; Wikman, John C.; Drouin, David P.; Egbert, Paul I.

    2007-09-01

    BAE SYSTEMS has developed a high-resolution 2D imaging laser radar (LADAR) system that has proven its ability to detect and identify hard targets in occluded environments, through battlefield obscurants, and through naturally occurring image-degrading atmospheres. Limitations of passive infrared imaging for target identification using medium wavelength infrared (MWIR) and long wavelength infrared (LWIR) atmospheric windows are well known. Of particular concern is that as wavelength is increased the aperture must be increased to maintain resolution, hence, driving apertures to be very larger for long-range identification; impractical because of size, weight, and optics cost. Conversely, at smaller apertures and with large f-numbers images may become photon starved with long integration times. Here, images are most susceptible to distortion from atmospheric turbulence, platform vibration, or both. Additionally, long-range identification using passive thermal imaging is clutter limited arising from objects in close proximity to the target object.

  17. Dynamic imaging with high resolution time-of-flight pet camera - TOFPET I

    SciTech Connect

    Mullani, N.A.; Bristow, D.; Gaeta, J.; Gould, K.L.; Hartz, R.K.; Philipe, E.A.; Wong, W.H.; Yerian, K.

    1984-02-01

    One of the major design goals of the TOFPET I positron camera was to produce a high resolution whole body positron camera capable of dynamically imaging an organ such as the heart. TOFPET I is now nearing completion and preliminary images have been obtained to assess its dynamic and three dimensional imaging capabilities. Multiple gated images of the uptake of Rubidium in the dog heart and three dimensional surface displays of the distribution of the Rubidium-82 in the myocardium have been generated to demonstrate the three dimensional imaging properties. Fast dynamic images of the first pass of a bolus of radio-tracer through the heart have been collected with 4 second integration time and 50% gating (2 second equivalent integration time) with 18 mCi of Rb-82.

  18. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    PubMed Central

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-ichi; Sugihara, Naoki; Tsukagoshi, Shinsuke; Saito, Yasuo; Kazama, Masahiro; Ashizawa, Kazuto; Awai, Kazuo; Honda, Osamu; Ishikawa, Hiroyuki; Koizumi, Naoya; Komoto, Daisuke; Moriya, Hiroshi; Oda, Seitaro; Oshiro, Yasuji; Yanagawa, Masahiro; Tomiyama, Noriyuki; Asamura, Hisao

    2015-01-01

    Purpose The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. Results The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Conclusion Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners. PMID:26352144

  19. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nalladega, V.; Sathish, S.; Jata, K. V.; Blodgett, M. P.

    2008-07-01

    We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.

  20. Common-path depth-filtered digital holography for high resolution imaging of buried semiconductor structures

    NASA Astrophysics Data System (ADS)

    Finkeldey, Markus; Schellenberg, Falk; Gerhardt, Nils C.; Paar, Christof; Hofmann, Martin R.

    2016-03-01

    We investigate digital holographic microscopy (DHM) in reflection geometry for non-destructive 3D imaging of semiconductor devices. This technique provides high resolution information of the inner structure of a sample while maintaining its integrity. To illustrate the performance of the DHM, we use our setup to localize the precise spots for laser fault injection, in the security related field of side-channel attacks. While digital holographic microscopy techniques easily offer high resolution phase images of surface structures in reflection geometry, they are typically incapable to provide high quality phase images of buried structures due to the interference of reflected waves from different interfaces inside the structure. Our setup includes a sCMOS camera for image capture, arranged in a common-path interferometer to provide very high phase stability. As a proof of principle, we show sample images of the inner structure of a modern microcontroller. Finally, we compare our holographic method to classic optical beam induced current (OBIC) imaging to demonstrate its benefits.

  1. High-Resolution Molecular Imaging Via Intravital Microscopy: Illuminating Vascular Biology In Vivo

    PubMed Central

    Taqueti, Viviany R.; Jaffer, Farouc A.

    2012-01-01

    Complications of atherosclerosis and thrombosis are leading causes of death worldwide. While experimental investigations have yielded valuable insights into key molecular and cellular phenomena in these diseases of medium- and large-sized vessels, direct visualization of relevant in vivo biological processes has been limited. However, recent developments in molecular imaging technology, specifically fluorescence imaging agents coupled with high-resolution, high-speed intravital microscopy (IVM), are now enabling dynamic and longitudinal investigations into the mechanisms and progression of many vascular diseases. Here we review recent advances in IVM that have provided new in vivo biological insights into atherosclerosis and thrombosis. PMID:23135362

  2. High resolution X-ray diffraction imaging of lead tin telluride

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Spal, Richard; Simchick, Richard; Fripp, Archibald

    1991-01-01

    High resolution X-ray diffraction images of two directly comparable crystals of lead tin telluride, one Bridgman-grown on Space Shuttle STS 61A and the other terrestrially Bridgman-grown under similar conditions from identical material, present different subgrain structure. In the terrestrial, sample 1 the appearance of an elaborate array of subgrains is closely associated with the intrusion of regions that are out of diffraction in all of the various images. The formation of this elaborate subgrain structure is inhibited by growth in microgravity.

  3. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K.

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  4. Planning the HRIC (High Resolution Imaging Channel) observations of Mercury surface

    NASA Astrophysics Data System (ADS)

    Zusi, M.; Di Achille, G.; Galluzzi, V.; Mazzotta Epifani, E.; Della Corte, V.; Palumbo, P.; Flamini, E.

    2015-10-01

    The High Resolution Imaging Channel (HRIC) of SIMBIOSYS [1]onboard the BepiColombo mission to Mercury, is the visible imaging camera devoted to the detailed characterization of the Hermean surface. The potential huge amount of data that HRIC can produce must cope with the allocated (and shared) mission resources in terms of power, data volume,and pointing maneuvers. For this reason , well before the mission launch, it is extremely important the definition of an operative plan compatible with both the available resources and the scientific objectives accomplishment.

  5. Applying high resolution remote sensing image and DEM to falling boulder hazard assessment

    NASA Astrophysics Data System (ADS)

    Huang, Changqing; Shi, Wenzhong; Ng, K. C.

    2005-10-01

    Boulder fall hazard assessing generally requires gaining the boulder information. The extensive mapping and surveying fieldwork is a time-consuming, laborious and dangerous conventional method. So this paper proposes an applying image processing technology to extract boulder and assess boulder fall hazard from high resolution remote sensing image. The method can replace the conventional method and extract the boulder information in high accuracy, include boulder size, shape, height and the slope and aspect of its position. With above boulder information, it can be satisfied for assessing, prevention and cure boulder fall hazard.

  6. High Resolution Optical Imaging with the Low Cost Topsat Small Satellite

    NASA Astrophysics Data System (ADS)

    Laycock, J.; van der Zel, V.; Morris, N.; Park, G.; Levett, W.

    2004-11-01

    TopSat is designed to demonstrate the capabilities of low cost small satellites, for high resolution and image quality optical sensing missions. Launch is currently planned for Spring 2005. The satellite is capable of high resolution despite its small size, as a result of a novel camera design and an agile and accurate spacecraft attitude control system. The TopSat mission is a collaboration between four UK partners. QinetiQ leads the mission and is providing data handling and ground segment elements. Rutherford Appleton Laboratory (RAL) has developed the camera, Surrey Satellite Technology Limited (SSTL) is providing the platform, and Infoterra Ltd is responsible for developing commercial data markets. The programme is jointly funded by the UK Ministry of Defence (MoD) and by the British National Space Centre (BNSC).

  7. Remote sensing of mesospheric winds with the High-Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.

    1992-01-01

    Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.

  8. Image processing enhancement of high-resolution TEM micrographs of nanometer-size metal particles

    NASA Technical Reports Server (NTRS)

    Artal, P.; Avalos-Borja, M.; Soria, F.; Poppa, H.; Heinemann, K.

    1989-01-01

    The high-resolution TEM detectability of lattice fringes from metal particles supported on substrates is impeded by the substrate itself. Single value decomposition (SVD) and Fourier filtering (FFT) methods were applied to standard high resolution micrographs to enhance lattice resolution from particles as well as from crystalline substrates. SVD produced good results for one direction of fringes, and it can be implemented as a real-time process. Fourier methods are independent of azimuthal directions and allow separation of particle lattice planes from those pertaining to the substrate, which makes it feasible to detect possible substrate distortions produced by the supported particle. This method, on the other hand, is more elaborate, requires more computer time than SVD and is, therefore, less likely to be used in real-time image processing applications.

  9. Laser radar cross-section estimation from high-resolution image data.

    PubMed

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  10. Solid-state fluoroscopic imager for high-resolution angiography: Parallel-cascaded linear systems analysis

    PubMed Central

    Vedantham, Srinivasan; Karellas, Andrew; Suryanarayanan, Sankararaman

    2008-01-01

    Cascaded linear systems based modeling techniques have been used in the past to predict important system parameters that have a direct impact on image quality. Such models are also useful in optimizing system parameters to improve image quality. In this work, detailed analysis of a solid-state fluoroscopic imaging system intended for high-resolution angiography is presented with the use of such a model. The imaging system analyzed through this model uses four 8×8 cm three-side buttable interlined charge-coupled devices (CCDs) specifically designed for high-resolution angiography and tiled in a seamless fashion to achieve a field of view (FOV) of 16×16 cm. Larger FOVs can be achieved by tiling more CCDs in a similar manner. The system employs a CsI:Tl scintillator coupled to the CCDs by straight (nontapering) fiberoptics and can potentially be operated in 78, 156, or 234 μm pixel pitch modes. The system parameters analyzed through this model include presampling modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE). The results of the simulations performed indicate that DQE(0) in excess of 0.6 is achievable, with the imager operating at 156 μm pixel pitch, 30 frames/s, and employing a 450-μm-thick CsI:Tl scintillator, even at a low fluoroscopic exposure rate of 1 μR/frame. Further, at a nominal fluoroscopic exposure rate of 2.5 μR/frame there was no noticeable degradation of the DQE even at the 78 μm pixel pitch mode suggesting that it is feasible to perform high-resolution angiography hitherto unattainable in clinical practice. PMID:15191318

  11. A low-cost, high-resolution, video-rate imaging optical radar

    SciTech Connect

    Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F.; Grantham, J.W.; Monson, T.

    1998-04-01

    Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

  12. High resolution in-vivo imaging of skin with full field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dalimier, E.; Bruhat, Alexis; Grieve, K.; Harms, F.; Martins, F.; Boccara, C.

    2014-03-01

    Full-field OCT (FFOCT) has the ability to provide en-face images with a very good axial sectioning as well as a very high transverse resolution (about 1 microns in all directions). Therefore it offers the possibility to visualize biological tissues with very high resolution both on the axial native view, and on vertical reconstructed sections. Here we investigated the potential dermatological applications of in-vivo skin imaging with FFOCT. A commercial FFOCT device was adapted for the in-vivo acquisition of stacks of images on the arm, hand and finger. Several subjects of different benign and pathological skin conditions were tested. The images allowed measurement of the stratum corneum and epidermis thicknesses, measurement of the stratum corneum refractive index, size measurement and count of the keratinocytes, visualization of the dermal-epidermal junction, and visualization of the melanin granules and of the melanocytes. Skins with different pigmentations could be discriminated and skin pathologies such as eczema could be identified. The very high resolution offered by FFOCT both on axial native images and vertical reconstructed sections allows for the visualization and measurement of a set of parameters useful for cosmetology and dermatology. In particular, FFOCT is a potential tool for the understanding and monitoring of skin hydration and pigmentation, as well as skin inflammation.

  13. High-resolution Magnetic Resonance Vessel Wall Imaging for Intracranial Arterial Stenosis

    PubMed Central

    Zhu, Xian-Jin; Wang, Wu; Liu, Zun-Jing

    2016-01-01

    Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed database up to December 2015, using various search terms including vessel wall imaging (VWI), high-resolution magnetic resonance imaging, intracranial arterial stenosis, black blood, and intracranial atherosclerosis. Study Selection: We reviewed peer-reviewed articles printed in English on imaging technique of VWI and characteristic findings of various intracranial vasculopathies on VWI. We organized this data to explain the value of VWI in clinical application. Results: VWI with black blood technique could provide high-quality images with submillimeter voxel size, and display both the vessel wall and lumen of intracranial artery simultaneously. Various intracranial vasculopathies (atherosclerotic or nonatherosclerotic) had differentiating features including pattern of wall thickening, enhancement, and vessel remodeling on VWI. This technique could be used for determining causes of stenosis, identification of stroke mechanism, risk-stratifying patients, and directing therapeutic management in clinical practice. In addition, a new morphological classification based on VWI could be established for predicting the efficacy of endovascular therapy. Conclusions: This review highlights the value of HRMR VWI for discrimination of different intracranial vasculopathies and directing therapeutic management. PMID:27231176

  14. Vehicle extraction from high-resolution satellite image using template matching

    NASA Astrophysics Data System (ADS)

    Natt, Dehchaiwong; Cao, Xiaoguang

    2015-12-01

    The process of vehicle examination by using satellite images is complicated and cumbersome process. At the present, the high definition satellite images are being used, however, the images of the vehicles can be seen as just a small point which is difficult to separate it out from the background that the image details are not sufficient to identify small objects. In this research, the techniques for the process of vehicle examination by using satellite images were applied by using image data from Pléiades which is the satellite image with high resolution of 0.40 m. The objective of this research is to study and develop the device for data extracting from satellite images, and the received data would be organized and created as Geospatial information by the concept of the picture matching with a pattern matching or Template Matching developed with Matlab program and Sum of Absolute Difference method collaborated with Neural Network technique in order to help evaluating pattern matching between template images of cars and cars' images which were used to examine from satellite images. The result obtained from the comparison with template data shows that data extraction accuracy is greater than 90%, and the extracted data can be imported into Geospatial information database. Moreover, the data can be displayed in Geospatial information Software, and it also can be searched by quantity condition and satellite image position.

  15. In-vivo high resolution corneal imaging and analysis on animal models for clinical applications

    NASA Astrophysics Data System (ADS)

    Hong, Jesmond; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2015-07-01

    A simple and low cost optical probe system for the high resolution imaging of the cornea is proposed, based on a Gaussian beam epi-illumination configuration. Corneal topography is obtained by moving the scanning spot across the eye in a raster fashion whereas pachymetry data is achieved by reconstructing the images obtained at different depths. The proposed prototype has been successfully tested on porcine eye samples ex vivo and subsequently on laboratory animals, such as the New Zealand White Rabbit, in vivo. This proposed system and methodology pave the way for realizing a simple and inexpensive optical configuration for pachymetry and keratometry readings, with achievable resolution up to the cellular level. This novel and non-contact high resolution imaging modality demonstrates high intraobserver reproducibility and repeatability. Together with its sophisticated data analysis strategies and safety profile, it is believed to complement existing imaging modalities in the assessment and evaluation of corneal diseases, which enable a decrease in morbidity and improvement in the effectiveness of subsequent treatment.

  16. Damaged road extracting with high-resolution aerial image of post-earthquake

    NASA Astrophysics Data System (ADS)

    Zheng, Zezhong; Pu, Chengjun; Zhu, Mingcang; Xia, Jun; Zhang, Xiang; Liu, Yalan; Li, Jiang

    2015-12-01

    With the rapid development of earth observation technology, remote sensing images have played more important roles, because the high resolution images can provide the original data for object recognition, disaster investigation, and so on. When a disastrous earthquake breaks out, a large number of roads could be damaged instantly. There are a lot of approaches about road extraction, such as region growing, gray threshold, and k-means clustering algorithm. We could not obtain the undamaged roads with these approaches, if the trees or their shadows along the roads are difficult to be distinguished from the damaged road. In the paper, a method is presented to extract the damaged road with high resolution aerial image of post-earthquake. Our job is to extract the damaged road and the undamaged with the aerial image. We utilized the mathematical morphology approach and the k-means clustering algorithm to extract the road. Our method was composed of four ingredients. Firstly, the mathematical morphology filter operators were employed to remove the interferences from the trees or their shadows. Secondly, the k-means algorithm was employed to derive the damaged segments. Thirdly, the mathematical morphology approach was used to extract the undamaged road; Finally, we could derive the damaged segments by overlaying the road networks of pre-earthquake. Our results showed that the earthquake, broken in Yaan, was disastrous for the road, Therefore, we could take more measures to keep it clear.

  17. MTRC compensation in high-resolution ISAR imaging via improved polar format algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Hao; Li, Na; Xu, Shiyou; Chen, Zengping

    2014-10-01

    Migration through resolution cells (MTRC) is generated in high-resolution inverse synthetic aperture radar (ISAR) imaging. A MTRC compensation algorithm for high-resolution ISAR imaging based on improved polar format algorithm (PFA) is proposed in this paper. Firstly, in the situation that a rigid-body target stably flies, the initial value of the rotation angle and center of the target is obtained from the rotation of radar line of sight (RLOS) and high range resolution profile (HRRP). Then, the PFA is iteratively applied to the echo data to search the optimization solution based on minimum entropy criterion. The procedure starts with the estimated initial rotation angle and center, and terminated when the entropy of the compensated ISAR image is minimized. To reduce the computational load, the 2-D iterative search is divided into two 1-D search. One is carried along the rotation angle and the other one is carried along rotation center. Each of the 1-D searches is realized by using of the golden section search method. The accurate rotation angle and center can be obtained when the iterative search terminates. Finally, apply the PFA to compensate the MTRC by the use of the obtained optimized rotation angle and center. After MTRC compensation, the ISAR image can be best focused. Simulated and real data demonstrate the effectiveness and robustness of the proposed algorithm.

  18. Spmk and Grabcut Based Target Extraction from High Resolution Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Cui, Weihong; Wang, Guofeng; Feng, Chenyi; Zheng, Yiwei; Li, Jonathan; Zhang, Yi

    2016-06-01

    Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT) descriptor and the histogram of oriented gradients (HOG) & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels' spatial pyramid (SP) to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  19. High-Resolution Dynamic Speech Imaging with Joint Low-Rank and Sparsity Constraints

    PubMed Central

    Fu, Maojing; Zhao, Bo; Carignan, Christopher; Shosted, Ryan K.; Perry, Jamie L.; Kuehn, David P.; Liang, Zhi-Pei; Sutton, Bradley P.

    2014-01-01

    Purpose To enable dynamic speech imaging with high spatiotemporal resolution and full-vocal-tract spatial coverage, leveraging recent advances in sparse sampling. Methods An imaging method is developed to enable high-speed dynamic speech imaging exploiting low-rank and sparsity of the dynamic images of articulatory motion during speech. The proposed method includes: a) a novel data acquisition strategy that collects navigators with high temporal frame rate, and b) an image reconstruction method that derives temporal subspaces from navigators and reconstructs high-resolution images from sparsely sampled data with joint low-rank and sparsity constraints. Results The proposed method has been systematically evaluated and validated through several dynamic speech experiments. A nominal imaging speed of 102 frames per second (fps) was achieved for a single-slice imaging protocol with a spatial resolution of 2.2 × 2.2 × 6.5 mm3. An eight-slice imaging protocol covering the entire vocal tract achieved a nominal imaging speed of 12.8 fps with the identical spatial resolution. The effectiveness of the proposed method and its practical utility was also demonstrated in a phonetic investigation. Conclusion High spatiotemporal resolution with full-vocal-tract spatial coverage can be achieved for dynamic speech imaging experiments with low-rank and sparsity constraints. PMID:24912452

  20. Photodissociation of ozone at 276nm by photofragment imaging and high resolution photofragment translational spectroscopy

    SciTech Connect

    Blunt, D.A.; Suits, A.G.

    1996-11-01

    The photodissociation of ozone at 276 nm is investigated using both state resolved ion imaging and high-resolution photofragment translational spectroscopy. Ion images from both [3+1] and [2+1] resonance enhanced multiphoton ionization of the O({sup 1}D) photofragment are reported. All images show strong evidence of O({sup 1}D) orbital alignment. Photofragment translation spectroscopy time-of-flight spectra are reported for the O{sub 2} ({sup 1}{Delta}{sub g}) photofragment. Total kinetic energy release distributions determined form these spectra are generally consistent with those distributions determined from imaging data. Observed angular distributions are reported for both detection methods, pointing to some unresolved questions for ozone dissociation in this wavelength region.

  1. Workflow for the use of a high-resolution image detector in endovascular interventional procedures

    PubMed Central

    Rana, R.; Loughran, B.; Swetadri Vasan, S. N.; Pope, L.; Ionita, C. N.; Siddiqui, A.; Lin, N.; Bednarek, D. R.; Rudin, S.

    2014-01-01

    Endovascular image-guided intervention (EIGI) has become the primary interventional therapy for the most widespread vascular diseases. These procedures involve the insertion of a catheter into the femoral artery, which is then threaded under fluoroscopic guidance to the site of the pathology to be treated. Flat Panel Detectors (FPDs) are normally used for EIGIs; however, once the catheter is guided to the pathological site, high-resolution imaging capabilities can be used for accurately guiding a successful endovascular treatment. The Micro-Angiographic Fluoroscope (MAF) detector provides needed high-resolution, high-sensitivity, and real-time imaging capabilities. An experimental MAF enabled with a Control, Acquisition, Processing, Image Display and Storage (CAPIDS) system was installed and aligned on a detector changer attached to the C-arm of a clinical angiographic unit. The CAPIDS system was developed and implemented using LabVIEW software and provides a user-friendly interface that enables control of several clinical radiographic imaging modes of the MAF including: fluoroscopy, roadmap, radiography, and digital-subtraction-angiography (DSA). Using the automatic controls, the MAF detector can be moved to the deployed position, in front of a standard FPD, whenever higher resolution is needed during angiographic or interventional vascular imaging procedures. To minimize any possible negative impact to image guidance with the two detector systems, it is essential to have a well-designed workflow that enables smooth deployment of the MAF at critical stages of clinical procedures. For the ultimate success of this new imaging capability, a clear understanding of the workflow design is essential. This presentation provides a detailed description and demonstration of such a workflow design. PMID:25302003

  2. Workflow for the use of a high-resolution image detector in endovascular interventional procedures

    NASA Astrophysics Data System (ADS)

    Rana, R.; Loughran, B.; Swetadri Vasan, S. N.; Pope, L.; Ionita, C. N.; Siddiqui, A.; Lin, N.; Bednarek, D. R.; Rudin, S.

    2014-03-01

    Endovascular image-guided intervention (EIGI) has become the primary interventional therapy for the most widespread vascular diseases. These procedures involve the insertion of a catheter into the femoral artery, which is then threaded under fluoroscopic guidance to the site of the pathology to be treated. Flat Panel Detectors (FPDs) are normally used for EIGIs; however, once the catheter is guided to the pathological site, high-resolution imaging capabilities can be used for accurately guiding a successful endovascular treatment. The Micro-Angiographic Fluoroscope (MAF) detector provides needed high-resolution, high-sensitivity, and real-time imaging capabilities. An experimental MAF enabled with a Control, Acquisition, Processing, Image Display and Storage (CAPIDS) system was installed and aligned on a detector changer attached to the C-arm of a clinical angiographic unit. The CAPIDS system was developed and implemented using LabVIEW software and provides a user-friendly interface that enables control of several clinical radiographic imaging modes of the MAF including: fluoroscopy, roadmap, radiography, and digital-subtraction-angiography (DSA). Using the automatic controls, the MAF detector can be moved to the deployed position, in front of a standard FPD, whenever higher resolution is needed during angiographic or interventional vascular imaging procedures. To minimize any possible negative impact to image guidance with the two detector systems, it is essential to have a well-designed workflow that enables smooth deployment of the MAF at critical stages of clinical procedures. For the ultimate success of this new imaging capability, a clear understanding of the workflow design is essential. This presentation provides a detailed description and demonstration of such a workflow design.

  3. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    USGS Publications Warehouse

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  4. A high-resolution three-dimensional far-infrared thermal and true-color imaging system for medical applications.

    PubMed

    Cheng, Victor S; Bai, Jinfen; Chen, Yazhu

    2009-11-01

    As the needs for various kinds of body surface information are wide-ranging, we developed an imaging-sensor integrated system that can synchronously acquire high-resolution three-dimensional (3D) far-infrared (FIR) thermal and true-color images of the body surface. The proposed system integrates one FIR camera and one color camera with a 3D structured light binocular profilometer. To eliminate the emotion disturbance of the inspector caused by the intensive light projection directly into the eye from the LCD projector, we have developed a gray encoding strategy based on the optimum fringe projection layout. A self-heated checkerboard has been employed to perform the calibration of different types of cameras. Then, we have calibrated the structured light emitted by the LCD projector, which is based on the stereo-vision idea and the least-squares quadric surface-fitting algorithm. Afterwards, the precise 3D surface can fuse with undistorted thermal and color images. To enhance medical applications, the region-of-interest (ROI) in the temperature or color image representing the surface area of clinical interest can be located in the corresponding position in the other images through coordinate system transformation. System evaluation demonstrated a mapping error between FIR and visual images of three pixels or less. Experiments show that this work is significantly useful in certain disease diagnoses. PMID:19782632

  5. Crop Investigation Using High-Resolution Worldview-1 and Quickbird-2 Satellite Images on a Test Site in Bulgaria

    NASA Astrophysics Data System (ADS)

    Vassilev, Vassil

    2013-12-01

    The paper aims to investigate the capabilities of using high-resolution satellite images: panchromatic WorldView-1 satellite image acquired on 30/11/2011 and multispectral QuickBird-2 satellite image acquired on 31/05/2009 for crop analysis, which includes crop identification, crop condition assessment and crop area estimates applications in Bulgaria using the power and flexibility of ERDAS IMAGINE tools. The crop identification was accomplished using unsupervised and supervised classification processing techniques using as reference ground data. After the supervised classification, fuzzy convolution filter was applied to reduce the mixed pixels using ERDAS Imagine software. Accuracy totals, error matrix and kappa statistics were calculated using accuracy assessment tool in ERDAS Imagine to assess the quality of the classification process. Crop condition assessment was accomplished using the derived Normalized Difference Vegetation Index (NDVI) image from the QuickBird-2 image, which was reclassified and was given meaningful estimations on the crop condition. Crop area was estimated using pixel counting approach. Pixel counting methods are known for introducing bias to the crop area estimates but using the high Overall Accuracy of 90.86% and overall Kappa Statistics of 0.8538 for the classified QuickBird-2 image and Overall Accuracy of 86.71% and overall Kappa Statistics of 0.7721% for the classified WorldView-1 allows that option to be utilized according to (Gallego, 2004). As a conclusion it can be stated that using the benefits that high-resolution satellite images gives in combination with the power and flexibility of ERDAS Imagine tools, crop identification can be achieved more accurately by increasing the identification accuracy and also by having the necessary ground information for selecting appropriate training samples. Crop identification by applying an arable mask is better practice, because it is reducing the mixed pixels problem i.e. also known as

  6. High-resolution Fourier hologram synthesis from photographic images through computing the light field.

    PubMed

    Chen, Ni; Ren, Zhenbo; Lam, Edmund Y

    2016-03-01

    We present a technique for synthesizing the Fourier hologram of a three-dimensional scene from its light field. The light field captures the volumetric information of an object, and an important advantage is that it does not require coherent illumination, as in conventional holography. In this work, we show how to obtain a high-resolution digital hologram with the light field obtained from a series of photographic images captured along the optical axis. The method is verified both by simulations and experimentally captured light field.

  7. High resolution diffraction imaging of crystals grown in microgravity and closely related terrestrial crystals

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Dobbyn, R.; Black, D.; Burdette, H.; Kuriyama, M.; Spal, R.; Vandenberg, L.; Fripp, A.; Simchick, R.; Lal, R.

    1991-01-01

    Irregularities found in three crystals grown in space, in four crystals grown entirely on the ground were examined and compared. Irregularities were observed in mercuric iodide, lead tin telluride, triglycine sulfate, and gallium arsenide by high resolution synchrotron x radiation diffraction imaging. Radiation detectors made from mercuric iodide crystals grown in microgravity were reported to perform far better than conventional detectors grown from the same material under full gravity. Effort is now underway to reproduce these 'space' crystals, optimize their properties, and extend comparable superiority to other types of materials.

  8. Observations of the quasi 2-day wave from the High Resolution Doppler Imager on UARS

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Hays, P. B.; Skinner, W. R.; Marshall, A. R.; Burrage, M. D.; Lieberman, R. S.; Ortland, D. A.

    1993-01-01

    A strong westward traveling oscillation, with a period of 2 days and zonal wave number 3, is observed in the mesospheric and lower thermospheric winds from the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS). The important events happen in January, July, and September/October, of which the occurrence in January is the strongest with an amplitude over 60 m/s. Detailed analyses for the periods of January 1992 and January 1993 reveal a cause-and-effect relationship in the wave developing process at 95 km. The global structures of the wave amplitude and phase are also presented.

  9. High-resolution real-time dual-view imaging with multiple point of view microscopy

    PubMed Central

    Mangeol, Pierre; Peterman, Erwin J. G.

    2016-01-01

    Most methods to observe three-dimensional processes in living samples are based on imaging a single plane that is sequentially scanned through the sample. Sequential scanning is inherently slow, which can make it difficult to capture objects moving quickly in three dimensions. Here we present a novel method, multiple point-of-view microscopy (MPoVM), that allows simultaneous capturing of the front and side views of a sample with high resolution. MPoVM can be implemented in most fluorescence microscopes, offering new opportunities in the study of dynamic biological processes in three dimensions. PMID:27699125

  10. High-resolution imaging and target designation through clouds or smoke

    SciTech Connect

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  11. Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Oh, Gyungseok; Chung, Euiheon; Yun, Seok H.

    2013-12-01

    Optical fiber-based high-resolution fluorescence imaging techniques have promising applications in clinical practice and preclinical research using animals. Here we review the instrumentation and applications of microendoscopy based on various types of optical fibers. Single-mode fibers and double-clad fibers have been widely used for delivering light from light sources to tissues and collecting light from tissues to photodetectors. Coherent fiber bundles, cylindrical graded-index lenses, and multi-mode fibers have been employed in both beam-scanning and non-scanning microscopy. With continuing advances of optical fiber technologies, further innovations in optical microendoscopy are expected.

  12. High-resolution real-time dual-view imaging with multiple point of view microscopy

    PubMed Central

    Mangeol, Pierre; Peterman, Erwin J. G.

    2016-01-01

    Most methods to observe three-dimensional processes in living samples are based on imaging a single plane that is sequentially scanned through the sample. Sequential scanning is inherently slow, which can make it difficult to capture objects moving quickly in three dimensions. Here we present a novel method, multiple point-of-view microscopy (MPoVM), that allows simultaneous capturing of the front and side views of a sample with high resolution. MPoVM can be implemented in most fluorescence microscopes, offering new opportunities in the study of dynamic biological processes in three dimensions.

  13. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    NASA Astrophysics Data System (ADS)

    Gu, Songxiang; Gupta, Rajiv; Kyprianou, Iacovos

    2011-09-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  14. Multimodal adaptive optics for depth-enhanced high-resolution ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Mujat, Mircea; Iftimia, Nicusor V.; Lue, Niyom; Ferguson, R. Daniel

    2010-02-01

    We developed a multimodal adaptive optics (AO) retinal imager for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa (RP). The development represents the first ever high performance AO system constructed that combines AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. The SSOCT channel operates at a wavelength of 1 μm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. The system is designed to operate on a broad clinical population with a dual deformable mirror (DM) configuration that allows simultaneous low- and high-order aberration correction. The system also includes a wide field line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation; an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of rotational eye motion; and a high-resolution LCD-based fixation target for presentation to the subject of stimuli and other visual cues. The system was tested in a limited number of human subjects without retinal disease for performance optimization and validation. The system was able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 μm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve targets deep into the choroid. In addition to instrument hardware development, analysis algorithms were developed for efficient information extraction from clinical imaging sessions, with functionality including automated image registration, photoreceptor counting, strip and montage stitching, and segmentation. The system provides clinicians and researchers with high-resolution, high performance adaptive optics imaging to help

  15. High-resolution in vivo imaging of bone and joints: a window to microarchitecture.

    PubMed

    Geusens, Piet; Chapurlat, Roland; Schett, Georg; Ghasem-Zadeh, Ali; Seeman, Ego; de Jong, Joost; van den Bergh, Joop

    2014-05-01

    Imaging is essential to the evaluation of bone and joint diseases, and the digital era has contributed to an exponential increase in the number of publications on noninvasive analytical techniques for the quantification of changes to bone and joints that occur in health and in disease. One such technique is high-resolution peripheral quantitative CT (HR-pQCT), which has introduced a new dimension in the imaging of bone and joints by providing images that are both 3D and at high resolution (82 μm isotropic voxel size), with a low level of radiation exposure (3-5 μSv). HR-pQCT enables the analysis of cortical and trabecular properties separately and to apply micro-finite element analysis for calculating bone biomechanical competence in vivo at the distal sites of the skeleton (distal radius and distal tibia). Moreover, HR-pQCT makes possible the in vivo assessment of the spatial distribution, dimensions and delineation of cortical bone erosions, osteophytes, periarticular cortical and trabecular microarchitecture, and 3D joint-space volume of the finger joints and wrists. HR-pQCT is, therefore, a technique with a high potential for improving our understanding of bone and joint diseases at the microarchitectural level.

  16. [Study on the Advanced Czerny-Turner Imaging Spectrometer with High Resolution in Broadband].

    PubMed

    Yan, Ling-wei

    2015-06-01

    This paper studies the Czerny-Turner optical structure which is used for the application in imaging spectrometers. To obtain the perfect astigmatism-corrected condition, the Czerny-Turner system has been analyzed and advanced. The basic structure of optical system is still as the traditional form which is composed by the spherical collimating mirror, the plane grating and the spherical focusing mirror. However, an off-the-shelf cylindrical lens is added after the focusing mirror to remove astigmatism differences between the tangential direction and the sagittaI direction. It makes the advanced optical system presents high resolution over the full bandwidth and decreases the cost. An example of the imaging spectrum system in the waveband of 380-760 nm has been designed to prove our theory. A system owns that NA equals to 0.05, and the modulation transfer functions (MTF) of all fields of view are more than 0.59 over the broadband under the required Nyquist frequency (20 lp x mm(-1)). It certificates that the optical system theory can be applied to the small scale imaging spectrometer with high resolution in spectral broadband.

  17. [Study on the Advanced Czerny-Turner Imaging Spectrometer with High Resolution in Broadband].

    PubMed

    Yan, Ling-wei

    2015-06-01

    This paper studies the Czerny-Turner optical structure which is used for the application in imaging spectrometers. To obtain the perfect astigmatism-corrected condition, the Czerny-Turner system has been analyzed and advanced. The basic structure of optical system is still as the traditional form which is composed by the spherical collimating mirror, the plane grating and the spherical focusing mirror. However, an off-the-shelf cylindrical lens is added after the focusing mirror to remove astigmatism differences between the tangential direction and the sagittaI direction. It makes the advanced optical system presents high resolution over the full bandwidth and decreases the cost. An example of the imaging spectrum system in the waveband of 380-760 nm has been designed to prove our theory. A system owns that NA equals to 0.05, and the modulation transfer functions (MTF) of all fields of view are more than 0.59 over the broadband under the required Nyquist frequency (20 lp x mm(-1)). It certificates that the optical system theory can be applied to the small scale imaging spectrometer with high resolution in spectral broadband. PMID:26601404

  18. An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device.

    PubMed

    Mu, Quanquan; Cao, Zhaoliang; Hu, Lifa; Li, Dayu; Xuan, Li

    2006-09-01

    An adaptive optics imaging system is introduced in this paper. A high resolution liquid crystal on silicon (LCOS) device was used as a phase only wave front corrector instead of a conversional deformable mirror. The wave front aberration was detected by a Shack-Hartmann (SH) wave front sensor, which has lambda/100 rms wave front measurement accuracy. Under this construction 0.09lambda (lambda=0.6328microm) Peak to Valley correction precision was reached. Further more, some low frequency hot convection turbulence induced by an electric iron was compensated in real time at the same precision. The Modulation Transfer Function (MTF) of this system was also measured before and after wave front correction. Under the active correction of LCOS, the system reached the diffraction limited resolution approximately 65l p/mm on the horizontal direction. All of this showed the ability of using this device in high resolution, low temporal turbulence imaging system, such as retinal imaging, to improve the resolution performance.

  19. High-resolution NO2 maps of Rotterdam and Zürich retrieved from the APEX imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Gerrit; Hueni, Andreas; Brunner, Dominik

    2016-04-01

    In urban areas, nitrogen dioxide (NO_2) concentrations have high spatial and temporal variability making high-resolution NO2 maps an important tool for air pollution assessment and epidemiological studies. We retrieved high-resolution NO2 maps from the Airborne Prism Experiment (APEX) imaging spectrometer measured over Zürich on 30. August 2013 (11:24--12:05 UTC) and Rotterdam on 17. September 2014 (8:53--10:18 UTC). Our updated retrieval fits NO_2, O_3, O_4, H_2O and the Ring effect between 440 and 510 nm using Differential Optical Absorption Spectroscopy (DOAS). The radiance spectra were spectrally calibrated using a high-resolution solar reference spectrum to correct spectral shifts in across- and along-track direction. Air mass factors were computed using the SCIATRAN radiative transfer model. The retrieved NO2 maps have 50×50m2 resolution and cover an area of 10×26 km2 for Zürich and 10×50 km2 for Rotterdam. The maps show enhanced NO2 values in populated areas and at least three strong plumes from oil refineries in Rotterdam. A comparison with ground measurements in Rotterdam shows only weak correlation, because most of the NO2 is found in elevated plumes. In conclusion, airborne observations allow mapping of the NO2 distribution in urban areas providing a different perspective on urban air quality which cannot be acquired by ground-based observations. The obtained maps will be used for further analysis such as estimating NOX emissions from oil refineries and comparison with urban-scale chemistry transport modelling.

  20. Optimal experimental design for nano-particle atom-counting from high-resolution STEM images.

    PubMed

    De Backer, A; De Wael, A; Gonnissen, J; Van Aert, S

    2015-04-01

    In the present paper, the principles of detection theory are used to quantify the probability of error for atom-counting from high resolution scanning transmission electron microscopy (HR STEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom-counting using the expression for the probability of error. We show that for very thin objects LAADF is optimal and that for thicker objects the optimal inner detector angle increases.

  1. High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy.

    PubMed

    Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham

    2016-01-01

    Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy. PMID:27471000

  2. High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy

    PubMed Central

    Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham

    2016-01-01

    Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy. PMID:27471000

  3. Simulation of high-resolution X-ray microscopic images for improved alignment

    NASA Astrophysics Data System (ADS)

    Song, Xiangxia; Zhang, Xiaobo; Liu, Gang; Cheng, Xianchao; Li, Wenjie; Guan, Yong; Liu, Ying; Xiong, Ying; Tian, Yangchao

    2011-12-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  4. Label-free imaging of cellular malformation using high resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Zhongjiang; Li, Bingbing; Yang, Sihua

    2014-09-01

    A label-free high resolution photoacoustic microscopy (PAM) system for imaging cellular malformation is presented. The carbon fibers were used to testify the lateral resolution of the PAM. Currently, the lateral resolution is better than 2.7 μm. The human normal red blood cells (RBCs) were used to prove the imaging capability of the system, and a single red blood cell was mapped with high contrast. Moreover, the iron deficiency anemia RBCs were clearly distinguished from the cell morphology by using the PAM. The experimental results demonstrate that the photoacoustic microscopy system can accomplish label-free photoacoustic imaging and that it has clinical potential for use in the detection of erythrocytes and blood vessels malformation.

  5. Nanocrystal Phase Identification by Lattice Fringe Fingerprinting from High Resolution Transmission Electron Microscope Images

    NASA Astrophysics Data System (ADS)

    Bjorge, Ruben; Seipel, Bjoern; Moeck, Peter; Fraundorf, Philip

    2006-05-01

    Lattice fringe fingerprinting is a novel and powerful method of identifying and characterizing nanocrystalline structures or materials based on images from direct space high-resolution transmission electron microscopy (HRTEM). We examine Fourier transformed HRTEM images of nanocrystals in certain orientations (i.e. lattice fringes and cross fringes) in order to obtain a lattice fringe fingerprint plot. Such plots are used to identify a crystalline nanoparticle by comparing the experimental data with data that are derived from a comprehensive database. A lattice fringe fingerprint plot is similar to a classical X-ray powder diffractogram, but an important advantage is that the intersection angles of lattice fringes give us additional information. When transmission electron microscope image acquisition and data interpretation are automated and connected to a comprehensive database (such as our Nano-Crystallography Database, http://nanocrystallography.research.pdx.edu/), fringe fingerprinting will be able to compete with powder X-ray diffraction in identifying unknown nanocrystals on a routine basis.

  6. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE PAGES

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; et al

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  7. High-resolution phase contrast imaging of brittle failure during impact loading

    NASA Astrophysics Data System (ADS)

    Ramos, Kyle; Jensen, Brian; Shengnian, Luo; Hooks, Daniel; Yeager, John; Kwiatkowski, Kris; Shimada, Tsutomu; Fezzaa, Kamel

    2012-02-01

    Heterogeneous processes involved in brittle failure necessitate in situ, spatially resolved observation. An impact capability has recently been developed in which synchrotron phase contrast imaging (PCI), at the 32-ID beamline of the Advanced Photon Source, can be used to resolve crack interfaces during dynamic deformation. The imaging is both fast and high-resolution as images with approximately 3 micrometer resolution are obtained from single x-ray pulses (<100 ps duration). Experiments have been performed to investigate questions regarding velocimetry interpretation, the effect of stress states, and whether cracking can occur under uniaxial compression. Uniaxial compression and tension in planar impact configurations and cylindrical impact penetration has been used to vary stress states and observe failure. PCI and velocimetry results from these experiments will be presented for a range of brittle materials spanning glasses and ceramics.

  8. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGES

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  9. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    SciTech Connect

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

  10. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  11. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  12. High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy.

    PubMed

    Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham

    2016-01-01

    Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.

  13. High-resolution 3D seismic imaging of a pull-apart basin in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Crutchley, G.; Berndt, C.; Klaeschen, D.; Gutscher, M.

    2009-12-01

    In 2006, high-resolution 3D seismic data were acquired in the Gulf of Cadiz and the Mediterranean Sea aboard the RRS Charles Darwin as part of the HERMES (Hotspot Ecosystem Research on the Margins of European Seas) project. The P-Cable system, a cost-efficient set-up for fast acquisition of 3D seismic data on 12 single-channel streamers, was utilized to acquire seismic cubes at four different targets. Here, we present results from the second target - a WNW-ESE-oriented pull-apart basin in the southeastern Gulf of Cadiz. Initial processing has included: 1) spatial positioning of each recording channel from GPS data acquired on the outer two channels, 2) improved positioning of shot points and channels from the inversion of first arrival times, 3) application of a swell filter to improve reflection coherency, 4) CDP binning and stacking and 5) migration. The new data confirm that the southeastern Gulf of Cadiz north of the Rharb submarine valley is structurally controlled by numerous strike slip faults that were active until quite recently (within the resolution of the data). Given the location of this basin, between the extensional domain on the upper slope and the compressional toe of the accretionary wedge, we interpret the origin to be gravitational sliding on a detachment layer, possibly containing salt, but at this stage not imaged by our profiles.

  14. High-resolution quantitative imaging of subcellular morphology and cell refractometry in a liquid environment via endogenous mechanism

    NASA Astrophysics Data System (ADS)

    Edward, Kert; Farahi, Faramarz

    2014-03-01

    Biological cells are composed primarily of water; and as such are challenging to image without staining since the induced intensity modulation of transmitted or reflected light is typically insufficient to permit acceptable contrast for optical imaging. This issue may be resolved with the aid of exogenous contrast agents, but this often has a deleterious effect on the cell and precludes in vivo imaging. A unique approach to this problem is afforded by the phase contrast microscope in which optical-path differences in transmitted light is exploited as a contrast mechanism for qualitative imaging. In recent years however, several quantitative phase imaging techniques have been developed which allow for diffraction limited endogenous-contrast imaging with excellent temporal resolution. We hereby present a laser scanning technique for quantitative phase imaging which achieves sub-diffraction limited resolution at the expense of temporal resolution. This instrument is based on a stabilized fiber interfometer which is incorporated into a near-field scanning optical microscope (NSOM) for tri-modal imaging. Our latest results will focus on modifications made to this system to facilitate imaging in a liquid environment. A simple approach for achieving stable shear-force feedback operation in a liquid will be presented. Acquired high resolution images of white blood cells revealed detailed sub-cellular features. Images of fibroblast cells in air and in a liquid environment confirm the efficacy of the feedback operation in a liquid. Moreover, we demonstrate cell refractometry capability without the need for ad hoc modifications. These results clearly highlight the unique potential of this instrument for the study of living cells.

  15. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    NASA Astrophysics Data System (ADS)

    Ortuño, J. E.; Kontaxakis, G.; Rubio, J. L.; Guerra, P.; Santos, A.

    2010-04-01

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  16. High-Resolution 3 T MR Microscopy Imaging of Arterial Walls

    SciTech Connect

    Sailer, Johannes Rand, Thomas; Berg, Andreas; Sulzbacher, Irene; Peloschek, P.; Hoelzenbein, Thomas; Lammer, Johannes

    2006-10-15

    Purpose. To achieve a high spatial resolution in MR imaging that allows for clear visualization of anatomy and even histology and documentation of plaque morphology in in vitro samples from patients with advanced atherosclerosis. A further objective of our study was to evaluate whether T2-weighted high-resolution MR imaging can provide accurate classification of atherosclerotic plaque according to a modified American Heart Association classification. Methods. T2-weighted images of arteries were obtained in 13 in vitro specimens using a 3 T MR unit (Medspec 300 Avance/Bruker, Ettlingen, Germany) combined with a dedicated MR microscopy system. Measurement parameters were: T2-weighted sequences with TR 3.5 sec, TE 15-120 msec; field of view (FOV) 1.4 x 1.4; NEX 8; matrix 192; and slice thickness 600 {mu}m. MR measurements were compared with corresponding histologic sections. Results. We achieved excellent spatial and contrast resolution in all specimens. We found high agreement between MR images and histology with regard to the morphology and extent of intimal proliferations in all but 2 specimens. We could differentiate fibrous caps and calcifications from lipid plaque components based on differences in signal intensity in order to differentiate hard and soft atheromatous plaques. Hard plaques with predominantly intimal calcifications were found in 7 specimens, and soft plaques with a cholesterol/lipid content in 5 cases. In all specimens, hemorrhage or thrombus formation, and fibrotic and hyalinized tissue could be detected on both MR imaging and histopathology. Conclusion. High-resolution, high-field MR imaging of arterial walls demonstrates the morphologic features, volume, and extent of intimal proliferations with high spatial and contrast resolution in in vitro specimens and can differentiate hard and soft plaques.

  17. High-resolution imaging of dietary lipids in cells and tissues by NanoSIMS analysis.

    PubMed

    Jiang, Haibo; Goulbourne, Chris N; Tatar, Angelica; Turlo, Kirsten; Wu, Daniel; Beigneux, Anne P; Grovenor, Chris R M; Fong, Loren G; Young, Stephen G

    2014-10-01

    Nanoscale secondary ion MS (NanoSIMS) imaging makes it possible to visualize stable isotope-labeled lipids in cells and tissues at 50 nm lateral resolution. Here we report the use of NanoSIMS imaging to visualize lipids in mouse cells and tissues. After administering stable isotope-labeled fatty acids to mice by gavage, NanoSIMS imaging allowed us to visualize neutral lipids in cytosolic lipid droplets in intestinal enterocytes, chylomicrons at the basolateral surface of enterocytes, and lipid droplets in cardiomyocytes and adipocytes. After an injection of stable isotope-enriched triglyceride-rich lipoproteins (TRLs), NanoSIMS imaging documented delivery of lipids to cytosolic lipid droplets in parenchymal cells. Using a combination of backscattered electron (BSE) and NanoSIMS imaging, it was possible to correlate the chemical data provided by NanoSIMS with high-resolution BSE images of cell morphology. This combined imaging approach allowed us to visualize stable isotope-enriched TRLs along the luminal face of heart capillaries and the lipids within heart capillary endothelial cells. We also observed examples of TRLs within the subendothelial spaces of heart capillaries. NanoSIMS imaging provided evidence of defective transport of lipids from the plasma LPs to adipocytes and cardiomyocytes in mice deficient in glycosylphosphatidylinositol-anchored HDL binding protein 1.

  18. πSPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes

    PubMed Central

    Theer, Patrick; Dragneva, Denitsa; Knop, Michael

    2016-01-01

    Light-sheet fluorescence microscopy (LSFM), also termed single plane illumination microscopy (SPIM), enables live cell fluorescence imaging with optical sectioning capabilities superior to confocal microscopy and without any out-of-focus exposure of the specimen. However, the need of two objective lenses, one for light-sheet illumination and one for imaging, imposes geometrical constraints that require LSFM setups to be adapted to the specific needs of different types of specimen in order to obtain optimal imaging conditions. Here we demonstrate the use of an oblique light-sheet configuration adapted to provide the highest possible Gaussian beam enabled resolution in LSFM. The oblique light-sheet configuration furthermore enables LSFM imaging at the surface of a cover slip, without the need of specific sample mounting. In addition, the system is compatible with simultaneous high NA wide-field epi-fluorescence imaging of the specimen contained in a glass-bottom cell culture dish. This prevents cumbersome sample mounting and enables rapid screening of large areas of the specimen followed by high-resolution LSFM imaging of selected cells. We demonstrate the application of this microscope for in toto imaging of endocytosis in yeast, showing for the first time imaging of all endocytic events of a given cell over a period of >5 minutes with sub-second resolution. PMID:27619647

  19. πSPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes.

    PubMed

    Theer, Patrick; Dragneva, Denitsa; Knop, Michael

    2016-01-01

    Light-sheet fluorescence microscopy (LSFM), also termed single plane illumination microscopy (SPIM), enables live cell fluorescence imaging with optical sectioning capabilities superior to confocal microscopy and without any out-of-focus exposure of the specimen. However, the need of two objective lenses, one for light-sheet illumination and one for imaging, imposes geometrical constraints that require LSFM setups to be adapted to the specific needs of different types of specimen in order to obtain optimal imaging conditions. Here we demonstrate the use of an oblique light-sheet configuration adapted to provide the highest possible Gaussian beam enabled resolution in LSFM. The oblique light-sheet configuration furthermore enables LSFM imaging at the surface of a cover slip, without the need of specific sample mounting. In addition, the system is compatible with simultaneous high NA wide-field epi-fluorescence imaging of the specimen contained in a glass-bottom cell culture dish. This prevents cumbersome sample mounting and enables rapid screening of large areas of the specimen followed by high-resolution LSFM imaging of selected cells. We demonstrate the application of this microscope for in toto imaging of endocytosis in yeast, showing for the first time imaging of all endocytic events of a given cell over a period of >5 minutes with sub-second resolution. PMID:27619647

  20. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    PubMed

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.

  1. Connected Component Labeling algorithm for very complex and high-resolution images on an FPGA platform

    NASA Astrophysics Data System (ADS)

    Schwenk, Kurt; Huber, Felix

    2015-10-01

    Connected Component Labeling (CCL) is a basic algorithm in image processing and an essential step in nearly every application dealing with object detection. It groups together pixels belonging to the same connected component (e.g. object). Special architectures such as ASICs, FPGAs and GPUs were utilised for achieving high data throughput, primarily for video processing. In this article, the FPGA implementation of a CCL method is presented, which was specially designed to process high resolution images with complex structure at high speed, generating a label mask. In general, CCL is a dynamic task and therefore not well suited for parallelisation, which is needed to achieve high processing speed with an FPGA. Facing this issue, most of the FPGA CCL implementations are restricted to low or medium resolution images (≤ 2048 ∗ 2048 pixels) with lower complexity, where the fastest implementations do not create a label mask. Instead, they extract object features like size and position directly, which can be realized with high performance and perfectly suits the need for many video applications. Since these restrictions are incompatible with the requirements to label high resolution images with highly complex structures and the need for generating a label mask, a new approach was required. The CCL method presented in this work is based on a two-pass CCL algorithm, which was modified with respect to low memory consumption and suitability for an FPGA implementation. Nevertheless, since not all parts of CCL can be parallelised, a stop-and-go high-performance pipeline processing CCL module was designed. The algorithm, the performance and the hardware requirements of a prototype implementation are presented. Furthermore, a clock-accurate runtime analysis is shown, which illustrates the dependency between processing speed and image complexity in detail. Finally, the performance of the FPGA implementation is compared with that of a software implementation on modern embedded

  2. Layers within the Valles Marineris: Clues to the Ancient Crust of Mars - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of the Martian surface was obtained in the early evening of January 1, 1998 by the Mars Orbiter Camera (MOC), shortly after the Mars Global Surveyor spacecraft began it's 80th orbit. Seen in this view are a plateau and surrounding steep slopes within the Valles Marineris, the large system of canyons that stretches 4000 km (2500 mi) along the equator of Mars. The image covers a tiny fraction of the canyons at very high resolution: it extends only 9.8 km by 17.3 km (6.1 mi by 10.7 mi) but captures features as small as 6 m (20 ft) across. The highest terrain in the image is the relatively smooth plateau near the center. Slopes descend to the north and south (upper and lower part of image, respectively) in broad, debris-filled gullies with intervening rocky spurs. Multiple rock layers, varying from a few to a few tens of meters thick, are visible in the steep slopes on the spurs and gullies. Layered rocks on Earth form from sedimentary processes (such as those that formed the layered rocks now seen in Arizona's Grand Canyon) and volcanic processes (such as layering seen in the Waimea Canyon on the island of Kauai). Both origins are possible for the Martian layered rocks seen in this image. In either case, the total thickness of the layered rocks seen in this image implies a complex and extremely active early history for geologic processes on Mars.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  3. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    PubMed

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues. PMID:24437605

  4. Swell effect correction for the high-resolution marine seismic data acquired using an airgun and an 8-channel streamer cable

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Koo, Nam-Hyung; Kim, Wonsik; Kim, Byoung-yeop; Cheong, Snons; Kim, Young-Jun

    2015-04-01

    High-resolution marine seismic surveys are used for the imaging of the detailed subsurface geological structure in engineering and marine geological survey. When the sea state gets worse, the quality of the seismic data become worse due to the sea swell. We corrected the swell effect to enhance the quality of seismic data. To remove the swell effect, we picked the sea bottom location automatically, averaged the picked sea bottom times of the adjacent traces and corrected the differences between the calculated and averaged sea bottom location. To make high quality seismic section, we used high-resolution marine 8-channel airgun seismic data acquired off Yeosu, Korea. The energy source was a 30 in3 airgun and the receiver was a 40 m long 8 channel streamer cable with a group interval of 5 m. The offset distance between the source and the first channel was 20 m. The shot interval was 2 seconds corresponding to ~5 m in distance, assuming ship's speed 5 knots. The data were digitally recorded with a sample interval of 0.1 ms and a record length of 1 s. The processing sequence includes basic processing procedures such as gain recovery, deconvolution, frequency filtering, CMP sorting, NMO correction, swell effect correction and stacking. To select sea bottom location for the swell effect correction, we pick maximum amplitude within the expected range including sea bottom location and find the first location at which the amplitude is larger than the threshold that is 40% of the maximum amplitude. We averaged these two-way travel times of sea bottom and corrected the differences. The range of the swell effect correction was -0.5 ~ 0.4 ms. After correction the continuity of reflectors were improved and high quality of the seismic data was produced. This study is a part of a Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM), a National Research Laboratory (NRL) project supported by the Ministry of Science and Technology (MOST), and

  5. High-Resolution SPECT-CT/MR Molecular Imaging of Angiogenesis in the Vx2 Model

    PubMed Central

    Lijowski, Michal; Caruthers, Shelton; Hu, Grace; Zhang, Huiying; Scott, Michael J.; Williams, Todd; Erpelding, Todd; Schmieder, Anne H.; Kiefer, Garry; Gulyas, Gyongyi; Athey, Phillip S.; Gaffney, Patrick J.; Wickline, Samuel A.; Lanza, Gregory M.

    2009-01-01

    Background The use of antiangiogenic therapy in conjunction with traditional chemotherapy is becoming increasingly in cancer management, but the optimal benefit of these targeted pharmaceuticals has been limited to a subset of the population treated. Improved imaging probes that permit sensitive detection and high-resolution characterization of tumor angiogenesis could improve patient risk-benefit stratification. Objectives The overarching objective of these experiments was to develop a dual modality αvβ3-targeted nanoparticle molecular imaging agent that affords sensitive nuclear detection in conjunction with high-resolution MR characterization of tumor angiogenesis. Materials and Methods In part 1, New Zealand white rabbits (n = 21) bearing 14d Vx2 tumor received either αvβ3-targeted 99mTc nanoparticles at doses of 11, 22, or 44 MBq/kg, nontargeted 99mTc nanoparticles at 22 MBq/kg, or αvβ3-targeted 99mTc nanoparticles (22 MBq/kg) competitively inhibited with unlabeled αvβ3-nanoparticles. All animals were imaged dynamically over 2 hours with a planar camera using a pinhole collimator. In part 2, the effectiveness of αvβ3-targeted 99mTc nanoparticles in the Vx2 rabbit model was demonstrated using clinical SPECT-CT imaging techniques. Next, MR functionality was incorporated into αvβ3-targeted 99mTc nanoparticles by inclusion of lipophilic gadolinium chelates into the outer phospholipid layer, and the concept of high sensitivity – high-resolution detection and characterization of tumor angiogenesis was shown using sequential SPECT-CT and MR molecular imaging with 3D neovascular mapping. Results αvβ3-Targeted 99mTc nanoparticles at 22 MBq/kg produced the highest tumor-to-muscle contrast ratio (8.56 ± 0.13, TMR) versus the 11MBq/kg (7.32 ± 0.12) and 44 MBq/kg (6.55 ± 0.07) doses, (P < 0.05). TMR of nontargeted particles at 22.2 MBq/kg (5.48 ± 0.09) was less (P < 0.05) than the equivalent dosage of αvβ3-targeted 99mTc nanoparticles. Competitively

  6. Damage assessment framework for landslide disaster based on very high-resolution images

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Xu, Qihua; He, Jun; Liu, Zhen; Wang, Ying; Ge, Fengxiang

    2016-04-01

    It is well known that rapid building damage assessment is necessary for postdisaster emergency relief and recovery. Based on an analysis of very high-resolution remote-sensing images, we propose an automatic building damage assessment framework for rainfall- or earthquake-induced landslide disasters. The framework consists of two parts that implement landslide detection and the damage classification of buildings, respectively. In this framework, an approach based on modified object-based sparse representation classification and morphological processing is used for automatic landslide detection. Moreover, we propose a building damage classification model, which is a classification strategy designed for affected buildings based on the spectral characteristics of the landslide disaster and the morphological characteristics of building damage. The effectiveness of the proposed framework was verified by applying it to remote-sensing images from Wenchuan County, China, in 2008, in the aftermath of an earthquake. It can be useful for decision makers, disaster management agencies, and scientific research organizations.

  7. Two-photon luminescence thermometry: towards 3D high-resolution thermal imaging of waveguides.

    PubMed

    He, Ruiyun; Vázquez de Aldana, Javier Rodríguez; Pedrola, Ginés Lifante; Chen, Feng; Jaque, Daniel

    2016-07-11

    We report on the use of the Erbium-based luminescence thermometry to realize high resolution, three dimensional thermal imaging of optical waveguides. Proof of concept is demonstrated in a 980-nm laser pumped ultrafast laser inscribed waveguide in Er:Yb phosphate glass. Multi-photon microscopy images revealed the existence of well confined intra-waveguide temperature increments as large as 200 °C for moderate 980-nm pump powers of 120 mW. Numerical simulations and experimental data reveal that thermal loading can be substantially reduced if pump events are separated more than the characteristic thermal time that for the waveguides investigated is in the ms time scale. PMID:27410882

  8. High-resolution ultrasound elasticity imaging to evaluate dialysis fistula stenosis.

    PubMed

    Weitzel, William F; Kim, Kang; Park, Dae Woo; Hamilton, James; O'Donnell, Matthew; Cichonski, Thomas J; Rubin, Jonathan M

    2009-01-01

    Accurate, noninvasive characterization of arterial wall mechanics and detection of fibrotic vascular lesions could vastly improve the ability to predict patient response to local treatments such as angioplasty. Current imaging and other techniques for determining wall compliance rely on imprecise or indirect estimates of wall motion. This study used high-resolution ultrasound imaging with phase-sensitive speckle tracking to obtain detailed and direct measurements of arterial stiffness in two subjects with dialysis fistula dysfunction. In both subjects, the absolute values of strain were much higher in normal regions of fistula than in regions of stenosis. The lower values of strain in stenotic fistula indicate greater stiffness of the vessel wall. The ultrasound speckle tracking technique used here may have potential to determine vascular mechanical properties noninvasively with a level of precision and accuracy not currently available. PMID:19000117

  9. Imaging spectrometer for high resolution measurements of stratospheric trace constituents in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Torr, Marsha R.; Torr, D. G.

    1988-01-01

    A high-resolution spectrometer has been developed for studies of minor constituents in the middle atmosphere at ultraviolet wavelengths. In particular, the instrument is intended for observations of upper stratospheric UV bands. The spectrometer has a slit width of 0.08 A obtained by means of an echelle grating and a cross-disperser grating. The image plane detector is an intensified CCD consisting of a high gain proximity focused image intensifier that is fiber optically coupled to a two-dimensional CCD array. An instantaneous bandwidth of 9.2 A is resolved across 488 pixels at 0.018 A/pixel, permitting simultaneous acquisition of multiple lines of selected OH bands and the neighboring background. The spectrometer and the approach have been successfully demonstrated as a technique for measuring the concentration of OH on two high-altitude balloon flights. This paper reports the instrument design and its achieved performance.

  10. Image restoration of high resolution observations of the M87 jet

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.; Nieto, J.-L.

    1984-01-01

    Image-restoration techniques are applied to high-resolution (FWHM 0.5-1.0 arcsec) plates of the M87 jet obtained with the CFH telescope by Nieto and Lelievre (1982), and their description of the optical jet is confirmed. Most of the features detected are similar to those shown by the VLA map of Biretta et al. (1982), having a resolution of 0.12 arcsec. In particular, the restored images show evidence for an elongated nucleus and for a very sharp discontinuity in knot A which is not perpendicular to the jet axis. It also seems that the start of the oscillations and this discontinuity are not related. This similarity at a 0.2-arcsec scale suggests no relativistic motion (v less than 25,000 km/sec) throughout the jet.

  11. Imaging the Seattle Fault Zone with high-resolution seismic tomography

    USGS Publications Warehouse

    Calvert, A.J.; Fisher, M.A.

    2001-01-01

    The Seattle fault, which trends east-west through the greater Seattle metropolitan area, is a thrust fault that, around 1100 years ago, produced a major earthquake believed to have had a magnitude greater than 7. We present the first high resolution image of the shallow P wave velocity variation across the fault zone obtained by tomographic inversion of first arrivals recorded on a seismic reflection profile shot through Puget Sound adjacent to Seattle. The velocity image shows that above 500 m depth the fault zone extending beneath Seattle comprises three distinct fault splays, the northernmost of which dips to the south at around 60??. The degree of uplift of Tertiary rocks within the fault zone suggests that the slip-rate along the northernmost splay during the Quaternary is 0.5 mm a-1, which is twice the average slip-rate of the Seattle fault over the last 40 Ma.

  12. Characterisation of LSO:Tb scintillator films for high resolution X-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Pelliccia, D.; Couchaud, M.; Dupré, K.; Baumbach, T.

    2011-05-01

    Within the framework of an FP6 project (SCINTAX)1The Project SCINTAX is funded by the European Community (STRP 033 427), . we developed a new thin film single crystal scintillator for high resolution X-ray imaging based on a layer of modified LSO (Lu2SiO5) grown by liquid phase epitaxy (LPE) on a dedicated substrate. In this work we present the characterisation of the scintillating LSO films in terms of optical and scintillation properties as well as spatial resolution performances. The obtained results are discussed and compared with the performances of the thin scintillating films commonly used in synchrotron-based micro-imaging applications.

  13. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    NASA Technical Reports Server (NTRS)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  14. Optical coherence tomography for high-resolution imaging of mouse development in utero

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Larin, Kirill V.; Dickinson, Mary E.; Larina, Irina V.

    2011-04-01

    Although the mouse is a superior model to study mammalian embryonic development, high-resolution live dynamic visualization of mouse embryos remain a technical challenge. We present optical coherence tomography as a novel methodology for live imaging of mouse embryos through the uterine wall thereby allowing for time lapse analysis of developmental processes and direct phenotypic analysis of developing embryos. We assessed the capability of the proposed methodology to visualize structures of the living embryo from embryonic stages 12.5 to 18.5 days postcoitus. Repetitive in utero embryonic imaging is demonstrated. Our work opens the door for a wide range of live, in utero embryonic studies to screen for mutations and understand the effects of pharmacological and toxicological agents leading to birth defects.

  15. 3D imaging provides a high-resolution, volumetric approach for analyzing biofouling.

    PubMed

    First, Matthew R; Policastro, Steven A; Strom, Matthew J; Riley, Scott C; Robbins-Wamsley, Stephanie H; Drake, Lisa A

    2014-01-01

    A volumetric approach for determining the fouling burden on surfaces is presented, consisting of a 3D camera imaging system with fine (5 μm) resolution. Panels immersed in an estuary on the southwest coast of Florida, USA were imaged and the data were used to quantify seasonal changes in the biofouling community. Test panels, which were submerged in seawater for up to one year, were analyzed before and after gentle scrubbing to quantify the biovolume of the total fouling community (ie soft and hard organisms) and the hard fouling community. Total biofouling ranged from 0.01 to 1.16 cm(3) cm(-2) throughout the immersion period; soft fouling constituted 22-87% of the total biovolume. In the future, this approach may be used to inform numerical models of fluid-surface interfaces and to evaluate, with high resolution, the morphology of fouling organisms in response to antifouling technologies.

  16. Arrested development: high-resolution imaging of foveal morphology in albinism.

    PubMed

    McAllister, John T; Dubis, Adam M; Tait, Diane M; Ostler, Shawn; Rha, Jungtae; Stepien, Kimberly E; Summers, C Gail; Carroll, Joseph

    2010-04-01

    Albinism, an inherited disorder of melanin biosynthesis, disrupts normal retinal development, with foveal hypoplasia as one of the more commonly associated ocular phenotypes. However the cellular integrity of the fovea in albinism is not well understood - there likely exist important anatomical differences that underlie phenotypic variability within the disease and that also may affect responsiveness to therapeutic intervention. Here, using spectral-domain optical coherence tomography (SD-OCT) and adaptive optics (AO) retinal imaging, we obtained high-resolution images of the foveal region in six individuals with albinism. We provide a quantitative analysis of cone density and outer segment elongation demonstrating that foveal cone specialization is variable in albinism. In addition, our data reveal a continuum of foveal pit morphology, roughly aligning with schematics of normal foveal development based on post-mortem analyses. Different albinism subtypes, genetic mutations, and constitutional pigment background likely play a role in determining the degree of foveal maturation. PMID:20149815

  17. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-01-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  18. High-resolution 3D imaging laser radar flight test experiments

    NASA Astrophysics Data System (ADS)

    Marino, Richard M.; Davis, W. R.; Rich, G. C.; McLaughlin, J. L.; Lee, E. I.; Stanley, B. M.; Burnside, J. W.; Rowe, G. S.; Hatch, R. E.; Square, T. E.; Skelly, L. J.; O'Brien, M.; Vasile, A.; Heinrichs, R. M.

    2005-05-01

    Situation awareness and accurate Target Identification (TID) are critical requirements for successful battle management. Ground vehicles can be detected, tracked, and in some cases imaged using airborne or space-borne microwave radar. Obscurants such as camouflage net and/or tree canopy foliage can degrade the performance of such radars. Foliage can be penetrated with long wavelength microwave radar, but generally at the expense of imaging resolution. The goals of the DARPA Jigsaw program include the development and demonstration of high-resolution 3-D imaging laser radar (ladar) ensor technology and systems that can be used from airborne platforms to image and identify military ground vehicles that may be hiding under camouflage or foliage such as tree canopy. With DARPA support, MIT Lincoln Laboratory has developed a rugged and compact 3-D imaging ladar system that has successfully demonstrated the feasibility and utility of this application. The sensor system has been integrated into a UH-1 helicopter for winter and summer flight campaigns. The sensor operates day or night and produces high-resolution 3-D spatial images using short laser pulses and a focal plane array of Geiger-mode avalanche photo-diode (APD) detectors with independent digital time-of-flight counting circuits at each pixel. The sensor technology includes Lincoln Laboratory developments of the microchip laser and novel focal plane arrays. The microchip laser is a passively Q-switched solid-state frequency-doubled Nd:YAG laser transmitting short laser pulses (300 ps FWHM) at 16 kilohertz pulse rate and at 532 nm wavelength. The single photon detection efficiency has been measured to be > 20 % using these 32x32 Silicon Geiger-mode APDs at room temperature. The APD saturates while providing a gain of typically > 106. The pulse out of the detector is used to stop a 500 MHz digital clock register integrated within the focal-plane array at each pixel. Using the detector in this binary response mode

  19. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging.

    PubMed

    Mejia, J; Galvis-Alonso, O Y; Castro, A A de; Braga, J; Leite, J P; Simões, M V

    2010-12-01

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology.

  20. Analysis of MESSENGER high-resolution images of Mercury's hollows and implications for hollow formation

    NASA Astrophysics Data System (ADS)

    Blewett, David T.; Stadermann, Amanda C.; Susorney, Hannah C.; Ernst, Carolyn M.; Xiao, Zhiyong; Chabot, Nancy L.; Denevi, Brett W.; Murchie, Scott L.; McCubbin, Francis M.; Kinczyk, Mallory J.; Gillis-Davis, Jeffrey J.; Solomon, Sean C.

    2016-09-01

    High-resolution images from MESSENGER provide morphological information on the nature and origin of Mercury's hollows, small depressions that likely formed when a volatile constituent was lost from the surface. Because graphite may be a component of the low-reflectance material that hosts hollows, we suggest that loss of carbon by ion sputtering or conversion to methane by proton irradiation could contribute to hollows formation. Measurements of widespread hollows in 565 images with pixel scales <20 m indicate that the average depth of hollows is 24 ± 16 m. We propose that hollows cease to increase in depth when a volatile-depleted lag deposit becomes sufficiently thick to protect the underlying surface. The difficulty of developing a lag on steep topography may account for the common occurrence of hollows on crater central peaks and walls. Disruption of the lag, e.g., by secondary cratering, could restart growth of hollows in a location that had been dormant. Images at extremely high resolution (~3 m/pixel) show that the edges of hollows are straight, as expected if the margins formed by scarp retreat. These highest-resolution images reveal no superposed impact craters, implying that hollows are very young. The width of hollows within rayed crater Balanchine suggests that the maximum time for lateral growth by 1 cm is ~10,000 yr. A process other than entrainment of dust by gases evolved in a steady-state sublimation-like process is likely required to explain the high-reflectance haloes that surround many hollows.

  1. Study of Stent Deployment Mechanics Using a High-Resolution X-ray Imaging Detector

    PubMed Central

    Wang, Weiyuan; Ionita, Ciprian N; Bednarek, Daniel R; Rudin, Stephen

    2011-01-01

    To treat or prevent some of the 795,000 annual strokes in the U.S., self-expanding endo-vascular stents deployed under fluoroscopic image guidance are often used. Neuro-interventionalists need to know the deployment behavior of each stent in order to place them in the correct position. Using the Micro-Angiographic Fluoroscope (MAF) which has about 3 times higher resolution than commercially available flat panel detectors (FPD) we studied the deployment mechanics of two of the most important commercially available nitinol stents: the Pipeline embolization device (EV3), and the Enterprise stent (Codman). The Pipeline stent's length extends to about 3 times that of its deployed length when it is contained inside a catheter. From the high-resolution images with the MAF we found that upon the sudden release of the distal end of the Pipeline from a helical wire cap, the stent expands radially but retracts to about 30% (larger than for patient deployments) of its length. When released from the catheter proximally, it retracts additionally about 50% contributing to large uncertainty in the final deployed location. In contrast, the MAF images clearly show that the Enterprise stent self expands with minimal length retraction during deployment from its catheter and can be retrieved and repositioned until the proximal markers are released from clasping structures on its guide-wire thus enabling more accurate placement at the center of an aneurysm or stenosis. The high-resolution imaging demonstrated in this study should help neurointerventionalists understand and control endovascular stent deployment mechanisms and hence perform more precise treatments. PMID:21804747

  2. High-resolution interferometric imaging of stress propagation in pediatric and adult skulls

    NASA Astrophysics Data System (ADS)

    Conerty, Michelle D.; Castracane, James; Clow, Lawrence P., Jr.; Koltai, Peter J.; Mouzakes, Jason

    1997-05-01

    Variations based on bone growth and development make stress and fracture propagation differ greatly in pediatric skulls as compared to adult skulls. Differentiating the stress propagation between the pediatric and adult skulls can improve diagnostic prediction when presented with direct frontal impact on a pediatric skull, a fairly common occurrence in the clinical environment. Critical diagnostic information can be learned from an in depth study of stress propagation as a function of impact force at critical locations on the periorbital region of the human skull. The Division of Pediatric Otolaryngology at Albany Medical College and InterScience, Inc. are utilizing electronic speckle pattern interferometry detection (ESPI) and high resolution imaging to evaluate and compare stress propagation in pediatric and adult skulls. A dual detection ESPI system was developed which integrates a medium resolution (2/3') CCD capable of real-time image processing, with a high resolution, megapixel detector capable of limited real time acquisition and image processing in software. Options to allow for high speed detection include integrating a custom, high performance image intensifier with the megapixel detector leg to be used as a high speed gate. The dual optical layout will allow for continuous and pulsed ESPI evaluation of calibrated impacts at specific landmarks on the skull. The goal of this work is to produce a full quantitative analysis of the stress propagation in pediatric versus adult skulls for a better understanding of bone dynamics. The work presented below concentrates on the development of the dual detection ESPI system and initial results achieved with an adult cadaver skull.

  3. Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images

    NASA Astrophysics Data System (ADS)

    Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.

    2014-12-01

    Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.

  4. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors.

    PubMed

    Brüning, R; Seelos, K; Yousry, T; Scheidler, J; Exner, H; Porn, U; Reiser, M; Rosen, B R

    1999-01-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1. 5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate.

  5. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors.

    PubMed

    Brüning, R; Seelos, K; Yousry, T; Scheidler, J; Exner, H; Porn, U; Reiser, M; Rosen, B R

    1999-01-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1. 5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. PMID:10460380

  6. High-resolution imaging of biological tissue with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Gao, Wanrong

    2015-03-01

    A new full-field optical coherence tomography system with high-resolution has been developed for imaging of cells and tissues. Compared with other FF-OCT (Full-field optical coherence tomography, FF-OCT) systems illuminated with optical fiber bundle, the improved Köhler illumination arrangement with a halogen lamp was used in the proposed FF-OCT system. High numerical aperture microscopic objectives were used for imaging and a piezoelectric ceramic transducer (PZT) was used for phase-shifting. En-face tomographic images can be obtained by applying the five-step phase-shifting algorithm to a series of interferometric images which are recorded by a smart camera. Three-dimensional images can be generated from these tomographic images. Imaging of the chip of Intel Pentium 4 processor demonstrated the ultrahigh resolution of the system (lateral resolution is 0.8μm ), which approaches the theoretical resolution 0.7 μm× 0.5 μm (lateral × axial). En-face images of cells of onion show an excellent performance of the system in generating en-face images of biological tissues. Then, unstained pig stomach was imaged as a tissue and gastric pits could be easily recognized using FF-OCT system. Our study provides evidence for the potential ability of FFOCT in identifying gastric pits from pig stomach tissue. Finally, label-free and unstained ex vivo human liver tissues from both normal and tumor were imaged with this FFOCT system. The results show that the setup has the potential for medical diagnosis applications such liver cancer diagnosis.

  7. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit

  8. High resolution neutron imaging capabilities at BOA beamline at Paul Scherrer Institut

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Morgano, M.; Panzner, T.; Lehmann, E.; Filgers, U.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.; Feller, W. B.

    2015-06-01

    The cold neutron spectrum of the Beamline for neutron Optics and other Applications (BOA) at Paul Scherrer Institut enables high contrast neutron imaging because neutron cross sections for many materials increase with neutron wavelength. However, for many neutron imaging applications, spatial resolution can be as important as contrast. In this paper the neutron transmission imaging capabilities of an MCP/Timepix detector installed at the BOA beamline are presented, demonstrating the possibilities for studying sub-20 μm features in various samples. In addition to conventional neutron radiography and microtomography, the high degree of neutron polarization at the BOA beamline can be very attractive for imaging of magnetic fields, as demonstrated by our measurements. We also show that a collimated cold neutron beamline combined with a high resolution detector can produce image artifacts, (e.g. edge enhancements) due to neutron refraction and scattering. The results of our experiments indicate that the BOA beamline is a valuable addition to neutron imaging facilities, providing improved and sometimes unique capabilities for non-destructive studies with cold neutrons.

  9. Adapting high-resolution speckle imaging to moving targets and platforms

    SciTech Connect

    Carrano, C J; Brase, J M

    2004-02-05

    High-resolution surveillance imaging with apertures greater than a few inches over horizontal or slant paths at optical or infrared wavelengths will typically be limited by atmospheric aberrations. With static targets and static platforms, we have previously demonstrated near-diffraction limited imaging of various targets including personnel and vehicles over horizontal and slant paths ranging from less than a kilometer to many tens of kilometers using adaptations to bispectral speckle imaging techniques. Nominally, these image processing methods require the target to be static with respect to its background during the data acquisition since multiple frames are required. To obtain a sufficient number of frames and also to allow the atmosphere to decorrelate between frames, data acquisition times on the order of one second are needed. Modifications to the original imaging algorithm will be needed to deal with situations where there is relative target to background motion. In this paper, we present an extension of these imaging techniques to accommodate mobile platforms and moving targets.

  10. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI.

    PubMed

    Shilling, Richard Z; Robbie, Trevor Q; Bailloeul, Timothée; Mewes, Klaus; Mersereau, Russell M; Brummer, Marijn E

    2009-05-01

    A novel super-resolution reconstruction (SRR) framework in magnetic resonance imaging (MRI) is proposed. Its purpose is to produce images of both high resolution and high contrast desirable for image-guided minimally invasive brain surgery. The input data are multiple 2-D multislice inversion recovery MRI scans acquired at orientations with regular angular spacing rotated around a common frequency encoding axis. The output is a 3-D volume of isotropic high resolution. The inversion process resembles a localized projection reconstruction problem. Iterative algorithms for reconstruction are based on the projection onto convex sets (POCS) formalism. Results demonstrate resolution enhancement in simulated phantom studies, and ex vivo and in vivo human brain scans, carried out on clinical scanners. A comparison with previously published SRR methods shows favorable characteristics in the proposed approach.

  11. Very High Resolution Image of Icy Cliffs on Europa and Similar Scales on Earth (Providence, RI)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The top image is a very high resolution view of the Conamara Chaos region on Jupiter's moon Europa, showing an area where icy plates have been broken apart and moved around laterally. The top of this image is dominated by corrugated plateaus ending in icy cliffs over a hundred meters (a few hundred feet) high. Debris piled at the base of the cliffs. The bottom image is an aerial photograph of downtown Providence, Rhode Island at the same scale. The bright white circular feature in the top center of the Providence image is an indoor hockey rink, and one can find many craters in the Europa image about the same size. Blocks of debris which have fallen from the cliffs on the Europa image are about the same size as houses seen in the Providence image, and the largest blocks are almost as large as the Rhode Island state capitol building (large white building in upper left of Providence image). A fracture that runs horizontally across the center of the Europa image is about the same width as the freeway which runs along the bottom of the Providence image.

    North is to the top right of the Europa image, and the sun illuminates the surface from the east. The Europa image is centered at approximately 9 degrees north latitude and 274 degrees west longitude. The images each cover an area approximately 1.7 kilometers by 4 kilometers (1 mile by 2.5 miles). The resolution is 9 meters (30 feet) per picture element. The Europa image was taken on December 16, 1997 at a range of 900 kilometers (540 miles) by the solid state imaging system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  12. Extraction of land-use information within rural residential area from high-resolution RS images

    NASA Astrophysics Data System (ADS)

    Lan, Zeying; Liu, Yanfang; Chen, Dan

    2008-12-01

    Extracting land-use information within rural residential area is one of the major applications in remote sensing today. In this paper, a new method, which is auxiliary land-use knowledge method, is presented for this requirement. With the abundant geographic knowledge in the thematic map, we first propose a simple and effective method to extract rural residential out-border from RS image by overlapping analysis, and take the result as the basic data for further interpretation. Secondly, the object-oriented approach is employed for further classification, whose basic cell isn't a single pixel any more, but rather an image object from image segmentation. During the process, land-use knowledge is also taken as auxiliary information to establish class system and class hierarchy, select feature presentation of image objects, and examine classification result. Finally, a high-resolution RS image of Hubei Province is taken as testing data to verify the above method. The experiment results are satisfying: the detailed land-use information is extracted and categories with similar spectrum feature are divided effectively. It is obvious that this method offers a good solution to extract land-use information within rural residential area.

  13. High-resolution digital holographic imaging by using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Da-Yong; Wang, Yun-Xin; Rong, Lu

    2014-09-01

    Digital holography is the product of the optical holography, computer technology and photoelectric detection technology, and has the advantage of high-speed, real-time, full field of view, non-contact and quantitative phase contrast imaging. However, the numerical aperture of the hologram is limited due to the smaller sensitive area of the photoelectric sensor and the larger pixel size, and it is uneasy to meet the practical requirement on the imaging resolution. An approach is presented to achieve the high-resolution digital holographic imaging based on a spatial light modulator(SLM). An amplitude spatial light modulator is placed between the object and the CCD in the lensless Fourier transform digital holographic imaging system. The distribution of a diffraction grating is loaded into the SLM. In this way, more light including the high-frequency content, diffracted from the object, can be collected by the CCD. The standard resolution target is used as the object. The reconstructed image is obtained by the Fresnel diffraction propagation algorithm, which exhibits three diffraction orders. The results show that the resolution is improved from 62.5 μm to 31.3 μm.

  14. A study of equivalent source techniques for high-resolution EEG imaging.

    PubMed

    Yao, D; Zhou, Y; Zeng, M; Fan, S; Lian, J; Wu, D; Ao, X; Chen, L; He, B

    2001-08-01

    High-resolution EEG imaging has been an important topic in recent EEG research, and much work has been done on the two equivalent source imaging techniques: the equivalent distributed dipole-layer source imaging technique (EST) and the equivalent multipole source imaging technique (SAT). In this paper we first develop a forward density formula for a spherical equivalent distributed dipole layer of an arbitrary dipole in a three-concentric-sphere head model. It is clarified using the derived forward formula that the equivalent dipole-layer source and equivalent multipole source are interrelated in theory. Finally, simulation comparisons are conducted, the results of which suggest that EST has a higher spatial resolution than SAT when both of them are implemented by a truncated singular value decomposition algorithm. This is due to the different singularities of the inversion equations involved in the two techniques. An empirical VEP data study also shows that EST is better than SAT in providing higher spatial resolution EEG imaging.

  15. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Ng, C.-Y.; Gaensler, B. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.

    2009-11-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 +- 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is alpha = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  16. Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry

    2015-03-01

    The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

  17. Multiphase Flow Characterization Using Simultaneous High Resolution Neutron and X-Ray Imaging

    NASA Astrophysics Data System (ADS)

    LaManna, J.; Anovitz, L. M.; Hussey, D. S.; Jacobson, D. L.

    2015-12-01

    Multiphase flow in geologic materials is an important area of research for hydrology and oil recovery. A valuable tool for determining how liquid water and/or hydrocarbons transport through soils and rocks is neutron tomography due to its high sensitivity to hydrogen. This technique allows for the 3D reconstruction of the liquid phase in the sample. In order to resolve the solid phase structure of the sample it is necessary to perform x-ray tomography which often must be conducted at a separate facility from the neutron imaging. When imaging deformable samples or stochastic flow this delay in imaging modes ruins the analysis as the sample is no longer in an identical state. To address this issue and bring a unique capability to NIST, an instrument has been commissioned for the simultaneous imaging with neutrons and x-rays. The new system orients a micro-focus 90 kV x-ray beam 90° to the neutron beam which facilitates rapid dual-mode tomography of samples. Current highest spatial resolutions are 20 μm and 10 μm for the neutron and x-ray detectors, respectively, with upcoming improvements. This presentation will focus on introducing the new system and demonstrating its ability with several cases. Examples of high resolution water uptake and high speed imaging of uptake dynamics will be given.

  18. [Study on the advanced Schwarzschild imaging spectrometer with high resolution in broadband].

    PubMed

    Liu, Jian-Fang

    2013-08-01

    The Schwarzschild optical structure was studied for the application of imaging spectrometer. The perfect astigmatism-corrected condition was obtained based on the analysis of the astigmatism of the Schwarzschild structure. The structure was advanced in the paper. The Schwarzschild imaging spectrum system is composed of two Schwarzschild structures, which are the collimating mirror-convex mirror and the convex mirror-focusing mirror. The calculation was given to present the parameters of the imaging spectrum system. An example of the imaging spectrum system in the waveband of 340-500 nm was designed and proved our design theory. The solution of the initial optimum structure was designed by our theory and simulated. A system with NA 1.25, of which the modulation transfer functions (MTF) of all fields of view are more than 0.58 in the waveband in the required Nyquist frequency (20 lp x mm(-1)), is presented in the paper. The form of the design structure can be changed as C-T system, Ebert-Fastie system and Offner system. The result also certificated that the optical system theory can be applied to the small scale imaging spectrometer with high resolution and spectral broadband.

  19. [Study on an optical system of small ultraviolet imaging spectrometer with high resolution in broadband].

    PubMed

    Cong, Hai-Fang; Wang, Chun-Hui; Wang, Yu

    2013-02-01

    An ultraviolet imaging spectrometer was studied based on the principle of the small scale ultraviolet spectral instrument. The scheme composed of an off-axis parabolic mirror telescope and a single toroidal grating spectral imaging system was designed. The optimization of the optical system is the optimum processing for the parameters of the toroidal grating. The optical path function and the aberration equations of the grating were analyzed. The perfect anastigmatism conditions and imaging conditions of the single toroidal grating system were obtained. These two conditions that cannot be satisfied by the algebra calculation method limit the field of view and waveband of the spectrometer. The genetic algorithm was introduced to solve the problem. A solar-blind ultraviolet imaging spectrometer for 200-280 nm was designed to verify the design method. The optimum initial configuration was calculated and simulated. A system with F/# 5.7, focal length 102 mm and high spatial resolution was designed. The modulation transfer functions (MTF) of all fields of view are more than 0.65 in the waveband in the required Nyquist frequency (20 1p x mm(-1)). The design results indicate that the optical system theory can be applied to the small scale ultraviolet imaging spectrometer with high resolution and spectral broadband.

  20. High resolution x-ray lensless imaging by differential holographic encoding

    SciTech Connect

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  1. Self-feeding MUSE: a robust method for high resolution diffusion imaging using interleaved EPI.

    PubMed

    Zhang, Zhe; Huang, Feng; Ma, Xiaodong; Xie, Sheng; Guo, Hua

    2015-01-15

    Single-shot echo planar imaging (EPI) with parallel imaging techniques has been well established as the most popular method for clinical diffusion imaging, due to its fast acquisition and motion insensitivity. However, this approach is limited by the relatively low spatial resolution and image distortion. Interleaved EPI is able to break the limitations but the phase variations among different shots must be considered for artifact suppression. The introduction of multiplexed sensitivity-encoding (MUSE) can address the phase issue using sensitivity encoding (SENSE) for self-navigation of each interleave. However, MUSE has suboptimal results when the number of shots is high. To achieve higher spatial resolution and lower geometric distortion, we introduce two new schemes into the MUSE framework: 1) a self-feeding mechanism is adopted by using prior information regularized SENSE in order to obtain reliable phase estimation; and 2) retrospective motion detection and data rejection strategies are performed to exclude unusable data corrupted by severe pulsatile motions. The proposed method is named self-feeding MUSE (SF-MUSE). Experiments on healthy volunteers demonstrate that this new SF-MUSE approach provides more accurate motion-induced phase estimation and fewer artifacts caused by data corruption when compared with the original MUSE method. SF-MUSE is a robust method for high resolution diffusion imaging and suitable for practical applications with reasonable scan time.

  2. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    NASA Astrophysics Data System (ADS)

    Zhang, E. Z.; Laufer, J. G.; Pedley, R. B.; Beard, P. C.

    2009-02-01

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  3. High-resolution in vivo imaging of mouse brain through the intact skull

    PubMed Central

    Park, Jung-Hoon; Sun, Wei; Cui, Meng

    2015-01-01

    Multiphoton microscopy is the current method of choice for in vivo deep-tissue imaging. The long laser wavelength suffers less scattering, and the 3D-confined excitation permits the use of scattered signal light. However, the imaging depth is still limited because of the complex refractive index distribution of biological tissue, which scrambles the incident light and destroys the optical focus needed for high resolution imaging. Here, we demonstrate a wavefront-shaping scheme that allows clear imaging through extremely turbid biological tissue, such as the skull, over an extended corrected field of view (FOV). The complex wavefront correction is obtained and directly conjugated to the turbid layer in a noninvasive manner. Using this technique, we demonstrate in vivo submicron-resolution imaging of neural dendrites and microglia dynamics through the intact skulls of adult mice. This is the first observation, to our knowledge, of dynamic morphological changes of microglia through the intact skull, allowing truly noninvasive studies of microglial immune activities free from external perturbations. PMID:26170286

  4. Rapid hybrid encoding for high-resolution whole-brain fluid-attenuated imaging.

    PubMed

    Lee, Hoonjae; Sohn, Chul-Ho; Park, Jaeseok

    2013-12-01

    Single-slab three-dimensional (3D) turbo spin-echo (TSE) imaging combined with inversion recovery (IR), which employs short, spatially non-selective refocusing pulses and signal prescription based variable refocusing flip angles (VFA) to increase imaging efficiency, was recently introduced to produce fluid-attenuated brain images for lesion detection. Despite the advantages, the imaging efficiency in this approach still remains limited because a substantially long time of inversion is needed to selectively suppress the signal intensity of cerebrospinal fluid (CSF) while fully recovering that of brain tissues. The purpose of this work is to develop a novel, rapid hybrid encoding method for highly efficient whole-brain fluid-attenuated imaging. In each time of repetition, volumetric data are continuously encoded using the hybrid modular acquisition in a sequential fashion even during IR signal transition, wherein reversed fast imaging with steady-state free precession (PSIF) is employed to encode intermediate-to-high spatial frequency signals prior to CSF nulling, while VFA-TSE is used to collect low-to-intermediate spatial frequency signals afterwards. Gradient-induced spin de-phasing between a pair of neighboring radio-frequency (RF) pulses in both PSIF and TSE modules is kept identical to avoid the occurrence of multiple echoes in a single acquisition window. Additionally, a two-step, alternate RF phase-cycling scheme is employed in the low spatial frequency region to eliminate free induction decay induced edge artifacts. Numerical simulations of the Bloch equations were performed to evaluate signal evolution of brain tissues along the echo train while optimizing imaging parameters. In vivo studies demonstrate that the proposed technique produces high-resolution isotropic fluid-attenuated whole-brain images in a clinically acceptable imaging time with substantially high signal-to-noise ratio for white matter while retaining lesion conspicuity.

  5. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J.W.; Edwards, L.E.; Rymer, M.J.; Gandhok, G.

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.

  6. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

  7. A novel low-cost targeting system (LCTS) based upon a high-resolution 2D imaging laser radar

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Wikman, John C.; Skaluba, Fred W.; Dippel, George F.; McDaniel, Robert V.; Ferrell, David S.; Seibel, William

    2005-10-01

    BAE SYSTEMS has developed a Low Cost Targeting System (LCTS) consisting of a FLIR for target detection, laser-illuminated, gated imaging for target identification, laser rangefinder and designator, GPS positioning, and auto-tracking capability within a small compact system size. This system has proven its ability to acquire targets, range and identify these targets, and designate or provide precise geo-location coordinates to these targets. The system is based upon BAE Systems proven micro-bolometer passive LWIR camera coupled with Intevac's new EBAPS camera. A dual wavelength diode pumped laser provides eyesafe ranging and target illumination, as well as designation; a custom detector module senses the return pulse for target ranging and to set the range gates for the gated camera. Intevac's camera is a CMOS based device with used selectable gate widths and can read at up to 28 frames/second when operated in VGA mode. The Transferred Electron photocathode enables high performance imaging in the SWIR band by enabling single photon detection at high quantum efficiency. Trials show that the current detectors offer complete extinction of signals outside of the gated range, thus, providing high resolution within the gated region. The images have shown high spatial resolution arising from the use of solid state focal plane array technology. Imagery has been collected in both the laboratory and the field to verify system performance during a variety of operating conditions.

  8. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    SciTech Connect

    Chatziioannou, A.; Qi, J.; Moore, A.; Annala, A.; Nguyen, K.; Leahy, R.M.; Cherry, S.R.

    2000-01-01

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior.

  9. High resolution neurography of the brachial plexus by 3 Tesla magnetic resonance imaging.

    PubMed

    Cejas, C; Rollán, C; Michelin, G; Nogués, M

    2016-01-01

    The study of the structures that make up the brachial plexus has benefited particularly from the high resolution images provided by 3T magnetic resonance scanners. The brachial plexus can have mononeuropathies or polyneuropathies. The mononeuropathies include traumatic injuries and trapping, such as occurs in thoracic outlet syndrome due to cervical ribs, prominent transverse apophyses, or tumors. The polyneuropathies include inflammatory processes, in particular chronic inflammatory demyelinating polyneuropathy, Parsonage-Turner syndrome, granulomatous diseases, and radiation neuropathy. Vascular processes affecting the brachial plexus include diabetic polyneuropathy and the vasculitides. This article reviews the anatomy of the brachial plexus and describes the technique for magnetic resonance neurography and the most common pathologic conditions that can affect the brachial plexus. PMID:26860655

  10. High resolution neurography of the brachial plexus by 3 Tesla magnetic resonance imaging.

    PubMed

    Cejas, C; Rollán, C; Michelin, G; Nogués, M

    2016-01-01

    The study of the structures that make up the brachial plexus has benefited particularly from the high resolution images provided by 3T magnetic resonance scanners. The brachial plexus can have mononeuropathies or polyneuropathies. The mononeuropathies include traumatic injuries and trapping, such as occurs in thoracic outlet syndrome due to cervical ribs, prominent transverse apophyses, or tumors. The polyneuropathies include inflammatory processes, in particular chronic inflammatory demyelinating polyneuropathy, Parsonage-Turner syndrome, granulomatous diseases, and radiation neuropathy. Vascular processes affecting the brachial plexus include diabetic polyneuropathy and the vasculitides. This article reviews the anatomy of the brachial plexus and describes the technique for magnetic resonance neurography and the most common pathologic conditions that can affect the brachial plexus.

  11. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas.

    PubMed

    Martin, Jérôme; Kociak, Mathieu; Mahfoud, Zackaria; Proust, Julien; Gérard, Davy; Plain, Jérôme

    2014-10-01

    We report on the high resolution imaging of multipolar plasmonic resonances in aluminum nanoantennas using electron energy loss spectroscopy (EELS). Plasmonic resonances ranging from near-infrared to ultraviolet (UV) are measured. The spatial distributions of the multipolar resonant modes are mapped and their energy dispersion is retrieved. The losses in the aluminum antennas are studied through the full width at half-maximum of the resonances, unveiling the weight of both interband and radiative damping mechanisms of the different multipolar resonances. In the blue-UV spectral range, high order resonant modes present a quality factor up to 8, two times higher than low order resonant modes at the same energy. This study demonstrates that near-infrared to ultraviolet tunable multipolar plasmonic resonances in aluminum nanoantennas with relatively high quality factors can be engineered. Aluminum nanoantennas are thus an appealing alternative to gold or silver ones in the visible and can be efficiently used for UV plasmonics.

  12. Observations of the O2 atmospheric band nightglow by the High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Burrage, M. D.; Arvin, N.; Skinner, W. R.; Hays, P. B.

    1994-01-01

    During nighttime operation the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) measures both the horizontal wind field at about 94 km altitude and the limb brightness of the O2(b(sup 1) Sigma(sup +)(sub g) - Chi(cubed)Sigma(sup +)(sub g)) (0,0) atmospheric band airglow. The dominant feature of the observed emission is a latitudinal and local time dependence which is consistent with the (1,1) diurnal tidal mode. A survey of the available data set from November 1991 to July 1993 reveals a semiannual variation in the peak brightness observed at the equator, with maxima observed at the equinoxes and minima at the solstices. These results are consistent with the long-term variations in the diurnal tidal amplitudes detected in HRDI wind measurements.

  13. Flexible high-resolution film recorder system. [in NASA image processing facility for remote sensor data

    NASA Technical Reports Server (NTRS)

    Heffner, P.; Connell, E.

    1980-01-01

    The paper describes a high-resolution film recorder (HRFR) system capable of meeting the requirements of all of the imaging sensors for the recording support of NASA missions. The technical requirements imposed by sensor constraints and end users of the film product are examined, along with the implementation techniques to satisfy these requirements. The recorder can produce annotated imagery with array sizes ranging from 1 to 400 million picture elements and a programmable radiometric transfer function provided by the recorder. The HRFR requirements were grouped into three categories: (1) front end (input) requirements defined by the input medium, (2) operational requirements based on the volume, throughput, and changeover time from one mode to another, and (3) film product requirements determined by the needs of the end product user.

  14. Compact, high-resolution, gamma ray imaging for scintimammography and other medical diagostic applications

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.; Steinbach, Daniela

    1999-01-01

    A high resolution gamma ray imaging device includes an aluminum housing, a lead screen collimator at an opened end of the housing, a crystal scintillator array mounted behind the lead screen collimator, a foam layer between the lead screen collimator and the crystal scintillator array, a photomultiplier window coupled to the crystal with optical coupling grease, a photomultiplier having a dynode chain body and a base voltage divider with anodes, anode wire amplifiers each connected to four anodes and a multi pin connector having pin connections to each anode wire amplifier. In one embodiment the crystal scintillator array includes a yttrium aluminum perovskite (YAP) crystal array. In an alternate embodiment, the crystal scintillator array includes a gadolinium oxyorthosilicate (GSO) crystal array.

  15. Measurement of water content in polymer electrolyte membranes using high resolution neutron imaging

    SciTech Connect

    Spernjak, Dusan; Mukundan, Rangachary; Borup, Rodney L; Davey, John; Mukherjee, Partha P; Hussey, Daniel S; Jacobson, David

    2010-01-01

    Sufficient water content within a polymer electrolyte membrane (PEM) is necessary for adequate ionic conductivity. Membrane hydration is therefore a fundamental requirement for fuel cell operation. The hydration state of the membrane affects the water transport within, as both the diffusion coefficient and electro-osmotic drag depend on the water content. Membrane's water uptake is conventionally measured ex situ by weighing free-swelling samples equilibrated at controlled water activity. In the present study, water profiles in Nafion{reg_sign} membranes were measured using the high-resolution neutron imaging. The state-of-the-art, 10 {micro}m resolution neutron detector is capable of resolving water distributions across N1120, N1110 and N117 membranes. It provides a means to measure the water uptake and transport properties of fuel cell membranes in situ.

  16. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2016-03-01

    We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  17. Measurement of Water Content in Polymer Electrolyte Membranes using High Resolution Neutron Imaging

    SciTech Connect

    Mukherjee, Partha P

    2010-01-01

    Sufficient water content within a polymer electrolyte membrane (PEM) is necessary for adequate ionic conductivity. Membrane hydration is therefore a fundamental requirement for fuel cell operation. The hydration state of the membrane affects the water transport within, as both the diffusion coefficient and electroosmotic drag depend on the water content. Membrane s water uptake is conventionally measured ex situ by weighing freeswelling samples equilibrated at controlled water activity. In the present study, water profiles in Nafion membranes were measured using high-resolution neutron imaging. The state-of-theart, 13 m resolution neutron detector is capable of resolving water distributions across N1120, N1110 and N117 membranes. It provides a means to measure the water uptake and transport properties of fuel cell membranes in situ.

  18. High Resolution Doppler Imager FY 2001,2002,2003 Operations and Algorithm Maintenance

    NASA Technical Reports Server (NTRS)

    Skinner, Wilbert

    2004-01-01

    During the performance period of this grant HRDI (High Resolution Doppler Imager) operations remained nominal. The instrument has suffered no loss of scientific capability and operates whenever sufficient power is available. Generally, there are approximately 5-7 days per month when the power level is too low to permit observations. The daily latitude coverage for HRDI measurements in the mesosphere, lower thermosphere (MLT) region are shown.It shows that during the time of this grant, HRDI operations collected data at a rate comparable to that achieved during the UARS (Upper Atmosphere Research Satellite) prime mission (1991 -1995). Data collection emphasized MLT wind to support the validation efforts of the TIDI instrument on TIMED, therefore fulfilling one of the primary objectives of this phase of the UARS mission. Skinner et al., (2003) present a summary of the instrument performance during this period.

  19. High-resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Liu, Lijun; Hasterok, Derrick

    2016-09-01

    An accurate viscosity structure is critical to truthfully modeling lithosphere dynamics. Here, we report an attempt to infer the effective lithospheric viscosity from a high-resolution magnetotelluric (MT) survey across the western United States. The high sensitivity of MT fields to the presence of electrically conductive fluids makes it a promising proxy for determining mechanical strength variations throughout the lithosphere. We demonstrate how a viscosity structure, approximated from electrical resistivity, results in a geodynamic model that successfully predicts short-wavelength surface topography, lithospheric deformation, and mantle upwelling beneath recent volcanism. We further show that this viscosity is physically consistent with and better constrained than that derived from laboratory-based rheology. We conclude that MT imaging provides a practical observational constraint for quantifying the dynamic evolution of the continental lithosphere.

  20. brainR: Interactive 3 and 4D Images of High Resolution Neuroimage Data

    PubMed Central

    Muschelli, John; Sweeney, Elizabeth; Crainiceanu, Ciprian

    2016-01-01

    We provide software tools for displaying and publishing interactive 3-dimensional (3D) and 4-dimensional (4D) figures to html webpages, with examples of high-resolution brain imaging. Our framework is based in the R statistical software using the rgl package, a 3D graphics library. We build on this package to allow manipulation of figures including rotation and translation, zooming, coloring of brain substructures, adjusting transparency levels, and addition/or removal of brain structures. The need for better visualization tools of ultra high dimensional data is ever present; we are providing a clean, simple, web-based option. We also provide a package (brainR) for users to readily implement these tools. PMID:27330829

  1. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas.

    PubMed

    Martin, Jérôme; Kociak, Mathieu; Mahfoud, Zackaria; Proust, Julien; Gérard, Davy; Plain, Jérôme

    2014-10-01

    We report on the high resolution imaging of multipolar plasmonic resonances in aluminum nanoantennas using electron energy loss spectroscopy (EELS). Plasmonic resonances ranging from near-infrared to ultraviolet (UV) are measured. The spatial distributions of the multipolar resonant modes are mapped and their energy dispersion is retrieved. The losses in the aluminum antennas are studied through the full width at half-maximum of the resonances, unveiling the weight of both interband and radiative damping mechanisms of the different multipolar resonances. In the blue-UV spectral range, high order resonant modes present a quality factor up to 8, two times higher than low order resonant modes at the same energy. This study demonstrates that near-infrared to ultraviolet tunable multipolar plasmonic resonances in aluminum nanoantennas with relatively high quality factors can be engineered. Aluminum nanoantennas are thus an appealing alternative to gold or silver ones in the visible and can be efficiently used for UV plasmonics. PMID:25207386

  2. Grooved Terrain on Ganymede: First Results from Galileo High-Resolution Imaging

    USGS Publications Warehouse

    Pappalardo, R.T.; Head, J.W.; Collins, G.C.; Kirk, R.L.; Neukum, G.; Oberst, J.; Giese, B.; Greeley, R.; Chapman, C.R.; Helfenstein, P.; Moore, Johnnie N.; McEwen, A.; Tufts, B.R.; Senske, D.A.; Herbert, Breneman H.; Klaasen, K.

    1998-01-01

    High-resolution Galileo imaging has provided important insight into the origin and evolution of grooved terrain on Ganymede. The Uruk Sulcus target site was the first imaged at high resolution, and considerations of resolution, viewing geometry, low image compression, and complementary stereo imaging make this region extremely informative. Contrast variations in these low-incidence angle images are extreme and give the visual impression of topographic shading. However, photometric analysis shows that the scene must owe its character to albedo variations. A close correlation of albedo variations to topography is demonstrated by limited stereo coverage, allowing extrapolation of the observed brightness and topographic relationships to the rest of the imaged area. Distinct geological units are apparent across the region, and ridges and grooves are ubiquitous within these units. The stratigraphically lowest and most heavily cratered units ("lineated grooved terrain") generally show morphologies indicative of horst-and-graben-style normal faulting. The stratigraphically highest groove lanes ("parallel ridged terrain") exhibit ridges of roughly triangular cross section, suggesting that tilt-block-style normal faulting has shaped them. These extensional-tectonic models are supported by crosscutting relationships at the margins of groove lanes. Thus, a change in tectonic style with time is suggested in the Uruk Sulcus region, varying from horst and graben faulting for the oldest grooved terrain units to tilt block normal faulting for the latest units. The morphologies and geometries of some stratigraphically high units indicate that a strike-slip component of deformation has played an important role in shaping this region of grooved terrain. The most recent tectonic episode is interpreted as right-lateral transtension, with its tectonic pattern of two contemporaneous structural orientations superimposed on older units of grooved terrain. There is little direct evidence for

  3. High-Resolution Magnetic Resonance Imaging Enhanced With Superparamagnetic Nanoparticles Measures Macrophage Burden in Atherosclerosis

    PubMed Central

    Morishige, Kunio; Kacher, Daniel F.; Libby, Peter; Josephson, Lee; Ganz, Peter; Weissleder, Ralph; Aikawa, Masanori

    2010-01-01

    Background Macrophages contribute to the progression and acute complications of atherosclerosis. Macrophage imaging may serve as a biomarker to identify subclinical inflamed lesions, to predict future risk, and to aid in the assessment of novel therapies. Methods and Results To test the hypothesis that nanoparticle-enhanced, high-resolution magnetic resonance imaging (MRI) can measure plaque macrophage accumulation, we used 3-T MRI with a macrophage-targeted superparamagnetic nanoparticle preparation (monocrystalline iron oxide nanoparticles-47 [MION-47]) in cholesterol-fed New Zealand White rabbits 6 months after balloon injury. In vivo MRI visualized thickened abdominal aortas on both T1- and T2-weighted spin-echo images (T1 spin echo, 20 axial slices per animal; T2 spin echo, 28 slices per animal). Seventy-two hours after MION-47 injection, aortas exhibited lower T2 signal intensity compared with before contrast imaging (signal intensity ratio, aortic wall/muscle: before, 1.44±0.26 versus after, 0.95±0.22; 164 slices; P<0.01), whereas T1 spin echo images showed no significant change. MRI on ex vivo specimens provided similar results. Histological studies colocalized iron accumulation with immunoreactive macrophages in atheromata. The magnitude of signal intensity reduction on T2 spin echo in vivo images further correlated with macrophage areas in situ (150 slices; r=0.73). Treatment with rosuvastatin for 3 months yielded diminished macrophage content (P<0.05) and reversed T2 signal intensity changes (P<0.005). Signal changes in rosuvastatin-treated rabbits correlated with reduced macrophage burden (r=0.73). In vitro validation studies showed concentration-dependent MION-47 uptake by human primary macrophages. Conclusion The magnitude of T2 signal intensity reduction in high-resolution MRI after administration of superparamagnetic phagocytosable nanoparticles can assess macrophage burden in atheromata, providing a clinically translatable tool to identify

  4. Using High Resolution Vegetation Images to study Ecogeomorphologic Thresholds in Semiarid Australia

    NASA Astrophysics Data System (ADS)

    Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry

    2016-04-01

    Arid and Semiarid sites are very sensitive to climatic or anthropogenic pressures. Several previous studies argue that ecosystem function in these areas tends to display critical degradation thresholds which make rehabilitation efforts considerably difficult. This threshold behaviour is linked to coevolving eco-geomorphic processes triggered by climatic or anthropogenic disturbances. A common trigger is the removal of vegetation (by grazing or harvesting activities) which increases landscape hydrological connectivity and can induce a substantial loss of water and soil affecting ecosystem function (e.g. decreasing the rainfall-use efficiency of the landscape). Here we present results exploring the impact of degradation processes induced by grazing pressure on rainfall-use efficiency along a precipitation gradient (250 mm to 490 mm annual average rainfall). The sites were carefully selected in the mulga lands bioregion (New South Wales, Queensland) and in sites of the Northern Territory in Australia, and display similar vegetation characteristics and good quality rainfall information. Vegetation patterns and percentage cover are derived from high resolution remote sensing images (IKONOS, QuickBird and complement this information with high resolution images obtained from Google Earth). We compute rainfall use efficiency and precipitation marginal response using local precipitation data and MODIS vegetation indices. The analysis of the NDVI MODIS data shows the presence of a clear critical degradation threshold, associated with loss of vegetation cover in the drier sites. Below this threshold we found what we call "functional landscapes" with high vegetation cover that display high rainfall use efficiency. Above this threshold, we found "dysfunctional landscapes" with much lower rainfall use efficiency. We compare the different behaviours for several sites along the precipitation gradient, and find that the wetter sites do not tend to display this threshold behaviour

  5. High resolution seismic imaging of Rainier Mesa using surface reflection and surface to tunnel tomography

    SciTech Connect

    Majer, E.L.; Johnson, L.R.; Karageorgi, E.K.; Peterson, J.E.

    1994-06-01

    In the interpretation of seismic data to infer properties of an explosion source, it is necessary to account for wave propagation effects. In order to understand and remove these propagation effects, it is necessary to have a model. An open question concerning this matter is the detail and accuracy which must be present in the velocity model in order to produce reliable estimates in the estimated source properties. While it would appear that the reliability of the results would be directly related to the accuracy of the velocity and density models used in the interpretation, it may be that certain deficiencies in these models can be compensated by the and amount of seismic data which is used in the inversion. The NPE provided an opportunity to test questions of this sort. In August 1993, two high resolution seismic experiments were performed in N-Tunnel and on the surface of Rainier Mesa above it. The first involved a surface-to-tunnel imaging experiment with sources on the surface and receivers in tunnel U12n.23 about 88 meters west of the NPE. It was possible to estimate the apparent average velocity between the tunnel and the surface. In a separate experiment, a high resolution reflection experiment was performed in order to image the lithology in Rainier Mesa. Good quality, broad band, reflections were obtained from depths extending into the Paleozoic basement. A high velocity layer near the surface is underlain by a thick section of low velocity material, providing a nonuniform but low average velocity between the depth of the NPE and the surface.

  6. High resolution two-dimensional near field images of neon-like soft x- ray lasers

    SciTech Connect

    Moreno, J.C.; Nilsen, J.; Li, Y; Lu, P.; Fill, E.E.

    1996-06-01

    We discuss high resolution two-dimensional near-field images of the neon-like nickel and germanium X-ray laser. The Asterix iodine laser, using a prepulse 5.23 ns before the main pulse, was used to irradiate slab targets. Our imaging diagnostic consisted of a concave multilayer mirror that imaged the X-ray laser line (with a magnification of ten) onto a backside illuminated X-ray CCD detector. A great deal of structure was observed in the near field images, particularly in the J=0-1 emission. We observed a large difference in the spatial dependence of the J=0-1 and J=2-1 lines of germanium, with the J=2-1 emission peaking farther away from the original target surface. The prepulse level was varied and observed to have a significant effect on the spatial dependence of the germanium and nickel laser lines. A larger prepulse moved the peak emission farther away from the target surface. These measurements are generally consistent with hydrodynamic simulations coupled with atomic kinetics.

  7. High-resolution image digitizing through 12x3-bit RGB-filtered CCD camera

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y. S.; Pau, Michael C. Y.

    1996-09-01

    A high resolution computer-controlled CCD image capturing system is developed by using a 12 bits 1024 by 1024 pixels CCD camera and motorized RGB filters to grasp an image with color depth up to 36 bits. The filters distinguish the major components of color and collect them separately while the CCD camera maintains the spatial resolution and detector filling factor. The color separation can be done optically rather than electronically. The operation is simply by placing the capturing objects like color photos, slides and even x-ray transparencies under the camera system, the necessary parameters such as integration time, mixing level and light intensity are automatically adjusted by an on-line expert system. This greatly reduces the restrictions of the capturing species. This unique approach can save considerable time for adjusting the quality of image, give much more flexibility of manipulating captured object even if it is a 3D object with minimal setup fixers. In addition, cross sectional dimension of a 3D capturing object can be analyzed by adapting a fiber optic ring light source. It is particularly useful in non-contact metrology of a 3D structure. The digitized information can be stored in an easily transferable format. Users can also perform a special LUT mapping automatically or manually. Applications of the system include medical images archiving, printing quality control, 3D machine vision, and etc.

  8. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    PubMed

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  9. Objects Grouping for Segmentation of Roads Network in High Resolution Images of Urban Areas

    NASA Astrophysics Data System (ADS)

    Maboudi, M.; Amini, J.; Hahn, M.

    2016-06-01

    Updated road databases are required for many purposes such as urban planning, disaster management, car navigation, route planning, traffic management and emergency handling. In the last decade, the improvement in spatial resolution of VHR civilian satellite sensors - as the main source of large scale mapping applications - was so considerable that GSD has become finer than size of common urban objects of interest such as building, trees and road parts. This technological advancement pushed the development of "Object-based Image Analysis (OBIA)" as an alternative to pixel-based image analysis methods. Segmentation as one of the main stages of OBIA provides the image objects on which most of the following processes will be applied. Therefore, the success of an OBIA approach is strongly affected by the segmentation quality. In this paper, we propose a purpose-dependent refinement strategy in order to group road segments in urban areas using maximal similarity based region merging. For investigations with the proposed method, we use high resolution images of some urban sites. The promising results suggest that the proposed approach is applicable in grouping of road segments in urban areas.

  10. High resolution deep imaging of a bright radio quiet QSO at z ~ 3

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ping; He, Wei; Yamada, Toru; Tanaka, Ichi; Iye, Masanori; Ji, Tuo

    2015-05-01

    We have obtained deep J and Ks-band images centered on a bright radio quiet QSO UM 402 (zem = 2.856) using the IRCS camera and adaptive optics systems that are part of the Subaru Telescope, as well as retrieved WFC3/F140W archive images of this object. A faint galaxy (mk = 23.32±0.05 in the Vega magnitude system) that lies ~ 2.4″ north of the QSO sightline has been clearly resolved in all three deep high resolution datasets, and appears as an irregular galaxy with two close components in the Ks-band images (separation ~ 0.3″). Given the small impact parameter (b = 19.6 kpc, at zlls = 2.531), as well as the red color of (J - Ks)Vega ~ 1.6, it might be a candidate galaxy giving rise to the Lyman Limit system absorption at zabs = 2.531 seen in the QSO spectrum. After carefully subtracting the point spread function from the QSO images, the host galaxy of this bright radio quiet QSO at z ~ 3 was marginally revealed. We placed a lower limit on the host component of mk ~ 23.3 according to our analyses. Supported by the National Natural Science Foundation of China.

  11. DSP accelerator for the wavelet compression/decompression of high- resolution images

    SciTech Connect

    Hunt, M.A.; Gleason, S.S.; Jatko, W.B.

    1993-07-23

    A Texas Instruments (TI) TMS320C30-based S-Bus digital signal processing (DSP) module was used to accelerate a wavelet-based compression and decompression algorithm applied to high-resolution fingerprint images. The law enforcement community, together with the National Institute of Standards and Technology (NISI), is adopting a standard based on the wavelet transform for the compression, transmission, and decompression of scanned fingerprint images. A two-dimensional wavelet transform of the input image is computed. Then spatial/frequency regions are automatically analyzed for information content and quantized for subsequent Huffman encoding. Compression ratios range from 10:1 to 30:1 while maintaining the level of image quality necessary for identification. Several prototype systems were developed using SUN SPARCstation 2 with a 1280 {times} 1024 8-bit display, 64-Mbyte random access memory (RAM), Tiber distributed data interface (FDDI), and Spirit-30 S-Bus DSP-accelerators from Sonitech. The final implementation of the DSP-accelerated algorithm performed the compression or decompression operation in 3.5 s per print. Further increases in system throughput were obtained by adding several DSP accelerators operating in parallel.

  12. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    PubMed Central

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-01-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids. PMID:26576666

  13. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    NASA Astrophysics Data System (ADS)

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-11-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids.

  14. High Resolution Fluorescence Imaging of Cancers Using Lanthanide Ion-Doped Upconverting Nanocrystals

    PubMed Central

    Naccache, Rafik; Rodríguez, Emma Martín; Bogdan, Nicoleta; Sanz-Rodríguez, Francisco; de la Cruz, Maria del Carmen Iglesias; de la Fuente, Ángeles Juarranz; Vetrone, Fiorenzo; Jaque, Daniel; Solé, José García; Capobianco, John A.

    2012-01-01

    During the last decade inorganic luminescent nanoparticles that emit visible light under near infrared (NIR) excitation (in the biological window) have played a relevant role for high resolution imaging of cancer. Indeed, semiconductor quantum dots (QDs) and metal nanoparticles, mostly gold nanorods (GNRs), are already commercially available for this purpose. In this work we review the role which is being played by a relatively new class of nanoparticles, based on lanthanide ion doped nanocrystals, to target and image cancer cells using upconversion fluorescence microscopy. These nanoparticles are insulating nanocrystals that are usually doped with small percentages of two different rare earth (lanthanide) ions: The excited donor ions (usually Yb3+ ion) that absorb the NIR excitation and the acceptor ions (usually Er3+, Ho3+ or Tm3+), that are responsible for the emitted visible (or also near infrared) radiation. The higher conversion efficiency of these nanoparticles in respect to those based on QDs and GNRs, as well as the almost independent excitation/emission properties from the particle size, make them particularly promising for fluorescence imaging. The different approaches of these novel nanoparticles devoted to “in vitro” and “in vivo” cancer imaging, selective targeting and treatment are examined in this review. PMID:24213500

  15. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    PubMed Central

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  16. Shadow detection improvement using spectral indices and morphological operators in high resolution images from urban areas

    NASA Astrophysics Data System (ADS)

    Azevedo, S. C.; Silva, E. A.; Pedrosa, M. M.

    2015-04-01

    While high-resolution remote sensing images have increased application possibilities for urban studies, the large number of shadow areas has created challenges to processing and extracting information from these images. Furthermore, shadows can reduce or omit information from the surface as well as degrading the visual quality of images. The pixels of shadows tend to have lower radiance response within the spectrum and are often confused with low reflectance targets. In this work, a shadow detection method was proposed using a morphological operator for dark pattern identification combined with spectral indices. The aims are to avoid misclassification in shadow identification through properties provided by them on color models and, therefore, to improve shadow detection accuracy. Experimental results were tested applying the panchromatic and multispectral band of WorldView-2 image from Sao Paulo city in Brazil, which is a complex urban environment composed by high objects like tall buildings causing large shadow areas. Black top-hat with area injunction was applied in PAN image and shadow identification performance has improved with index as Normalized Difference Vegetation Index (NDVI) and Normalized Saturation-Value Difference Index (NSDVI) ratio from HSV color space obtained from pansharpened multispectral WV-2 image. An increase in distinction between shadows and others objects was observed, which was tested for the completeness, correctness and quality measures computed, using a created manual shadow mask as reference. Therefore, this method can contribute to overcoming difficulties faced by other techniques that need shadow detection as a first necessary preprocessing step, like object recognition, image matching, 3D reconstruction, etc.

  17. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    NASA Astrophysics Data System (ADS)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  18. Anatomical and functional brain imaging using high-resolution echo-planar spectroscopic imaging at 1.5 Tesla.

    PubMed

    Du, Weiliang; Karczmar, Gregory S; Uftring, Stephen J; Du, Yiping P

    2005-06-01

    High-resolution echo-planar spectroscopic imaging (EPSI) of water resonance (i.e. without water suppression) is proposed for anatomic and functional imaging of the human brain at 1.5 T. Water spectra with a resolution of 2.6 Hz and a bandwidth of 333 Hz were obtained in small voxels (1.7 x 1.7 x 3 mm3) across a single slice. Although water spectra appeared Lorentzian in most of the voxels in the brain, non-Lorentzian broadening of the water resonance was observed in voxels containing blood vessels. In functional experiments with a motor task, robust activation in motor cortices was observed in high-resolution T2* maps generated from the EPSI data. Shift of the water resonance frequency occurred during neuronal activation in motor cortices. The activation areas appeared to be more localized after excluding the voxels in which the lineshape of the water resonance had elevated T2* and became more non-Lorentzian during the motor task. These preliminary results suggest that high-resolution EPSI is a promising tool to study susceptibility-related effects, such as BOLD contrast, for improved anatomical and functional imaging of the brain.

  19. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging

    NASA Astrophysics Data System (ADS)

    Bartelmess, Juergen; de Luca, Elisa; Signorelli, Angelo; Baldrighi, Michele; Becce, Michele; Brescia, Rosaria; Nardone, Valentina; Parisini, Emilio; Echegoyen, Luis; Pompa, Pier Paolo; Giordani, Silvia

    2014-10-01

    Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical

  20. HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements.